WO2018221868A1 - Method for manufacturing ceramic heater - Google Patents

Method for manufacturing ceramic heater Download PDF

Info

Publication number
WO2018221868A1
WO2018221868A1 PCT/KR2018/005250 KR2018005250W WO2018221868A1 WO 2018221868 A1 WO2018221868 A1 WO 2018221868A1 KR 2018005250 W KR2018005250 W KR 2018005250W WO 2018221868 A1 WO2018221868 A1 WO 2018221868A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
layer
powder layer
heating element
ceramic powder
Prior art date
Application number
PCT/KR2018/005250
Other languages
French (fr)
Korean (ko)
Inventor
채제호
박명하
Original Assignee
주식회사 미코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 미코 filed Critical 주식회사 미코
Publication of WO2018221868A1 publication Critical patent/WO2018221868A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/18Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being embedded in an insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/34Inserts
    • B32B2305/345Heating elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Definitions

  • the present invention relates to a method of manufacturing a ceramic heater, and more particularly, to a method of manufacturing a ceramic heater having improved local resistance change rate of a heating element.
  • Ceramic heaters are used to heat-treat heat-treatment objects for various purposes such as semiconductor wafers, glass substrates, and flexible substrates at predetermined heating temperatures. Ceramic heaters are also used in combination with the functions of electrostatic chucks for semiconductor wafer processing.
  • the ceramic heater includes a ceramic plate that generates heat by receiving power from an external electrode.
  • the ceramic plate includes a heating element having a predetermined resistance embedded in the ceramic sintered body.
  • Korean Patent No. 10-0533471 discloses the manufacture of a ceramic heater that suppresses carbonization of a heat generating element by sintering a molded body in contact with one or more metal dummy members selected from periodic table 4a, 5a, and 6a elements in upper and lower portions of a ceramic plate. The method is disclosed. However, such a conventional method of manufacturing a ceramic heater of a metal dummy system causes various problems.
  • the ceramic heater manufactured by the metal dummy method has a local resistance non-uniformity according to the heating element part.
  • the metal dummy member is a one-time consumable part that must be removed after manufacture and difficult to reuse.
  • the carbide formed by carbonization of the metal dummy member causes damage to the surface of the ceramic heater sintered body which is in contact with it, and the thickness of the ceramic heater becomes thicker than necessary according to the removal of the damaged part. There is this.
  • the inventors of the present invention have found that in the manner of using a conventional metal dummy member, the metal dummy member reacts with carbides during sintering, causing brittleness and thereby causing cracks.
  • the carbon source acting as a factor of the resistance change of the heating element is due to the carbon source in the carbon mold or furnace rather than the carbon content in the powder. Therefore, cracks formed in the introduced metal dummy member act as inflow passages of carbon generated from other carbon sources in the furnace, such as carbon mold or carbon members, and are thus not suitable for suppressing the inflow of carbon derived from the outside of the molded body. It does not sufficiently suppress the carbonization of the heating element.
  • the present invention has been made to solve the above problems, and an object of the present invention is to manufacture a ceramic heater which is sintered using a ceramic blocking layer which improves the local resistance change rate of a heating element, and the method To provide a ceramic heater.
  • an object of the present invention is to provide a method for producing a ceramic heater using a reusable ceramic blocking layer for inhibiting carbonization and a ceramic heater manufactured by the method.
  • an object of this invention is to provide the manufacturing method of the ceramic heater which can maintain the thickness of a sintered compact suitably, and the ceramic heater manufactured by the method.
  • the method of manufacturing a ceramic heater according to an aspect of the present invention for achieving the above object the ceramic powder, the heating element is embedded between the first ceramic blocking layer and the second ceramic blocking layer. Forming a laminated structure of the sandwich structure having the layer interposed therebetween; And sintering the molded body of the laminated structure.
  • the forming of the laminated structure may include providing the first ceramic blocking layer; Providing the ceramic powder layer in which the heating element is embedded on the first ceramic blocking layer; And providing the second ceramic blocking layer on the ceramic powder layer.
  • the providing of the ceramic powder layer may include providing a first ceramic powder layer; Disposing the heating element on the first ceramic powder layer; And providing a second ceramic powder layer on the first ceramic powder layer on which the heating element is disposed.
  • the first ceramic powder layer may be a molded body.
  • the method may further include pressure forming the first ceramic powder layer, the heating element, and the second ceramic powder layer.
  • An inert layer including BN (Boron Nitride) is interposed between each of the first and second ceramic blocking layers and the ceramic powder layer.
  • the first and second ceramic blocking layers include rare earth oxides.
  • the first and second ceramic blocking layers include nitride and rare earth oxides, and the rare earth oxides are 10 wt% or less of the ceramic blocking layer.
  • the first and second ceramic barrier layers are sintered bodies.
  • the first and second ceramic barrier layers reduce local generation of carbides by reaction with carbon introduced from the outside in the heating element during the sintering process.
  • the ceramic heater according to another aspect of the present invention includes a ceramic sintered body and a heating element embedded in the ceramic sintered body, wherein the ceramic sintered body includes a heating element embedded between the first ceramic blocking layer and the second ceramic blocking layer.
  • the manufacturing method of the ceramic heater according to the present invention by forming a ceramic blocking layer above and below the ceramic powder molded body embedding the heating element, it is possible to improve the local resistance change rate of the heating element during the sintering process. That is, since the increase in resistance of the local heating element is blocked by the use of the ceramic blocking layer, the temperature variation of each heating surface of the object such as a wafer is significantly reduced, thereby increasing the temperature uniformity of the heating surface.
  • the prior art had a problem that the ceramic powder sintered body to be made thicker than necessary in order to suppress the occurrence of scratches on the surface of the product, in the present invention, the cracks do not occur due to the use of a ceramic barrier layer, the processing margin of the sintered body thickness It can be reduced and the amount of ceramic used can be lowered.
  • FIG. 1 is a view for explaining a ceramic heater according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a manufacturing process of a ceramic heater according to an embodiment of the present invention.
  • FIG 3 is a view for comparing the resistance change rate of each condition in the heating element of the conventional ceramic heater and the ceramic heater according to an embodiment of the present invention.
  • 'stacking' is used to define the relative positional relationship of each layer.
  • the expression 'layer B on layer A' expresses a relative positional relationship between layer A and layer B, and does not require that layer A and layer B contact each other, and a third layer may be interposed therebetween.
  • the expression 'the C layer is interposed between the A and B layers' does not exclude that a third layer is interposed between the A and C layers or between the B and C layers.
  • FIG. 1 is a view for explaining a ceramic heater 100 according to an embodiment of the present invention.
  • the ceramic heater 100 may include a ceramic sintered body (hereinafter referred to as 130 ′) and a ceramic sintered body 130 ′ formed by sintering the ceramic powder layer 130. It includes a heating element 140 embedded in.
  • the ceramic sintered body 130 ′ and the heating element 140 embedded in the ceramic sintered body 130 ′ correspond to ceramic plates.
  • the ceramic sintered body 130 ′ after forming the ceramic blocking layers 110 and 150 on the upper and lower surfaces of the ceramic powder layer 130 into which the heating element 140 is inserted, the ceramic powder layer is shown in FIG. 1.
  • the 130 is formed by treating the carbon furnace or the carbon mold 200 by a sintering process.
  • each of the ceramic blocking layers formed on the upper and lower surfaces of the ceramic powder layer 130 that is, BN (Boron Nitride) into at least one of the first ceramic blocking layer 110 and the second ceramic blocking layer 150.
  • the BN layer 115/155 may be interposed as an inactive layer including the ().
  • the BN layer 115/155 is used as a release agent for suppressing the reaction between the ceramic blocking layers 110 and 150 and the ceramic sintered body 130 ′.
  • the BN layer 115/155 may be formed in a coating or spray form using a material containing BN, or may be used in the form of a sintered body by performing a sintering process.
  • FIG. 2 is a flowchart illustrating a manufacturing process of the ceramic heater 100 according to an embodiment of the present invention.
  • a stacked structure of the first and second ceramic blocking layers 110 and 150 is formed on upper and lower surfaces of the ceramic powder layer 130 into which the heating element 140 is inserted (S110).
  • the laminated structure and the components constituting the laminated structure may be manufactured by various methods.
  • the first and / or second ceramic blocking layers 110 and 150 may be applied in a mold or sprayed by a spray method, and may also be provided in the form of a molded or sintered body.
  • the first and / or second ceramic blocking layers 110 and 150 may be provided in the form of a dense sintered body.
  • the first and / or second ceramic blocking layers 110 and 150 of the dense sintered compact having no brittleness and no plastic deformation may effectively block the inflow of the carbon source from the outside.
  • the first ceramic blocking layer 110 is provided, and then a ceramic powder layer 130 in which the heating element 140 is embedded is formed on the first ceramic blocking layer 110.
  • the ceramic powder layer 130 may be laminated in various ways.
  • a first ceramic powder layer is formed as part of the ceramic powder layer 130, the heating element 140 is disposed on the first ceramic powder layer, and then on the first ceramic powder layer on which the heating element 140 is disposed.
  • the ceramic powder layer 130 may be formed by covering the second ceramic powder layer.
  • the first ceramic powder layer may be provided in the form of a molded body that can be pressed to a predetermined pressure to maintain the shape.
  • the entire ceramic powder layer 130 may be provided in the form of a press-molded body.
  • the second ceramic blocking layer 150 is stacked on the ceramic powder layer 130.
  • a release agent is formed between each ceramic blocking layer formed on the upper and lower surfaces of the ceramic powder layer 130, that is, between any one of the first ceramic blocking layer 110 and the second ceramic blocking layer 150 and the ceramic powder layer 130.
  • a material including BN may be formed in a coating or spray form, or the BN layer 115/155 in the form of a sintered body may be formed.
  • the heating element 140 Since heat is generated in the heating element 140 while being used as a heater, the heating element 140 is embedded in the ceramic powder layer 130 having excellent heat resistance and excellent heat transfer characteristics.
  • the heating element 140 may be made of a conductive material. For example, tungsten (W), molybdenum (Mo), silver (Ag), nickel (Ni), gold (Au), niobium (Nb), and titanium (Ti) It can be formed as a combination of various conductive materials such as the resistance heating element having an appropriate resistance value.
  • the ceramic powder layer 130 is, for example, Al 2 O 3 , Y 2 O 3 , Al 2 O 3 / Y 2 O 3 , ZrO 2 , Autoclaved lightweight concrete (AlC), TiN, AlN, TiC, MgO, CaO , CeO 2 , TiO 2 , BxCy, BN, SiO 2, SiC, YAG, Mullite, AlF 3 and the like, or a combination of various ceramic material powders.
  • AlC Autoclaved lightweight concrete
  • the heating element 140 inserted into the ceramic powder layer 130 reacts with the surrounding carbon during the sintering process to form carbides in the heating element 140 to increase resistance and cause temperature nonuniformity of the heating surface. Can be.
  • the ceramic blocking layers 110 and 150 are formed above and below the ceramic powder layer 130 before sintering. Carbon present in the ceramic powder layer 130 is insignificant, and the main cause of carbide generation in the heating element 140 is mostly due to carbon introduced from the outside.
  • the first ceramic blocking layer 110 covering the lower surface of the ceramic powder layer 130 and the second ceramic blocking layer 150 covering the upper surface of the ceramic powder layer 130 are the heating elements 140 during the sintering process. It is possible to suppress the formation of carbides by reaction with carbon introduced from the outside.
  • the first ceramic blocking layer 110 and the second ceramic blocking layer 150 may include the same material as the ceramic powder layer 130. However, since the above-described ceramic material has low reactivity with carbon, it is preferable to add a rare earth oxide having a predetermined amount so that the ceramic material can react with carbon.
  • the first ceramic blocking layer 110 and the second ceramic blocking layer 150 include nitrides such as the ceramic powder layer 130 and include rare earth oxides in an amount of 1 to 10 wt% (wt%). desirable.
  • the rare earth oxide is for example a variety of rare earth oxide such as LaAlO 3, La 2 O 3, Y 2 O 3, LaAl 3 O 6 it can be used.
  • the sintering process is performed in the carbon furnace or the carbon mold 200 so that the ceramic powder layer 130 becomes a ceramic sintered body (S120).
  • the sintering process may be performed by heating the carbon furnace or the carbon mold 200 to a predetermined temperature (for example, 1500 to 2500 ° C.) at which the ceramic is not decomposed and maintained for a predetermined time (for example, 10 hours or less).
  • this sintering process is preferably sintered in a non-oxidizing atmosphere such as vacuum or N 2 atmosphere.
  • the sintering process may be performed by conventional hot press sintering (Hot press).
  • the ceramic blocking layers 110 and 150 (including the BN layers 115 and 155) are removed to sinter the ceramic sintered body 130 ′ and the ceramic sintered body 130 sintered.
  • the ceramic plate for the ceramic heater 100 including the heating element 140 embedded in ') is obtained (S130). At this time, the ceramic blocking layers 110 and 150 may be easily separated from the ceramic powder layer 130 due to the inert layer.
  • the removed ceramic blocking layers 110 and 150 can then be reused as the ceramic blocking layer of the new ceramic heater.
  • the ceramic blocking layer 110/150 may be reused after being used in at least one sintering process, and may be reused within a total of 10 times.
  • the heating element 140 embedded in the ceramic sintered body generates heat according to a resistance property by using electric power (for example, RF (Radio Frequency) power) supplied from the outside through an electrode (not shown).
  • electric power for example, RF (Radio Frequency) power
  • One side of the ceramic plate is a heating surface for heating the object, and may be a surface for placing the object or applying heat on the object.
  • An electrode (not shown) for supplying power to the heating element 140 through the other side of the ceramic plate may be coupled.
  • the ceramic heater 100 including the ceramic plate may be used to heat-treat a heat treatment object for various purposes such as a semiconductor wafer, a glass substrate, a flexible substrate, and the like at a predetermined heating temperature. Ceramic heaters may be used in combination with the function of an electrostatic chuck for semiconductor wafer processing.
  • FIG 3 is a view for comparing the resistance change rate according to the conditions of the conventional ceramic heater and the ceramic heater 100 according to an embodiment of the present invention.
  • Example 3 shows a case where a sintering process is performed without a dummy layer or a blocking layer (Comparative Example # 1), when a metal dummy layer is used as in the prior art (Comparative Example # 2), and the ceramic blocking layers 110 and 150 of the present invention.
  • Examples # 1 to # 6 the resistance change rate according to conditions such as the number of times of use of the ceramic blocking layer and the rare earth content (wt%) are shown.
  • AlN was used for the ceramic blocking layers 110/150
  • Y 2 O 3 was added as the rare earth oxide capable of reacting with carbon.
  • the content of the rare earth oxide exceeds 10 wt%, the appearance of liquid phase increases in the ceramic blocking layer 110/150 during sintering, and the desorption of the sintered product by reacting with the carbon furnace or the carbon mold 200. This became difficult. Therefore, it is preferable to add rare earth oxide to 10 wt% or less in the ceramic blocking layer (110/150). In addition, when the rare earth oxide content is less than 1 wt%, the effect of inhibiting carbonization of the heating element may be insignificant.
  • the ceramic blocking layer 110/150 may be reused to sinter other ceramic powder compacts, but when the number of uses is 10 or more, as shown in FIG. 3, the change rate of the resistance of the heating element 140 starts to increase. Confirmed.
  • a metal dummy member eg, Group 4A, 5A, and 6A metals
  • a metal dummy member may be used to shield carbon inflow from the outside to lower the resistance of the heating element to some extent. That is, such a metal dummy member was able to reduce the resistance of the heating element to some extent by reducing the carbon introduced from the outside to reduce the area where the heating element is carbonized.
  • such a prior art can lower the overall resistance change of the heating element, but cannot prevent the occurrence of nonuniformity of the resistance change of the heating element locally.
  • the conventional metal dummy member is used as a one-time, it is brittle while rapidly carbonized during the sintering process by reaction with carbon, causing cracks during use, the cracks generated acts as an inflow path of the carbon source .
  • carbonization of the metal piles causes damage to the product surface. Therefore, the powder sintered body was made thicker than necessary, and the damage site was inevitable.
  • the ceramic heater 100 according to the present invention while forming the ceramic blocking layer (110/150) up and down the ceramic powder molded body for embedding the heating element, the BN layer (115/155) for the release agent is further added. As a result, the overall resistance change of the heating element 140 during the sintering process may be lowered, and the local resistance change rate may also be improved. That is, in the present invention, by using the ceramic blocking layers 110 and 150, the formation of brittle carbides and the occurrence of cracks during the sintering process can be significantly reduced.
  • the ceramic blocking layer (110/150) of the present invention by blocking a substantial portion of the carbon introduced by the use of the ceramic blocking layer (110/150) of the present invention it is possible to lower the overall resistance change of the heating element 140 during the sintering process and also to improve the local resistance change rate. Furthermore, the BN layer 115/155 for the release agent does not react with the ceramic powder layer 130, which is more advantageous for blocking carbon from the ceramic blocking layer 110/150, and the ceramic blocking layer 110. / 150) is also advantageous.
  • a portion where carbonization is severely localized in the heating element 140 may increase the amount of heat generated in the portion when operating as a heater after sintering to form a hot zone around it.
  • the present invention since the possibility of raising the resistance of the heating element at a local position such as a hot zone is blocked, the temperature variation of each heating surface of the object such as a wafer is significantly reduced, thereby increasing the temperature uniformity of the heating surface.
  • the prior art had a problem that the ceramic powder sintered body to be made thicker than necessary in order to suppress the occurrence of scratches on the surface of the product, in the present invention, the sintered body thickness by using a low-reactivity ceramic blocking layer (110/150) There is an advantage that the processing allowance of the can be made small and the amount of the ceramic powder molded body used can be lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Abstract

The present invention relates to a method for manufacturing a ceramic heater, and the method for manufacturing a ceramic heater of the present invention comprises the steps of: molding, between a first ceramic blocking layer and a second ceramic blocking layer, a stacking structure having a sandwich structure in which a ceramic powder layer having a heating element buried therein is interposed; and sintering a molded body of the stacking structure.

Description

세라믹 히터의 제조 방법Manufacturing method of ceramic heater
본 발명은 세라믹 히터의 제조 방법에 관한 것으로서, 특히, 발열체의 국부적인 저항 변화율을 개선한 세라믹 히터의 제조 방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a ceramic heater, and more particularly, to a method of manufacturing a ceramic heater having improved local resistance change rate of a heating element.
세라믹 히터는 반도체 웨이퍼, 유리 기판, 플렉시블 기판 등 다양한 목적의 열처리 대상체를 소정의 가열 온도에서 열처리하기 위하여 사용된다. 반도체 웨이퍼 처리를 위하여 세라믹 히터는 정전척의 기능과 결합하여 사용되기도 한다. 일반적으로 세라믹 히터는 외부의 전극으로부터 전력을 공급받아 발열되는 세라믹 플레이트를 포함한다. 세라믹 플레이트는 세라믹 소결체에 매설되는 소정의 저항을 갖는 발열체를 포함한다. Ceramic heaters are used to heat-treat heat-treatment objects for various purposes such as semiconductor wafers, glass substrates, and flexible substrates at predetermined heating temperatures. Ceramic heaters are also used in combination with the functions of electrostatic chucks for semiconductor wafer processing. In general, the ceramic heater includes a ceramic plate that generates heat by receiving power from an external electrode. The ceramic plate includes a heating element having a predetermined resistance embedded in the ceramic sintered body.
관련 선행 문헌으로서 등록특허번호 제10-0533471호 (2005년12월06일) 등을 참조할 수 있다. 등록특허 제10-0533471호는 세라믹 플레이트의 상하부에 주기율표 4a, 5a, 및 6a족 원소로부터 선택된 1종 이상의 금속 더미 부재와 접촉시킨 상태로 성형체를 소결함으로써 내장된 발열체의 탄화를 억제하는 세라믹 히터 제조 방식을 개시하고 있다. 그러나, 이와 같은 종래의 금속 더미 방식의 세라믹 히터 제조 방법은 여러가지 문제점을 낳는다. See related patent documents No. 10-0533471 (December 06, 2005) and the like. Korean Patent No. 10-0533471 discloses the manufacture of a ceramic heater that suppresses carbonization of a heat generating element by sintering a molded body in contact with one or more metal dummy members selected from periodic table 4a, 5a, and 6a elements in upper and lower portions of a ceramic plate. The method is disclosed. However, such a conventional method of manufacturing a ceramic heater of a metal dummy system causes various problems.
먼저, 금속 더미 방식으로 제조된 세라믹 히터는 발열체 부위에 따라 국부적인 저항 불균일을 가진다. 다음으로, 종래의 금속 더미 방식에서 금속 더미 부재는 제조 후 제거되어야 하며 재사용이 곤란한 1회성 소모 부품이다. 나아가, 종래의 금속 더미 방식에서 금속 더미 부재의 탄화에 의해 형성된 탄화물은 이와 접하는 세라믹 히터 소결체 표면에 손상(damage)을 유발하는데, 손상 부위의 제거에 따라 필요 이상으로 세라믹 히터의 두께가 두꺼워지는 문제점이 있다. First, the ceramic heater manufactured by the metal dummy method has a local resistance non-uniformity according to the heating element part. Next, in the conventional metal dummy method, the metal dummy member is a one-time consumable part that must be removed after manufacture and difficult to reuse. Further, in the conventional metal dummy method, the carbide formed by carbonization of the metal dummy member causes damage to the surface of the ceramic heater sintered body which is in contact with it, and the thickness of the ceramic heater becomes thicker than necessary according to the removal of the damaged part. There is this.
본 발명의 발명자들은 종래의 금속 더미 부재를 사용하는 방식에서 금속 더미 부재가 소결 중 탄화물과 반응하여 취성을 나타내며 이로 인해 크랙이 발생할 수 있다는 점을 발견하였다. 또한, 본 발명의 발명자들은 발열체의 저항 변화의 요인으로 작용하는 카본 소스가 분말 내의 카본 함량 보다는 외부 소스들 즉 카본 몰드나 퍼니스(furnace) 내의 카본 부재들에 기인함을 발견하였다. 그러므로, 도입된 금속 더미 부재에 형성된 크랙은 퍼니스 내의 다른 카본 소스들 예컨대 카본 몰드나 카본 부재들로부터 발생하는 카본의 유입 통로로 작용하며, 결국 성형체 외부로부터 유래되는 카본의 유입을 억제하기에 적합하지 않으며, 발열체의 탄화를 충분히 억제하지 못한다.The inventors of the present invention have found that in the manner of using a conventional metal dummy member, the metal dummy member reacts with carbides during sintering, causing brittleness and thereby causing cracks. In addition, the inventors of the present invention have found that the carbon source acting as a factor of the resistance change of the heating element is due to the carbon source in the carbon mold or furnace rather than the carbon content in the powder. Therefore, cracks formed in the introduced metal dummy member act as inflow passages of carbon generated from other carbon sources in the furnace, such as carbon mold or carbon members, and are thus not suitable for suppressing the inflow of carbon derived from the outside of the molded body. It does not sufficiently suppress the carbonization of the heating element.
본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은, 발열체의 국부적인 저항 변화율을 개선하는 세라믹 차단층을 이용하여 소결 처리하는 세라믹 히터의 제조 방법과 그 방법에 의해 제조된 세라믹 히터를 제공하는 데 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to manufacture a ceramic heater which is sintered using a ceramic blocking layer which improves the local resistance change rate of a heating element, and the method To provide a ceramic heater.
또한, 본 발명은 재사용 가능한 탄화 억제용 세라믹 차단층을 이용한 세라믹 히터의 제조 방법과 그 방법에 의해 제조된 세라믹 히터를 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a method for producing a ceramic heater using a reusable ceramic blocking layer for inhibiting carbonization and a ceramic heater manufactured by the method.
그리고, 본 발명은 소결체의 두께를 적절하게 유지할 수 있는 세라믹 히터의 제조 방법과 그 방법에 의해 제조된 세라믹 히터를 제공하는 것을 목적으로 한다. And an object of this invention is to provide the manufacturing method of the ceramic heater which can maintain the thickness of a sintered compact suitably, and the ceramic heater manufactured by the method.
먼저, 본 발명의 특징을 요약하면, 상기의 목적을 달성하기 위한 본 발명의일면에 따른 세라믹 히터의 제조 방법은, 제1 세라믹 차단층 및 제2 세라믹 차단층 사이에, 발열체가 매설된 세라믹 분말층이 개재되는 샌드위치 구조의 적층 구조를 성형하는 단계; 및 상기 적층 구조의 성형체를 소결하는 단계를 포함한다.First, to summarize the features of the present invention, the method of manufacturing a ceramic heater according to an aspect of the present invention for achieving the above object, the ceramic powder, the heating element is embedded between the first ceramic blocking layer and the second ceramic blocking layer. Forming a laminated structure of the sandwich structure having the layer interposed therebetween; And sintering the molded body of the laminated structure.
상기 적층 구조의 성형 단계는, 상기 제1 세라믹 차단층을 제공하는 단계; 상기 제1 세라믹 차단층 상에 상기 발열체가 매설된 상기 세라믹 분말층을 제공하는 단계; 및 상기 세라믹 분말층 상에 상기 제2 세라믹 차단층을 제공하는 단계를 포함한다.The forming of the laminated structure may include providing the first ceramic blocking layer; Providing the ceramic powder layer in which the heating element is embedded on the first ceramic blocking layer; And providing the second ceramic blocking layer on the ceramic powder layer.
상기 세라믹 분말층 제공 단계는, 제1 세라믹 분말층을 제공하는 단계; 상기 제1 세라믹 분말층 상에 상기 발열체를 배치하는 단계; 및 상기 발열체가 배치된 상기 제1 세라믹 분말층 상에 제2 세라믹 분말층을 제공하는 단계를 포함한다.The providing of the ceramic powder layer may include providing a first ceramic powder layer; Disposing the heating element on the first ceramic powder layer; And providing a second ceramic powder layer on the first ceramic powder layer on which the heating element is disposed.
상기 제1 세라믹 분말층을 제공하는 단계에서 상기 제1 세라믹 분말층은 성형체일 수 있다.In the providing of the first ceramic powder layer, the first ceramic powder layer may be a molded body.
상기 제2 세라믹 분말층 제공 단계 이후에, 상기 제1 세라믹 분말층, 상기 발열체 및 상기 제2 세라믹 분말층을 가압 성형하는 단계를 더 포함한다.After the providing of the second ceramic powder layer, the method may further include pressure forming the first ceramic powder layer, the heating element, and the second ceramic powder layer.
상기 제1 및 제2 세라믹 차단층 각각과 상기 세라믹 분말층 사이에는 BN(Boron Nitride)을 포함하는 불활성층이 개재된다.An inert layer including BN (Boron Nitride) is interposed between each of the first and second ceramic blocking layers and the ceramic powder layer.
상기 제1 및 제2 세라믹 차단층은 희토류 산화물을 포함한다.The first and second ceramic blocking layers include rare earth oxides.
상기 제1 및 제2 세라믹 차단층은 질화물 및 희토류 산화물을 포함하고, 상기 희토류 산화물은 상기 세라믹 차단층의 10 중량% 이하이다.The first and second ceramic blocking layers include nitride and rare earth oxides, and the rare earth oxides are 10 wt% or less of the ceramic blocking layer.
상기 제1 및 제2 세라믹 차단층은 소결체인 것이 바람직하다.Preferably, the first and second ceramic barrier layers are sintered bodies.
상기 제1 및 제2 세라믹 차단층은, 소결 과정 중 상기 발열체에서 외부로부터 유입되는 카본과의 반응에 의한 탄화물의 국부적인 생성을 저감한다.The first and second ceramic barrier layers reduce local generation of carbides by reaction with carbon introduced from the outside in the heating element during the sintering process.
그리고, 본 발명의 다른 일면에 따른 세라믹 히터는, 세라믹 소결체 및 상기 세라믹 소결체에 매설된 발열체를 포함하고, 상기 세라믹 소결체는, 제1 세라믹 차단층 및 제2 세라믹 차단층 사이에, 발열체가 매설된 세라믹 분말층이 개재되는 샌드위치 구조의 적층 구조를 갖는 성형체를 형성한 후 상기 세라믹 분말층을 소결하여 형성된 것을 특징으로 한다.The ceramic heater according to another aspect of the present invention includes a ceramic sintered body and a heating element embedded in the ceramic sintered body, wherein the ceramic sintered body includes a heating element embedded between the first ceramic blocking layer and the second ceramic blocking layer. Forming a molded body having a laminated structure of a sandwich structure sandwiched by a ceramic powder layer, characterized in that formed by sintering the ceramic powder layer.
본 발명에 따른 세라믹 히터의 제조 방법에 따르면, 발열체를 매설하는 세라믹 분말 성형체 상하로 세라믹 차단층을 형성함으로써 소결 과정에서 발열체의 국부적인 저항 변화율을 개선할 수 있다. 즉, 세라믹 차단층의 사용으로 국부적인 발열체의 저항 상승이 차단되므로 웨이퍼 등 대상체 가열면의 위치별 온도 편차가 현저히 줄어들어 가열면의 온도 균일성을 높일 수 있는 잇점이 있다. According to the manufacturing method of the ceramic heater according to the present invention, by forming a ceramic blocking layer above and below the ceramic powder molded body embedding the heating element, it is possible to improve the local resistance change rate of the heating element during the sintering process. That is, since the increase in resistance of the local heating element is blocked by the use of the ceramic blocking layer, the temperature variation of each heating surface of the object such as a wafer is significantly reduced, thereby increasing the temperature uniformity of the heating surface.
또한, 종래기술은 제품 표면에 상처가 발생하는 것을 억제하기 위하여 세라믹 분말 소결체를 필요 이상으로 두껍게 제작하여야 하는 문제가 있었으나, 본 발명에서는 세라믹 차단층의 사용으로 크랙이 발생하지 않아 소결체 두께의 가공 여유를 작게 할 수 있고 세라믹의 사용량을 낮출 수 있는 잇점이 있다. In addition, the prior art had a problem that the ceramic powder sintered body to be made thicker than necessary in order to suppress the occurrence of scratches on the surface of the product, in the present invention, the cracks do not occur due to the use of a ceramic barrier layer, the processing margin of the sintered body thickness It can be reduced and the amount of ceramic used can be lowered.
도 1은 본 발명의 일 실시예에 따른 세라믹 히터를 설명하기 위한 도면이다.1 is a view for explaining a ceramic heater according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 세라믹 히터의 제조 과정을 설명하기 위한 흐름도이다.2 is a flowchart illustrating a manufacturing process of a ceramic heater according to an embodiment of the present invention.
도 3은 종래의 세라믹 히터와 본 발명의 일 실시예에 따른 세라믹 히터의 발열체에서 조건별 저항 변화율을 비교 설명하기 위한 도면이다.3 is a view for comparing the resistance change rate of each condition in the heating element of the conventional ceramic heater and the ceramic heater according to an embodiment of the present invention.
이하에서는 첨부된 도면들을 참조하여 본 발명에 대해서 자세히 설명한다. 이때, 각각의 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타낸다. 또한, 이미 공지된 기능 및/또는 구성에 대한 상세한 설명은 생략한다. 이하에 개시된 내용은, 다양한 실시 예에 따른 동작을 이해하는데 필요한 부분을 중점적으로 설명하며, 그 설명의 요지를 흐릴 수 있는 요소들에 대한 설명은 생략한다. 또한 도면의 일부 구성요소는 과장되거나 생략되거나 또는 개략적으로 도시될 수 있다. 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니며, 따라서 각각의 도면에 그려진 구성요소들의 상대적인 크기나 간격에 의해 여기에 기재되는 내용들이 제한되는 것은 아니다. 또한, 본 발명에서 '적층'이란 각 층의 상대적인 위치 관계를 규정하는 의미로 사용된다. 'A층 상의 B층'이란 표현은 A층과 B층의 상대적인 위치 관계를 표현하는 것으로 A층와 B층이 반드시 접촉할 것을 요하지 않으며 그 사이에 제3의 층이 개재될 수 있다. 비슷하게, 'A층과 B층 사이에 C층이 개재'되었다는 표현도 A층과 C층 사이 또는 B층과 C층 사이에 제3의 층이 개재되는 것을 배제하지 않는다. Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the present invention. In this case, the same components in each drawing are represented by the same reference numerals as much as possible. In addition, detailed descriptions of already known functions and / or configurations are omitted. The following description focuses on parts necessary for understanding the operation according to various embodiments, and descriptions of elements that may obscure the gist of the description are omitted. In addition, some components of the drawings may be exaggerated, omitted, or schematically illustrated. The size of each component does not entirely reflect the actual size, and thus the contents described herein are not limited by the relative size or spacing of the components drawn in the respective drawings. In addition, in the present invention, 'stacking' is used to define the relative positional relationship of each layer. The expression 'layer B on layer A' expresses a relative positional relationship between layer A and layer B, and does not require that layer A and layer B contact each other, and a third layer may be interposed therebetween. Similarly, the expression 'the C layer is interposed between the A and B layers' does not exclude that a third layer is interposed between the A and C layers or between the B and C layers.
도 1은 본 발명의 일 실시예에 따른 세라믹 히터(100)를 설명하기 위한 도면이다.1 is a view for explaining a ceramic heater 100 according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 세라믹 히터(100)는, 세라믹 분말층(130)를 소결하여 형성한 세라믹 소결체(이하 130'로 표시함) 및 상기 세라믹 소결체(130')에 매설된 발열체(140)를 포함한다. 세라믹 소결체(130') 및 세라믹 소결체(130')에 매설된 발열체(140)는 세라믹 플레이트에 해당한다. Referring to FIG. 1, the ceramic heater 100 according to an exemplary embodiment of the present invention may include a ceramic sintered body (hereinafter referred to as 130 ′) and a ceramic sintered body 130 ′ formed by sintering the ceramic powder layer 130. It includes a heating element 140 embedded in. The ceramic sintered body 130 ′ and the heating element 140 embedded in the ceramic sintered body 130 ′ correspond to ceramic plates.
본 발명에서, 세라믹 소결체(130')는, 도 1에서, 발열체(140)가 삽입된 세라믹 분말층(130)의 상하면에 각각의 세라믹 차단층(110, 150)을 형성한 후, 세라믹 분말층(130)를 카본 퍼니스 또는 카본 몰드(200)에서 소결 과정으로 처리하여 형성된 것이다. In the present invention, in the ceramic sintered body 130 ′, after forming the ceramic blocking layers 110 and 150 on the upper and lower surfaces of the ceramic powder layer 130 into which the heating element 140 is inserted, the ceramic powder layer is shown in FIG. 1. The 130 is formed by treating the carbon furnace or the carbon mold 200 by a sintering process.
소결 과정 전에, 세라믹 분말층(130)의 상하면에 형성한 각각의 세라믹 차단층, 즉, 제1 세라믹 차단층(110)과 제2 세라믹 차단층(150) 중 어느 하나 이상의 내측으로 BN(Boron Nitride)을 포함하는 불활성층으로서 BN층(115/155)이 개재될 수 있다. BN층(115/155)은 세라믹 차단층(110, 150)과 세라믹 소결체(130')의 반응을 억제하기 위한 이형제로 사용된다. 상기 BN층(115/155)은 BN을 포함한 물질을 이용하여 도포 또는 스프레이 형태로 형성하거나, 소결 과정을 진행하여 소결체 형태로 사용할 수도 있다.Before the sintering process, each of the ceramic blocking layers formed on the upper and lower surfaces of the ceramic powder layer 130, that is, BN (Boron Nitride) into at least one of the first ceramic blocking layer 110 and the second ceramic blocking layer 150. The BN layer 115/155 may be interposed as an inactive layer including the (). The BN layer 115/155 is used as a release agent for suppressing the reaction between the ceramic blocking layers 110 and 150 and the ceramic sintered body 130 ′. The BN layer 115/155 may be formed in a coating or spray form using a material containing BN, or may be used in the form of a sintered body by performing a sintering process.
이하 도 2의 흐름도를 참조하여 본 발명의 일 실시예에 따른 세라믹 히터(100)의 제조 과정을 좀 더 자세히 설명한다. Hereinafter, a manufacturing process of the ceramic heater 100 according to an embodiment of the present invention will be described in more detail with reference to the flowchart of FIG. 2.
도 2는 본 발명의 일 실시예에 따른 세라믹 히터(100)의 제조 과정을 설명하기 위한 흐름도이다.2 is a flowchart illustrating a manufacturing process of the ceramic heater 100 according to an embodiment of the present invention.
도 2를 참조하면, 먼저, 발열체(140)가 삽입된 세라믹 분말층(130)의 상하면에 제1 및 제2 세라믹 차단층(110, 150)의 적층 구조를 형성한다(S110). 본 발명에서 상기 적층 구조 및 이를 구성하는 컴포넌트는 다양한 방법으로 제조될 수 있다. Referring to FIG. 2, first, a stacked structure of the first and second ceramic blocking layers 110 and 150 is formed on upper and lower surfaces of the ceramic powder layer 130 into which the heating element 140 is inserted (S110). In the present invention, the laminated structure and the components constituting the laminated structure may be manufactured by various methods.
예컨대, 제1 및/또는 제2 세라믹 차단층(110, 150)은 몰드 내에서 도포되거나 또는 분무법에 의해 스프레이될 수 있으며, 또한 성형체 또는 소결체 형태로 제공될 수 있다. 상기 제1 및/또는 제2 세라믹 차단층(110, 150)은 치밀한 소결체 형태로 제공되는 것이 바람직하다. 취성이 크고 소성 변형이 없는 치밀한 소결체의 제1 및/또는 제2 세라믹 차단층(110. 150)은 외부로부터의 카본 소스의 유입을 효과적으로 차단할 수 있다. For example, the first and / or second ceramic blocking layers 110 and 150 may be applied in a mold or sprayed by a spray method, and may also be provided in the form of a molded or sintered body. The first and / or second ceramic blocking layers 110 and 150 may be provided in the form of a dense sintered body. The first and / or second ceramic blocking layers 110 and 150 of the dense sintered compact having no brittleness and no plastic deformation may effectively block the inflow of the carbon source from the outside.
제1 세라믹 차단층(110)이 제공되고, 이어서 제1 세라믹 차단층(110) 상에 발열체(140)가 매설된 세라믹 분말층(130)이 형성된다. 이 때, 세라믹 분말층(130)은 다양한 방식으로 적층될 수 있다. 예컨대, 세라믹 분말층(130)의 일부로서 제1 세라믹 분말층이 형성되고, 상기 제1 세라믹 분말층 상에 발열체(140)를 배치한 후 발열체(140)가 배치된 제1 세라믹 분말층 상에 제2 세라믹 분말층을 덮음으로써 상기 세라믹 분말층(130)이 형성될 수 있다. 이 때, 상기 제1 세라믹 분말층은 소정의 압력으로 가압되어 형상을 유지할 수 있는 성형체 형태로 제공될 수 있다. 물론, 상기 세라믹 분말층(130) 전체가 가압 성형된 성형체 형태로 제공될 수도 있다. 세라믹 분말층(130) 상에는 제2 세라믹 차단층(150)이 적층된다. The first ceramic blocking layer 110 is provided, and then a ceramic powder layer 130 in which the heating element 140 is embedded is formed on the first ceramic blocking layer 110. At this time, the ceramic powder layer 130 may be laminated in various ways. For example, a first ceramic powder layer is formed as part of the ceramic powder layer 130, the heating element 140 is disposed on the first ceramic powder layer, and then on the first ceramic powder layer on which the heating element 140 is disposed. The ceramic powder layer 130 may be formed by covering the second ceramic powder layer. At this time, the first ceramic powder layer may be provided in the form of a molded body that can be pressed to a predetermined pressure to maintain the shape. Of course, the entire ceramic powder layer 130 may be provided in the form of a press-molded body. The second ceramic blocking layer 150 is stacked on the ceramic powder layer 130.
세라믹 분말층(130)의 상하면에 형성한 각각의 세라믹 차단층, 즉, 제1 세라믹 차단층(110)과 제2 세라믹 차단층(150) 중 어느 하나와 세라믹 분말층(130) 사이에는, 이형제 역할을 위한 불활성층으로서 BN(Boron Nitride)을 포함한 물질을 도포 또는 스프레이 형태로 형성하거나 소결체 형태의 BN층(115/155)을 형성할 수 있다. A release agent is formed between each ceramic blocking layer formed on the upper and lower surfaces of the ceramic powder layer 130, that is, between any one of the first ceramic blocking layer 110 and the second ceramic blocking layer 150 and the ceramic powder layer 130. As an inert layer for a role, a material including BN (Boron Nitride) may be formed in a coating or spray form, or the BN layer 115/155 in the form of a sintered body may be formed.
히터로 사용되는 동안 발열체(140)에서는 열이 발생하므로, 발열체(140)는 내열성이 우수하고 열전달 특성이 우수한 세라믹 분말층(130)에 매설된다. 발열체(140)는 도전성 소재로 이루어질 수 있고, 예를 들어, 텅스텐(W), 몰리브덴(Mo), 은(Ag), 니켈(Ni), 금(Au), 니오븀(Nb), 티타늄(Ti) 등 등의 다양한 도전성 소재의 조합으로 이루어져 적절한 저항값을 가진 저항 발열체로서 형성될 수 있다. Since heat is generated in the heating element 140 while being used as a heater, the heating element 140 is embedded in the ceramic powder layer 130 having excellent heat resistance and excellent heat transfer characteristics. The heating element 140 may be made of a conductive material. For example, tungsten (W), molybdenum (Mo), silver (Ag), nickel (Ni), gold (Au), niobium (Nb), and titanium (Ti) It can be formed as a combination of various conductive materials such as the resistance heating element having an appropriate resistance value.
세라믹 분말층(130)은 예를 들어, Al2O3, Y2O3, Al2O3/Y2O3, ZrO2, AlC(Autoclaved lightweight concrete), TiN, AlN, TiC, MgO, CaO, CeO2, TiO2, BxCy, BN, SiO2, SiC, YAG, Mullite, AlF3 등이나 이들을 조합한 다양한 세라믹 소재 분말로 이루어질 수 있다. The ceramic powder layer 130 is, for example, Al 2 O 3 , Y 2 O 3 , Al 2 O 3 / Y 2 O 3 , ZrO 2 , Autoclaved lightweight concrete (AlC), TiN, AlN, TiC, MgO, CaO , CeO 2 , TiO 2 , BxCy, BN, SiO 2, SiC, YAG, Mullite, AlF 3 and the like, or a combination of various ceramic material powders.
위에서도 기술한 바와 같이 세라믹 분말층(130)에 삽입된 발열체(140)는 소결 과정 중 주위의 카본과 반응하여 발열체(140)에는 탄화물이 형성됨으로써 저항을 높이고 가열면의 온도 불균일을 일으키는 원인이 될 수 있다. As described above, the heating element 140 inserted into the ceramic powder layer 130 reacts with the surrounding carbon during the sintering process to form carbides in the heating element 140 to increase resistance and cause temperature nonuniformity of the heating surface. Can be.
그러나, 본 발명에서는 소결 전에 세라믹 분말층(130) 상하에 각각 세라믹 차단층(110/150)을 형성한다. 세라믹 분말층(130)에 존재하는 카본은 미미하며, 발열체(140)에 탄화물이 생성되는 주 원인은 외부로부터 유입되는 카본에 의한 것이 대부분이다. However, in the present invention, the ceramic blocking layers 110 and 150 are formed above and below the ceramic powder layer 130 before sintering. Carbon present in the ceramic powder layer 130 is insignificant, and the main cause of carbide generation in the heating element 140 is mostly due to carbon introduced from the outside.
본 발명에서, 세라믹 분말층(130)의 하면을 덮는 제1 세라믹 차단층(110)과 세라믹 분말층(130)의 상면을 덮는 제2 세라믹 차단층(150)이, 소결 과정 중 발열체(140)에서 외부로부터 유입되는 카본과의 반응에 의한 탄화물의 생성을 억제할 수 있도록 한다. In the present invention, the first ceramic blocking layer 110 covering the lower surface of the ceramic powder layer 130 and the second ceramic blocking layer 150 covering the upper surface of the ceramic powder layer 130 are the heating elements 140 during the sintering process. It is possible to suppress the formation of carbides by reaction with carbon introduced from the outside.
제1 세라믹 차단층(110)과 제2 세라믹 차단층(150)은 세라믹 분말층(130)과동일한 소재를 포함할 수 있다. 그러나, 전술한 세라믹 소재는 카본과 낮은 반응성을 갖기 때문에 카본과 반응할 수 있도록 소정 함량의 희토류(rare earth) 산화물을 첨가하는 것이 바람직하다. 예를 들어, 제1 세라믹 차단층(110)과 제2 세라믹 차단층(150)은 세라믹 분말층(130)과 같이 질화물을 포함하며 희토류 산화물을 1~10 중량%(wt%)로 포함하는 것이 바람직하다. 희토류 산화물로서는 예를 들어 LaAlO3, La2O3, Y2O3, LaAl3O6 등 다양한 희토류 산화물이 이용될 수 있다. The first ceramic blocking layer 110 and the second ceramic blocking layer 150 may include the same material as the ceramic powder layer 130. However, since the above-described ceramic material has low reactivity with carbon, it is preferable to add a rare earth oxide having a predetermined amount so that the ceramic material can react with carbon. For example, the first ceramic blocking layer 110 and the second ceramic blocking layer 150 include nitrides such as the ceramic powder layer 130 and include rare earth oxides in an amount of 1 to 10 wt% (wt%). desirable. As the rare earth oxide is for example a variety of rare earth oxide such as LaAlO 3, La 2 O 3, Y 2 O 3, LaAl 3 O 6 it can be used.
이와 같이 제1 및 제2 세라믹 차단층(110, 150) 사이에, 발열체(140)가 매설된 세라믹 분말층(130)이 개재되는 샌드위치 구조의 적층 구조를 갖는 성형체를 형성한 후, 도 1과 같이 카본 퍼니스 또는 카본 몰드(200)에서 소결 과정 처리하여 세라믹 분말층(130)가 세라믹 소결체가 되도록 한다(S120). Thus, after forming the molded body having the laminated structure of the sandwich structure in which the ceramic powder layer 130 in which the heating element 140 is embedded is formed between the 1st and 2nd ceramic blocking layers 110 and 150, As described above, the sintering process is performed in the carbon furnace or the carbon mold 200 so that the ceramic powder layer 130 becomes a ceramic sintered body (S120).
소결 과정은 카본 퍼니스 또는 카본 몰드(200)를 세라믹이 분해되지 않는 소정의 온도(예, 1500∼2500℃)로 가열하여 소정의 시간 동안(예, 10 시간 이하) 유지시킴으로써 이루어질 수 있다. 또한, 이와 같은 소결 과정은 비산화성 분위기 예컨대 진공 또는 N2 분위기에서 소결하는 것이 바람직하다. 또한, 상기 소결 과정은 통상의 열간 가압 소결(Hot press)에 의해 이루어질 수 있다. The sintering process may be performed by heating the carbon furnace or the carbon mold 200 to a predetermined temperature (for example, 1500 to 2500 ° C.) at which the ceramic is not decomposed and maintained for a predetermined time (for example, 10 hours or less). In addition, this sintering process is preferably sintered in a non-oxidizing atmosphere such as vacuum or N 2 atmosphere. In addition, the sintering process may be performed by conventional hot press sintering (Hot press).
이와 같은 소결 과정을 거친 후, 세라믹 차단층(110, 150)(BN층(115, 155) 포함)을 제거하여, 세라믹 분말층(130)이 소결된 세라믹 소결체(130')와 세라믹 소결체(130')에 매설된 발열체(140)를 포함하는 세라믹 히터(100)를 위한 세라믹 플레이트가 획득된다(S130). 이 때, 위와 같은 불활성층의 개재로 인해 상기 세라믹 차단층(110, 150)은 상기 세라믹 분말층(130)으로부터 쉽게 분리될 수 있다. After the sintering process, the ceramic blocking layers 110 and 150 (including the BN layers 115 and 155) are removed to sinter the ceramic sintered body 130 ′ and the ceramic sintered body 130 sintered. The ceramic plate for the ceramic heater 100 including the heating element 140 embedded in ') is obtained (S130). At this time, the ceramic blocking layers 110 and 150 may be easily separated from the ceramic powder layer 130 due to the inert layer.
제거된 세라믹 차단층(110, 150)은 이후 새로운 세라믹 히터의 세라믹 차단층으로서 재사용될 수 있다. 예를 들어, 세라믹 차단층(110/150)은 1회 이상 소결 과정에 사용된 후 재사용된 것일 수 있으며, 사용횟수가 총10회 이내에서 재사용될 수 있다. The removed ceramic blocking layers 110 and 150 can then be reused as the ceramic blocking layer of the new ceramic heater. For example, the ceramic blocking layer 110/150 may be reused after being used in at least one sintering process, and may be reused within a total of 10 times.
세라믹 소결체에 매설된 발열체(140)는 전극(미도시)을 통해 외부로부터 공급되는 전력(예, RF(Radio Frequency) 전력)을 이용하여 저항 성질에 따라 열을 발생시킨다. 세라믹 플레이트의 한쪽면은 대상체를 가열하기 위한 가열면으로서, 대상체를 올려 놓거나 대상체 위에서 열을 가하기 위한 면일 수 있다. 세라믹 플레이트의 다른쪽 면을 통하여 발열체(140)에 전력을 공급하기 위한 전극(미도시)이 결합될 수 있다.The heating element 140 embedded in the ceramic sintered body generates heat according to a resistance property by using electric power (for example, RF (Radio Frequency) power) supplied from the outside through an electrode (not shown). One side of the ceramic plate is a heating surface for heating the object, and may be a surface for placing the object or applying heat on the object. An electrode (not shown) for supplying power to the heating element 140 through the other side of the ceramic plate may be coupled.
이와 같은 세라믹 플레이트를 포함하는 세라믹 히터(100)는, 반도체 웨이퍼, 유리 기판, 플렉시블 기판 등 다양한 목적의 열처리 대상체를 소정의 가열 온도에서 열처리하기 위하여 사용될 수 있다. 반도체 웨이퍼 처리를 위하여 세라믹 히터는 정전척의 기능과 결합하여 사용될 수도 있다.The ceramic heater 100 including the ceramic plate may be used to heat-treat a heat treatment object for various purposes such as a semiconductor wafer, a glass substrate, a flexible substrate, and the like at a predetermined heating temperature. Ceramic heaters may be used in combination with the function of an electrostatic chuck for semiconductor wafer processing.
도 3은 종래의 세라믹 히터와 본 발명의 일 실시예에 따른 세라믹 히터(100)의 조건별 저항 변화율을 비교 설명하기 위한 도면이다.3 is a view for comparing the resistance change rate according to the conditions of the conventional ceramic heater and the ceramic heater 100 according to an embodiment of the present invention.
도 3에는, 소결 과정에, 더미층이나 차단층 없이 진행된 경우(비교예#1), 종래와 같이 금속 더미층을 사용한 경우(비교예#2), 및 본 발명의 세라믹 차단층(110, 150)을 사용한 경우(실시예#1~#6)에 대하여, 세라믹 차단층의 사용횟수, 희토류 함량(wt%) 등 조건별 저항 변화율을 나타내었다. 여기서, 세라믹 차단층(110/150)에는 AlN이 사용되었고, 카본과 반응할 수 있는 희토류 산화물로서 Y2O3를 첨가한 것을 사용하였다. 3 shows a case where a sintering process is performed without a dummy layer or a blocking layer (Comparative Example # 1), when a metal dummy layer is used as in the prior art (Comparative Example # 2), and the ceramic blocking layers 110 and 150 of the present invention. ) (Examples # 1 to # 6), the resistance change rate according to conditions such as the number of times of use of the ceramic blocking layer and the rare earth content (wt%) are shown. Here, AlN was used for the ceramic blocking layers 110/150, and Y 2 O 3 was added as the rare earth oxide capable of reacting with carbon.
도 3과 같이, 먼저, 희토류 산화물의 함량이 10 wt%을 넘어가면 소결 중 세라믹 차단층(110/150)에 액상 출현이 높아져 카본 퍼니스 또는 카본 몰드(200)와 반응함으로써 소결 처리된 제품의 탈착이 어렵게 되었다. 따라서 세라믹 차단층(110/150)에는 희토류 산화물을 10 wt% 이하로 첨가하는 것이 바람직하다. 또한, 희토류 산화물 함량이 1 wt% 미만인 경우 발열체의 탄화를 억제하는 효과가 미미하게 될 수도 있다. As shown in FIG. 3, first, when the content of the rare earth oxide exceeds 10 wt%, the appearance of liquid phase increases in the ceramic blocking layer 110/150 during sintering, and the desorption of the sintered product by reacting with the carbon furnace or the carbon mold 200. This became difficult. Therefore, it is preferable to add rare earth oxide to 10 wt% or less in the ceramic blocking layer (110/150). In addition, when the rare earth oxide content is less than 1 wt%, the effect of inhibiting carbonization of the heating element may be insignificant.
또한, 원료 물질인 세라믹 분말층(130) 내에 함유된 카본 함량에 의해서는 발열체(140)의 저항 변화율은 그다지 크지 않은 것으로 확인되었다. In addition, it was confirmed that the change rate of resistance of the heating element 140 was not very large by the carbon content contained in the ceramic powder layer 130 as the raw material.
또한, 세라믹 차단층(110/150)은 다른 세라믹 분말 성형체를 소결하기 위하여 재사용될 수 있으나, 도 3과 같이 사용횟수가 총10회 이상이 되면 발열체(140)의 저항 변화율이 상승하기 시작하는 것을 확인하였다. In addition, the ceramic blocking layer 110/150 may be reused to sinter other ceramic powder compacts, but when the number of uses is 10 or more, as shown in FIG. 3, the change rate of the resistance of the heating element 140 starts to increase. Confirmed.
그리고, 종래의 더미층이나 차단층 없이 진행된 경우(비교예#1), 종래와 같이 금속 더미층을 사용한 경우(비교예#2)와 본 발명을 비교하면, 본 발명의 세라믹 차단층(110, 150)을 사용한 실시예#1, #2, #5, #6의 경우 전력을 인가하여 세라믹 히터(100)를 사용 시 세라믹 플레이트 가열면의 위치별 온도 편차가 상당히 개선됨을 확인할 수 있었고, 도 3에 나타낸 바와 같이, 본 발명의 실시예에 따라 제조된 경우 국부적인 탄화물의 생성에 따른 저항 증가로 발생하는 핫존(hot zone)의 저항 변화율이 종래 기술보다 낮았기 때문인 것으로 볼 수 있다. In addition, when the present invention proceeds without the conventional dummy layer or the blocking layer (Comparative Example # 1), and the present invention is compared with the case where the metal dummy layer is used as the conventional (Comparative Example # 2), the ceramic blocking layer 110 of the present invention In the case of the embodiments # 1, # 2, # 5, # 6 using the 150) it was confirmed that the temperature deviation by position of the ceramic plate heating surface is significantly improved when using the ceramic heater 100, Figure 3 As shown in the present invention, it can be seen that when manufactured according to the embodiment of the present invention, the change rate of the resistance of the hot zone caused by the increase in resistance due to the generation of local carbide is lower than in the prior art.
종래 기술에서, 발열체의 저항의 변화를 줄이기 위하여 금속 더미 부재(예, 4A, 5A, 6A족 금속)를 사용하여 외부로부터 카본 유입을 차폐해 어느 정도 발열체의 저항을 낮출 수 있었다. 즉, 이와 같은 금속 더미 부재는 외부에서 유입되는 카본을 줄여 발열체가 탄화되는 면적을 줄임으로써 어느 정도 발열체의 저항을 낮출 수 있었다. 그러나, 이와 같은 종래 기술은 발열체의 전체적인 저항 변화를 낮출 수 있지만, 국부적으로 발열체의 저항 변화가 불균일하게 발생하는 것을 막을 수는 없었다. 또한, 종래의 금속 더미 부재는 일회성으로 사용되며, 카본과 반응으로 소결 과정 중에 급격히 탄화되면서 취성을 나타냄으로써, 사용 시 크랙(crack)이 유발되며, 발생된 크랙은 카본 소스의 유입 경로로 작용한다. 또한, 금속 더미의 탄화 반응은 제품 표면에도 손상을 유발한다. 따라서, 분말 소결체를 필요 이상으로 두껍게 제작하여 손상 부위를 제거할 수 밖에 없었다. In the related art, in order to reduce the change in the resistance of the heating element, a metal dummy member (eg, Group 4A, 5A, and 6A metals) may be used to shield carbon inflow from the outside to lower the resistance of the heating element to some extent. That is, such a metal dummy member was able to reduce the resistance of the heating element to some extent by reducing the carbon introduced from the outside to reduce the area where the heating element is carbonized. However, such a prior art can lower the overall resistance change of the heating element, but cannot prevent the occurrence of nonuniformity of the resistance change of the heating element locally. In addition, the conventional metal dummy member is used as a one-time, it is brittle while rapidly carbonized during the sintering process by reaction with carbon, causing cracks during use, the cracks generated acts as an inflow path of the carbon source . In addition, carbonization of the metal piles causes damage to the product surface. Therefore, the powder sintered body was made thicker than necessary, and the damage site was inevitable.
그러나, 위와 같이 본 발명에 따른 세라믹 히터(100)에 따르면, 발열체를 매설하는 세라믹 분말 성형체 상하로 세라믹 차단층(110/150)을 형성하되 이형제 역할을 위한 BN층(115/155)을 더 둠으로써, 소결 과정에서 발열체(140)의 전체적인 저항 변화를 낮출 수 있으며 국부적인 저항 변화율 역시 개선할 수 있다. 즉, 본 발명에서는 세라믹 차단층(110/150)의 사용함으로써, 소결 과정에서 취성의 탄화물의 형성 및 이로 인한 크랙의 발생을 현저히 감소시킬 수 있다. 따라서, 본 발명의 세라믹 차단층(110/150)의 사용에 의해 유입되는 카본을 상당 부분 차단함으로써 소결 과정에서 발열체(140)의 전체적인 저항 변화를 낮출 수 있으며 국부적인 저항 변화율 역시 개선할 수 있다. 나아가 이형제 역할을 위한 BN층(115/155)은 세라믹 분말층(130)과의 반응이 이루어지지 않도록 함으로써, 세라믹 차단층(110/150)으로부터의 카본 차단에 더 유리하며, 세라믹 차단층(110/150)의 재사용에도 유리하게 된다. However, according to the ceramic heater 100 according to the present invention as described above, while forming the ceramic blocking layer (110/150) up and down the ceramic powder molded body for embedding the heating element, the BN layer (115/155) for the release agent is further added. As a result, the overall resistance change of the heating element 140 during the sintering process may be lowered, and the local resistance change rate may also be improved. That is, in the present invention, by using the ceramic blocking layers 110 and 150, the formation of brittle carbides and the occurrence of cracks during the sintering process can be significantly reduced. Therefore, by blocking a substantial portion of the carbon introduced by the use of the ceramic blocking layer (110/150) of the present invention it is possible to lower the overall resistance change of the heating element 140 during the sintering process and also to improve the local resistance change rate. Furthermore, the BN layer 115/155 for the release agent does not react with the ceramic powder layer 130, which is more advantageous for blocking carbon from the ceramic blocking layer 110/150, and the ceramic blocking layer 110. / 150) is also advantageous.
또한, 발열체(140)에서 국부적으로 탄화가 심하게 발생한 부분은 소결 후 히터로서 동작할 때 해당 부분에서 발열량이 증가하여 그 주위에 핫존을 형성할 수 있다. 본 발명에 따르면, 핫존과 같은 국부적인 위치에서의 발열체의 저항 상승 가능성이 차단되므로 웨이퍼 등 대상체 가열면의 위치별 온도 편차가 현저히 줄어들어 가열면의 온도 균일성을 높일 수 있는 잇점이 있다. 또한, 종래기술은 제품 표면에 상처가 발생하는 것을 억제하기 위하여 세라믹 분말 소결체를 필요 이상으로 두껍게 제작하여야 하는 문제가 있었으나, 본 발명에서는 반응성이 낮은 세라믹 차단층(110/150)을 사용함으로써 소결체 두께의 가공 여유를 작게 할 수 있고 세라믹 분말 성형체의 사용량을 낮출 수 있는 잇점이 있다. In addition, a portion where carbonization is severely localized in the heating element 140 may increase the amount of heat generated in the portion when operating as a heater after sintering to form a hot zone around it. According to the present invention, since the possibility of raising the resistance of the heating element at a local position such as a hot zone is blocked, the temperature variation of each heating surface of the object such as a wafer is significantly reduced, thereby increasing the temperature uniformity of the heating surface. In addition, the prior art had a problem that the ceramic powder sintered body to be made thicker than necessary in order to suppress the occurrence of scratches on the surface of the product, in the present invention, the sintered body thickness by using a low-reactivity ceramic blocking layer (110/150) There is an advantage that the processing allowance of the can be made small and the amount of the ceramic powder molded body used can be lowered.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.In the present invention as described above has been described by the specific embodiments, such as specific components and limited embodiments and drawings, but this is provided to help a more general understanding of the present invention, the present invention is not limited to the above embodiments. For those skilled in the art, various modifications and variations may be made without departing from the essential features of the present invention. Accordingly, the spirit of the present invention should not be limited to the described embodiments, and all technical ideas having equivalent or equivalent modifications to the claims as well as the following claims are included in the scope of the present invention. Should be interpreted as.

Claims (11)

  1. 제1 세라믹 차단층 및 제2 세라믹 차단층 사이에, 발열체가 매설된 세라믹 분말층이 개재되는 샌드위치 구조의 적층 구조를 성형하는 단계; 및Forming a sandwich structure of a sandwich structure between the first ceramic blocking layer and the second ceramic blocking layer, the ceramic powder layer having a heating element embedded therebetween; And
    상기 적층 구조의 성형체를 소결하는 단계Sintering the molded body of the laminated structure
    를 포함하는 세라믹 히터의 제조 방법.Method of manufacturing a ceramic heater comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 적층 구조의 성형 단계는,The forming step of the laminated structure,
    상기 제1 세라믹 차단층을 제공하는 단계;Providing the first ceramic blocking layer;
    상기 제1 세라믹 차단층 상에 상기 발열체가 매설된 상기 세라믹 분말층을 제공하는 단계; 및Providing the ceramic powder layer in which the heating element is embedded on the first ceramic blocking layer; And
    상기 세라믹 분말층 상에 상기 제2 세라믹 차단층을 제공하는 단계Providing the second ceramic blocking layer on the ceramic powder layer
    를 포함하는 것을 특징으로 하는 세라믹 히터의 제조 방법.Manufacturing method of a ceramic heater comprising a.
  3. 제2항에 있어서,The method of claim 2,
    상기 세라믹 분말층 제공 단계는,The ceramic powder layer providing step,
    제1 세라믹 분말층을 제공하는 단계;Providing a first ceramic powder layer;
    상기 제1 세라믹 분말층 상에 상기 발열체를 배치하는 단계; 및Disposing the heating element on the first ceramic powder layer; And
    상기 발열체가 배치된 상기 제1 세라믹 분말층 상에 제2 세라믹 분말층을 제공하는 단계Providing a second ceramic powder layer on the first ceramic powder layer on which the heating element is disposed;
    를 포함하는 것을 특징으로 하는 세라믹 히터의 제조 방법.Manufacturing method of a ceramic heater comprising a.
  4. 제3항에 있어서,The method of claim 3,
    상기 제1 세라믹 분말층을 제공하는 단계에서 상기 제1 세라믹 분말층은 성형체인 것을 특징으로 하는 세라믹 히터의 제조 방업.In the providing of the first ceramic powder layer, the first ceramic powder layer is manufactured.
  5. 제3항에 있어서,The method of claim 3,
    상기 제2 세라믹 분말층 제공 단계 이후에,After the second ceramic powder layer providing step,
    상기 제1 세라믹 분말층, 상기 발열체 및 상기 제2 세라믹 분말층을 가압 성형하는 단계Pressure molding the first ceramic powder layer, the heating element, and the second ceramic powder layer
    를 더 포함하는 것을 특징으로 하는 세라믹 히터의 제조 방법.Method of producing a ceramic heater, characterized in that it further comprises.
  6. 제1항에 있어서,The method of claim 1,
    상기 제1 및 제2 세라믹 차단층 각각과 상기 세라믹 분말층 사이에는 BN(Boron Nitride)을 포함하는 불활성층이 개재되는 것을 특징으로 하는 세라믹 히터의 제조 방법.A method of manufacturing a ceramic heater, wherein an inert layer including boron nitride (BN) is interposed between each of the first and second ceramic blocking layers and the ceramic powder layer.
  7. 제1항에 있어서,The method of claim 1,
    상기 제1 및 제2 세라믹 차단층은 희토류 산화물을 포함하는 것을 특징으로 하는 세라믹 히터의 제조 방법.Wherein the first and second ceramic blocking layers comprise rare earth oxides.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 제1 및 제2 세라믹 차단층은 질화물 및 희토류 산화물을 포함하고, The first and second ceramic blocking layers include nitride and rare earth oxides,
    상기 희토류 산화물은 상기 세라믹 차단층의 10 중량% 이하인 것을 특징으로 하는 세라믹 히터.The rare earth oxide is a ceramic heater, characterized in that less than 10% by weight of the ceramic blocking layer.
  9. 제1항에 있어서,The method of claim 1,
    상기 제1 및 제2 세라믹 차단층은 소결체인 것을 특징으로 하는 세라믹 히터의 제조 방법.The first and second ceramic blocking layer is a method of manufacturing a ceramic heater, characterized in that the sintered body.
  10. 제1항에 있어서,The method of claim 1,
    상기 제1 및 제2 세라믹 차단층은, 소결 과정 중 상기 발열체에서 외부로부터 유입되는 카본과의 반응에 의한 탄화물의 국부적인 생성을 저감하는 것을 특징으로 하는 세라믹 히터의 제조 방법.The first and second ceramic blocking layers may reduce local generation of carbides by reaction with carbon introduced from the outside in the heating element during the sintering process.
  11. 세라믹 소결체 및 상기 세라믹 소결체에 매설된 발열체를 포함하고,A ceramic sintered body and a heating element embedded in the ceramic sintered body,
    상기 세라믹 소결체는,The ceramic sintered body,
    제1 세라믹 차단층 및 제2 세라믹 차단층 사이에, 발열체가 매설된 세라믹 분말층이 개재되는 샌드위치 구조의 적층 구조를 갖는 성형체를 형성한 후 상기 세라믹 분말층을 소결하여 형성된 것을 특징으로 하는 세라믹 히터.A ceramic heater formed by sintering the ceramic powder layer after forming a molded body having a sandwich structure between the first ceramic blocking layer and the second ceramic blocking layer having a ceramic powder layer in which a heating element is embedded; .
PCT/KR2018/005250 2017-06-01 2018-05-08 Method for manufacturing ceramic heater WO2018221868A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170068337A KR102272523B1 (en) 2017-06-01 2017-06-01 Method for Manufacturing Ceramic Heater
KR10-2017-0068337 2017-06-01

Publications (1)

Publication Number Publication Date
WO2018221868A1 true WO2018221868A1 (en) 2018-12-06

Family

ID=64455497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005250 WO2018221868A1 (en) 2017-06-01 2018-05-08 Method for manufacturing ceramic heater

Country Status (3)

Country Link
KR (1) KR102272523B1 (en)
TW (1) TWI786112B (en)
WO (1) WO2018221868A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054114A (en) * 2020-09-17 2020-12-08 中科传感技术(青岛)研究院 Sintering method for piezoelectric ceramic piece

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3888531B2 (en) * 2002-03-27 2007-03-07 日本碍子株式会社 Ceramic heater, method for manufacturing ceramic heater, and buried article of metal member
JP3981482B2 (en) * 1998-12-25 2007-09-26 日本特殊陶業株式会社 Method for producing silicon nitride sintered body and method for producing ceramic heater
KR20100109438A (en) * 2009-03-30 2010-10-08 니뽄 가이시 가부시키가이샤 Ceramic heater and method for producing same
KR20140132903A (en) * 2013-05-09 2014-11-19 주식회사 미코 Ceramic heater and method of manufacturing the same
JP5926870B1 (en) * 2014-09-16 2016-05-25 日本碍子株式会社 Ceramic structure, member for substrate holding device, and method for producing ceramic structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI247551B (en) * 2003-08-12 2006-01-11 Ngk Insulators Ltd Method of manufacturing electrical resistance heating element
JP5341049B2 (en) * 2010-10-29 2013-11-13 日本発條株式会社 Method for manufacturing ceramic sintered body, ceramic sintered body, and ceramic heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3981482B2 (en) * 1998-12-25 2007-09-26 日本特殊陶業株式会社 Method for producing silicon nitride sintered body and method for producing ceramic heater
JP3888531B2 (en) * 2002-03-27 2007-03-07 日本碍子株式会社 Ceramic heater, method for manufacturing ceramic heater, and buried article of metal member
KR20100109438A (en) * 2009-03-30 2010-10-08 니뽄 가이시 가부시키가이샤 Ceramic heater and method for producing same
KR20140132903A (en) * 2013-05-09 2014-11-19 주식회사 미코 Ceramic heater and method of manufacturing the same
JP5926870B1 (en) * 2014-09-16 2016-05-25 日本碍子株式会社 Ceramic structure, member for substrate holding device, and method for producing ceramic structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054114A (en) * 2020-09-17 2020-12-08 中科传感技术(青岛)研究院 Sintering method for piezoelectric ceramic piece
CN112054114B (en) * 2020-09-17 2022-07-08 中科传感技术(青岛)研究院 Sintering method for piezoelectric ceramic piece

Also Published As

Publication number Publication date
KR102272523B1 (en) 2021-07-05
KR102272523B9 (en) 2021-11-12
TW201904351A (en) 2019-01-16
TWI786112B (en) 2022-12-11
KR20180131793A (en) 2018-12-11

Similar Documents

Publication Publication Date Title
US6753085B2 (en) Heat-resistant coated member
JP2019500307A (en) Steel-making vacuum glass manufacturing method and production line thereof
US11673842B2 (en) Method for manufacturing large ceramic co-fired articles
WO2020096267A1 (en) Electrostatic chuck and manufacturing method therefor
WO2018221868A1 (en) Method for manufacturing ceramic heater
CN113597665A (en) High density corrosion resistant layer arrangement for electrostatic chuck
WO1996039298A1 (en) Method for the reduction of lateral shrinkage in multilayer circuit boards on a support
KR20210092370A (en) Plasma resistant material with added fine particles and manufacturing method thereof
KR100754872B1 (en) Manufacturing method of spacer for flat panel display
WO2019168270A1 (en) Ceramic heater and manufacturing method therefor
JP3825116B2 (en) Ceramic firing method, ceramic firing apparatus and firing jig
WO2012015258A2 (en) Method for manufacturing silicon carbide sintered material using ball
JP3991887B2 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
JP2727652B2 (en) Method for firing aluminum nitride substrate
JP2006219308A (en) Aluminum nitride sintered compact having metallized layer, method and apparatus for producing the same, multilayer wiring board for mounting electronic component and electronic component mounting module
WO2022270832A1 (en) High-precision sintered body having embedded electrode pattern and method for manufacturing same
KR102583016B1 (en) Mg Based Electrostatic Chuck And Manufacturing Method Thereof
KR102352039B1 (en) Manufacturing Method Edge Ring of Electrostatic Chuck and Electrostatic Chuck Comprising Same
CN113402281A (en) Heating element and preparation method and application thereof
CN218120616U (en) Sintered structure
JP2000281453A (en) Firing of green sheet laminate
KR102487220B1 (en) Uniformly doped plasma resistant material and manufacturing method thereof
KR20230120209A (en) Method for manufacturing ceramic heater, ceramic heater manufactured therefrom, and semiconductor holding device comprising the same
JP3182094B2 (en) Manufacturing method of ceramic
JP5762815B2 (en) Method for producing aluminum nitride sintered body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810770

Country of ref document: EP

Kind code of ref document: A1