WO2018221739A1 - Coating composition and method for producing laminated body - Google Patents

Coating composition and method for producing laminated body Download PDF

Info

Publication number
WO2018221739A1
WO2018221739A1 PCT/JP2018/021259 JP2018021259W WO2018221739A1 WO 2018221739 A1 WO2018221739 A1 WO 2018221739A1 JP 2018021259 W JP2018021259 W JP 2018021259W WO 2018221739 A1 WO2018221739 A1 WO 2018221739A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
coating composition
coating
mass
formula
Prior art date
Application number
PCT/JP2018/021259
Other languages
French (fr)
Japanese (ja)
Inventor
悠 五十部
北川 浩隆
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019521354A priority Critical patent/JP6914330B2/en
Publication of WO2018221739A1 publication Critical patent/WO2018221739A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Definitions

  • the present disclosure relates to a coating composition and a method for producing a laminate.
  • coating compositions for applying and forming a thin layer of several ⁇ m to several tens of nanometers by various coating methods are widely used in optical film, printing and photolithography applications.
  • an aqueous coating solution uses a solvent containing water as a main component, the surface energy of the formed film is low and the transparency is excellent.
  • the coating liquid containing an organic solvent as a main component has advantages such as low viscosity of the coating liquid and low surface tension of the coating liquid, and any of the coating liquids is used in various applications.
  • these coating liquids include, for example, antireflection films, optical lenses, optical filters, flat films for thin film transistors (TFTs) for various displays, anti-condensation films, antifouling films, surface protective films, etc. Is mentioned.
  • the antireflection film is useful because it can be applied to protective films for solar cell modules, monitoring cameras, lighting equipment, signs, and the like.
  • a technique related to the antireflection film of the solar cell module for example, a technique related to a silica-based porous film has been proposed. Specifically, a silica-based porous film having a plurality of pores in a matrix mainly composed of silica, having a refractive index in the range of 1.10 to 1.38, A silica-based porous film containing pores having a diameter of 20 nm or more and having pores having a diameter of 20 nm or more opened on the outermost surface of 13/10 6 nm 2 or less is disclosed and has excellent antireflection performance and the like. There is an example (see, for example, JP-A-2016-1199).
  • a technique for forming a film having antireflection performance on a substrate using a coating solution containing a composition for forming a silica-based porous film has been disclosed, as described in JP-A-2016-1199.
  • pH nitric acid
  • nitric acid is used in the composition described in Japanese Patent Application Laid-Open No. 2016-1199, as well as Japanese Patent Application Laid-Open No. 2005-99693 and Japanese Patent Application Laid-Open No. 2006-335605.
  • a strong acid such as nitric acid is used for the coating solution.
  • Such a coating solution is likely to have a low pH, and concerns remain about the corrosion resistance and ease of handling during each step.
  • the present disclosure has been made in view of the above.
  • the problem to be solved by an embodiment of the present invention is to provide a coating composition that maintains pH and suppresses the occurrence of bright spot failures.
  • the problem to be solved by another embodiment of the present invention is to provide a method for producing a laminate in which pH is maintained and generation of bright spot failures is suppressed.
  • Specific means for achieving the above object includes the following aspects.
  • the coating composition has a degree of 1 mS / m or more.
  • the inorganic oxide precursor includes at least one compound selected from a hydrolyzable silane compound represented by the following formula (1) and a partial hydrolysis condensate of the hydrolyzable silane compound ⁇ 1>.
  • the coating composition according to any one of ⁇ 3>.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a fluorinated alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms
  • R 2 represents a hydrogen atom
  • An atom or an alkyl group having 1 to 8 carbon atoms is represented.
  • ⁇ 6> The coating composition according to any one of ⁇ 1> to ⁇ 5>, wherein the electrolyte content is 0.001 mol / L to 0.5 mol / L in terms of molar concentration.
  • ⁇ 7> The coating composition according to any one of ⁇ 1> to ⁇ 6>, which is used for coating formation of a cured film of a laminate having a substrate having a concavo-convex structure on the surface and a cured film.
  • ⁇ 8> A step of applying the coating composition according to any one of ⁇ 1> to ⁇ 7> on a substrate with a roll coater to form a coating film, a step of drying the coating film, and the drying And a step of obtaining a cured film by baking the coating film that has undergone the step of causing the laminate to be produced.
  • the substrate is a glass substrate.
  • the substrate is the method for producing a laminate according to any one of ⁇ 8> to ⁇ 10>, wherein the surface has an uneven structure.
  • the ⁇ 12> roll coater is a method for producing a laminate according to any one of ⁇ 8> to ⁇ 11>, wherein the surface material of the roll for applying the coating composition to the surface of the substrate is rubber.
  • a coating composition that is excellent in corrosion resistance in the production process, easy to handle liquid (safety), and can prevent the occurrence of bright spot failure.
  • production of the bright spot-like failure was suppressed is provided.
  • FIG. 1 is a laser micrograph of volatile defects.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the upper limit value or the lower limit value described in a numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the values shown in the examples.
  • the amount of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means quantity.
  • process in this specification is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term is used as long as the intended purpose of the process is achieved. included.
  • the coating composition of the present disclosure includes polymer particles, an inorganic oxide precursor, an electrolyte selected from an acid, a base, and a salt, and water, and further includes other components as necessary. Also good.
  • the coating composition of the present disclosure is prepared so that the pH at 25 ° C. is in the range of 4 to 10, and the conductivity at 25 ° C. is 1 mS / m or more.
  • a technique for forming a film having antireflection ability on a substrate using a coating liquid containing a composition for forming a silica-based porous film has been conventionally used.
  • a technique that is disclosed and focuses on providing functions such as antireflection is known.
  • a base material with a functional layer for example, a windshield
  • this windshield has an antireflection layer that suppresses reflection of sunlight on the side on which sunlight enters.
  • an antireflective layer disposed on the windshield is formed with a film having an appropriate refractive index with an appropriate film thickness.
  • a roll coating method is generally applied. In the roll coating method, a coating film is formed by transferring the coating composition adhering to the coating roll for applying the coating composition directly to the substrate to the substrate, but friction is generated between the substrate and the coating roll.
  • the rubber generally used for the material of the coating roll and the front substrate of the solar cell module, for example.
  • the glass to be mounted is in an environment in which frictional charging is likely to occur because of a large difference in charge column.
  • the windshield mounted on the solar cell module is generally provided with a concavo-convex structure on the surface in order to impart antiglare properties.
  • the triboelectric charge amount when triboelectric charging occurs tends to be different between the convex part and the concave part.
  • uneven charging occurs on the surface of the substrate, the thickness of the coating film becomes non-uniform due to the uneven charging, and the functionality such as antireflection properties further decreases.
  • the conductivity is adjusted to 1 mS / m or more by adding a specific electrolyte.
  • a specific electrolyte As a result, high electrical conductivity that can contribute to antistatic properties and pH near neutrality are compatible, and the occurrence of bright spot failure is suppressed without impairing corrosion resistance and handling properties.
  • the above effects are particularly effective when an ammonium salt is used as an electrolyte, and further effective when a hydrolyzable silane compound is used as an inorganic oxide precursor.
  • the coating composition of the present disclosure has a pH adjusted to 4 to 10 at 25 ° C.
  • the pH is more preferably in the range of 6 to 8 from the same viewpoint as described above.
  • the pH is a value measured using a pH meter (model number: HM-31, manufactured by Toa DKK) with the coating composition adjusted to 25 ° C. in a 25 ° C. environment.
  • the electrical conductivity at 25 ° C. is adjusted to 1 mS / m or more.
  • the electrical conductivity is 1 mS / m or more, charging at the time of application can be kept low, and the degree of uneven charging on the substrate can be reduced. Thereby, the coating thickness nonuniformity resulting from charging nonuniformity is suppressed effectively.
  • the conductivity is more preferably 5 mS / m to 90 mS / m, and further preferably 5 mS / m to 70 mS / m from the above viewpoint.
  • the electrical conductivity measurement in the present disclosure is a value measured at a temperature of 25 ° C. based on the above. Specifically, the electrical conductivity meter (model number: CM-30R, cell: CT-57101B, Toa DKK) Can be measured at 25 ° C.
  • the coating composition of the present disclosure contains at least one kind of polymer particles.
  • the polymer particles are particles that can be removed from the coating film formed by the coating composition, and are preferably particles that can be removed from the coating film by heat treatment. Examples of the particles that can be removed from the coating film by the heat treatment include particles that are removed by at least one of thermal decomposition and volatilization when the heat treatment is performed.
  • the thermal decomposition temperature of the polymer particles is preferably 300 ° C. to 800 ° C., more preferably 400 ° C. to 700 ° C.
  • the thermal decomposition temperature means a temperature at which the mass reduction rate reaches 50% by mass in thermal mass / differential heat (TG / TDA) measurement.
  • the glass transition temperature (Tg) of the polymer particles is preferably 0 ° C. to 150 ° C., more preferably 30 ° C. to 100 ° C.
  • Tg 150 degrees C or less the antifouling property of the film
  • Tg By setting Tg to 0 ° C. or higher, the scratch resistance of the resulting film is further improved. This is considered to be because the thermal decomposition temperature of the polymer particles can be set to 300 ° C. or higher, and pores of a uniform size can be obtained while maintaining the mechanical strength of the film high.
  • the glass transition temperature is obtained from a DSC curve obtained by differential scanning calorimetry (DSC), and more specifically, it is described in “Supplemental Method” described in JIS K7121-1987 “Method for Measuring Glass Transition Temperature”. It is determined by “outer glass transition start temperature”.
  • “antifouling” is evaluated by the tape adhesive remaining property when cellotape (registered trademark) is applied.
  • cellotape registered trademark
  • the windshield When the windshield is placed, for example, if a resin such as ethylene-vinyl acetate copolymer (EVA) contacts and adheres to an undesired region such as the windshield, it can be easily removed (eg, peeled off, wiped off, etc.). Properties can also be improved.
  • EVA ethylene-vinyl acetate copolymer
  • the polymer contained in the polymer particles is not particularly limited as long as polymer particles having a desired particle diameter can be obtained.
  • the polymer is a single monomer selected from the group consisting of (meth) acrylic acid ester monomers, styrene monomers, diene monomers, imide monomers, and amide monomers (hereinafter also referred to as “specific monomer group”).
  • a polymer or copolymer is preferred.
  • the polymer constituting the polymer particles preferably does not contain a functional group that reacts with and condenses with a silanol group such as a hydroxy group and a carboxy group.
  • (Meth) acrylic acid ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylic Isobutyl acid, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, nonyl (meth) acrylate, (meth) Decyl acrylate, dodecyl (meth) acrylate, phenyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, propoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate
  • Styrene monomers include styrene, methylstyrene, dimethylstyrene, trimethylstyrene, ethylstyrene, diethylstyrene, triethylstyrene, propylstyrene, butylstyrene, hexylstyrene, heptylstyrene, octylstyrene, fluorostyrene, chlorostyrene, bromostyrene, Examples thereof include dibromostyrene, chloromethylstyrene, nitrostyrene, acetylstyrene, methoxystyrene, ⁇ -methylstyrene, vinyltoluene, sodium p-styrenesulfonate, and the like.
  • diene monomer examples include butadiene, isoprene, cyclopentadiene, 1,3-pentadiene, dicyclopentadiene, and the like.
  • imide monomer examples include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, 6-aminohexylsuccinimide, 2-aminoethylsuccinimide and the like.
  • amide monomers examples include acrylamide derivatives such as acrylamide and N-methylacrylamide, allylamine derivatives such as N, N-dimethylacrylamide and N, N-dimethylaminopropylacrylamide, and aminostyrenes such as N-aminostyrene. Can be mentioned.
  • the polymer contained in the polymer particles is preferably a polymer having a crosslinked structure in order to obtain dispersibility in a solvent.
  • the polymer particles having a crosslinked structure can be obtained by polymerizing an emulsifier described later and a crosslinking reactive monomer.
  • numerator what has an unsaturated double bond in a molecule
  • numerator what has a radically polymerizable double bond
  • numerator Specific examples include carboxy group, hydroxy group, epoxy group, amino group, amide group, maleimide group, sulfonic acid group, phosphoric acid group, isocyanate group, alkoxy group, alkoxysilyl group, etc. It is selected from one or a combination thereof.
  • the crosslinking reactive monomer a monomer having a radical polymerizable double bond is preferable, and a (meth) acrylate monomer having a plurality of radical polymerizable double bonds in the molecule, or a styrene-based monomer. Monomers are more preferred.
  • the crosslinking reactive monomer include trimethylolpropane triacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, decaethylene glycol dimethacrylate, pentadecaethylene glycol dimethacrylate, and 1,3-butylene dimethacrylate.
  • the polymer particles are preferably nonionic polymer particles from the viewpoint of further improving scratch resistance and antifouling properties.
  • the coating composition contains nonionic polymer particles, the compatibility between the hydrolyzable silane compound and the nonionic polymer particles is improved, and the nonionic polymer particles are easily dispersed uniformly in the coating composition.
  • the coating composition contains nonionic polymer particles, the compatibility between the hydrolyzable silane compound and the nonionic polymer particles is improved, and the nonionic polymer particles are easily dispersed uniformly in the coating composition.
  • the coating composition contains nonionic polymer particles, the compatibility between the hydrolyzable silane compound and the nonionic polymer particles is improved, and the nonionic polymer particles are easily dispersed uniformly in the coating composition.
  • the distribution of vacancies existing in the film becomes uniform, and in combination with the fact that hydrolyzable silane compounds are unevenly distributed on the film surface, scratch resistance And antifouling property can be improved more.
  • Nonionic polymer particles are polymer particles synthesized by emulsion polymerization using a nonionic emulsifier and containing a structure derived from the nonionic emulsifier in the structure.
  • the nonionic polymer particle is a polymer particle that contains a structure derived from a nonionic emulsifier in its structure and does not substantially contain a structure derived from an anionic emulsifier or a structure derived from a cationic emulsifier.
  • substantially free means that the ratio of the structure derived from the nonionic emulsifier is 99% by mass or more with respect to the total amount of the structure derived from the emulsifier.
  • the ratio of the structure derived from the nonionic emulsifier can be calculated by analyzing fragments of polymer particles by a known method using pyrolysis GC-MS (gas chromatograph mass spectrometry).
  • the nonionic polymer particles are preferably self-dispersing particles.
  • Self-dispersing particles refer to particles made of water and alcohol-insoluble polymers that can be dispersed in an aqueous medium containing water and alcohol by the hydrophilic portion of the polymer particles themselves.
  • the dispersed state means an emulsified state (emulsion) in which water and an alcohol-insoluble polymer are dispersed in an aqueous medium in a liquid state, and a dispersed state (suspension) in which a water-insoluble polymer is dispersed in an aqueous medium in a solid state. It includes both states.
  • water-insoluble means that the amount dissolved in 100 parts by mass (25 ° C.) of water is 5.0 parts by mass or less.
  • the nonionic polymer particles are self-dispersing particles, the nonionic polymer particles are easily dispersed uniformly in the obtained film.
  • the coating composition does not contain an emulsifier or the content of the emulsifier is applied. Since it can be 1 mass% or less with respect to the total mass of a composition, it is excellent in scratch resistance and antifouling property.
  • nonionic emulsifier for synthesizing nonionic polymer particles
  • various nonionic emulsifiers can be suitably used.
  • the nonionic emulsifier is preferably a nonionic emulsifier having an ethylene oxide chain, and more preferably a nonionic reactive emulsifier having an ethylene oxide chain having a radical polymerizable double bond in the molecule.
  • membrane which has favorable pencil hardness can be obtained.
  • the emulsion stability during polymerization is good, the dispersion state of the polymer particles in the film is uniform, and the distribution of pores is uniform, resulting in non-uniform distribution of pores. It is considered that the occurrence of local capillary force and cracks resulting from the above is suppressed, and the scratch resistance of the resulting film is improved.
  • nonionic emulsifier having an ethylene oxide chain examples include emulsifiers such as polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, polyoxyethyleneoxypropylene block copolymer, polyethylene glycol fatty acid ester, and polyoxyethylene sorbitan fatty acid ester. It is done.
  • reactive emulsifiers include polyethylene glycol mono (meth) acrylates, polyoxyethylene alkylphenol ether (meth) acrylates, polyoxyethylene glycol monomaleate esters having various molecular weights (different number of moles of ethylene oxide added), and their Derivatives, 2,3-dihydroxypropyl methacrylate, 2-hydroxyethylacrylamide, and the like, and reactive emulsifiers having an ethylene oxide chain are preferred.
  • the reactive emulsifier having an ethylene oxide chain any emulsifier can be used as long as the chain number is 1 or more as long as the ethylene oxide chain is present. Among them, the chain number of the ethylene oxide chain is preferably 2 to 30.
  • emulsifiers of 3 to 15 are particularly preferable.
  • the nonionic emulsifier having an ethylene oxide chain at least one selected from these groups can be used.
  • nonionic emulsifier A commercially available product may be used as the nonionic emulsifier.
  • nonionic emulsifiers include the “Neugen” series, the “Aqualon” series (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), “Latemul PD-420”, “Latemul PD-430”, “Latemul PD”. -450 ",” Emulgen "series (above, manufactured by Kao Corporation).
  • the coating composition of this indication does not use an ionic polymer particle as a polymer particle, it can also use an ionic polymer particle together.
  • the mixing amount is usually 30 parts by mass or less, preferably 10 parts by mass or less, and most preferably 3 parts by mass or less with respect to 100 parts by mass of the total amount of polymer particles. It is.
  • the number average primary particle size of the polymer particles is preferably 30 nm to 200 nm.
  • the number average primary particle size of the polymer particles is 30 nm or more, a coating composition having excellent antireflection properties of the resulting film can be obtained.
  • the polymer particles are preferably removed from the coating film.
  • the number average primary particle size of the polymer particles is set to 30 nm or more, emptying due to the removal of the polymer particles is performed. A hole is obtained, and a film excellent in antireflection can be formed. This is because when pores resulting from the removal of polymer particles are formed by removing the polymer particles from the coating film by heat treatment, the film shrinks after cooling by removing the polymer particles by heat treatment.
  • the pores formed by removing the polymer particles are suppressed from being crushed as the membrane contracts, and the pores are sufficiently obtained in the membrane.
  • the number average primary particle size of the polymer particles is 200 nm or less, a coating composition that is superior in antireflection properties, scratch resistance and antifouling properties of the resulting film can be obtained. This is because when the pores resulting from the removal of the polymer particles are formed by heat treatment, the number average primary particle size of the polymer particles is set to 200 nm or less so that fine holes on the film surface after the removal of the polymer particles are formed. It is considered that the formation can be effectively suppressed.
  • the number average primary particle size of the polymer particles is preferably 150 nm or less, and more preferably 120 nm or less, from the viewpoint of stable pore formation.
  • the number average primary particle size of the polymer particles is preferably 40 nm or more, more preferably 60 nm or more, and still more preferably 80 nm or more, from the viewpoint of stable pore formation.
  • the number average primary particle diameter of the polymer particles is measured by a dynamic light scattering method. Specifically, the value obtained as a cumulative 50% value (d50) of the number-converted particle diameter was measured using Microtrac (Version 10.1.2-211BH) manufactured by Nikkiso Co., Ltd., and the number of polymer particles. The average primary particle size is used.
  • the ratio of the total mass of the polymer particles to the SiO 2 equivalent mass of the hydrolyzable silane compound described below is preferably 0.1 or more and 1 or less, and 0.2 or more and 0, from the viewpoint of antireflection properties of the resulting film. Is more preferably 0.9 or less, and further preferably 0.3 or more and 0.6 or less.
  • the total weight ratio of polymer particles to SiO 2 mass in terms of the hydrolyzable silane compound is a value obtained by (mass of polymer particles) / (SiO 2 mass in terms of the hydrolyzable silane compound).
  • the SiO 2 equivalent mass of the hydrolyzable silane compound can be calculated from the molecular weight of the hydrolyzable silane compound by analyzing the structure of the target hydrolyzable silane compound.
  • the coating composition of the present disclosure contains at least one inorganic oxide precursor.
  • the hydrophobic portion of the inorganic oxide precursor is unevenly distributed on the film surface, and a flat film surface is obtained. Thereby, antifouling property becomes favorable and also the flaw resistance of a film
  • the inorganic oxide precursor examples include an organometallic compound and a halogenated metal compound.
  • the organometallic compound examples include an aluminum chelate compound, a hydrolyzable silane compound, and a partially hydrolyzed condensate (eg, oligomer) of the hydrolyzable silane compound.
  • a siloxane oligomer having a weight average molecular weight of 600 to 6000 is preferable.
  • Examples of the aluminum chelate compound include aluminum ethyl acetoacetate diisopropylate, aluminum alkyl acetoacetate diisopropylate, aluminum monoacetylacetonate bis (ethylacetoacetate) and the like.
  • the aluminum chelate compound a commercially available product may be used, and examples of the commercially available product include aluminum chelates (for example, aluminum chelate D and aluminum chelate M) manufactured by Kawaken Fine Chemical Co., Ltd.
  • Examples of the metal halide compound include silicon tetrachloride and aluminum chloride.
  • hydrolyzable silane compounds and partially hydrolyzed condensates of hydrolyzable silane compounds are preferred in that they have a low refractive index and high antireflection properties.
  • the hydrolyzable silane compounds at least one compound selected from a hydrolyzable silane compound represented by the following formula (1) and a partial hydrolysis condensate of the hydrolyzable silane compound is preferable.
  • the coating composition of the present disclosure may contain water so that a part of the hydrolyzable silane compound may be hydrolyzed and condensed. Therefore, the coating composition of this indication contains the hydrolyzable silane compound represented by Formula (1), and the partial hydrolysis-condensation product of the hydrolyzable silane compound represented by Formula (1). Also good.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a fluorinated alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms
  • R 2 represents a hydrogen atom
  • An atom or an alkyl group having 1 to 8 carbon atoms is represented.
  • R 1 and R 2 may be the same or different.
  • the hydrolyzable silane compound represented by “R 1 —Si (OR 2 ) 3 ” in the formula (1) is a trifunctional alkoxysilane or a tetrafunctional alkoxysilane.
  • Examples of the trifunctional alkoxysilane represented by “R 1 —Si (OR 2 ) 3 ” include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and n-propyltrimethoxysilane.
  • Examples of the tetrafunctional alkoxysilane represented by “R 1 —Si (OR 2 ) 3 ” include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, and tetra-n-butoxysilane. And tetraalkoxysilane.
  • the hydrolyzable silane compounds represented by the formula (1) trifunctional alkoxysilanes are preferable from the viewpoint that the hydrolyzable silane compounds are likely to be unevenly distributed on the film surface and the antifouling property of the film is further improved.
  • R 1 and R 2 are preferably compounds having 1 to 6 carbon atoms, and more preferably R 1 and R 2 have 1 to 6 carbon atoms.
  • 3 is an alkyl group. Specifically, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, etc. Can be mentioned.
  • partial hydrolysis condensation of the hydrolyzable silane compound represented by the above formula (1) Things are preferred.
  • a partial hydrolysis condensate of a hydrolyzable silane compound containing at least one unit (specific unit) selected from the following formula (2), formula (3) and formula (4) is more preferable. In this case, the effect of improving the scratch resistance of the film can also be expected.
  • Formula (2) R 1 —Si (OR 2 ) 2 O 1/2 unit
  • each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a fluorinated alkyl group having 1 to 8 carbon atoms, or Represents an alkoxy group having 1 to 8 carbon atoms
  • each R 2 independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. Details of R 1 and R 2, have the same meanings as R 1 and R 2 in Formula (1) also applies to the preferred embodiments.
  • the hydrolyzable silane compound tends to be unevenly distributed on the film surface, and is selected from the above formulas (2), (3) and (4) in that the antifouling property of the film is further improved.
  • R 1 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a fluorinated alkyl group having 1 to 8 carbon atoms, and the total mass of the units is relative to the total mass of the hydrolyzable silane compound. It is preferable that it is 95 mass% or more. This is also suitable for improving the scratch resistance of the film.
  • At least one sort of specific units chosen from the above-mentioned formula (2), formula (3), and formula (4) are 95 to the total mass of a hydrolyzable silane compound. It is preferable to contain at least mass% and have a weight average molecular weight of 600 to 6000. For example, a case where a tetrafunctional alkoxysilane and a trifunctional alkoxysilane capable of forming a specific unit are used in combination, and the total mass of the specific unit is 95% by mass or more based on the total mass of the hydrolyzable silane compound.
  • R 1 and R 2 are more preferably within the following ranges. That is, R 1 each independently represents an alkyl group having 1 to 8 carbon atoms, and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. In the case where both the unit represented by the formula (2) and the unit represented by the formula (3) are included, the alkyl groups having 1 to 8 carbon atoms represented by R 1 or R 2 are the same. May be different.
  • the content of the specific unit in the hydrolyzable silane compound is preferably 98% by mass or more, more preferably 100% by mass from the viewpoint of further improving scratch resistance. In this case, antifouling properties can also be achieved.
  • the hydrolyzable silane compound is also preferably an oligomer having a weight average molecular weight of 600 to 6000.
  • the weight average molecular weight is in the above range, it is easy to achieve both scratch resistance and antifouling property of the film.
  • the hydrolyzable silane compound has a weight average molecular weight of 600 or more, the film obtained by the coating composition has excellent scratch resistance. This is presumably because the degree of condensation does not become too small when a film is formed from the coating composition.
  • the weight average molecular weight of the hydrolyzable silane compound is 6000 or less, it becomes more excellent in scratch resistance and antifouling property.
  • the weight average molecular weight of the hydrolyzable silane compound is preferably 1600 to 6000, more preferably 1600 to 3000 in terms of achieving both scratch resistance and antifouling properties and further improving it.
  • the weight average molecular weight refers to a value measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • HLC registered trademark
  • TSKgel Registered Trademark
  • Super Multipore HZ-H 4.6 mm ID ⁇ 15 cm, Tosoh Corp.
  • dimethylformamide is used as an eluent.
  • the measurement conditions are a sample concentration of 0.45 mass%, a flow rate of 0.35 mL / min, a sample injection amount of 10 ⁇ L, a measurement temperature of 40 ° C., and a differential refractive index (RI) detector. .
  • the calibration curve is “Standard sample TSK standard, polystyrene” of Tosoh Corporation: “F-40”, “F-20”, “F-4”, “F-1”, “A-5000”, “A -2500 ",” A-1000 ", and” n-propylbenzene ".
  • the hydrolyzable silane compound is preferably a siloxane resin obtained using a trifunctional alkoxysilane capable of forming a specific unit.
  • a trifunctional alkoxysilane capable of forming a specific unit.
  • at least one trifunctional alkoxysilane represented by the formula (1) is hydrolyzed.
  • a siloxane resin obtained by condensation is also preferred.
  • the trifunctional alkoxysilane that can form the specific unit may contain one kind alone or two or more kinds.
  • the hydrolyzable silane compound if necessary, a unit derived from a trifunctional alkoxysilane that can form a specific unit, a unit derived from another alkoxysilane other than the trifunctional alkoxysilane that can form a specific unit, and It may be a compound having In this case, the unit derived from the other alkoxysilane in the hydrolyzable silane compound is preferably less than 5% by mass of the total mass of the hydrolyzable silane compound.
  • alkoxysilane examples include trifunctional alkoxysilanes, tetrafunctional alkoxysilanes, and bifunctional alkoxysilanes other than the trifunctional alkoxysilane that can form the specific unit.
  • a trifunctional alkoxysilane other than the trifunctional alkoxysilane capable of forming the specific unit a trifunctional alkoxysilane other than the trifunctional alkoxysilane having a phenyl group is preferable.
  • a trifunctional alkoxysilane other than the trifunctional alkoxysilane having a phenyl group the mobility of the molecule can be maintained well. For this reason, in the film
  • alkoxysilanes other than trifunctional alkoxysilanes include tetrafunctional alkoxysilanes and bifunctional alkoxysilanes. Examples of the tetrafunctional alkoxysilane are as described above.
  • bifunctional alkoxysilanes include dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane, di-n-propyldiethoxysilane, diisopropyldimethoxysilane, diisopropyldi Ethoxysilane, di-n-butyldimethoxysilane, di-n-butyldiethoxysilane, di-n-pentyldimethoxysilane, di-n-pentyldiethoxysilane, di-n-hexyldimethoxysilane, di-n-
  • the hydrolyzable silane compound in the present disclosure is an alkoxysilane (preferably a compound represented by the formula (1), the formula (2), the formula (3), and the formula (4) that forms at least one unit. 2), a trifunctional alkoxysilane forming at least one specific unit selected from the formulas (3) and (4) can be obtained by hydrolysis and condensation.
  • alkoxysilane preferably a compound represented by the formula (1), the formula (2), the formula (3), and the formula (4) that forms at least one unit. 2
  • a trifunctional alkoxysilane forming at least one specific unit selected from the formulas (3) and (4) can be obtained by hydrolysis and condensation.
  • a specific synthesis method for example, the description in JP-A No. 2000-159892 can be referred to.
  • hydrolyzable silane compound a commercially available product may be used.
  • examples of commercially available products include KC-89S (R 1 : methyl group, R 2 : methyl group, weight average molecular weight 770, manufactured by Shin-Etsu Chemical Co., Ltd.), KR-515 (R 1 : methyl group, R 2 : Methyl group, weight average molecular weight 1100, manufactured by Shin-Etsu Chemical Co., Ltd.), KR-500 (R 1 : methyl group, R 2 : methyl group, weight average molecular weight 1200, manufactured by Shin-Etsu Chemical Co., Ltd.), X-40 -9225 (R 1 : methyl group, R 2 : methyl group, weight average molecular weight 5200, manufactured by Shin-Etsu Chemical Co., Ltd.), X-40-9246 (R 1 : methyl group, R 2 : methyl group, weight average molecular weight) 3000, manufactured by Shin-Etsu Chemical Co
  • the content of the hydrolyzable silane compound is preferably 1% by mass to 20% by mass, more preferably 1% by mass to 10% by mass, and more preferably 2% by mass to 8% by mass with respect to the total mass of the coating composition. Further preferred.
  • the coating composition of the present disclosure contains at least one electrolyte selected from acids, bases and salts.
  • a specific electrolyte selected from an acid, a base, and a salt within a range that maintains the above pH, an antistatic effect required at the time of application can be obtained while suppressing an increase in pH. Thereby, the thickness unevenness of the coating film due to charging is suppressed, the occurrence of a bright spot failure is suppressed, and the corrosion resistance and the handling property are adapted.
  • the electrolyte refers to a compound that dissociates into a cation and an anion when dissolved in water as a solvent.
  • “acid” refers to a substance that provides H +
  • base refers to a substance that receives H + .
  • acids satisfying pKa ⁇ 0 are strong acids.
  • a weak acid or a strong acid may be used.
  • the acid include weak acids such as acetic acid; strong acids such as nitric acid, phosphoric acid, hydrochloric acid, and sulfuric acid.
  • the base include sodium hydroxide, potassium hydroxide, ammonia and the like.
  • the salt include ammonium acetate, sodium acetate, potassium acetate, ammonium nitrate, sodium nitrate, potassium nitrate, ammonium sulfate, sodium sulfate, potassium sulfate, ammonium phosphate, sodium phosphate, potassium phosphate, ammonium chloride, sodium chloride and the like.
  • the pKa of the acid is 5.5 or less and the pKa of the conjugate acid which is a base is 8.5 or more.
  • pKa is within the above range, ionization proceeds well and an improvement in conductivity can be expected.
  • adding an acid and a base include acetic acid (pKa: 4.8), hydrochloric acid (pKa: -8.0), sulfuric acid (pKa: -3.0), nitric acid (pKa: -1.4).
  • an ammonium salt and a metal salt are preferable.
  • the metal salt include a salt of an alkali metal (for example, sodium or potassium) and a salt of an alkaline earth metal (for example, magnesium or calcium).
  • the metal salt remains in the film after the coating film is formed, and when the antireflection layer is formed as a functional layer, for example, the metal in the film affects the refractive index and has antireflection properties.
  • An ammonium salt is preferable in that it may be lowered.
  • an ammonium salt of an acid selected from a weak acid and a strong acid is more preferable, and ammonium acetate, ammonium nitrate, ammonium sulfate, ammonium phosphate, ammonium chloride, and the like are more preferable.
  • the content of the electrolyte selected from acids, bases and salts is preferably 0.001 mol / L to 0.5 mol / L, and preferably 0.005 mol / L to 0.4 mol / L as the molar concentration in the coating composition. More preferred is 0.01 mol / L to 0.3 mol / L.
  • the content of the electrolyte selected from an acid, a base, and a salt is 0.001 mol / L or more, conductivity for reducing bright spot failure can be obtained.
  • the content of the electrolyte selected from an acid, a base, and a salt is 0.5 mol / L or less, there is no concern of reducing the antireflection property when the antireflection film is formed.
  • the coating composition of the present disclosure contains water. By containing water, the polymer particles are dispersed and the hydrolyzable silane compound is dissolved.
  • the water is preferably water that does not contain impurities or has a reduced content of impurities. For example, deionized water is preferred.
  • the content of water in the coating composition is preferably 0.5% by mass to 20% by mass and preferably 2% by mass with respect to the total mass of the coating composition from the viewpoint of further improving the scratch resistance of the resulting film. Is more preferably 15% by mass, and further preferably 4% by mass to 10% by mass. It is thought that a silica matrix can be efficiently formed in the film
  • the silica matrix refers to a phase obtained by condensation of a hydrolyzable silane compound or the like.
  • the coating composition of the present disclosure may contain an organic solvent in addition to water.
  • the organic solvent is not limited as long as it is an organic solvent in which polymer particles are dispersed and a hydrolyzable silane compound is dissolved.
  • the organic solvent include alcohol solvents, ester solvents, ketone solvents, ether solvents, amide solvents and the like.
  • the total content of water and the organic solvent with respect to the total mass of the coating composition is preferably 80% by mass to 99% by mass, more preferably 10% by mass to 98% by mass, and 92% by mass to 97% by mass. % Is more preferable.
  • alcohol solvents examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 3-methyl-1-butanol, tert-butyl alcohol, 1-pentanol, and 2-pentanol.
  • Glycols such as ethylene glycol, diethylene glycol, triethylene glycol; ethylene glycol monomethyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monoethyl ether, methoxymethyl butanol, ethylene glycol monoethyl ether, And glycol ether solvents containing a hydroxyl group such as ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, and propylene glycol monoethyl ether.
  • ester solvent examples include methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, propyl acetate, isopropyl acetate, amyl acetate (pentyl acetate), isoamyl acetate (isopentyl acetate, 3-methylbutyl acetate), acetic acid 2 -Methylbutyl, 1-methylbutyl acetate, hexyl acetate, isohexyl acetate, propylene glycol monomethyl ether acetate, methyl formate, ethyl formate, butyl formate, propyl formate, ethyl lactate, butyl lactate, propyl lactate, ethyl carbonate, propyl carbonate, butyl carbonate, Examples include methyl pyruvate, ethyl pyruvate, propyl pyruvate, prop
  • ketone solvents include acetone, 1-hexanone, 2-hexanone, diethyl ketone, cyclohexanone, methylcyclohexanone, phenylacetone, methylethylketone, methylisobutylketone, acetylacetone, acetonylacetone, ionone, propylene carbonate, and ⁇ -butyrolactone. Can be mentioned.
  • the ether solvent examples include, in addition to the above glycol ether solvent containing a hydroxyl group, a glycol ether solvent not containing a hydroxyl group such as propylene glycol dimethyl ether, an aromatic ether solvent such as anisole, dioxane, tetrahydrofuran, 1,4- Examples include dioxane and isopropyl ether.
  • the amide solvent for example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and the like can be used.
  • an alcohol solvent is preferable, monovalent alcohol is more preferable, ethanol or 2-propanol is more preferable, and 2-propanol is particularly preferable.
  • the coating composition of the present disclosure preferably contains both water and an organic solvent.
  • a suitable combination of water and an organic solvent a mixed solvent of water and 2-propanol is preferable from the viewpoint of material solubility.
  • the content of the organic solvent relative to the total amount of water and the organic solvent is preferably 50% by mass or more, more preferably 65% by mass or more, and 80% by mass. It is still more preferable that it is above.
  • the upper limit of the content of the organic solvent can be, for example, 98% by mass or less.
  • the coating composition of the present disclosure may contain components other than the above components as long as the effects of the coating composition of the present disclosure are not significantly impaired.
  • examples of other components include inorganic particles having a number average primary particle size of 3 nm to 100 nm, alkali metal silicates, surfactants, thickeners, and the like.
  • the coating composition may contain inorganic particles having a number average primary particle size of 3 nm to 100 nm (hereinafter also referred to as “specific inorganic particles”).
  • specific inorganic particles By containing inorganic particles having a number average primary particle size of 3 nm to 100 nm in the coating composition, the scratch resistance and antifouling property of the resulting film can be improved while maintaining suitable antireflection properties.
  • the specific inorganic particles are particles containing at least one of boron, phosphorus, silicon, aluminum, titanium, zirconium, zinc, tin, indium, gallium, germanium, antimony, molybdenum, cerium and the like, preferably at least of the above elements It is an oxide particle containing one element.
  • oxide particles include particles of silicon oxide (silica), titanium oxide, aluminum oxide (alumina), zinc oxide, germanium oxide, indium oxide, tin oxide, antimony oxide, cerium oxide, zirconium oxide, and the like.
  • the specific inorganic particles may contain other metal oxides other than those listed here.
  • silica or alumina particles are preferably used as the specific inorganic particles, and silica particles are more preferably used.
  • the silica particles include hollow silica particles, porous silica particles, and nonporous silica particles.
  • the shape of the silica particles is not particularly limited, and may be any shape such as a spherical shape, an elliptical shape, or a chain shape.
  • the silica particles may be silica particles whose surfaces are treated with an aluminum compound or the like.
  • the coating composition may contain two or more kinds of specific inorganic particles.
  • two or more types of specific inorganic particles When two or more types of specific inorganic particles are included, two or more types of specific inorganic particles having different shapes, particle sizes, and elemental compositions can be included.
  • the number average primary particle size of the specific inorganic particles is 3 nm to 100 nm. By setting the particle size to 3 nm or more, a sufficient scratch resistance improvement effect by adding the specific inorganic particles can be obtained. Moreover, by setting the particle size to 100 nm or less, the porosity of the film can be maintained at an appropriate value even when specific inorganic particles are added, and excellent antireflection performance can be obtained.
  • the number average primary particle size of the specific inorganic particles is preferably 80 nm or less, more preferably 30 nm or less, and particularly preferably 15 nm or less.
  • the number-average primary particle size of the specific inorganic particles can be obtained from an image of a photograph taken by observing the dispersed silica specific inorganic particles with a transmission electron microscope. Specifically, for 200 particles randomly extracted from the image of the photograph, the projected area of the specific inorganic particles is measured, the equivalent circle diameter is obtained from the measured projected area, and the obtained equivalent circle diameter value is obtained. The value obtained by arithmetic averaging is taken as the number average primary particle size of the specific inorganic particles.
  • nonporous silica particles mean silica particles having no voids inside the particles, and are distinguished from silica particles having voids inside the particles such as hollow silica particles and porous silica particles.
  • the “non-porous silica particles” have a core such as a polymer inside the particles, and the outer shell (shell) of the core is silica or a precursor of silica (for example, a material that changes to silica by firing).
  • the core-shell structured silica particles are not included.
  • the state of the particles present in the coating film changes before and after baking.
  • a state in which the respective nonporous silica particles are aggregated into a single particle is defined as a single particle.
  • the coating film after firing it is considered that at least a part of the plurality of nonporous silica particles is present as a linked particle body connected to each other.
  • the scratch resistance is further improved. This is considered to be because the hardness of the film is increased because a plurality of nonporous silica particles are connected to form a particle connected body by baking the coating film.
  • silica particles Commercially available products may be used as the silica particles.
  • examples of commercially available products include NALCO (registered trademark) 8699 (aqueous dispersion of nonporous silica particles, number average primary particle size: 3 nm, solid content: 15% by mass, manufactured by NALCO), NALCO (registered trademark) 1130.
  • the specific inorganic particles can be contained to such an extent that the effects according to the embodiment of the present invention are not impaired, and the content thereof is 0.03 to 1.0 in terms of mass ratio with respect to the hydrolyzable silane compound.
  • 0.03 to 0.5 is more preferable, and 0.03 to 0.1 is most preferable.
  • the content ratio of the inorganic particles to the hydrolyzable silane compound is 0.03 or more, a film quality excellent in scratch resistance is easily obtained.
  • the content ratio of the inorganic particles to the hydrolyzable silane compound is 1.0 or less, it is advantageous for forming a film having a small surface unevenness and a good surface condition, and excellent antifouling properties are easily obtained.
  • the coating composition may contain an alkali metal silicate.
  • an alkali metal silicate By containing an alkali metal silicate, both antireflection properties and scratch resistance can be improved.
  • the alkali metal silicate refers to an alkali metal salt of silicic acid, and an alkali metal silicate represented by the following formula A is preferable. M 2 O ⁇ nSiO 2 Formula A
  • M represents an alkali metal.
  • the alkali metal include lithium (Li), sodium (Na), potassium (K), cesium (Cs), and the like.
  • Li or K is preferable. By selecting Li or K as the alkali metal, the scratch resistance is further improved as compared with Na.
  • n represents the molar ratio of alkali metal silicate. n is preferably a compound of 5.0 or less from the viewpoint of crosslinkability. When the molar ratio n of the alkali metal silicate is an appropriate value, it is considered that crosslinking becomes easy.
  • n is more preferably 3.0 or more.
  • the coating composition can contain a surfactant.
  • a surfactant By containing the surfactant, it is effective in improving the wettability of the coating composition to the substrate.
  • the surfactant include acetylene-based nonionic surfactants and polyol-based nonionic surfactants.
  • commercially available products may be used.
  • Olfin series for example, Olphine EXP.4200, Olphine EXP.4123, etc.
  • TRITON BG-10 manufactured by Kao Corporation or Mydoll series manufactured by Kao Corporation (for example, Mydoll 10, Mydoll 12, etc.) can be used.
  • the coating composition can contain a thickener.
  • the thickener include polyether, urethane-modified polyether, polyacrylic acid, polyacryl sulfonate, polyvinyl alcohol, and polysaccharides. Among these, polyether, modified polyacrylic sulfonate, and polyvinyl alcohol are preferable.
  • Commercially available products that are marketed as thickeners may be used. Examples of commercially available products include SN thickener 601 (polyether), SN thickener 615 (modified polyacrylic sulfonate), and Fuji Film manufactured by San Nopco. Examples include polyvinyl alcohol (degree of polymerization: about 1,000 to 2,000) manufactured by Wako Pure Chemical Industries.
  • the content of the thickener is preferably about 0.01% by mass to 5.0% by mass with respect to the total mass of the coating composition.
  • the solid content of the coating composition is preferably 1% by mass to 20% by mass, more preferably 1% by mass to 10% by mass, and still more preferably 2% by mass to 8% by mass with respect to the total mass of the coating composition.
  • the film obtained from the coating composition can be a film that can provide better antireflection properties. This is because when the solid content is in the above range, the coating film of the coating composition can follow the coating surface of the substrate with a uniform film thickness, and a film with a uniform thickness without film thickness unevenness can be obtained. This is probably because of this.
  • the solid content in the coating composition can be adjusted by the content of water or water and an organic solvent. In addition, solid content amount in this indication means the ratio of the mass remove
  • the coating composition of the present disclosure has the effect of suppressing unevenness in the thickness of the coating film due to charging during coating, and consequently suppressing the occurrence of bright spot failures.
  • the coating composition of the present disclosure can be suitably used for forming an antireflection film that is a cured product of the coating composition, for example.
  • the antireflection film using the coating composition of the present disclosure is excellent in antireflection properties because a film having an appropriate refractive index is formed with a highly uniform thickness in which occurrence of uneven thickness is suppressed. . Further, as described above, it can be excellent in scratch resistance and antifouling property.
  • An antireflection film will be described as an example as a cured product of the coating composition of the present disclosure.
  • the coating composition of the present disclosure can be suitably used for coating formation of a cured film of a laminate having a substrate having a concavo-convex structure on the surface and a cured film.
  • a windshield mounted on a solar cell module has an antireflection film for reducing the reflection of sunlight on a glass substrate, and provides an antiglare property to the surface of the glass substrate.
  • An uneven shape is provided for the purpose.
  • the antireflection property of the antireflection film is indicated by the following change in average reflectance ( ⁇ R).
  • ⁇ R average reflectance
  • the numerical value of ⁇ R is a positive value.
  • the reflectivity of a laminate in which an antireflection film is formed on a base material using a UV-visible-infrared spectrophotometer (model number: UV3100PC, manufactured by Shimadzu Corporation) in light having a wavelength of 400 nm to 1,100 nm. (%) Is measured using an integrating sphere.
  • a black tape (model number: SPV-202) is applied to the surface of the base material that is the back surface in order to suppress reflection of the back surface of the laminate (the surface on the side where the antireflection film of the base material is not formed). , Made by Nitto Denko). Then, the average reflectance (R AV ; unit%) of the laminate is calculated from the measured reflectance at each wavelength in the wavelength range of 400 nm to 1,100 nm. Similarly, the reflectance (%) of light having a wavelength of 400 nm to 1,100 nm of a base material on which no antireflection film is formed is measured.
  • the average reflectance (R 0AV ; unit%) of the substrate is calculated from the measured reflectance at each wavelength in the wavelength range of 400 nm to 1,100 nm.
  • a change ( ⁇ R; unit:%) of the average reflectance with respect to the base material on which the antireflection film is formed is calculated from the average reflectances R AV and R 0AV according to the following formula (a).
  • ⁇ R R 0AV ⁇ R AV formula (a) ⁇ R indicates that the greater the value is and the greater the value, the better the antireflection (AR) property.
  • the reflectance can be measured by using a spectrophotometer with an integrating sphere.
  • an ultraviolet-visible-infrared spectrophotometer (model number: UV3100PC, manufactured by Shimadzu Corporation) is used as a measuring apparatus, and the reflectance in light having a wavelength of 400 nm to 1,100 nm is measured using an integrating sphere, A value obtained by arithmetically averaging the reflectance values at the wavelengths of is used as the average reflectance.
  • ⁇ R of the antireflection film is preferably 2.3% or more, more preferably 2.6% or more from the viewpoint of antireflection properties.
  • the average film thickness of the antireflection film can be in the range of 50 nm to 250 nm from the viewpoint of antireflection properties. Among these, 80 nm to 200 nm is preferable from the viewpoint of antireflection properties.
  • the antireflection film was cut in parallel to the direction perpendicular to the film surface, and the cut surface was observed at 10 points with a scanning electron microscope (SEM). It is obtained by measuring the thickness and averaging the ten measured values (film thickness) obtained.
  • SEM scanning electron microscope
  • the antireflection film is formed on the base material, the antireflection film is cut together with the base material in a direction perpendicular to the substrate surface of the base material, and the above observation is performed.
  • a base material the base material used for manufacture of the laminated body mentioned later can be used.
  • the method for producing a laminate of the present disclosure includes a step of applying the above-described coating composition of the present disclosure on a substrate with a roll coater to form a coating film (hereinafter also referred to as “coating film forming step”). And a step of drying the coating film (hereinafter also referred to as “drying step”) and a step of baking the coating film that has undergone the drying step to obtain a cured film (hereinafter also referred to as “baking step”). .
  • the manufacturing method of the laminated body of this indication may have other processes, such as a washing process, a surface treatment process, and a cooling process, as needed.
  • the laminate since the coating composition described above is used, the laminate has excellent antireflection properties and the occurrence of bright spot failures regardless of the surface state of the substrate.
  • the body is manufactured and has excellent scratch resistance and antifouling properties.
  • the above-described coating composition of the present disclosure is coated on a substrate with a roll coater to form a coating film.
  • the present disclosure includes a specific electrolyte, polymer particles, and a hydrolyzable silane compound so as to suppress charging during coating and suppress the occurrence of coating thickness unevenness. Since the coating composition is used, the film formed through at least the drying process and the baking process described later can suppress the occurrence of bright spot-like failure, and has excellent antireflection properties when it is an antireflection film. It becomes. In addition, the film has excellent scratch resistance and antifouling properties.
  • the coating amount of the coating composition is not particularly limited, and can be appropriately set in consideration of operability and the like according to the solid content concentration in the coating composition, the desired film thickness, and the like.
  • the coating amount of the coating composition is preferably 0.01 mL / m 2 to 30 mL / m 2 , more preferably 0.1 mL / m 2 to 20 mL / m 2 , and 1 mL / m 2 to 15 mL / m 2. it is more preferably m 2.
  • the coating amount of the coating composition is within the above range, the coating accuracy is improved, and a film having better antireflection properties can be formed.
  • a roll coater is used for coating in the coating film forming step.
  • the surface of the substrate is charged and the coating film is likely to have uneven thickness.
  • the uneven thickness of the coating film due to charging causes a bright spot-like failure.
  • the occurrence of bright spot failure is particularly likely to occur when the surface material of the roll (that is, the coating roll) that applies the coating composition to the surface of the substrate is rubber. Therefore, when the coating roll containing rubber is applied to at least a part of the surface, the effect of the manufacturing method of the laminate of the present disclosure is further enhanced.
  • An example of the rubber is ethylene propylene diene rubber (EPDM).
  • any base material such as glass, resin, metal, ceramic, or a composite material in which at least one selected from glass, resin, metal, and ceramic is combined can be selected. Even when any substrate is used, the effect of the method for producing a laminate of the present disclosure is expected, but the coating roll on which the coating composition is applied is most likely to interact with the substrate. A glass substrate is preferable in that the effect is further enhanced.
  • the condensation of hydroxy groups occurs not only between the hydroxyl groups of the hydrolyzable silane compound but also between the hydroxyl group of the hydrolyzable silane compound and the hydroxyl group of the glass surface, A coating film having excellent adhesion to the substrate can be formed.
  • the base material having a concavo-convex structure refers to a base material having a surface arithmetic average roughness Ra of 0.1 ⁇ m to 1.0 ⁇ m.
  • Ra is more preferably 0.2 ⁇ m to 0.7 ⁇ m from the viewpoint of imparting functions such as antiglare property and antireflection.
  • the arithmetic average roughness Ra is a value measured according to JIS-B0601 using a surface roughness meter (model number: Handy Surf E-35B, manufactured by Tokyo Seimitsu Co., Ltd.).
  • the coating film formed in the coating film forming process is dried.
  • the coating film is preferably fixed on the substrate by removing the solvent in the coating composition.
  • a dense film is formed by removing the solvent in the coating composition. If the coating composition contains inorganic particles such as silica particles, the inorganic particles are densely arranged in the film, and a denser film is formed. It is considered that excellent scratch resistance can be obtained when the film becomes dense and the hardness increases. Moreover, since the film becomes dense and the film surface becomes smooth, it is considered that dirt is difficult to adhere and the antifouling property is excellent.
  • the coating film may be dried at room temperature (25 ° C.) or using a heating device.
  • the heating device is not particularly limited as long as it can be heated to a target temperature, and any known heating device can be used.
  • As the heating device an oven, an electric furnace, or the like, or a heating device uniquely manufactured according to the production line can be used.
  • the coating film may be dried by, for example, heating the coating film at an ambient temperature of 40 ° C. to 200 ° C. using the above heating device.
  • the heating time can be about 1 to 30 minutes.
  • the drying conditions for the coating film are preferably drying conditions in which the coating film is heated at an atmospheric temperature of 40 ° C. to 200 ° C. for 1 minute to 10 minutes, and drying is performed at an atmospheric temperature of 100 ° C. to 180 ° C. for 1 minute to 5 minutes. Conditions are more preferred.
  • the average film thickness of the coating film after drying can be in the range of 50 nm or more, and preferably in the range of 80 nm to 200 nm.
  • the average film thickness is 50 nm or more, the film has excellent antireflection properties, and when it is 80 to 200 nm, the antireflection properties are excellent.
  • the method for measuring the average film thickness is as described above.
  • the coating film that has undergone the drying step is fired to obtain a cured film.
  • firing is preferably performed at an ambient temperature of 400 ° C. to 800 ° C.
  • the hardness of the dense film formed in the drying process is further increased, and the scratch resistance is further improved.
  • organic components in the coating film, especially at least part of the polymer particles, are thermally decomposed and disappeared by baking, voids of any size are partially formed in the coating film after baking, and antireflection properties Can be improved effectively.
  • the coating film can be baked using a heating device.
  • the heating device is not particularly limited as long as it can be heated to a target temperature, and any known heating device can be used.
  • As the heating device in addition to an electric furnace or the like, it is possible to use a firing device uniquely produced in accordance with a production line.
  • the firing temperature (atmosphere temperature) of the coating film is more preferably 450 ° C. or higher and 800 ° C. or lower, further preferably 500 ° C. or higher and 800 ° C. or lower, and particularly preferably 600 ° C. or higher and 800 ° C. or lower.
  • the firing time is preferably from 1 minute to 10 minutes, and more preferably from 1 minute to 5 minutes.
  • the average film thickness of the cured film is preferably 80 nm to 200 nm.
  • the average film thickness is obtained by cutting a laminate having a fired film sample (for example, an antireflection film) on a glass substrate in parallel to a direction perpendicular to the substrate surface of the substrate, and then using the scanning electron microscope ( It is obtained by observing 10 spots with SEM, measuring the film thickness of each observed spot from 10 SEM images, and averaging the 10 measured values (film thickness) obtained.
  • the manufacturing method of the laminated body of this indication may include other processes other than said process as needed. Examples of other processes include a cleaning process, a surface treatment process, and a cooling process.
  • the laminated body in the present disclosure may be a windshield mounted on a solar cell module.
  • the solar cell module includes a laminate in the present disclosure, that is, a laminate having the base material and the antireflection film in the present disclosure.
  • the solar cell module includes a solar cell element that converts light energy of sunlight into electric energy, a laminate according to the present disclosure that is disposed on a side where sunlight enters, and a solar cell backsheet represented by a polyester film. It may be arranged between and.
  • the laminate according to the present disclosure and a back sheet for solar cells such as a polyester film are sealed with a sealing material typified by a resin such as an ethylene-vinyl acetate copolymer.
  • the solar cell module according to the present disclosure preferably includes the laminate according to the present disclosure in the outermost layer of the solar cell module. That is, the outermost layer of the solar cell module according to the present disclosure is preferably an antireflection film. In the solar cell module of the present disclosure, even if the outermost layer is an antireflection film, the antireflection film according to the present disclosure has an antifouling property that can easily remove a resin such as a sealing material. Excellent production efficiency can be obtained.
  • the members other than the laminate and the back sheet in the solar cell module are described in detail in, for example, “Solar power generation system constituent material” (supervised by Eiichi Sugimoto, Kogyo Kenkyukai, 2008).
  • solar power generation system constituent material supervised by Eiichi Sugimoto, Kogyo Kenkyukai, 2008.
  • the form provided with the layered product concerning this indication on the side which sunlight enters is preferred, and there is no restriction in composition other than the layered product concerning this indication.
  • the base material disposed on the solar light incident side of the solar cell module is preferably in the form of a base material of the laminate according to the present disclosure.
  • the base material include glass, resin, metal, ceramic, or And a base material such as a composite material obtained by combining at least one selected from glass, resin, metal and ceramic.
  • a preferred substrate is a glass substrate.
  • Solar cell modules include silicon-based solar cell elements such as single crystal silicon, polycrystalline silicon, and amorphous silicon, copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, gallium-arsenic III-V Any of various known solar cell elements such as Group II or Group II-VI compound semiconductor solar cell elements can be applied.
  • Example 1 -Synthesis of polymer particles 1- A mixed solution having the following composition was stirred and emulsified with a homogenizer at 10,000 rpm (round per minute) for 5 minutes while cooling to obtain 64.8 parts by mass of an emulsion.
  • a nonionic reactive emulsifier having an ethylene oxide chain (trade name LATEMUL PD-450 (main component : Polyoxyalkylene alkenyl ether), manufactured by Kao Corporation): 0.2 part by mass was added, the temperature was raised to 65 ° C., and then the atmosphere was replaced with nitrogen. The emulsion was uniformly dropped over 3 hours while maintaining 65 ° C under a nitrogen atmosphere, and further reacted at 65 ° C for 2 hours. After completion of the reaction, the reaction mixture was cooled to obtain an aqueous emulsion (polymer particle 1) having a solid content concentration of 30% by mass and an average primary particle size of 100 nm.
  • polymer particle 1 polymer particle 1 having a solid content concentration of 30% by mass and an average primary particle size of 100 nm.
  • Polymer particles 1 active ingredient concentration 30% by mass
  • KR-500 organic oxide precursor (methyltrimethoxysilane oligomer), manufactured by Shin-Etsu Chemical Co., Ltd., active ingredient concentration 100% by mass
  • 3 0.1 part by mass, 0.5 parts by mass of an acetic acid aqueous solution (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., diluted with water to an active ingredient concentration of 10% by mass) and an aqueous ammonium acetate solution (Fuji Film Wako Pure Chemical Industries, Ltd.) 0.05 parts by weight, 4.7 parts by weight of water, 89.1 parts by weight of Toxo IPA (2-propanol, manufactured by Tokuyama Corporation), Were mixed and stirred to prepare a coating solution (coating composition).
  • the film sample was formed so that the final average film thickness of the film sample formed on the glass substrate was 130 nm.
  • Ra was measured according to JIS-B0601 using a surface roughness meter (model number: Handy Surf E-35B, manufactured by Tokyo Seimitsu Co., Ltd.).
  • the average film thickness is obtained by cutting a laminate having a fired film sample (antireflection film) on a glass substrate in parallel to a direction orthogonal to the substrate surface of the substrate, and then cutting the cut surface with a scanning electron microscope (SEM). 10), the film thickness of each observation part was measured from 10 SEM images, and the obtained 10 measured values (film thickness) were averaged.
  • SEM scanning electron microscope
  • the reflectance (%) in light of ⁇ 1,100 nm was measured using an integrating sphere.
  • the reflectance was measured by attaching a black tape to the surface of the glass substrate serving as the back surface in order to suppress reflection of the back surface of the laminate (the surface on which the film sample of the glass substrate was not formed). .
  • the average reflectance (R AV ; unit%) of the laminate was calculated from the measured reflectance of each wavelength at wavelengths of 380 nm to 1,100 nm.
  • the reflectance (%) of light with a wavelength of 380 nm to 1,100 nm was measured for a glass substrate on which no film sample was formed.
  • the average reflectance (R 0AV ; unit%) of the glass substrate was calculated from the measured reflectance of each wavelength at wavelengths of 380 nm to 1,100 nm. From the above average reflectances R AV and R 0AV , the average reflectance change ( ⁇ R; unit:%) relative to the glass substrate on which no film sample was formed was calculated according to the following formula (a).
  • ⁇ R indicates that the larger the value, the better the antireflection (AR) property.
  • ⁇ R R 0AV ⁇ R AV formula (a)
  • the allowable range of antireflection properties is 2.3% or more, and preferably 2.6% or more.
  • the calculated antireflection performance ( ⁇ R) was ranked according to the evaluation criteria shown below. Ranks A to C are allowable ranges for antireflection. ⁇ Evaluation criteria> A: ⁇ R ⁇ 2.9 B: 2.6 ⁇ ⁇ R ⁇ 2.9 C: 2.3 ⁇ ⁇ R ⁇ 2.6 D: 2.0 ⁇ ⁇ R ⁇ 2.3 E: ⁇ R ⁇ 2.0
  • the allowable range of the tape adhesive remaining property is that the number of grids (x) is 9 or less.
  • the number (x) of the measured grids was ranked according to the evaluation criteria shown below. ⁇ Evaluation criteria> A: x ⁇ 3 B: 4 ⁇ x ⁇ 9 C: x ⁇ 10
  • Example 1 (Examples 2 to 20, Comparative Examples 1 to 4)
  • a coating solution was prepared in the same manner as in Example 1 except that the types and amounts of the compounds in the coating composition were changed as shown in Tables 1 to 6 below.
  • a laminate was prepared and further measured and evaluated. The results of measurement and evaluation are shown in Tables 1 to 6 below.
  • the average film thicknesses of the film samples (antireflection films) in Examples 2 to 20 and Comparative Examples 1 to 4 are both 130 nm as in Example 1.
  • “-” in the added amount of each component indicates that the corresponding component is not contained.
  • KR-500 methyltrimethoxysilane oligomer (inorganic oxide precursor (unit 20% to 30% by mass represented by the above formula (2) and unit 70% to 80% represented by the above formula (3) Hydrolyzable silane compound containing mass%); SiO 2 : 63 mass%, Shin-Etsu Chemical Co., Ltd.)
  • KBM-13 Methyltrimethoxysilane (inorganic oxide precursor (unit: 100% by mass represented by the above formula (1)); SiO 2 : 44% by mass, Shin-Etsu Chemical Co., Ltd.)
  • MS-51 tetramethoxysilane oligomer (inorganic oxide precursor (units represented by the above formula (2) 45 mass% to 55 mass% and units represented by the above formula (3) 45 mass% to 55 mass%) % Hydrolyzable silane compound); SiO 2 : 52% by mass, Shin-Etsu Chemical Co., Ltd.)
  • KBE-04 tetraethoxys
  • the inorganic oxide precursor is superior in antireflection and antifouling properties when a hydrolyzable silane compound is used as compared with Example 20 using aluminum chelate. It was.
  • Comparative Examples 1 and 2 that do not use an electrolyte selected from acids, bases, and salts, the conductivity was remarkably lowered, and the occurrence of bright spot-like failures remarkably appeared.
  • Comparative Example 3 using phosphoric acid since the degree of ionization of phosphoric acid itself was low, the electrical conductivity of the coating composition was remarkably lowered, and as a result, the occurrence of bright spot-like failures appeared remarkably.
  • Comparative Example 4 since only nitric acid, which is a strong acid, was used, the pH dropped significantly, and there was a problem in terms of corrosion resistance and handling in the production process.
  • the coating composition of the present disclosure is suitable for a wide range of technical fields in which image defects typified by bright spot failures are suppressed and high quality in appearance is required.
  • an optical lens, an optical filter, a surveillance camera, a sign Or a light-incident-side member (front glass, lens, etc.) of a solar cell module, a protective film provided on a light-irradiation-side member (diffusion glass, etc.) of a lighting device, an antireflection film, and a thin film transistor for various displays It is suitably used for a flattening film for (TFT).

Abstract

According to an aspect of the present invention there is provided a coating composition and a method for producing a laminated body. Said composition comprises: polymer particles; an inorganic oxide precursor; an electrolyte selected from an acid, a base, and a salt; and water. Said coating composition has a pH at 25°C of 4 to 10 and an electric conductivity at 25°C of at least 1 mS/m.

Description

塗布組成物及び積層体の製造方法Coating composition and method for producing laminate
 本開示は、塗布組成物及び積層体の製造方法に関する。 The present disclosure relates to a coating composition and a method for producing a laminate.
 近年、数μm~数10nmレベルの薄層を各種コーティング方法で塗布、形成するための塗布組成物が、光学フィルム、印刷、フォトリソグラフィー用途に於いて広く使用されている。例えば、水性の塗布液は、水を主成分とする溶媒を用いていることから、形成された膜の表面エネルギーが低く、透明性に優れる。一方で、有機溶媒を主成分とした塗布液に関しても、塗布液の粘性が低い、塗布液の表面張力が低いなどの利点を有し、いずれの塗布液も種々の用途に使用されている。 In recent years, coating compositions for applying and forming a thin layer of several μm to several tens of nanometers by various coating methods are widely used in optical film, printing and photolithography applications. For example, since an aqueous coating solution uses a solvent containing water as a main component, the surface energy of the formed film is low and the transparency is excellent. On the other hand, the coating liquid containing an organic solvent as a main component has advantages such as low viscosity of the coating liquid and low surface tension of the coating liquid, and any of the coating liquids is used in various applications.
 これら塗布液の具体的な用途としては、例えば、反射防止膜、光学レンズ、光学フィルタ、各種ディスプレイの薄層フィルムトランジスタ(TFT)用平坦化膜、結露防止膜、防汚膜、表面保護膜等が挙げられる。中でも、反射防止膜は、例えば、太陽電池モジュール、監視カメラ、照明機器、標識等の保護膜に適用することができるため有用である。 Specific applications of these coating liquids include, for example, antireflection films, optical lenses, optical filters, flat films for thin film transistors (TFTs) for various displays, anti-condensation films, antifouling films, surface protective films, etc. Is mentioned. Among these, the antireflection film is useful because it can be applied to protective films for solar cell modules, monitoring cameras, lighting equipment, signs, and the like.
 例えば、太陽電池モジュールでは、太陽光が入射する側の最表層に配置されたガラス(いわゆるフロントガラス)における反射特性が発電効率に大きく影響するため、発電効率を向上させる観点から、ガラス用の反射防止塗布液が種々提案されている。 For example, in a solar cell module, the reflection characteristics of the glass (so-called windshield) disposed on the outermost layer on the side on which sunlight is incident greatly affect the power generation efficiency. Various prevention coating solutions have been proposed.
 太陽電池モジュールの反射防止膜等に関連する技術として、例えば、シリカ系多孔質膜に関する技術が提案されている。
 具体的には、シリカを主成分とするマトリックス中に複数の空孔を有するシリカ系多孔質膜であって、屈折率が1.10~1.38の範囲内であり、上記空孔として、直径20nm以上の空孔を含み、最表面に開口した直径20nm以上の空孔の数が13個/10nm以下であるシリカ系多孔質膜が開示され、優れた反射防止性能等を有するとされている例がある(例えば、特開2016-1199号公報参照)。
As a technique related to the antireflection film of the solar cell module, for example, a technique related to a silica-based porous film has been proposed.
Specifically, a silica-based porous film having a plurality of pores in a matrix mainly composed of silica, having a refractive index in the range of 1.10 to 1.38, A silica-based porous film containing pores having a diameter of 20 nm or more and having pores having a diameter of 20 nm or more opened on the outermost surface of 13/10 6 nm 2 or less is disclosed and has excellent antireflection performance and the like. There is an example (see, for example, JP-A-2016-1199).
 上記のほか、水性防汚コート材として、イオン性界面活性剤を用いて防汚コート層を形成する技術が開示されている(例えば、国際公開第2015/012021号参照)。
 更に、硝酸塩水溶液及びマレイン酸水溶液を用いて反射防止膜形成用組成物を調製すること又は硝酸を用いて反射防止用塗料組成物を調製することを開示した文献がある(例えば、特開2005-99693号公報、特開2006-335605号公報参照)。
In addition to the above, a technique for forming an antifouling coating layer using an ionic surfactant as an aqueous antifouling coating material has been disclosed (see, for example, International Publication No. 2015/012021).
Further, there is a document disclosing preparation of an antireflection film-forming composition using an aqueous nitrate solution and an aqueous maleic acid solution, or preparing an antireflection coating composition using nitric acid (for example, Japanese Patent Application Laid-Open No. 2005-2005). No. 99693 and JP-A-2006-335605).
 上記の特開2016-1199号公報のように、従来からシリカ系多孔質膜を形成するための組成物を含む塗布液を用いて基材上に反射防止能を有する膜を形成する技術は開示されており、例えば反射防止膜の形成に用いられる塗布液は、各工程での耐腐食性、液の取扱容易性(安全性)等の観点から、液のpHは中性付近(pH=4~10)であることが望まれる。しかしながら、特開2016-1199号公報に記載の組成物には硝酸が用いられ、特開2016-1199号公報以外にも特開2005-99693号公報及び特開2006-335605号公報等のように塗布液に硝酸等の強酸を用いた例は多い。このような塗布液では、低pHとなりやすく、各工程中における耐腐食性及び取扱容易性の点で懸念が残る。 A technique for forming a film having antireflection performance on a substrate using a coating solution containing a composition for forming a silica-based porous film has been disclosed, as described in JP-A-2016-1199. For example, the coating solution used for forming the antireflection film has a neutral pH (pH = 4) from the viewpoint of corrosion resistance in each step, ease of handling (safety) of the solution, and the like. To 10). However, nitric acid is used in the composition described in Japanese Patent Application Laid-Open No. 2016-1199, as well as Japanese Patent Application Laid-Open No. 2005-99693 and Japanese Patent Application Laid-Open No. 2006-335605. There are many examples in which a strong acid such as nitric acid is used for the coating solution. Such a coating solution is likely to have a low pH, and concerns remain about the corrosion resistance and ease of handling during each step.
 上記に鑑み、pHの低下を抑えるために弱酸を用いると、pH低下は抑えられるが塗膜に厚みムラが生じやすくなる課題があることが判明した。
 例えば太陽電池モジュールに用いられるガラス等の表面に反射防止性能等の機能を付与するために塗布方式により成膜する場合には、特に帯電が生じやすく、帯電に起因して膜厚ムラが生じやすいことも判明した。膜厚ムラは、反射防止性能を損ないやすいばかりか、局所的に明るい部位として認識される輝点が散在する画像欠陥(輝点状故障)が発生し、外観不良を招来する一因となる。
 この現象は、例えば太陽電池モジュールに用いられるガラス等のように、表面に防眩性を付与する等の目的で凹凸形状が設けられている基材に塗布する場合に特に顕著に現れることが分かった。
In view of the above, it has been found that when a weak acid is used to suppress a decrease in pH, a decrease in pH is suppressed, but there is a problem that thickness unevenness is likely to occur in the coating film.
For example, when a film is formed by a coating method in order to impart a function such as antireflection performance to the surface of glass or the like used in a solar cell module, charging is particularly likely to occur, and unevenness in film thickness is likely to occur due to charging. It was also found out. The film thickness unevenness not only tends to impair the antireflection performance, but also causes an image defect in which bright spots recognized as locally bright parts are scattered (bright spot-like failure), leading to appearance defects.
This phenomenon is found to be particularly prominent when applied to a substrate having a concavo-convex shape for the purpose of imparting antiglare properties to the surface, such as glass used in solar cell modules. It was.
 上記した特開2016-1199号公報、国際公開第2015/012021号、特開2005-99693号公報及び特開2006-335605号公報のように、従来から反射防止膜等の機能層の形成に関する技術は提案されているものの、例えば特開2016-1199号公報に開示されたシリカ系多孔質膜では、輝点状故障の発生を回避することは困難である。また、特開2005-99693号公報及び特開2006-335605号公報のように強酸を添加した組成が適用されている例が多いのが実情である。
 また、国際公開第2015/012021号のように、解離性のあるイオン性界面活性剤を用いているが、例えば反射防止層を形成する場合には良好な反射防止能が得られない。
 更に、特開2005-99693号公報及び特開2006-335605号公報のように、電解質として硝酸等の強酸を用いた組成では、pHの低下を招きやすい。
Techniques related to the formation of functional layers such as antireflection films, such as the above-mentioned JP-A-2016-1199, International Publication No. 2015/012021, JP-A-2005-99693, and JP-A-2006-335605 However, it is difficult to avoid the occurrence of bright spot failure in the silica-based porous film disclosed in, for example, Japanese Patent Application Laid-Open No. 2016-1199. In fact, there are many examples in which a composition containing a strong acid is applied as in JP-A-2005-99693 and JP-A-2006-335605.
Moreover, although dissociative ionic surfactants are used as in International Publication No. 2015/012021, for example, when an antireflection layer is formed, good antireflection performance cannot be obtained.
Further, as in JP-A-2005-99693 and JP-A-2006-335605, a composition using a strong acid such as nitric acid as an electrolyte tends to cause a decrease in pH.
 本開示は、上記に鑑みなされたものである。
 本発明の一実施形態が解決しようとする課題は、pHを維持し、輝点状故障の発生が抑えられる塗布組成物を提供することにある。
 本発明の他の実施形態が解決しようとする課題は、pHを維持し、輝点状故障の発生が抑えられた積層体の製造方法を提供することにある。
The present disclosure has been made in view of the above.
The problem to be solved by an embodiment of the present invention is to provide a coating composition that maintains pH and suppresses the occurrence of bright spot failures.
The problem to be solved by another embodiment of the present invention is to provide a method for producing a laminate in which pH is maintained and generation of bright spot failures is suppressed.
 上記の課題を達成するための具体的手段には、以下の態様が含まれる。
 <1>ポリマー粒子と、無機酸化物前駆体と、酸、塩基及び塩から選ばれる電解質と、水と、を含み、25℃でのpHが4~10であり、かつ、25℃での電導度が1mS/m以上である塗布組成物である。
 <2>電導度が、5mS/m~70mS/mである<1>に記載の塗布組成物である。
 <3>電解質が、アンモニウム塩である<1>又は<2>に記載の塗布組成物である。
 <4>無機酸化物前駆体が、下記の式(1)で表される加水分解性シラン化合物、及び加水分解性シラン化合物の部分加水分解縮合物から選ばれる少なくとも一種の化合物を含む<1>~<3>のいずれか1つに記載の塗布組成物である。
  式(1):R-Si(OR
 式(1)において、Rは、水素原子、炭素数1~8のアルキル基、炭素数1~8のフッ化アルキル基、又は炭素数1~8のアルコキシ基を表し、Rは、水素原子又は炭素数1~8のアルキル基を表す。
 <5>加水分解性シラン化合物の部分加水分解縮合物が、下記の式(2)、式(3)及び式(4)から選択される少なくとも1種の単位を含む<4>に記載の塗布組成物である。
  式(2):R-Si(OR1/2単位
  式(3):R-Si(OR)O2/2単位
  式(4):R-Si-O3/2単位
 式(2)、式(3)及び式(4)において、Rは、各々独立に、水素原子、炭素数1~8のアルキル基、又は炭素数1~8のアルコキシ基を表し、Rは、各々独立に、水素原子又は炭素数1~8のアルキル基を表す。
Specific means for achieving the above object includes the following aspects.
<1> Polymer particles, an inorganic oxide precursor, an electrolyte selected from an acid, a base, and a salt, and water, having a pH of 4 to 10 at 25 ° C., and conducting at 25 ° C. The coating composition has a degree of 1 mS / m or more.
<2> The coating composition according to <1>, wherein the electrical conductivity is 5 mS / m to 70 mS / m.
<3> The coating composition according to <1> or <2>, wherein the electrolyte is an ammonium salt.
<4> The inorganic oxide precursor includes at least one compound selected from a hydrolyzable silane compound represented by the following formula (1) and a partial hydrolysis condensate of the hydrolyzable silane compound <1>. The coating composition according to any one of <3>.
Formula (1): R 1 —Si (OR 2 ) 3
In the formula (1), R 1 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a fluorinated alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, and R 2 represents a hydrogen atom An atom or an alkyl group having 1 to 8 carbon atoms is represented.
<5> The application according to <4>, wherein the partially hydrolyzed condensate of the hydrolyzable silane compound includes at least one unit selected from the following formula (2), formula (3), and formula (4): It is a composition.
Formula (2): R 1 —Si (OR 2 ) 2 O 1/2 unit Formula (3): R 1 —Si (OR 2 ) O 2/2 unit Formula (4): R 1 —Si—O 3 / 2 units In the formulas (2), (3) and (4), each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
 <6>電解質の含有量は、モル濃度で0.001mol/L~0.5mol/Lである<1>~<5>のいずれか1つに記載の塗布組成物である。
 <7>表面に凹凸構造を有する基材と硬化膜とを有する積層体の、硬化膜の塗布形成に用いられる<1>~<6>のいずれか1つに記載の塗布組成物である。
 <8>基材上に<1>~<7>のいずれか1つに記載の塗布組成物をロールコーターにより塗布し、塗布膜を形成する工程と、塗布膜を乾燥させる工程と、上記乾燥させる工程を経た塗布膜を焼成して硬化膜を得る工程と、を有する積層体の製造方法である。
 <9>硬化膜の平均膜厚が、80nm~200nmである<8>に記載の積層体の製造方法である。
 <10>基材が、ガラス基材である<8>又は<9>に記載の積層体の製造方法である。
 <11>基材は、表面に凹凸構造を有する<8>~<10>のいずれか1つに記載の積層体の製造方法である。
 <12>ロールコーターは、基材の表面に塗布組成物を塗布するロールの表面材質がゴムである<8>~<11>のいずれか1つに記載の積層体の製造方法である。
<6> The coating composition according to any one of <1> to <5>, wherein the electrolyte content is 0.001 mol / L to 0.5 mol / L in terms of molar concentration.
<7> The coating composition according to any one of <1> to <6>, which is used for coating formation of a cured film of a laminate having a substrate having a concavo-convex structure on the surface and a cured film.
<8> A step of applying the coating composition according to any one of <1> to <7> on a substrate with a roll coater to form a coating film, a step of drying the coating film, and the drying And a step of obtaining a cured film by baking the coating film that has undergone the step of causing the laminate to be produced.
<9> The method for producing a laminate according to <8>, wherein the average film thickness of the cured film is 80 nm to 200 nm.
<10> The method for producing a laminate according to <8> or <9>, wherein the substrate is a glass substrate.
<11> The substrate is the method for producing a laminate according to any one of <8> to <10>, wherein the surface has an uneven structure.
The <12> roll coater is a method for producing a laminate according to any one of <8> to <11>, wherein the surface material of the roll for applying the coating composition to the surface of the substrate is rubber.
 本発明の一実施形態によれば、製造工程での耐腐食性、液の取扱容易性(安全性)に優れ、輝点状故障の発生が抑えられる塗布組成物が提供される。また、本発明の他の実施形態によれば、輝点状故障の発生が抑えられた積層体の製造方法が提供される。 According to one embodiment of the present invention, there is provided a coating composition that is excellent in corrosion resistance in the production process, easy to handle liquid (safety), and can prevent the occurrence of bright spot failure. Moreover, according to other embodiment of this invention, the manufacturing method of the laminated body by which generation | occurrence | production of the bright spot-like failure was suppressed is provided.
図1は、揮点状故障のレーザー顕微鏡写真である。FIG. 1 is a laser micrograph of volatile defects.
 以下、本開示の塗布組成物及び積層体の製造方法について詳細に説明する。 Hereinafter, the manufacturing method of the coating composition and laminate of the present disclosure will be described in detail.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本明細書において、組成物中の各成分の量は、組成物中に各成分に相当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value. In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value described in a numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described. Further, in the numerical ranges described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the values shown in the examples.
In the present specification, the amount of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means quantity.
 また、本明細書中の「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。 In addition, the term “process” in this specification is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term is used as long as the intended purpose of the process is achieved. included.
<塗布組成物>
 本開示の塗布組成物は、ポリマー粒子と、無機酸化物前駆体と、酸、塩基及び塩から選ばれる電解質と、水と、を含み、必要に応じて、更に、他の成分を含んでいてもよい。
 また、本開示の塗布組成物は、25℃でのpHが4~10の範囲に調製され、かつ、25℃での電導度が1mS/m以上に調製されたものである。
<Coating composition>
The coating composition of the present disclosure includes polymer particles, an inorganic oxide precursor, an electrolyte selected from an acid, a base, and a salt, and water, and further includes other components as necessary. Also good.
In addition, the coating composition of the present disclosure is prepared so that the pH at 25 ° C. is in the range of 4 to 10, and the conductivity at 25 ° C. is 1 mS / m or more.
 例えば特開2016-1199号公報のように、従来からシリカ系多孔質膜を形成するための組成物を含む塗布液を用いて基材上に反射防止能を有する膜を形成する等の技術は開示されており、反射防止等の機能付与に着目した技術は知られている。
 そして、シリカ系多孔質膜として例えば反射防止膜形成用の塗布液は、各工程での耐腐食性、液の取扱容易性(安全性)等の観点から、pHが中性付近(pH=4~10)であることが好ましいが、特開2016-1199号公報、特開2005-99693号公報、及び特開2006-335605号公報などのように、塗布液に強酸を用いた組成は多くみられる。しかしながら、強酸を用いるとpHの低下を招き、耐腐食性及び取扱容易性が懸念される。そこで、pHの低下を防ぐために単に弱酸を用いると、pH低下は抑えられるが塗膜に厚みムラが生じることが判明した。
 この点を検証すると、塗膜の厚みムラは、電解質である強酸を弱酸にしたために帯電が生じ、面内に生じた帯電ムラに起因して塗膜の厚みムラが発生したことが明らかになった。塗膜の厚みムラは、例えば反射防止膜では、反射防止性を低下させる要因となる。
For example, as disclosed in Japanese Patent Application Laid-Open No. 2016-1199, a technique for forming a film having antireflection ability on a substrate using a coating liquid containing a composition for forming a silica-based porous film has been conventionally used. A technique that is disclosed and focuses on providing functions such as antireflection is known.
For example, a coating liquid for forming an antireflection film as a silica-based porous film has a pH near neutral (pH = 4) from the viewpoint of corrosion resistance in each step, ease of handling of the liquid (safety), and the like. 10) is preferable, but many compositions using strong acid in the coating solution, such as Japanese Patent Application Laid-Open No. 2016-1199, Japanese Patent Application Laid-Open No. 2005-99693, and Japanese Patent Application Laid-Open No. 2006-335605, are often used. It is done. However, use of a strong acid causes a decrease in pH, and there is concern about corrosion resistance and ease of handling. Thus, it has been found that when a weak acid is simply used to prevent the pH from being lowered, the pH drop can be suppressed, but the coating film has uneven thickness.
When this point was verified, it became clear that the uneven thickness of the coating film was caused by charging the strong acid that was the electrolyte into a weak acid, and the uneven thickness of the coating film was caused by the uneven charging that occurred in the surface. It was. The thickness unevenness of the coating film becomes a factor of reducing the antireflection property in the antireflection film, for example.
 例えば、太陽電池モジュールでは、機能層付の基材(例えばフロントガラス)が搭載されており、このフロントガラスは、太陽光が入射する側に太陽光の反射を抑える反射防止層を有している。フロントガラスに配設される反射防止層には、発電効率の向上に有利な反射防止性能を得る観点から、適切な屈折率を有する膜が適切な膜厚で形成されていることが重要である。そして、反射防止層は、広範な領域に簡便にかつ均一性をもって塗布するため、一般にロールコート法が適用されている。
 ロールコート法では、塗布組成物を基材に直接塗布するためのコーティングロールに付着した塗布組成物を基材に転写することで塗膜を形成するが、基材とコーティングロールとの間で摩擦帯電が発生しやすい。摩擦帯電が生じた場合、基材表面が均一に帯電されずに帯電ムラが形成されやすい。帯電ムラは、乾燥前の塗膜に作用して塗膜の厚みムラを招来しやすいと考えられる。そうすると、例えば反射防止性は、塗膜の厚みが特定の値にある場合に最大となるため、厚みムラが生じると反射防止性が低下する。また、厚みムラは、図1に示すように、面内に局所的に明るくみえる部位として認識される輝点が散在した画像欠陥(輝点状故障)が発生し、外観不良を招く一因となる。
 上記のような摩擦帯電は、基材とコーティングロールとの間の帯電列差が大きい場合に生じやすく、例えば、コーティングロールの材料に一般に使用されるゴムと、例えば太陽電池モジュールのフロント基材として搭載されるガラスと、は帯電列差が大きいため、摩擦帯電が発生しやすい環境にあるといえる。
 更に、太陽電池モジュールに搭載されるフロントガラスは、一般に、防眩性を付与するために表面に凹凸構造が設けられている。凹凸構造を有する場合、摩擦帯電が生じた際の摩擦帯電量が凸部と凹部とで異なる傾向がある。結果、基材の表面には、帯電ムラが生じ、帯電ムラに起因して塗膜の厚みが不均一になり、反射防止性等の機能性はさらに低下する。
For example, in a solar cell module, a base material with a functional layer (for example, a windshield) is mounted, and this windshield has an antireflection layer that suppresses reflection of sunlight on the side on which sunlight enters. . From the viewpoint of obtaining antireflection performance advantageous for improving power generation efficiency, it is important that an antireflective layer disposed on the windshield is formed with a film having an appropriate refractive index with an appropriate film thickness. . In order to apply the antireflection layer easily and uniformly over a wide area, a roll coating method is generally applied.
In the roll coating method, a coating film is formed by transferring the coating composition adhering to the coating roll for applying the coating composition directly to the substrate to the substrate, but friction is generated between the substrate and the coating roll. Charge is likely to occur. When frictional charging occurs, the surface of the substrate is not uniformly charged and uneven charging is likely to be formed. It is considered that the uneven charging tends to cause unevenness in the thickness of the coating film by acting on the coating film before drying. In this case, for example, the antireflection property is maximized when the thickness of the coating film is at a specific value. Therefore, when thickness unevenness occurs, the antireflection property decreases. In addition, as shown in FIG. 1, unevenness in thickness is caused by image defects (bright spot-like faults) in which bright spots recognized as sites that appear locally bright in the plane are scattered, resulting in poor appearance. Become.
The triboelectric charge as described above is likely to occur when the difference in the charge train between the substrate and the coating roll is large. For example, the rubber generally used for the material of the coating roll and the front substrate of the solar cell module, for example. It can be said that the glass to be mounted is in an environment in which frictional charging is likely to occur because of a large difference in charge column.
Furthermore, the windshield mounted on the solar cell module is generally provided with a concavo-convex structure on the surface in order to impart antiglare properties. When it has an uneven structure, the triboelectric charge amount when triboelectric charging occurs tends to be different between the convex part and the concave part. As a result, uneven charging occurs on the surface of the substrate, the thickness of the coating film becomes non-uniform due to the uneven charging, and the functionality such as antireflection properties further decreases.
 塗布組成物の電導度を高めると帯電防止作用が得られるため、摩擦帯電に起因する帯電ムラは生じ難くなり、塗膜の厚みムラの発生も抑制されることが推定される。そのため、塗布組成物の電導度を高める成分として電離度の大きい強酸を用いることが考えられるが、上記の通り、単に強酸を用いると塗布組成物のpH低下を招く。
 一方、例えば国際公開第2015/012021号のように、電解質であるイオン性界面活性剤を用いることも考えられるが、イオン性界面活性剤では塗膜の厚みムラの改善効果は期待できず、良好な反射防止能が得られないことが判っている。
It is presumed that when the conductivity of the coating composition is increased, an antistatic effect is obtained, so that uneven charging due to frictional charging hardly occurs and the occurrence of uneven coating thickness is also suppressed. For this reason, it is conceivable to use a strong acid having a high degree of ionization as a component for increasing the conductivity of the coating composition. However, as described above, simply using a strong acid leads to a decrease in pH of the coating composition.
On the other hand, it is conceivable to use an ionic surfactant that is an electrolyte as in, for example, International Publication No. 2015/012021, but the ionic surfactant cannot be expected to improve the thickness unevenness of the coating film, and is good. It has been found that a good antireflection performance cannot be obtained.
 本開示では、上記に鑑み、特定の電解質を添加することで、電導度を1mS/m以上に調整する。これにより、帯電防止に寄与し得る高い電導度と中性付近のpHとを両立し、耐腐食性及び取扱い性を損なうことなく、輝点状故障の発生を抑制する。
 上記の作用効果は、電解質としてアンモニウム塩を用いた場合に特に有効であり、更には、無機酸化物前駆体として加水分解性シラン化合物を用いた場合に有効である。
In the present disclosure, in view of the above, the conductivity is adjusted to 1 mS / m or more by adding a specific electrolyte. As a result, high electrical conductivity that can contribute to antistatic properties and pH near neutrality are compatible, and the occurrence of bright spot failure is suppressed without impairing corrosion resistance and handling properties.
The above effects are particularly effective when an ammonium salt is used as an electrolyte, and further effective when a hydrolyzable silane compound is used as an inorganic oxide precursor.
~pH~
 本開示の塗布組成物は、25℃でのpHが4~10の範囲に調整されている。
 pHが4~10の範囲にあるとで、金属を用いた電子材料等の腐食の懸念が解消され、工程内の作業(例えば塗布又は塗布組成物の運搬等)中の取扱いが容易である。
 pHとしては、上記と同様の観点で、6~8の範囲がより好ましい。
 pHは、25℃環境下において、塗布組成物を25℃に調温した状態でpHメーター(型番:HM-31、東亜DKK社製)を用いて測定される値である。
~ PH ~
The coating composition of the present disclosure has a pH adjusted to 4 to 10 at 25 ° C.
When the pH is in the range of 4 to 10, the concern about corrosion of electronic materials using metals is eliminated, and handling during work in the process (for example, coating or transportation of the coating composition) is easy.
The pH is more preferably in the range of 6 to 8 from the same viewpoint as described above.
The pH is a value measured using a pH meter (model number: HM-31, manufactured by Toa DKK) with the coating composition adjusted to 25 ° C. in a 25 ° C. environment.
~電導度~
 本開示の塗布組成物は、25℃での電導度が1mS/m以上に調整されている。
 電導度が1mS/m以上であると、塗布時の帯電が低く抑えられ、基材上の帯電ムラの程度を緩和することができる。これにより、帯電ムラに起因する塗膜の厚みムラが効果的に抑制される。
 電導度としては、上記の観点から、5mS/m~90mS/mがより好ましく、5mS/m~70mS/mが更に好ましい。
~ Conductivity ~
In the coating composition of the present disclosure, the electrical conductivity at 25 ° C. is adjusted to 1 mS / m or more.
When the electrical conductivity is 1 mS / m or more, charging at the time of application can be kept low, and the degree of uneven charging on the substrate can be reduced. Thereby, the coating thickness nonuniformity resulting from charging nonuniformity is suppressed effectively.
The conductivity is more preferably 5 mS / m to 90 mS / m, and further preferably 5 mS / m to 70 mS / m from the above viewpoint.
 電導度とは、長さL、底面の面積(円柱の断面積)Aからなる円柱状の導体における、円柱の底面間の抵抗Rを下記式で表した場合、式中の抵抗率ρの逆数で表される。
   R=ρ(L/A)
 本開示における電導度の測定は、上記に基づいて温度25℃にて測定される値であり、具体的には、電導度計(型番:CM-30R、セル:CT-57101B、東亜DKK社)を用いて25℃で測定することができる。
The electrical conductivity is the reciprocal of the resistivity ρ in the formula when the resistance R between the bottom surfaces of the cylinder in the cylindrical conductor having the length L and the bottom area (cylinder cross-sectional area) A is expressed by the following formula. It is represented by
R = ρ (L / A)
The electrical conductivity measurement in the present disclosure is a value measured at a temperature of 25 ° C. based on the above. Specifically, the electrical conductivity meter (model number: CM-30R, cell: CT-57101B, Toa DKK) Can be measured at 25 ° C.
-ポリマー粒子-
 本開示の塗布組成物は、ポリマー粒子の少なくとも一種を含有する。
 ポリマー粒子は、塗布組成物により形成された塗布膜中から除去可能な粒子であり、熱処理により塗布膜中から除去可能な粒子であることが好ましい。
 熱処理により上記塗布膜中から除去可能な粒子としては、例えば、熱処理が行われた際に、熱分解及び揮発の少なくとも一方により除去される粒子が挙げられる。
-Polymer particles-
The coating composition of the present disclosure contains at least one kind of polymer particles.
The polymer particles are particles that can be removed from the coating film formed by the coating composition, and are preferably particles that can be removed from the coating film by heat treatment.
Examples of the particles that can be removed from the coating film by the heat treatment include particles that are removed by at least one of thermal decomposition and volatilization when the heat treatment is performed.
 ポリマー粒子の熱分解温度は、300℃~800℃が好ましく、400℃~700℃がより好ましい。
 熱分解温度とは、熱質量/示差熱(TG/TDA)測定において、質量減少率が50質量%に達した時点の温度を意味する。
The thermal decomposition temperature of the polymer particles is preferably 300 ° C. to 800 ° C., more preferably 400 ° C. to 700 ° C.
The thermal decomposition temperature means a temperature at which the mass reduction rate reaches 50% by mass in thermal mass / differential heat (TG / TDA) measurement.
 また、ポリマー粒子のガラス転移温度(Tg)は、0℃~150℃が好ましく、30℃~100℃がより好ましい。
 Tgを150℃以下とすることにより、得られる膜の防汚性がより向上する。これは、塗布組成物の流動性が高くなることにより、加水分解性シラン化合物の膜表面への偏在がより容易になるためであると考えられる。
 Tgを0℃以上とすることにより、得られる膜の耐傷性がより向上する。これは、ポリマー粒子の熱分解温度を300℃以上にすることができ、膜の機械強度を高く維持したまま、均一な大きさの空孔を得ることができるためであると考えられる。
 ガラス転移温度は、示差走査熱量測定(DSC)により得られたDSC曲線より求め、より具体的にはJIS K7121-1987「プラスチックの転移温度測定方法」のガラス転移温度の求め方に記載の「補外ガラス転移開始温度」により求められる。
Further, the glass transition temperature (Tg) of the polymer particles is preferably 0 ° C. to 150 ° C., more preferably 30 ° C. to 100 ° C.
By making Tg 150 degrees C or less, the antifouling property of the film | membrane obtained improves more. This is considered to be because the uneven distribution of the hydrolyzable silane compound on the film surface becomes easier by increasing the fluidity of the coating composition.
By setting Tg to 0 ° C. or higher, the scratch resistance of the resulting film is further improved. This is considered to be because the thermal decomposition temperature of the polymer particles can be set to 300 ° C. or higher, and pores of a uniform size can be obtained while maintaining the mechanical strength of the film high.
The glass transition temperature is obtained from a DSC curve obtained by differential scanning calorimetry (DSC), and more specifically, it is described in “Supplemental Method” described in JIS K7121-1987 “Method for Measuring Glass Transition Temperature”. It is determined by “outer glass transition start temperature”.
 なお、本明細書中において、「防汚性」は、セロテープ(登録商標)を貼り付けた際のテープ糊残り性で評価されるものであるが、例えば太陽電池モジュールの分野において、組立工程でフロントガラスを配置する際、例えばエチレン-酢酸ビニル共重合体(EVA)などの樹脂がフロントガラス等の所望されない領域に接触して付着した場合も、容易に除去(例えば剥離、拭き取り等)し得る性質も良好にすることができる。 In the present specification, “antifouling” is evaluated by the tape adhesive remaining property when cellotape (registered trademark) is applied. For example, in the field of solar cell modules, When the windshield is placed, for example, if a resin such as ethylene-vinyl acetate copolymer (EVA) contacts and adheres to an undesired region such as the windshield, it can be easily removed (eg, peeled off, wiped off, etc.). Properties can also be improved.
 ポリマー粒子に含まれるポリマーとしては、所望の粒径のポリマー粒子が得られれば特に限定されるものではない。ポリマーとしては、(メタ)アクリル酸エステル系モノマー、スチレン系モノマー、ジエン系モノマー、イミド系モノマー、及びアミド系モノマーよりなる群(以下、「特定モノマー群」ともいう。)から選ばれるモノマーの単独重合体又は共重合体が好ましい。
 また、塗布組成物の液経時安定性の観点から、ポリマー粒子を構成するポリマーは、ヒドロキシ基及びカルボキシ基等の、シラノール基と反応して縮合する官能基を含まないことが好ましい。
The polymer contained in the polymer particles is not particularly limited as long as polymer particles having a desired particle diameter can be obtained. The polymer is a single monomer selected from the group consisting of (meth) acrylic acid ester monomers, styrene monomers, diene monomers, imide monomers, and amide monomers (hereinafter also referred to as “specific monomer group”). A polymer or copolymer is preferred.
Moreover, from the viewpoint of the liquid aging stability of the coating composition, the polymer constituting the polymer particles preferably does not contain a functional group that reacts with and condenses with a silanol group such as a hydroxy group and a carboxy group.
 (メタ)アクリル酸エステル系モノマーとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸プロポキシエチル、(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸エトキシプロピル、ジエチルアミノエチル(メタ)アクリレート、ジアルキルアミノアルキル(メタ)アクリレート、グリシジル(メタ)アクリレート、エチレングリコールのジアクリル酸エステル、ジエチルグリコールのジアクリル酸エステル、トリエチレングリコールのジアクリル酸エステル、ポリエチレングリコールのジアクリル酸エステル、ジプロピレングリコールのジアクリル酸エステル、トリプロピレングリコールのジアクリル酸エステル、エチレングリコールのジメタクリル酸エステル、ジエチレングリコールのジメタクリル酸エステル、トリエチレングリコールのジメタクリル酸エステル、ポリエチレングリコールのジアクリル酸エステル、プロピレングリコールのジメタクリル酸エステル、ジプロピレングリコールのジメタクリル酸エステル、トリプロピレングリコールのジメタクリル酸エステル等が挙げられる。 (Meth) acrylic acid ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylic Isobutyl acid, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, nonyl (meth) acrylate, (meth) Decyl acrylate, dodecyl (meth) acrylate, phenyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, propoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, (Meth) ethoxypropyl acrylate, diethylaminoethyl (Meth) acrylate, dialkylaminoalkyl (meth) acrylate, glycidyl (meth) acrylate, ethylene glycol diacrylate, diethyl glycol diacrylate, triethylene glycol diacrylate, polyethylene glycol diacrylate, dipropylene Diacrylate of glycol, Diacrylate of tripropylene glycol, Dimethacrylate of ethylene glycol, Dimethacrylate of diethylene glycol, Dimethacrylate of triethylene glycol, Diacrylate of polyethylene glycol, Dimethacrylate of propylene glycol Acid ester, dipropylene glycol dimethacrylate, tripropylene Call dimethacrylate, and the like of.
 スチレン系モノマーとしては、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、ジエチルスチレン、トリエチルスチレン、プロピルスチレン、ブチルスチレン、ヘキシルスチレン、ヘプチルスチレン、オクチルスチレン、フロロスチレン、クロルスチレン、ブロモスチレン、ジブロモスチレン、クロルメチルスチレン、ニトロスチレン、アセチルスチレン、メトキシスチレン、α-メチルスチレン、ビニルトルエン、p-スチレンスルホン酸ナトリウム等が挙げられる。 Styrene monomers include styrene, methylstyrene, dimethylstyrene, trimethylstyrene, ethylstyrene, diethylstyrene, triethylstyrene, propylstyrene, butylstyrene, hexylstyrene, heptylstyrene, octylstyrene, fluorostyrene, chlorostyrene, bromostyrene, Examples thereof include dibromostyrene, chloromethylstyrene, nitrostyrene, acetylstyrene, methoxystyrene, α-methylstyrene, vinyltoluene, sodium p-styrenesulfonate, and the like.
 ジエン系モノマーとしては、ブタジエン、イソプレイン、シクロペンタジエン、1,3-ペンタジエン、ジシクロペンタジエン等が挙げられる。 Examples of the diene monomer include butadiene, isoprene, cyclopentadiene, 1,3-pentadiene, dicyclopentadiene, and the like.
 イミド系モノマーとしては、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド、6-アミノヘキシルコハク酸イミド、2-アミノエチルコハク酸イミド等が挙げられる。 Examples of the imide monomer include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, 6-aminohexylsuccinimide, 2-aminoethylsuccinimide and the like.
 アミド系モノマーとしては、アクリルアミド、N-メチルアクリルアミドなどのアクリルアミド系誘導体、N、N-ジメチルアクリルアミド、N、N-ジメチルアミノプロピルアクリルアミド等のアリルアミン系誘導体、N-アミノスチレン等のアミノスチレン類等が挙げられる。 Examples of amide monomers include acrylamide derivatives such as acrylamide and N-methylacrylamide, allylamine derivatives such as N, N-dimethylacrylamide and N, N-dimethylaminopropylacrylamide, and aminostyrenes such as N-aminostyrene. Can be mentioned.
 ポリマー粒子が含有するポリマーは、溶媒への分散性を得るべく、架橋構造を有するポリマーであることが好ましい。
 架橋構造を有するポリマー粒子は、後述する乳化剤と、架橋反応性モノマーを重合することで得ることができる。用いることができる架橋反応性モノマーに特に制限は無いが、たとえば、分子内に不飽和二重結合を有するもの、ラジカル重合性の二重結合を有するもの、分子内に反応性官能基を有するもの(具体的には、カルボキシ基、ヒドロキシ基、エポキシ基、アミノ基、アミド基、マレイミド基、スルホン酸基、リン酸基、イソシアネート基、アルコキシ基、アルコキシシリル基等が挙げられる)が挙げられ、1種又はこれらの組み合わせから選択される。
The polymer contained in the polymer particles is preferably a polymer having a crosslinked structure in order to obtain dispersibility in a solvent.
The polymer particles having a crosslinked structure can be obtained by polymerizing an emulsifier described later and a crosslinking reactive monomer. Although there is no restriction | limiting in particular in the crosslinking reactive monomer which can be used, For example, what has an unsaturated double bond in a molecule | numerator, what has a radically polymerizable double bond, what has a reactive functional group in a molecule | numerator (Specific examples include carboxy group, hydroxy group, epoxy group, amino group, amide group, maleimide group, sulfonic acid group, phosphoric acid group, isocyanate group, alkoxy group, alkoxysilyl group, etc.) It is selected from one or a combination thereof.
 架橋反応性モノマーとしては、これらの中でも、ラジカル重合性の二重結合を有するモノマーが好ましく、分子内に複数のラジカル重合性の二重結合を有する(メタ)アクリル酸エステル系モノマー、又はスチレン系モノマーが更に好ましい。
 架橋反応性モノマーとしては、例えば、トリメチロールプロパントリアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、デカエチレングリコールジメタクリレート、ペンタデカエチレングリコールジメタクリレート、1,3-ブチレンジメタクリレート、アリルメタクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラアクリレート等の多官能(メタ)アクリレート;ジビニルベンゼン、ジビニルナフタレン、およびこれらの誘導体等の芳香族ジビニル化合物;N,N-ジビニルアニリン;ジビニルエーテル;ジビニルサルファイド;ジビニルスルホン酸;ポリブタジエン;ポリイソプレン不飽和ポリエステルなどが挙げられる。
Among these, as the crosslinking reactive monomer, a monomer having a radical polymerizable double bond is preferable, and a (meth) acrylate monomer having a plurality of radical polymerizable double bonds in the molecule, or a styrene-based monomer. Monomers are more preferred.
Examples of the crosslinking reactive monomer include trimethylolpropane triacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, decaethylene glycol dimethacrylate, pentadecaethylene glycol dimethacrylate, and 1,3-butylene dimethacrylate. , Allyl methacrylate, trimethylolpropane trimethacrylate, polyfunctional (meth) acrylates such as pentaerythritol tetraacrylate; aromatic divinyl compounds such as divinylbenzene, divinylnaphthalene, and derivatives thereof; N, N-divinylaniline; divinyl ether; Divinyl sulfide; divinyl sulfonic acid; polybutadiene; polyisoprene unsaturated polyester, etc. And the like.
 ポリマー粒子は、耐傷性及び防汚性をより向上させる観点から、ノニオン性ポリマー粒子であることが好ましい。塗布組成物がノニオン性ポリマー粒子を含むことで、加水分解性シラン化合物とノニオン性ポリマー粒子との相溶性が向上し、ノニオン性ポリマー粒子が塗布組成物に均一に分散しやすくなる。これにより、塗布組成物によって膜が形成された際において、膜中に存在する空孔の分布は均一化し、かつ、加水分解性シラン化合物が膜表面に偏在することと相俟って、耐傷性及び防汚性をより向上させることができる。 The polymer particles are preferably nonionic polymer particles from the viewpoint of further improving scratch resistance and antifouling properties. When the coating composition contains nonionic polymer particles, the compatibility between the hydrolyzable silane compound and the nonionic polymer particles is improved, and the nonionic polymer particles are easily dispersed uniformly in the coating composition. As a result, when a film is formed by the coating composition, the distribution of vacancies existing in the film becomes uniform, and in combination with the fact that hydrolyzable silane compounds are unevenly distributed on the film surface, scratch resistance And antifouling property can be improved more.
 「ノニオン性ポリマー粒子」とは、ノニオン性乳化剤を用いた乳化重合により合成された、その構造内にノニオン性乳化剤由来の構造を含有するポリマー粒子である。
 ここで、ノニオン性ポリマー粒子は、その構造内にノニオン性乳化剤由来の構造を含有し、アニオン性乳化剤由来の構造又はカチオン性乳化剤由来の構造を実質的に含まないポリマー粒子である。上記実質的に含まないとは、乳化剤由来の構造の全量に対して、ノニオン性乳化剤由来の構造の割合が99質量%以上であることを指す。
 ノニオン性乳化剤由来の構造の割合は、熱分解GC-MS(ガスクロマトグラフ質量分析法)を用いて、公知の方法によりポリマー粒子のフラグメントを分析することにより、算出することが可能である。
“Nonionic polymer particles” are polymer particles synthesized by emulsion polymerization using a nonionic emulsifier and containing a structure derived from the nonionic emulsifier in the structure.
Here, the nonionic polymer particle is a polymer particle that contains a structure derived from a nonionic emulsifier in its structure and does not substantially contain a structure derived from an anionic emulsifier or a structure derived from a cationic emulsifier. The term “substantially free” means that the ratio of the structure derived from the nonionic emulsifier is 99% by mass or more with respect to the total amount of the structure derived from the emulsifier.
The ratio of the structure derived from the nonionic emulsifier can be calculated by analyzing fragments of polymer particles by a known method using pyrolysis GC-MS (gas chromatograph mass spectrometry).
 ノニオン性ポリマー粒子は、自己分散性粒子であることが好ましい。自己分散性粒子とは、ポリマー粒子自身が有する親水部によって、水及びアルコールを含む水性媒体中で分散状態となり得る水及びアルコール不溶性ポリマーからなる粒子をいう。なお、分散状態とは、水性媒体中に水及びアルコール不溶性ポリマーが液体状態で分散された乳化状態(エマルション)、及び、水性媒体中に水不溶性ポリマーが固体状態で分散された分散状態(サスペンジョン)の両方の状態を含むものである。 The nonionic polymer particles are preferably self-dispersing particles. Self-dispersing particles refer to particles made of water and alcohol-insoluble polymers that can be dispersed in an aqueous medium containing water and alcohol by the hydrophilic portion of the polymer particles themselves. The dispersed state means an emulsified state (emulsion) in which water and an alcohol-insoluble polymer are dispersed in an aqueous medium in a liquid state, and a dispersed state (suspension) in which a water-insoluble polymer is dispersed in an aqueous medium in a solid state. It includes both states.
 また、「水不溶性」とは、水100質量部(25℃)に対する溶解量が5.0質量部以下であることを指す。 Also, “water-insoluble” means that the amount dissolved in 100 parts by mass (25 ° C.) of water is 5.0 parts by mass or less.
 ノニオン性ポリマー粒子が、自己分散性粒子であることにより、得られる膜においてノニオン性ポリマー粒子が均一に分散しやすく、また、例えば、塗布組成物が乳化剤を含まないか、乳化剤の含有量を塗布組成物の全質量に対し1質量%以下とすることができるため、耐傷性と防汚性に優れる。 Since the nonionic polymer particles are self-dispersing particles, the nonionic polymer particles are easily dispersed uniformly in the obtained film. Also, for example, the coating composition does not contain an emulsifier or the content of the emulsifier is applied. Since it can be 1 mass% or less with respect to the total mass of a composition, it is excellent in scratch resistance and antifouling property.
 ノニオン性ポリマー粒子を合成するためのノニオン性乳化剤としては、種々のノニオン性乳化剤を好適に用いることができる。ノニオン性乳化剤として好ましくは、エチレンオキシド鎖を有するノニオン性乳化剤が挙げられ、更に好ましくは、分子中にラジカル重合性の二重結合をもった、エチレンオキシド鎖を有するノニオン性の反応性乳化剤が挙げられる。これにより、良好な鉛筆硬度を有する膜を得ることができる。その理由は定かではないが、重合時の乳化安定性が良好となることで、ポリマー粒子の膜中分散状態が均一となり、空孔の分布が均一となることにより、空孔の分布が不均一であることに起因した局所的な毛管力及びクラックの発生が抑制され、得られる膜の耐傷性が向上するものと考えられる。 As the nonionic emulsifier for synthesizing nonionic polymer particles, various nonionic emulsifiers can be suitably used. The nonionic emulsifier is preferably a nonionic emulsifier having an ethylene oxide chain, and more preferably a nonionic reactive emulsifier having an ethylene oxide chain having a radical polymerizable double bond in the molecule. Thereby, the film | membrane which has favorable pencil hardness can be obtained. The reason is not clear, but because the emulsion stability during polymerization is good, the dispersion state of the polymer particles in the film is uniform, and the distribution of pores is uniform, resulting in non-uniform distribution of pores. It is considered that the occurrence of local capillary force and cracks resulting from the above is suppressed, and the scratch resistance of the resulting film is improved.
 エチレンオキシド鎖を有するノニオン性乳化剤として具体的には、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレオキシプロピレンブロックコポリマー、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等の乳化剤が挙げられる。
 反応性乳化剤として具体的には、種々の分子量(エチレンオキシド付加モル数の異なる)のポリエチレングリコールモノ(メタ)アクリレート、ポリオキシエチレンアルキルフェノールエーテル(メタ)アクリレート、ポリオキシエチレングリコールのモノマレイン酸エステル及びその誘導体、2,3-ジヒドロキシプロピルメタクリレート、2-ヒドロキシエチルアクリルアミド、等が挙げられ、エチレンオキシド鎖を有する反応性乳化剤が好ましい。
 エチレンオキシド鎖を有する反応性乳化剤としては、エチレンオキシド鎖が存在する限り、その連鎖数が1以上であればいずれの乳化剤も使用することができるが、中でも好ましいのはエチレンオキシド鎖の連鎖数が2以上30以下、特に好ましいのは3以上15以下の乳化剤である。エチレンオキシド鎖を有するノニオン性乳化剤は、これらの群より選ばれた少なくとも1種以上を使用することができる。
Specific examples of the nonionic emulsifier having an ethylene oxide chain include emulsifiers such as polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, polyoxyethyleneoxypropylene block copolymer, polyethylene glycol fatty acid ester, and polyoxyethylene sorbitan fatty acid ester. It is done.
Specific examples of reactive emulsifiers include polyethylene glycol mono (meth) acrylates, polyoxyethylene alkylphenol ether (meth) acrylates, polyoxyethylene glycol monomaleate esters having various molecular weights (different number of moles of ethylene oxide added), and their Derivatives, 2,3-dihydroxypropyl methacrylate, 2-hydroxyethylacrylamide, and the like, and reactive emulsifiers having an ethylene oxide chain are preferred.
As the reactive emulsifier having an ethylene oxide chain, any emulsifier can be used as long as the chain number is 1 or more as long as the ethylene oxide chain is present. Among them, the chain number of the ethylene oxide chain is preferably 2 to 30. Hereinafter, emulsifiers of 3 to 15 are particularly preferable. As the nonionic emulsifier having an ethylene oxide chain, at least one selected from these groups can be used.
 ノニオン性乳化剤としては、市販品を用いてもよい。
 ノニオン性の乳化剤の市販品の例としては、「ノイゲン」シリーズ、「アクアロン」シリーズ(以上、第一工業製薬株式会社製)、「ラテムルPD-420」、「ラテムルPD-430」、「ラテムルPD-450」、「エマルゲン」シリーズ(以上、花王(株)製)が挙げられる。中でも、「アクアロン」シリーズ、「ラテムルPD-420」、「ラテムルPD-430」、「ラテムルPD-450」、などのエチレンオキシド鎖を有し、かつ分子中にラジカル重合性の二重結合を有する反応性乳化剤が最も好適に用いられる。
 また、本開示の塗布組成物は、ポリマー粒子としては、イオン性のポリマー粒子を使用しないことが好ましいが、イオン性のポリマー粒子を併用することもできる。イオン性のポリマー粒子を混合する場合、その混合量は、ポリマー粒子全体量100質量部に対して、通常30質量部以下であり、好ましくは、10質量部以下、最も好ましくは、3質量部以下である。
A commercially available product may be used as the nonionic emulsifier.
Examples of commercially available nonionic emulsifiers include the “Neugen” series, the “Aqualon” series (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), “Latemul PD-420”, “Latemul PD-430”, “Latemul PD”. -450 "," Emulgen "series (above, manufactured by Kao Corporation). Above all, reactions having ethylene oxide chains such as “AQUALON” series, “Latemul PD-420”, “Latemul PD-430”, “Latemul PD-450”, etc., and having a radical polymerizable double bond in the molecule The most effective emulsifier is used.
Moreover, although it is preferable that the coating composition of this indication does not use an ionic polymer particle as a polymer particle, it can also use an ionic polymer particle together. When mixing ionic polymer particles, the mixing amount is usually 30 parts by mass or less, preferably 10 parts by mass or less, and most preferably 3 parts by mass or less with respect to 100 parts by mass of the total amount of polymer particles. It is.
 ポリマー粒子の数平均一次粒径は、30nm~200nmであることが好ましい。
 ポリマー粒子の数平均一次粒径が30nm以上であると、得られる膜の反射防止性に優れる塗布組成物が得られる。
 塗布組成物を用いた膜形成において、ポリマー粒子は、塗布膜中から除去されることが好ましいが、ポリマー粒子の数平均一次粒径を30nm以上とすることにより、ポリマー粒子の除去に起因した空孔が得られ、反射防止性に優れた膜の形成が可能となる。これは、ポリマー粒子の除去に起因した空孔が、熱処理により塗布膜中からポリマー粒子が除去されることで形成される際において、熱処理によってポリマー粒子を除去した後に冷却により膜が収縮しても、ポリマー粒子の除去により形成された空孔が、膜の収縮に伴い潰れることが抑制されて、膜中に空孔が十分に得られると考えられる。
 また、ポリマー粒子の数平均一次粒径が200nm以下であると、得られる膜の反射防止性、耐傷性及び防汚性により優れる塗布組成物が得られる。これは、ポリマー粒子の除去に起因した空孔を熱処理により形成する際において、ポリマー粒子の数平均一次粒径を200nm以下とすることで、ポリマー粒子を除去した後の膜表面における微細な穴の形成を効果的に抑制することができるためと考えられる。
 ポリマー粒子の数平均一次粒径は、安定な空孔形成の観点から、150nm以下が好ましく、120nm以下がより好ましい。また、ポリマー粒子の数平均一次粒径は、安定な空孔形成の観点から、40nm以上が好ましく、60nm以上がより好ましく、80nm以上が更に好ましい。
The number average primary particle size of the polymer particles is preferably 30 nm to 200 nm.
When the number average primary particle size of the polymer particles is 30 nm or more, a coating composition having excellent antireflection properties of the resulting film can be obtained.
In the film formation using the coating composition, the polymer particles are preferably removed from the coating film. However, by setting the number average primary particle size of the polymer particles to 30 nm or more, emptying due to the removal of the polymer particles is performed. A hole is obtained, and a film excellent in antireflection can be formed. This is because when pores resulting from the removal of polymer particles are formed by removing the polymer particles from the coating film by heat treatment, the film shrinks after cooling by removing the polymer particles by heat treatment. It is considered that the pores formed by removing the polymer particles are suppressed from being crushed as the membrane contracts, and the pores are sufficiently obtained in the membrane.
When the number average primary particle size of the polymer particles is 200 nm or less, a coating composition that is superior in antireflection properties, scratch resistance and antifouling properties of the resulting film can be obtained. This is because when the pores resulting from the removal of the polymer particles are formed by heat treatment, the number average primary particle size of the polymer particles is set to 200 nm or less so that fine holes on the film surface after the removal of the polymer particles are formed. It is considered that the formation can be effectively suppressed.
The number average primary particle size of the polymer particles is preferably 150 nm or less, and more preferably 120 nm or less, from the viewpoint of stable pore formation. The number average primary particle size of the polymer particles is preferably 40 nm or more, more preferably 60 nm or more, and still more preferably 80 nm or more, from the viewpoint of stable pore formation.
 ポリマー粒子の数平均一次粒径は、動的光散乱法により計測する。具体的には、日機装(株)製のMicrotrac(Version 10.1.2-211BH)を用いて測定し、個数換算粒径の累積50%値(d50)として得られた値をポリマー粒子の数平均一次粒径とする。 The number average primary particle diameter of the polymer particles is measured by a dynamic light scattering method. Specifically, the value obtained as a cumulative 50% value (d50) of the number-converted particle diameter was measured using Microtrac (Version 10.1.2-211BH) manufactured by Nikkiso Co., Ltd., and the number of polymer particles. The average primary particle size is used.
 後述する加水分解性シラン化合物のSiO換算質量に対するポリマー粒子の全質量の割合は、得られる膜の反射防止性の観点から、0.1以上1以下であることが好ましく、0.2以上0.9以下であることがより好ましく、0.3以上0.6以下であることが、さらに好ましい。
 加水分解性シラン化合物のSiO換算質量に対するポリマー粒子の全質量の割合とは、(ポリマー粒子の質量)/(加水分解性シラン化合物のSiO換算質量)により得られる値である。
 加水分解性シラン化合物のSiO換算質量は、対象となる加水分解性シラン化合物の構造を解析し、加水分解性シラン化合物の分子量から算出することができる。
The ratio of the total mass of the polymer particles to the SiO 2 equivalent mass of the hydrolyzable silane compound described below is preferably 0.1 or more and 1 or less, and 0.2 or more and 0, from the viewpoint of antireflection properties of the resulting film. Is more preferably 0.9 or less, and further preferably 0.3 or more and 0.6 or less.
The total weight ratio of polymer particles to SiO 2 mass in terms of the hydrolyzable silane compound is a value obtained by (mass of polymer particles) / (SiO 2 mass in terms of the hydrolyzable silane compound).
The SiO 2 equivalent mass of the hydrolyzable silane compound can be calculated from the molecular weight of the hydrolyzable silane compound by analyzing the structure of the target hydrolyzable silane compound.
-無機酸化物前駆体-
 本開示の塗布組成物は、無機酸化物前駆体の少なくとも一種を含有する。無機酸化物前駆体を含有することで、塗布組成物により膜が形成される際、無機酸化物前駆体が有する疎水部が膜表面に偏在し、平坦性のある膜表面が得られる。これにより、防汚性が良好になり、さらに膜の耐傷性も向上する。
-Inorganic oxide precursors-
The coating composition of the present disclosure contains at least one inorganic oxide precursor. By containing the inorganic oxide precursor, when the film is formed by the coating composition, the hydrophobic portion of the inorganic oxide precursor is unevenly distributed on the film surface, and a flat film surface is obtained. Thereby, antifouling property becomes favorable and also the flaw resistance of a film | membrane improves.
 無機酸化物前駆体としては、有機金属化合物、ハロゲン化金属化合物等が挙げられる。
 有機金属化合物としては、例えば、アルミニウムキレート化合物、加水分解性シラン化合物、加水分解性シラン化合物の部分加水分解縮合物(例えばオリゴマー)等が挙げられる。加水分解性シラン化合物の部分加水分解縮合物としては、重量平均分子量600~6000のシロキサンオリゴマーが好ましい。
 アルミニウムキレート化合物としては、例えば、アルミニウムエチルアセトアセテートジイソプロピレート、アルミニウムアルキルアセトアセテートジイソプロピレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)等が挙げられる。アルミニウムキレート化合物は、上市されている市販品を用いてもよく、市販品としては、例えば、川研ファインケミカル株式会社のアルミキレート(例えばアルミキレートD、アルミキレートM等)などが挙げられる。
 ハロゲン化金属化合物としては、例えば、四塩化ケイ素、塩化アルミニウム等が挙げられる。
 上記の中でも、屈折率が低く、高い反射防止性が得られる点で、加水分解性シラン化合物及び加水分解性シラン化合物の部分加水分解縮合物が好ましい。
Examples of the inorganic oxide precursor include an organometallic compound and a halogenated metal compound.
Examples of the organometallic compound include an aluminum chelate compound, a hydrolyzable silane compound, and a partially hydrolyzed condensate (eg, oligomer) of the hydrolyzable silane compound. As the partial hydrolysis-condensation product of the hydrolyzable silane compound, a siloxane oligomer having a weight average molecular weight of 600 to 6000 is preferable.
Examples of the aluminum chelate compound include aluminum ethyl acetoacetate diisopropylate, aluminum alkyl acetoacetate diisopropylate, aluminum monoacetylacetonate bis (ethylacetoacetate) and the like. As the aluminum chelate compound, a commercially available product may be used, and examples of the commercially available product include aluminum chelates (for example, aluminum chelate D and aluminum chelate M) manufactured by Kawaken Fine Chemical Co., Ltd.
Examples of the metal halide compound include silicon tetrachloride and aluminum chloride.
Among these, hydrolyzable silane compounds and partially hydrolyzed condensates of hydrolyzable silane compounds are preferred in that they have a low refractive index and high antireflection properties.
 加水分解性シラン化合物の中でも、下記の式(1)で表される加水分解性シラン化合物及び上記加水分解性シラン化合物の部分加水分解縮合物から選ばれる少なくとも一種の化合物が好ましい。
 本開示の塗布組成物は、水を含むことで、加水分解性シラン化合物の一部が加水分解して縮合していてもよい。そのため、本開示の塗布組成物は、式(1)で表される加水分解性シラン化合物と、式(1)で表される加水分解性シラン化合物の部分加水分解縮合物と、を含んでいてもよい。
Among the hydrolyzable silane compounds, at least one compound selected from a hydrolyzable silane compound represented by the following formula (1) and a partial hydrolysis condensate of the hydrolyzable silane compound is preferable.
The coating composition of the present disclosure may contain water so that a part of the hydrolyzable silane compound may be hydrolyzed and condensed. Therefore, the coating composition of this indication contains the hydrolyzable silane compound represented by Formula (1), and the partial hydrolysis-condensation product of the hydrolyzable silane compound represented by Formula (1). Also good.
  式(1):R-Si(OR
 式(1)において、Rは、水素原子、炭素数1~8のアルキル基、炭素数1~8のフッ化アルキル基、又は炭素数1~8のアルコキシ基を表し、Rは、水素原子又は炭素数1~8のアルキル基を表す。
 R及びRが炭素数1~8のアルキル基を表す場合、R及びRは同一であっても異なっていてもよい。
Formula (1): R 1 —Si (OR 2 ) 3
In the formula (1), R 1 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a fluorinated alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, and R 2 represents a hydrogen atom An atom or an alkyl group having 1 to 8 carbon atoms is represented.
When R 1 and R 2 represent an alkyl group having 1 to 8 carbon atoms, R 1 and R 2 may be the same or different.
 式(1)の「R-Si(OR」で表される加水分解性シラン化合物は、三官能アルコキシシラン、又は四官能アルコキシシランである。
 「R-Si(OR」で表される三官能アルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ペンチルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、n-ヘプチルトリメトキシシラン、n-オクチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、3,3,3-トリフロロプロピルトリメトキシシラン、3,3,3-トリフロロプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-ヒドロキシエチルトリメトキシシラン、2-ヒドロキシエチルトリエトキシシラン、2-ヒドロキシプロピルトリメトキシシラン、2-ヒドロキシプロピルトリエトキシシラン、3-ヒドロキシプロピルトリメトキシシラン、3-ヒドロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-イソシアナートプロピルトリメトキシシラン、3-イソシアナートプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-(メタ)アクリルオキシプロピルトリメトキシシラン、3-(メタ)アクリルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルトリn-プロポキシシラン、3-(メタ)アクリロイルオキシプロピルトリイソプロポキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン等のトリアルコキシシランが挙げられる。
The hydrolyzable silane compound represented by “R 1 —Si (OR 2 ) 3 ” in the formula (1) is a trifunctional alkoxysilane or a tetrafunctional alkoxysilane.
Examples of the trifunctional alkoxysilane represented by “R 1 —Si (OR 2 ) 3 ” include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and n-propyltrimethoxysilane. N-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, n-hexyltri Ethoxysilane, n-heptyltrimethoxysilane, n-octyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltrieto Sisilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyl Triethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-hydroxyethyltrimethoxysilane, 2-hydroxyethyltriethoxysilane, 2-hydroxypropyltrimethoxysilane, 2-hydroxypropyltriethoxy Silane, 3-hydroxypropyltrimethoxysilane, 3-hydroxypropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-isocyana Topropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3- (meth) acryloyloxypropyltrin- And trialkoxysilanes such as propoxysilane, 3- (meth) acryloyloxypropyltriisopropoxysilane, 3-ureidopropyltrimethoxysilane, and 3-ureidopropyltriethoxysilane.
 「R-Si(OR」で表される四官能アルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン等のテトラアルコキシシラン等が挙げられる。
 式(1)で表される加水分解性シラン化合物の中でも、加水分解性シラン化合物が膜表面に偏在しやすく、膜の防汚性がより良化する観点から、三官能アルコキシシランが好ましい。
Examples of the tetrafunctional alkoxysilane represented by “R 1 —Si (OR 2 ) 3 ” include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, and tetra-n-butoxysilane. And tetraalkoxysilane.
Among the hydrolyzable silane compounds represented by the formula (1), trifunctional alkoxysilanes are preferable from the viewpoint that the hydrolyzable silane compounds are likely to be unevenly distributed on the film surface and the antifouling property of the film is further improved.
 式(1)で表される三官能アルコキシシランの中でも、好ましくはR及びRが炭素数1~6のアルキル基である化合物であり、より好ましくはR及びRが炭素数1~3のアルキル基である化合物である。具体的には、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン等が挙げられる。 Among the trifunctional alkoxysilanes represented by the formula (1), R 1 and R 2 are preferably compounds having 1 to 6 carbon atoms, and more preferably R 1 and R 2 have 1 to 6 carbon atoms. 3 is an alkyl group. Specifically, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, etc. Can be mentioned.
 加水分解性シラン化合物が空隙を形成しやすく、反射防止膜を形成した場合の反射防止性がより良化する観点から、上記式(1)で表される加水分解性シラン化合物の部分加水分解縮合物が好ましい。
 中でも、下記の式(2)、式(3)及び式(4)から選択される少なくとも1種の単位(特定単位)を含む加水分解性シラン化合物の部分加水分解縮合物がより好ましい。この場合、膜の耐傷性の向上効果も期待できる。
  式(2):R-Si(OR1/2単位
  式(3):R-Si(OR)O2/2単位
  式(4):R-Si-O3/2単位
 式(2)、式(3)及び式(4)において、Rは、各々独立に、水素原子、炭素数1~8のアルキル基、炭素数1~8のフッ化アルキル基、又は炭素数1~8のアルコキシ基を表し、Rは、各々独立に、水素原子又は炭素数1~8のアルキル基を表す。
 R及びRの詳細は、式(1)におけるR及びRと同義であり、好ましい態様についても同様である。
From the viewpoint that the hydrolyzable silane compound easily forms voids and the antireflection property when the antireflection film is formed is improved, partial hydrolysis condensation of the hydrolyzable silane compound represented by the above formula (1) Things are preferred.
Among these, a partial hydrolysis condensate of a hydrolyzable silane compound containing at least one unit (specific unit) selected from the following formula (2), formula (3) and formula (4) is more preferable. In this case, the effect of improving the scratch resistance of the film can also be expected.
Formula (2): R 1 —Si (OR 2 ) 2 O 1/2 unit Formula (3): R 1 —Si (OR 2 ) O 2/2 unit Formula (4): R 1 —Si—O 3 / 2 units In the formulas (2), (3) and (4), each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a fluorinated alkyl group having 1 to 8 carbon atoms, or Represents an alkoxy group having 1 to 8 carbon atoms, and each R 2 independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
Details of R 1 and R 2, have the same meanings as R 1 and R 2 in Formula (1) also applies to the preferred embodiments.
 更には、加水分解性シラン化合物の膜表面への偏在が生じ易く、膜の防汚性がより良化する点で、上記式(2)、式(3)及び式(4)から選択される単位のうち、Rが、水素原子、炭素数1~8のアルキル基、又は炭素数1~8のフッ化アルキル基である単位の合計質量が、加水分解性シラン化合物の全質量に対して95質量%以上であることが好ましい。膜の耐傷性の良化の点でも好適である。
 本開示における加水分解性シラン化合物としては、上記式(2)、式(3)及び式(4)から選択される少なくとも1種の特定単位を、加水分解性シラン化合物の全質量に対して95質量%以上含み、かつ、重量平均分子量が600~6000であることが好ましい。例えば、四官能アルコキシシランと特定単位を形成しうる三官能アルコキシシランとを併用し、特定単位の合計質量が加水分解性シラン化合物の全質量に対して95質量%以上になる場合が挙げられる。
Furthermore, the hydrolyzable silane compound tends to be unevenly distributed on the film surface, and is selected from the above formulas (2), (3) and (4) in that the antifouling property of the film is further improved. Among the units, R 1 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a fluorinated alkyl group having 1 to 8 carbon atoms, and the total mass of the units is relative to the total mass of the hydrolyzable silane compound. It is preferable that it is 95 mass% or more. This is also suitable for improving the scratch resistance of the film.
As a hydrolysable silane compound in this indication, at least one sort of specific units chosen from the above-mentioned formula (2), formula (3), and formula (4) are 95 to the total mass of a hydrolyzable silane compound. It is preferable to contain at least mass% and have a weight average molecular weight of 600 to 6000. For example, a case where a tetrafunctional alkoxysilane and a trifunctional alkoxysilane capable of forming a specific unit are used in combination, and the total mass of the specific unit is 95% by mass or more based on the total mass of the hydrolyzable silane compound.
 上記の式(2)~式(4)中のR及びRは、下記範囲がより好ましい。即ち、
 Rが各々独立に炭素数1~8のアルキル基を表し、Rが各々独立に水素原子又は炭素数1~8のアルキル基を表す。
 また、式(2)で表される単位及び式(3)で表される単位の両方を含む場合、R又はRで表される炭素数1~8のアルキル基は、同一であっても異なっていてもよい。
In the above formulas (2) to (4), R 1 and R 2 are more preferably within the following ranges. That is,
R 1 each independently represents an alkyl group having 1 to 8 carbon atoms, and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
In the case where both the unit represented by the formula (2) and the unit represented by the formula (3) are included, the alkyl groups having 1 to 8 carbon atoms represented by R 1 or R 2 are the same. May be different.
 加水分解性シラン化合物における特定単位の含有量は、耐傷性をより向上させる観点から、98質量%以上が好ましく、より好ましくは100質量%である。この場合、防汚性をも両立させることができる。 The content of the specific unit in the hydrolyzable silane compound is preferably 98% by mass or more, more preferably 100% by mass from the viewpoint of further improving scratch resistance. In this case, antifouling properties can also be achieved.
 加水分解性シラン化合物は、重量平均分子量600~6000のオリゴマーあることも好ましい。重量平均分子量が上記範囲にあると、膜の耐傷性及び防汚性を両立させやすい。
 具体的には、加水分解性シラン化合物の重量平均分子量が600以上であると、塗布組成物により得られる膜の耐傷性により優れたものとなる。これは、塗布組成物により膜が形成される際、縮合の度合いが小さくなり過ぎないためであると考えられる。また、加水分解性シラン化合物の重量平均分子量が6000以下であると、耐傷性及び防汚性により優れたものとなる。これは、加水分解性シラン化合物の運動性を維持しやすく、塗布組成物により膜形成される際、加水分解性シラン化合物の膜表面への偏析量が保たれ、表面硬化層が形成されるためと考えられる。
The hydrolyzable silane compound is also preferably an oligomer having a weight average molecular weight of 600 to 6000. When the weight average molecular weight is in the above range, it is easy to achieve both scratch resistance and antifouling property of the film.
Specifically, when the hydrolyzable silane compound has a weight average molecular weight of 600 or more, the film obtained by the coating composition has excellent scratch resistance. This is presumably because the degree of condensation does not become too small when a film is formed from the coating composition. Further, when the weight average molecular weight of the hydrolyzable silane compound is 6000 or less, it becomes more excellent in scratch resistance and antifouling property. This is because it is easy to maintain the mobility of the hydrolyzable silane compound, and when the film is formed by the coating composition, the segregation amount of the hydrolyzable silane compound on the film surface is maintained, and a hardened surface layer is formed. it is conceivable that.
 加水分解性シラン化合物の重量平均分子量は、耐傷性及び防汚性を両立し、かつ、更に向上させる点で、1600~6000が好ましく、より好ましくは1600~3000である。 The weight average molecular weight of the hydrolyzable silane compound is preferably 1600 to 6000, more preferably 1600 to 3000 in terms of achieving both scratch resistance and antifouling properties and further improving it.
 重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定される値を指す。
 GPCによる測定は、測定装置として、HLC(登録商標)-8020GPC(東ソー(株))を用い、カラムとして、TSKgel(登録商標)Super Multipore HZ-H(4.6mmID×15cm、東ソー(株))を3本用い、溶離液として、ジメチルホルムアミドを用いる。また、測定条件としては、試料濃度を0.45質量%、流速を0.35mL/min、サンプル注入量を10μL、及び測定温度を40℃とし、示差屈折率(RI)検出器を用いて行う。
 検量線は、東ソー(株)の「標準試料TSK standard,polystyrene」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」、「A-1000」、及び「n-プロピルベンゼン」の8サンプルから作製する。
The weight average molecular weight refers to a value measured by gel permeation chromatography (GPC).
For measurement by GPC, HLC (registered trademark) -8020 GPC (Tosoh Corp.) is used as a measuring device, and TSKgel (Registered Trademark) Super Multipore HZ-H (4.6 mm ID × 15 cm, Tosoh Corp.) is used as a column. Are used, and dimethylformamide is used as an eluent. The measurement conditions are a sample concentration of 0.45 mass%, a flow rate of 0.35 mL / min, a sample injection amount of 10 μL, a measurement temperature of 40 ° C., and a differential refractive index (RI) detector. .
The calibration curve is “Standard sample TSK standard, polystyrene” of Tosoh Corporation: “F-40”, “F-20”, “F-4”, “F-1”, “A-5000”, “A -2500 "," A-1000 ", and" n-propylbenzene ".
 加水分解性シラン化合物は、特定単位を形成しうる三官能アルコキシシランを用いて得られたシロキサン樹脂が好ましく、例えば、式(1)で表される三官能アルコキシシランの少なくとも1種を、加水分解及び縮合して得られるシロキサン樹脂が好適に挙げられる。 The hydrolyzable silane compound is preferably a siloxane resin obtained using a trifunctional alkoxysilane capable of forming a specific unit. For example, at least one trifunctional alkoxysilane represented by the formula (1) is hydrolyzed. A siloxane resin obtained by condensation is also preferred.
 加水分解性シラン化合物及びその部分加水分解縮合物は、特定単位を形成しうる三官能アルコキシシランは、1種のみを単独で含んでもよいし、2種以上を含んでもよい。
 加水分解性シラン化合物は、必要に応じて、特定単位を形成しうる三官能アルコキシシランに由来する単位と、特定単位を形成しうる三官能アルコキシシラン以外の他のアルコキシシランに由来する単位と、を有する化合物でもよい。この場合、加水分解性シラン化合物における他のアルコキシシランに由来する単位は、加水分解性シラン化合物の全質量の5質量%未満が好ましい。
In the hydrolyzable silane compound and the partial hydrolysis condensate thereof, the trifunctional alkoxysilane that can form the specific unit may contain one kind alone or two or more kinds.
The hydrolyzable silane compound, if necessary, a unit derived from a trifunctional alkoxysilane that can form a specific unit, a unit derived from another alkoxysilane other than the trifunctional alkoxysilane that can form a specific unit, and It may be a compound having In this case, the unit derived from the other alkoxysilane in the hydrolyzable silane compound is preferably less than 5% by mass of the total mass of the hydrolyzable silane compound.
 特定単位を形成しうる三官能アルコキシシランと併用できるアルコキシシランとしては、特定単位を形成しうる三官能アルコキシシラン以外の三官能アルコキシシラン、四官能アルコキシシラン、二官能アルコキシシランなどが挙げられる。
 特定単位を形成しうる三官能アルコキシシラン以外の三官能アルコキシシランとしては、フェニル基を有する三官能アルコキシシラン以外の三官能アルコキシシランが好ましい。フェニル基を有する三官能アルコキシシラン以外の三官能アルコキシシランを用いることで、分子の運動性を良好に保持することができる。このため、塗布組成物により形成した膜において、加水分解性シラン化合物の膜表面への偏析が進み、良好な耐傷性と防汚性とを両立した膜を形成し易くなると考えられる。
Examples of the alkoxysilane that can be used in combination with the trifunctional alkoxysilane that can form the specific unit include trifunctional alkoxysilanes, tetrafunctional alkoxysilanes, and bifunctional alkoxysilanes other than the trifunctional alkoxysilane that can form the specific unit.
As the trifunctional alkoxysilane other than the trifunctional alkoxysilane capable of forming the specific unit, a trifunctional alkoxysilane other than the trifunctional alkoxysilane having a phenyl group is preferable. By using a trifunctional alkoxysilane other than the trifunctional alkoxysilane having a phenyl group, the mobility of the molecule can be maintained well. For this reason, in the film | membrane formed with the coating composition, the segregation to the film | membrane surface of a hydrolysable silane compound advances, and it is thought that it becomes easy to form the film | membrane which compatible favorable scratch resistance and antifouling property.
 三官能アルコキシシラン以外のアルコキシシランとしては、四官能アルコキシシラン、二官能アルコキシシランなどが挙げられる。
 四官能アルコキシシランの例については、既述した通りである。
 二官能アルコキシシランの例としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジ-n-プロピルジメトキシシラン、ジ-n-プロピルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン、ジ-n-ブチルジメトキシシラン、ジ-n-ブチルジエトキシシラン、ジ-n-ペンチルジメトキシシラン、ジ-n-ペンチルジエトキシシラン、ジ-n-ヘキシルジメトキシシラン、ジ-n-ヘキシルジエトキシシラン、ジ-n-ヘプチルジメトキシシラン、ジ-n-ヘプチルジエトキシシラン、ジ-n-オクチルジメトキシシラン、ジ-n-オクチルジエトキシシラン等が挙げられる。
 特定単位を形成しうる三官能アルコキシシラン以外のアルコキシシランは、1種のみを単独で用いてもよいし、2種以上を用いてもよい。
Examples of alkoxysilanes other than trifunctional alkoxysilanes include tetrafunctional alkoxysilanes and bifunctional alkoxysilanes.
Examples of the tetrafunctional alkoxysilane are as described above.
Examples of bifunctional alkoxysilanes include dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane, di-n-propyldiethoxysilane, diisopropyldimethoxysilane, diisopropyldi Ethoxysilane, di-n-butyldimethoxysilane, di-n-butyldiethoxysilane, di-n-pentyldimethoxysilane, di-n-pentyldiethoxysilane, di-n-hexyldimethoxysilane, di-n-hexyl Examples include diethoxysilane, di-n-heptyldimethoxysilane, di-n-heptyldiethoxysilane, di-n-octyldimethoxysilane, and di-n-octyldiethoxysilane.
As the alkoxysilane other than the trifunctional alkoxysilane capable of forming the specific unit, only one kind may be used alone, or two or more kinds may be used.
 本開示における加水分解性シラン化合物は、上記式(1)、式(2)、式(3)及び式(4)から選択される少なくとも1種の単位を形成するアルコキシシラン(好ましくは、式(2)、式(3)及び式(4)から選択される少なくとも1種の特定単位を形成する三官能アルコキシシラン)を加水分解及び縮合して得ることができる。具体的な合成方法については、例えば、特開2000-159892号公報等の記載を参照することができる。 The hydrolyzable silane compound in the present disclosure is an alkoxysilane (preferably a compound represented by the formula (1), the formula (2), the formula (3), and the formula (4) that forms at least one unit. 2), a trifunctional alkoxysilane forming at least one specific unit selected from the formulas (3) and (4) can be obtained by hydrolysis and condensation. For a specific synthesis method, for example, the description in JP-A No. 2000-159892 can be referred to.
 加水分解性シラン化合物には、上市されている市販品を用いてもよい。
 市販品の例としては、KC-89S(R:メチル基、R:メチル基、重量平均分子量770、信越化学工業(株)製)、KR-515(R:メチル基、R:メチル基、重量平均分子量1100、信越化学工業(株)製)、KR-500(R:メチル基、R:メチル基、重量平均分子量1200、信越化学工業(株)製)、X-40-9225(R:メチル基、R:メチル基、重量平均分子量5200、信越化学工業(株)製)、X-40-9246(R:メチル基、R:メチル基、重量平均分子量3000、信越化学製)、X-40-9250(R:メチル基、R:メチル基、重量平均分子量6300、信越化学工業(株)製)等が挙げられる。
As the hydrolyzable silane compound, a commercially available product may be used.
Examples of commercially available products include KC-89S (R 1 : methyl group, R 2 : methyl group, weight average molecular weight 770, manufactured by Shin-Etsu Chemical Co., Ltd.), KR-515 (R 1 : methyl group, R 2 : Methyl group, weight average molecular weight 1100, manufactured by Shin-Etsu Chemical Co., Ltd.), KR-500 (R 1 : methyl group, R 2 : methyl group, weight average molecular weight 1200, manufactured by Shin-Etsu Chemical Co., Ltd.), X-40 -9225 (R 1 : methyl group, R 2 : methyl group, weight average molecular weight 5200, manufactured by Shin-Etsu Chemical Co., Ltd.), X-40-9246 (R 1 : methyl group, R 2 : methyl group, weight average molecular weight) 3000, manufactured by Shin-Etsu Chemical Co., Ltd.), X-40-9250 (R 1 : methyl group, R 2 : methyl group, weight average molecular weight 6300, manufactured by Shin-Etsu Chemical Co., Ltd.).
 加水分解性シラン化合物の含有量としては、塗布組成物の全質量に対して、1質量%~20質量%が好ましく、1質量%~10質量%がより好ましく、2質量%~8質量%が更に好ましい。 The content of the hydrolyzable silane compound is preferably 1% by mass to 20% by mass, more preferably 1% by mass to 10% by mass, and more preferably 2% by mass to 8% by mass with respect to the total mass of the coating composition. Further preferred.
-電解質-
 本開示の塗布組成物は、酸、塩基及び塩から選ばれる電解質の少なくとも一種を含有する。酸、塩基及び塩から選ばれる特定の電解質を、上記pHを保持する範囲で含有することで、pH上昇を抑えながらも、塗布時に必要とされる帯電防止効果を得ることができる。これにより、帯電に起因する塗膜の厚みムラが抑制され、輝点状故障の発生が抑えられ、しかも耐腐食性及び取扱い性に適合したものになる。
 なお、電解質とは、溶媒である水に溶解させた際に、陽イオンと陰イオンに乖離する化合物をさす。
 また、本開示において、「酸」とは、Hを与える物質を指し、「塩基」とは、Hを受け取る物質を指す。酸のうち、pKa<0を満たす酸が強酸である。
-Electrolytes-
The coating composition of the present disclosure contains at least one electrolyte selected from acids, bases and salts. By containing a specific electrolyte selected from an acid, a base, and a salt within a range that maintains the above pH, an antistatic effect required at the time of application can be obtained while suppressing an increase in pH. Thereby, the thickness unevenness of the coating film due to charging is suppressed, the occurrence of a bright spot failure is suppressed, and the corrosion resistance and the handling property are adapted.
The electrolyte refers to a compound that dissociates into a cation and an anion when dissolved in water as a solvent.
In the present disclosure, “acid” refers to a substance that provides H + , and “base” refers to a substance that receives H + . Of the acids, acids satisfying pKa <0 are strong acids.
 酸は、既述のpHを維持し得る範囲であれば、弱酸及び強酸のいずれを用いてもよい。酸としては、例えば、酢酸等の弱酸;硝酸、リン酸、塩酸、硫酸等の強酸が挙げられる。
 塩基としては、水酸化ナトリウム、水酸化カリウム、アンモニア等が挙げられる。
 塩としては、酢酸アンモニウム、酢酸ナトリウム、酢酸カリウム、硝酸アンモニウム、硝酸ナトリウム、硝酸カリウム、硫酸アンモニウム、硫酸ナトリウム、硫酸カリウム、リン酸アンモニウム、リン酸ナトリウム、リン酸カリウム、塩化アンモニウム、塩化ナトリウム等が挙げられる。
As long as the acid can maintain the above-mentioned pH, either a weak acid or a strong acid may be used. Examples of the acid include weak acids such as acetic acid; strong acids such as nitric acid, phosphoric acid, hydrochloric acid, and sulfuric acid.
Examples of the base include sodium hydroxide, potassium hydroxide, ammonia and the like.
Examples of the salt include ammonium acetate, sodium acetate, potassium acetate, ammonium nitrate, sodium nitrate, potassium nitrate, ammonium sulfate, sodium sulfate, potassium sulfate, ammonium phosphate, sodium phosphate, potassium phosphate, ammonium chloride, sodium chloride and the like.
 また、塩に代えて、酸と塩基とを添加してもよい。
 酸と塩基とを添加する場合には、酸のpKaが5.5以下であり、かつ、塩基である共役酸のpKaが8.5以上であることが好ましい。pKaが上記範囲内にあることで、電離が良好に進行して電導度の向上が見込める。
 酸と塩基とを添加する場合の例としては、酢酸(pKa:4.8)、塩酸(pKa:-8.0)、硫酸(pKa:-3.0)、硝酸(pKa:-1.4)、及びリン酸(pKa:2.1)から選ばれる酸と、水酸化ナトリウム(共役酸のpKa:15.7)、水酸化カリウム(共役酸のpKa:15.7)、アンモニア(共役酸のpKa:9.3)と、を添加する場合が挙げられる。
Moreover, it may replace with a salt and may add an acid and a base.
In the case of adding an acid and a base, it is preferable that the pKa of the acid is 5.5 or less and the pKa of the conjugate acid which is a base is 8.5 or more. When pKa is within the above range, ionization proceeds well and an improvement in conductivity can be expected.
Examples of adding an acid and a base include acetic acid (pKa: 4.8), hydrochloric acid (pKa: -8.0), sulfuric acid (pKa: -3.0), nitric acid (pKa: -1.4). ) And phosphoric acid (pKa: 2.1), sodium hydroxide (conjugated acid pKa: 15.7), potassium hydroxide (conjugated acid pKa: 15.7), ammonia (conjugated acid) PKa: 9.3) is added.
 塩としては、アンモニウム塩及び金属塩が好適であり、金属塩には、アルカリ金属(例えばナトリウム、カリウム等)の塩及びアルカリ土類金属(例えばマグネシウム、カルシウム等)の塩が含まれる。これらのうち、金属塩は、塗膜を形成した後に金属が膜中に残存し、機能層として例えば反射防止層を形成した場合に、膜中の金属が屈折率に影響して反射防止性を低下させる場合がある点で、アンモニウム塩が好ましい。
 したがって、塩としては、弱酸及び強酸から選ばれる酸のアンモニウム塩がより好ましく、酢酸アンモニウム、硝酸アンモニウム、硫酸アンモニウム、リン酸アンモニウム、塩化アンモニウム等は更に好ましい。
As the salt, an ammonium salt and a metal salt are preferable. Examples of the metal salt include a salt of an alkali metal (for example, sodium or potassium) and a salt of an alkaline earth metal (for example, magnesium or calcium). Among these, the metal salt remains in the film after the coating film is formed, and when the antireflection layer is formed as a functional layer, for example, the metal in the film affects the refractive index and has antireflection properties. An ammonium salt is preferable in that it may be lowered.
Therefore, as the salt, an ammonium salt of an acid selected from a weak acid and a strong acid is more preferable, and ammonium acetate, ammonium nitrate, ammonium sulfate, ammonium phosphate, ammonium chloride, and the like are more preferable.
 酸、塩基及び塩から選ばれる電解質の含有量としては、塗布組成物中のモル濃度として、0.001mol/L~0.5mol/Lが好ましく、0.005mol/L~0.4mol/Lがより好ましく、0.01mol/L~0.3mol/Lがさらに好ましい。
 酸、塩基及び塩から選ばれる電解質の含有量が0.001mol/L以上であると、輝点状故障を低減させるための電導度が得られる。また、酸、塩基及び塩から選ばれる電解質の含有量が0.5mol/L以下であると、反射防止膜を形成した場合の反射防止性を低減させる懸念がない。
The content of the electrolyte selected from acids, bases and salts is preferably 0.001 mol / L to 0.5 mol / L, and preferably 0.005 mol / L to 0.4 mol / L as the molar concentration in the coating composition. More preferred is 0.01 mol / L to 0.3 mol / L.
When the content of the electrolyte selected from an acid, a base, and a salt is 0.001 mol / L or more, conductivity for reducing bright spot failure can be obtained. Further, when the content of the electrolyte selected from an acid, a base, and a salt is 0.5 mol / L or less, there is no concern of reducing the antireflection property when the antireflection film is formed.
-水-
 本開示の塗布組成物は、水を含有する。水を含有することで、ポリマー粒子を分散させ、かつ、加水分解性シラン化合物を溶解させる。
 水としては、不純物を含まないか、不純物の含有量が低減された水であることが好ましく、例えば、脱イオン水が好ましい。
-water-
The coating composition of the present disclosure contains water. By containing water, the polymer particles are dispersed and the hydrolyzable silane compound is dissolved.
The water is preferably water that does not contain impurities or has a reduced content of impurities. For example, deionized water is preferred.
 水の塗布組成物中における含有量としては、得られる膜の耐傷性をより向上させる観点から、塗布組成物の全質量に対して、0.5質量%~20質量%が好ましく、2質量%~15質量%がより好ましく、4質量%~10質量%が更に好ましい。
 水の含有量が上記範囲内であると、塗布組成物により得られる膜中に効率的にシリカマトリクスを形成することができると考えられる。なお、本開示において、シリカマトリクスとは、加水分解性のシラン化合物等が縮合して得られる相をいう。
The content of water in the coating composition is preferably 0.5% by mass to 20% by mass and preferably 2% by mass with respect to the total mass of the coating composition from the viewpoint of further improving the scratch resistance of the resulting film. Is more preferably 15% by mass, and further preferably 4% by mass to 10% by mass.
It is thought that a silica matrix can be efficiently formed in the film | membrane obtained with a coating composition as content of water is in the said range. In the present disclosure, the silica matrix refers to a phase obtained by condensation of a hydrolyzable silane compound or the like.
 本開示の塗布組成物は、水に加え、有機溶媒を含有してもよい。
 有機溶媒としては、ポリマー粒子を分散させ、かつ、加水分解性シラン化合物を溶解する有機溶媒であれば制限はない。有機溶媒の例としては、アルコール系溶媒、エステル系溶媒、ケトン系溶媒、エーテル系溶媒、アミド系溶媒等が挙げられる。
 この場合、塗布組成物の全質量に対する、水と有機溶媒の合計の含有量としては、80質量%~99質量%が好ましく、10質量%~98質量%がより好ましく、92質量%~97質量%が更に好ましい。
The coating composition of the present disclosure may contain an organic solvent in addition to water.
The organic solvent is not limited as long as it is an organic solvent in which polymer particles are dispersed and a hydrolyzable silane compound is dissolved. Examples of the organic solvent include alcohol solvents, ester solvents, ketone solvents, ether solvents, amide solvents and the like.
In this case, the total content of water and the organic solvent with respect to the total mass of the coating composition is preferably 80% by mass to 99% by mass, more preferably 10% by mass to 98% by mass, and 92% by mass to 97% by mass. % Is more preferable.
 アルコール系溶媒としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、3-メチル-1-ブタノール、tert―ブチルアルコール、1-ペンタノール、2-ペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、3-メチル-3-ペンタノール、シクロペンタノール、2,3-ジメチル-2-ブタノール、3,3-ジメチル-2-ブタノール、2-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチル-2-ペンタノール、4-メチル-3-ペンタノール、シクロヘキサノール、5-メチル-2-ヘキサノール、4-メチル-2-ヘキサノール、等のアルコール(1価のアルコール);エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶媒;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノエチルエーテル、等の水酸基を含有するグリコールエーテル系溶媒;等を挙げることができる。
 エステル系溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸プロピル、酢酸イソプロピル、酢酸アミル(酢酸ペンチル)、酢酸イソアミル(酢酸イソペンチル、酢酸3-メチルブチル)、酢酸2-メチルブチル、酢酸1-メチルブチル、酢酸ヘキシル、酢酸イソヘキシル、プロピレングリコールモノメチルエーテルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル、炭酸エチル、炭酸プロピル、炭酸ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、ピルビン酸ブチル、アセト酢酸メチル、アセト酢酸エチル、プロピオン酸メチル、等を挙げることができる。
 ケトン系溶媒としては、例えば、アセトン、1-ヘキサノン、2-ヘキサノン、ジエチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、プロピレンカーボネート、γ-ブチロラクトン等を挙げることができる。
 エーテル系溶媒としては、例えば、上記水酸基を含有するグリコールエーテル系溶媒の他、プロピレングリコールジメチルエーテル等の水酸基を含有しないグリコールエーテル系溶媒、アニソール等の芳香族エーテル溶媒、ジオキサン、テトラヒドロフラン、1,4-ジオキサン、イソプロピルエーテル等が挙げられる。
 アミド系溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、等が使用できる。
 中でも、ポリマー粒子の分散性の観点から、アルコール系溶媒が好ましく、1価のアルコールを用いることがより好ましく、エタノール又は2-プロパノールを用いることが更に好ましく、2-プロパノールを用いることが特に好ましい。
Examples of alcohol solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 3-methyl-1-butanol, tert-butyl alcohol, 1-pentanol, and 2-pentanol. 1-hexanol, 2-hexanol, 3-hexanol, 3-methyl-3-pentanol, cyclopentanol, 2,3-dimethyl-2-butanol, 3,3-dimethyl-2-butanol, 2-methyl- 2-pentanol, 2-methyl-3-pentanol, 3-methyl-2-pentanol, 3-methyl-3-pentanol, 4-methyl-2-pentanol, 4-methyl-3-pentanol, Alcohols such as cyclohexanol, 5-methyl-2-hexanol, 4-methyl-2-hexanol, etc. Glycols such as ethylene glycol, diethylene glycol, triethylene glycol; ethylene glycol monomethyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monoethyl ether, methoxymethyl butanol, ethylene glycol monoethyl ether, And glycol ether solvents containing a hydroxyl group such as ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, and propylene glycol monoethyl ether.
Examples of the ester solvent include methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, propyl acetate, isopropyl acetate, amyl acetate (pentyl acetate), isoamyl acetate (isopentyl acetate, 3-methylbutyl acetate), acetic acid 2 -Methylbutyl, 1-methylbutyl acetate, hexyl acetate, isohexyl acetate, propylene glycol monomethyl ether acetate, methyl formate, ethyl formate, butyl formate, propyl formate, ethyl lactate, butyl lactate, propyl lactate, ethyl carbonate, propyl carbonate, butyl carbonate, Examples include methyl pyruvate, ethyl pyruvate, propyl pyruvate, butyl pyruvate, methyl acetoacetate, ethyl acetoacetate, and methyl propionate.
Examples of ketone solvents include acetone, 1-hexanone, 2-hexanone, diethyl ketone, cyclohexanone, methylcyclohexanone, phenylacetone, methylethylketone, methylisobutylketone, acetylacetone, acetonylacetone, ionone, propylene carbonate, and γ-butyrolactone. Can be mentioned.
Examples of the ether solvent include, in addition to the above glycol ether solvent containing a hydroxyl group, a glycol ether solvent not containing a hydroxyl group such as propylene glycol dimethyl ether, an aromatic ether solvent such as anisole, dioxane, tetrahydrofuran, 1,4- Examples include dioxane and isopropyl ether.
As the amide solvent, for example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and the like can be used.
Among these, from the viewpoint of dispersibility of the polymer particles, an alcohol solvent is preferable, monovalent alcohol is more preferable, ethanol or 2-propanol is more preferable, and 2-propanol is particularly preferable.
 本開示の塗布組成物では、水及び有機溶媒の両方を含有することが好ましい。水及び有機溶媒の好適な組合せとしては、素材溶解性の点で、水と2-プロパノールとの混合溶媒が好ましい。 The coating composition of the present disclosure preferably contains both water and an organic solvent. As a suitable combination of water and an organic solvent, a mixed solvent of water and 2-propanol is preferable from the viewpoint of material solubility.
 水及び有機溶媒の両方を含有する場合、水及び有機溶媒の合計量に対する有機溶媒の含有量は、50質量%以上であることが好ましく、65質量%以上であることがより好ましく、80質量%以上であることが更に好ましい。有機溶媒の含有量の上限は、例えば98質量%以下とすることができる。
 水及び有機溶媒の両方を含有する場合、有機溶媒を50質量%以上含有することで、塗布組成物により得られる膜の反射防止性により優れる。これは、面状に優れた塗布膜が得られやすいためであると考えられる。
When both water and the organic solvent are contained, the content of the organic solvent relative to the total amount of water and the organic solvent is preferably 50% by mass or more, more preferably 65% by mass or more, and 80% by mass. It is still more preferable that it is above. The upper limit of the content of the organic solvent can be, for example, 98% by mass or less.
When both the water and the organic solvent are contained, the antireflection property of the film obtained from the coating composition is more excellent by containing 50% by mass or more of the organic solvent. This is considered to be because a coating film having an excellent surface shape is easily obtained.
-他の成分-
 本開示の塗布組成物は、本開示の塗布組成物による効果を著しく損なわない範囲において、上記成分以外の他の成分を含有してもよい。
 他の成分としては、数平均一次粒径が3nm~100nmの無機粒子、アルカリ金属シリケート、界面活性剤、増粘剤等が挙げられる。
-Other ingredients-
The coating composition of the present disclosure may contain components other than the above components as long as the effects of the coating composition of the present disclosure are not significantly impaired.
Examples of other components include inorganic particles having a number average primary particle size of 3 nm to 100 nm, alkali metal silicates, surfactants, thickeners, and the like.
(数平均一次粒径が3nm~100nmの無機粒子)
 塗布組成物は、数平均一次粒径が3nm~100nmの無機粒子(以下、「特定無機粒子」ともいう。)を含有してもよい。塗布組成物に数平均一次粒径が3nm~100nmの無機粒子を含有することにより、好適な反射防止特性を維持したまま、得られる膜の耐傷性及び防汚性を向上させることができる。
(Inorganic particles with a number average primary particle size of 3 nm to 100 nm)
The coating composition may contain inorganic particles having a number average primary particle size of 3 nm to 100 nm (hereinafter also referred to as “specific inorganic particles”). By containing inorganic particles having a number average primary particle size of 3 nm to 100 nm in the coating composition, the scratch resistance and antifouling property of the resulting film can be improved while maintaining suitable antireflection properties.
 特定無機粒子は、ホウ素、リン、ケイ素、アルミニウム、チタン、ジルコニウム、亜鉛、スズ、インジウム、ガリウム、ゲルマニウム、アンチモン、モリブデン、セリウム等の少なくとも1つを含む粒子であり、好ましくは上記元素のうち少なくとも一つの元素を含む酸化物の粒子である。このような酸化物粒子としては、酸化ケイ素(シリカ)、酸化チタン、酸化アルミニウム(アルミナ)、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、酸化アンチモン、酸化セリウム、酸化ジルコニウム等の粒子が挙げられる。特定無機粒子としては、ここに挙げた以外のその他の金属酸化物が含まれていてもよい。
 膜の反射防止性及び耐傷性をより向上させる観点から、特定無機粒子として、シリカ又はアルミナの粒子を用いることが好ましく、シリカ粒子を用いることがより好ましい。シリカ粒子としては、例えば、中空シリカ粒子、多孔質シリカ粒子、無孔質シリカ粒子等が挙げられる。シリカ粒子の形状は、特に限定されるものではなく、例えば、球状、楕円状、鎖状等のいずれの形状であってもよい。
また、シリカ粒子は、表面がアルミ化合物等で処理されたシリカ粒子であってもよい。
The specific inorganic particles are particles containing at least one of boron, phosphorus, silicon, aluminum, titanium, zirconium, zinc, tin, indium, gallium, germanium, antimony, molybdenum, cerium and the like, preferably at least of the above elements It is an oxide particle containing one element. Examples of such oxide particles include particles of silicon oxide (silica), titanium oxide, aluminum oxide (alumina), zinc oxide, germanium oxide, indium oxide, tin oxide, antimony oxide, cerium oxide, zirconium oxide, and the like. . The specific inorganic particles may contain other metal oxides other than those listed here.
From the viewpoint of further improving the antireflection property and scratch resistance of the film, silica or alumina particles are preferably used as the specific inorganic particles, and silica particles are more preferably used. Examples of the silica particles include hollow silica particles, porous silica particles, and nonporous silica particles. The shape of the silica particles is not particularly limited, and may be any shape such as a spherical shape, an elliptical shape, or a chain shape.
The silica particles may be silica particles whose surfaces are treated with an aluminum compound or the like.
 塗布組成物は、2種以上の特定無機粒子を含んでいてもよい。2種以上の特定無機粒子を含む場合、形状、粒径、元素組成の少なくともいずれか一つが異なる特定無機粒子を2種以上含むことができる。
 特定無機粒子の数平均一次粒径は3nm~100nmであり、粒径を3nm以上とすることで、特定無機粒子添加による十分な耐傷性向上効果を得ることができる。また、粒径を100nm以下とすることで、特定無機粒子を添加しても膜の空隙率を適正値に維持することができ、優れた反射防止性能が得られる。
 特定無機粒子の数平均一次粒径として、80nm以下が好ましく、30nm以下がより好ましく、15nm以下が特に好ましい。
The coating composition may contain two or more kinds of specific inorganic particles. When two or more types of specific inorganic particles are included, two or more types of specific inorganic particles having different shapes, particle sizes, and elemental compositions can be included.
The number average primary particle size of the specific inorganic particles is 3 nm to 100 nm. By setting the particle size to 3 nm or more, a sufficient scratch resistance improvement effect by adding the specific inorganic particles can be obtained. Moreover, by setting the particle size to 100 nm or less, the porosity of the film can be maintained at an appropriate value even when specific inorganic particles are added, and excellent antireflection performance can be obtained.
The number average primary particle size of the specific inorganic particles is preferably 80 nm or less, more preferably 30 nm or less, and particularly preferably 15 nm or less.
 特定無機粒子の数平均一次粒径は、分散したシリカ特定無機粒子を透過型電子顕微鏡により観察し、撮影した写真の画像から求めることができる。具体的には、写真の画像から、無作為に抽出した200個の粒子について、特定無機粒子の投影面積を測定し、測定した投影面積から円相当径を求め、求めた円相当径の値を算術平均することにより得られた値を特定無機粒子の数平均一次粒径とする。 The number-average primary particle size of the specific inorganic particles can be obtained from an image of a photograph taken by observing the dispersed silica specific inorganic particles with a transmission electron microscope. Specifically, for 200 particles randomly extracted from the image of the photograph, the projected area of the specific inorganic particles is measured, the equivalent circle diameter is obtained from the measured projected area, and the obtained equivalent circle diameter value is obtained. The value obtained by arithmetic averaging is taken as the number average primary particle size of the specific inorganic particles.
 塗布組成物中に好適に含まれるシリカ粒子としては、無孔質シリカ粒子が好ましい。
 「無孔質シリカ粒子」とは、粒子の内部に空隙を有さないシリカ粒子を意味し、中空シリカ粒子、多孔質シリカ粒子等の粒子の内部に空隙を有するシリカ粒子とは区別される。なお、「無孔質シリカ粒子」には、粒子の内部にポリマー等のコアを有し、コアの外殻(シェル)がシリカ、又はシリカの前駆体(例えば、焼成によってシリカに変化する素材)
で構成されるコア-シェル構造のシリカ粒子は含まれない。
As the silica particles suitably contained in the coating composition, nonporous silica particles are preferable.
“Nonporous silica particles” mean silica particles having no voids inside the particles, and are distinguished from silica particles having voids inside the particles such as hollow silica particles and porous silica particles. The “non-porous silica particles” have a core such as a polymer inside the particles, and the outer shell (shell) of the core is silica or a precursor of silica (for example, a material that changes to silica by firing).
The core-shell structured silica particles are not included.
 無孔質シリカ粒子は、塗布膜を焼成する場合には、焼成の前後で塗布膜中に存在する粒子の状態が変化すると考えられる。具体的には、焼成前の塗布膜中では、それぞれの無孔質シリカ粒子が単一粒子(ファンデル・ワールス力により凝集した状態等の集合している状態をここでは単一粒子とする。)として存在し、焼成後の塗布膜中では、複数の無孔質シリカ粒子のうち少なくとも一部が、互いに連結された粒子連結体として存在すると考えられる。
 塗布組成物中に含まれるシリカ粒子が無孔質シリカ粒子であると、耐傷性がより向上する。これは、塗布膜の焼成により、複数の無孔質シリカ粒子が連結されて粒子連結体が形成されるため、膜の硬度が高まるためであると考えられる。
When the non-porous silica particles are baked, it is considered that the state of the particles present in the coating film changes before and after baking. Specifically, in the coating film before firing, a state in which the respective nonporous silica particles are aggregated into a single particle (a state in which the particles are aggregated by van der Waals force or the like) is defined as a single particle. In the coating film after firing, it is considered that at least a part of the plurality of nonporous silica particles is present as a linked particle body connected to each other.
When the silica particles contained in the coating composition are nonporous silica particles, the scratch resistance is further improved. This is considered to be because the hardness of the film is increased because a plurality of nonporous silica particles are connected to form a particle connected body by baking the coating film.
 シリカ粒子としては、市販品を用いてもよい。市販品の例としては、NALCO(登録商標)8699(無孔質シリカ粒子の水分散物、数平均一次粒径:3nm、固形分:15質量%、NALCO社製)、NALCO(登録商標)1130(無孔質シリカ粒子の水分散物、数平均一次粒径:8nm、固形分:30質量%、NALCO社製)、NALCO(登録商標)1030(無孔質シリカ粒子の水分散物、数平均一次粒径:13nm、固形分:30質量%、NALCO社製)、NALCO(登録商標)1050(無孔質シリカ粒子の水分散物、数平均一次粒径:20nm、固形分:50質量%、NALCO社製)、NALCO(登録商標)1060(無孔質シリカ粒子の水分散物、数平均一次粒径:60nm、固形分:50質量%、NALCO社製)、スノーテックス(登録商標)ST-OXS(無孔質シリカ粒子の水分散物、数平均一次粒径:4nm~6nm、固形分:10質量%、日産化学工業社製)、スノーテックス(登録商標)ST-O(無孔質シリカ粒子の水分散物、数平均一次粒径:10nm~15nm、固形分:20質量%、日産化学工業社製)、スノーテックス(登録商標)ST-O-40(無孔質シリカ粒子の水分散物、数平均一次粒径:20nm~25nm、固形分:40質量%、日産化学工業社製)、スノーテックス(登録商標)ST-OYL(無孔質シリカ粒子の水分散物、数平均一次粒径:50nm~80nm、固形分:20質量%、日産化学工業社製)、スノーテックス(登録商標)ST-OUP(無孔質シリカ粒子の水分散物、数平均一次粒径:40nm~100nm、固形分:15質量%、日産化学工業社製)、等が挙げられる。 Commercially available products may be used as the silica particles. Examples of commercially available products include NALCO (registered trademark) 8699 (aqueous dispersion of nonporous silica particles, number average primary particle size: 3 nm, solid content: 15% by mass, manufactured by NALCO), NALCO (registered trademark) 1130. (Aqueous dispersion of nonporous silica particles, number average primary particle size: 8 nm, solid content: 30% by mass, manufactured by NALCO), NALCO (registered trademark) 1030 (aqueous dispersion of nonporous silica particles, number average) Primary particle size: 13 nm, solid content: 30% by mass, manufactured by NALCO, NALCO (registered trademark) 1050 (aqueous dispersion of non-porous silica particles, number average primary particle size: 20 nm, solid content: 50% by mass, NALCO (trade name), NALCO (registered trademark) 1060 (aqueous dispersion of nonporous silica particles, number average primary particle size: 60 nm, solid content: 50% by mass, produced by NALCO), Snowtex (registered trade name) ST OXS (aqueous dispersion of nonporous silica particles, number average primary particle size: 4 nm to 6 nm, solid content: 10% by mass, manufactured by Nissan Chemical Industries), Snowtex (registered trademark) ST-O (nonporous silica) Water dispersion of particles, number average primary particle size: 10 nm to 15 nm, solid content: 20% by mass, manufactured by Nissan Chemical Industries, Ltd., Snowtex (registered trademark) ST-O-40 (water dispersion of nonporous silica particles) Product, number average primary particle size: 20 nm to 25 nm, solid content: 40% by mass, manufactured by Nissan Chemical Industries, Ltd., Snowtex (registered trademark) ST-OYL (aqueous dispersion of nonporous silica particles, number average primary particle) Diameter: 50 to 80 nm, solid content: 20% by mass, manufactured by Nissan Chemical Industries, Ltd., Snowtex (registered trademark) ST-OUP (aqueous dispersion of non-porous silica particles, number average primary particle size: 40 nm to 100 nm, Solid content: 15% by mass, Made production Chemical Industry Co., Ltd.), and the like.
 特定無機粒子は、本発明の実施形態に係る効果を損なわない程度に含有させることができ、その含有量は、加水分解性シラン化合物に対する含有比として、質量比で0.03~1.0が好ましく、0.03~0.5がより好ましく、0.03~0.1が最も好ましい。無機粒子の加水分解性シラン化合物に対する含有比が0.03以上であると、耐傷性に優れた膜質が得られやすい。無機粒子の加水分解性シラン化合物に対する含有比が1.0以下であると、表面の凸凹の小さい、面状良好な膜を形成するのに有利であり、優れた防汚性が得られやすい。 The specific inorganic particles can be contained to such an extent that the effects according to the embodiment of the present invention are not impaired, and the content thereof is 0.03 to 1.0 in terms of mass ratio with respect to the hydrolyzable silane compound. Preferably, 0.03 to 0.5 is more preferable, and 0.03 to 0.1 is most preferable. When the content ratio of the inorganic particles to the hydrolyzable silane compound is 0.03 or more, a film quality excellent in scratch resistance is easily obtained. When the content ratio of the inorganic particles to the hydrolyzable silane compound is 1.0 or less, it is advantageous for forming a film having a small surface unevenness and a good surface condition, and excellent antifouling properties are easily obtained.
(アルカリ金属シリケート)
 塗布組成物は、アルカリ金属シリケートを含有してもよい。
 アルカリ金属シリケートを含有することで、反射防止性と耐傷性との双方を向上させることができる。アルカリ金属シリケートとは、珪酸のアルカリ金属塩を指し、下記の式Aにより表されるアルカリ金属シリケートが好ましい。
   MO・nSiO  ・・・式A
(Alkali metal silicate)
The coating composition may contain an alkali metal silicate.
By containing an alkali metal silicate, both antireflection properties and scratch resistance can be improved. The alkali metal silicate refers to an alkali metal salt of silicic acid, and an alkali metal silicate represented by the following formula A is preferable.
M 2 O · nSiO 2 Formula A
 式Aにおいて、Mは、アルカリ金属を表す。
 アルカリ金属としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、セシウム(Cs)等が挙げられる。
 Mで表されるアルカリ金属としては、Li又はKが好ましい。
 アルカリ金属としてLi又はKを選択することで、Naに比べて、更に耐傷性が向上する。
 式Aにおいて、nは、アルカリ金属シリケートのモル比を表す。nは、架橋性の観点から、5.0以下である化合物が好ましい。
 アルカリ金属シリケートのモル比nが適切な値であると、架橋しやすくなると考えられる。そのため、MがLiである場合、n≦5.0を満たす化合物を選択することにより、アルカリ金属シリケートがシリカ粒子と架橋しやすく、耐傷性が更に向上すると考えられる。Mで表されるアルカリ金属がLiである場合、nは3.0以上であることがより好ましい。
In the formula A, M represents an alkali metal.
Examples of the alkali metal include lithium (Li), sodium (Na), potassium (K), cesium (Cs), and the like.
As the alkali metal represented by M, Li or K is preferable.
By selecting Li or K as the alkali metal, the scratch resistance is further improved as compared with Na.
In formula A, n represents the molar ratio of alkali metal silicate. n is preferably a compound of 5.0 or less from the viewpoint of crosslinkability.
When the molar ratio n of the alkali metal silicate is an appropriate value, it is considered that crosslinking becomes easy. Therefore, when M is Li, it is considered that by selecting a compound satisfying n ≦ 5.0, the alkali metal silicate is easily crosslinked with the silica particles, and the scratch resistance is further improved. When the alkali metal represented by M is Li, n is more preferably 3.0 or more.
(界面活性剤)
 塗布組成物は、界面活性剤を含有することができる。界面活性剤を含有することで、塗布組成物の基材への濡れ性の改善に有効である。
 界面活性剤としては、例えば、アセチレン系ノニオン性界面活性剤、ポリオール系ノニオン性界面活性剤等を挙げることができる。また、界面活性剤は、上市されている市販品を用いてもよく、例えば、日信化学工業社製のオルフィンシリーズ(例えば、オルフィンEXP.4200、オルフィンEXP.4123等)、ダウ・ケミカル社製のTRITON BG-10、花王社製のマイドールシリーズ(例えば、マイドール10、マイドール
12等)などを用いることができる。
(Surfactant)
The coating composition can contain a surfactant. By containing the surfactant, it is effective in improving the wettability of the coating composition to the substrate.
Examples of the surfactant include acetylene-based nonionic surfactants and polyol-based nonionic surfactants. As the surfactant, commercially available products may be used. For example, Olfin series (for example, Olphine EXP.4200, Olphine EXP.4123, etc.) manufactured by Nissin Chemical Industry Co., Ltd., Dow Chemical Co., Ltd. TRITON BG-10 manufactured by Kao Corporation or Mydoll series manufactured by Kao Corporation (for example, Mydoll 10, Mydoll 12, etc.) can be used.
(増粘剤)
 塗布組成物は、増粘剤を含有することができる。増粘剤を含むことで、塗布組成物の粘度を調整することができる。
 増粘剤としては、例えば、ポリエーテル、ウレタン変性ポリエーテル、ポリアクリル酸、ポリアクリルスルホン酸塩、ポリビニルアルコール、多糖類等が挙げられる。中でも、ポリエーテル、変性ポリアクリル系スルホン酸塩、ポリビニルアルコールが好ましい。増
粘剤として上市されている市販品を用いてもよく、市販品としては、例えば、サンノプコ社製のSNシックナー601(ポリエーテル)、SNシックナー615(変性ポリアクリル系スルホン酸塩)、富士フイルム和光純薬社製のポリビニルアルコール(重合度:約1,000~2,000)等が挙げられる。
 増粘剤の含有量は、塗布組成物の全質量に対して0.01質量%~5.0質量%程度が好ましい。
(Thickener)
The coating composition can contain a thickener. By including the thickener, the viscosity of the coating composition can be adjusted.
Examples of the thickener include polyether, urethane-modified polyether, polyacrylic acid, polyacryl sulfonate, polyvinyl alcohol, and polysaccharides. Among these, polyether, modified polyacrylic sulfonate, and polyvinyl alcohol are preferable. Commercially available products that are marketed as thickeners may be used. Examples of commercially available products include SN thickener 601 (polyether), SN thickener 615 (modified polyacrylic sulfonate), and Fuji Film manufactured by San Nopco. Examples include polyvinyl alcohol (degree of polymerization: about 1,000 to 2,000) manufactured by Wako Pure Chemical Industries.
The content of the thickener is preferably about 0.01% by mass to 5.0% by mass with respect to the total mass of the coating composition.
~固形分量~
 塗布組成物の固形分量としては、塗布組成物の全質量に対し、1質量%~20質量%が好ましく、1質量%~10質量%がより好ましく、2質量%~8質量%が更に好ましい。
 塗布組成物の固形分量が上記範囲内であると、塗布組成物により得られる膜をより良好な反射防止特性が得られる膜とすることができる。これは、固形分量が上記範囲であることで、塗布組成物の塗布膜を基材の塗布面に均一な膜厚で追従させることができ、膜厚ムラのない均一な厚みの膜が得られるためであると考えられる。
 塗布組成物中の固形分量は、水、又は水及び有機溶媒の含有量により調整することができる。
 なお、本開示における固形分量とは、塗布組成物の全質量に対する、塗布組成物から水及び有機溶媒を除いた質量の割合をいう。
~ Solid content ~
The solid content of the coating composition is preferably 1% by mass to 20% by mass, more preferably 1% by mass to 10% by mass, and still more preferably 2% by mass to 8% by mass with respect to the total mass of the coating composition.
When the solid content of the coating composition is within the above range, the film obtained from the coating composition can be a film that can provide better antireflection properties. This is because when the solid content is in the above range, the coating film of the coating composition can follow the coating surface of the substrate with a uniform film thickness, and a film with a uniform thickness without film thickness unevenness can be obtained. This is probably because of this.
The solid content in the coating composition can be adjusted by the content of water or water and an organic solvent.
In addition, solid content amount in this indication means the ratio of the mass remove | excluding water and the organic solvent from the coating composition with respect to the total mass of a coating composition.
 本開示の塗布組成物は、塗布時の帯電に起因した塗膜の厚みムラを抑え、ひいては輝点状故障の発生を抑制するという効果が奏される。
 かかる観点から、本開示の塗布組成物は、例えば、塗布組成物の硬化物である反射防止膜の形成に好適に用いることができる。本開示の塗布組成物を用いた反射防止膜は、適切な屈折率を有する膜を厚みムラの発生が抑えられた均一性の高い厚みで形成されるため、反射防止性に優れたものとなる。また、既述のように、耐傷性及び防汚性にも優れたものとすることができる。
The coating composition of the present disclosure has the effect of suppressing unevenness in the thickness of the coating film due to charging during coating, and consequently suppressing the occurrence of bright spot failures.
From this viewpoint, the coating composition of the present disclosure can be suitably used for forming an antireflection film that is a cured product of the coating composition, for example. The antireflection film using the coating composition of the present disclosure is excellent in antireflection properties because a film having an appropriate refractive index is formed with a highly uniform thickness in which occurrence of uneven thickness is suppressed. . Further, as described above, it can be excellent in scratch resistance and antifouling property.
 本開示の塗布組成物の硬化物として、反射防止膜を一例に説明する。
 本開示の塗布組成物は、表面に凹凸構造を有する基材と硬化膜とを有する積層体の、硬化膜の塗布形成に好適に用いることができる。例えば太陽電池モジュールに搭載されるフロントガラスでは、ガラス基材上に太陽光の反射を軽減するための反射防止膜を有しており、ガラス基材の表面には防眩性を付与する等の目的で凹凸形状が設けられている。
An antireflection film will be described as an example as a cured product of the coating composition of the present disclosure.
The coating composition of the present disclosure can be suitably used for coating formation of a cured film of a laminate having a substrate having a concavo-convex structure on the surface and a cured film. For example, a windshield mounted on a solar cell module has an antireflection film for reducing the reflection of sunlight on a glass substrate, and provides an antiglare property to the surface of the glass substrate. An uneven shape is provided for the purpose.
 反射防止膜の反射防止性は、以下の平均反射率の変化(ΔR)により示される。
 本開示に係る反射防止膜は、上記ΔRの数値が正の値をとるものである。
 具体的には、紫外可視赤外分光光度計(型番:UV3100PC、島津製作所社製)により、基材上に反射防止膜が形成された積層体の、波長400nm~1,100nmの光における反射率(%)を積分球を用いて測定する。反射率を測定する際、積層体の裏面(基材の反射防止膜が形成されていない側の面)の反射を抑えるため、裏面となる基材の表面に黒色のテープ(型番:SPV-202、日東電工社製)を貼り付ける。そして、測定された波長400nm~1,100nmにおける各波長の反射率から、積層体の平均反射率(RAV;単位%)を算出する。同様に、反射防止膜が形成されていない基材の、波長400nm~1,100nmの光における反射率(%)を測定する。そして、測定された波長400nm~1,100nmにおける各波長の反射率から、基材の平均反射率(R0AV;単位%)を算出する。
 次いで、平均反射率RAV、R0AVから、反射防止膜が形成されていない基材に対する平均反射率の変化(ΔR;単位:%)を下記式(a)にしたがって算出する。
   ΔR =R0AV- RAV  式(a)
 ΔRは、数値が正の値で、かつ、大きいほど反射防止(AR)性に優れることを示す。
The antireflection property of the antireflection film is indicated by the following change in average reflectance (ΔR).
In the antireflection film according to the present disclosure, the numerical value of ΔR is a positive value.
Specifically, the reflectivity of a laminate in which an antireflection film is formed on a base material using a UV-visible-infrared spectrophotometer (model number: UV3100PC, manufactured by Shimadzu Corporation) in light having a wavelength of 400 nm to 1,100 nm. (%) Is measured using an integrating sphere. When measuring the reflectance, a black tape (model number: SPV-202) is applied to the surface of the base material that is the back surface in order to suppress reflection of the back surface of the laminate (the surface on the side where the antireflection film of the base material is not formed). , Made by Nitto Denko). Then, the average reflectance (R AV ; unit%) of the laminate is calculated from the measured reflectance at each wavelength in the wavelength range of 400 nm to 1,100 nm. Similarly, the reflectance (%) of light having a wavelength of 400 nm to 1,100 nm of a base material on which no antireflection film is formed is measured. Then, the average reflectance (R 0AV ; unit%) of the substrate is calculated from the measured reflectance at each wavelength in the wavelength range of 400 nm to 1,100 nm.
Next, a change (ΔR; unit:%) of the average reflectance with respect to the base material on which the antireflection film is formed is calculated from the average reflectances R AV and R 0AV according to the following formula (a).
ΔR = R 0AV −R AV formula (a)
ΔR indicates that the greater the value is and the greater the value, the better the antireflection (AR) property.
 反射率は、積分球付の分光光度計を用いることにより測定することができる。本開示においては、測定装置として紫外可視赤外分光光度計(型番:UV3100PC、島津製作所社製)を用い、波長400nm~1,100nmの光における反射率を、積分球を用いて測定し、それぞれの波長における反射率の値を算術平均することにより得られた値を平均反射率として採用している。 The reflectance can be measured by using a spectrophotometer with an integrating sphere. In the present disclosure, an ultraviolet-visible-infrared spectrophotometer (model number: UV3100PC, manufactured by Shimadzu Corporation) is used as a measuring apparatus, and the reflectance in light having a wavelength of 400 nm to 1,100 nm is measured using an integrating sphere, A value obtained by arithmetically averaging the reflectance values at the wavelengths of is used as the average reflectance.
 反射防止膜のΔRは、反射防止性の観点から、2.3%以上が好ましく、2.6%以上がより好ましい。 ΔR of the antireflection film is preferably 2.3% or more, more preferably 2.6% or more from the viewpoint of antireflection properties.
 反射防止膜の平均膜厚としては、反射防止性の観点から、50nm~250nmの範囲とすることができる。中でも、反射防止性の点で、80nm~200nmが好ましい。
 平均膜厚は、反射防止膜を、膜面と垂直な方向に平行に切断し、切断面を走査型電子顕微鏡(SEM)で10箇所観察し、10枚のSEM像から各々の観察箇所の膜厚を計測し、得られた10個の計測値(膜厚)を平均することにより求められる。反射防止膜が基材上に形成されている場合、反射防止膜を基材ごと基材の基板面と直交する方向に切断して上記観察を行う。基材としては、後述する積層体の製造に用いられる基材を用いることができる。
The average film thickness of the antireflection film can be in the range of 50 nm to 250 nm from the viewpoint of antireflection properties. Among these, 80 nm to 200 nm is preferable from the viewpoint of antireflection properties.
For the average film thickness, the antireflection film was cut in parallel to the direction perpendicular to the film surface, and the cut surface was observed at 10 points with a scanning electron microscope (SEM). It is obtained by measuring the thickness and averaging the ten measured values (film thickness) obtained. When the antireflection film is formed on the base material, the antireflection film is cut together with the base material in a direction perpendicular to the substrate surface of the base material, and the above observation is performed. As a base material, the base material used for manufacture of the laminated body mentioned later can be used.
<積層体の製造方法>
 本開示の積層体の製造方法は、基材上に既述の本開示の塗布組成物をロールコーターにより塗布し、塗布膜を形成する工程(以下、「塗布膜形成工程」ともいう。)と、塗布膜を乾燥させる工程(以下、「乾燥工程」ともいう。)と、乾燥工程を経た塗布膜を焼成して硬化膜を得る工程(以下、「焼成工程」ともいう。)と、を有する。また、本開示の積層体の製造方法は、必要に応じて、更に、洗浄工程、表面処理工程、冷却工程等の他の工程を有していてもよい。
<Method for producing laminate>
The method for producing a laminate of the present disclosure includes a step of applying the above-described coating composition of the present disclosure on a substrate with a roll coater to form a coating film (hereinafter also referred to as “coating film forming step”). And a step of drying the coating film (hereinafter also referred to as “drying step”) and a step of baking the coating film that has undergone the drying step to obtain a cured film (hereinafter also referred to as “baking step”). . Moreover, the manufacturing method of the laminated body of this indication may have other processes, such as a washing process, a surface treatment process, and a cooling process, as needed.
 本開示の積層体の製造方法では、既述の塗布組成物が用いられるので、基材の表面状態に関わらず、反射防止性に優れ、かつ、輝点状故障の発生が抑えられたた積層体が製造され、耐傷性及び防汚性にも優れたものとなる。 In the method for producing a laminate according to the present disclosure, since the coating composition described above is used, the laminate has excellent antireflection properties and the occurrence of bright spot failures regardless of the surface state of the substrate. The body is manufactured and has excellent scratch resistance and antifouling properties.
-塗布膜形成工程-
 塗布膜形成工程では、基材上に既述の本開示の塗布組成物をロールコーターにより塗布し、塗布膜を形成する。
-Coating film formation process-
In the coating film forming step, the above-described coating composition of the present disclosure is coated on a substrate with a roll coater to form a coating film.
 塗布膜形成工程では、既述のように、塗布時の帯電を抑えて塗膜の厚みムラの発生が抑制されるように、特定の電解質とポリマー粒子及び加水分解性シラン化合物とを含む本開示の塗布組成物が用いられるため、少なくとも後述する乾燥工程及び焼成工程を経て形成された膜は、輝点状故障の発生が抑えられ、反射防止膜である場合には反射防止性に優れたものとなる。また、膜の耐傷性及び防汚性にも優れる。 In the coating film forming step, as described above, the present disclosure includes a specific electrolyte, polymer particles, and a hydrolyzable silane compound so as to suppress charging during coating and suppress the occurrence of coating thickness unevenness. Since the coating composition is used, the film formed through at least the drying process and the baking process described later can suppress the occurrence of bright spot-like failure, and has excellent antireflection properties when it is an antireflection film. It becomes. In addition, the film has excellent scratch resistance and antifouling properties.
 塗布組成物の塗布量は、特に限定されるものではなく、塗布組成物中の固形分の濃度、所望の膜厚等に応じて、操作性等を考慮し、適宜設定することができる。塗布組成物の塗布量は、0.01mL/m~30mL/mであることが好ましく、0.1mL/m~20mL/mであることがより好ましく、1mL/m~15mL/mであることが更に好ましい。塗布組成物の塗布量が、上記の範囲内であると、塗布精度が良好となり、反射防止性により優れた膜を形成することができる。 The coating amount of the coating composition is not particularly limited, and can be appropriately set in consideration of operability and the like according to the solid content concentration in the coating composition, the desired film thickness, and the like. The coating amount of the coating composition is preferably 0.01 mL / m 2 to 30 mL / m 2 , more preferably 0.1 mL / m 2 to 20 mL / m 2 , and 1 mL / m 2 to 15 mL / m 2. it is more preferably m 2. When the coating amount of the coating composition is within the above range, the coating accuracy is improved, and a film having better antireflection properties can be formed.
 本開示の積層体の製造方法は、塗布膜形成工程における塗布にロールコーターが用いられる。ロールコーターを用いて成膜する場合に、基材の表面に帯電が生じて塗膜に厚みムラが生じやすい。帯電に起因した塗膜の厚みムラは、輝点状故障の原因となる。
 輝点状故障の発生は、基材の表面に塗布組成物を塗布するロール(即ち、コーティングロール)の表面材質がゴムである場合に特に生じやすい。したがって、表面の少なくとも一部にゴムを含むコーティングロールで塗布する場合に、本開示の積層体の製造方法による効果がより一層奏される。
 ゴムとしては、例えば、エチレンプロピレンジエンゴム(EPDM)である。
In the method for manufacturing a laminate of the present disclosure, a roll coater is used for coating in the coating film forming step. When a film is formed using a roll coater, the surface of the substrate is charged and the coating film is likely to have uneven thickness. The uneven thickness of the coating film due to charging causes a bright spot-like failure.
The occurrence of bright spot failure is particularly likely to occur when the surface material of the roll (that is, the coating roll) that applies the coating composition to the surface of the substrate is rubber. Therefore, when the coating roll containing rubber is applied to at least a part of the surface, the effect of the manufacturing method of the laminate of the present disclosure is further enhanced.
An example of the rubber is ethylene propylene diene rubber (EPDM).
 基材としては、ガラス、樹脂、金属、セラミック、又は、ガラス、樹脂、金属及びセラミックから選ばれる少なくとも一つを複合化した複合材料等の基材の任意の基材を選択することができる。
 いずれの基材を用いた場合も、本開示の積層体の製造方法による効果が期待されるが、塗布組成物を塗布するコーティングロールが最も基材と相互作用しやすいため、基材としては、効果がより一層奏される点で、ガラス基材が好ましい。
As the base material, any base material such as glass, resin, metal, ceramic, or a composite material in which at least one selected from glass, resin, metal, and ceramic is combined can be selected.
Even when any substrate is used, the effect of the method for producing a laminate of the present disclosure is expected, but the coating roll on which the coating composition is applied is most likely to interact with the substrate. A glass substrate is preferable in that the effect is further enhanced.
 ガラス基材を用いると、ヒドロキシ基の縮合が、加水分解性シラン化合物が有するヒドロキシ基同士だけでなく、加水分解性シラン化合物が有するヒドロキシル基とガラス表面のヒドロキシル基との間でも発生するため、基材との密着性に優れた塗布膜を形成することができる。 When a glass substrate is used, the condensation of hydroxy groups occurs not only between the hydroxyl groups of the hydrolyzable silane compound but also between the hydroxyl group of the hydrolyzable silane compound and the hydroxyl group of the glass surface, A coating film having excellent adhesion to the substrate can be formed.
 基材の中でも、表面に凹凸構造を有する基材を用いた場合に、本開示の積層体の製造方法による効果がより一層奏される。
 凹凸構造を有する基材とは、表面の算術平均粗さRaが0.1μm~1.0μmである基材を指す。Raがこの範囲にある基材上に塗布膜を積層することで、防眩性を有し、反射防止等の機能を有する積層体が形成される。 Raとしては、防眩性、反射防止等の機能を付与する上で、0.2μm~0.7μmがより好ましい。
 算術平均粗さRaは、表面粗さ計(型番:ハンディサーフE-35B、(株)東京精密社製)を用い、JIS-B0601に準拠して測定される値である。
Among the base materials, when a base material having a concavo-convex structure on the surface is used, the effect of the method for manufacturing a laminate of the present disclosure is further enhanced.
The base material having a concavo-convex structure refers to a base material having a surface arithmetic average roughness Ra of 0.1 μm to 1.0 μm. By laminating a coating film on a substrate having Ra in this range, a laminate having antiglare properties and functions such as antireflection is formed. Ra is more preferably 0.2 μm to 0.7 μm from the viewpoint of imparting functions such as antiglare property and antireflection.
The arithmetic average roughness Ra is a value measured according to JIS-B0601 using a surface roughness meter (model number: Handy Surf E-35B, manufactured by Tokyo Seimitsu Co., Ltd.).
-乾燥工程-
 乾燥工程では、塗布膜形成工程で形成された塗布膜を乾燥させる。
 乾燥工程では、塗布組成物中の溶媒が除去されることにより、塗布膜が基材上に固定されることが好ましい。
 塗布組成物中の溶媒が除去されることで、緻密な膜が形成される。塗布組成物がシリカ粒子等の無機粒子を含む場合であれば、膜中に無機粒子が密に配置され、より緻密な膜が形成される。膜が緻密になり、硬度が高くなることで、優れた耐傷性が得られると考えられる。また、膜が緻密になり、膜面が平滑となることで、汚れが付着し難くなり、防汚性にも優れるものと考えられる。
-Drying process-
In the drying process, the coating film formed in the coating film forming process is dried.
In the drying step, the coating film is preferably fixed on the substrate by removing the solvent in the coating composition.
A dense film is formed by removing the solvent in the coating composition. If the coating composition contains inorganic particles such as silica particles, the inorganic particles are densely arranged in the film, and a denser film is formed. It is considered that excellent scratch resistance can be obtained when the film becomes dense and the hardness increases. Moreover, since the film becomes dense and the film surface becomes smooth, it is considered that dirt is difficult to adhere and the antifouling property is excellent.
 塗布膜の乾燥は、室温(25℃)で行ってもよいし、加熱装置を用いて行ってもよい。
 加熱装置としては、目的の温度に加熱することができれば、特に限定されることなく、公知の加熱装置をいずれも用いることができる。加熱装置としては、オーブン、電気炉等の他、製造ラインに合わせて独自に作製した加熱装置を用いることができる。
The coating film may be dried at room temperature (25 ° C.) or using a heating device.
The heating device is not particularly limited as long as it can be heated to a target temperature, and any known heating device can be used. As the heating device, an oven, an electric furnace, or the like, or a heating device uniquely manufactured according to the production line can be used.
 塗布膜の乾燥は、例えば、上記の加熱装置を用いて、雰囲気温度40℃~200℃にて塗布膜を加熱することにより行ってもよい。加熱により塗布膜を乾燥する場合には、例えば、加熱時間を1分間~30分間程度とすることができる。
 塗布膜の乾燥条件としては、塗布膜を、雰囲気温度40℃~200℃にて1分間~10分間加熱する乾燥条件が好ましく、雰囲気温度100℃~180℃にて1分間~5分間加熱する乾燥条件がより好ましい。
The coating film may be dried by, for example, heating the coating film at an ambient temperature of 40 ° C. to 200 ° C. using the above heating device. When the coating film is dried by heating, for example, the heating time can be about 1 to 30 minutes.
The drying conditions for the coating film are preferably drying conditions in which the coating film is heated at an atmospheric temperature of 40 ° C. to 200 ° C. for 1 minute to 10 minutes, and drying is performed at an atmospheric temperature of 100 ° C. to 180 ° C. for 1 minute to 5 minutes. Conditions are more preferred.
 乾燥後の塗布膜の平均膜厚は、50nm以上の範囲とすることができ、80nm~200nmの範囲が好ましい。平均膜厚が50nm以上であると、膜の反射防止性が優れたものとなり、80nm~200nmであると反射防止性により優れる。平均膜厚の測定方法については、既述の通りである。 The average film thickness of the coating film after drying can be in the range of 50 nm or more, and preferably in the range of 80 nm to 200 nm. When the average film thickness is 50 nm or more, the film has excellent antireflection properties, and when it is 80 to 200 nm, the antireflection properties are excellent. The method for measuring the average film thickness is as described above.
-焼成工程-
 焼成工程では、乾燥工程を経た塗布膜を焼成して硬化膜を得る。
 焼成工程では、400℃~800℃の雰囲気温度で焼成することが好ましい。乾燥後の塗布膜を400℃~800℃の雰囲気温度で焼成することで、乾燥工程で形成された緻密な膜の硬度が更に高まり、耐傷性が更に向上する。さらに、焼成によって塗布膜中の有機成分、特にはポリマー粒子の少なくとも一部が熱分解し、消失するので、焼成後の塗布膜には部分的に任意のサイズの空隙が形成され、反射防止性を効果的に向上させることができる。
-Baking process-
In the firing step, the coating film that has undergone the drying step is fired to obtain a cured film.
In the firing step, firing is preferably performed at an ambient temperature of 400 ° C. to 800 ° C. By baking the dried coating film at an ambient temperature of 400 ° C. to 800 ° C., the hardness of the dense film formed in the drying process is further increased, and the scratch resistance is further improved. Furthermore, since organic components in the coating film, especially at least part of the polymer particles, are thermally decomposed and disappeared by baking, voids of any size are partially formed in the coating film after baking, and antireflection properties Can be improved effectively.
 塗布膜の焼成は、加熱装置を用いて行うことができる。加熱装置としては、目的の温度に加熱することができれば、特に限定されることなく、公知の加熱装置をいずれも用いることができる。加熱装置としては、電気炉等の他、製造ラインに合わせて独自に作製した焼成装置を用いることができる。
 塗布膜の焼成温度(雰囲気温度)は、450℃以上800℃以下であることがより好ましく、500℃以上800℃以下であることが更に好ましく、600℃以上800℃以下であることが特に好ましい。焼成時間は、1分間~10分間であることが好ましく、1分間~5分間であることがより好ましい。
The coating film can be baked using a heating device. The heating device is not particularly limited as long as it can be heated to a target temperature, and any known heating device can be used. As the heating device, in addition to an electric furnace or the like, it is possible to use a firing device uniquely produced in accordance with a production line.
The firing temperature (atmosphere temperature) of the coating film is more preferably 450 ° C. or higher and 800 ° C. or lower, further preferably 500 ° C. or higher and 800 ° C. or lower, and particularly preferably 600 ° C. or higher and 800 ° C. or lower. The firing time is preferably from 1 minute to 10 minutes, and more preferably from 1 minute to 5 minutes.
 硬化膜の平均膜厚としては、80nm~200nmであることが好ましい。
 焼成後の硬化膜の平均膜厚が上記範囲内であると、反射防止膜を有する積層体である場合は膜の反射防止性に優れたものとなる。
 平均膜厚は、ガラス基材上に焼成後の膜サンプル(例えば反射防止膜)を有する積層体を、基材の基板面と直交する方向に平行に切断し、切断面を走査型電子顕微鏡(SEM)で10箇所観察し、10枚のSEM像から各々の観察箇所の膜厚を計測し、得られた10個の計測値(膜厚)を平均することにより求められる。
The average film thickness of the cured film is preferably 80 nm to 200 nm.
When the average film thickness of the cured film after firing is within the above range, the antireflection property of the film is excellent when the laminate has an antireflection film.
The average film thickness is obtained by cutting a laminate having a fired film sample (for example, an antireflection film) on a glass substrate in parallel to a direction perpendicular to the substrate surface of the substrate, and then using the scanning electron microscope ( It is obtained by observing 10 spots with SEM, measuring the film thickness of each observed spot from 10 SEM images, and averaging the 10 measured values (film thickness) obtained.
-他の工程-
 本開示の積層体の製造方法には、必要に応じて、上記の工程以外の他の工程を含んでもよい。他の工程としては、洗浄工程、表面処理工程、冷却工程等が挙げられる。
-Other processes-
The manufacturing method of the laminated body of this indication may include other processes other than said process as needed. Examples of other processes include a cleaning process, a surface treatment process, and a cooling process.
 本開示における積層体は、太陽電池モジュールに搭載されるフロントガラス等であってもよい。この場合、太陽電池モジュールは、本開示における積層体、即ち、基材と本開示における反射防止膜とを有する積層体を備えたものである。
 太陽電池モジュールは、太陽光の光エネルギーを電気エネルギーに変換する太陽電池素子を、太陽光が入射する側に配置される本開示に係る積層体と、ポリエステルフィルムに代表される太陽電池用バックシートと、の間に配置して構成されたものでもよい。本開示に係る積層体とポリエステルフィルム等の太陽電池用バックシートとの間は、例えば、エチレン-酢酸ビニル共重合体等の樹脂に代表される封止材によって封止される。
The laminated body in the present disclosure may be a windshield mounted on a solar cell module. In this case, the solar cell module includes a laminate in the present disclosure, that is, a laminate having the base material and the antireflection film in the present disclosure.
The solar cell module includes a solar cell element that converts light energy of sunlight into electric energy, a laminate according to the present disclosure that is disposed on a side where sunlight enters, and a solar cell backsheet represented by a polyester film. It may be arranged between and. The laminate according to the present disclosure and a back sheet for solar cells such as a polyester film are sealed with a sealing material typified by a resin such as an ethylene-vinyl acetate copolymer.
 太陽電池モジュールは、既述の反射防止膜を有する積層体を備えるので、反射防止性に優れ、かつ、耐傷性に優れることから、長期間使用した際に膜表面に傷が発生することによる光透過性の低下が抑制され、発電効率に優れると考えられる。
 本開示に係る太陽電池モジュールは、本開示に係る積層体を、太陽電池モジュールの最外層に備えることが好ましい。すなわち、本開示に係る太陽電池モジュールの最外層が、反射防止膜であることが好ましい。本開示の太陽電池モジュールは、最外層が反射防止膜であっても、本開示に係る反射防止膜は、封止材などの樹脂を容易に除去できる防汚性を有することから、組み立て工程における優れた製造効率が得られる。
Since the solar cell module includes the laminate having the above-described antireflection film, the solar cell module has excellent antireflection properties and excellent scratch resistance. Therefore, light caused by scratches on the film surface when used for a long period of time. It is considered that the decrease in permeability is suppressed and the power generation efficiency is excellent.
The solar cell module according to the present disclosure preferably includes the laminate according to the present disclosure in the outermost layer of the solar cell module. That is, the outermost layer of the solar cell module according to the present disclosure is preferably an antireflection film. In the solar cell module of the present disclosure, even if the outermost layer is an antireflection film, the antireflection film according to the present disclosure has an antifouling property that can easily remove a resin such as a sealing material. Excellent production efficiency can be obtained.
 太陽電池モジュールにおける積層体及びバックシート以外の部材については、例えば、「太陽光発電システム構成材料」(杉本栄一監修、(株)工業調査会、2008年発行)に詳細に記載されている。太陽電池モジュールは、太陽光が入射する側に本開示に係る積層体を備えている形態が好ましく、本開示に係る積層体以外の構成に制限はない。 The members other than the laminate and the back sheet in the solar cell module are described in detail in, for example, “Solar power generation system constituent material” (supervised by Eiichi Sugimoto, Kogyo Kenkyukai, 2008). As for a solar cell module, the form provided with the layered product concerning this indication on the side which sunlight enters is preferred, and there is no restriction in composition other than the layered product concerning this indication.
 太陽電池モジュールの、太陽光が入射する側に配置される基材は、本開示に係る積層体の基材である形態が好ましく、基材としては、例えば、ガラス、樹脂、金属、セラミック、又は、ガラス、樹脂、金属及びセラミックから選ばれる少なくとも一つを複合化した複合材料等の基材が挙げられる。好ましい基材は、ガラス基材である。 The base material disposed on the solar light incident side of the solar cell module is preferably in the form of a base material of the laminate according to the present disclosure. Examples of the base material include glass, resin, metal, ceramic, or And a base material such as a composite material obtained by combining at least one selected from glass, resin, metal and ceramic. A preferred substrate is a glass substrate.
 太陽電池モジュールに使用される太陽電池素子としては、特に制限はない。太陽電池モジュールには、単結晶シリコン、多結晶シリコン、アモルファスシリコン等のシリコン系太陽電池素子、銅-インジウム-ガリウム-セレン、銅-インジウム-セレン、カドミウム-テルル、ガリウム-砒素等のIII-V族又はII-VI族化合物半導体系太陽電池
素子など、各種公知の太陽電池素子をいずれも適用することができる。
There is no restriction | limiting in particular as a solar cell element used for a solar cell module. Solar cell modules include silicon-based solar cell elements such as single crystal silicon, polycrystalline silicon, and amorphous silicon, copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, gallium-arsenic III-V Any of various known solar cell elements such as Group II or Group II-VI compound semiconductor solar cell elements can be applied.
 以下、本開示の塗布組成物及び積層体の製造方法の実施形態を実施例により更に具体的に説明する。但し、本開示における実施形態は、その主旨を越えない限り、以下の実施例に限定されるものではない。 Hereinafter, embodiments of the method for producing a coating composition and a laminate according to the present disclosure will be described more specifically by way of examples. However, the embodiments in the present disclosure are not limited to the following examples as long as they do not exceed the gist thereof.
(実施例1)
-ポリマー粒子1の合成-
 下記の組成からなる混合液を、冷却しながら、ホモジナイザーを用いて10,000rpm(round per minute)で5分間攪拌して乳化し、乳化液64.8質量部を得た。
 <混合液の組成>
 イオン交換水:35質量部
 メチルメタクリレート:13.8質量部、
 n-ブチルアクリレート:13.8質量部、
 メトキシポリエチレングリコールメタクリレート(n=9):0.6質量部
 ジエチレングリコールジメタクリレート:0.6質量部
 エチレンオキシド鎖を有するノニオン性反応性乳化剤(商品名ラテムルPD-450(主成分:ポリオキシアルキレンアルケニルエーテル)、花王(株)製):0.4質量部
 重合開始剤(商品名V-65、富士フイルム和光純薬(株)製):0.6質量部
Example 1
-Synthesis of polymer particles 1-
A mixed solution having the following composition was stirred and emulsified with a homogenizer at 10,000 rpm (round per minute) for 5 minutes while cooling to obtain 64.8 parts by mass of an emulsion.
<Composition of mixture>
Ion exchange water: 35 parts by mass Methyl methacrylate: 13.8 parts by mass,
n-butyl acrylate: 13.8 parts by mass,
Methoxypolyethyleneglycol methacrylate (n = 9): 0.6 parts by mass Diethylene glycol dimethacrylate: 0.6 parts by mass Nonionic reactive emulsifier having an ethylene oxide chain (trade name: Latemul PD-450 (main component: polyoxyalkylene alkenyl ether) , Manufactured by Kao Corporation): 0.4 parts by mass Polymerization initiator (trade name V-65, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.): 0.6 parts by mass
 一方、撹拌装置、環流冷却器、温度計及び窒素ガス吹き込み管を備えた反応器に、イオン交換水:35質量部、エチレンオキシド鎖を有するノニオン性反応性乳化剤(商品名ラテムルPD-450(主成分:ポリオキシアルキレンアルケニルエーテル)、花王(株)製):0.2質量部を入れて、65℃に昇温させた後、窒素置換した。
 窒素雰囲気下、65℃を保持しながら乳化液を3時間かけて均一に滴化し、さらに65℃で2時間反応させた。
 反応終了後、冷却して、固形分濃度30質量%、平均一次粒径100nmの水性エマルジョン(ポリマー粒子1)を得た。
On the other hand, in a reactor equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen gas blowing tube, ion-exchanged water: 35 parts by mass, a nonionic reactive emulsifier having an ethylene oxide chain (trade name LATEMUL PD-450 (main component : Polyoxyalkylene alkenyl ether), manufactured by Kao Corporation): 0.2 part by mass was added, the temperature was raised to 65 ° C., and then the atmosphere was replaced with nitrogen.
The emulsion was uniformly dropped over 3 hours while maintaining 65 ° C under a nitrogen atmosphere, and further reacted at 65 ° C for 2 hours.
After completion of the reaction, the reaction mixture was cooled to obtain an aqueous emulsion (polymer particle 1) having a solid content concentration of 30% by mass and an average primary particle size of 100 nm.
 ポリマー粒子1(有効成分濃度30質量%)2.5質量部と、KR-500(無機酸化物前駆体(メチルトリメトキシシランオリゴマー)、信越化学工業株式会社製、有効成分濃度100質量%)3.1質量部と、酢酸水溶液(富士フイルム和光純薬株式会社製、水で有効成分濃度10質量%に希釈して使用)0.5質量部と、酢酸アンモニウム水溶液(富士フイルム和光純薬株式会社製、水で有効成分濃度50質量%に希釈して使用)0.05質量部と、水4.7質量部と、トクソーIPA(2-プロパノール、株式会社トクヤマ製)89.1質量部と、を混合し、撹拌することにより、塗布液(塗布組成物)を調製した。
 塗布液のpH(25℃)を以下に示す方法で測定したところ、pH=7.3であった。
 また、塗布液の電導度(25℃)を以下に示す方法で測定したところ、電導度=1.0mS/mであった。
Polymer particles 1 (active ingredient concentration 30% by mass) 2.5 parts by mass and KR-500 (inorganic oxide precursor (methyltrimethoxysilane oligomer), manufactured by Shin-Etsu Chemical Co., Ltd., active ingredient concentration 100% by mass) 3 0.1 part by mass, 0.5 parts by mass of an acetic acid aqueous solution (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., diluted with water to an active ingredient concentration of 10% by mass) and an aqueous ammonium acetate solution (Fuji Film Wako Pure Chemical Industries, Ltd.) 0.05 parts by weight, 4.7 parts by weight of water, 89.1 parts by weight of Toxo IPA (2-propanol, manufactured by Tokuyama Corporation), Were mixed and stirred to prepare a coating solution (coating composition).
It was pH = 7.3 when pH (25 degreeC) of the coating liquid was measured by the method shown below.
Moreover, when the electrical conductivity (25 degreeC) of the coating liquid was measured by the method shown below, it was electrical conductivity = 1.0 mS / m.
-膜サンプル及び積層体の作製-
 調製した塗布液を、厚さ3mmの型板ガラス基材(塗布面の算術平均粗さRa=0.4μm)上にロールコーター(材質:EPDM(エチレンプロピレンジエンゴム)を用いて塗布(塗布量:0.2mL/m~3mL/m)し、塗布膜を形成した。次いで、形成した塗布膜を、オーブンを用いて雰囲気温度100℃で1分間加熱し、乾燥させた。
 次に、乾燥後の塗布膜を、電気炉を用い、雰囲気温度700℃で3分間焼成することにより、膜サンプル(反射防止膜)を作製した。
 以上のようにして、ガラス基材上に反射防止膜である膜サンプルを有する積層体を得た。膜サンプルは、ガラス基材上に形成される膜サンプルの最終的な平均膜厚が130nmになるように形成した。
 なお、Raは、表面粗さ計(型番:ハンディサーフE-35B、(株)東京精密社製)を用い、JIS-B0601に準拠して測定した。
-Production of membrane samples and laminates-
The prepared coating solution was coated on a 3 mm thick template glass substrate (arithmetic mean roughness Ra of coated surface Ra = 0.4 μm) using a roll coater (material: EPDM (ethylene propylene diene rubber)) (coating amount: 0.2 mL / m 2 to 3 mL / m 2 ) to form a coating film, which was then dried using an oven at an ambient temperature of 100 ° C. for 1 minute.
Next, the dried coating film was baked at an atmospheric temperature of 700 ° C. for 3 minutes using an electric furnace to prepare a film sample (antireflection film).
As described above, a laminate having a film sample as an antireflection film on a glass substrate was obtained. The film sample was formed so that the final average film thickness of the film sample formed on the glass substrate was 130 nm.
Ra was measured according to JIS-B0601 using a surface roughness meter (model number: Handy Surf E-35B, manufactured by Tokyo Seimitsu Co., Ltd.).
 平均膜厚は、ガラス基材上に焼成後の膜サンプル(反射防止膜)を有する積層体を、基材の基板面と直交する方向に平行に切断し、切断面を走査型電子顕微鏡(SEM)で10箇所観察し、10枚のSEM像から各々の観察箇所の膜厚を計測し、得られた10個の計測値(膜厚)を平均することで確認した。 The average film thickness is obtained by cutting a laminate having a fired film sample (antireflection film) on a glass substrate in parallel to a direction orthogonal to the substrate surface of the substrate, and then cutting the cut surface with a scanning electron microscope (SEM). 10), the film thickness of each observation part was measured from 10 SEM images, and the obtained 10 measured values (film thickness) were averaged.
-評価-
 上記で得た塗布液、膜サンプル又は積層体を用い、以下の評価を行った。評価結果を表1に示す。
 なお、表1~表6中、各成分の添加量における「-」の記載は、該当する成分を含有していないことを示す。
-Evaluation-
The following evaluation was performed using the coating solution, film sample or laminate obtained above. The evaluation results are shown in Table 1.
In Tables 1 to 6, “-” in the added amount of each component indicates that the corresponding component is not contained.
(1)輝点状故障
 型板ガラス基材上に、焼成後の膜サンプル(反射防止膜)を有する積層体の表面を、レーザー顕微鏡(型番:VK-9710、KEYENCE社製)を用いて視野10cmにて観察し、図1に矢印で示す揮点の数を計測して単位面積当たりの個数を算出した。
 個数が少ないほど輝点状故障が抑制されていると評価される。
(1) Bright spot-like failure The surface of the laminate having the fired film sample (antireflection film) on the template glass substrate is viewed with a laser microscope (model number: VK-9710, manufactured by KEYENCE) with a field of view of 10 cm. It was observed by 2 to calculate the number per unit area by counting the number of bright pixel indicated by the arrow in FIG.
It is evaluated that the bright spot-like failure is suppressed as the number is smaller.
(2)pH
 塗布液に対して、pHメーター(型番:HM-31、東亜DKK社製)を用いて25℃で測定した。
(2) pH
The coating solution was measured at 25 ° C. using a pH meter (model number: HM-31, manufactured by Toa DKK).
(3)電導度
 塗布液に対して、電導度計(型番:CM-30R、セル:CT-57101B、東亜DKK社)を用いて25℃で測定した。
(3) Conductivity The coating solution was measured at 25 ° C. using a conductivity meter (model number: CM-30R, cell: CT-57101B, Toa DKK).
(4)反射防止(AR)性
 紫外可視赤外分光光度計(型番:UV3100PC、島津製作所社製)により、ガラス基材上に膜サンプル(反射防止膜)が形成された積層体の、波長380nm~1,100nmの光における反射率(%)を積分球を用いて測定した。反射率の測定は、積層体の裏面(ガラス基材の膜サンプルが形成されていない側の面)の反射を抑えるため、裏面となるガラス基材の表面に黒色のテープを貼り付けて行った。そして、測定された波長380nm~1,100nmにおける各波長の反射率から、積層体の平均反射率(RAV;単位%)を算出した。
 上記と同様にして、膜サンプルが形成されていないガラス基材の、波長380nm~1,100nmの光における反射率(%)を測定した。そして、測定された波長380nm~1,100nmにおける各波長の反射率から、ガラス基材の平均反射率(R0AV;単位%)を算出した。
 上記の平均反射率RAV、R0AVから、膜サンプルが形成されていないガラス基材に対する平均反射率の変化(ΔR;単位:%)を下記式(a)にしたがって算出した。
 ΔRは、数値が大きいほど反射防止(AR)性に優れることを示す。
   ΔR =R0AV-RAV   式(a)
 反射防止性の許容範囲は2.3%以上であり、2.6%以上が好ましい。
 算出された反射防止性能(ΔR)を、下記に示す評価基準にしたがってランク付けした。ランクA~Cが反射防止性の許容範囲である。
 <評価基準>
A:ΔR≧2.9
B:2.6≦ΔR<2.9
C:2.3≦ΔR<2.6
D:2.0≦ΔR<2.3
E:ΔR<2.0
(4) Antireflection (AR) property A wavelength of 380 nm of a laminate in which a film sample (antireflection film) is formed on a glass substrate by an ultraviolet visible infrared spectrophotometer (model number: UV3100PC, manufactured by Shimadzu Corporation). The reflectance (%) in light of ˜1,100 nm was measured using an integrating sphere. The reflectance was measured by attaching a black tape to the surface of the glass substrate serving as the back surface in order to suppress reflection of the back surface of the laminate (the surface on which the film sample of the glass substrate was not formed). . Then, the average reflectance (R AV ; unit%) of the laminate was calculated from the measured reflectance of each wavelength at wavelengths of 380 nm to 1,100 nm.
In the same manner as described above, the reflectance (%) of light with a wavelength of 380 nm to 1,100 nm was measured for a glass substrate on which no film sample was formed. Then, the average reflectance (R 0AV ; unit%) of the glass substrate was calculated from the measured reflectance of each wavelength at wavelengths of 380 nm to 1,100 nm.
From the above average reflectances R AV and R 0AV , the average reflectance change (ΔR; unit:%) relative to the glass substrate on which no film sample was formed was calculated according to the following formula (a).
ΔR indicates that the larger the value, the better the antireflection (AR) property.
ΔR = R 0AV −R AV formula (a)
The allowable range of antireflection properties is 2.3% or more, and preferably 2.6% or more.
The calculated antireflection performance (ΔR) was ranked according to the evaluation criteria shown below. Ranks A to C are allowable ranges for antireflection.
<Evaluation criteria>
A: ΔR ≧ 2.9
B: 2.6 ≦ ΔR <2.9
C: 2.3 ≦ ΔR <2.6
D: 2.0 ≦ ΔR <2.3
E: ΔR <2.0
(5)防汚性(テープ糊残り性)
 セロテープ(登録商標)(ニチバン社製、幅18mm、長さ56mm)を、膜サンプルの膜面に貼りあわせ、消しゴムでこすってサンプル膜にテープを付着させた。テープを付着させてから1分後にテープの端を持ってサンプル膜面に直角に保ち、瞬間的にひきはがした。
 その後、サンプル膜のテープが付着していた領域を、10行×10列=100個の連続した格子に100分割し、100個の格子のうち、テープの粘着剤が剥がれずに残っている格子の数(x)を計測した。xの値が小さいほど防汚性(テープ糊残り性)が良好であることを示す。
 テープ糊残り性の許容範囲は、格子の数(x)が9以下である。計測された格子の数(x)を、下記に示す評価基準にしたがってランク付けした。
 <評価基準>
A:x≦3個
B:4個≦x≦9個
C:x≧10個
(5) Antifouling property (tape adhesive residue)
Cellotape (registered trademark) (manufactured by Nichiban Co., Ltd., width 18 mm, length 56 mm) was attached to the membrane surface of the membrane sample and rubbed with an eraser to attach the tape to the sample membrane. One minute after the tape was attached, the end of the tape was held and held at a right angle to the sample film surface, and peeled off instantaneously.
After that, the area where the tape of the sample film was adhered was divided into 100 rows of 10 rows × 10 columns = 100 continuous lattices, and the lattice in which the adhesive of the tape remained without being peeled out of the 100 lattices. The number (x) of was measured. The smaller the value of x, the better the antifouling property (tape adhesive residue).
The allowable range of the tape adhesive remaining property is that the number of grids (x) is 9 or less. The number (x) of the measured grids was ranked according to the evaluation criteria shown below.
<Evaluation criteria>
A: x ≦ 3 B: 4 ≦ x ≦ 9 C: x ≧ 10
(実施例2~20、比較例1~4)
 実施例1において、塗布組成物における化合物の種類及び配合量を下記の表1~表6に示すように変更したこと以外は、実施例1と同様にして、塗布液を調製し、膜サンプル及び積層体を作製し、更に測定及び評価を行った。測定及び評価の結果を下記の表1~表6に示す。
 実施例2~実施例20及び比較例1~比較例4における膜サンプル(反射防止膜)の平均膜厚は、実施例1と同様、いずれも130nmである。
 なお、表1~表6中における、各成分の添加量における「-」の記載は、該当する成分を含有していないことを示す。
(Examples 2 to 20, Comparative Examples 1 to 4)
In Example 1, a coating solution was prepared in the same manner as in Example 1 except that the types and amounts of the compounds in the coating composition were changed as shown in Tables 1 to 6 below. A laminate was prepared and further measured and evaluated. The results of measurement and evaluation are shown in Tables 1 to 6 below.
The average film thicknesses of the film samples (antireflection films) in Examples 2 to 20 and Comparative Examples 1 to 4 are both 130 nm as in Example 1.
In Tables 1 to 6, “-” in the added amount of each component indicates that the corresponding component is not contained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000006

 
 表1~表6中の成分の詳細は、以下の通りである。
・KR-500:メチルトリメトキシシランオリゴマー(無機酸化物前駆体(上記式(2)で表される単位20質量%~30質量%及び上記式(3)で表される単位70質量%~80質量%を含む加水分解性シラン化合物);SiO:63質量%、信越化学工業株式会社)
・KBM-13:メチルトリメトキシシラン(無機酸化物前駆体(上記式(1)で表される単位100質量%);SiO:44質量%、信越化学工業株式会社)
・MS-51:テトラメトキシシランオリゴマー(無機酸化物前駆体(上記式(2)で表される単位45質量%~55質量%及び上記式(3)で表される単位45質量%~55質量%を含む加水分解性シラン化合物);SiO:52質量%、信越化学工業株式会社)
・KBE-04:テトラエトキシシラン(無機酸化物前駆体(上記式(1)で表される単位100質量%);SiO:29質量%、信越化学工業株式会社)
・アルミキレートD:アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)(川研ファインケミカル株式会社)
・酢酸:富士フイルム和光純薬株式会社、pKa:4.8
・硝酸:富士フイルム和光純薬株式会社、pKa:-1.4
・リン酸:富士フイルム和光純薬株式会社、pKa:2.1
・アンモニア:富士フイルム和光純薬株式会社、pKa:9.3(共役酸)
・酢酸アンモニウム:富士フイルム和光純薬株式会社
・硝酸アンモニウム:富士フイルム和光純薬株式会社
・硫酸アンモニウム:富士フイルム和光純薬株式会社
・塩化アンモニウム:富士フイルム和光純薬株式会社
・酢酸ナトリウム:富士フイルム和光純薬株式会社
・硝酸ナトリウム:富士フイルム和光純薬株式会社
・塩化ナトリウム:富士フイルム和光純薬株式会社
・水:脱イオン水
・IPA:トクソーIPA(2-プロパノール;株式会社トクヤマ製)
Details of the components in Tables 1 to 6 are as follows.
KR-500: methyltrimethoxysilane oligomer (inorganic oxide precursor (unit 20% to 30% by mass represented by the above formula (2) and unit 70% to 80% represented by the above formula (3) Hydrolyzable silane compound containing mass%); SiO 2 : 63 mass%, Shin-Etsu Chemical Co., Ltd.)
KBM-13: Methyltrimethoxysilane (inorganic oxide precursor (unit: 100% by mass represented by the above formula (1)); SiO 2 : 44% by mass, Shin-Etsu Chemical Co., Ltd.)
MS-51: tetramethoxysilane oligomer (inorganic oxide precursor (units represented by the above formula (2) 45 mass% to 55 mass% and units represented by the above formula (3) 45 mass% to 55 mass%) % Hydrolyzable silane compound); SiO 2 : 52% by mass, Shin-Etsu Chemical Co., Ltd.)
KBE-04: tetraethoxysilane (inorganic oxide precursor (unit: 100% by mass represented by the above formula (1)); SiO 2 : 29% by mass, Shin-Etsu Chemical Co., Ltd.)
Aluminum chelate D: Aluminum monoacetylacetonate bis (ethylacetoacetate) (Kawaken Fine Chemical Co., Ltd.)
Acetic acid: FUJIFILM Wako Pure Chemicals, pKa: 4.8
・ Nitric acid: FUJIFILM Wako Pure Chemicals, pKa: -1.4
・ Phosphoric acid: FUJIFILM Wako Pure Chemicals, pKa: 2.1
・ Ammonia: FUJIFILM Wako Pure Chemicals, pKa: 9.3 (conjugated acid)
・ Ammonium acetate: FUJIFILM Wako Pure Chemical Co., Ltd. ・ Ammonium nitrate: FUJIFILM Wako Pure Chemical Co., Ltd. ・ Ammonium sulfate: FUJIFILM Wako Pure Chemical Co., Ltd. Yakuhin Co., Ltd. Sodium nitrate: FUJIFILM Wako Pure Chemicals Co., Ltd. Sodium chloride: FUJIFILM Wako Pure Chemicals Co., Ltd. Water: Deionized water IPA: Toxo IPA (2-propanol; manufactured by Tokuyama Co., Ltd.)
 表1~表6に示すように、酸、塩基及び塩から選ばれる電解質をあらかじめ定めたpHの範囲で含有する実施例の塗布組成物では、輝点状故障の発生が効果的に抑えられており、かつ、電導度も確保され、耐電に起因する反射防止性の低下も抑制された。
 電解質としてアンモニウム塩を用いた場合、実施例9~16に示されるように、アルカリ金属塩を用いた場合に比べ、反射防止性により優れていた。これは、膜中にアルカリ金属が残存することで屈折率に変化を来たし、反射防止性能に悪影響を与えたためと考えられる。したがって、電解質としては、金属塩よりもアンモニウム塩がより好ましいと考えられる。
 また、実施例17~20に示すように、無機酸化物前駆体としては、アルミキレートを用いた実施例20に比べ、加水分解性シラン化合物を用いた場合により反射防止性及び防汚性に優れていた。
 これに対し、酸、塩基及び塩から選ばれる電解質を用いない比較例1~2では、電導度が著しく低くなり、輝点状故障の発生が顕著に現れた。また、リン酸を用いた比較例3では、リン酸自体の電離度が低いため、塗布組成物の電導度も著しく低くなり、結果として輝点状故障の発生が顕著に現れた。比較例4では、強酸である硝酸のみを用いたためにpHが著しく低下し、製造過程での耐腐食性及び取扱い性の点で問題があった。
As shown in Tables 1 to 6, in the coating compositions of Examples containing an electrolyte selected from acids, bases and salts in a predetermined pH range, the occurrence of bright spot failure is effectively suppressed. In addition, the electrical conductivity was ensured, and the decrease in the antireflection property due to the withstand voltage was also suppressed.
When an ammonium salt was used as the electrolyte, as shown in Examples 9 to 16, the antireflection property was superior to the case where an alkali metal salt was used. This is presumably because the alkali metal remained in the film changed the refractive index and adversely affected the antireflection performance. Therefore, it is considered that an ammonium salt is more preferable as the electrolyte than a metal salt.
In addition, as shown in Examples 17 to 20, the inorganic oxide precursor is superior in antireflection and antifouling properties when a hydrolyzable silane compound is used as compared with Example 20 using aluminum chelate. It was.
On the other hand, in Comparative Examples 1 and 2 that do not use an electrolyte selected from acids, bases, and salts, the conductivity was remarkably lowered, and the occurrence of bright spot-like failures remarkably appeared. Further, in Comparative Example 3 using phosphoric acid, since the degree of ionization of phosphoric acid itself was low, the electrical conductivity of the coating composition was remarkably lowered, and as a result, the occurrence of bright spot-like failures appeared remarkably. In Comparative Example 4, since only nitric acid, which is a strong acid, was used, the pH dropped significantly, and there was a problem in terms of corrosion resistance and handling in the production process.
 本開示の塗布組成物は、輝点状故障に代表される画像欠陥が抑えられて外観上高い品質が求められる広範な技術分野に好適であり、例えば、光学レンズ、光学フィルタ、監視カメラ、標識、又は太陽電池モジュール等の光入射側の部材(フロントガラス、レンズ等)、照明機器の光照射側の部材(拡散ガラス等)に設けられる保護膜、反射防止膜、各種ディスプレイの薄層フィルムトランジスタ(TFT)用平坦化膜などに好適に用いられる。 The coating composition of the present disclosure is suitable for a wide range of technical fields in which image defects typified by bright spot failures are suppressed and high quality in appearance is required. For example, an optical lens, an optical filter, a surveillance camera, a sign Or a light-incident-side member (front glass, lens, etc.) of a solar cell module, a protective film provided on a light-irradiation-side member (diffusion glass, etc.) of a lighting device, an antireflection film, and a thin film transistor for various displays It is suitably used for a flattening film for (TFT).
 2017年6月2日に出願された日本出願特願2017-110450の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2017-110450 filed on June 2, 2017 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (12)

  1.  ポリマー粒子と、無機酸化物前駆体と、酸、塩基及び塩から選ばれる電解質と、水と、を含み、25℃でのpHが4~10であり、かつ、25℃での電導度が1mS/m以上である塗布組成物。 It contains polymer particles, an inorganic oxide precursor, an electrolyte selected from acids, bases and salts, and water, has a pH of 4 to 10 at 25 ° C., and an electrical conductivity of 1 mS at 25 ° C. / M or more of the coating composition.
  2.  前記電導度が、5mS/m~70mS/mである請求項1に記載の塗布組成物。 The coating composition according to claim 1, wherein the conductivity is 5 mS / m to 70 mS / m.
  3.  前記電解質が、アンモニウム塩である請求項1又は請求項2に記載の塗布組成物。 The coating composition according to claim 1 or 2, wherein the electrolyte is an ammonium salt.
  4.  前記無機酸化物前駆体が、下記の式(1)で表される加水分解性シラン化合物、及び前記加水分解性シラン化合物の部分加水分解縮合物から選ばれる少なくとも一種の化合物を含む請求項1~請求項3のいずれか1項に記載の塗布組成物。
      式(1):R-Si(OR
     前記式(1)中、Rは、水素原子、炭素数1~8のアルキル基、炭素数1~8のフッ化アルキル基、又は炭素数1~8のアルコキシ基を表し、Rは、水素原子又は炭素数1~8のアルキル基を表す。
    The inorganic oxide precursor contains at least one compound selected from a hydrolyzable silane compound represented by the following formula (1) and a partial hydrolysis condensate of the hydrolyzable silane compound: The coating composition according to claim 3.
    Formula (1): R 1 —Si (OR 2 ) 3
    In the formula (1), R 1 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a fluorinated alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, and R 2 represents It represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  5.  前記加水分解性シラン化合物の部分加水分解縮合物が、下記の式(2)、式(3)及び式(4)から選択される少なくとも1種の単位を含む請求項4に記載の塗布組成物。
      式(2):R-Si(OR1/2単位
      式(3):R-Si(OR)O2/2単位
      式(4):R-Si-O3/2単位
     前記式(2)、式(3)及び式(4)中、Rは、各々独立に、水素原子、炭素数1~8のアルキル基、炭素数1~8のフッ化アルキル基、又は炭素数1~8のアルコキシ基を表し、Rは、各々独立に、水素原子又は炭素数1~8のアルキル基を表す。
    The coating composition according to claim 4, wherein the partially hydrolyzed condensate of the hydrolyzable silane compound contains at least one unit selected from the following formula (2), formula (3) and formula (4). .
    Formula (2): R 1 —Si (OR 2 ) 2 O 1/2 unit Formula (3): R 1 —Si (OR 2 ) O 2/2 unit Formula (4): R 1 —Si—O 3 / 2 units In the formulas (2), (3) and (4), each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a fluorinated alkyl group having 1 to 8 carbon atoms, Alternatively, it represents an alkoxy group having 1 to 8 carbon atoms, and each R 2 independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  6.  前記電解質の含有量は、モル濃度で0.001mol/L~0.5mol/Lである請求項1~請求項5のいずれか1項に記載の塗布組成物。 The coating composition according to any one of claims 1 to 5, wherein the electrolyte content is 0.001 mol / L to 0.5 mol / L in terms of molar concentration.
  7.  表面に凹凸構造を有する基材と硬化膜とを有する積層体の、前記硬化膜の塗布形成に用いられる請求項1~請求項6のいずれか1項に記載の塗布組成物。 The coating composition according to any one of claims 1 to 6, which is used for coating formation of the cured film of a laminate having a substrate having a concavo-convex structure on the surface and a cured film.
  8.  基材上に請求項1~請求項7のいずれか1項に記載の塗布組成物をロールコーターにより塗布し、塗布膜を形成する工程と、
     前記塗布膜を乾燥させる工程と、
     前記乾燥させる工程を経た塗布膜を焼成して硬化膜を得る工程と、
    を有する積層体の製造方法。
    Applying a coating composition according to any one of claims 1 to 7 on a substrate with a roll coater to form a coating film;
    Drying the coating film;
    Baking the coating film that has undergone the drying step to obtain a cured film; and
    The manufacturing method of the laminated body which has this.
  9.  前記硬化膜の平均膜厚が、80nm~200nmである請求項8に記載の積層体の製造方法。 The method for producing a laminate according to claim 8, wherein the average film thickness of the cured film is 80 nm to 200 nm.
  10.  前記基材が、ガラス基材である請求項8又は請求項9に記載の積層体の製造方法。 The method for producing a laminate according to claim 8 or 9, wherein the substrate is a glass substrate.
  11.  前記基材は、表面に凹凸構造を有する請求項8~請求項10のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 8 to 10, wherein the substrate has a concavo-convex structure on a surface thereof.
  12.  前記ロールコーターは、前記基材の表面に前記塗布組成物を塗布するロールの表面材質がゴムである請求項8~請求項11のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 8 to 11, wherein in the roll coater, a surface material of a roll for applying the coating composition on a surface of the substrate is rubber.
PCT/JP2018/021259 2017-06-02 2018-06-01 Coating composition and method for producing laminated body WO2018221739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019521354A JP6914330B2 (en) 2017-06-02 2018-06-01 Method for manufacturing coating composition and laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-110450 2017-06-02
JP2017110450 2017-06-02

Publications (1)

Publication Number Publication Date
WO2018221739A1 true WO2018221739A1 (en) 2018-12-06

Family

ID=64455414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021259 WO2018221739A1 (en) 2017-06-02 2018-06-01 Coating composition and method for producing laminated body

Country Status (2)

Country Link
JP (1) JP6914330B2 (en)
WO (1) WO2018221739A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10287816A (en) * 1997-04-14 1998-10-27 Toppan Printing Co Ltd Colored resin composition
JP2003094567A (en) * 2001-09-26 2003-04-03 Nitto Denko Corp Release liner and its production method
JP2004300311A (en) * 2003-03-31 2004-10-28 Fuji Photo Film Co Ltd Coating composition for forming silica film and method for forming silica film
JP2007161866A (en) * 2005-12-13 2007-06-28 Toyo Ink Mfg Co Ltd Coloring composition and color filter using the same
JP2012170858A (en) * 2011-02-18 2012-09-10 Asahi Kasei E-Materials Corp Functional coating film
JP2012173428A (en) * 2011-02-18 2012-09-10 Asahi Kasei E-Materials Corp Antireflective coating composition
JP2012219209A (en) * 2011-04-11 2012-11-12 Asahi Kasei E-Materials Corp Composite composition, method for producing coating film using the composite composition, coating film obtained by the method, and member with the coating film
WO2017150132A1 (en) * 2016-02-29 2017-09-08 富士フイルム株式会社 Manufacturing method for laminate, glass with anti-reflection film and solar cell module
JP2018058914A (en) * 2016-09-30 2018-04-12 富士フイルム株式会社 Composition for porous film formation, method for producing composition for porous film formation, method for producing porous film, laminate, and solar cell module
WO2018101277A1 (en) * 2016-11-30 2018-06-07 富士フイルム株式会社 Coating composition, antireflective film, laminate, method for producing laminate, and solar cell module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10287816A (en) * 1997-04-14 1998-10-27 Toppan Printing Co Ltd Colored resin composition
JP2003094567A (en) * 2001-09-26 2003-04-03 Nitto Denko Corp Release liner and its production method
JP2004300311A (en) * 2003-03-31 2004-10-28 Fuji Photo Film Co Ltd Coating composition for forming silica film and method for forming silica film
JP2007161866A (en) * 2005-12-13 2007-06-28 Toyo Ink Mfg Co Ltd Coloring composition and color filter using the same
JP2012170858A (en) * 2011-02-18 2012-09-10 Asahi Kasei E-Materials Corp Functional coating film
JP2012173428A (en) * 2011-02-18 2012-09-10 Asahi Kasei E-Materials Corp Antireflective coating composition
JP2012219209A (en) * 2011-04-11 2012-11-12 Asahi Kasei E-Materials Corp Composite composition, method for producing coating film using the composite composition, coating film obtained by the method, and member with the coating film
WO2017150132A1 (en) * 2016-02-29 2017-09-08 富士フイルム株式会社 Manufacturing method for laminate, glass with anti-reflection film and solar cell module
JP2018058914A (en) * 2016-09-30 2018-04-12 富士フイルム株式会社 Composition for porous film formation, method for producing composition for porous film formation, method for producing porous film, laminate, and solar cell module
WO2018101277A1 (en) * 2016-11-30 2018-06-07 富士フイルム株式会社 Coating composition, antireflective film, laminate, method for producing laminate, and solar cell module

Also Published As

Publication number Publication date
JPWO2018221739A1 (en) 2020-03-19
JP6914330B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP6820354B2 (en) Coating composition, antireflection film and its manufacturing method, laminate, and solar cell module
JP6099587B2 (en) Aqueous coating agent, film, film production method, laminate, and solar cell module
JPWO2010061744A1 (en) Siloxane resin composition and protective film for touch panel using the same
JP5965210B2 (en) Tempered glass substrate and solar cell module
TWI797144B (en) Composition for film formation, method for producing film, and method for producing photosensor
JP6847243B2 (en) Coating composition, laminate and solar cell module, and method for manufacturing the laminate
WO2017150132A1 (en) Manufacturing method for laminate, glass with anti-reflection film and solar cell module
WO2018221739A1 (en) Coating composition and method for producing laminated body
JP2015018230A (en) Precursor for forming optical coating, optical coating, and method of producing optical coating
WO2018101277A1 (en) Coating composition, antireflective film, laminate, method for producing laminate, and solar cell module
WO2019065771A1 (en) Coating composition, layered product, method for producing same, solar cell module and porous film
JP2016085240A (en) Optical coating film, optical coating film manufacturing method, and antireflection film
WO2017150393A1 (en) Aqueous coating composition, anti-reflection film, laminate, method for producing laminate, and solar cell module
JPWO2015170647A1 (en) Glass article
JP2016085239A (en) Coating composition and method of manufacturing optical coating film
JP6451424B2 (en) High durability low refractive index film
JP2018058914A (en) Composition for porous film formation, method for producing composition for porous film formation, method for producing porous film, laminate, and solar cell module
JP6794151B2 (en) Coating film, method for producing coating film, and coating composition
WO2016072509A1 (en) Aqueous coating solution, film and manufacturing method therefor, laminate, and solar cell module
JP6285152B2 (en) Laminate manufacturing method, laminate, solar cell cover glass, and solar power generation mirror
JP6425964B2 (en) Optical coating film and antireflective film
JP2016184023A (en) Coating film for solar cell cover glass and method for producing the same
JP6457866B2 (en) Coating film for solar cell and method for producing the same
JP2016123928A (en) Aqueous coating liquid, film, and its manufacturing method, laminate, and solar cell module
TW202111010A (en) Resin composition for imprinting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521354

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810660

Country of ref document: EP

Kind code of ref document: A1