WO2018223379A1 - 处理信号的方法和设备 - Google Patents

处理信号的方法和设备 Download PDF

Info

Publication number
WO2018223379A1
WO2018223379A1 PCT/CN2017/087742 CN2017087742W WO2018223379A1 WO 2018223379 A1 WO2018223379 A1 WO 2018223379A1 CN 2017087742 W CN2017087742 W CN 2017087742W WO 2018223379 A1 WO2018223379 A1 WO 2018223379A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
measurement result
downlink signal
adjustment amount
adjustment
Prior art date
Application number
PCT/CN2017/087742
Other languages
English (en)
French (fr)
Inventor
陈文洪
张治�
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2017/087742 priority Critical patent/WO2018223379A1/zh
Priority to CN201780050358.7A priority patent/CN109644376B/zh
Publication of WO2018223379A1 publication Critical patent/WO2018223379A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for processing signals.
  • a network device may transmit a plurality of signals of the same type to a terminal device, and the multiple signals may be transmitted using different beams, for example, using different beams to transmit different synchronization signal blocks (Synchronization Signal block) , SS block) or different Channel State Information-Reference Signal (CSI-RS).
  • synchronization signal blocks Synchronization Signal block
  • SS block synchronization Signal block
  • CSI-RS Channel State Information-Reference Signal
  • the embodiment of the present application provides a method and a device for processing a signal, which can implement beam selection according to measurement results of multiple signals.
  • a method of processing a signal comprising:
  • the terminal device measures N downlink signals to obtain N measurement results, where N is an integer greater than 1.
  • the first downlink signal is a downlink signal corresponding to the first measurement result of the N downlink signals
  • the second downlink signal is the N downlink signals a downlink signal corresponding to the second measurement result in the downlink signal
  • the terminal device does not directly take two downlinks.
  • the measurement results of the signals are compared to determine the quality of the transmission of the two downlink signals.
  • the adjustment amounts corresponding to the measurement results of the two downlink signals are combined to determine two downlinks.
  • the transmission quality of the signal is compared, so that the beam selection can be performed according to the adjusted transmission quality comparison result. Further, when the beam selection is performed according to the adjusted transmission quality comparison result, the probability that the beam is selected can be adjusted.
  • the terminal device may determine, according to the N measurement results, the transmission quality of each of the two downlink signals, in combination with the adjustment amount corresponding to each of the N downlink signals. result.
  • the result of the comparison of the transmission quality of each of the two downlink signals may be used to indicate the quality of the transmission between each of the N downlink signals, so that the terminal device may The transmission quality of the signals is sorted.
  • the terminal device may select, according to the transmission quality of the N downlink signals, a certain number of downlink signals with better transmission quality from the N downlink signals, because different downlink signals use different beam transmissions. Therefore, the terminal device can determine the beam for transmitting the downlink signal according to the downlink signal, so that the terminal device can report the information of the beam corresponding to the selected downlink signal with the better transmission quality to the network device.
  • the measurement results of each of the two downlink signals can be compared to determine the quality of the transmission of each of the two downlink signals, thereby enabling The transmission quality of the downlink signals is sorted. Since the quality of the transmission of the N downlink signals is directly determined according to the measurement result, the probability that the beams corresponding to some signals are selected is always low. To solve this problem, the measurement results of the two downlink signals may be performed. In contrast, the adjusted comparison value is obtained by combining the adjustment values corresponding to the measurement results of the two downlink signals, that is, the transmission quality comparison results of the two downlink signals.
  • the method further comprises:
  • the terminal device determines the first adjustment amount according to the first adjustment information.
  • the first adjustment information may be configured as a network device, and the first adjustment information may be used to determine the first adjustment amount, for example, the first adjustment information may be directly the first The adjustment amount, that is, the first adjustment information is an adjustment amount for the measurement results of the first downlink signal and the second downlink signal.
  • the terminal device may process the first adjustment information, and determine the processed first adjustment information as the first adjustment amount, for example, the first adjustment information may be related to the first adjustment amount.
  • the first adjustment information is recorded as M
  • the first adjustment amount is recorded as m
  • the first adjustment information and the first adjustment amount may have a corresponding relationship, and the corresponding relationship may be in the form of a table, so that the terminal device may combine the corresponding relationship according to the first adjustment information, that is, The first adjustment amount is determined.
  • the determining, by the terminal device, the first adjustment amount according to the first adjustment information includes:
  • the first adjustment information is determined as the first adjustment amount.
  • the determining, by the terminal device, the first adjustment amount according to the first adjustment information includes:
  • the first adjustment information is information about transmit power of the first downlink signal and the second downlink signal.
  • the first adjustment information may include information about a transmit power of the first downlink signal, and information about a transmit power of the second downlink signal, where information about a transmit power of the first downlink signal may be considered to be
  • the adjustment information corresponding to the first downlink signal, and the information about the transmission power of the second information may be regarded as adjustment information corresponding to the second downlink signal.
  • the information about the transmit power of the first downlink signal and the second downlink signal is the first downlink signal and the second downlink signal The absolute value of the transmitted power, or relative value, or level information.
  • the processing, the processing, the processing, the processing, the processing, the processing, the processing, the first aspect in some implementation manners of the first aspect, the processing, the processing, the processing, the first aspect, the first
  • the first adjustment amount Determining, according to the information about the transmit power of the first downlink signal and the second downlink signal, the first adjustment amount, where the first correspondence is a correspondence between the information of the transmit power and the adjustment amount.
  • the first correspondence may be a correspondence between a transmit power difference and an adjustment amount, or the first correspondence may also be a correspondence between a transmit power and an adjustment amount, so that the terminal device may first The transmit power is used as a difference, and the first corresponding relationship is used to determine the corresponding adjustment amount, or the terminal device may first determine the corresponding adjustment amount of each transmit power according to the first correspondence, and then make the difference by the adjustment amount. The difference of the adjustment amount is determined as the first adjustment amount.
  • the first correspondence may be in the form of a table or a tree. Not limited
  • the processing, the processing, the processing, the processing, the processing, the processing, the processing, the first aspect in some implementation manners of the first aspect, the processing, the processing, the processing, the first aspect, the first
  • the first function f(x) ax
  • the first adjustment amount is a(P 2 -P 1 ) or a(P 1 -P 2 ), where a is a constant, x is an independent variable, the P 1 is information of the transmit power of the first downlink signal, and P 2 is information of the transmit power of the second downlink signal.
  • the first corresponding to the first measurement result and the second measurement result, and the first measurement result and the second measurement result Determining, by an adjustment quantity, a first transmission quality comparison result of the first downlink signal and the second downlink signal, including:
  • the difference between the first measurement result and the second measurement result, plus the first adjustment amount is determined as the first transmission quality comparison result, wherein the first adjustment amount is a(P 2 -P 1 ); or
  • the result of adding the difference between the first measurement result and the second measurement result, plus the first adjustment amount is determined as the first transmission quality comparison result, where the An adjustment amount is a(P 1 -P 2 ).
  • the sign of the difference between the first measurement result and the second measurement result may be opposite, so that the first adjustment amount may cancel the difference of the partial measurement result, thereby being able to achieve the reduction
  • the purpose of the difference between the transmission quality of the first downlink signal and the second downlink signal is small, and when beam selection is performed, the probability that the beam corresponding to the second downlink signal is selected is improved.
  • the a is configured by a system, or the a is a protocol contract.
  • the protocol may stipulate a coefficient a of the first function f(x) for determining an adjustment amount, such that the terminal device may determine the first function according to the coefficient a, so that the transmission power of the two downlink signals may be The difference is substituted into the first function to obtain an adjustment amount corresponding to the measurement result of the two downlink signals.
  • the coefficient a of the first function f(x) may also be configured by the system, or different transmit power difference segments may correspond to different coefficients a, and when the transmit power difference falls into different ranges, correspondingly different The coefficient a.
  • the protocol may stipulate the first function f(x) for determining the adjustment amount, that is, the protocol may stipulate a functional relationship for determining the adjustment amount according to the transmission power, that is, the first function f(x), so that the terminal device may The specific form of the first function for determining the size of the adjustment amount is obtained according to the protocol, so that the difference between the transmission powers of the two downlink signals can be substituted into the first function to obtain the adjustment amount corresponding to the two downlink signals.
  • the method further comprises:
  • the terminal device receives configuration information sent by the network device, where the configuration information includes the first adjustment information.
  • the configuration information includes adjustment information corresponding to each downlink signal, or the first configuration information includes adjustment information of a group of downlink signals, the group The downlink signal includes part or all of the downlink signals of the N downlink signals, and if the configuration information does not include the adjustment information of the first downlink signal or the second downlink signal, the first downlink signal or the second downlink signal
  • the adjustment information is based on the default value.
  • the network device may configure corresponding adjustment information for each of the N downlink signals, or the network device may also configure a corresponding downlink signal for the N downlink signals.
  • the downlink signal without corresponding adjustment information can use the default value.
  • the default value here can be a zero value, a positive value, or a negative value.
  • the default values corresponding to different downlink signals can be the same. It can also be different.
  • the adjustment information corresponding to the N downlink signals is N adjustment amounts corresponding to the N downlink signals, or the N adjustment amounts are pre-configured The index in the set of adjustments;
  • the adjustment information of the group of downlink signals is an adjustment amount corresponding to the group of downlink signals, or an index of an adjustment amount corresponding to the group of downlink signals in the adjustment amount set.
  • the first measurement result and the second measurement result according to the N measurement results, and the first measurement result and the And determining, by the first adjustment quantity corresponding to the two measurement results, a first transmission quality comparison result of the first downlink signal and the second downlink signal including:
  • the first measurement result and the second measurement result according to the N measurement results, and the first measurement result and the Determining, by the first measurement quantity corresponding to the second measurement result, a first transmission quality comparison result of the first downlink signal and the second downlink signal including:
  • the result obtained by the first adjustment amount is determined as the first transmission quality comparison result.
  • the first adjustment amount may be used to cancel a difference between a portion of the first measurement result and the second measurement result, or the first adjustment amount may compare the first transmission quality
  • the absolute value of the result is smaller than the absolute value of the difference between the first measurement result and the second measurement result. Therefore, the method for processing the signal in the embodiment of the present application can reduce the difference in the transmission quality of the signal of the low power and high power cells. Therefore, when beam selection is performed, the probability that the beam of the low power cell is selected can be improved.
  • the transmitting the information of the K downlink signals to a network device includes:
  • the terminal device sends, to the network device, identifier information corresponding to the K downlink signals, and/or K adjusted measurement results corresponding to the K downlink signals, where the K adjusted measurement results are And adjusting the K measurement results according to the K adjustment amounts corresponding to the K downlink signals.
  • the downlink signal is a channel state information reference signal CSI-RS, or at least one of the synchronization signal blocks SS block.
  • the measurement result is a result obtained by filtering with L1 and/or L3.
  • the measurement result is a reference signal received power RSRP of L1, or an RSRP of L3.
  • an apparatus for processing a signal comprising means for performing the method of the first aspect or any alternative implementation of the first aspect.
  • an apparatus for processing a signal including a memory, a processor, and a transceiver,
  • the memory is for storing a program
  • the processor is for executing a program
  • the processor performs the method of the first aspect based on the transceiver.
  • a computer readable medium storing program code for execution by a terminal device, the program code comprising instructions for performing the method of the first aspect or various implementations thereof .
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any of the first aspect or the optional implementation of the first aspect.
  • FIG. 1 is a schematic diagram of a wireless communication system in accordance with an embodiment of the present application.
  • FIG. 2 is a schematic flow chart of a method of processing a signal according to an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of an apparatus for processing a signal according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of an apparatus for processing a signal according to another embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long-term Advanced long term evolution
  • UMTS Universal Mobile Telecommunication System
  • FIG. 1 illustrates a wireless communication system 100 suitable for use with embodiments of the present invention.
  • the wireless communication system 100 can include at least one network device, such as the first network device 110 and the second network device 120 shown in FIG. Both the first network device 110 and the second network device 120 can communicate with the terminal device 130 through a wireless air interface.
  • the first network device 110 and the second network device 120 can provide communication coverage for a particular geographic area and can communicate with terminal devices located within the coverage area.
  • the first network device 110 or the second network device 120 may be a GSM system or CDMA.
  • the Base Transceiver Station (BTS) in the system may also be a base station (NodeB) in the WCDMA system, or may be an evolved base station (Evolutional Node B, "eNB” or “eNodeB” in the LTE system.
  • the network device in the future 5G network such as a Transmission Reception Point (TRP), a base station, a small base station device, etc., is not specifically limited in this embodiment of the present invention.
  • the wireless communication system 100 further includes one or more User Equipment (“UE”) 130 located within the coverage of the first network device 110 and the second network device 120.
  • the terminal device 130 can be mobile or fixed.
  • the terminal device 130 may communicate with one or more core networks via a Radio Access Network (RAN), and the terminal device may be referred to as an access terminal, a terminal device, a subscriber unit, and a subscriber station. , mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device may be a cellular phone, a cordless phone, a Session Initiation Protocol ("SIP”) phone, a Wireless Local Loop (WLL) station, or a personal digital assistant (Personal Digital Assistant).
  • PDA Personal Digital Assistant
  • a handheld device with wireless communication capabilities a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, and a terminal device in a future 5G network.
  • the network device may use different beams to transmit different CSI-RSs, or SS blocks, and the terminal device may distinguish different beams according to different SS blocks, or CSI-RSs, or resources used for transmitting CSI-RSs. .
  • the transmit power of the macro station is often greater than the transmit power corresponding to the small cell, and therefore, directly according to each signal.
  • the measurement results determine the beam with better transmission quality, and the probability that the beam used by the small cell is selected is always lower than the probability that the beam used by the macro station is selected.
  • the embodiment of the present application provides a method for processing a signal, which can process multiple signals according to the measurement result of multiple signals and the adjustment amount, thereby implementing beam selection.
  • FIG. 2 is a schematic flowchart of a method 200 for processing a signal according to an embodiment of the present application.
  • the method 200 may be performed by a terminal device in the wireless communication system shown in FIG. 1.
  • the method 200 includes :
  • the terminal device measures N downlink signals to obtain N measurement results, where N is an integer greater than 1.
  • the N downlink signals may be CSI-RSs, or signals in the SS block, for example, may include a Primary Synchronization Signal (PSS), and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the at least one of the physical broadcast channel (PBCH) and the demodulation reference signal (DMRS) for demodulating the PBCH is not limited in this embodiment of the present application.
  • the N downlink signals may all be CSI-RSs, or may both be SSSs, or both may be PSS and SSS, or part of the signals are CSI-RS, and some signals are SSS, etc. This example does not limit this.
  • the N measurement results may be measured by L1 filtering, and/or L3 filtering.
  • the measurement result may be reference signal received power of L1 (Reference Signal Received Power)
  • the RSRP, or the RSRP of the layer 3 can be used for the measurement result of the transmission quality comparison, which is not limited by the embodiment of the present application.
  • S220 Determine, according to the first measurement result and the second measurement result of the N measurement results, and the first adjustment quantity corresponding to the first measurement result and the second measurement result, determining the first downlink signal. And comparing the result of the first transmission quality of the second downlink signal.
  • the first downlink signal is a downlink signal corresponding to the first measurement result of the N downlink signals
  • the second downlink signal is corresponding to the second measurement result of the N downlink signals.
  • Downstream signal is a downlink signal corresponding to the first measurement result of the N downlink signals
  • the second downlink signal is corresponding to the second measurement result of the N downlink signals.
  • the first adjustment value corresponding to the first measurement result and the second measurement result is used to adjust a comparison value of the measurement results of the first downlink signal and the second downlink signal, that is, The adjustment values corresponding to the first measurement result and the second measurement result are adjusted for comparing the transmission quality of the two downlink signals.
  • the prior art directly compares the measurement results of the two downlink signals.
  • the embodiment of the present application further combines the comparison results of the measurement results of the two downlink signals.
  • the first adjustment amount adjusts the comparison result to determine a comparison result of the transmission qualities of the two downlink signals.
  • the terminal device wants to select K downlink signals from the N downlink signals, the transmission quality of the N downlink signals needs to be compared, and according to the transmission quality comparison result between the two downlink signals, Among the N downlink signals, K downlink signals satisfying the condition are determined.
  • the terminal device may compare the transmission quality of the first downlink signal and the second downlink signal, and determine the transmission quality of the first downlink signal and the second downlink signal, where the terminal device
  • the difference between the first measurement result and the second measurement result may be combined with the first measurement result and the first adjustment amount corresponding to the second measurement result to determine the first downlink signal and the first a first transmission quality comparison result of the two downlink signals, or a comparison result of the first measurement result and the second measurement result according to the first adjustment amount, and determining the adjusted comparison result as
  • the first transmission quality comparison result that is, the first adjustment amount may be regarded as an adjustment amount of the comparison result of the first measurement result and the second measurement result.
  • the terminal device does not directly compare the measurement results of the two downlink signals, determines the quality of the transmission of the two downlink signals, and compares the measurement of the two downlink signals.
  • combining the adjustment amounts corresponding to the measurement results of the two downlink signals, determining the transmission quality comparison result of the two downlink signals, and selecting the beam according to the transmission quality comparison result, on the other hand, according to the adjusted transmission Quality comparison results Beam selection can adjust the probability that the beam is selected.
  • the K downlink signals selected from the N downlink signals may be K signals with the best transmission quality, or may also be K signals with poor transmission quality, or may also be K downlinks satisfying other conditions.
  • the signal in the embodiment of the present application does not limit the selection condition of the K downlink signals.
  • the embodiment of the present application only introduces the K signals with the best transmission quality from the N downlink signals as an example, and should not be implemented in this application. The examples constitute any limitation.
  • the second downlink signal is a downlink signal corresponding to a high power cell, such that the first measurement result is subtracted from the second measurement result.
  • the difference is a negative value, and the disparity between the two is often large, that is, the difference between the transmission quality of the first downlink signal and the transmission quality of the second downlink signal is large, and the first measurement quantity is used to compare the first measurement result and
  • a positive adjustment amount may be added to the difference between the first measurement result and the second measurement result, so that the first downlink can be reduced.
  • the difference between the signal and the measurement result of the second downlink signal, that is, the first downlink is reduced
  • the difference between the transmission quality of the second downlink signal and the second downlink signal thereby facilitating the improvement of the probability that the beam of the low power cell is selected when performing beam selection.
  • the downlink signal 1 (Sig1) and the downlink signal 2 (Sig2) correspond to the measurement results X 1 and X 2 , respectively, and the comparison results of the measurement results of Sig1 and Sig2 are X 1 -X 2 , and the prior art is directly based on X 1 -X 2 determines the quality of the transmission quality of Sig1 and Sig2, and in the embodiment of the present application, the comparison value of the adjustment values ⁇ x corresponding to Sig1 and Sig2 to the measurement results of Sig1 and Sig2 may be further combined, that is, for X.
  • X 1 -X 2 is adjusted to obtain transmission quality Sig1 and Sig2 of the comparison result, i.e., X 1 -X 2 + ⁇ x or X 1 -X 2 - ⁇ x, ⁇ x herein may be positive, negative may be, of course, Can be zero.
  • the terminal device may determine, according to the comparison result of the transmission quality of the Sig1 and the Sig2, which downlink signal in Sig and Sig2 is superior in transmission quality, and if X 1 -X 2 is greater than zero, in the prior art, Sig1 may be determined.
  • the transmission quality is better than the transmission quality of Sig2. Otherwise, it is determined that the transmission quality of Sig2 is better than the transmission quality of Sig1, that is, in the prior art, the transmission quality comparison result is X 1 -X 2 .
  • the transmission quality comparison result of Sig1 and Sig2 is a result obtained by adjusting X 1 -X 2 according to the adjustment value ⁇ x corresponding to Sig1 and Sig2, and therefore, the transmission quality comparison result of Sig1 and Sig2 is relative to The prior art has changed, that is, the probability that the corresponding beams of Sig1 and Sig2 are selected has changed.
  • the transmission quality Sig1 and Sig2 after the adjustment result of the comparison may be X 1 -X 2 + ⁇ x, or if the sign of [Delta] x X 1 -X The symbols of 2 are the same, then the transmission quality comparison result of the adjusted Sig1 and Sig2 may be X 1 -X 2 - ⁇ x, that is, the first adjustment amount enables the absolute values of the comparison values of the measurement results of Sig1 and Sig2 The absolute value of the transmission quality comparison result larger than Sig1 and Sig2, that is, the difference in transmission quality between Sig1 and Sig2 is reduced.
  • Sig1 is the downlink signal sent by the low-power cell
  • Sig2 is the downlink signal sent by the high-power cell.
  • X 2 >X 1 , therefore, the beam is selected according to the measurement results of Sig1 and Sig2, and the beam corresponding to Sig2 The probability of being selected is much larger than the beam corresponding to Sig1.
  • the comparison value of the measurement results of Sig1 and Sig2 is used, the comparison value of the measurement result is adjusted according to the adjustment values corresponding to Sig1 and Sig2, and the transmission quality of Sig1 and Sig2 is obtained.
  • the comparison result is equivalent to reducing the comparison result of the transmission quality between Sig1 and Sig2, that is, reducing the difference in transmission quality between Sig1 and Sig2, and therefore, when performing beam selection based on the comparison result of the transmission quality of Sig1 and Sig2, Increase the probability that the beam corresponding to Sig1 is selected.
  • the adjustment amount corresponding to the above two measurement results may be that the terminal device is large according to the The measurement data of the quantity is determined, or may be configured by the network device.
  • the embodiment of the present application does not limit this, and the adjustment amount corresponding to the two measurement results may also be adjusted according to actual conditions, for example, within a certain period of time.
  • the adjustment amount corresponding to the two measurement results is a first value, and in another time period, the adjustment amount corresponding to the two measurement results may be a second value, and the first value and the second value may be the same, Can be different.
  • the method further includes:
  • the terminal device determines the first adjustment amount according to the first adjustment information.
  • the first adjustment information may be configured as a network device, and the first adjustment information may be used to determine the first adjustment amount, for example, the first adjustment information may directly be the first An adjustment amount, that is, the first adjustment information is an adjustment amount for a measurement result of the first downlink signal and the second downlink signal.
  • the terminal device may process the first adjustment information, and determine the processed first adjustment information as the first adjustment amount, for example, the first adjustment information may be related to the first adjustment amount.
  • the first adjustment information is recorded as M
  • the first adjustment amount is recorded as m
  • the first adjustment amount may be determined by substituting the first adjustment information into a function.
  • the first adjustment information and the first adjustment amount may have a corresponding relationship, and the corresponding relationship may be in the form of a table, so that the terminal device may combine the corresponding relationship according to the first adjustment information, that is, The first adjustment amount is determined.
  • the first adjustment information may include adjustment information corresponding to the first downlink signal and the second downlink signal, and the adjustment information corresponding to each downlink signal may be the transmission of each downlink signal.
  • the power, or the adjustment amount corresponding to each downlink signal can be used to adjust the measurement result of each downlink signal to obtain the adjusted measurement result.
  • the first adjustment information is information about transmit power of the first downlink signal and the second downlink signal.
  • the first adjustment information may include information about a transmit power of the first downlink signal, and information about a transmit power of the second downlink signal, where information about a transmit power of the first downlink signal may be considered to be
  • the adjustment information corresponding to the first downlink signal, and the information about the transmission power of the second information may be regarded as adjustment information corresponding to the second downlink signal.
  • the information about the transmit power of the first downlink signal and the second downlink signal is an absolute value, or a relative value, or level information of transmit powers of the first downlink signal and the second downlink signal.
  • the information in the embodiment of the present application is not limited, and the following is mainly The information of the transmission power is described as the absolute value of the transmission power, but the embodiment of the present application is not limited thereto.
  • the absolute value of the transmit power of the first downlink signal may be a reference value, such that the information about the transmit power of the other signal may be a relative value relative to the absolute value of the transmit power of the first downlink signal.
  • the information about the transmit power of the first downlink signal is zero; or the specific transmit power value may be used as a reference value, and the information about the transmit power of the N downlink signals may be relative to a specific transmit power value. relative value.
  • the absolute value of the transmission power may be divided into multiple levels, and the information of the transmission power of each downlink signal may be a level corresponding to the absolute value of the transmission power of each downlink signal.
  • the processing the first adjustment information, and processing The first adjustment information is determined as the first adjustment amount, and includes:
  • the first adjustment amount Determining, according to the information about the transmit power of the first downlink signal and the second downlink signal, the first adjustment amount, where the first correspondence is a correspondence between the information of the transmit power and the adjustment amount.
  • the terminal device may determine the first adjustment amount according to the transmit power of the first downlink signal and the second downlink signal, and the first corresponding relationship, and optionally, the terminal device may first The difference between the transmit power of the first downlink signal and the second downlink signal is determined, and according to the transmit power difference, combined with the first correspondence, the adjustment amount corresponding to the transmit power difference is determined as the first adjustment amount.
  • the terminal device may first determine, according to the transmit power of the first downlink signal and the second downlink signal, the first corresponding relationship, determine an adjustment amount corresponding to the transmit power of the two downlink signals, and then determine The difference between the adjustment amounts corresponding to the transmission powers of the two downlink signals determines the difference of the adjustment amounts as the first adjustment amount.
  • the first correspondence may be a correspondence between the transmission power difference and the adjustment amount, or the first correspondence may also be a correspondence between the transmission power and the adjustment amount, so that the terminal device may first transmit the power. Performing a difference, and combining the first correspondence relationship, determining a corresponding adjustment amount, or the terminal device may first determine a corresponding adjustment amount of each transmission power according to the first correspondence relationship, and then making a difference value, and adjusting the amount The difference is determined as the first adjustment amount.
  • the first correspondence may be in the form of a table, or a tree, which is not limited by the embodiment of the present application.
  • the first correspondence may be as shown in Table 1.
  • Adjustment value ⁇ x Transmit power difference Z 1 (Y 1 , Y 2 ) Z 2 (Y 2 , Y 3 ) Z 3 (Y 3 , Y 4 ) ... ... Z L (Y L , Y L+1 )
  • the transmission power difference can be segmented, and each segment corresponds to a corresponding adjustment amount.
  • Table 1 when the transmission power difference of the two downlink signals falls into (Y 1 , Y 2 ), the corresponding correspondence can be determined.
  • the adjustment amount is Z 1 .
  • the difference between the transmission powers of the two downlink signals falls into (Y 2 , Y 3 )
  • it can be determined that the corresponding adjustment amount is Z 2
  • the corresponding adjustment amount is corresponding. I will not list them here.
  • the difference between the transmit powers of the two downlink signals falls into (Y 1 , Y 2 )
  • the difference between the transmit powers of the first downlink signal and the second downlink signal is recorded as the first difference
  • the difference between the transmission powers of the first downlink signal and the second downlink signal is recorded as the second difference, and therefore,
  • the first difference is smaller than the second difference, and the large transmit power often means that the measurement result corresponding to the signal is large
  • the smaller difference between the transmit powers of the two downlink signals means that the adjustment amount required to be compensated is smaller.
  • the adjustment amount Z 1 corresponding to the segment (Y 1 , Y 2 ) is smaller than the adjustment amount Z 2 corresponding to the segment (Y 2 , Y 3 ). That is, when the difference in transmission power is small, in this case, the difference of the measurement results is small, so that a small adjustment amount can be used for the two downlink signals.
  • the measurement result is adjusted. When the difference in transmission power is large, the difference between the measurement results is large in this case. Therefore, the measurement result of the two downlink signals can be adjusted by using a larger adjustment amount, thereby being able to reduce The difference in transmission quality between the two downstream signals.
  • the processing the first adjustment information, and determining the processed first adjustment information as the first adjustment amount includes:
  • the first function may be a linear function or a nonlinear function.
  • the information of the transmission power, which is substituted into the first function, is the first adjustment amount.
  • the first function f(x) ax
  • the first adjustment amount is a(P 2 -P 1 ) or a(P 1 -P 2 ), where a is a constant and x is a self a variable, where P 1 is information of a transmit power of the first downlink signal, and P 2 is information of a transmit power of the second downlink signal.
  • the first adjustment amount ⁇ x is a(P 2 -P 1 ) or a(P 1 -P 2 ), and a may be 1, or a number greater than 1, or may be a number less than 1, then the first The transmission quality comparison result of a downlink signal and the second downlink signal may be X 1 -X 2 + ⁇ x.
  • the first adjustment amount may be a(P 2 -P 1 ), and the terminal device may add the difference between the first measurement result and the second measurement result, and add the first
  • the result obtained by the adjustment amount is determined as the first transmission quality comparison result, that is, the first transmission quality comparison result is X 1 -X 2 +a(P 2 -P 1 ); or
  • the first adjustment amount may be a(P 1 -P 2 ), and the terminal device may add the difference between the first measurement result and the second measurement result, The result obtained by the first adjustment amount is determined as the first transmission quality comparison result, that is, the first transmission quality comparison result is X 1 -X 2 +a(P 1 -P 2 ).
  • the transmission power is large, and the measurement result is correspondingly large.
  • the transmission power of the first downlink signal is greater than the transmission power of the second downlink signal
  • the first measurement result is often greater than a second measurement result, wherein the first adjustment amount may be opposite to a sign of a difference between the first measurement result and the second measurement result, so that the first adjustment amount may cancel a difference value of a part of the measurement result,
  • the purpose of reducing the difference between the transmission quality of the first downlink signal and the second downlink signal is achieved, so that the probability that the beam corresponding to the second downlink signal is selected when performing beam selection can be improved.
  • the first adjustment amount may be such that the difference between the measurement results of the two downlink signals The absolute value is greater than the absolute value of the transmission quality comparison result of the two downlink signals, so that after the above adjustment, the difference between the transmission quality of the signal of the low power cell and the transmission quality of the signal of the high power cell is reduced, and therefore, When the beam is selected, the probability that the beam of the low power cell is selected can be improved.
  • the a may be configured by a system, or the a is a protocol agreed.
  • the protocol agreement may include pre-configuration on the terminal device, and no system configuration is required.
  • the protocol may stipulate a coefficient a of the first function f(x) for determining an adjustment amount, such that the terminal device may determine the first function according to the coefficient a, so that the transmission power of the two downlink signals may be The difference is substituted into the first function to obtain an adjustment amount corresponding to the measurement result of the two downlink signals.
  • the coefficient a of the first function f(x) may also be configured by the system, or different transmit power difference segments may correspond to different coefficients a, and when the transmit power difference falls into different ranges, correspondingly different The coefficient a.
  • the protocol may stipulate the first function f(x) for determining the adjustment amount, that is, the protocol may stipulate a functional relationship for determining the adjustment amount according to the transmission power, that is, the first function f(x), so that the terminal device may The specific form of the first function for determining the size of the adjustment amount is obtained according to the protocol, so that the difference between the transmission powers of the two downlink signals can be substituted into the first function to obtain the adjustment amount corresponding to the two downlink signals.
  • the method further includes:
  • the terminal device receives configuration information sent by the network device, where the configuration information includes the first adjustment information.
  • the first adjustment information corresponds to the first adjustment information described in the foregoing.
  • the network device may send the configuration information to the terminal device by using Radio Resource Control (RRC) signaling, or The network device may also send the configuration information to the terminal device by using Downlink Control Information (DCI).
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the configuration information includes adjustment information corresponding to each downlink signal, or the first configuration information includes adjustment information of a group of downlink signals, where the group of downlink signals includes the N downlink signals. For some or all of the downlink signals, if the configuration information does not include the adjustment information of the first downlink signal or the second downlink signal, the adjustment information of the first downlink signal or the second downlink signal adopts a default value.
  • the network device may configure corresponding adjustment information for each of the N downlink signals, or the network device may also configure a corresponding downlink signal for the N downlink signals.
  • the downlink signal without corresponding adjustment information can use the default value.
  • the default value here can be a zero value, a positive value, or a negative value.
  • the default values corresponding to different downlink signals can be the same. It can also be different.
  • the default value can be agreed by the protocol or configured by the system.
  • the adjustment information corresponding to each downlink signal may be information about a transmission power corresponding to each downlink signal, or an adjustment amount corresponding to each downlink signal, and an adjustment amount corresponding to each downlink signal may be used for each of the downlinks The measurement results of the signal are adjusted.
  • the network device may also configure corresponding adjustment information for a group of downlink signals, that is, a group of downlink signals may correspond to the same adjustment information, where the adjustment information may be an adjustment amount, that is, a group of downlink signals may correspond to one adjustment amount, The other set of downlink signals corresponds to another adjustment amount.
  • the adjustment information corresponding to the N downlink signals is N adjustment amounts corresponding to the N downlink signals, or the N adjustment amounts are in a pre-configured adjustment amount set. index of;
  • the adjustment information of the group of downlink signals is an adjustment amount corresponding to the group of downlink signals, or an index of an adjustment amount corresponding to the group of downlink signals in the adjustment amount set.
  • the network device may configure a corresponding adjustment amount for each downlink signal, and the adjustment amount may be used to adjust the measurement result of each downlink signal to obtain an adjusted measurement result, for example, N downlink signals respectively correspond to
  • the adjustment amount is offset 1 , offset 2 , ..., offset N
  • the measurement results corresponding to the N downlink signals are X 1 , X 2 , ..., X N
  • the adjusted values of each downlink signal measurements can be X 1 + offset 1, X 2 + offset 2, ..., X N + offset 1N, or adjusted after each downlink signal measurements may be X 1 -offset 1, X 2 -offset 2 ,...,X N -offset 1N .
  • the adjustment amount of the first downlink signal and the second downlink signal may be offset 1 -offset 2 or offset 2 -offset 1 , that is, the adjustment amount corresponding to the measurement results of the two downlink signals may be It is determined according to the adjustment amounts corresponding to the two downlink signals respectively.
  • S220 can include:
  • the difference between the first measurement result and the second measurement result is different from the first adjustment amount
  • the symbol is different, and the result obtained by adding the difference between the first measurement result and the second measurement result to the first adjustment amount is determined as the first transmission quality comparison result.
  • the first adjustment amount may be used to cancel a difference between a portion of the first measurement result and the second measurement result, or the first adjustment amount may make an absolute of the first transmission quality comparison result
  • the value is smaller than the absolute value of the difference between the first measurement result and the second measurement result, that is, the embodiment of the present application can reduce the difference in the transmission quality of the signals of the low power and high power cells, so that when beam selection is performed, The probability that the beam of the low power cell is selected can be improved.
  • the terminal device may perform transmission quality comparison on the other downlink signals according to the first downlink signal and the second downlink signal, and directly compare the transmission quality from the N downlink signals. Determine K downlink signals.
  • the terminal device may perform transmission quality comparison on each of the N downlink signals, determine a transmission quality comparison result of any two downlink signals, and compare the transmission quality according to any two downlink signals. Therefore, K downlink signals are determined among the N downlink signals. That is, the terminal device may determine, according to the comparison result of the transmission quality of the two downlink signals, the quality of the transmission between each of the N downlink signals, so that the N downlinks may be performed. The transmission quality of the signals is sorted, and K downlink signals are selected from the N downlink signals according to the order of the transmission quality of the N downlink signals.
  • the terminal device may also adjust an algorithm for comparing transmission quality of the N downlink signals according to actual conditions, as long as the transmission quality of the two downlink signals is compared, and the adjustment amount is combined according to the measurement results of the two downlink signals.
  • the measurement result is adjusted to determine the transmission quality comparison result, which falls within the protection scope of the embodiment of the present application.
  • the specific embodiment of the present application does not specifically limit the specific algorithm for selecting K downlink signals from the N downlink signals.
  • the N downlink signals include a downlink signal 1 (Sig1), a downlink signal 2 (Sig2), and a downlink signal 3 (Sig3), which respectively correspond to measurement results X 1 , X 2 , X 3 , and the X 1 and X 2
  • the corresponding adjustment amount is ⁇ x 1
  • the adjustment amount corresponding to X 1 and X 3 is ⁇ x 2
  • the adjustment amount corresponding to X 2 and X 3 is ⁇ x 3 .
  • X 1 -X 2 + ⁇ x 1 can be performed.
  • the transmission quality of Sig1 is better than the transmission quality of Sig2, the transmission quality of Sig1 and Sig3 can be further compared. If the transmission quality of Sig3 is determined to be better than The transmission quality of Sig1 can determine that one of the selected signals is Sig3, otherwise it is determined that one of the selected signals is Sig1. Therefore, it is not necessary to compare the transmission quality of Sig2 and Sig3 to select a signal that satisfies the requirement.
  • the N downlink signals include Sig1, Sig2, Sig3, and Sig4, and the terminal device may first sequentially Sig1 with Sig2, Sig3. Compared with Sig4, the transmission quality is determined, and the signal with the best transmission quality among the four signals is determined, and the signal with the best transmission quality is recorded as Sig1, and then the terminal device can compare the Sig2 with Sig3 and Sig4 in turn.
  • the downlink information with the best transmission quality among the three downlink signals is determined, so that the two downlink signals with the best transmission quality among the four downlink signals can be determined.
  • an algorithm for determining K signals that meet certain conditions from the N downlink signals may be adjusted according to actual conditions.
  • the above enumerated algorithms are only for facilitating understanding of the embodiments of the present application, and are not limited to the specific descriptions described above.
  • the algorithm may be used to perform transmission quality ordering on the N downlink signals by using some sorting algorithms in the prior art.
  • S240 can include:
  • the terminal device sends, to the network device, identifier information corresponding to the K downlink signals, and/or K adjusted measurement results corresponding to the K downlink signals, where the K adjusted measurement results are And adjusting the K measurement results according to the K adjustment amounts corresponding to the K downlink signals.
  • the identification information of the K downlink signals may be information of a beam corresponding to the K downlink signals, for example, an identifier (ID), or the terminal device may number the N downlink signals.
  • the identifier information corresponding to the K downlink signals may be the number of the K downlink signals, or the identifier information of the K downlink signals may also be used to identify the K Other identification information of each of the downlink signals is not limited in this embodiment of the present application.
  • the terminal device may further send, to the network device, the K measurement results corresponding to the K downlink signals, where the K measurement results may be further used by the network device to further select the K downlink signals, and determine to be used for downlink transmission. Beam.
  • the network device can configure a corresponding adjustment amount for each downlink signal, and the adjustment amount can be used to adjust the measurement result of each downlink signal, thereby determining an adjusted measurement result of each downlink signal, and therefore, the terminal device
  • the measured measurement result of each downlink signal may be calculated, so that the measurement result reported by the terminal device to the network device may also be the adjusted measurement result corresponding to the K downlink signals.
  • the terminal device does not directly compare the measurement results of the two downlink signals, determines the quality of the transmission of the two downlink signals, and compares the measurement of the two downlink signals.
  • the transmission quality comparison result of the two downlink signals is determined by combining the adjustment amounts corresponding to the measurement results of the two downlink signals, and therefore, the beam selection according to the adjusted transmission quality comparison result can be realized, and further, in progress When beam selection, beam selection is performed according to the adjusted transmission quality comparison result, and the probability that the beam is selected can be adjusted.
  • FIG. 3 is a schematic block diagram of an apparatus for processing a signal according to an embodiment of the present application.
  • the device 300 of Figure 3 includes:
  • the measuring module 310 is configured to measure N downlink signals to obtain N measurement results, where N is an integer greater than 1.
  • the first downlink signal is a downlink signal corresponding to the first measurement result of the N downlink signals
  • the second downlink signal is a downlink signal corresponding to the second measurement result of the N downlink signals ;
  • the communication module 330 is configured to send information about the K downlink signals to the network device.
  • the determining module 320 is further configured to:
  • the first adjustment amount is determined according to the first adjustment information.
  • the determining module 320 is specifically configured to:
  • the first adjustment information is determined as the first adjustment amount.
  • the determining module 320 is specifically configured to:
  • the first adjustment information is information about transmit power of the first downlink signal and the second downlink signal.
  • the information about the transmit power of the first downlink signal and the second downlink signal is an absolute value of transmit power of the first downlink signal and the second downlink signal. , or relative value, or level information.
  • the determining module 320 is further configured to:
  • the first adjustment amount Determining, according to the information about the transmit power of the first downlink signal and the second downlink signal, the first adjustment amount, where the first correspondence is a correspondence between the information of the transmit power and the adjustment amount.
  • the determining module 320 is further configured to:
  • the first function f(x) ax
  • the first adjustment amount is a(P 2 -P 1 ) or a(P 1 -P 2 ), where a It is a constant, x is an argument, the P 1 is information of the transmission power of the first downlink signal, and P 2 is information of the transmission power of the second downlink signal.
  • the determining module 320 is further configured to:
  • the difference between the first measurement result and the second measurement result, plus the first adjustment amount is determined as the first transmission quality comparison result, wherein the first adjustment amount is a(P 2 -P 1 ); or
  • the result of adding the difference between the first measurement result and the second measurement result, plus the first adjustment amount is determined as the first transmission quality comparison result, where the An adjustment amount is a(P 1 -P 2 ).
  • the a is configured by the system, or the a is protocol agreed.
  • the communication module 330 is further configured to:
  • the configuration information includes adjustment information corresponding to each downlink signal, or the first configuration information includes adjustment information of a group of downlink signals, where the group of downlink signals includes the N For some or all of the downlink signals of the downlink signals, if the configuration information does not include the adjustment information of the first downlink signal or the second downlink signal, the adjustment information of the first downlink signal or the second downlink signal adopts a default value. .
  • the adjustment information corresponding to the N downlink signals is N adjustment amounts corresponding to the N downlink signals, or the N adjustment amounts are in a pre-configured adjustment amount set. index;
  • the adjustment information of the group of downlink signals is an adjustment amount corresponding to the group of downlink signals, or an index of an adjustment amount corresponding to the group of downlink signals in the adjustment amount set.
  • the determining module 320 is further configured to:
  • the determining module 320 is further configured to:
  • the result obtained by the first adjustment amount is determined as the first transmission quality comparison result.
  • the communication module 330 is specifically configured to:
  • the downlink signal is a channel state information reference signal. At least one of the CSI-RS, or the sync signal block SS block.
  • the measurement result is a result obtained by filtering with L1 and/or L3.
  • the measurement result is a reference signal received power RSRP of L1, or an RSRP of L3.
  • the device 300 may correspond to (for example, may be configured or be itself) the terminal device described in the foregoing method 200, and each module or unit in the device 300 is used to execute the terminal device in the foregoing method 200, respectively.
  • Each of the operations or processes performed is omitted here for the sake of avoiding redundancy.
  • the embodiment of the present application further provides a device 400 for processing a signal, which may be the device 300 in FIG. 3, which can be used to execute a terminal device corresponding to the method 200 in FIG. content.
  • the device 400 includes an input interface 410, an output interface 420, a processor 430, and a memory 440, and the input interface 410, the output interface 420, the processor 430, and the memory 440 can be connected by a bus system.
  • the memory 440 is used to store programs, instructions or code.
  • the processor 430 is configured to execute a program, an instruction or a code in the memory 440 to control the input interface 410 to receive a signal, control the output interface 420 to send a signal, and complete the operations in the foregoing method embodiments.
  • the processor 430 may be a central processing unit (“CPU"), and the processor 430 may also be other general-purpose processors, digital signal processors ( DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 440 can include read only memory and random access memory and provides instructions and data to the processor 430. A portion of the memory 440 may also include a non-volatile random access memory. For example, the memory 440 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 430 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 440, and the processor 430 reads the information in the memory 440 and completes the contents of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the measurement module 310 included in the device 300 of FIG. 3, the determination module 320 can be implemented by the processor 430 of FIG. 4, and the communication module 330 included in the device 300 of FIG. 3 can use the input of FIG. Interface 410 and the output interface 420 are implemented.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs including instructions, when the portable electronic device is included in a plurality of applications When executed, the portable electronic device can be caused to perform the method of the embodiment shown in FIG. 2.
  • the embodiment of the present application also proposes a computer program comprising instructions which, when executed by a computer, cause the computer to execute the corresponding flow of the method of the embodiment shown in FIG. 2.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present application, which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本申请实施例提供了一种处理信号的方法和设备,能够实现对波束的选择,包括:终端设备对N个下行信号进行测量,得到N个测量结果,其中,N为大于1的整数;根据所述N个测量结果中的第一测量结果和所述第二测量结果,以及所述第一测量结果和所述第二测量结果对应的第一调整量,确定第一下行信号和第二下行信号的第一传输质量比较结果;根据至少一个传输质量比较结果,从所述N个下行信号中确定K个下行信号,所述至少一个测量结果包括所述第一传输质量比较结果,所述至少一个传输质量比较结果中的每个传输质量比较结果为所述N个下行信号中的两个下行信号的传输质量的比较结果,1<=K<N;向网络设备发送所述K个下行信号的信息。

Description

处理信号的方法和设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种处理信号的方法和设备。
背景技术
在无线通信系统中,网络设备可以向终端设备发送多个相同类型的信号,该多个信号可以使用不同的波束(beam)传输,例如,使用不同的波束传输不同的同步信号块(Synchronization Signal block,SS block)或不同的信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)。
在该系统中,对于终端设备而言,如何实现多个信号的处理,例如,以实现波束的选择是一项需要解决的问题。
发明内容
本申请实施例提供了一种处理信号的方法和设备,能够根据多个信号的测量结果,实现波束的选择。
第一方面,提供了一种处理信号的方法,包括:
终端设备对N个下行信号进行测量,得到N个测量结果,其中,N为大于1的整数;
根据所述N个测量结果中的第一测量结果和所述第二测量结果,以及所述第一测量结果和所述第二测量结果对应的第一调整量,确定第一下行信号和第二下行信号的第一传输质量比较结果,其中,所述第一下行信号为所述N个下行信号中所述第一测量结果对应的下行信号,所述第二下行信号为所述N个下行信号中所述第二测量结果对应的下行信号;
根据至少一个传输质量比较结果,从所述N个下行信号中确定K个下行信号,所述至少一个测量结果包括所述第一传输质量比较结果,所述至少一个传输质量比较结果中的每个传输质量比较结果为所述N个下行信号中的两个下行信号的传输质量的比较结果,1<=K<N;
向网络设备发送所述K个下行信号的信息。
因此,本申请实施例的处理信号的方法,终端设备不是直接将两个下行 信号的测量结果进行比较,确定这两个下行信号的传输质量的好坏,而是在对比两个下行信号的测量结果时,结合两个下行信号的测量结果对应的调整量,确定两个下行信号的传输质量对比结果,从而可以实现根据调整后的传输质量对比结果进行波束的选择,进一步地,根据调整后的传输质量比较结果进行波束选择时,能够调整波束被选中的概率。
作为一种可能的实现方式,所述终端设备可以对N个测量结果,结合所述N个下行信号中的每两个下行信号对应的调整量,确定所述每两个下行信号的传输质量比较结果。所述每两个下行信号的传输质量比较结果,可以用于指示所述N个下行信号中的每两个下行信号之间传输质量的优劣,从而所述终端设备可以对所述N个下行信号的传输质量进行排序。进一步地,所述终端设备可以根据所述N个下行信号的传输质量,从所述N个下行信号中选择一定数量的传输质量较优的下行信号,由于不同的下行信号是使用不同的波束传输的,因此,所述终端设备可以根据下行信号确定传输该下行信号的波束,从而所述终端设备可以将选择的传输质量较优的下行信号对应的波束的信息上报给网络设备。
也就是说,若想确定所述N个下行信号的传输质量的优劣,可以将每两个下行信号的测量结果进行对比,确定每两个下行信号的传输质量的优劣,从而可以对N个下行信号的传输质量进行排序。由于直接根据测量结果判定所述N个下行信号的传输质量的优劣,会导致有些信号对应的波束被选中的概率始终较低,为了解决这个问题,可以在对两个下行信号的测量结果进行对比时,结合两个下行信号的测量结果对应的调整值,得到调整后的比较值,即这两个下行信号的传输质量比较结果。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
所述终端设备根据第一调整信息,确定所述第一调整量。
可选地,所述第一调整信息可以认为是网络设备配置的,所述第一调整信息可以用于确定所述第一调整量,例如,所述第一调整信息可以直接为所述第一调整量,即所述第一调整信息为针对所述第一下行信号和所述第二下行信号的测量结果的调整量。或者所述终端设备也可以对所述第一调整信息进行处理,将处理后的第一调整信息确定为所述第一调整量,例如,所述第一调整信息可以与所述第一调整量成函数关系,将所述第一调整信息记为M,将第一调整量记为m,第一调整信息和第一调整量可以具有如下关系: m=f(M),从而所述终端设备将所述第一调整信息代入函数即可确定所述第一调整量。或者所述第一调整信息和所述第一调整量可以具有对应关系,该对应关系可以是表的形式,这样,所述终端设备可以根据所述第一调整信息结合所述对应关系,即可确定所述第一调整量。
结合第一方面,在第一方面的某些实现方式中,所述终端设备根据第一调整信息,确定所述第一调整量,包括:
将所述第一调整信息确定为所述第一调整量。
结合第一方面,在第一方面的某些实现方式中,所述终端设备根据第一调整信息,确定所述第一调整量,包括:
对所述第一调整信息进行处理,将处理后的所述第一调整信息确定为所述第一调整量。
结合第一方面,在第一方面的某些实现方式中,所述第一调整信息为所述第一下行信号和所述第二下行信号的发射功率的信息。
即所述第一调整信息可以包括所述第一下行信号的发射功率的信息,以及所述第二下行信号的发射功率的信息,所述第一下行信号的发射功率的信息可以认为是第一下行信号对应的调整信息,所述第二信息的发射功率的信息可以认为是第二下行信号对应的调整信息。
结合第一方面,在第一方面的某些实现方式中,所述第一下行信号和所述第二下行信号的发射功率的信息为所述第一下行信号和所述第二下行信号的发射功率的绝对值,或相对值,或等级信息。
结合第一方面,在第一方面的某些实现方式中,所述对所述第一调整信息进行处理,将处理后的所述第一调整信息确定为所述第一调整量,包括:
根据所述第一下行信号和第二下行信号的发射功率的信息,结合第一对应关系,确定所述第一调整量,所述第一对应关系为发射功率的信息和调整量的对应关系。
可选的,所述第一对应关系可以是发射功率差和调整量的对应关系,或者所述第一对应关系也可以是发射功率和调整量的对应关系,这样,所述终端设备可以先对发射功率做差值,再结合第一对应关系,确定对应的调整量,或者所述终端设备也可以先结合第一对应关系确定每个发射功率对应调整量,然后将调整量做差值,将调整量的差值确定为所述第一调整量。
可选的,所述第一对应关系可以是表,或树的形式,本申请实施例对此 不作限定
结合第一方面,在第一方面的某些实现方式中,所述对所述第一调整信息进行处理,将处理后的所述第一调整信息确定为所述第一调整量,包括:
根据所述第一下行信号和第二下行信号的发射功率的信息,结合第一函数,确定所述第一调整量。
结合第一方面,在第一方面的某些实现方式中,所述第一函数f(x)=ax,所述第一调整量为a(P2-P1)或a(P1-P2),其中,a为常量,x为自变量,所述P1为所述第一下行信号的发射功率的信息,P2为所述第二下行信号的发射功率的信息。
结合第一方面,在第一方面的某些实现方式中,所述根据所述第一测量结果和所述第二测量结果,以及所述第一测量结果和所述第二测量结果对应的第一调整量,确定所述第一下行信号和所述第二下行信号的第一传输质量比较结果,包括:
若a大于零,将第一测量结果和第二测量结果的差值,加上所述第一调整量得到的结果确定为所述第一传输质量比较结果,其中,所述第一调整量为a(P2-P1);或
若a小于零,将所述第一测量结果和所述第二测量结果的差值,加上所述第一调整量得到的结果确定为所述第一传输质量比较结果,其中,所述第一调整量为a(P1-P2)。
通过设置所述第一调整量可以与所述第一测量结果和所述第二测量结果的差值的符号相反,使得所述第一调整量可以抵消部分测量结果的差值,从而能够达到减小所述第一下行信号和所述第二下行信号的传输质量的差值的目的,在进行波束选择时,提高第二下行信号对应的波束被选中的概率。
结合第一方面,在第一方面的某些实现方式中,所述a由系统配置,或所述a是协议约定的。
例如,协议可以约定用于确定调整量的所述第一函数f(x)的系数a,这样,所述终端设备可以根据系数a,确定第一函数,从而可以将两个下行信号的发射功率的差值,代入所述第一函数得到两个下行信号的测量结果对应的调整量。或者所述第一函数f(x)的系数a也可以由系统配置,或者也可以不同的发射功率差值分段对应不同的系数a,在发射功率差值落入不同的范围时,对应不同的系数a。
或者,协议可以约定用于确定调整量的所述第一函数f(x),即协议可以约定用于根据发射功率确定调整量的函数关系,即第一函数f(x),这样终端设备可以根据协议获知用于确定调整量大小的第一函数的具体形式,从而可以将两个下行信号的发射功率的差值,代入所述第一函数得到两个下行信号对应的调整量。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
所述终端设备接收所述网络设备发送的配置信息,所述配置信息包括所述第一调整信息。
结合第一方面,在第一方面的某些实现方式中,所述配置信息包括每个下行信号对应的调整信息,或所述第一配置信息包括一组下行信号的调整信息,所述一组下行信号包括所述N个下行信号中的部分或全部下行信号,若所述配置信息不包括第一下行信号或第二下行信号的调整信息,所述第一下行信号或第二下行信号的调整信息采用默认值。
也就是说,所述网络设备可以给所述N个下行信号中的每个下行信号配置对应的调整信息,或者所述网络设备也可以给所述N个下行信号中的部分下行信号配置对应的调整信息,没有对应的调整信息的下行信号可以使用默认值,这里的默认值可以是一个零值,也可以是正值,或者也可以是负值,不同的下行信号对应的默认值可以相同,也可以不同。
结合第一方面,在第一方面的某些实现方式中,所述N个下行信号对应的调整信息为所述N个下行信号对应的N个调整量,或所述N个调整量在预配置的调整量集合中的索引;
所述一组下行信号的调整信息为所述一组下行信号对应的调整量,或所述一组下行信号对应的调整量在所述调整量集合中的索引。
结合第一方面,在第一方面的某些实现方式中,所述根据所述N个测量结果中的第一测量结果和所述第二测量结果,以及所述第一测量结果和所述第二测量结果对应的第一调整量,确定第一下行信号和第二下行信号的第一传输质量比较结果,包括:
将所述第一下行信号对应的调整量和所述第二下行信号对应的调整量的差值,确定为所述第一调整量。
结合第一方面,在第一方面的某些实现方式中,所述根据所述N个测量结果中的第一测量结果和所述第二测量结果,以及所述第一测量结果和所述 第二测量结果对应的第一调整量,确定第一下行信号和第二下行信号的第一传输质量比较结果,包括:
若所述第一测量结果和所述第二测量结果的差值与所述第一调整量的符号相同,将所述第一测量结果和所述第二测量结果的差值,减去所述第一调整量得到的结果确定为所述第一传输质量比较结果;或
若所述第一测量结果和所述第二测量结果的差值与所述第一调整量的符号不同,将所述第一测量结果和所述第二测量结果的差值,加上所述第一调整量得到的结果确定为所述第一传输质量比较结果。
也就是说,所述第一调整量可以用于抵消部分所述第一测量结果和所述第二测量结果的差值,或者说,所述第一调整量可以使得所述第一传输质量比较结果的绝对值小于第一测量结果和第二测量结果的差值的绝对值,因此,本申请实施例的处理信号的方法,能够降低低功率和高功率小区的信号的传输质量的差值,从而在进行波束选择时,能够提升低功率小区的波束被选中的概率。
结合第一方面,在第一方面的某些实现方式中,所述向网络设备发送所述K个下行信号的信息,包括:
所述终端设备向所述网络设备发送所述K个下行信号对应的标识信息,和/或所述K个下行信号对应的K个测量结果;或
所述终端设备向所述网络设备发送所述K个下行信号对应的标识信息,和/或所述K个下行信号对应的K个调整后的测量结果,所述K个调整后的测量结果是根据所述K个下行信号对应的K个调整量,对所述K个测量结果进行调整得到的。
结合第一方面,在第一方面的某些实现方式中,所述下行信号为信道状态信息参考信号CSI-RS,或同步信号块SS block中的至少一个信号。
结合第一方面,在第一方面的某些实现方式中,所述测量结果是经过L1和/或L3滤波后得到的结果。
结合第一方面,在第一方面的某些实现方式中,所述测量结果是L1的参考信号接收功率RSRP,或L3的RSRP。
第二方面,提供了一种处理信号的设备,包括用于执行第一方面或第一方面的任一可选的实现方式中的方法的单元。
第三方面,提供一种处理信号的设备,包括存储器、处理器和收发器, 所述存储器用于存储程序,所述处理器用于执行程序,当所述程序被执行时,所述处理器基于所述收发器执行第一方面中的方法。
第四方面,提供一种计算机可读介质,所述计算机可读介质存储用于终端设备执行的程序代码,所述程序代码包括用于执行第一方面或其各种实现方式中的方法的指令。
第五方面,提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一可选的实现方式中的方法。
附图说明
图1是根据本申请实施例的无线通信系统的示意性图。
图2是根据本申请实施例的处理信号的方法的示意性流程图。
图3是根据本申请实施例的处理信号的设备的示意性框图。
图4是根据本申请另一实施例的处理信号的设备的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称“GSM”)系统、码分多址(Code Division Multiple Access,简称“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,简称“LTE”)系统、先进的长期演进(Advanced long term evolution,简称“LTE-A”)系统、通用移动通信系统(Universal Mobile Telecommunication System,简称“UMTS”)、5G等。
图1示出了适用于本发明实施例的无线通信系统100。该无线通信系统100可以包括至少一个网络设备,例如,图1所示的第一网络设备110和第二网络设备120。第一网络设备110和第二网络设备120均可以与终端设备130通过无线空口进行通信。第一网络设备110和第二网络设备120可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。该第一网络设备110或第二网络设备120可以是GSM系统或CDMA 系统中的基站(Base Transceiver Station,简称“BTS”),也可以是WCDMA系统中的基站(NodeB),还可以是LTE系统中的演进型基站(Evolutional Node B,简称“eNB”或“eNodeB”),或者是未来5G网络中的网络设备,如传输点(Transmission Reception Point,简称“TRP”)、基站、小基站设备等,本发明实施例对此并未特别限定。
该无线通信系统100还包括位于第一网络设备110和第二网络设备120覆盖范围内的一个或多个终端设备(User Equipment,简称“UE”)130。该终端设备130可以是移动的或固定的。终端设备130可以经无线接入网(Radio Access Network,简称“RAN”)与一个或多个核心网(Core Network)进行通信,终端设备可称为接入终端、终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称“SIP”)电话、无线本地环路(Wireless Local Loop,简称“WLL”)站、个人数字处理(Personal Digital Assistant,简称“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备等。
在该通信系统中,网络设备可以使用不同的波束传输不同的CSI-RS,或SS block,终端设备可以根据不同的SS block,或CSI-RS,或传输CSI-RS使用的资源分辨不同的波束。
在该通信系统中,终端设备可以对一些下行信号,例如,CSI-RS或SS block中的信号进行测量,根据测量结果确定哪些信号的传输质量较好,或者说,传输这些信号的beam的传输质量较好,然后将确定的beam的相关信息上报给网络设备,例如,终端设备可以对N个信号进行测量,选择最优的K个信号,然后将这K个信号的信息上报给网络设备,其中,N为整数,1<=K<N。
但是,在实际网络中,不同的小区,例如,宏站,或小基站(small cell)对应的发射功率不同,宏站的发射功率往往大于small cell对应的发射功率,因此,直接根据每个信号的测量结果确定传输质量较好的beam,往往导致small cell使用的beam被选中的概率始终低于宏站使用的beam被选中的概率。
有鉴于此,本申请实施例提供了一种处理信号的方法,能够根据多个信号的测量结果,结合调整量对多个信号进行处理,进而实现对波束的选择。
图2是本申请实施例提出的处理信号的方法200的示意性流程图,所述方法200可以由图1所示的无线通信系统中的终端设备执行,如图2所示,该方法200包括:
S210,终端设备对N个下行信号进行测量,得到N个测量结果,其中,N为大于1的整数。
在本申请实施例中,所述N个下行信号可以为CSI-RS,或SS block中的信号,例如,可以包括主同步信号(Primary Synchronization Signal,PSS),辅同步信号(Secondary Synchronization Signal,SSS),物理广播信道(Physical Broadcast Channel,PBCH)和用于解调PBCH的解调参考信号(Demodulation Reference Signal,DMRS)中的至少一个信号,本申请实施例对此不作限定。
也就是说,所述N个下行信号可以都为CSI-RS,或者也可以都为SSS,或者也可以都为PSS和SSS,或者部分信号为CSI-RS,部分信号为SSS等,本申请实施例对此不作限定。
需要说明的是,所述N个测量结果可以是经过L1滤波(filtering),和/或L3滤波后得到的测量结果,例如,所述测量结果可以是L1的参考信号接收功率(Reference Signal Received Power,RSRP),或层3的RSRP等能够用于进行传输质量对比的测量结果,本申请实施例对此不作限定。
S220,根据所述N个测量结果中的第一测量结果和所述第二测量结果,以及所述第一测量结果和所述第二测量结果对应的第一调整量,确定第一下行信号和第二下行信号的第一传输质量比较结果。
其中,所述第一下行信号为所述N个下行信号中所述第一测量结果对应的下行信号,所述第二下行信号为所述N个下行信号中所述第二测量结果对应的下行信号。
需要说明的是,在本申请实施例中,第一测量结果和第二测量结果对应的第一调整值用于对第一下行信号和第二下行信号的测量结果的比较值进行调整,即所述第一测量结果和第二测量结果对应的调整值是对两个下行信号的传输质量的比较结果进行调整的,换句话说,现有技术是把两个下行信号的测量结果直接进行比较,来确定这两个下行信号的传输质量的,而本申请实施例是在这两个下行信号的测量结果的比较结果的基础上,进一步结合 第一调整量对比较结果进行调整,从而确定这两个下行信号的传输质量的比较结果。
具体而言,所述终端设备若想从N个下行信号中选择K个下行信号,需要对所述N个下行信号的传输质量进行比较,根据两个下行信号之间的传输质量比较结果,在所述N个下行信号中确定满足条件的K个下行信号。例如,所述终端设备可以对第一下行信号和第二下行信号的传输质量进行比较,确定所述第一下行信号和所述第二下行信号的传输质量的好坏,所述终端设备可以将所述第一测量结果和所述第二测量结果的差值,结合所述第一测量结果和所述第二测量结果对应的第一调整量,确定所述第一下行信号和第二下行信号的第一传输质量比较结果,或者说,根据所述第一调整量对所述第一测量结果和所述第二测量结果的比较结果进行调整,将调整后的比较结果确定为所述第一传输质量比较结果,也就是说,所述第一调整量可以认为是所述第一测量结果和所述第二测量结果的比较结果的调整量。
因此,本申请实施例的处理信号的方法,终端设备不是直接将两个下行信号的测量结果进行比较,确定这两个下行信号的传输质量的好坏,而是在对比两个下行信号的测量结果时,结合两个下行信号的测量结果对应的调整量,确定两个下行信号的传输质量对比结果,根据传输质量对比结果实现对波束的选择,从另一方面来讲,根据调整后的传输质量对比结果进行波束选择能够调整波束被选中的概率。
应理解,从N个下行信号中选择的K个下行信号可以为传输质量最优的K个信号,或者也可以为传输质量较差的K个信号,或者也可以为满足其他条件的K个下行信号,本申请实施例并不限定所述K个下行信号的选择条件,本申请实施例仅以从N个下行信号中选择传输质量最优的K个信号为例进行介绍,不应对本申请实施例构成任何限定。
例如,若所述第一下行信号为低功率小区对应的下行信号,所述第二下行信号为高功率小区对应的下行信号,这样所述第一测量结果减去所述第二测量结果的差值为负值,且二者的悬殊往往较大,即第一下行信号的传输质量和第二下行信号的传输质量的差距较大,使用第一调整量对所述第一测量结果和第二测量结果的差值进行调整时,可以在所述第一测量结果和所述第二测量结果的差值的基础上加上一个正的调整量,从而能够减小所述第一下行信号和所述第二下行信号的测量结果之间的差值,即缩小所述第一下行信 号和所述第二下行信号的传输质量的差距,从而在进行波束选择时,有利于提高低功率小区的波束被选中的概率。
举例来说,下行信号1(Sig1),和下行信号2(Sig2),分别对应测量结果X1和X2,Sig1和Sig2的测量结果比较值为X1-X2,现有技术是直接根据X1-X2确定Sig1和Sig2的传输质量的优劣的,而在本申请实施例中,还可以进一步结合Sig1和Sig2对应的调整值Δx对Sig1和Sig2的测量结果比较值,即对X1-X2进行调整,得到Sig1和Sig2的传输质量比较结果,即X1-X2+Δx或X1-X2-Δx,这里的Δx可以为正值,也可以为负值,当然也可以为零。
然后所述终端设备可以根据所述Sig1和Sig2的传输质量比较结果,确定Sig和Sig2中哪个下行信号的传输质量较优,若X1-X2大于零,在现有技术中,可以确定Sig1的传输质量优于Sig2的传输质量,否则,确定Sig2的传输质量优于Sig1的传输质量,即在现有技术中,传输质量对比结果是X1-X2。在本申请实施例中,Sig1和Sig2的传输质量比较结果是根据Sig1和Sig2对应的调整值Δx对X1-X2进行调整后得到的结果,因此,Sig1和Sig2的传输质量比较结果相对于现有技术发生了改变,也就是说,Sig1和Sig2的对应的波束被选中的概率发生了改变。
可选地,若Δx的符号与X1-X2的符号相反,那么调整后的Sig1和Sig2的传输质量比较结果可以为X1-X2+Δx,或者若Δx的符号与X1-X2的符号相同,那么调整后的Sig1和Sig2的传输质量比较结果可以为X1-X2-Δx,也就是说,所述第一调整量能够使得Sig1和Sig2的测量结果比较值的绝对值大于Sig1和Sig2的传输质量比较结果的绝对值,即Sig1和Sig2之间的传输质量的差值减小。若Sig1为低功率小区发送的下行信号,Sig2为高功率小区发送的下行信号,在大多数情况下,X2>X1,因此,直接根据Sig1和Sig2的测量结果选择波束,Sig2对应的波束被选中的概率远大于Sig1对应的波束,若在Sig1和Sig2的测量结果比较值的基础上,根据Sig1和Sig2对应的调整值对所述测量结果比较值进行调整,得到Sig1和Sig2的传输质量比较结果,相当于减小了Sig1和Sig2之间的传输质量比较结果,也就是降低了Sig1和Sig2的传输质量的差值,因此,根据Sig1和Sig2的传输质量比较结果进行波束选择时,能够提高Sig1对应的波束被选中概率。
需要说明的是,上述两个测量结果对应的调整量可以是终端设备根据大 量的测量数据确定的,或者也可以是由网络设备配置的,本申请实施例对此不作限定,两个测量结果对应的调整量也可以根据实际情况进行调整,例如,在某个时间段内,两个测量结果对应的调整量为第一值,在另一时间段内,两个测量结果对应的调整量可以为第二值,所述第一值和所述第二值可以相同,也可以不同。
可选地,在本申请实施例中,所述方法还包括:
所述终端设备根据所述第一调整信息,确定所述第一调整量。
需要说明的是,这里的第一调整信息可以认为是网络设备配置的,所述第一调整信息可以用于确定所述第一调整量,例如,所述第一调整信息可以直接为所述第一调整量,即所述第一调整信息为针对所述第一下行信号和所述第二下行信号的测量结果的调整量。或者所述终端设备也可以对所述第一调整信息进行处理,将处理后的第一调整信息确定为所述第一调整量,例如,所述第一调整信息可以与所述第一调整量成函数关系,将所述第一调整信息记为M,将第一调整量记为m,第一调整信息和第一调整量可以具有如下关系:m=f(M),从而所述终端设备将所述第一调整信息代入函数即可确定所述第一调整量。或者所述第一调整信息和所述第一调整量可以具有对应关系,该对应关系可以是表的形式,这样,所述终端设备可以根据所述第一调整信息结合所述对应关系,即可确定所述第一调整量。
可选的,所述第一调整信息可以包括所述第一下行信号和所述第二下行信号分别对应的调整信息,每个下行信号对应的调整信息可以为所述每个下行信号的发射功率,或者也可以为每个下行信号对应的调整量,这个调整量可以用于对每个下行信号的测量结果进行调整,得到调整后的测量结果。
在本申请实施例中,所述第一调整信息为所述第一下行信号和所述第二下行信号的发射功率的信息。
即所述第一调整信息可以包括所述第一下行信号的发射功率的信息,以及所述第二下行信号的发射功率的信息,所述第一下行信号的发射功率的信息可以认为是第一下行信号对应的调整信息,所述第二信息的发射功率的信息可以认为是第二下行信号对应的调整信息。
这里,所述第一下行信号和所述第二下行信号的发射功率的信息为所述第一下行信号和所述第二下行信号的发射功率的绝对值,或相对值,或等级信息等与发射功率相对的信息,本申请实施例对此不作限定,以下主要以所 述发射功率的信息为发射功率的绝对值来说明,但本申请实施例并不限定于此。
例如,可以以第一下行信号的发射功率的绝对值为参考值,这样,其他信号的发射功率的信息可以为相对所述第一下行信号的发射功率的绝对值的一个相对值,所述第一下行信号的发射功率的信息为零;或者也可以以某个特定的发射功率值作为参考值,所述N个下行信号的发射功率的信息可以为相对于特定的发射功率值的相对值。或者可以将发射功率的绝对值分为多个等级,每个下行信号的发射功率的信息可以为每个下行信号的发射功率的绝对值对应的等级。
作为一个实施例,在所述第一调整信息为所述第一下行信号和所述第二下行信号的发射功率的信息的情况下,所述对所述第一调整信息进行处理,将处理后的所述第一调整信息确定为所述第一调整量,包括:
根据所述第一下行信号和第二下行信号的发射功率的信息,结合第一对应关系,确定所述第一调整量,所述第一对应关系为发射功率的信息和调整量的对应关系。
例如,所述终端设备可以根据所述第一下行信号和所述第二下行信号的发射功率,结合第一对应关系,确定所述第一调整量,可选的,所述终端设备可以先将所述第一下行信号和第二下行信号的发射功率做差值,根据发射功率差值,结合第一对应关系,确定发射功率差值对应的调整量为所述第一调整量。或者所述终端设备也可以先根据所述第一下行信号和所述第二下行信号的发射功率,结合第一对应关系,确定这两个下行信号的发射功率对应的调整量,然后可以确定这两个下行信号的发射功率对应的调整量的差值,将调整量的差值确定为所述第一调整量。
也就是说,第一对应关系可以是发射功率差和调整量的对应关系,或者所述第一对应关系也可以是发射功率和调整量的对应关系,这样,所述终端设备可以先对发射功率做差值,再结合第一对应关系,确定对应的调整量,或者所述终端设备也可以先结合第一对应关系确定每个发射功率对应调整量,然后将调整量做差值,将调整量的差值确定为所述第一调整量。
应理解,在本申请实施例中,所述第一对应关系可以是表,或树的形式,本申请实施例对此不作限定。
例如,所述第一对应关系可以如表1所示。
表1
调整值Δx 发射功率差值
Z1 (Y1,Y2)
Z2 (Y2,Y3)
Z3 (Y3,Y4)
... ...
ZL (YL,YL+1)
即可以将发射功率差值进行分段,每段对应相应的调整量,例如,如表1所示,当两个下行信号的发射功率差落入(Y1,Y2)时,可以确定对应的调整量为Z1,当两个下行信号的发射功率差落入(Y2,Y3)时,可以确定对应的调整量为Z2,落入其他的分段时,对应相应的调整量,这里就不一一列举了。
在表1所示的对应关系中,分段(Y1,Y2)对应的调整量Z1,分段(Y2,Y3)对应的调整量Z2,当第一下行信号和第二下行信号的发射功率的差值落入(Y1,Y2)时,将第一下行信号和第二下行信号的发射功率的差值记为第一差值,当所述第一下行信号和第二下行信号的发射功率差值落入(Y2,Y3)时,将第一下行信号和第二下行信号的发射功率的差值记为第二差值,因此,所述第一差值小于所述第二差值,发射功率大往往意味着信号对应的测量结果较大,那么两个下行信号的发射功率的差值较小也就意味着需要补偿的调整量较小,若要减小两个下行信号的测量结果的差异,可以设置分段(Y1,Y2)对应的调整量Z1小于分段(Y2,Y3)对应的调整量Z2,即在发射功率差值较小时,此情况下,测量结果的差值较小,因此可以采用较小的调整量对两个下行信号的测量结果进行调整,在发射功率差值较大时,此情况下,测量结果的差值较大,因此可以采用较大的调整量对两个下行信号的测量结果进行调整,从而能够减小两个下行信号之间传输质量的差异。
需要说明的是,表1所示的对应关系仅为示例而非限定,例如,所述第一对应关系采用的分段的数量,以及每个分段对应的调整量可以根据实际情况进行调整,本申请实施例并不限定具体的对应关系。
作为另一个实施例,所述对所述第一调整信息进行处理,将处理后的所述第一调整信息确定为所述第一调整量,包括:
根据所述第一下行信号和第二下行信号的发射功率的信息,结合第一函数,确定所述第一调整量。
需要说明的是,所述第一函数可以是线性函数,也可以是非线性函数,例如,所述第一函数可以是f(x)=kx,或是所述第一函数也可以为f(x)=kx2等,其中,k为常量,x为自变量,k可以为正数或负数,可以为整数或者也可以为分数,只要将所述第一下行信号和所述第二下行信号的发射功率的信息,代入所述第一函数得到的结果即为所述第一调整量。
可选地,所述第一函数f(x)=ax,所述第一调整量为a(P2-P1)或a(P1-P2),其中,a为常量,x为自变量,所述P1为所述第一下行信号的发射功率的信息,P2为所述第二下行信号的发射功率的信息。
若所述第一下行信号的测量结果为X1,所述第二下行信号的测量结果为X2,所述第一下行信号和所述第二下行信号的发射功率差为P1-P2,第一调整量Δx为a(P2-P1)或a(P1-P2),a可以为1,或大于1的数,也可以为小于1的数,那么所述第一下行信号和所述第二下行信号的传输质量比较结果可以为X1-X2+Δx。
具体的,若a大于零,那么所述第一调整量可以为a(P2-P1),所述终端设备可以将第一测量结果和第二测量结果的差值,加上所述第一调整量得到的结果确定为所述第一传输质量比较结果,即所述第一传输质量比较结果为X1-X2+a(P2-P1);或
若a小于零,那么所述第一调整量可以为a(P1-P2),所述终端设备可以将所述第一测量结果和所述第二测量结果的差值,加上所述第一调整量得到的结果确定为所述第一传输质量比较结果,即所述第一传输质量比较结果为X1-X2+a(P1-P2)。
由于测量结果和发射功率是对应的,发射功率大,往往对应着测量结果也大,若第一下行信号的发射功率大于第二下行信号的发射功率,那么所述第一测量结果往往也大于第二测量结果,那么所述第一调整量可以与所述第一测量结果和所述第二测量结果的差值的符号相反,从而所述第一调整量可以抵消部分测量结果的差值,达到减小所述第一下行信号和所述第二下行信号的传输质量的差值的目的,从而可以提高在进行波束选择时,第二下行信号对应的波束被选中的概率。
也就是说,所述第一调整量可以使得两个下行信号的测量结果的差值的 绝对值大于这两个下行信号的传输质量对比结果的绝对值,这样,经过上述调整后,减小了低功率小区的信号的传输质量与高功率小区的信号的传输质量的差距,因此,进行波束选择时,能够提升了低功率小区的波束被选中的概率。
可选地,在本申请实施例中,所述可以a由系统配置,或所述a是协议约定的。
在本申请实施例中,协议约定可以包括预配置在所述终端设备上,无需进行系统配置。
例如,协议可以约定用于确定调整量的所述第一函数f(x)的系数a,这样,所述终端设备可以根据系数a,确定第一函数,从而可以将两个下行信号的发射功率的差值,代入所述第一函数得到两个下行信号的测量结果对应的调整量。或者所述第一函数f(x)的系数a也可以由系统配置,或者也可以不同的发射功率差值分段对应不同的系数a,在发射功率差值落入不同的范围时,对应不同的系数a。
或者,协议可以约定用于确定调整量的所述第一函数f(x),即协议可以约定用于根据发射功率确定调整量的函数关系,即第一函数f(x),这样终端设备可以根据协议获知用于确定调整量大小的第一函数的具体形式,从而可以将两个下行信号的发射功率的差值,代入所述第一函数得到两个下行信号对应的调整量。
可选地,在一些实施例中,所述方法还包括:
所述终端设备接收所述网络设备发送的配置信息,所述配置信息包括所述第一调整信息。
所述第一调整信息对应于前文描述的第一调整信息,可选地,所述网络设备可以通过无线资源控制(Radio Resource Control,RRC)信令向所述终端设备发送所述配置信息,或者所述网络设备也可以通过下行控制信息(Downlink Control Information,DCI)向所述终端设备发送所述配置信息。
在本申请实施例中,所述配置信息包括每个下行信号对应的调整信息,或所述第一配置信息包括一组下行信号的调整信息,所述一组下行信号包括所述N个下行信号中的部分或全部下行信号,若所述配置信息不包括所述第一下行信号或第二下行信号的调整信息,所述第一下行信号或所述第二下行信号的调整信息采用默认值。
也就是说,所述网络设备可以给所述N个下行信号中的每个下行信号配置对应的调整信息,或者所述网络设备也可以给所述N个下行信号中的部分下行信号配置对应的调整信息,没有对应的调整信息的下行信号可以使用默认值,这里的默认值可以是一个零值,也可以是正值,或者也可以是负值,不同的下行信号对应的默认值可以相同,也可以不同,默认值可以是协议约定的,或系统配置的。
每个下行信号对应的调整信息可以是每个下行信号对应的发射功率的信息,或每个下行信号对应的调整量,所述每个下行信号对应的调整量可以用于对所述每个下行信号的测量结果进行调整。
或者所述网络设备也可以对一组下行信号配置对应的调整信息,即一组下行信号可以对应相同的调整信息,这里的调整信息可以为调整量,即一组下行信号可以对应一个调整量,另一组下行信号对应另一个调整量。
可选地,在本申请实施例中,所述N个下行信号对应的调整信息为所述N个下行信号对应的N个调整量,或所述N个调整量在预配置的调整量集合中的索引;
所述一组下行信号的调整信息为所述一组下行信号对应的调整量,或所述一组下行信号对应的调整量在所述调整量集合中的索引。
例如,所述网络设备可以给每个下行信号配置对应的调整量,这个调整量可以用于对每个下行信号的测量结果进行调整,得到调整后的测量结果,例如,N个下行信号分别对应的调整量为offset1,offset2,...,offsetN,所述N个下行信号对应的测量结果为X1,X2,...,XN,那么每个下行信号的调整后的测量结果可以为X1+offset1,X2+offset2,...,XN+offset1N,或每个下行信号的调整后的测量结果可以为X1-offset1,X2-offset2,...,XN-offset1N
从另一角度来讲,第一下行信号和第二下行信号的调整量可以为offset1-offset2或offset2-offset1,也就是说,两个下行信号的测量结果对应的调整量可以根据这两个下行信号分别对应的调整量确定。
进一步地,S220可以包括:
若所述第一测量结果和所述第二测量结果的差值与所述第一调整量的符号相同,将所述第一测量结果和所述第二测量结果的差值,减去所述第一调整量得到的结果确定为所述第一传输质量比较结果;或
若所述第一测量结果和所述第二测量结果的差值与所述第一调整量的 符号不同,将所述第一测量结果和所述第二测量结果的差值,加上所述第一调整量得到的结果确定为所述第一传输质量比较结果。
即所述第一调整量可以用于抵消部分所述第一测量结果和所述第二测量结果的差值,或者说,所述第一调整量可以使得所述第一传输质量比较结果的绝对值小于第一测量结果和第二测量结果的差值的绝对值,也就是说,本申请实施例能够降低低功率和高功率小区的信号的传输质量的差值,从而在进行波束选择时,能够提升低功率小区的波束被选中的概率。
S230,根据至少一个传输质量比较结果,从所述N个下行信号中确定K个下行信号,所述至少一个测量结果包括所述第一传输质量比较结果,所述至少一个传输质量比较结果中的每个传输质量比较结果为所述N个下行信号中的两个下行信号的传输质量的比较结果,1<=K<N。
因此,所述终端设备可以根据第一下行信号和第二下行信号进行传输质量对比的方法,对所述N个下行信号中的其他信号进行传输质量对比,直达从所述N个下行信号中确定出K个下行信号。
可选的,终端设备可以对所述N个下行信号中的每两个下行信号进行传输质量对比,确定任意两个下行信号的传输质量比较结果,从而根据任意两个下行信号的传输质量比较结果,从而所述N个下行信号中确定K个下行信号。即所述终端设备可以根据所述每两个下行信号的传输质量比较结果,确定所述N个下行信号中的每两个下行信号之间传输质量的优劣,从而可以对所述N个下行信号的传输质量进行排序,根据所述N个下行信号的传输质量的排序情况,从所述N个下行信号中选择K个下行信号。
或者所述终端设备也可以根据实际情况,调整对所述N个下行信号进行传输质量比较的算法,只要在对比两个下行信号的传输质量时,根据两个下行信号的测量结果,结合调整量对测量结果进行调整,从而确定传输质量比较结果,都落入本申请实施例的保护范围,本申请实施例并不特别限定从N个下行信号中选择K个下行信号的具体算法。
例如,所述N个下行信号包括下行信号1(Sig1),下行信号2(Sig2),下行信号3(Sig3),分别对应测量结果X1,X2,X3,所述X1和X2对应的调整量为Δx1,X1和X3对应的调整量为Δx2,X2和X3对应的调整量为Δx3,进行传输质量对比时,可以将X1-X2+Δx1确定为Sig1和Sig2的传输质量比较结果,若X1-X2+Δx1大于零,可以确定Sig1的传输质量优于Sig2,否则, 确定Sig2的传输质量优于Sig1。类似地,可以确定Sig1和Sig3的传输质量比较结果为X1-X3+Δx2,Sig2和Sig3的传输质量比较结果为X2-X3+Δx3,若需要从这3个信号中选择传输质量最优的1个信号,可以先对比Sig1和Sig2的传输质量,若确定Sig1的传输质量优于Sig2的传输质量,进一步可以对比Sig1和Sig3的传输质量,若确定Sig3的传输质量优于Sig1的传输质量,则可以确定被选中的一个信号为Sig3,否则确定被选中的一个信号为Sig1,因此,不必对Sig2和Sig3的传输质量进行对比即可选出满足要求的信号。
再如,若需要在4个下行信号中确定2个传输质量最优的下行信号,所述N个下行信号包括Sig1,Sig2,Sig3和Sig4,所述终端设备可以先将Sig1依次跟Sig2,Sig3和Sig4进行传输质量对比,确定出这四个信号中传输质量最优的信号,将传输质量最优的信号记为Sig1,然后所述终端设备可以将所述Sig2依次跟Sig3和Sig4进行对比,确定这三个下行信号中传输质量最优的下行信息,从而可以确定这4个下行信号中传输质量最优的两个下行信号。
应理解,S230中,从N个下行信号中确定满足一定条件的K个信号的算法可以根据实际情况进行调整,以上列举的算法仅为方便理解本申请实施例,并不限定于上面描述的具体算法,本申请实施例可以采用现有技术中的一些排序算法,对所述N个下行信号进行传输质量排序。
S240,向网络设备发送所述K个下行信号的信息。
可选地,S240可以包括:
所述终端设备向所述网络设备发送所述K个下行信号对应的标识信息,和/或所述K个下行信号对应的K个测量结果;或
所述终端设备向所述网络设备发送所述K个下行信号对应的标识信息,和/或所述K个下行信号对应的K个调整后的测量结果,所述K个调整后的测量结果是根据所述K个下行信号对应的K个调整量,对所述K个测量结果进行调整得到的。
这里,K个下行信号的标识信息可以是所述K个下行信号对应的波束的信息,例如,波束标识(Identify,ID),或者所述终端设备可以将所述N个下行信号进行编号,所述K个下行信号对应的标识信息可以是这K个下行信号的编号,或者所述K个下行信号的标识信息也可以是用于标识所述K 个下行信号中的每个信号的其他标识信息,本申请实施例对此不作限定。
所述终端设备还可以向网络设备发送所述K个下行信号对应的K个测量结果,所述K个测量结果还可以用于网络设备对所述K个下行信号进一步选择,确定用于下行传输的波束。
由于网络设备可以对每个下行信号配置对应的调整量,该调整量可以用于每个下行信号的测量结果进行调整,从而确定每个下行信号的调整后的测量结果,因此,所述终端设备可以计算每个下行信号的调整后的测量结果,所以所述终端设备上报给网络设备的测量结果也可以是所述K个下行信号对应的调整后的测量结果。
因此,本申请实施例的处理信号的方法,终端设备不是直接将两个下行信号的测量结果进行比较,确定这两个下行信号的传输质量的好坏,而是在对比两个下行信号的测量结果时,结合两个下行信号的测量结果对应的调整量,确定两个下行信号的传输质量对比结果,因此,能够实现根据调整后的传输质量对比结果进行波束的选择,进一步来讲,在进行波束选择时,根据调整后的传输质量对比结果进行波束选择,能够调整波束被选中的概率
上文结合图2,详细描述了本申请的方法实施例,下文结合图3和图4,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图3是根据本申请实施例的处理信号的设备的示意性框图。图3的设备300包括:
测量模块310,用于对N个下行信号进行测量,得到N个测量结果,其中,N为大于1的整数;
确定模块320,用于根据所述N个测量结果中的第一测量结果和所述第二测量结果,以及所述第一测量结果和所述第二测量结果对应的第一调整量,确定第一下行信号和第二下行信号的第一传输质量比较结果,根据至少一个传输质量比较结果,从所述N个下行信号中确定K个下行信号,所述至少一个测量结果包括所述第一传输质量比较结果,所述至少一个传输质量比较结果中的每个传输质量比较结果为所述N个下行信号中的两个下行信号的传输质量的比较结果,其中,1<=K<N,所述第一下行信号为所述N个下行信号中所述第一测量结果对应的下行信号,所述第二下行信号为所述N个下行信号中所述第二测量结果对应的下行信号;
通信模块330,用于向网络设备发送所述K个下行信号的信息。
可选地,在一些实施例中,所述确定模块320还用于:
根据第一调整信息,确定所述第一调整量。
可选地,在一些实施例中,所述确定模块320具体用于:
将所述第一调整信息确定为所述第一调整量。
可选地,在一些实施例中,所述确定模块320具体用于:
对所述第一调整信息进行处理,将处理后的所述第一调整信息确定为所述第一调整量。
可选地,在一些实施例中,所述第一调整信息为所述第一下行信号和所述第二下行信号的发射功率的信息。
可选地,在一些实施例中,所述第一下行信号和所述第二下行信号的发射功率的信息为所述第一下行信号和所述第二下行信号的发射功率的绝对值,或相对值,或等级信息。
可选地,在一些实施例中,所述确定模块320还用于
根据所述第一下行信号和第二下行信号的发射功率的信息,结合第一对应关系,确定所述第一调整量,所述第一对应关系为发射功率的信息和调整量的对应关系。
可选地,在一些实施例中,所述确定模块320还用于:
根据所述第一下行信号和第二下行信号的发射功率的信息,结合第一函数,确定所述第一调整量。
可选地,在一些实施例中,所述第一函数f(x)=ax,所述第一调整量为a(P2-P1)或a(P1-P2),其中,a为常量,x为自变量,所述P1为所述第一下行信号的发射功率的信息,P2为所述第二下行信号的发射功率的信息。
可选地,在一些实施例中,所述确定模块320还用于:
若a大于零,将第一测量结果和第二测量结果的差值,加上所述第一调整量得到的结果确定为所述第一传输质量比较结果,其中,所述第一调整量为a(P2-P1);或
若a小于零,将所述第一测量结果和所述第二测量结果的差值,加上所述第一调整量得到的结果确定为所述第一传输质量比较结果,其中,所述第一调整量为a(P1-P2)。
可选地,在一些实施例中,所述a由系统配置,或所述a是协议约定的。
可选地,在一些实施例中,所述通信模块330还用于:
接收所述网络设备发送的配置信息,所述配置信息包括所述第一调整信息。
可选地,在一些实施例中,所述配置信息包括每个下行信号对应的调整信息,或所述第一配置信息包括一组下行信号的调整信息,所述一组下行信号包括所述N个下行信号中的部分或全部下行信号,若所述配置信息不包括第一下行信号或第二下行信号的调整信息,所述第一下行信号或第二下行信号的调整信息采用默认值。
可选地,在一些实施例中,所述N个下行信号对应的调整信息为所述N个下行信号对应的N个调整量,或所述N个调整量在预配置的调整量集合中的索引;
所述一组下行信号的调整信息为所述一组下行信号对应的调整量,或所述一组下行信号对应的调整量在所述调整量集合中的索引。
可选地,在一些实施例中,所述确定模块320还用于:
将所述第一下行信号对应的调整量和所述第二下行信号对应的调整量的差值,确定为所述第一调整量。
可选地,在一些实施例中,所述确定模块320还用于:
若所述第一测量结果和所述第二测量结果的差值与所述第一调整量的符号相同,将所述第一测量结果和所述第二测量结果的差值,减去所述第一调整量得到的结果确定为所述第一传输质量比较结果;或
若所述第一测量结果和所述第二测量结果的差值与所述第一调整量的符号不同,将所述第一测量结果和所述第二测量结果的差值,加上所述第一调整量得到的结果确定为所述第一传输质量比较结果。
可选地,在一些实施例中,所述通信模块330具体用于:
向所述网络设备发送所述K个下行信号对应的标识信息,和/或所述K个下行信号对应的K个测量结果;或
向所述网络设备发送所述K个下行信号对应的标识信息,和/或所述K个下行信号对应的K个调整后的测量结果,所述K个调整后的测量结果是根据所述K个下行信号对应的K个调整量,对所述K个测量结果进行调整得到的。
可选地,在一些实施例中,所述下行信号为信道状态信息参考信号 CSI-RS,或同步信号块SS block中的至少一个信号。
可选地,在一些实施例中,所述测量结果是经过L1和/或L3滤波后得到的结果。
可选地,在一些实施例中,所述测量结果是L1的参考信号接收功率RSRP,或L3的RSRP。
具体地,该设备300可以对应(例如,可以配置于或本身即为)上述方法200中描述的终端设备,并且,该设备300中的各模块或单元分别用于执行上述方法200中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
如图4所示,本申请实施例还提供了一种处理信号的设备400,所述设备400可以为图3中的设备300,其能够用于执行与图2中方法200对应的终端设备的内容。所述设备400包括:输入接口410、输出接口420、处理器430以及存储器440,所述输入接口410、输出接口420、处理器430和存储器440可以通过总线系统相连。所述存储器440用于存储包括程序、指令或代码。所述处理器430,用于执行所述存储器440中的程序、指令或代码,以控制输入接口410接收信号、控制输出接口420发送信号以及完成前述方法实施例中的操作。
应理解,在本申请实施例中,所述处理器430可以是中央处理单元(Central Processing Unit,简称为“CPU”),所述处理器430还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器也可以是任何常规的处理器等。
所述存储器440可以包括只读存储器和随机存取存储器,并向处理器430提供指令和数据。存储器440的一部分还可以包括非易失性随机存取存储器。例如,存储器440还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器430中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。 所述存储介质位于存储器440,处理器430读取存储器440中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,图3中设备300包括的测量模块310,确定模块320可以用图4的处理器430实现,图3中设备300包括的通信模块330,可以用图4的所述输入接口410和所述输出接口420实现。
本申请实施例还提出了一种计算机可读存储介质,该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行图2所示实施例的方法。
本申请实施例还提出了一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行图2所示实施例的方法的相应流程。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应所述理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (40)

  1. 一种处理信号的方法,其特征在于,包括:
    终端设备对N个下行信号进行测量,得到N个测量结果,其中,N为大于1的整数;
    根据所述N个测量结果中的第一测量结果和所述第二测量结果,以及所述第一测量结果和所述第二测量结果对应的第一调整量,确定第一下行信号和第二下行信号的第一传输质量比较结果,其中,所述第一下行信号为所述N个下行信号中所述第一测量结果对应的下行信号,所述第二下行信号为所述N个下行信号中所述第二测量结果对应的下行信号;
    根据至少一个传输质量比较结果,从所述N个下行信号中确定K个下行信号,所述至少一个测量结果包括所述第一传输质量比较结果,所述至少一个传输质量比较结果中的每个传输质量比较结果为所述N个下行信号中的两个下行信号的传输质量的比较结果,1<=K<N;
    向网络设备发送所述K个下行信号的信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据第一调整信息,确定所述第一调整量。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备根据第一调整信息,确定所述第一调整量,包括:
    将所述第一调整信息确定为所述第一调整量。
  4. 根据权利要求2所述的方法,其特征在于,所述终端设备根据第一调整信息,确定所述第一调整量,包括:
    对所述第一调整信息进行处理,将处理后的所述第一调整信息确定为所述第一调整量。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述第一调整信息为所述第一下行信号和所述第二下行信号的发射功率的信息。
  6. 根据权利要求5所述的方法,其特征在于,所述第一下行信号和所述第二下行信号的发射功率的信息为所述第一下行信号和所述第二下行信号的发射功率的绝对值,或相对值,或等级信息。
  7. 根据权利要求5或6所述的方法,其特征在于,所述对所述第一调整信息进行处理,将处理后的所述第一调整信息确定为所述第一调整量,包括:
    根据所述第一下行信号和第二下行信号的发射功率的信息,结合第一对应关系,确定所述第一调整量,所述第一对应关系为发射功率的信息和调整量的对应关系。
  8. 根据权利要求5或6所述的方法,其特征在于,所述对所述第一调整信息进行处理,将处理后的所述第一调整信息确定为所述第一调整量,包括:
    根据所述第一下行信号和第二下行信号的发射功率的信息,结合第一函数,确定所述第一调整量。
  9. 根据权利要求8所述的方法,其特征在于,所述第一函数f(x)=ax,所述第一调整量为a(P2-P1)或a(P1-P2),其中,a为常量,x为自变量,所述P1为所述第一下行信号的发射功率的信息,P2为所述第二下行信号的发射功率的信息。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述第一测量结果和所述第二测量结果,以及所述第一测量结果和所述第二测量结果对应的第一调整量,确定所述第一下行信号和所述第二下行信号的第一传输质量比较结果,包括:
    若a大于零,将第一测量结果和第二测量结果的差值,加上所述第一调整量得到的结果确定为所述第一传输质量比较结果,其中,所述第一调整量为a(P2-P1);或
    若a小于零,将所述第一测量结果和所述第二测量结果的差值,加上所述第一调整量得到的结果确定为所述第一传输质量比较结果,其中,所述第一调整量为a(P1-P2)。
  11. 根据权利要求9或10所述的方法,其特征在于,所述a由系统配置,或所述a是协议约定的。
  12. 根据权利要求2至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的配置信息,所述配置信息包括所述第一调整信息。
  13. 根据权利要求12所述的方法,其特征在于,所述配置信息包括每个下行信号对应的调整信息,或所述第一配置信息包括一组下行信号的调整信息,所述一组下行信号包括所述N个下行信号中的部分或全部下行信号, 若所述配置信息不包括第一下行信号或第二下行信号的调整信息,所述第一下行信号或第二下行信号的调整信息采用默认值。
  14. 根据权利要求13所述的方法,其特征在于,所述N个下行信号对应的调整信息为所述N个下行信号对应的N个调整量,或所述N个调整量在预配置的调整量集合中的索引;
    所述一组下行信号的调整信息为所述一组下行信号对应的调整量,或所述一组下行信号对应的调整量在所述调整量集合中的索引。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述N个测量结果中的第一测量结果和所述第二测量结果,以及所述第一测量结果和所述第二测量结果对应的第一调整量,确定第一下行信号和第二下行信号的第一传输质量比较结果,包括:
    将所述第一下行信号对应的调整量和所述第二下行信号对应的调整量的差值,确定为所述第一调整量。
  16. 根据权利要求15所述的方法,其特征在于,所述根据所述N个测量结果中的第一测量结果和所述第二测量结果,以及所述第一测量结果和所述第二测量结果对应的第一调整量,确定第一下行信号和第二下行信号的第一传输质量比较结果,包括:
    若所述第一测量结果和所述第二测量结果的差值与所述第一调整量的符号相同,将所述第一测量结果和所述第二测量结果的差值,减去所述第一调整量得到的结果确定为所述第一传输质量比较结果;或
    若所述第一测量结果和所述第二测量结果的差值与所述第一调整量的符号不同,将所述第一测量结果和所述第二测量结果的差值,加上所述第一调整量得到的结果确定为所述第一传输质量比较结果。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述向网络设备发送所述K个下行信号的信息,包括:
    所述终端设备向所述网络设备发送所述K个下行信号对应的标识信息,和/或所述K个下行信号对应的K个测量结果;或
    所述终端设备向所述网络设备发送所述K个下行信号对应的标识信息,和/或所述K个下行信号对应的K个调整后的测量结果,所述K个调整后的测量结果是根据所述K个下行信号对应的K个调整量,对所述K个测量结果进行调整得到的。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述下行信号为信道状态信息参考信号CSI-RS,或同步信号块SS block中的至少一个信号。
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,所述测量结果是经过L1和/或L3滤波后得到的结果。
  20. 根据权利要求19所述的方法,其特征在于,所述测量结果是L1的参考信号接收功率RSRP,或L3的RSRP。
  21. 一种处理信号的设备,其特征在于,包括:
    测量模块,用于对N个下行信号进行测量,得到N个测量结果,其中,N为大于1的整数;
    确定模块,用于根据所述N个测量结果中的第一测量结果和所述第二测量结果,以及所述第一测量结果和所述第二测量结果对应的第一调整量,确定第一下行信号和第二下行信号的第一传输质量比较结果,根据至少一个传输质量比较结果,从所述N个下行信号中确定K个下行信号,所述至少一个测量结果包括所述第一传输质量比较结果,所述至少一个传输质量比较结果中的每个传输质量比较结果为所述N个下行信号中的两个下行信号的传输质量的比较结果,
    其中,1<=K<N,所述第一下行信号为所述N个下行信号中所述第一测量结果对应的下行信号,所述第二下行信号为所述N个下行信号中所述第二测量结果对应的下行信号;
    通信模块,用于向网络设备发送所述K个下行信号的信息。
  22. 根据权利要求21所述的设备,其特征在于,所述确定模块还用于:
    根据第一调整信息,确定所述第一调整量。
  23. 根据权利要求22所述的设备,其特征在于,所述确定模块具体用于:
    将所述第一调整信息确定为所述第一调整量。
  24. 根据权利要求22所述的设备,其特征在于,所述确定模块具体用于:
    对所述第一调整信息进行处理,将处理后的所述第一调整信息确定为所述第一调整量。
  25. 根据权利要求22至24中任一项所述的设备,其特征在于,所述第 一调整信息为所述第一下行信号和所述第二下行信号的发射功率的信息。
  26. 根据权利要求25所述的设备,其特征在于,所述第一下行信号和所述第二下行信号的发射功率的信息为所述第一下行信号和所述第二下行信号的发射功率的绝对值,或相对值,或等级信息。
  27. 根据权利要求25或26所述的设备,其特征在于,所述确定模块还用于:
    根据所述第一下行信号和第二下行信号的发射功率的信息,结合第一对应关系,确定所述第一调整量,所述第一对应关系为发射功率的信息和调整量的对应关系。
  28. 根据权利要求25或26所述的设备,其特征在于,所述确定模块还用于:
    根据所述第一下行信号和第二下行信号的发射功率的信息,结合第一函数,确定所述第一调整量。
  29. 根据权利要求28所述的设备,其特征在于,所述第一函数f(x)=ax,所述第一调整量为a(P2-P1)或a(P1-P2),其中,a为常量,x为自变量,所述P1为所述第一下行信号的发射功率的信息,P2为所述第二下行信号的发射功率的信息。
  30. 根据权利要求29所述的设备,其特征在于,所述确定模块还用于:
    若a大于零,将第一测量结果和第二测量结果的差值,加上所述第一调整量得到的结果确定为所述第一传输质量比较结果,其中,所述第一调整量为a(P2-P1);或
    若a小于零,将所述第一测量结果和所述第二测量结果的差值,加上所述第一调整量得到的结果确定为所述第一传输质量比较结果,其中,所述第一调整量为a(P1-P2)。
  31. 根据权利要求29或30所述的设备,其特征在于,所述a由系统配置,或所述a是协议约定的。
  32. 根据权利要求22至31中任一项所述的设备,其特征在于,所述通信模块还用于:
    接收所述网络设备发送的配置信息,所述配置信息包括所述第一调整信息。
  33. 根据权利要求32所述的设备,其特征在于,所述配置信息包括每 个下行信号对应的调整信息,或所述第一配置信息包括一组下行信号的调整信息,所述一组下行信号包括所述N个下行信号中的部分或全部下行信号,若所述配置信息不包括第一下行信号或第二下行信号的调整信息,所述第一下行信号或第二下行信号的调整信息采用默认值。
  34. 根据权利要求33所述的设备,其特征在于,所述N个下行信号对应的调整信息为所述N个下行信号对应的N个调整量,或所述N个调整量在预配置的调整量集合中的索引;
    所述一组下行信号的调整信息为所述一组下行信号对应的调整量,或所述一组下行信号对应的调整量在所述调整量集合中的索引。
  35. 根据权利要求34所述的设备,其特征在于,所述确定模块还用于:
    将所述第一下行信号对应的调整量和所述第二下行信号对应的调整量的差值,确定为所述第一调整量。
  36. 根据权利要求35所述的设备,其特征在于,所述确定模块还用于:
    若所述第一测量结果和所述第二测量结果的差值与所述第一调整量的符号相同,将所述第一测量结果和所述第二测量结果的差值,减去所述第一调整量得到的结果确定为所述第一传输质量比较结果;或
    若所述第一测量结果和所述第二测量结果的差值与所述第一调整量的符号不同,将所述第一测量结果和所述第二测量结果的差值,加上所述第一调整量得到的结果确定为所述第一传输质量比较结果。
  37. 根据权利要求21至36中任一项所述的设备,其特征在于,所述通信模块具体用于:
    向所述网络设备发送所述K个下行信号对应的标识信息,和/或所述K个下行信号对应的K个测量结果;或
    向所述网络设备发送所述K个下行信号对应的标识信息,和/或所述K个下行信号对应的K个调整后的测量结果,所述K个调整后的测量结果是根据所述K个下行信号对应的K个调整量,对所述K个测量结果进行调整得到的。
  38. 根据权利要求21至37中任一项所述的设备,其特征在于,所述下行信号为信道状态信息参考信号CSI-RS,或同步信号块SS block中的至少一个信号。
  39. 根据权利要求21至38中任一项所述的设备,其特征在于,所述测 量结果是经过L1和/或L3滤波后得到的结果。
  40. 根据权利要求39所述的设备,其特征在于,所述测量结果是L1的参考信号接收功率RSRP,或L3的RSRP。
PCT/CN2017/087742 2017-06-09 2017-06-09 处理信号的方法和设备 WO2018223379A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/087742 WO2018223379A1 (zh) 2017-06-09 2017-06-09 处理信号的方法和设备
CN201780050358.7A CN109644376B (zh) 2017-06-09 2017-06-09 处理信号的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/087742 WO2018223379A1 (zh) 2017-06-09 2017-06-09 处理信号的方法和设备

Publications (1)

Publication Number Publication Date
WO2018223379A1 true WO2018223379A1 (zh) 2018-12-13

Family

ID=64565597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087742 WO2018223379A1 (zh) 2017-06-09 2017-06-09 处理信号的方法和设备

Country Status (2)

Country Link
CN (1) CN109644376B (zh)
WO (1) WO2018223379A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577610A (zh) * 2008-05-09 2009-11-11 上海贝尔阿尔卡特股份有限公司 无线通信系统中选择天线极化和编码方式的方法和装置
CN101796863A (zh) * 2007-07-06 2010-08-04 株式会社Ntt都科摩 移动通信系统中的基站装置和定向性控制方法
CN101959261A (zh) * 2009-07-20 2011-01-26 中国移动通信集团公司 高速移动场景下的信号选择方法和设备
CN102859898A (zh) * 2010-01-07 2013-01-02 交互数字专利控股公司 用于执行上行链路天线发射分集的方法和设备
CN105940617A (zh) * 2014-01-30 2016-09-14 索尼公司 用于在无线网络中的用户设备与基站之间传输数据的方法
WO2017088661A1 (zh) * 2015-11-27 2017-06-01 上海朗帛通信技术有限公司 一种大尺度mimo中的通信方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105743606A (zh) * 2014-12-09 2016-07-06 深圳市中兴微电子技术有限公司 下行参考信号的调整方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101796863A (zh) * 2007-07-06 2010-08-04 株式会社Ntt都科摩 移动通信系统中的基站装置和定向性控制方法
CN101577610A (zh) * 2008-05-09 2009-11-11 上海贝尔阿尔卡特股份有限公司 无线通信系统中选择天线极化和编码方式的方法和装置
CN101959261A (zh) * 2009-07-20 2011-01-26 中国移动通信集团公司 高速移动场景下的信号选择方法和设备
CN102859898A (zh) * 2010-01-07 2013-01-02 交互数字专利控股公司 用于执行上行链路天线发射分集的方法和设备
CN105940617A (zh) * 2014-01-30 2016-09-14 索尼公司 用于在无线网络中的用户设备与基站之间传输数据的方法
WO2017088661A1 (zh) * 2015-11-27 2017-06-01 上海朗帛通信技术有限公司 一种大尺度mimo中的通信方法和装置

Also Published As

Publication number Publication date
CN109644376A (zh) 2019-04-16
CN109644376B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
EP3567900B1 (en) Method and indication method for measuring csi-rs, network device and terminal
WO2019134100A1 (zh) 功率控制的方法、终端设备和网络设备
WO2019140665A1 (zh) 功率控制的方法、终端设备和网络设备
CN110999376A (zh) 一种测量方法和测量装置
CN112703779B (zh) 一种上行传输的功率控制方法及终端设备
TWI687126B (zh) 無線資源管理測量的方法、終端設備和網路設備
US11089498B2 (en) Measurement parameter sending method and apparatus
WO2018126414A1 (zh) 传输数据的方法和通信设备
WO2019062564A1 (zh) 信道质量信息的上报方法、终端设备和网络设备
US10827374B2 (en) Resource management indication method and apparatus with flexible manner of measurement
WO2020164151A1 (zh) 无线通信方法、终端设备和网络设备
WO2020155184A1 (zh) 干扰或信号接收功率测量的方法和设备
WO2019047156A1 (zh) 资源配置方法、确定方法及其装置、通信系统
AU2017437155A1 (en) Data transmission method, terminal device and network device
TW202014030A (zh) 信號回報的方法、終端設備和網路設備
WO2020164150A1 (zh) 无线通信方法、终端设备和网络设备
WO2019241969A1 (zh) 配置测量信息的方法、终端设备和网络设备
WO2020014846A1 (zh) 一种同步源优先级确定方法、设备和计算机存储介质
TW201840225A (zh) 處理信號的方法和設備
US10841883B2 (en) Network node and method for UE specific power handling
US11778500B2 (en) Signal reporting method, terminal device, and network device
WO2020029201A1 (zh) 信号上报的方法、终端设备和网络设备
WO2018223379A1 (zh) 处理信号的方法和设备
WO2017088147A1 (zh) 实现自适应调制编码的方法和基站
WO2021012227A1 (zh) 一种无线信号的定时调整方法、用户设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912930

Country of ref document: EP

Kind code of ref document: A1