WO2018223444A1 - 机车辅助逆变器及控制方法 - Google Patents

机车辅助逆变器及控制方法 Download PDF

Info

Publication number
WO2018223444A1
WO2018223444A1 PCT/CN2017/090711 CN2017090711W WO2018223444A1 WO 2018223444 A1 WO2018223444 A1 WO 2018223444A1 CN 2017090711 W CN2017090711 W CN 2017090711W WO 2018223444 A1 WO2018223444 A1 WO 2018223444A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
phase
components
voltage
voltages
Prior art date
Application number
PCT/CN2017/090711
Other languages
English (en)
French (fr)
Inventor
李贺
许明夏
葛艳华
Original Assignee
中车大连电力牵引研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车大连电力牵引研发中心有限公司 filed Critical 中车大连电力牵引研发中心有限公司
Publication of WO2018223444A1 publication Critical patent/WO2018223444A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current

Definitions

  • Embodiments of the present invention relate to the field of locomotive technology, and in particular, to a locomotive auxiliary inverter and a control method thereof.
  • the power supply in the electric locomotive can be divided into two categories according to the function.
  • One is the traction power supply that provides energy for the locomotive's power
  • the other is the auxiliary power supply for improving the internal environmental conditions of the locomotive. It is mainly used for the locomotive.
  • Powered by electrical equipment such as lighting, air conditioning, electric tea stoves and heating.
  • the auxiliary inverter in the auxiliary inverter system is an important part of the auxiliary power supply system.
  • the output voltage of the three-phase three-bridge auxiliary inverter is generally converted from a three-phase stationary coordinate system to a two-phase rotating coordinate system, which is controlled and decoupled by PI, and then converted to a two-phase stationary coordinate system.
  • the control signal of the auxiliary inverter is generated by vector pulse width modulation, but the method is generally applicable to the case of three-phase load balancing, and cannot be applied in the case of load imbalance.
  • Embodiments of the present invention provide a locomotive auxiliary inverter and a control method thereof, so as to realize the capability of an locomotive auxiliary inverter based on a three-phase three-bridge inverter with an unbalanced load without adding hardware.
  • An aspect of an embodiment of the present invention provides a locomotive auxiliary inverter including: a voltage An output circuit and a control circuit; wherein the control circuit comprises:
  • a positive and negative sequence voltage separation module connected to the voltage output circuit for receiving three-phase output voltages Ua, Ub and Uc output by the voltage output circuit, and transforming the three-phase output voltage to obtain Two-phase output voltages U ⁇ and U ⁇ , and separating the positive and negative sequences of the two-phase output voltages U ⁇ and U ⁇ to obtain positive sequence components U ⁇ +, U ⁇ + and negative sequence components U ⁇ -, U ⁇ -;
  • a Park converter coupled to the positive and negative sequence voltage separation module for receiving the positive sequence components U ⁇ +, U ⁇ + and negative sequence components U ⁇ -, U ⁇ -, and for the positive sequence components U ⁇ +, U ⁇ + and the negative sequence components U ⁇ -, U ⁇ - perform Park transformation to obtain the dq axis components Ud+, Uq+ of the first positive sequence and the dq axis components Ud-, Uq- of the first negative sequence in the two-phase rotating coordinate system;
  • a PI controller coupled to the Park converter for receiving the dq-axis components Ud+, Uq+ of the first positive sequence and the dq-axis components Ud-, Uq- of the first negative sequence, and for the first
  • the positive sequence dq axis components Ud+, Uq+ and the first negative sequence dq axis components Ud-, Uq- are respectively PI controlled to obtain the dq axis components UCd+, UCq+, and the second negative sequence of the second positive sequence of the control output.
  • the dq axis components UCd-, UCq-, and according to the angular relationship of the vector rotation angle, the dq axis components UCd-, UCq- of the second negative sequence are converted to the dq axis of the second positive sequence, and the dq of the second positive sequence
  • the axis components UCd+, UCq+ are respectively summed to obtain the first dq axis voltages Ud, Uq of the control output;
  • a control pulse generator connected to the PI controller for receiving the first dq axis voltages Ud, Uq and generating a control pulse according to the first dq axis voltages Ud, Uq.
  • the positive and negative sequence voltage separation module comprises:
  • a Clark converter connected to the voltage output circuit for receiving three-phase output voltages Ua, Ub and Uc output by the voltage output circuit, and converting the three-phase output voltages Ua, Ub and Uc to Clark Two-phase stationary coordinate system to obtain two-phase output voltages U ⁇ and U ⁇ ;
  • a second-order generalized integrator coupled to the Clark converter for filtering and phase-shifting the two-phase output voltages U ⁇ and U ⁇ to obtain phase-shifting voltages QU ⁇ and QU ⁇ , wherein Q is a phase shifting operator,
  • a positive-negative-sequence symmetric component calculator coupled to the second-order generalized integrator for calculating positive and negative-sequence symmetric components of the phase-shifting voltages QU ⁇ and QU ⁇ to obtain positive-sequence components U ⁇ +, U ⁇ +, and Negative sequence components U ⁇ -, U ⁇ -.
  • the PI controller comprises:
  • a first PI control unit configured to perform PI control on the d-axis component Ud+ of the first positive sequence to obtain a d-axis component UCd+ of the second positive sequence of the control output;
  • a second PI control unit configured to perform PI control on the q-axis component Uq+ of the first positive sequence to obtain a q-axis component UCq+ of the second positive sequence of the control output;
  • a third PI control unit configured to perform PI control on the d-axis component Ud- of the first negative sequence to obtain a d-axis component UCd- of the second negative sequence of the control output;
  • a fourth PI control unit configured to perform PI control on the first negative sequence q-axis component Uq- to obtain a second negative-order q-axis component UCq- of the control output;
  • the dq axis output adder is configured to convert the dq axis component UCd-, UCq- of the second negative sequence to the dq axis of the second positive sequence and the dq axis component of the second positive sequence according to the angular relationship of the vector rotation angle UCd+ and UCq+ are respectively summed to obtain the first dq axis voltages Ud and Uq of the control output.
  • control pulse generator comprises:
  • An inductor voltage decoupler connected to the PI controller for receiving the first dq axis voltage Ud, Uq, and acquiring an inductor voltage in an LC filter in a voltage output circuit, and calculating the inductor voltage a component of the dq axis ULd, ULq, and the first dq axis voltage Ud, Uq and the component of the inductor voltage in the first dq axis ULd, ULq, and the three-phase output voltage on the first dq axis
  • the components sUd, sUq are superimposed to obtain the second dq axis voltage USd, USq;
  • a Park inverse converter connected to the inductor voltage decoupler for receiving the second dq axis voltage USd, USq, and inversely transforming the second dq axis voltage USd, USq to obtain two Two-phase voltage US ⁇ , US ⁇ in phase stationary coordinate system;
  • a pulse width modulator is coupled to the Park inverse converter for receiving the two-phase voltages US ⁇ , US ⁇ , and performing space vector pulse width modulation on the two-phase voltages US ⁇ , US ⁇ to generate a control pulse.
  • the voltage output circuit includes:
  • a three-phase three-leg inverter for receiving a DC voltage Udc outputted by the rectifier, and inverting the DC voltage Udc by a three-phase three-bridge arm to generate a three-phase AC voltage
  • An LC filter connected to the three-phase three-bridge inverter for receiving the three-phase AC voltage and filtering the three-phase AC voltage to obtain three-phase output voltages Ua, Ub and Uc .
  • Another aspect of the embodiments of the present invention provides a method for controlling a locomotive auxiliary inverter, including:
  • a control pulse is generated based on the first dq axis voltages Ud, Uq.
  • the three-phase output voltages Ua, Ub and Uc are received, and the three-phase output voltage is subjected to conversion processing to obtain two-phase output voltages U ⁇ and U ⁇ , and
  • the positive and negative sequences of the two-phase output voltages U ⁇ and U ⁇ are separated to obtain positive sequence components U ⁇ +, U ⁇ + and negative sequence components U ⁇ -, U ⁇ -, including:
  • phase shift voltages QU ⁇ and QU ⁇ are subjected to calculation of positive and negative sequence symmetrical components to obtain positive sequence components U ⁇ +, U ⁇ + and negative sequence components U ⁇ -, U ⁇ -.
  • the dq axis of the first positive sequence are respectively PI controlled to obtain the dq axis components UCd+, UCq+ of the second positive sequence of the control output, and the dq axis component UCd- of the second negative sequence.
  • the dq axis components UCd-, UCq- of the second negative sequence are converted to the dq axis of the second positive sequence, and the dq axis components UCd+, UCq+ of the second positive sequence
  • the summation is respectively performed to obtain the first dq axis voltages Ud and Uq of the control output, which specifically includes:
  • the dq-axis components UCd- and UCq- of the second negative sequence are converted to the dq axis of the second positive sequence, and are summed with the dq-axis components UCd+ and UCq+ of the second positive sequence, respectively.
  • Ud the first dq axis voltages Ud
  • Uq of the control output the first dq axis voltages Ud
  • the generating the control pulse according to the first dq axis voltages Ud, Uq specifically includes:
  • the two-phase voltages US ⁇ , US ⁇ are received, and the two-phase voltages US ⁇ , US ⁇ are subjected to space vector pulse width modulation to generate a control pulse.
  • the three-phase output voltages Ua, Ub and Uc are outputted by a voltage output circuit of the locomotive auxiliary inverter, and the voltage output circuit outputs the
  • the process of the three-phase output voltages Ua, Ub and Uc specifically includes:
  • the three-phase AC voltage is filtered to obtain three-phase output voltages Ua, Ub, and Uc.
  • the three-phase output voltage outputted by the voltage output circuit is coordinate-transformed, and the positive and negative sequence separation processing is further performed, and the positive and negative sequence components are separately controlled to avoid
  • the generation of the fluctuation component caused by the load imbalance makes the PI controller realize the static-free adjustment, ensures the balance of the three-phase output voltage, and realizes the three-phase three-bridge inverter based on the condition without adding hardware.
  • FIG. 1 is a schematic structural diagram of a locomotive auxiliary inverter according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a voltage output circuit according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a positive and negative sequence voltage separation module according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a second-order generalized integrator according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a PI controller according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a control pulse generator according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a control circuit according to another embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a method for controlling a locomotive auxiliary inverter according to an embodiment of the present invention.
  • FIG. 9 is a schematic flow chart of a method for controlling a locomotive auxiliary inverter according to another embodiment of the present invention.
  • the embodiment provides a locomotive auxiliary inverter for supplying electrical equipment on the locomotive Electric, the locomotive auxiliary inverter can be set on the locomotive.
  • FIG. 1 is a schematic structural diagram of a locomotive auxiliary inverter provided by an embodiment, where the locomotive auxiliary inverter includes: a voltage output circuit and a control circuit.
  • the voltage output circuit is configured to receive the DC voltage Udc, and generate the three-phase AC voltage by inverting the DC voltage Udc via the three-phase three-bridge arm, and generate three-phase output voltages Ua, Ub and Uc through the LC filter.
  • FIG. 2 is a schematic structural diagram of a voltage output circuit of a locomotive auxiliary inverter provided by an embodiment.
  • the voltage output circuit includes a three-phase three-leg inverter and an LC filter.
  • the three-phase three-leg inverter is used for receiving the DC voltage Udc outputted by the rectifier, and the DC voltage Udc is inverted by the three-phase three-bridge arm to generate a three-phase AC voltage; the LC filter and the three-phase three-bridge arm inverter The device is connected to receive a three-phase AC voltage and filter the three-phase AC voltage to obtain three-phase output voltages Ua, Ub and Uc.
  • the three-phase three-leg inverter includes three-phase bridge arms, each of which is composed of two power switch tubes, and the mid-point of each phase bridge arm leads to the output end of the inverter bridge.
  • the output is connected to the LC filter and filtered by the LC filter to obtain three-phase output voltages Ua, Ub and Uc.
  • the control circuit is configured to receive the three-phase output voltages Ua, Ub and Uc outputted by the voltage output circuit, and generate six control pulses according to the three-phase output voltages Ua, Ub and Uc, and feed back to the voltage output circuit to control the power in the voltage output circuit
  • the switching tube IGBT is turned on and off.
  • control circuit comprises a positive and negative sequence voltage separation module, a Park converter, a PI controller and a control pulse generator.
  • the positive and negative sequence voltage separation module is connected to the voltage output circuit for receiving the three-phase output voltages Ua, Ub and Uc outputted by the voltage output circuit, and transforming the three-phase output voltage to obtain the two-phase output voltage.
  • U ⁇ and U ⁇ , and the positive and negative sequences of the two-phase output voltages U ⁇ and U ⁇ are separated to obtain positive sequence components U ⁇ +, U ⁇ + and negative sequence components U ⁇ -, U ⁇ -.
  • the Park converter is connected to the positive and negative sequence voltage separation modules for receiving the positive sequence components U ⁇ +, U ⁇ + and the negative sequence components U ⁇ -, U ⁇ -, and for the positive sequence components U ⁇ +, U ⁇ + and the negative sequence component U ⁇ -, U ⁇ - performs a Park transformation to obtain the dq-axis components Ud+, Uq+ of the first positive sequence and the dq-axis components Ud-, Uq- of the first negative sequence in the two-phase rotating coordinate system.
  • the vector rotation angle is given to make the positive sequence component U ⁇ +, U ⁇ + and negative sequence components U ⁇ -, U ⁇ - rotate at a given vector rotation angle, and the voltage frequency is 50 Hz, that is, 20 milliseconds of rotation.
  • the vector rotation angle of the d-axis of the first positive sequence is r
  • the vector rotation angle of the d-axis of the first negative sequence is -r
  • the vector rotation angle of the q-axis of the first positive sequence and the d-axis of the first positive sequence The vector rotation angles differ by 90°
  • the vector rotation angle of the q-axis of the first negative sequence is different from the vector rotation angle of the d-axis of the first negative sequence by 90°.
  • the following relates to the dq axis rotation vector angle, which are similar or identical, and will not be described later.
  • a PI controller coupled to the Park converter for receiving the dq-axis components Ud+, Uq+ of the first positive sequence and the dq-axis components Ud-, Uq- of the first negative sequence, and the dq-axis component of the first positive sequence Ud+, Uq+ and the dq-axis components Ud-, Uq- of the first negative sequence are respectively subjected to PI control to obtain the dq-axis components UCd+, UCq+ of the second positive sequence of the control output, and the dq-axis component UCd- of the second negative sequence.
  • the dq axis components UCd-, UCq- of the second negative sequence are converted to the dq axis of the second positive sequence, and respectively with the dq axis components UCd+, UCq+ of the second positive sequence
  • the summation is performed to obtain the first dq axis voltages Ud, Uq that control the output.
  • the control pulse generator is connected to the PI controller for receiving the first dq axis voltages Ud, Uq and generating control pulses according to the first dq axis voltages Ud, Uq.
  • the locomotive auxiliary inverter provided in this embodiment performs coordinate transformation on the three-phase output voltage outputted by the voltage output circuit, and further performs positive and negative sequence separation processing, respectively controls the positive and negative sequence components, thereby avoiding load imbalance.
  • the generation of the fluctuation component enables the PI controller to achieve no static adjustment, ensure the balance of the three-phase output voltage, and realize the locomotive auxiliary inverter based on the three-phase three-bridge inverter without adding hardware. The ability to have an unbalanced load.
  • This embodiment further supplements the locomotive auxiliary inverter provided in the first embodiment.
  • FIG. 3 a schematic structural diagram of a positive and negative sequence voltage separation module of the locomotive auxiliary inverter provided by the embodiment, the positive and negative sequence voltage separation module includes a Clark converter, Second-order generalized integrator and positive-negative-sequence symmetric component calculator.
  • the Clark converter is connected to the voltage output circuit for receiving the three-phase output voltages Ua, Ub and Uc outputted by the voltage output circuit, and transforming the three-phase output voltages Ua, Ub and Uc into a two-phase stationary coordinate system by Clark To obtain two-phase output voltages U ⁇ and U ⁇ .
  • the specific transformation process of the Clark converter can be a Clark transformation process in the prior art. No restrictions.
  • the second-order generalized integrator is connected to the Clark converter for filtering and phase-shifting the two-phase output voltages U ⁇ and U ⁇ to obtain phase-shifting voltages QU ⁇ and QU ⁇ , where Q is a phase shifting operator,
  • FIG. 4 it is a schematic structural diagram of a second-order generalized integrator.
  • the structure is closed-loop controlled, in steady state
  • the present invention adopts its steady state state, and its specific working process is the error of U ⁇ ' with U ⁇ and negative feedback, and the proportional amplifier After amplification, the error is further calculated with the QU ⁇ ' of the negative feedback, and then multiplied by ⁇ '.
  • the positive and negative sequence symmetric component calculator is connected with the second-order generalized integrator for calculating the positive and negative sequence symmetric components of the phase shift voltages QU ⁇ and QU ⁇ to obtain the positive sequence components U ⁇ +, U ⁇ + and the negative sequence component U ⁇ - , U ⁇ -.
  • the PI controller includes a first PI control unit, and the second PI control Unit, third PI control unit, fourth PI control unit and dq axis output adder.
  • the first PI control unit is configured to perform PI control on the d-axis component Ud+ of the first positive sequence to obtain a d-axis component UCd+ of the second positive sequence of the control output.
  • the second PI control unit is configured to perform PI control on the q-axis component Uq+ of the first positive sequence to obtain a q-axis component UCq+ of the second positive sequence of the control output.
  • a third PI control unit configured to perform PI control on the d-axis component Ud- of the first negative sequence to A d-axis component UCd- of the second negative sequence of the control output is obtained.
  • the fourth PI control unit is configured to perform PI control on the q-axis component Uq- of the first negative sequence to obtain a q-axis component UCq- of the second negative sequence of the control output.
  • control method of the specific PI control unit may be a PI control method in the prior art, which is not limited herein.
  • the dq axis output adder is configured to convert the dq axis component UCd-, UCq- of the second negative sequence to the dq axis of the second positive sequence and the dq axis component of the second positive sequence according to the angular relationship of the vector rotation angle UCd+ and UCq+ are respectively summed to obtain the first dq axis voltages Ud and Uq of the control output.
  • the vector rotation angle r of the d-axis of the second positive sequence, the vector rotation angle -r of the d-axis of the second negative sequence, and the geometric angular relationship of the two-phase rotating coordinate system are calculated, and the dq of the second negative sequence is calculated.
  • the axis component UCd-, UCq- is converted to the dq axis of the second positive sequence, wherein the vector rotation angle of the dq axis of the second positive sequence and the vector rotation angle of the dq axis of the second negative sequence are respectively compared with the first positive sequence
  • the vector rotation angle of the dq axis of the first negative sequence is the same.
  • the result of the second negative-order d-axis component UCd-conversion includes both the d-axis component of the second positive sequence and the q-axis component of the second positive sequence; the q-axis component of the second negative sequence is UCq-converted As a result, it is also a q-axis component including both the d-axis component of the second positive sequence and the second positive sequence.
  • Uref is a d-axis voltage reference value of the first positive sequence, and a voltage reference value of the q-axis of the first positive sequence, the d-axis of the first negative sequence, and the q-axis of the first negative sequence are both 0.
  • FIG. 6 a schematic structural diagram of a control pulse generator of the locomotive auxiliary inverter provided by the embodiment, the control pulse generator includes an inductor voltage decoupler and a Park counter Converter and pulse width modulator.
  • the inductor voltage decoupler is connected to the PI controller for receiving the first dq axis voltage Ud, Uq, and acquiring the inductor voltage in the LC filter in the voltage output circuit, and calculating the inductor voltage on the first dq axis
  • the three-phase output voltages Ua, Ub and Uc are on the first dq axis
  • the components sUd and sUq are: the components of the first dq axis obtained by the Clark transform and the Park transformation of the three-phase output voltages Ua, Ub and Uc, which are known in the prior art and will not be described herein.
  • the Park inverse converter is connected to the inductor voltage decoupler for receiving the second dq axis voltage USd, USq, and inversely transforming the second dq axis voltage USd, USq to obtain a two-phase stationary coordinate system.
  • the pulse width modulator is connected to the Park inverse converter for receiving the two-phase voltages US ⁇ , US ⁇ , and performing space vector pulse width modulation on the two-phase voltages US ⁇ and US ⁇ to generate a control pulse.
  • the two-phase voltages US ⁇ and US ⁇ are modulated by space vector pulse width modulation to generate six control pulses P1-P6 for supplying the gates S1-S6 of the six power switch IGBTs in the voltage output circuit to control IGBT switching.
  • FIG. 7 a schematic structural diagram of a control circuit of the locomotive auxiliary inverter provided by the embodiment, which specifically includes the positive and negative sequence voltage separation module and the Park converter described above.
  • the steps are the same as those described above, and are not described herein again.
  • the positive and negative sequence voltage separation module may further include a Clark converter, a second-order generalized integrator, and a positive and negative sequence symmetric component calculator, the specific operations and steps thereof. The same, no longer repeat here.
  • the locomotive auxiliary inverter provided in this embodiment performs coordinate transformation on the three-phase output voltage outputted by the voltage output circuit, and further performs positive and negative sequence separation processing, and separately performs PI control on the positive and negative sequence components, thereby avoiding the fluctuation component.
  • the PI controller can achieve no static adjustment, ensure the balance of the three-phase output voltage, realize the locomotive auxiliary inverter based on three-phase three-bridge inverter without unbalanced load without adding hardware.
  • Ability
  • the embodiment provides a control method of a locomotive auxiliary inverter for controlling a three-phase output voltage of the locomotive auxiliary inverter.
  • the execution body of this embodiment is a locomotive auxiliary inverter, and the locomotive auxiliary inverter can be disposed in an auxiliary power source on the locomotive.
  • the flow chart of the control method of the locomotive auxiliary inverter provided for the embodiment is shown Figure, the method includes:
  • Step 31 Receive three-phase output voltages Ua, Ub and Uc, and perform transformation processing on the three-phase output voltage to obtain two-phase output voltages U ⁇ and U ⁇ , and separate the positive and negative sequences of the two-phase output voltages U ⁇ and U ⁇ . To obtain the positive sequence components U ⁇ +, U ⁇ + and the negative sequence components U ⁇ -, U ⁇ -.
  • the three-phase output voltages Ua, Ub, and Uc are transformed to obtain two-phase output voltages U ⁇ and U ⁇ in a two-phase stationary coordinate system, and two phases.
  • the positive and negative sequences of the output voltages U ⁇ and U ⁇ are separated to obtain positive sequence components U ⁇ +, U ⁇ + and negative sequence components U ⁇ -, U ⁇ -.
  • Step 32 Perform Park transformation on the positive sequence components U ⁇ +, U ⁇ + and the negative sequence components U ⁇ -, U ⁇ - to obtain the dq axis components Ud+, Uq+ and the first negative sequence of the first positive sequence in the two-phase rotating coordinate system. Dq axis components Ud-, Uq-.
  • Park transformation is performed on the positive sequence components U ⁇ +, U ⁇ + and the negative sequence components U ⁇ -, U ⁇ - in the two-phase stationary coordinate system to generate the dq-axis component Ud+ of the first positive sequence in the two-phase rotating coordinate system, Uq+ and dq axis components Ud-, Uq- of the first negative sequence. That is, after the Park transformation, including two dq axes, the dq axis of the first positive sequence and the dq axis of the first negative sequence, a vector rotation angle is generated during the transformation.
  • Step 33 Perform PI control on the dq-axis components Ud+ and Uq+ of the first positive sequence and the dq-axis components Ud- and Uq- of the first negative sequence respectively to obtain the dq-axis components UCd+ and UCq+ of the second positive sequence of the control output.
  • the dq-axis components Ud+, Uq+ of the first positive sequence obtained above and the dq-axis components Ud-, Uq- of the first negative sequence are respectively subjected to PI control to obtain dq axis components UCd+, UCq+ of the second positive sequence of the control output.
  • a dq-axis component UCd-, UCq- of the second negative sequence and converting the dq-axis component UCd-, UCq- of the second negative sequence to the dq axis of the second positive sequence according to the angular relationship of the vector rotation angle generated above
  • summing with the dq-axis components UCd+, UCq+ of the second positive sequence to obtain the first dq-axis voltages Ud, Uq of the control output.
  • step 34 a control pulse is generated based on the first dq axis voltages Ud, Uq.
  • control pulse is generated by the inductor voltage decoupling, the Park coordinate inverse transform, and the pulse width modulation according to the first dq axis voltages Ud, Uq.
  • the control method of the locomotive auxiliary inverter provided by the embodiment provides coordinate transformation by the three-phase output voltage outputted by the voltage output circuit, and further performs positive and negative sequence separation processing, and performs PI control on the positive and negative sequence components respectively, thereby avoiding
  • the generation of the ripple component enables the PI controller to achieve no static adjustment, ensure the balance of the three-phase output voltage, and realize the locomotive auxiliary inverter belt based on the three-phase three-bridge inverter without adding hardware. The ability to unbalance the load.
  • This embodiment further supplements the control method of the locomotive auxiliary inverter provided in the third embodiment.
  • FIG. 9 is a schematic flowchart diagram of a method for controlling a locomotive auxiliary inverter provided by an embodiment, where the method includes:
  • step 41 the three-phase output voltages Ua, Ub and Uc are received, and the three-phase output voltages Ua, Ub and Uc are transformed into a two-phase stationary coordinate system by Clark to obtain two-phase output voltages U ⁇ and U ⁇ .
  • step 42 the two-phase output voltages U ⁇ and U ⁇ are filtered and phase-shifted to obtain phase-shifting voltages QU ⁇ and QU ⁇ , where Q is a phase shifting operator.
  • step 43 the calculation of the positive and negative sequence symmetric components is performed on the phase shift voltages QU ⁇ and QU ⁇ to obtain the positive sequence components U ⁇ +, U ⁇ + and the negative sequence components U ⁇ -, U ⁇ -.
  • Step 44 Perform Park transformation on the positive sequence components U ⁇ +, U ⁇ + and the negative sequence components U ⁇ -, U ⁇ - to obtain the dq axis components Ud+, Uq+ and the first negative sequence of the first positive sequence in the two-phase rotating coordinate system. Dq axis components Ud-, Uq-.
  • Step 45 Perform PI control on the dq-axis components Ud+ and Uq+ of the first positive sequence and the dq-axis components Ud- and Uq- of the first negative sequence respectively to obtain the dq-axis components UCd+ and UCq+ of the second positive sequence of the control output.
  • the second negative sequence dq axis components UCd-, UCq-, and according to the vector rotation angle
  • the angular relationship is obtained by converting the dq-axis components UCd- and UCq- of the second negative sequence to the dq axis of the second positive sequence, and summing them with the dq-axis components UCd+ and UCq+ of the second positive sequence respectively to obtain the control output.
  • Step 46 generating a control pulse according to the first dq axis voltages Ud, Uq.
  • step 34 The specific operation of this step is the same as that of step 34, and details are not described herein again.
  • step 45 may specifically include:
  • Step 451 performing PI control on the d-axis component Ud+ of the first positive sequence to obtain a d-axis component UCd+ of the second positive sequence of the control output.
  • Step 452 Perform PI control on the q-axis component Uq+ of the first positive sequence to obtain a q-axis component UCq+ of the second positive sequence of the control output.
  • Step 453 performing PI control on the d-axis component Ud- of the first negative sequence to obtain a d-axis component UCd- of the second negative sequence of the control output.
  • Step 454 performing PI control on the q-axis component Uq- of the first negative sequence to obtain a q-axis component UCq- of the second negative sequence of the control output.
  • Step 455 according to the angular relationship of the vector rotation angle, the dq axis components UCd-, UCq- of the second negative sequence are converted to the dq axis of the second positive sequence, and are respectively performed with the dq axis components UCd+, UCq+ of the second positive sequence. Summing to obtain the first dq axis voltage Ud, Uq of the control output.
  • steps 451-454 are four parallel steps, and there is no order.
  • step 46 may specifically include:
  • Step 461 receiving the first dq axis voltages Ud, Uq, and acquiring the inductor voltage in the LC filter in the voltage output circuit, calculating the components ULd, ULq of the inductor voltage in the first dq axis, and calculating the first dq axis voltage Ud,
  • the components Ud and ULq of the Uq and the inductor voltage at the first dq axis, and the components sUd, sUq of the three-phase output voltage at the first dq axis are superimposed to obtain the second dq-axis voltages USd, USq.
  • Step 462 receiving the second dq axis voltages USd, USq, and performing Park inverse transformation on the second dq axis voltages USd, USq to obtain the two-phase voltages US ⁇ , US ⁇ in the two-phase stationary coordinate system.
  • Step 463 receiving the two-phase voltages US ⁇ , US ⁇ , and performing space vector pulse width modulation on the two-phase voltages US ⁇ , US ⁇ to generate a control pulse.
  • the three-phase output voltages Ua, Ub, and Uc are outputted by the voltage output circuit of the locomotive auxiliary inverter, and the process of outputting the three-phase output voltages Ua, Ub, and Uc by the voltage output circuit may specifically include:
  • the DC voltage Udc outputted by the rectifier is received, and the DC voltage Udc is inverted by the three-phase three-bridge arm to generate a three-phase AC voltage.
  • the three-phase AC voltage is filtered to obtain three-phase output voltages Ua, Ub and Uc.
  • the control method of the locomotive auxiliary inverter provided by the embodiment provides coordinate transformation by the three-phase output voltage outputted by the voltage output circuit, and further performs positive and negative sequence separation processing, and performs PI control on the positive and negative sequence components respectively, thereby avoiding
  • the generation of the ripple component enables the PI controller to achieve no static adjustment, ensure the balance of the three-phase output voltage, and realize the locomotive auxiliary inverter belt based on the three-phase three-bridge inverter without adding hardware. The ability to unbalance the load.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种机车辅助逆变器及控制方法。该机车辅助逆变器包括:电压输出电路和控制电路,其中,控制电路包括正负序电压分离模块、Park转换器、PI控制器和控制脉冲生成器。通过对电压输出电路输出的三相输出电压进行坐标变换,并进一步进行正负序分离处理,对正负序分量分别进行控制,避免了波动分量的产生,使得PI控制器能够实现无静差调节,保证了三相输出电压的平衡,在不增加硬件的条件下实现了基于三相三桥臂逆变器的机车辅助逆变器带不平衡负载的能力。

Description

机车辅助逆变器及控制方法 技术领域
本发明实施例涉及机车技术领域,尤其涉及一种机车辅助逆变器及控制方法。
背景技术
电力机车中的电源按功能的不同可以划分为两大类,一类是为机车的动力提供能量的牵引电源,另一类是为了改善机车内部环境条件的辅助电源,主要用来为机车上的照明、空调、电茶炉和伴热等用电设备供电。其中,辅助逆变系统中的辅助逆变器是辅助电源供电系统的重要组成部分。
随着科学技术的不断发展,机车辅助逆变器的模块化、大功率已成为发展趋势,随着机车整体功率的不断增加,辅助逆变系统对单相负载的需求不断加大,导致辅助逆变系统负载不平衡度增加。
现有技术中,通常采用将三相三桥臂辅助逆变器的输出电压由三相静止坐标系变换至两相旋转坐标系,经PI控制和解耦,再变换至两相静止坐标系,最终通过矢量脉宽调制生成辅助逆变器的控制信号,但是该方法一般适用于三相负载平衡的场合,在负载不平衡的场合不能适用。为了能使辅助逆变系统具备带不平衡负载的能力,现有技术中还有一种三相四桥臂逆变器,与三相三桥臂逆变器相比,增加了一相桥臂。虽然提高了带不平衡负载的能力,但是因增加了一相桥臂,需增加电压输出电路的功率器件数量,不仅提高了成本,而且使电路结构复杂,使得三相四桥臂辅助逆变器的控制也更加复杂。
发明内容
本发明实施例提供一种机车辅助逆变器及控制方法,以在不增加硬件的条件下实现基于三相三桥臂逆变器的机车辅助逆变器带不平衡负载的能力。
本发明实施例的一个方面是提供一种机车辅助逆变器,包括:电压 输出电路以及控制电路;其中,所述控制电路包括:
正负序电压分离模块,与所述电压输出电路相连接,用于接收所述电压输出电路输出的三相输出电压Ua,Ub和Uc,并对所述三相输出电压进行变换处理,以获取两相输出电压Uα和Uβ,以及对所述两相输出电压Uα和Uβ的正负序进行分离处理,以获取正序分量Uα+、Uβ+和负序分量Uα-、Uβ-;
Park转换器,与所述正负序电压分离模块相连接,用于接收所述正序分量Uα+、Uβ+和负序分量Uα-、Uβ-,并对所述正序分量Uα+、Uβ+和负序分量Uα-、Uβ-进行Park变换,以获取两相旋转坐标系下第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-;
PI控制器,与所述Park转换器相连接,用于接收所述第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-,并对所述第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-分别进行PI控制,以获取控制输出的第二正序的dq轴分量UCd+、UCq+、第二负序的dq轴分量UCd-、UCq-,并根据矢量旋转角度的角度关系,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,并与第二正序的dq轴分量UCd+、UCq+分别进行求和,以获取控制输出的第一dq轴电压Ud、Uq;
控制脉冲生成器,与所述PI控制器相连接,用于接收所述第一dq轴电压Ud、Uq,并根据所述第一dq轴电压Ud、Uq生成控制脉冲。
根据如上所述的机车辅助逆变器,可选地,所述正负序电压分离模块包括:
Clark变换器,与所述电压输出电路相连接,用于接收所述电压输出电路输出的三相输出电压Ua,Ub和Uc,并将所述三相输出电压Ua,Ub和Uc经Clark变换至两相静止坐标系,以获取两相输出电压Uα和Uβ;
二阶广义积分器,与所述Clark变换器相连接,用于对所述两相输出电压Uα和Uβ进行滤波和移相,以获取移相电压QUα和QUβ,其中Q为移相算子,
Figure PCTCN2017090711-appb-000001
正负序对称分量计算器,与所述二阶广义积分器相连接,用于对所述移相电压QUα和QUβ进行正负序对称分量的计算,以获取正序分量Uα+、Uβ+和负序分量Uα-、Uβ-。
根据如上所述的机车辅助逆变器,可选地,所述PI控制器包括:
第一PI控制单元,用于对第一正序的d轴分量Ud+进行PI控制,以获取控制输出的第二正序的d轴分量UCd+;
第二PI控制单元,用于对第一正序的q轴分量Uq+进行PI控制,以获取控制输出的第二正序的q轴分量UCq+;
第三PI控制单元,用于对第一负序的d轴分量Ud-进行PI控制,以获取控制输出的第二负序的d轴分量UCd-;
第四PI控制单元,用于对第一负序的q轴分量Uq-进行PI控制,以获取控制输出的第二负序的q轴分量UCq-;
dq轴输出叠加器,用于根据矢量旋转角度的角度关系,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,并与第二正序的dq轴分量UCd+、UCq+分别进行求和,以获取控制输出的第一dq轴电压Ud、Uq。
根据如上所述的机车辅助逆变器,可选地,所述控制脉冲生成器,包括:
电感电压解耦器,与所述PI控制器相连接,用于接收所述第一dq轴电压Ud、Uq,并获取电压输出电路中LC滤波器中的电感电压,计算所述电感电压在第一dq轴的分量ULd、ULq,并对所述第一dq轴电压Ud、Uq和所述电感电压在第一dq轴的分量ULd、ULq,以及所述三相输出电压在第一dq轴的分量sUd、sUq进行叠加,以获取第二dq轴电压USd、USq;
Park反转换器,与所述电感电压解耦器相连接,用于接收所述第二dq轴电压USd、USq,并对所述第二dq轴电压USd、USq进行Park反变换,以获取两相静止坐标系下的两相电压USα、USβ;
脉宽调制器,与所述Park反转换器相连接,用于接收所述两相电压USα、USβ,并对所述两相电压USα、USβ进行空间矢量脉宽调制,以生成控制脉冲。
根据如上所述的机车辅助逆变器,可选地,所述电压输出电路,包括:
三相三桥臂逆变器,用于接收整流器输出的直流电压Udc,并将所述直流电压Udc经三相三桥臂逆变产生三相交流电压;
LC滤波器,与所述三相三桥臂逆变器相连接,用于接收所述三相交流电压,并对所述三相交流电压进行滤波,以获取三相输出电压Ua,Ub和Uc。
本发明实施例的另一个方面是提供一种机车辅助逆变器的控制方法,包括:
接收三相输出电压Ua,Ub和Uc,并对所述三相输出电压进行变换处理,以获取两相输出电压Uα和Uβ,以及对所述两相输出电压Uα和Uβ的正负序进行分离处理,以获取正序分量Uα+、Uβ+和负序分量Uα-、Uβ-;
对所述正序分量Uα+、Uβ+和负序分量Uα-、Uβ-进行Park变换,以获取两相旋转坐标系下第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-;
对所述第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-分别进行PI控制,以获取控制输出的第二正序的dq轴分量UCd+、UCq+、第二负序的dq轴分量UCd-、UCq-,并根据矢量旋转角度的角度关系,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,并与第二正序的dq轴分量UCd+、UCq+分别进行求和,以获取控制输出的第一dq轴电压Ud、Uq;
根据所述第一dq轴电压Ud、Uq生成控制脉冲。
根据如上所述的控制方法,可选地,所述接收三相输出电压Ua,Ub和Uc,并对所述三相输出电压进行变换处理,以获取两相输出电压Uα和Uβ,以及对所述两相输出电压Uα和Uβ的正负序进行分离处理,以获取正序分量Uα+、Uβ+和负序分量Uα-、Uβ-,具体包括:
接收三相输出电压Ua,Ub和Uc,并将所述三相输出电压Ua,Ub和Uc经Clark变换至两相静止坐标系,以获取两相输出电压Uα和Uβ;
对所述两相输出电压Uα和Uβ进行滤波和移相,以获取移相电压QUα和QUβ,其中Q为移相算子,
Figure PCTCN2017090711-appb-000002
对所述移相电压QUα和QUβ进行正负序对称分量的计算,以获取正序分量Uα+、Uβ+和负序分量Uα-、Uβ-。
根据如上所述的控制方法,可选地,所述对所述第一正序的dq轴分 量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-分别进行PI控制,以获取控制输出的第二正序的dq轴分量UCd+、UCq+、第二负序的dq轴分量UCd-、UCq-,并根据矢量旋转角度的角度关系,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,并与第二正序的dq轴分量UCd+、UCq+分别进行求和,以获取控制输出的第一dq轴电压Ud、Uq,具体包括:
对第一正序的d轴分量Ud+进行PI控制,以获取控制输出的第二正序的d轴分量UCd+;
对第一正序的q轴分量Uq+进行PI控制,以获取控制输出的第二正序的q轴分量UCq+;
对第一负序的d轴分量Ud-进行PI控制,以获取控制输出的第二负序的d轴分量UCd-;
对第一负序的q轴分量Uq-进行PI控制,以获取控制输出的第二负序的q轴分量UCq-;
根据矢量旋转角度的角度关系,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,并与第二正序的dq轴分量UCd+、UCq+分别进行求和,以获取控制输出的第一dq轴电压Ud、Uq。
根据如上所述的控制方法,可选地,所述根据所述第一dq轴电压Ud、Uq生成控制脉冲,具体包括:
接收所述第一dq轴电压Ud、Uq,并获取电压输出电路中LC滤波器中的电感电压,计算所述电感电压在第一dq轴的分量ULd、ULq,并对所述第一dq轴电压Ud、Uq和所述电感电压在第一dq轴的分量ULd、ULq,以及所述三相输出电压在第一dq轴的分量sUd、sUq进行叠加,以获取第二dq轴电压USd、USq;
接收所述第二dq轴电压USd、USq,并对所述第二dq轴电压USd、USq进行Park反变换,以获取两相静止坐标系下的两相电压USα、USβ;
接收所述两相电压USα、USβ,并对所述两相电压USα、USβ进行空间矢量脉宽调制,以生成控制脉冲。
根据如上所述的控制方法,可选地,所述三相输出电压Ua,Ub和Uc为机车辅助逆变器的电压输出电路输出的,所述电压输出电路输出所述 三相输出电压Ua,Ub和Uc的过程具体包括:
接收整流器输出的直流电压Udc,并将所述直流电压Udc经三相三桥臂逆变产生三相交流电压;
对所述三相交流电压进行滤波,以获取三相输出电压Ua,Ub和Uc。
根据本发明实施例提供的机车辅助逆变器及控制方法,通过对电压输出电路输出的三相输出电压进行坐标变换,并进一步进行正负序分离处理,对正负序分量分别进行控制,避免了负载不平衡引起的波动分量的产生,使得PI控制器能够实现无静差调节,保证了三相输出电压的平衡,在不增加硬件的条件下实现了基于三相三桥臂逆变器的机车辅助逆变器带不平衡负载的能力。
附图说明
图1为本发明一实施例提供的机车辅助逆变器的结构示意图;
图2为本发明一实施例提供的电压输出电路的结构示意图;
图3为本发明另一实施例提供的正负序电压分离模块的结构示意图;
图4为本发明另一实施例提供的二阶广义积分器的结构示意图;
图5为本发明另一实施例提供的PI控制器的结构示意图;
图6为本发明另一实施例提供的控制脉冲生成器的结构示意图;
图7为本发明另一实施例提供的控制电路的结构示意图;
图8为本发明一实施例提供的机车辅助逆变器的控制方法的流程示意图;
图9为本发明另一实施例提供的机车辅助逆变器的控制方法的流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本实施例提供一种机车辅助逆变器,用于为机车上的用电设备供 电,该机车辅助逆变器可以设置在机车上。
如图1所示,为实施例提供的机车辅助逆变器的结构示意图,该机车辅助逆变器包括:电压输出电路以及控制电路。
电压输出电路用于接收直流电压Udc,并将该直流电压Udc经三相三桥臂逆变产生三相交流电压,经LC滤波器滤波生成三相输出电压Ua,Ub和Uc。
如图2所示,为实施例提供的机车辅助逆变器的电压输出电路的结构示意图。该电压输出电路包括三相三桥臂逆变器和LC滤波器。
其中,三相三桥臂逆变器用于接收整流器输出的直流电压Udc,并将直流电压Udc经三相三桥臂逆变产生三相交流电压;LC滤波器,与三相三桥臂逆变器相连接,用于接收三相交流电压,并对三相交流电压进行滤波,以获取三相输出电压Ua,Ub和Uc。
具体的,三相三桥臂逆变器包括三相桥臂,每个桥臂由两个功率开关管构成,每相桥臂中点引出逆变桥输出端。输出端连接LC滤波器,经LC滤波器滤波,得到三相输出电压Ua,Ub和Uc。
控制电路用于接收电压输出电路输出的三相输出电压Ua,Ub和Uc,并根据该三相输出电压Ua,Ub和Uc生成六路控制脉冲,反馈给电压输出电路,控制电压输出电路中的功率开关管IGBT的通断。
其中,该控制电路包括正负序电压分离模块、Park转换器、PI控制器和控制脉冲生成器。
具体地,正负序电压分离模块,与电压输出电路相连接,用于接收电压输出电路输出的三相输出电压Ua,Ub和Uc,并对三相输出电压进行变换处理,获取两相输出电压Uα和Uβ,以及对两相输出电压Uα和Uβ的正负序进行分离处理,以获取正序分量Uα+、Uβ+和负序分量Uα-、Uβ-。
Park转换器,与正负序电压分离模块相连接,用于接收正序分量Uα+、Uβ+和负序分量Uα-、Uβ-,并对正序分量Uα+、Uβ+和负序分量Uα-、Uβ-进行Park变换,以获取两相旋转坐标系下第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-。
需要说明的是,在Park变换时,给定矢量旋转角度,使正序分量 Uα+、Uβ+和负序分量Uα-、Uβ-按照给定的矢量旋转角度旋转,电压频率是50Hz,即20毫秒旋转一周。比如第一正序的d轴的矢量旋转角度为r,第一负序的d轴的矢量旋转角度则为-r,第一正序的q轴的矢量旋转角度与第一正序的d轴的矢量旋转角度相差90°,第一负序的q轴的矢量旋转角度与第一负序的d轴的矢量旋转角度相差90°。以下涉及到dq轴旋转矢量角度的,均与此相似或相同,后续不再赘述。
PI控制器,与Park转换器相连接,用于接收第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-,并对第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-分别进行PI控制,以获取控制输出的第二正序的dq轴分量UCd+、UCq+、第二负序的dq轴分量UCd-、UCq-,并根据矢量旋转角度的角度关系,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,并与第二正序的dq轴分量UCd+、UCq+分别进行求和,以获取控制输出的第一dq轴电压Ud、Uq。
控制脉冲生成器,与PI控制器相连接,用于接收第一dq轴电压Ud、Uq,并根据第一dq轴电压Ud、Uq生成控制脉冲。
本实施例提供的机车辅助逆变器,通过对电压输出电路输出的三相输出电压进行坐标变换,并进一步进行正负序分离处理,对正负序分量分别进行控制,避免了负载不平衡引起的波动分量的产生,使得PI控制器能够实现无静差调节,保证了三相输出电压的平衡,在不增加硬件的条件下实现了基于三相三桥臂逆变器的机车辅助逆变器带不平衡负载的能力。
实施例二
本实施例对实施例一提供的机车辅助逆变器做进一步补充说明。
在实施例一的基础上,进一步地,如图3所示,为实施例提供的机车辅助逆变器的正负序电压分离模块的结构示意图,该正负序电压分离模块包括Clark变换器、二阶广义积分器和正负序对称分量计算器。
其中,Clark变换器与电压输出电路相连接,用于接收电压输出电路输出的三相输出电压Ua,Ub和Uc,并将三相输出电压Ua,Ub和Uc经Clark变换至两相静止坐标系,以获取两相输出电压Uα和Uβ。关于Clark变换器的具体变换过程可以为现有技术中的Clark变换过程,在此 不做限制。
二阶广义积分器与Clark变换器相连接,用于对两相输出电压Uα和Uβ进行滤波和移相,以获取移相电压QUα和QUβ,其中Q为移相算子,
Figure PCTCN2017090711-appb-000003
如图4所示,为二阶广义积分器的结构示意图。该结构为闭环控制,稳态时
Figure PCTCN2017090711-appb-000004
本发明即采用其稳态状态,其具体工作过程为,Uα与负反馈的Uα′的误差,经比例放大器
Figure PCTCN2017090711-appb-000005
放大后,再与负反馈的QUα′求误差,再与ω′相乘,相乘的结果经过积分得到Uα′,Uα′再进行积分,积分的结果与ω′相乘得到QUα′,也即QUα,其中ω′=2×π×f为输出电压角频率,其中f=50Hz。
需要说明的是,需要两个二阶广义积分器来获取QUα和QUβ,QUβ的获取方法与QUα相同,在此不再赘述。
正负序对称分量计算器与二阶广义积分器相连接,用于对移相电压QUα和QUβ进行正负序对称分量的计算,以获取正序分量Uα+、Uβ+和负序分量Uα-、Uβ-。
具体的,
Figure PCTCN2017090711-appb-000006
Figure PCTCN2017090711-appb-000007
在实施例一的基础上,进一步地,如图5所示,为实施例提供的机车辅助逆变器的PI控制器的结构示意图,该PI控制器包括第一PI控制单元,第二PI控制单元,第三PI控制单元,第四PI控制单元和dq轴输出叠加器。
其中,第一PI控制单元,用于对第一正序的d轴分量Ud+进行PI控制,以获取控制输出的第二正序的d轴分量UCd+。
第二PI控制单元,用于对第一正序的q轴分量Uq+进行PI控制,以获取控制输出的第二正序的q轴分量UCq+。
第三PI控制单元,用于对第一负序的d轴分量Ud-进行PI控制,以 获取控制输出的第二负序的d轴分量UCd-。
第四PI控制单元,用于对第一负序的q轴分量Uq-进行PI控制,以获取控制输出的第二负序的q轴分量UCq-。
需要说明的是,具体的PI控制单元的控制方法可以为现有技术中的PI控制方法,在此不做限制。
dq轴输出叠加器,用于根据矢量旋转角度的角度关系,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,并与第二正序的dq轴分量UCd+、UCq+分别进行求和,以获取控制输出的第一dq轴电压Ud、Uq。
具体的,根据第二正序的d轴的矢量旋转角度r、第二负序的d轴的矢量旋转角度-r及两相旋转坐标系的几何角度关系进行计算,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,其中,第二正序的dq轴的矢量旋转角度和第二负序的dq轴的矢量旋转角度,分别与第一正序和第一负序的dq轴的矢量旋转角度相同。
第二负序的d轴分量UCd-折算后的结果,既包括第二正序的d轴分量、又包括第二正序的q轴分量;第二负序的q轴分量UCq-折算后的结果,也是既包括第二正序的d轴分量、又包括第二正序的q轴分量。
其中,Uref为第一正序的d轴电压给定值,第一正序的q轴、第一负序的d轴以及第一负序的q轴的电压给定值均为0。
在实施例一的基础上,进一步地,如图6所示,为实施例提供的机车辅助逆变器的控制脉冲生成器的结构示意图,该控制脉冲生成器包括电感电压解耦器、Park反转换器和脉宽调制器。
其中,电感电压解耦器,与PI控制器相连接,用于接收第一dq轴电压Ud、Uq,并获取电压输出电路中LC滤波器中的电感电压,计算电感电压在第一dq轴的分量ULd、ULq,并对第一dq轴电压Ud、Uq和电感电压在第一dq轴的分量ULd、ULq、以及三相输出电压Ua,Ub和Uc在第一dq轴的分量sUd、sUq进行叠加,以获取第二dq轴电压USd=(sUd+Ud+ULd)、USq=(sUq+Uq-ULq),其中,ULd=ILd×ω×L,ULq=ILq×ω×L,其中输出电压角频率ω=2×π×f,其中f=50Hz,L为电感值,ILd、ILq为电感电流在第一dq轴的分量。其中,三相输出电压Ua,Ub和Uc在第一dq轴的 分量sUd、sUq为:三相输出电压Ua,Ub和Uc经Clark变换及Park变换后得到的在第一dq轴的分量,为现有技术,在此不再赘述。
Park反转换器,与电感电压解耦器相连接,用于接收第二dq轴电压USd、USq,并对第二dq轴电压USd、USq进行Park反变换,以获取两相静止坐标系下的两相电压USα、USβ。
脉宽调制器,与Park反转换器相连接,用于接收两相电压USα、USβ,并对两相电压USα、USβ进行空间矢量脉宽调制,以生成控制脉冲。
具体的,采用空间矢量脉宽调制对两相电压USα、USβ进行调制,生成六路控制脉冲P1-P6,用于供给电压输出电路中的六个功率开关管IGBT的门极S1-S6,以控制IGBT的通断。
在实施例一的基础上,进一步地,如图7所示,为实施例提供的机车辅助逆变器的控制电路的结构示意图,其具体包括了上述的正负序电压分离模块、Park转换器、第一PI控制单元、第二PI控制单元、第三PI控制单元,第四PI控制单元、dq轴输出叠加器、电感电压解耦器、Park反转换器和脉宽调制器,其具体操作与步骤与上述相同,在此不再赘述。
在如图7所示的控制电路的基础上,进一步地,正负序电压分离模块还可以包括Clark变换器、二阶广义积分器和正负序对称分量计算器,其具体操作与步骤与上述相同,在此不再赘述。
本实施例提供的机车辅助逆变器,通过对电压输出电路输出的三相输出电压进行坐标变换,并进一步进行正负序分离处理,对正负序分量分别进行PI控制,避免了波动分量的产生,使得PI控制器能够实现无静差调节,保证了三相输出电压的平衡,在不增加硬件的条件下实现了基于三相三桥臂逆变器的机车辅助逆变器带不平衡负载的能力。
实施例三
本实施例提供一种机车辅助逆变器的控制方法,用于控制机车辅助逆变器的三相输出电压。本实施例的执行主体是机车辅助逆变器,该机车辅助逆变器可以设置在机车上的辅助电源中。
如图8所示,为实施例提供的机车辅助逆变器的控制方法的流程示意 图,该方法包括:
步骤31,接收三相输出电压Ua,Ub和Uc,并对三相输出电压进行变换处理,以获取两相输出电压Uα和Uβ,以及对两相输出电压Uα和Uβ的正负序进行分离处理,以获取正序分量Uα+、Uβ+和负序分量Uα-、Uβ-。
具体的,接收三相输出电压Ua,Ub和Uc后,对三相输出电压Ua,Ub和Uc进行变换处理,以获取两相静止坐标系下的两相输出电压Uα和Uβ,以及对两相输出电压Uα和Uβ的正负序进行分离处理,以获取正序分量Uα+、Uβ+和负序分量Uα-、Uβ-。
步骤32,对正序分量Uα+、Uβ+和负序分量Uα-、Uβ-进行Park变换,以获取两相旋转坐标系下第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-。
具体的,对两相静止坐标系下的正序分量Uα+、Uβ+和负序分量Uα-、Uβ-进行Park变换,生成两相旋转坐标系下的第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-。即Park变换后,包括两个dq轴,第一正序的dq轴和第一负序的dq轴,在变换过程中会产生矢量旋转角度。
步骤33,对第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-分别进行PI控制,以获取控制输出的第二正序的dq轴分量UCd+、UCq+、第二负序的dq轴分量UCd-、UCq-,并根据矢量旋转角度的角度关系,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,并与第二正序的dq轴分量UCd+、UCq+分别进行求和,以获取控制输出的第一dq轴电压Ud、Uq。
对上述得到的第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-分别进行PI控制,以获取控制输出的第二正序的dq轴分量UCd+、UCq+、第二负序的dq轴分量UCd-、UCq-,并根据上述产生的矢量旋转角度的角度关系,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,并与第二正序的dq轴分量UCd+、UCq+分别进行求和,以获取控制输出的第一dq轴电压Ud、Uq。
步骤34,根据第一dq轴电压Ud、Uq生成控制脉冲。
具体地,根据第一dq轴电压Ud、Uq,经电感电压解耦、Park坐标反变换、及脉宽调制生成控制脉冲。
关于本实施例中的控制方法,其中各个步骤的具体操作已经在有关该机车辅助逆变器的实施例中进行了详细描述,此处将不做详细阐述说明。
本实施例提供的机车辅助逆变器的控制方法,通过对电压输出电路输出的三相输出电压进行坐标变换,并进一步进行正负序分离处理,对正负序分量分别进行PI控制,避免了波动分量的产生,使得PI控制器能够实现无静差调节,保证了三相输出电压的平衡,在不增加硬件的条件下实现了基于三相三桥臂逆变器的机车辅助逆变器带不平衡负载的能力。
实施例四
本实施例对实施例三提供的机车辅助逆变器的控制方法做进一步补充说明。
如图9所示,为实施例提供的机车辅助逆变器的控制方法的流程示意图,该方法包括:
步骤41,接收三相输出电压Ua,Ub和Uc,并将三相输出电压Ua,Ub和Uc经Clark变换至两相静止坐标系,以获取两相输出电压Uα和Uβ。
步骤42,对两相输出电压Uα和Uβ进行滤波和移相,以获取移相电压QUα和QUβ,其中Q为移相算子。
其中,
Figure PCTCN2017090711-appb-000008
步骤43,对移相电压QUα和QUβ进行正负序对称分量的计算,以获取正序分量Uα+、Uβ+和负序分量Uα-、Uβ-。
步骤44,对正序分量Uα+、Uβ+和负序分量Uα-、Uβ-进行Park变换,以获取两相旋转坐标系下第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-。
该步骤的具体操作与步骤32一致,在此不再赘述。
步骤45,对第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-分别进行PI控制,以获取控制输出的第二正序的dq轴分量UCd+、UCq+、第二负序的dq轴分量UCd-、UCq-,并根据矢量旋转角度 的角度关系,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,并与第二正序的dq轴分量UCd+、UCq+分别进行求和,以获取控制输出的第一dq轴电压Ud、Uq。
该步骤的具体操作与步骤33一致,在此不再赘述。
步骤46,根据第一dq轴电压Ud、Uq生成控制脉冲。
该步骤的具体操作与步骤34一致,在此不再赘述。
进一步地,步骤45可以具体包括:
步骤451,对第一正序的d轴分量Ud+进行PI控制,以获取控制输出的第二正序的d轴分量UCd+。
步骤452,对第一正序的q轴分量Uq+进行PI控制,以获取控制输出的第二正序的q轴分量UCq+。
步骤453,对第一负序的d轴分量Ud-进行PI控制,以获取控制输出的第二负序的d轴分量UCd-。
步骤454,对第一负序的q轴分量Uq-进行PI控制,以获取控制输出的第二负序的q轴分量UCq-。
步骤455,根据矢量旋转角度的角度关系,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,并与第二正序的dq轴分量UCd+、UCq+分别进行求和,以获取控制输出的第一dq轴电压Ud、Uq。
需要说明的是,步骤451-454是四个并列的步骤,没有先后顺序。
进一步地,步骤46可以具体包括:
步骤461,接收第一dq轴电压Ud、Uq,并获取电压输出电路中LC滤波器中的电感电压,计算电感电压在第一dq轴的分量ULd、ULq,并对第一dq轴电压Ud、Uq和电感电压在第一dq轴的分量ULd、ULq,以及三相输出电压在第一dq轴的分量sUd、sUq进行叠加,以获取第二dq轴电压USd、USq。
步骤462,接收第二dq轴电压USd、USq,并对第二dq轴电压USd、USq进行Park反变换,以获取两相静止坐标系下的两相电压USα、USβ。
步骤463,接收两相电压USα、USβ,并对两相电压USα、USβ进行空间矢量脉宽调制,以生成控制脉冲。
进一步地,三相输出电压Ua,Ub和Uc为机车辅助逆变器的电压输出电路输出的,电压输出电路输出三相输出电压Ua,Ub和Uc的过程具体可以包括:
接收整流器输出的直流电压Udc,并将直流电压Udc经三相三桥臂逆变产生三相交流电压。
对三相交流电压进行滤波,以获取三相输出电压Ua,Ub和Uc。
关于本实施例中的控制方法,其中各个步骤的具体操作已经在有关该机车辅助逆变器的实施例中进行了详细描述,此处将不做详细阐述说明。
本实施例提供的机车辅助逆变器的控制方法,通过对电压输出电路输出的三相输出电压进行坐标变换,并进一步进行正负序分离处理,对正负序分量分别进行PI控制,避免了波动分量的产生,使得PI控制器能够实现无静差调节,保证了三相输出电压的平衡,在不增加硬件的条件下实现了基于三相三桥臂逆变器的机车辅助逆变器带不平衡负载的能力。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种机车辅助逆变器,其特征在于,包括:电压输出电路以及控制电路;其中,所述控制电路包括:
    正负序电压分离模块,与所述电压输出电路相连接,用于接收所述电压输出电路输出的三相输出电压Ua,Ub和Uc,并对所述三相输出电压进行变换处理,以获取两相输出电压Uα和Uβ,以及对所述两相输出电压Uα和Uβ的正负序进行分离处理,以获取正序分量Uα+、Uβ+和负序分量Uα-、Uβ-;
    Park转换器,与所述正负序电压分离模块相连接,用于接收所述正序分量Uα+、Uβ+和负序分量Uα-、Uβ-,并对所述正序分量Uα+、Uβ+和负序分量Uα-、Uβ-进行Park变换,以获取两相旋转坐标系下第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-;
    PI控制器,与所述Park转换器相连接,用于接收所述第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-,并对所述第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-分别进行PI控制,以获取控制输出的第二正序的dq轴分量UCd+、UCq+、第二负序的dq轴分量UCd-、UCq-,并根据矢量旋转角度的角度关系,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,并与第二正序的dq轴分量UCd+、UCq+分别进行求和,以获取控制输出的第一dq轴电压Ud、Uq;
    控制脉冲生成器,与所述PI控制器相连接,用于接收所述第一dq轴电压Ud、Uq,并根据所述第一dq轴电压Ud、Uq生成控制脉冲。
  2. 根据权利要求1所述的机车辅助逆变器,其特征在于,所述正负序电压分离模块包括:
    Clark变换器,与所述电压输出电路相连接,用于接收所述电压输出电路输出的三相输出电压Ua,Ub和Uc,并将所述三相输出电压Ua,Ub和Uc经Clark变换至两相静止坐标系,以获取两相输出电压Uα和Uβ;
    二阶广义积分器,与所述Clark变换器相连接,用于对所述两相输出电压Uα和Uβ进行滤波和移相,以获取移相电压QUα和QUβ,其中Q为移相算子,Q=e-jπ/2
    正负序对称分量计算器,与所述二阶广义积分器相连接,用于对所 述移相电压QUα和QUβ进行正负序对称分量的计算,以获取正序分量Uα+、Uβ+和负序分量Uα-、Uβ-。
  3. 根据权利要求1所述的机车辅助逆变器,其特征在于,所述PI控制器包括:
    第一PI控制单元,用于对第一正序的d轴分量Ud+进行PI控制,以获取控制输出的第二正序的d轴分量UCd+;
    第二PI控制单元,用于对第一正序的q轴分量Uq+进行PI控制,以获取控制输出的第二正序的q轴分量UCq+;
    第三PI控制单元,用于对第一负序的d轴分量Ud-进行PI控制,以获取控制输出的第二负序的d轴分量UCd-;
    第四PI控制单元,用于对第一负序的q轴分量Uq-进行PI控制,以获取控制输出的第二负序的q轴分量UCq-;
    dq轴输出叠加器,用于根据矢量旋转角度的角度关系,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,并与第二正序的dq轴分量UCd+、UCq+分别进行求和,以获取控制输出的第一dq轴电压Ud、Uq。
  4. 根据权利要求1所述的机车辅助逆变器,其特征在于,所述控制脉冲生成器,包括:
    电感电压解耦器,与所述PI控制器相连接,用于接收所述第一dq轴电压Ud、Uq,并获取电压输出电路中LC滤波器中的电感电压,计算所述电感电压在第一dq轴的分量ULd、ULq,并对所述第一dq轴电压Ud、Uq和所述电感电压在第一dq轴的分量ULd、Ulq,以及所述三相输出电压在第一dq轴的分量sUd、sUq进行叠加,以获取第二dq轴电压USd、USq;
    Park反转换器,与所述电感电压解耦器相连接,用于接收所述第二dq轴电压USd、USq,并对所述第二dq轴电压USd、USq进行Park反变换,以获取两相静止坐标系下的两相电压USα、USβ;
    脉宽调制器,与所述Park反转换器相连接,用于接收所述两相电压USα、USβ,并对所述两相电压USα、USβ进行空间矢量脉宽调制,以生成控制脉冲。
  5. 根据权利要求1-4任一项所述的机车辅助逆变器,其特征在于, 所述电压输出电路,包括:
    三相三桥臂逆变器,用于接收整流器输出的直流电压Udc,并将所述直流电压Udc经三相三桥臂逆变产生三相交流电压;
    LC滤波器,与所述三相三桥臂逆变器相连接,用于接收所述三相交流电压,并对所述三相交流电压进行滤波,以获取三相输出电压Ua,Ub和Uc。
  6. 一种机车辅助逆变器的控制方法,其特征在于,包括:
    接收三相输出电压Ua,Ub和Uc,并对所述三相输出电压进行变换处理,以获取两相输出电压Uα和Uβ,以及对所述两相输出电压Uα和Uβ的正负序进行分离处理,以获取正序分量Uα+、Uβ+和负序分量Uα-、Uβ-;
    对所述正序分量Uα+、Uβ+和负序分量Uα-、Uβ-进行Park变换,以获取两相旋转坐标系下第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-;
    对所述第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-分别进行PI控制,以获取控制输出的第二正序的dq轴分量UCd+、UCq+、第二负序的dq轴分量UCd-、UCq-,并根据矢量旋转角度的角度关系,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,并与第二正序的dq轴分量UCd+、UCq+分别进行求和,以获取控制输出的第一dq轴电压Ud、Uq;
    根据所述第一dq轴电压Ud、Uq生成控制脉冲。
  7. 根据权利要求6所述的控制方法,其特征在于,所述接收三相输出电压Ua,Ub和Uc,并对所述三相输出电压进行变换处理,以获取两相输出电压Uα和Uβ,以及对所述两相输出电压Uα和Uβ的正负序进行分离处理,以获取正序分量Uα+、Uβ+和负序分量Uα-、Uβ-,具体包括:
    接收三相输出电压Ua,Ub和Uc,并将所述三相输出电压Ua,Ub和Uc经Clark变换至两相静止坐标系,以获取两相输出电压Uα和Uβ;
    对所述两相输出电压Uα和Uβ进行滤波和移相,以获取移相电压QUα和QUβ,其中Q为移相算子,Q=e-jπ/2
    对所述移相电压QUα和QUβ进行正负序对称分量的计算,以获取正序分量Uα+、Uβ+和负序分量Uα-、Uβ-。
  8. 根据权利要求6所述的控制方法,其特征在于,所述对所述第一正序的dq轴分量Ud+、Uq+和第一负序的dq轴分量Ud-、Uq-分别进行PI控制,以获取控制输出的第二正序的dq轴分量UCd+、UCq+、第二负序的dq轴分量UCd-、UCq-,并根据矢量旋转角度的角度关系,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,并与第二正序的dq轴分量UCd+、UCq+分别进行求和,以获取控制输出的第一dq轴电压Ud、Uq,具体包括:
    对第一正序的d轴分量Ud+进行PI控制,以获取控制输出的第二正序的d轴分量UCd+;
    对第一正序的q轴分量Uq+进行PI控制,以获取控制输出的第二正序的q轴分量UCq+;
    对第一负序的d轴分量Ud-进行PI控制,以获取控制输出的第二负序的d轴分量UCd-;
    对第一负序的q轴分量Uq-进行PI控制,以获取控制输出的第二负序的q轴分量UCq-;
    根据矢量旋转角度的角度关系,将第二负序的dq轴分量UCd-、UCq-折算到第二正序的dq轴,并与第二正序的dq轴分量UCd+、UCq+分别进行求和,以获取控制输出的第一dq轴电压Ud、Uq。
  9. 根据权利要求6所述的控制方法,其特征在于,所述根据所述第一dq轴电压Ud、Uq生成控制脉冲,具体包括:
    接收所述第一dq轴电压Ud、Uq,并获取电压输出电路中LC滤波器中的电感电压,计算所述电感电压在第一dq轴的分量ULd、ULq,并对所述第一dq轴电压Ud、Uq和所述电感电压在第一dq轴的分量ULd、ULq,以及所述三相输出电压在第一dq轴的分量sUd、sUq进行叠加,以获取第二dq轴电压USd、USq;
    接收所述第二dq轴电压USd、USq,并对所述第二dq轴电压USd、USq进行Park反变换,以获取两相静止坐标系下的两相电压USα、USβ;
    接收所述两相电压USα、USβ,并对所述两相电压USα、USβ进行 空间矢量脉宽调制,以生成控制脉冲。
  10. 根据权利要求6-9任一项所述的控制方法,其特征在于,所述三相输出电压Ua,Ub和Uc为机车辅助逆变器的电压输出电路输出的,所述电压输出电路输出所述三相输出电压Ua,Ub和Uc的过程具体包括:
    接收整流器输出的直流电压Udc,并将所述直流电压Udc经三相三桥臂逆变产生三相交流电压;
    对所述三相交流电压进行滤波,以获取三相输出电压Ua,Ub和Uc。
PCT/CN2017/090711 2017-06-07 2017-06-29 机车辅助逆变器及控制方法 WO2018223444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710421751.4A CN107104606A (zh) 2017-06-07 2017-06-07 机车辅助逆变器及控制方法
CN201710421751.4 2017-06-07

Publications (1)

Publication Number Publication Date
WO2018223444A1 true WO2018223444A1 (zh) 2018-12-13

Family

ID=59659747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090711 WO2018223444A1 (zh) 2017-06-07 2017-06-29 机车辅助逆变器及控制方法

Country Status (2)

Country Link
CN (1) CN107104606A (zh)
WO (1) WO2018223444A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109861253A (zh) * 2018-12-19 2019-06-07 深圳市艾普诺电子有限公司 一种抑制ups三相输出电压不平衡的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623522B (zh) * 2017-09-25 2021-10-08 天津理工大学 一种基于d-q变换的双二阶广义积分锁相环控制方法
CN109361230B (zh) * 2018-05-22 2022-05-17 北方工业大学 变流器设备输出电压质量综合控制方法与系统
CN109921671B (zh) * 2019-03-20 2020-09-04 中车青岛四方车辆研究所有限公司 单相逆变器并联控制方法、控制系统及逆变器
CN113650628A (zh) * 2021-09-03 2021-11-16 西安中车永电电气有限公司 一种分散动力的智能旅游电动车组牵引辅助供电系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994956A (en) * 1990-04-25 1991-02-19 Sundstrand Corporation Enhanced real time control of PWM inverters
CN102255541A (zh) * 2011-07-19 2011-11-23 中国船舶重工集团公司第七一九研究所 dq坐标系下瞬时控制的单相逆变器及控制方法
CN103095170A (zh) * 2013-01-23 2013-05-08 电子科技大学 一种适用于不平衡负载下的三相逆变器控制系统
CN103973151A (zh) * 2014-06-03 2014-08-06 哈尔滨工业大学 电感不平衡条件下三相pwm并网逆变器的解耦控制方法
CN104730339A (zh) * 2015-03-15 2015-06-24 华南理工大学 一种三相电压不对称情况下数字锁相方法
CN106655276A (zh) * 2016-11-03 2017-05-10 燕山大学 一种适用于三相电网电压的新型锁相方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904693B (zh) * 2014-03-19 2017-03-29 中国矿业大学 基于频率自适应虚拟磁链估测的电网同步方法
CN105914789B (zh) * 2016-05-30 2018-07-24 浙江大学 逆变器型分布式电源简化建模方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994956A (en) * 1990-04-25 1991-02-19 Sundstrand Corporation Enhanced real time control of PWM inverters
CN102255541A (zh) * 2011-07-19 2011-11-23 中国船舶重工集团公司第七一九研究所 dq坐标系下瞬时控制的单相逆变器及控制方法
CN103095170A (zh) * 2013-01-23 2013-05-08 电子科技大学 一种适用于不平衡负载下的三相逆变器控制系统
CN103973151A (zh) * 2014-06-03 2014-08-06 哈尔滨工业大学 电感不平衡条件下三相pwm并网逆变器的解耦控制方法
CN104730339A (zh) * 2015-03-15 2015-06-24 华南理工大学 一种三相电压不对称情况下数字锁相方法
CN106655276A (zh) * 2016-11-03 2017-05-10 燕山大学 一种适用于三相电网电压的新型锁相方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109861253A (zh) * 2018-12-19 2019-06-07 深圳市艾普诺电子有限公司 一种抑制ups三相输出电压不平衡的方法
CN109861253B (zh) * 2018-12-19 2022-11-18 深圳市艾普诺电子有限公司 一种抑制ups三相输出电压不平衡的方法

Also Published As

Publication number Publication date
CN107104606A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2018223444A1 (zh) 机车辅助逆变器及控制方法
US10833576B2 (en) Signal processor, filter, control circuit for power converter circuit, interconnection inverter system and PWM converter system
Wang et al. Circulating current suppression for MMC-HVDC under unbalanced grid conditions
JP6265826B2 (ja) 単相系統に接続される電力変換装置
Acuna et al. Improved active power filter performance for renewable power generation systems
Ucar et al. Control of a 3-phase 4-leg active power filter under non-ideal mains voltage condition
CN104078976B (zh) 一种光伏系统并网电流的谐波抑制方法、装置及光伏系统
CN104377727B (zh) 一种并网逆变器多目标协同优化的不平衡控制方法
CN111555339A (zh) 用于稳定性分析的变流器并网通用序阻抗模型及建模方法
Lee et al. Performance improvement of grid-connected inverter systems under unbalanced and distorted grid voltage by using a PR controller
Akel et al. A DQ rotating frame reactive power controller for single-phase bi-directional converters
Hamouda et al. A hybrid modulation scheme for dual-output five-leg indirect matrix converter
Cárdenas et al. A repetitive control system for four-leg matrix converters feeding non-linear loads
Song et al. Power model free voltage ripple suppression method of three-phase PWM rectifier under unbalanced grid
JP2010022152A (ja) 電力制御装置
JP5988911B2 (ja) インバータ制御装置
Šedo et al. Current harmonics compensation in single-phase grid-connected inverter
Jeong et al. High-performance control of three-phase four-wire DVR systems using feedback linearization
CN111969861B (zh) 一种大功率间谐波电流源及其控制方法
Li et al. Novel carrier-based PWM strategy of a three-level NPC voltage source converter without low-frequency voltage oscillation in the neutral point
Luo et al. A variable power factor high power testbed for traction inverter using back-to-back connection
Palanisamy et al. HIL real-time simulator based 3D-space vector pulse width modulation for performance analysis of 3-phase matrix converter
Li et al. Grid voltage modulated control of grid-connected voltage source inverters under unbalanced grid conditions
CN109842143B (zh) 电压源换流器高压直流输电技术互连弱交流系统控制方法
CN110474350B (zh) 一种虚拟同步发电机的控制方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912448

Country of ref document: EP

Kind code of ref document: A1