WO2018221553A1 - 符号化装置、符号化方法、復号装置及び復号方法 - Google Patents

符号化装置、符号化方法、復号装置及び復号方法 Download PDF

Info

Publication number
WO2018221553A1
WO2018221553A1 PCT/JP2018/020656 JP2018020656W WO2018221553A1 WO 2018221553 A1 WO2018221553 A1 WO 2018221553A1 JP 2018020656 W JP2018020656 W JP 2018020656W WO 2018221553 A1 WO2018221553 A1 WO 2018221553A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
base
transform
conversion
inverse transform
Prior art date
Application number
PCT/JP2018/020656
Other languages
English (en)
French (fr)
Inventor
大川 真人
秀雄 齋藤
遠間 正真
西 孝啓
安倍 清史
龍一 加納
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to JP2019521252A priority Critical patent/JP6767579B2/ja
Publication of WO2018221553A1 publication Critical patent/WO2018221553A1/ja
Priority to US16/697,525 priority patent/US11044481B2/en
Priority to US17/188,448 priority patent/US11375207B2/en
Priority to US17/737,594 priority patent/US11818362B2/en
Priority to US18/376,618 priority patent/US12096005B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/625Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using discrete cosine transform [DCT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Definitions

  • This disclosure relates to image / video encoding and decoding in block units.
  • HEVC High-Efficiency Video Coding
  • JCT-VC Joint Collaborative Team on Video Coding
  • Such encoding and decoding techniques are required to reduce the processing load while suppressing a decrease in compression efficiency.
  • the present disclosure provides an encoding device, a decoding device, an encoding method, or a decoding method that can reduce the processing load while suppressing a decrease in compression efficiency.
  • An encoding apparatus is an encoding apparatus that encodes a coding target block of a picture, and includes a processor and a memory, and the processor uses the memory to store the coding target block.
  • a first signal is used as a residual signal of the encoding target block using a first transform basis.
  • the second conversion base is used to generate a second conversion coefficient by performing a second conversion on the first conversion coefficient, and the second conversion coefficient is quantized.
  • the present disclosure can provide an encoding device, a decoding device, an encoding method, or a decoding method that can reduce the processing load while suppressing a decrease in compression efficiency.
  • FIG. 1 is a block diagram showing a functional configuration of the encoding apparatus according to Embodiment 1.
  • FIG. 2 is a diagram illustrating an example of block division in the first embodiment.
  • FIG. 3 is a table showing conversion basis functions corresponding to each conversion type.
  • FIG. 4A is a diagram illustrating an example of the shape of a filter used in ALF.
  • FIG. 4B is a diagram illustrating another example of the shape of a filter used in ALF.
  • FIG. 4C is a diagram illustrating another example of the shape of a filter used in ALF.
  • FIG. 5A is a diagram illustrating 67 intra prediction modes in intra prediction.
  • FIG. 5B is a flowchart for explaining the outline of the predicted image correction process by the OBMC process.
  • FIG. 5A is a diagram illustrating 67 intra prediction modes in intra prediction.
  • FIG. 5B is a flowchart for explaining the outline of the predicted image correction process by the OBMC process.
  • FIG. 5A is a
  • FIG. 5C is a conceptual diagram for explaining the outline of the predicted image correction process by the OBMC process.
  • FIG. 5D is a diagram illustrating an example of FRUC.
  • FIG. 6 is a diagram for explaining pattern matching (bilateral matching) between two blocks along the motion trajectory.
  • FIG. 7 is a diagram for explaining pattern matching (template matching) between a template in the current picture and a block in the reference picture.
  • FIG. 8 is a diagram for explaining a model assuming constant velocity linear motion.
  • FIG. 9A is a diagram for explaining derivation of a motion vector in units of sub-blocks based on motion vectors of a plurality of adjacent blocks.
  • FIG. 9B is a diagram for explaining the outline of the motion vector deriving process in the merge mode.
  • FIG. 9A is a diagram for explaining derivation of a motion vector in units of sub-blocks based on motion vectors of a plurality of adjacent blocks.
  • FIG. 9B is a diagram for explaining the outline of
  • FIG. 9C is a conceptual diagram for explaining an outline of DMVR processing.
  • FIG. 9D is a diagram for describing an overview of a predicted image generation method using luminance correction processing by LIC processing.
  • FIG. 10 is a block diagram showing a functional configuration of the decoding apparatus according to the first embodiment.
  • FIG. 11 is a flowchart showing transform and quantization processing in the encoding apparatus according to Embodiment 2.
  • FIG. 12 is a flowchart showing inverse quantization and inverse transform processing in the decoding apparatus according to Embodiment 2.
  • FIG. 13 is a flowchart showing transform and quantization processing in the encoding apparatus according to Embodiment 3.
  • FIG. 14 is a flowchart showing inverse quantization and inverse transform processing in the decoding apparatus according to Embodiment 3.
  • FIG. 11 is a flowchart showing transform and quantization processing in the encoding apparatus according to Embodiment 2.
  • FIG. 12 is a flowchart showing inverse quantization and inverse transform processing
  • FIG. 15 is a flowchart showing transform and quantization processing in the encoding apparatus according to Embodiment 4.
  • FIG. 16 is a flowchart showing an encoding process in the encoding apparatus according to the fourth embodiment.
  • FIG. 17 is a flowchart showing a decoding process in the decoding apparatus according to the fourth embodiment.
  • FIG. 18 is a flowchart showing inverse quantization and inverse transform processing in the decoding apparatus according to Embodiment 4.
  • FIG. 19 is an overall configuration diagram of a content supply system that realizes a content distribution service.
  • FIG. 20 is a diagram illustrating an example of a coding structure at the time of scalable coding.
  • FIG. 21 is a diagram illustrating an example of a coding structure at the time of scalable coding.
  • FIG. 20 is a diagram illustrating an example of a coding structure at the time of scalable coding.
  • FIG. 22 shows an example of a web page display screen.
  • FIG. 23 is a diagram showing an example of a web page display screen.
  • FIG. 24 is a diagram illustrating an example of a smartphone.
  • FIG. 25 is a block diagram illustrating a configuration example of a smartphone.
  • an outline of the first embodiment will be described as an example of an encoding device and a decoding device to which the processing and / or configuration described in each aspect of the present disclosure to be described later can be applied.
  • the first embodiment is merely an example of an encoding device and a decoding device to which the processing and / or configuration described in each aspect of the present disclosure can be applied, and the processing and / or processing described in each aspect of the present disclosure.
  • the configuration can also be implemented in an encoding device and a decoding device different from those in the first embodiment.
  • the encoding apparatus or decoding apparatus according to the first embodiment corresponds to the constituent elements described in each aspect of the present disclosure among a plurality of constituent elements constituting the encoding apparatus or decoding apparatus. Replacing the constituent elements with constituent elements described in each aspect of the present disclosure (2) A plurality of constituent elements constituting the encoding apparatus or decoding apparatus with respect to the encoding apparatus or decoding apparatus of the first embodiment The constituent elements corresponding to the constituent elements described in each aspect of the present disclosure are added to the present disclosure after arbitrary changes such as addition, replacement, and deletion of functions or processes to be performed on some constituent elements among the constituent elements.
  • a component that performs a part of processing performed by a component is a component that is described in each aspect of the present disclosure, a component that includes a part of a function included in the component described in each aspect of the present disclosure, (6)
  • a method performed by the encoding device or the decoding device according to Embodiment 1 is performed in combination with a component that performs a part of processing performed by the component described in each aspect of the disclosure.
  • the process corresponding to the process described in each aspect of the present disclosure is replaced with the process described in each aspect of the present disclosure.
  • the encoding apparatus according to the first embodiment or A part of the plurality of processes included in the method performed by the decoding device is performed in combination with the processes described in each aspect of the present disclosure
  • the processes and / or configurations described in each aspect of the present disclosure are not limited to the above examples.
  • the present invention may be implemented in an apparatus used for a different purpose from the moving picture / picture encoding apparatus or moving picture / picture decoding apparatus disclosed in the first embodiment, and the processing and / or described in each aspect.
  • the configuration may be implemented alone.
  • you may implement combining the process and / or structure which were demonstrated in the different aspect.
  • FIG. 1 is a block diagram showing a functional configuration of encoding apparatus 100 according to Embodiment 1.
  • the encoding device 100 is a moving image / image encoding device that encodes moving images / images in units of blocks.
  • an encoding apparatus 100 is an apparatus that encodes an image in units of blocks, and includes a dividing unit 102, a subtracting unit 104, a transforming unit 106, a quantizing unit 108, and entropy encoding.
  • Unit 110 inverse quantization unit 112, inverse transform unit 114, addition unit 116, block memory 118, loop filter unit 120, frame memory 122, intra prediction unit 124, inter prediction unit 126, A prediction control unit 128.
  • the encoding device 100 is realized by, for example, a general-purpose processor and a memory.
  • the processor when the software program stored in the memory is executed by the processor, the processor performs the division unit 102, the subtraction unit 104, the conversion unit 106, the quantization unit 108, the entropy encoding unit 110, and the inverse quantization unit 112.
  • the encoding apparatus 100 includes a dividing unit 102, a subtracting unit 104, a transforming unit 106, a quantizing unit 108, an entropy coding unit 110, an inverse quantizing unit 112, an inverse transforming unit 114, an adding unit 116, and a loop filter unit 120.
  • the intra prediction unit 124, the inter prediction unit 126, and the prediction control unit 128 may be implemented as one or more dedicated electronic circuits.
  • the dividing unit 102 divides each picture included in the input moving image into a plurality of blocks, and outputs each block to the subtracting unit 104.
  • the dividing unit 102 first divides a picture into blocks of a fixed size (for example, 128 ⁇ 128).
  • This fixed size block may be referred to as a coding tree unit (CTU).
  • the dividing unit 102 divides each of the fixed size blocks into blocks of a variable size (for example, 64 ⁇ 64 or less) based on recursive quadtree and / or binary tree block division.
  • This variable size block may be referred to as a coding unit (CU), a prediction unit (PU) or a transform unit (TU).
  • CU, PU, and TU do not need to be distinguished, and some or all blocks in a picture may be processing units of CU, PU, and TU.
  • FIG. 2 is a diagram showing an example of block division in the first embodiment.
  • a solid line represents a block boundary by quadtree block division
  • a broken line represents a block boundary by binary tree block division.
  • the block 10 is a 128 ⁇ 128 pixel square block (128 ⁇ 128 block).
  • the 128 ⁇ 128 block 10 is first divided into four square 64 ⁇ 64 blocks (quadtree block division).
  • the upper left 64 ⁇ 64 block is further divided vertically into two rectangular 32 ⁇ 64 blocks, and the left 32 ⁇ 64 block is further divided vertically into two rectangular 16 ⁇ 64 blocks (binary tree block division). As a result, the upper left 64 ⁇ 64 block is divided into two 16 ⁇ 64 blocks 11 and 12 and a 32 ⁇ 64 block 13.
  • the upper right 64 ⁇ 64 block is horizontally divided into two rectangular 64 ⁇ 32 blocks 14 and 15 (binary tree block division).
  • the lower left 64x64 block is divided into four square 32x32 blocks (quadrant block division). Of the four 32 ⁇ 32 blocks, the upper left block and the lower right block are further divided.
  • the upper left 32 ⁇ 32 block is vertically divided into two rectangular 16 ⁇ 32 blocks, and the right 16 ⁇ 32 block is further divided horizontally into two 16 ⁇ 16 blocks (binary tree block division).
  • the lower right 32 ⁇ 32 block is horizontally divided into two 32 ⁇ 16 blocks (binary tree block division).
  • the lower left 64 ⁇ 64 block is divided into a 16 ⁇ 32 block 16, two 16 ⁇ 16 blocks 17 and 18, two 32 ⁇ 32 blocks 19 and 20, and two 32 ⁇ 16 blocks 21 and 22.
  • the lower right 64x64 block 23 is not divided.
  • the block 10 is divided into 13 variable-size blocks 11 to 23 based on the recursive quadtree and binary tree block division.
  • Such division may be called QTBT (quad-tree plus binary tree) division.
  • one block is divided into four or two blocks (quadrature tree or binary tree block division), but the division is not limited to this.
  • one block may be divided into three blocks (triple tree block division).
  • Such a division including a tri-tree block division may be called an MBT (multi type tree) division.
  • the subtraction unit 104 subtracts the prediction signal (prediction sample) from the original signal (original sample) in units of blocks divided by the division unit 102. That is, the subtraction unit 104 calculates a prediction error (also referred to as a residual) of a coding target block (hereinafter referred to as a current block). Then, the subtraction unit 104 outputs the calculated prediction error to the conversion unit 106.
  • a prediction error also referred to as a residual of a coding target block (hereinafter referred to as a current block).
  • the original signal is an input signal of the encoding device 100, and is a signal (for example, a luminance (luma) signal and two color difference (chroma) signals) representing an image of each picture constituting the moving image.
  • a signal representing an image may be referred to as a sample.
  • the transform unit 106 transforms the prediction error in the spatial domain into a transform factor in the frequency domain, and outputs the transform coefficient to the quantization unit 108. Specifically, the transform unit 106 performs, for example, a predetermined discrete cosine transform (DCT) or discrete sine transform (DST) on a prediction error in the spatial domain.
  • DCT discrete cosine transform
  • DST discrete sine transform
  • the conversion unit 106 adaptively selects a conversion type from a plurality of conversion types, and converts a prediction error into a conversion coefficient using a conversion basis function corresponding to the selected conversion type. May be. Such a conversion may be referred to as EMT (explicit multiple core transform) or AMT (adaptive multiple transform).
  • the plurality of conversion types include, for example, DCT-II, DCT-V, DCT-VIII, DST-I and DST-VII.
  • FIG. 3 is a table showing conversion basis functions corresponding to each conversion type. In FIG. 3, N indicates the number of input pixels. Selection of a conversion type from among these multiple conversion types may depend on, for example, the type of prediction (intra prediction and inter prediction), or may depend on an intra prediction mode.
  • Information indicating whether or not to apply such EMT or AMT (for example, called an AMT flag) and information indicating the selected conversion type are signaled at the CU level.
  • AMT flag information indicating whether or not to apply such EMT or AMT
  • the signalization of these pieces of information need not be limited to the CU level, but may be other levels (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
  • the conversion unit 106 may reconvert the conversion coefficient (conversion result). Such reconversion is sometimes referred to as AST (adaptive secondary transform) or NSST (non-separable secondary transform). For example, the conversion unit 106 performs re-conversion for each sub-block (for example, 4 ⁇ 4 sub-block) included in the block of the conversion coefficient corresponding to the intra prediction error. Information indicating whether or not NSST is applied and information related to the transformation matrix used for NSST are signaled at the CU level. Note that the signalization of these pieces of information need not be limited to the CU level, but may be other levels (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
  • the separable conversion is a method of performing the conversion a plurality of times by separating the number of dimensions of the input for each direction, and the non-separable conversion is two or more when the input is multidimensional.
  • the dimensions are collectively regarded as one dimension, and conversion is performed collectively.
  • non-separable conversion if an input is a 4 ⁇ 4 block, it is regarded as one array having 16 elements, and 16 ⁇ 16 conversion is performed on the array. The thing which performs the conversion process with a matrix is mentioned.
  • a 4 ⁇ 4 input block is regarded as a single array having 16 elements, and then the Givens rotation is performed multiple times on the array (Hypercube Givens Transform) is also a non-separable. It is an example of conversion.
  • the quantization unit 108 quantizes the transform coefficient output from the transform unit 106. Specifically, the quantization unit 108 scans the transform coefficients of the current block in a predetermined scanning order, and quantizes the transform coefficients based on the quantization parameter (QP) corresponding to the scanned transform coefficients. Then, the quantization unit 108 outputs the quantized transform coefficient (hereinafter referred to as a quantization coefficient) of the current block to the entropy encoding unit 110 and the inverse quantization unit 112.
  • QP quantization parameter
  • the predetermined order is an order for quantization / inverse quantization of transform coefficients.
  • the predetermined scanning order is defined in ascending order of frequency (order from low frequency to high frequency) or descending order (order from high frequency to low frequency).
  • the quantization parameter is a parameter that defines a quantization step (quantization width). For example, if the value of the quantization parameter increases, the quantization step also increases. That is, if the value of the quantization parameter increases, the quantization error increases.
  • the entropy encoding unit 110 generates an encoded signal (encoded bit stream) by performing variable length encoding on the quantization coefficient that is input from the quantization unit 108. Specifically, the entropy encoding unit 110 binarizes the quantization coefficient, for example, and arithmetically encodes the binary signal.
  • the inverse quantization unit 112 inversely quantizes the quantization coefficient that is an input from the quantization unit 108. Specifically, the inverse quantization unit 112 inversely quantizes the quantization coefficient of the current block in a predetermined scanning order. Then, the inverse quantization unit 112 outputs the inverse-quantized transform coefficient of the current block to the inverse transform unit 114.
  • the inverse transform unit 114 restores the prediction error by inverse transforming the transform coefficient that is an input from the inverse quantization unit 112. Specifically, the inverse transform unit 114 restores the prediction error of the current block by performing an inverse transform corresponding to the transform by the transform unit 106 on the transform coefficient. Then, the inverse transformation unit 114 outputs the restored prediction error to the addition unit 116.
  • the restored prediction error does not match the prediction error calculated by the subtraction unit 104 because information is lost due to quantization. That is, the restored prediction error includes a quantization error.
  • the adder 116 reconstructs the current block by adding the prediction error input from the inverse transform unit 114 and the prediction sample input from the prediction control unit 128. Then, the adding unit 116 outputs the reconfigured block to the block memory 118 and the loop filter unit 120.
  • the reconstructed block is sometimes referred to as a local decoding block.
  • the block memory 118 is a storage unit for storing blocks in an encoding target picture (hereinafter referred to as current picture) that are referred to in intra prediction. Specifically, the block memory 118 stores the reconstructed block output from the adding unit 116.
  • the loop filter unit 120 applies a loop filter to the block reconstructed by the adding unit 116 and outputs the filtered reconstructed block to the frame memory 122.
  • the loop filter is a filter (in-loop filter) used in the encoding loop, and includes, for example, a deblocking filter (DF), a sample adaptive offset (SAO), an adaptive loop filter (ALF), and the like.
  • a least square error filter is applied to remove coding distortion. For example, for each 2 ⁇ 2 sub-block in the current block, a plurality of multiples based on the direction of the local gradient and the activity are provided. One filter selected from the filters is applied.
  • sub-blocks for example, 2 ⁇ 2 sub-blocks
  • a plurality of classes for example, 15 or 25 classes.
  • the direction value D of the gradient is derived, for example, by comparing gradients in a plurality of directions (for example, horizontal, vertical, and two diagonal directions).
  • the gradient activation value A is derived, for example, by adding gradients in a plurality of directions and quantizing the addition result.
  • a filter for a sub-block is determined from among a plurality of filters.
  • FIG. 4A to 4C are diagrams showing a plurality of examples of filter shapes used in ALF.
  • 4A shows a 5 ⁇ 5 diamond shape filter
  • FIG. 4B shows a 7 ⁇ 7 diamond shape filter
  • FIG. 4C shows a 9 ⁇ 9 diamond shape filter.
  • Information indicating the shape of the filter is signalized at the picture level. It should be noted that the signalization of the information indicating the filter shape need not be limited to the picture level, but may be another level (for example, a sequence level, a slice level, a tile level, a CTU level, or a CU level).
  • ON / OFF of ALF is determined at the picture level or the CU level, for example. For example, for luminance, it is determined whether to apply ALF at the CU level, and for color difference, it is determined whether to apply ALF at the picture level.
  • Information indicating ALF on / off is signaled at the picture level or the CU level. Signaling of information indicating ALF on / off need not be limited to the picture level or the CU level, and may be performed at other levels (for example, a sequence level, a slice level, a tile level, or a CTU level). Good.
  • a coefficient set of a plurality of selectable filters (for example, up to 15 or 25 filters) is signalized at the picture level.
  • the signalization of the coefficient set need not be limited to the picture level, but may be another level (for example, sequence level, slice level, tile level, CTU level, CU level, or sub-block level).
  • the frame memory 122 is a storage unit for storing a reference picture used for inter prediction, and is sometimes called a frame buffer. Specifically, the frame memory 122 stores the reconstructed block filtered by the loop filter unit 120.
  • the intra prediction unit 124 generates a prediction signal (intra prediction signal) by referring to the block in the current picture stored in the block memory 118 and performing intra prediction (also referred to as intra-screen prediction) of the current block. Specifically, the intra prediction unit 124 generates an intra prediction signal by performing intra prediction with reference to a sample (for example, luminance value and color difference value) of a block adjacent to the current block, and performs prediction control on the intra prediction signal. To the unit 128.
  • the intra prediction unit 124 performs intra prediction using one of a plurality of predefined intra prediction modes.
  • the plurality of intra prediction modes include one or more non-directional prediction modes and a plurality of directional prediction modes.
  • One or more non-directional prediction modes are for example H.264. It includes Planar prediction mode and DC prediction mode defined by H.265 / HEVC (High-Efficiency Video Coding) standard (Non-patent Document 1).
  • the multiple directionality prediction modes are for example H.264. It includes 33-direction prediction modes defined in the H.265 / HEVC standard. In addition to the 33 directions, the plurality of directionality prediction modes may further include 32 direction prediction modes (a total of 65 directionality prediction modes).
  • FIG. 5A is a diagram illustrating 67 intra prediction modes (two non-directional prediction modes and 65 directional prediction modes) in intra prediction. The solid line arrows The 33 directions defined in the H.265 / HEVC standard are represented, and the dashed arrow represents the added 32 directions.
  • the luminance block may be referred to in the intra prediction of the color difference block. That is, the color difference component of the current block may be predicted based on the luminance component of the current block.
  • Such intra prediction is sometimes called CCLM (cross-component linear model) prediction.
  • the intra prediction mode (for example, called CCLM mode) of the color difference block which refers to such a luminance block may be added as one of the intra prediction modes of the color difference block.
  • the intra prediction unit 124 may correct the pixel value after intra prediction based on the gradient of the reference pixel in the horizontal / vertical direction. Intra prediction with such correction may be called PDPC (position dependent intra prediction combination). Information indicating whether or not PDPC is applied (for example, referred to as a PDPC flag) is signaled, for example, at the CU level.
  • the signalization of this information need not be limited to the CU level, but may be another level (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
  • the inter prediction unit 126 refers to a reference picture stored in the frame memory 122 and is different from the current picture, and performs inter prediction (also referred to as inter-screen prediction) of the current block, thereby generating a prediction signal (inter prediction signal). Prediction signal). Inter prediction is performed in units of a current block or a sub-block (for example, 4 ⁇ 4 block) in the current block. For example, the inter prediction unit 126 performs motion estimation in the reference picture for the current block or sub-block. Then, the inter prediction unit 126 generates an inter prediction signal of the current block or sub-block by performing motion compensation using motion information (for example, a motion vector) obtained by motion search. Then, the inter prediction unit 126 outputs the generated inter prediction signal to the prediction control unit 128.
  • inter prediction also referred to as inter-screen prediction
  • a motion vector predictor may be used for signalizing the motion vector. That is, the difference between the motion vector and the predicted motion vector may be signaled.
  • an inter prediction signal may be generated using not only the motion information of the current block obtained by motion search but also the motion information of adjacent blocks. Specifically, the inter prediction signal is generated in units of sub-blocks in the current block by weighted addition of the prediction signal based on the motion information obtained by motion search and the prediction signal based on the motion information of adjacent blocks. May be.
  • Such inter prediction motion compensation
  • OBMC overlapped block motion compensation
  • OBMC block size information indicating the size of a sub-block for OBMC
  • OBMC flag information indicating whether or not to apply the OBMC mode
  • the level of signalization of these information does not need to be limited to the sequence level and the CU level, and may be other levels (for example, a picture level, a slice level, a tile level, a CTU level, or a sub-block level). Good.
  • FIG. 5B and FIG. 5C are a flowchart and a conceptual diagram for explaining the outline of the predicted image correction process by the OBMC process.
  • a prediction image (Pred) by normal motion compensation is acquired using a motion vector (MV) assigned to an encoding target block.
  • MV motion vector
  • a prediction image (Pred_L) is obtained by applying the motion vector (MV_L) of the encoded left adjacent block to the encoding target block, and prediction is performed by superimposing the prediction image and Pred_L with weights. Perform the first correction of the image.
  • the motion vector (MV_U) of the encoded upper adjacent block is applied to the block to be encoded to obtain a prediction image (Pred_U), and the prediction image and Pred_U that have been subjected to the first correction are weighted. Then, the second correction of the predicted image is performed by superimposing and making it the final predicted image.
  • the two-step correction method using the left adjacent block and the upper adjacent block has been described here, the correction may be performed more times than the two steps using the right adjacent block and the lower adjacent block. Is possible.
  • the area to be overlapped may not be the pixel area of the entire block, but only a part of the area near the block boundary.
  • the processing target block may be a prediction block unit or a sub-block unit obtained by further dividing the prediction block.
  • obmc_flag is a signal indicating whether or not to apply the OBMC process.
  • the encoding apparatus it is determined whether or not the encoding target block belongs to a complex motion region, and if it belongs to a complex motion region, a value 1 is set as obmc_flag. Encoding is performed by applying the OBMC process, and if it does not belong to a complex region of motion, the value 0 is set as obmc_flag and the encoding is performed without applying the OBMC process.
  • the decoding apparatus by decoding the obmc_flag described in the stream, decoding is performed by switching whether to apply the OBMC process according to the value.
  • the motion information may be derived on the decoding device side without being converted into a signal.
  • H.M. A merge mode defined in the H.265 / HEVC standard may be used.
  • the motion information may be derived by performing motion search on the decoding device side. In this case, motion search is performed without using the pixel value of the current block.
  • the mode in which motion search is performed on the decoding device side is sometimes called a PMMVD (patterned motion vector derivation) mode or an FRUC (frame rate up-conversion) mode.
  • PMMVD patterned motion vector derivation
  • FRUC frame rate up-conversion
  • FIG. 5D An example of FRUC processing is shown in FIG. 5D.
  • a list of a plurality of candidates each having a predicted motion vector (may be common with the merge list) is generated Is done.
  • the best candidate MV is selected from a plurality of candidate MVs registered in the candidate list. For example, the evaluation value of each candidate included in the candidate list is calculated, and one candidate is selected based on the evaluation value.
  • a motion vector for the current block is derived based on the selected candidate motion vector.
  • the selected candidate motion vector (best candidate MV) is directly derived as a motion vector for the current block.
  • the motion vector for the current block may be derived by performing pattern matching in the peripheral region at the position in the reference picture corresponding to the selected candidate motion vector. That is, the same method is used to search the area around the best candidate MV, and if there is an MV with a good evaluation value, the best candidate MV is updated to the MV, and the current block is updated. The final MV may be used. It is also possible to adopt a configuration in which the processing is not performed.
  • the same processing may be performed when processing is performed in units of sub-blocks.
  • the evaluation value is calculated by obtaining a difference value of the reconstructed image by pattern matching between a region in the reference picture corresponding to the motion vector and a predetermined region. Note that the evaluation value may be calculated using information other than the difference value.
  • the first pattern matching and the second pattern matching may be referred to as bilateral matching and template matching, respectively.
  • pattern matching is performed between two blocks in two different reference pictures that follow the motion trajectory of the current block. Therefore, in the first pattern matching, a region in another reference picture along the motion trajectory of the current block is used as the predetermined region for calculating the candidate evaluation value described above.
  • FIG. 6 is a diagram for explaining an example of pattern matching (bilateral matching) between two blocks along a motion trajectory.
  • first pattern matching two blocks along the motion trajectory of the current block (Cur block) and two blocks in two different reference pictures (Ref0, Ref1) are used.
  • two motion vectors MV0, MV1 are derived.
  • MV0, MV1 a reconstructed image at a designated position in the first encoded reference picture (Ref0) designated by the candidate MV, and a symmetric MV obtained by scaling the candidate MV at a display time interval.
  • the difference from the reconstructed image at the designated position in the second encoded reference picture (Ref1) designated in (2) is derived, and the evaluation value is calculated using the obtained difference value.
  • the candidate MV having the best evaluation value among the plurality of candidate MVs may be selected as the final MV.
  • the motion vectors (MV0, MV1) pointing to the two reference blocks are temporal distances between the current picture (Cur Pic) and the two reference pictures (Ref0, Ref1). It is proportional to (TD0, TD1).
  • the first pattern matching uses a mirror-symmetric bi-directional motion vector Is derived.
  • pattern matching is performed between a template in the current picture (a block adjacent to the current block in the current picture (for example, an upper and / or left adjacent block)) and a block in the reference picture. Therefore, in the second pattern matching, a block adjacent to the current block in the current picture is used as the predetermined region for calculating the candidate evaluation value described above.
  • FIG. 7 is a diagram for explaining an example of pattern matching (template matching) between a template in the current picture and a block in the reference picture.
  • the current block is searched by searching the reference picture (Ref0) for the block that most closely matches the block adjacent to the current block (Cur block) in the current picture (Cur Pic).
  • Ref0 the reference picture
  • the reconstructed image of the encoded region of the left adjacent area and / or the upper adjacent area, and the equivalent in the encoded reference picture (Ref0) designated by the candidate MV When a difference from the reconstructed image at the position is derived, an evaluation value is calculated using the obtained difference value, and a candidate MV having the best evaluation value among a plurality of candidate MVs is selected as the best candidate MV. Good.
  • FRUC flag Information indicating whether or not to apply such FRUC mode
  • FRUC flag information indicating whether or not to apply such FRUC mode
  • the FRUC mode is applied (for example, when the FRUC flag is true)
  • information indicating the pattern matching method (first pattern matching or second pattern matching) (for example, called the FRUC mode flag) is signaled at the CU level. It becomes. Note that the signalization of these pieces of information need not be limited to the CU level, but may be other levels (for example, sequence level, picture level, slice level, tile level, CTU level, or sub-block level). .
  • BIO bi-directional optical flow
  • FIG. 8 is a diagram for explaining a model assuming constant velocity linear motion.
  • (v x , v y ) indicates a velocity vector
  • ⁇ 0 and ⁇ 1 are the time between the current picture (Cur Pic) and two reference pictures (Ref 0 , Ref 1 ), respectively.
  • the distance. (MVx 0 , MVy 0 ) indicates a motion vector corresponding to the reference picture Ref 0
  • (MVx 1 , MVy 1 ) indicates a motion vector corresponding to the reference picture Ref 1 .
  • This optical flow equation consists of (i) the product of the time derivative of the luminance value, (ii) the horizontal component of the horizontal velocity and the spatial gradient of the reference image, and (iii) the vertical velocity and the spatial gradient of the reference image. Indicates that the sum of the products of the vertical components of is equal to zero. Based on a combination of this optical flow equation and Hermite interpolation, a block-based motion vector obtained from a merge list or the like is corrected in pixel units.
  • the motion vector may be derived on the decoding device side by a method different from the derivation of the motion vector based on the model assuming constant velocity linear motion.
  • a motion vector may be derived for each subblock based on the motion vectors of a plurality of adjacent blocks.
  • This mode may be referred to as an affine motion compensation prediction mode.
  • FIG. 9A is a diagram for explaining derivation of a motion vector in units of sub-blocks based on motion vectors of a plurality of adjacent blocks.
  • the current block includes 16 4 ⁇ 4 sub-blocks.
  • the motion vector v 0 of the upper left corner control point of the current block is derived based on the motion vector of the adjacent block
  • the motion vector v 1 of the upper right corner control point of the current block is derived based on the motion vector of the adjacent sub block. Is done.
  • the motion vector (v x , v y ) of each sub-block in the current block is derived by the following equation (2).
  • x and y indicate the horizontal position and vertical position of the sub-block, respectively, and w indicates a predetermined weight coefficient.
  • Such an affine motion compensation prediction mode may include several modes in which the motion vector derivation methods of the upper left and upper right corner control points are different.
  • Information indicating such an affine motion compensation prediction mode (for example, called an affine flag) is signaled at the CU level. Note that the information indicating the affine motion compensation prediction mode need not be limited to the CU level, but other levels (for example, sequence level, picture level, slice level, tile level, CTU level, or sub-block level). ).
  • the prediction control unit 128 selects either the intra prediction signal or the inter prediction signal, and outputs the selected signal to the subtraction unit 104 and the addition unit 116 as a prediction signal.
  • FIG. 9B is a diagram for explaining the outline of the motion vector deriving process in the merge mode.
  • a prediction MV list in which prediction MV candidates are registered is generated.
  • prediction MV candidates spatial adjacent prediction MVs that are MVs of a plurality of encoded blocks located spatially around the encoding target block, and the position of the encoding target block in the encoded reference picture are projected.
  • Temporal adjacent prediction MV that is MV of neighboring blocks combined prediction MV that is MV generated by combining MV values of spatial adjacent prediction MV and temporal adjacent prediction MV, zero prediction MV that is MV having a value of zero, and the like There is.
  • variable length encoding unit describes and encodes merge_idx which is a signal indicating which prediction MV is selected in the stream.
  • the prediction MV registered in the prediction MV list described with reference to FIG. 9B is an example, and the number of prediction MVs may be different from the number in the figure, or may not include some types of prediction MVs in the figure. It may be the composition which added prediction MV other than the kind of prediction MV in a figure.
  • the final MV may be determined by performing DMVR processing, which will be described later, using the MV of the encoding target block derived by the merge mode.
  • FIG. 9C is a conceptual diagram for explaining an outline of DMVR processing.
  • the optimal MVP set in the processing target block is set as a candidate MV, and reference pixels from a first reference picture that is a processed picture in the L0 direction and a second reference picture that is a processed picture in the L1 direction are set according to the candidate MV. Are obtained, and a template is generated by taking the average of each reference pixel.
  • the peripheral areas of the candidate MVs of the first reference picture and the second reference picture are searched, respectively, and the MV with the lowest cost is determined as the final MV.
  • the cost value is calculated using a difference value between each pixel value of the template and each pixel value of the search area, an MV value, and the like.
  • FIG. 9D is a diagram for explaining an outline of a predicted image generation method using luminance correction processing by LIC processing.
  • an MV for obtaining a reference image corresponding to a block to be encoded is derived from a reference picture that is an encoded picture.
  • the predicted image for the encoding target block is generated by performing the brightness correction process using the brightness correction parameter for the reference image in the reference picture specified by MV.
  • the shape of the peripheral reference region in FIG. 9D is an example, and other shapes may be used.
  • the process of generating a predicted image from one reference picture has been described, but the same applies to the case of generating a predicted image from a plurality of reference pictures, and the same applies to reference images acquired from each reference picture.
  • the predicted image is generated after performing the luminance correction processing by the method.
  • lic_flag is a signal indicating whether to apply LIC processing.
  • the encoding device it is determined whether or not the encoding target block belongs to an area where the luminance change occurs, and if it belongs to the area where the luminance change occurs, lic_flag is set. Encode by applying LIC processing with a value of 1 set, and if not belonging to an area where a luminance change has occurred, set 0 as lic_flag and perform encoding without applying the LIC processing .
  • the decoding device by decoding lic_flag described in the stream, decoding is performed by switching whether to apply the LIC processing according to the value.
  • a method for determining whether or not to apply LIC processing for example, there is a method for determining whether or not LIC processing has been applied to peripheral blocks.
  • the encoding target block is in the merge mode
  • whether or not the surrounding encoded blocks selected in the derivation of the MV in the merge mode processing are encoded by applying the LIC processing. Judgment is performed, and encoding is performed by switching whether to apply the LIC processing according to the result.
  • the decoding process is exactly the same.
  • FIG. 10 is a block diagram showing a functional configuration of decoding apparatus 200 according to Embodiment 1.
  • the decoding device 200 is a moving image / image decoding device that decodes moving images / images in units of blocks.
  • the decoding device 200 includes an entropy decoding unit 202, an inverse quantization unit 204, an inverse transformation unit 206, an addition unit 208, a block memory 210, a loop filter unit 212, and a frame memory 214. And an intra prediction unit 216, an inter prediction unit 218, and a prediction control unit 220.
  • the decoding device 200 is realized by, for example, a general-purpose processor and a memory.
  • the processor executes the entropy decoding unit 202, the inverse quantization unit 204, the inverse transformation unit 206, the addition unit 208, the loop filter unit 212, and the intra prediction unit. 216, the inter prediction unit 218, and the prediction control unit 220.
  • the decoding apparatus 200 is dedicated to the entropy decoding unit 202, the inverse quantization unit 204, the inverse transformation unit 206, the addition unit 208, the loop filter unit 212, the intra prediction unit 216, the inter prediction unit 218, and the prediction control unit 220. It may be realized as one or more electronic circuits.
  • the entropy decoding unit 202 performs entropy decoding on the encoded bit stream. Specifically, the entropy decoding unit 202 performs arithmetic decoding from a coded bitstream to a binary signal, for example. Then, the entropy decoding unit 202 debinarizes the binary signal. As a result, the entropy decoding unit 202 outputs the quantized coefficient to the inverse quantization unit 204 in units of blocks.
  • the inverse quantization unit 204 inversely quantizes the quantization coefficient of a decoding target block (hereinafter referred to as a current block) that is an input from the entropy decoding unit 202. Specifically, the inverse quantization unit 204 inversely quantizes each quantization coefficient of the current block based on the quantization parameter corresponding to the quantization coefficient. Then, the inverse quantization unit 204 outputs the quantization coefficient (that is, the transform coefficient) obtained by inverse quantization of the current block to the inverse transform unit 206.
  • a decoding target block hereinafter referred to as a current block
  • the inverse quantization unit 204 inversely quantizes each quantization coefficient of the current block based on the quantization parameter corresponding to the quantization coefficient. Then, the inverse quantization unit 204 outputs the quantization coefficient (that is, the transform coefficient) obtained by inverse quantization of the current block to the inverse transform unit 206.
  • the inverse transform unit 206 restores the prediction error by inverse transforming the transform coefficient that is an input from the inverse quantization unit 204.
  • the inverse conversion unit 206 determines the current block based on the information indicating the read conversion type. Inversely transform the conversion coefficient of.
  • the inverse transform unit 206 applies inverse retransformation to the transform coefficient.
  • the adder 208 reconstructs the current block by adding the prediction error input from the inverse converter 206 and the prediction sample input from the prediction controller 220. Then, the adding unit 208 outputs the reconfigured block to the block memory 210 and the loop filter unit 212.
  • the block memory 210 is a storage unit for storing a block that is referred to in intra prediction and that is within a decoding target picture (hereinafter referred to as a current picture). Specifically, the block memory 210 stores the reconstructed block output from the adding unit 208.
  • the loop filter unit 212 applies a loop filter to the block reconstructed by the adding unit 208, and outputs the filtered reconstructed block to the frame memory 214, the display device, and the like.
  • one filter is selected from the plurality of filters based on the local gradient direction and activity, The selected filter is applied to the reconstruction block.
  • the frame memory 214 is a storage unit for storing a reference picture used for inter prediction, and is sometimes called a frame buffer. Specifically, the frame memory 214 stores the reconstructed block filtered by the loop filter unit 212.
  • the intra prediction unit 216 performs intra prediction with reference to the block in the current picture stored in the block memory 210 based on the intra prediction mode read from the encoded bitstream, so that a prediction signal (intra prediction Signal). Specifically, the intra prediction unit 216 generates an intra prediction signal by performing intra prediction with reference to a sample (for example, luminance value and color difference value) of a block adjacent to the current block, and performs prediction control on the intra prediction signal. Output to the unit 220.
  • a prediction signal for example, luminance value and color difference value
  • the intra prediction unit 216 may predict the color difference component of the current block based on the luminance component of the current block.
  • the intra prediction unit 216 corrects the pixel value after intra prediction based on the gradient of the reference pixel in the horizontal / vertical direction.
  • the inter prediction unit 218 refers to the reference picture stored in the frame memory 214 and predicts the current block. Prediction is performed in units of a current block or a sub-block (for example, 4 ⁇ 4 block) in the current block. For example, the inter prediction unit 218 generates an inter prediction signal of the current block or sub-block by performing motion compensation using motion information (for example, a motion vector) read from the encoded bitstream, and generates the inter prediction signal. The result is output to the prediction control unit 220.
  • motion information for example, a motion vector
  • the inter prediction unit 218 When the information read from the encoded bitstream indicates that the OBMC mode is to be applied, the inter prediction unit 218 includes not only the motion information of the current block obtained by motion search but also the motion information of adjacent blocks. To generate an inter prediction signal.
  • the inter prediction unit 218 follows the pattern matching method (bilateral matching or template matching) read from the encoded stream. Motion information is derived by performing motion search. Then, the inter prediction unit 218 performs motion compensation using the derived motion information.
  • the inter prediction unit 218 derives a motion vector based on a model assuming constant velocity linear motion. Also, when the information read from the encoded bitstream indicates that the affine motion compensated prediction mode is applied, the inter prediction unit 218 determines the motion vector in units of subblocks based on the motion vectors of a plurality of adjacent blocks. Is derived.
  • the prediction control unit 220 selects either the intra prediction signal or the inter prediction signal, and outputs the selected signal to the adding unit 208 as a prediction signal.
  • Embodiment 2 Next, a second embodiment will be described. In the present embodiment, conversion and inverse conversion will be described in detail. In addition, since the structure of the encoding apparatus and decoding apparatus which concern on this Embodiment is substantially the same as Embodiment 1, illustration and description are abbreviate
  • FIG. 11 is a flowchart showing transform and quantization processing in coding apparatus 100 according to Embodiment 2.
  • the conversion unit 106 determines whether to use intra prediction or inter prediction for the encoding target block (S101). For example, the conversion unit 106 determines whether to use intra prediction or inter prediction based on the difference between the original image and the reconstructed image obtained by local decoding of the compressed image and / or the cost based on the code amount. . For example, the conversion unit 106 may determine whether to use intra prediction or inter prediction based on information (for example, picture type) different from the cost based on the difference and / or the code amount.
  • information for example, picture type
  • the conversion unit 106 selects the first for the encoding target block from among one or more first conversion base candidates.
  • a conversion base is selected (S102).
  • the transform unit 106 selects a DCT-II transform base as the first transform base for the encoding target block.
  • the conversion unit 106 may select a first conversion base from a plurality of first conversion base candidates.
  • the transform unit 106 generates a first transform coefficient by performing a first transform on the residual of the encoding target block using the first transform base selected in step S102 (S103).
  • the quantization unit 108 quantizes the generated first transform coefficient (S110), and ends the transform and quantization process.
  • the conversion unit 106 performs the first conversion for the encoding target block from among one or more first conversion base candidates.
  • a base is selected (S104).
  • the adaptive base selection mode is a mode for adaptively selecting a conversion base from a plurality of predetermined conversion base candidates based on the difference between the original image and the reconstructed image and / or the cost based on the code amount. It is.
  • This adaptive basis selection mode may be called an EMT mode or an AMT mode.
  • As a plurality of conversion base candidates for example, the plurality of conversion bases shown in FIG. 6 can be used. Note that the plurality of conversion base candidates are not limited to the plurality of conversion bases in FIG.
  • the plurality of conversion base candidates may include, for example, a conversion base equivalent to not performing conversion.
  • the conversion unit 106 may select the first conversion base using the non-adaptive base selection mode (that is, without using the adaptive base selection mode).
  • the transform unit 106 can select the first transform base based on an encoding parameter (eg, block size, quantization parameter, intra prediction mode, etc.).
  • the conversion unit 106 can also select a conversion base (for example, a DCT-II conversion base) defined in advance in a standard or the like. In this case, the selection of the conversion base means that one predefined conversion base is fixedly adopted. Further, the conversion unit 106 may adaptively switch between the adaptive basis conversion mode and the non-adaptive basis selection mode.
  • the transform unit 106 generates a first transform coefficient by performing a first transform on the residual of the encoding target block using the first transform base selected in step S104 (S105).
  • the conversion unit 106 determines whether or not the intra prediction mode of the block to be encoded is a predetermined mode (S106). For example, the conversion unit 106 determines whether or not the intra prediction mode is a predetermined mode based on the cost based on the difference between the original image and the reconstructed image and / or the code amount. Note that the determination whether the intra prediction mode is the predetermined mode may be performed based on information different from the cost.
  • the predetermined mode may be defined in advance by, for example, a standard.
  • the predetermined mode may be determined based on an encoding parameter or the like.
  • the conversion unit 106 determines whether or not the first conversion base selected in step S104 matches the predetermined conversion base (S107).
  • the predetermined conversion base may be defined in advance by a standard or the like.
  • the predetermined conversion base may be determined based on an encoding parameter or the like.
  • the conversion unit 106 selects one or more second conversion base candidates.
  • the second transform base for the encoding target block is selected from among (S108).
  • the conversion unit 106 generates the second conversion coefficient by performing the second conversion on the first conversion coefficient using the selected second conversion base (S109).
  • the quantization unit 108 quantizes the generated second transform coefficient (S110), and ends the transform and quantization process.
  • a secondary conversion called NSST may be performed, or a conversion that selectively uses any one of a plurality of second conversion base candidates may be performed.
  • the selected conversion base may be fixed. That is, a predetermined fixed conversion base may be selected as the second conversion base.
  • a conversion base equivalent to not performing the second conversion may be used as the second conversion base.
  • the conversion unit 106 selects the second conversion base (S108). And the second conversion step (S109) is skipped. That is, the conversion unit 106 does not perform the second conversion. In this case, the first transform coefficient generated in step S105 is quantized (S110), and the transform and quantization process ends.
  • the second conversion step when the second conversion step is skipped, information indicating that the second conversion is not performed may be notified to the decoding device. Further, when the second conversion step is skipped, the second conversion is performed using the second conversion base equivalent to not performing the conversion, and information indicating the second conversion base is the decoding device. May be notified.
  • the inverse quantization unit 112 and the inverse transform unit 114 of the encoding device 100 can reconstruct the encoding target block by performing processing reverse to the processing of the transform unit 106 and the quantization unit 108.
  • FIG. 12 is a flowchart showing inverse quantization and inverse transform processing in decoding apparatus 200 according to Embodiment 2.
  • the inverse quantization unit 204 inversely quantizes the quantization coefficient of the decoding target block (S501).
  • the inverse transform unit 206 determines which of intra prediction and inter prediction is used for the decoding target block (S502). For example, the inverse transform unit 206 determines whether to use intra prediction or inter prediction based on information acquired from the bitstream.
  • the inverse transform unit 206 selects the first inverse transform base for the decoding target block (S503).
  • Selecting an inverse transform base (first inverse transform base or second inverse transform base) in the decoding device 200 means determining an inverse transform base based on predetermined information.
  • the predetermined information for example, a base selection signal can be used.
  • intra prediction mode or a block size can also be used as the predetermined information.
  • the inverse transform unit 206 performs the first inverse transform on the inversely quantized coefficient of the decoding target block using the first inverse transform base selected in step S503 (S504), and performs inverse quantization and inverse transform. End the process.
  • the inverse transform unit 206 determines whether or not the intra prediction mode of the decoding target block is a predetermined mode (S505).
  • the predetermined mode used in the decoding apparatus 200 is the same as the predetermined mode used in the encoding apparatus 100.
  • the inverse transform unit 206 determines whether or not the first inverse transform base matches the predetermined inverse transform base (S506).
  • the predetermined inverse transform base an inverse transform base corresponding to the predetermined transform base used in the encoding apparatus 100 is used.
  • the inverse transform unit 206 When the intra prediction mode is not the predetermined mode (NO in S505), or when the first inverse transform base matches the predetermined inverse transform base (YES in S506), the inverse transform unit 206 performs the process for the decoding target block.
  • the inverse transform base 2 is selected (S507).
  • the inverse transform unit 206 performs the second inverse transform on the inversely quantized coefficients of the decoding target block using the selected second inverse transform base (S508).
  • the inverse transform unit 206 selects the first inverse transform base (S509).
  • the inverse transform unit 206 performs the first inverse transform on the coefficient obtained by the second inverse transform in step S508 using the selected first inverse transform base (S510), and performs inverse quantization and inverse transform. End the process.
  • the inverse transform unit 206 outputs the second inverse transform base.
  • the selection step (S507) and the second inverse conversion step (S508) are skipped. That is, the inverse transform unit 206 selects the first inverse transform base without performing the second inverse transform (S509).
  • the inverse transform unit 206 performs the first inverse transform on the coefficient inversely quantized in step S501 using the selected first inverse transform base (S510), and ends the inverse quantization and inverse transform processing. .
  • the second conversion when inter prediction is used for an encoding target block, the second conversion is not performed, but the present invention is not limited to this. That is, when inter prediction is used for an encoding target block, the second transform may be performed on the first transform coefficient generated by the first transform. In this case, the second transform coefficient generated by the second transform is quantized.
  • the order of steps in the flowcharts of FIGS. 11 and 12 is not limited to the order described in FIGS. 11 and 12.
  • the step of determining whether or not the intra prediction mode is the predetermined mode (S106) and the step of determining whether or not the first conversion base matches the predetermined conversion base (S107) are reversed. Or may be performed at the same time.
  • Embodiment 3 Next, Embodiment 3 will be described.
  • the present embodiment is different from the second embodiment in that the predetermined mode used for determining the intra prediction mode is limited to the non-directional prediction mode.
  • the present embodiment will be described with reference to the drawings with a focus on differences from the second embodiment.
  • steps that are substantially the same as those in the second embodiment are denoted by the same reference numerals, and redundant descriptions are omitted or simplified.
  • FIG. 13 is a flowchart showing transform and quantization processing in coding apparatus 100 according to Embodiment 3.
  • the conversion unit 106 determines whether to use intra prediction or inter prediction for the encoding target block (S101).
  • the transform unit 106 selects a first transform base (S102), and uses the selected first transform base.
  • a first transform coefficient is generated by performing a first transform on the residual of the encoding target block (S103).
  • the quantization unit 108 quantizes the generated first transform coefficient (S110), and ends the transform and quantization process.
  • the conversion unit 106 determines whether the intra prediction mode of the encoding target block is the non-directional prediction mode (S201). ).
  • the non-directional prediction mode is a mode in which a specific direction is not used for prediction of a decoding target block.
  • the non-directional prediction mode is, for example, a DC prediction mode and / or a Planar prediction mode.
  • a pixel value is predicted using an average value of reference pixels or an interpolation value of reference pixels.
  • a mode that uses a specific direction for prediction of a decoding target block is called a directionality prediction mode.
  • the pixel value is predicted by extending the value of the reference pixel in a specific direction.
  • the pixel value is a value in units of pixels constituting a picture, and is, for example, a luminance value or a color difference value.
  • the conversion unit 106 selects the first conversion base for the block to be encoded (S202).
  • the transform unit 106 generates a first transform coefficient by performing a first transform on the residual of the encoding target block using the first transform base selected in step S202 (S203).
  • the conversion unit 106 selects the second conversion base for the encoding target block (S204).
  • the conversion unit 106 generates the second conversion coefficient by performing the second conversion on the first conversion coefficient generated in Step S203 using the second conversion base selected in Step S204 ( S205).
  • the processing of steps S202 to S205 is substantially the same as the processing of steps S104 to S109 when step S106 is NO in FIG.
  • the quantization unit 108 quantizes the second transform coefficient generated in step S205 (S110), and ends the transform and quantization process.
  • the conversion unit 106 selects the first conversion base for the encoding target block (S206).
  • the conversion unit 106 generates the first transform coefficient by performing the first transform on the residual of the encoding target block using the first transform base selected in step S206 (S207).
  • the conversion unit 106 determines whether or not the first conversion base selected in step S206 matches the predetermined conversion base (S208).
  • the predetermined conversion base for example, a DCT-II conversion base and / or a conversion base similar thereto can be used.
  • the conversion unit 106 selects the second conversion base for the encoding target block (S209). Then, the conversion unit 106 generates the second conversion coefficient by performing the second conversion on the first conversion coefficient generated in step S207 using the second conversion base selected in step S209. (S210). Thereafter, the quantization unit 108 quantizes the second transform coefficient generated in step S210 (S110), and ends the transform and quantization process.
  • the conversion unit 106 skips the second conversion base selection step (S209) and the second conversion step (S210). That is, the conversion unit 106 does not perform the second conversion. In this case, the first transform coefficient generated in step S207 is quantized (S110), and the transform and quantization process ends.
  • steps S206 to S209 is substantially the same as the processing of steps S104 to S109 when step S106 is YES in FIG.
  • FIG. 14 is a flowchart showing inverse quantization and inverse transform processing in decoding apparatus 200 according to Embodiment 3.
  • the inverse quantization unit 204 inversely quantizes the quantization coefficient of the decoding target block (S501).
  • the inverse transform unit 206 determines which of intra prediction and inter prediction is used for the decoding target block (S502).
  • the inverse transform unit 206 selects the first inverse transform base for the decoding target block (S503).
  • the inverse transform unit 206 performs the first inverse transform on the inversely quantized coefficient of the decoding target block using the first inverse transform base selected in step S503 (S504), and performs inverse quantization and inverse transform. End the process.
  • the inverse transform unit 206 determines whether the intra prediction mode of the decoding target block is the non-directional prediction mode (S601). .
  • the inverse transform unit 206 selects the second inverse transform base for the decoding target block (S602).
  • the inverse transform unit 206 performs the second inverse transform on the inversely quantized coefficients of the decoding target block using the selected second inverse transform base (S603).
  • the inverse transform unit 206 selects the first inverse transform base (S604).
  • the inverse transform unit 206 performs first inverse transform on the coefficient obtained by the second inverse transform in step S603 using the selected first inverse transform base (S605), and performs inverse quantization and inverse transform. The process ends.
  • the inverse transform unit 206 determines whether or not the first inverse transform base matches the predetermined inverse transform base (S606).
  • the predetermined inverse transform base used in the decoding device 200 is an inverse transform base corresponding to the predetermined transform base used in the encoding device 100.
  • the inverse transform unit 206 selects the second inverse transform base for the decoding target block (S607).
  • the inverse transform unit 206 performs the second inverse transform on the inversely quantized coefficients of the decoding target block using the selected second inverse transform base (S608).
  • the inverse transform unit 206 selects the first inverse transform base (S609).
  • the inverse transform unit 206 performs the first inverse transform on the coefficient obtained by the second inverse transform in step S608 using the selected first inverse transform base (S610), and performs inverse quantization and inverse transform. The process ends.
  • the inverse transform unit 206 selects the second inverse transform base (S607) and the second inverse transform step (S608). To skip. That is, the inverse transform unit 206 selects the first inverse transform base without performing the second inverse transform (S609).
  • the inverse transform unit 206 performs the first inverse transform on the coefficient inversely quantized in step S501 using the selected first inverse transform base (S610), and ends the inverse quantization and inverse transform processing. .
  • the second transform can be skipped when the intra prediction mode is the non-directional prediction mode.
  • the residual is often flat within the block. Therefore, if a transform basis other than the transform basis of DCT-II and a transform basis similar thereto is used, high-frequency components are likely to remain, and the distribution of transform coefficients tends to be random. In this case, since the effect of improving the compression efficiency by the second conversion is reduced, the processing load can be reduced while suppressing the decrease in the compression efficiency by skipping the second conversion.
  • the second conversion when inter prediction is used for an encoding target block, the second conversion is not performed, but the present invention is not limited to this. That is, when inter prediction is used for an encoding target block, the second transform may be performed on the first transform coefficient generated by the first transform. In this case, the second transform coefficient generated by the second transform is quantized.
  • FIG. 15 is a flowchart showing transform and quantization processing in encoding apparatus 100 according to Embodiment 4.
  • the conversion unit 106 determines whether to use intra prediction or inter prediction for the encoding target block (S101).
  • the transform unit 106 selects a first transform base (S102), and uses the selected first transform base.
  • a first transform coefficient is generated by performing a first transform on the residual of the encoding target block (S103).
  • the quantization unit 108 quantizes the generated first transform coefficient (S110), and ends the transform and quantization process.
  • the conversion unit 106 determines whether the size of the encoding target block matches a predetermined size and adapts to the encoding target block. It is determined whether or not the base selection mode is used (S301). Whether or not to use the adaptive basis selection mode can be determined based on, for example, the difference between the original image and the reconstructed image and / or the cost based on the code amount.
  • the predetermined size for example, a specific block size defined in advance by a standard or the like can be used. Specifically, for example, 4 ⁇ 4 pixels can be used as the predetermined size. A plurality of block sizes may be used as the predetermined size. Specifically, for example, 4 ⁇ 4 pixels, 8 ⁇ 4 pixels, and 4 ⁇ 8 pixels may be used as the predetermined size. Further, it may be determined whether or not the size of the encoding target block matches the predetermined size by determining whether or not the size of the encoding target block satisfies a predetermined condition. In this case, as the predetermined condition, for example, a condition that both the horizontal size and the vertical size are equal to or smaller than the predetermined pixel or at least one of the horizontal size and the vertical size is equal to or smaller than the predetermined pixel can be used.
  • the predetermined condition for example, a condition that both the horizontal size and the vertical size are equal to or smaller than the predetermined pixel or at least one of the horizontal size and the vertical size is equal to or
  • the conversion unit 106 When the size of the encoding target block is different from the predetermined size, or when the adaptive base selection mode is not used (NO in S301), the conversion unit 106 has the intra prediction mode of the encoding target block in the non-directional prediction mode. It is determined whether or not (S201).
  • the conversion unit 106 selects the first conversion base for the block to be encoded (S202). For example, when it is determined that the adaptive base selection mode is used, the conversion unit 106 adaptively selects the first conversion base from the plurality of first conversion base candidates. For example, when it is determined that the adaptive base selection mode is not used, the conversion unit 106 selects a predetermined conversion base (for example, a DCT-II conversion base) in a fixed manner.
  • a predetermined conversion base for example, a DCT-II conversion base
  • the transform unit 106 generates a first transform coefficient by performing the first transform on the residual of the encoding target block using the first transform base selected in step S202 (S203). Furthermore, the conversion unit 106 selects the second conversion base for the encoding target block (S204). The conversion unit 106 generates the second conversion coefficient by performing the second conversion on the first conversion coefficient generated in Step S203 using the second conversion base selected in Step S204 ( S205). Thereafter, the quantization unit 108 quantizes the second transform coefficient generated in step S205 (S110), and ends the transform and quantization process.
  • the conversion unit 106 selects the first conversion base for the encoding target block (S206). For example, when it is determined that the adaptive base selection mode is used, the conversion unit 106 adaptively selects the first conversion base from the plurality of first conversion base candidates. For example, when it is determined that the adaptive base selection mode is not used, the conversion unit 106 selects a predetermined conversion base (for example, a DCT-II conversion base) in a fixed manner.
  • a predetermined conversion base for example, a DCT-II conversion base
  • the converting unit 106 generates a first transform coefficient by performing the first transform on the residual of the encoding target block using the first transform base selected in step S206 (S207).
  • the conversion unit 106 determines whether or not the first conversion base selected in step S206 matches the second predetermined conversion base (S208).
  • the second predetermined conversion base for example, a DCT-II conversion base and / or a conversion base similar thereto can be used.
  • the conversion unit 106 selects the second conversion base for the encoding target block (S209). Then, the conversion unit 106 generates the second conversion coefficient by performing the second conversion on the first conversion coefficient generated in step S207 using the second conversion base selected in step S209. (S210). Thereafter, the quantization unit 108 quantizes the second transform coefficient generated in step S210 (S110), and ends the transform and quantization process.
  • the conversion unit 106 skips the second conversion base selection step (S209) and the second conversion step (S210). To do. That is, the conversion unit 106 does not perform the second conversion. In this case, the first transform coefficient generated in step S207 is quantized (S110), and the transform and quantization process ends.
  • the conversion unit 106 fixes the first conversion base to the first predetermined conversion base (S302). ).
  • a DST-VII conversion base can be used as the first predetermined conversion base.
  • the first predetermined conversion base is not limited to the conversion base of DST-VII.
  • a DCT-V conversion base may be used as the first predetermined conversion base.
  • the conversion unit 106 generates the first variable relation number by performing the first conversion on the residual of the encoding target block using the first conversion base fixed in step S302 (S303).
  • the conversion unit 106 determines whether or not the intra prediction mode of the encoding target block is the non-directional prediction mode (S304).
  • the conversion unit 106 selects the second conversion base (S305). Then, the conversion unit 106 generates the second conversion coefficient by performing the second conversion on the first conversion coefficient generated in step 303 using the second conversion base selected in step S305. (S306). Thereafter, the quantization unit 108 quantizes the second transform coefficient generated in step S306 (S110), and ends the transform and quantization process.
  • the conversion unit 106 skips the second conversion base selection step (S305) and the second conversion step (S306). That is, the conversion unit 106 does not perform the second conversion. In this case, the first transform coefficient generated in step S303 is quantized (S110), and the transform and quantization process ends.
  • FIG. 16 is a flowchart showing an encoding process in encoding apparatus 100 according to Embodiment 4.
  • the entropy encoding unit 110 encodes the first base selection signal in the bitstream (S402).
  • the first basis selection signal is information or data indicating the first conversion basis selected in step S102.
  • Encoding a signal in a bit stream means placing a code indicating information in the bit stream.
  • the code is generated by, for example, context adaptive binary arithmetic coding (CABAC). Note that CABAC does not necessarily need to be used for code generation, and entropy encoding need not be used.
  • the code may be information itself (for example, a flag of 0 or 1).
  • the entropy encoding unit 110 encodes the coefficient quantized in step S110 (S403), and ends the encoding process.
  • the entropy encoding unit 110 When intra prediction is used for the encoding target block (intra of S401), the entropy encoding unit 110 encodes an intra prediction mode signal indicating the intra prediction mode of the encoding target block in the bitstream (S404). . Further, the entropy encoding unit 110 encodes an adaptive selection mode signal indicating whether or not the adaptive base selection mode is used for the encoding target block in the bitstream (S405).
  • the entropy encoding unit 110 encodes the first base selection signal in the bitstream. (S407).
  • the first basis selection signal is information or data indicating the first conversion basis selected in step S202 or S206.
  • the entropy encoding unit 110 The first base selection signal encoding step (S407) is skipped. That is, the entropy encoding unit 110 does not encode the first base selection signal.
  • the entropy encoding unit 110 encodes the second base selection signal in the bitstream (S409).
  • the second basis selection signal is information or data indicating the second conversion basis selected in step S204, S209, or S305.
  • the entropy encoding unit 110 skips the second base selection signal encoding step (S409). That is, the entropy encoding unit 110 does not encode the second base selection signal.
  • the entropy encoding unit 110 encodes the coefficient quantized in step S110 (S410), and ends the encoding process.
  • FIG. 17 is a flowchart showing decoding processing in the decoding device 200 according to Embodiment 4.
  • the entropy decoding unit 202 decodes the first base selection signal from the bit stream (S702).
  • Decoding a signal from a bit stream means reading a code indicating information from the bit stream and restoring the information from the read code.
  • CABAD context-adaptive binary arithmetic decoding
  • CABAD does not necessarily need to be used for restoration from code to information, and entropy decoding need not be used.
  • the read code itself indicates information (for example, a flag of 0 or 1), it is only necessary to read the code.
  • the entropy decoding unit 202 decodes the quantization coefficient from the bit stream (S703), and ends the decoding process.
  • the entropy decoding unit 202 decodes the intra prediction mode signal from the bitstream (S704). Further, the entropy decoding unit 202 decodes the adaptive selection mode signal (S705).
  • the entropy decoding unit 202 decodes the first base selection signal from the bitstream (S707). ).
  • the entropy decoding unit 202 The step of decoding 1 base selection signal (S707) is skipped. That is, the entropy decoding unit 202 does not decode the first base selection signal.
  • the entropy decoding unit 202 decodes the second base selection signal from the bitstream (S709).
  • the entropy decoding part 202 skips the decoding step (S709) of a 2nd base selection signal. That is, the entropy decoding unit 202 does not decode the second base selection signal.
  • the entropy decoding unit 202 decodes the quantized coefficient from the bit stream (S710) and ends the decoding process.
  • FIG. 18 is a flowchart showing inverse quantization and inverse transform processing in decoding apparatus 200 according to Embodiment 4.
  • the inverse quantization unit 204 inversely quantizes the quantization coefficient of the decoding target block (S501).
  • the inverse transform unit 206 determines which of intra prediction and inter prediction is used for the decoding target block (S502). When it is determined that inter prediction is used for the decoding target block (inter in S502), the inverse transform unit 206 selects the first inverse transform base for the decoding target block (S503). The inverse transform unit 206 performs the first inverse transform on the inversely quantized coefficient of the decoding target block using the first inverse transform base selected in step S503 (S504), and performs inverse quantization and inverse transform. End the process.
  • the inverse transform unit 206 determines whether or not the size of the decoding target block matches a predetermined size, and the decoding target block has an adaptive base selection mode. It is determined whether it has been used (S801). For example, the inverse transform unit 206 determines whether or not the adaptive base selection mode is used based on the adaptive selection mode signal decoded in step S705 of FIG.
  • the inverse transform unit 206 determines that the intra prediction mode of the decoding target block is the non-directional prediction mode. It is determined whether or not there is (S601).
  • the inverse transform unit 206 selects the second inverse transform base for the decoding target block (S602). For example, the inverse transform unit 206 selects the second inverse transform base based on the second base selection signal decoded in step S709 of FIG. The inverse transform unit 206 performs the second inverse transform on the inversely quantized coefficients of the decoding target block using the selected second inverse transform base (S603). The inverse transform unit 206 selects the first inverse transform base (S604). For example, when the adaptive basis selection mode is used, the inverse transformation unit 206 selects the first inverse transformation basis based on the first basis selection signal decoded in step S707 of FIG. The inverse transform unit 206 performs first inverse transform on the coefficient obtained by the second inverse transform in step S603 using the selected first inverse transform base (S605), and performs inverse quantization and inverse transform. End the process.
  • the inverse transform unit 206 determines whether or not the first inverse transform base matches the second predetermined inverse transform base ( S606). For example, when the adaptive basis selection mode is used, the inverse transformation unit 206 determines that the first inverse transformation basis is the second predetermined basis based on the first basis selection signal decoded in step S707 of FIG. It is determined whether or not it matches the inverse transformation base. As the second predetermined inverse transform base, an inverse transform base corresponding to the second predetermined transform base used in the encoding device 100 is used.
  • the inverse transform unit 206 selects the second inverse transform base for the decoding target block (S607). ). For example, the inverse transform unit 206 selects the second inverse transform base based on the second base selection signal decoded in step S709 of FIG. The inverse transform unit 206 performs the second inverse transform on the inversely quantized coefficients of the decoding target block using the selected second inverse transform base (S608). The inverse transform unit 206 selects the first inverse transform base (S609).
  • the inverse transformation unit 206 selects the first inverse transformation basis based on the first basis selection signal decoded in step S707 of FIG.
  • the inverse transform unit 206 performs the first inverse transform on the coefficient obtained by the second inverse transform in step S608 using the selected first inverse transform base (S610), and performs inverse quantization and inverse transform. The process ends.
  • the inverse transform unit 206 indicates that the intra prediction mode of the decoding target block is the non-directional prediction mode. It is determined whether or not (S802).
  • the inverse transform unit 206 selects the second inverse transform base for the decoding target block (S803). For example, the inverse transform unit 206 selects the second inverse transform base based on the second base selection signal decoded in step S709 of FIG. The inverse transform unit 206 performs the second inverse transform on the inversely quantized coefficients of the decoding target block using the selected second inverse transform base (S804). The inverse transform unit 206 fixes the first inverse transform base to the first predetermined inverse transform base (S805). As the first predetermined inverse transform base, an inverse transform base corresponding to the first predetermined transform base used in the encoding apparatus 100 is used. The inverse transform unit 206 performs first inverse transform on the coefficient obtained by the second inverse transform in step S804 using the fixed first inverse transform base (S806), and performs inverse quantization and inverse transform. End the process.
  • the inverse transform unit 206 skips the second inverse transform base selection step (S803) and the second inverse transform step (S804). To do. That is, the inverse transform unit 206 fixes the first inverse transform base to the first predetermined inverse transform base without performing the second inverse transform (S805). The inverse transform unit 206 performs the first inverse transform on the coefficient inversely quantized in step S501 using the fixed first inverse transform base (S806), and ends the inverse quantization and inverse transform processing. .
  • the first transform base can be fixed according to the block size. Therefore, the load of the first conversion in the adaptive basis selection mode can be reduced.
  • the second conversion when inter prediction is used for an encoding target block, the second conversion is not performed, but the present invention is not limited to this. That is, when inter prediction is used for an encoding target block, the second transform may be performed on the first transform coefficient generated by the first transform. In this case, the second transform coefficient generated by the second transform is quantized.
  • the order of steps in the flowcharts of FIGS. 15 to 18 is not limited to the order described in FIGS. 15 to 18.
  • the signal encoding order may be another order defined in advance by a standard or the like.
  • a plurality of signals are encoded in the bitstream. These multiple signals may not be encoded in the bitstream. For example, the plurality of signals may be notified from the encoding device 100 to the decoding device 200 separately from the bit storm.
  • the positions of each of the plurality of signals (intra prediction mode signal, adaptive selection mode signal, first base selection signal, and second base selection signal) in the bit stream are not particularly limited.
  • the plurality of signals are encoded into at least one of the plurality of headers, for example.
  • a video parameter set, a sequence parameter set, a picture parameter set, and a slice header can be used as the plurality of headers.
  • a signal in a lower layer for example, a slice header
  • overwrites a signal in a higher layer for example, a picture parameter set).
  • each of the functional blocks can usually be realized by an MPU, a memory, and the like. Further, the processing by each functional block is usually realized by a program execution unit such as a processor reading and executing software (program) recorded on a recording medium such as a ROM. The software may be distributed by downloading or the like, or may be distributed by being recorded on a recording medium such as a semiconductor memory. Naturally, each functional block can be realized by hardware (dedicated circuit).
  • processing described in the embodiment and each modification may be realized by performing centralized processing using a single device (system), or realized by performing distributed processing using a plurality of devices. May be.
  • the number of processors that execute the program may be one or more. That is, centralized processing may be performed, or distributed processing may be performed.
  • the system includes an image encoding device using an image encoding method, an image decoding device using an image decoding method, and an image encoding / decoding device including both.
  • Other configurations in the system can be appropriately changed according to circumstances.
  • FIG. 19 is a diagram showing an overall configuration of a content supply system ex100 that implements a content distribution service.
  • the communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • devices such as a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, and a smartphone ex115 via the Internet ex101, the Internet service provider ex102 or the communication network ex104, and the base stations ex106 to ex110.
  • the content supply system ex100 may be connected by combining any of the above elements.
  • Each device may be directly or indirectly connected to each other via a telephone network or a short-range wireless communication without using the base stations ex106 to ex110 which are fixed wireless stations.
  • the streaming server ex103 is connected to each device such as a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, and a smartphone ex115 via the Internet ex101.
  • the streaming server ex103 is connected to a terminal in a hot spot in the airplane ex117 via the satellite ex116.
  • the streaming server ex103 may be directly connected to the communication network ex104 without going through the Internet ex101 or the Internet service provider ex102, or may be directly connected to the airplane ex117 without going through the satellite ex116.
  • the camera ex113 is a device that can shoot still images and moving images such as a digital camera.
  • the smartphone ex115 is a smartphone, a cellular phone, or a PHS (Personal Handyphone System) that is compatible with a mobile communication system generally called 2G, 3G, 3.9G, 4G, and 5G in the future.
  • a mobile communication system generally called 2G, 3G, 3.9G, 4G, and 5G in the future.
  • the home appliance ex118 is a device included in a refrigerator or a household fuel cell cogeneration system.
  • a terminal having a photographing function is connected to the streaming server ex103 through the base station ex106 or the like, thereby enabling live distribution or the like.
  • the terminal (computer ex111, game machine ex112, camera ex113, home appliance ex114, smartphone ex115, terminal in airplane ex117, etc.) is used for the above-described still image or video content captured by the user using the terminal.
  • the encoding process described in the embodiment and each modification is performed, and the video data obtained by the encoding and the sound data obtained by encoding the sound corresponding to the video are multiplexed, and the obtained data is transmitted to the streaming server ex103.
  • each terminal functions as an image encoding device according to an aspect of the present invention.
  • the streaming server ex103 streams the content data transmitted to the requested client.
  • the client is a computer or the like in the computer ex111, the game machine ex112, the camera ex113, the home appliance ex114, the smart phone ex115, or the airplane ex117 that can decode the encoded data.
  • Each device that has received the distributed data decrypts and reproduces the received data. That is, each device functions as an image decoding device according to an aspect of the present invention.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
  • the streaming server ex103 may be realized by a CDN (Contents Delivery Network), and content distribution may be realized by a network connecting a large number of edge servers and edge servers distributed all over the world.
  • CDN Contents Delivery Network
  • edge servers that are physically close to each other are dynamically allocated according to clients. Then, the content can be cached and distributed to the edge server, thereby reducing the delay.
  • the processing is distributed among multiple edge servers, the distribution subject is switched to another edge server, or the part of the network where the failure has occurred Since detouring can be continued, high-speed and stable distribution can be realized.
  • the captured data may be encoded at each terminal, may be performed on the server side, or may be shared with each other.
  • a processing loop is performed twice.
  • the first loop the complexity of the image or the code amount in units of frames or scenes is detected.
  • the second loop processing for maintaining the image quality and improving the coding efficiency is performed.
  • the terminal performs the first encoding process
  • the server receiving the content performs the second encoding process, thereby improving the quality and efficiency of the content while reducing the processing load on each terminal. it can.
  • the encoded data of the first time performed by the terminal can be received and reproduced by another terminal, enabling more flexible real-time distribution.
  • the camera ex113 or the like extracts a feature amount from an image, compresses data relating to the feature amount as metadata, and transmits the metadata to the server.
  • the server performs compression according to the meaning of the image, for example, by determining the importance of the object from the feature amount and switching the quantization accuracy.
  • the feature data is particularly effective for improving the accuracy and efficiency of motion vector prediction at the time of re-compression on the server.
  • simple coding such as VLC (variable length coding) may be performed at the terminal, and coding with a large processing load such as CABAC (context adaptive binary arithmetic coding) may be performed at the server.
  • a plurality of video data in which almost the same scene is captured by a plurality of terminals.
  • a GOP Group of Picture
  • a picture unit or a tile obtained by dividing a picture using a plurality of terminals that have performed shooting and other terminals and servers that have not performed shooting as necessary.
  • Distributed processing is performed by assigning encoding processing in units or the like. Thereby, delay can be reduced and real-time property can be realized.
  • the server may manage and / or instruct the video data captured by each terminal to refer to each other.
  • the encoded data from each terminal may be received by the server and the reference relationship may be changed among a plurality of data, or the picture itself may be corrected or replaced to be encoded again. This makes it possible to generate a stream with improved quality and efficiency of each piece of data.
  • the server may distribute the video data after performing transcoding to change the encoding method of the video data.
  • the server may convert the MPEG encoding system to the VP encoding. 264. It may be converted into H.265.
  • the encoding process can be performed by a terminal or one or more servers. Therefore, in the following, description such as “server” or “terminal” is used as the subject performing processing, but part or all of processing performed by the server may be performed by the terminal, or processing performed by the terminal may be performed. Some or all may be performed at the server. The same applies to the decoding process.
  • the server not only encodes a two-dimensional moving image, but also encodes a still image automatically based on a scene analysis of the moving image or at a time specified by the user and transmits it to the receiving terminal. Also good.
  • the server can acquire the relative positional relationship between the photographing terminals, the server obtains the three-dimensional shape of the scene based on not only the two-dimensional moving image but also the video obtained by photographing the same scene from different angles. Can be generated.
  • the server may separately encode the three-dimensional data generated by the point cloud or the like, and the video to be transmitted to the receiving terminal based on the result of recognizing or tracking the person or the object using the three-dimensional data.
  • the images may be selected or reconstructed from videos captured by a plurality of terminals.
  • the user can arbitrarily select each video corresponding to each photographing terminal and enjoy a scene, or can display a video of an arbitrary viewpoint from three-dimensional data reconstructed using a plurality of images or videos. You can also enjoy the clipped content.
  • sound is collected from a plurality of different angles, and the server may multiplex and transmit sound from a specific angle or space according to the video.
  • the server may create viewpoint images for the right eye and the left eye, respectively, and perform encoding that allows reference between each viewpoint video by Multi-View Coding (MVC) or the like. You may encode as another stream, without referring. At the time of decoding another stream, it is preferable to reproduce in synchronization with each other so that a virtual three-dimensional space is reproduced according to the viewpoint of the user.
  • MVC Multi-View Coding
  • the server superimposes virtual object information in the virtual space on the camera information in the real space based on the three-dimensional position or the movement of the user's viewpoint.
  • the decoding device may acquire or hold virtual object information and three-dimensional data, generate a two-dimensional image according to the movement of the user's viewpoint, and create superimposition data by connecting them smoothly.
  • the decoding device transmits the movement of the user's viewpoint to the server in addition to the request for the virtual object information, and the server creates superimposition data according to the movement of the viewpoint received from the three-dimensional data held in the server,
  • the superimposed data may be encoded and distributed to the decoding device.
  • the superimposed data has an ⁇ value indicating transparency in addition to RGB
  • the server sets the ⁇ value of a portion other than the object created from the three-dimensional data to 0 or the like, and the portion is transparent. May be encoded.
  • the server may generate data in which a RGB value of a predetermined value is set as the background, such as a chroma key, and the portion other than the object is set to the background color.
  • the decryption processing of the distributed data may be performed at each terminal as a client, may be performed on the server side, or may be performed in a shared manner.
  • a terminal may once send a reception request to the server, receive content corresponding to the request at another terminal, perform a decoding process, and transmit a decoded signal to a device having a display.
  • a part of a region such as a tile in which a picture is divided may be decoded and displayed on a viewer's personal terminal while receiving large-size image data on a TV or the like. Accordingly, it is possible to confirm at hand the area in which the person is responsible or the area to be confirmed in more detail while sharing the whole image.
  • access to encoded data on the network such as when the encoded data is cached in a server that can be accessed from the receiving terminal in a short time, or copied to the edge server in the content delivery service. It is also possible to switch the bit rate of received data based on ease.
  • the content switching will be described using a scalable stream that is compression-encoded by applying the moving image encoding method shown in the above embodiment and each modification shown in FIG.
  • the server may have a plurality of streams of the same content and different quality as individual streams, but the temporal / spatial scalable implementation realized by dividing into layers as shown in the figure.
  • the configuration may be such that the content is switched by utilizing the characteristics of the stream.
  • the decoding side decides which layer to decode according to internal factors such as performance and external factors such as the state of communication bandwidth, so that the decoding side can combine low-resolution content and high-resolution content. You can switch freely and decrypt. For example, when the user wants to continue watching the video that was viewed on the smartphone ex115 while moving on a device such as an Internet TV after returning home, the device only has to decode the same stream to a different layer, so the load on the server side Can be reduced.
  • the enhancement layer includes meta information based on image statistical information, etc., in addition to the configuration in which the picture is encoded for each layer and the enhancement layer exists above the base layer.
  • the decoding side may generate content with high image quality by super-resolution of the base layer picture based on the meta information.
  • Super-resolution may be either improvement of the SN ratio at the same resolution or enlargement of the resolution.
  • the meta information includes information for specifying a linear or non-linear filter coefficient used for super-resolution processing, or information for specifying a parameter value in filter processing, machine learning, or least square calculation used for super-resolution processing. .
  • the picture may be divided into tiles or the like according to the meaning of the object in the image, and the decoding side may select only a part of the region by selecting the tile to be decoded.
  • the decoding side can determine the position of the desired object based on the meta information. Can be identified and the tile containing the object can be determined.
  • the meta information is stored using a data storage structure different from the pixel data such as the SEI message in HEVC. This meta information indicates, for example, the position, size, or color of the main object.
  • meta information may be stored in units composed of a plurality of pictures, such as streams, sequences, or random access units.
  • the decoding side can acquire the time when the specific person appears in the video, etc., and can match the picture in which the object exists and the position of the object in the picture by combining with the information in units of pictures.
  • FIG. 22 is a diagram showing an example of a web page display screen on the computer ex111 or the like.
  • FIG. 23 is a diagram illustrating a display screen example of a web page on the smartphone ex115 or the like.
  • the web page may include a plurality of link images that are links to the image content, and the appearance differs depending on the browsing device. When a plurality of link images are visible on the screen, the display device until the user explicitly selects the link image, or until the link image approaches the center of the screen or the entire link image enters the screen.
  • the (decoding device) displays a still image or an I picture included in each content as a link image, displays a video like a gif animation with a plurality of still images or I pictures, or receives only a base layer to receive a video. Are decoded and displayed.
  • the display device When the link image is selected by the user, the display device decodes the base layer with the highest priority. If there is information indicating that the HTML constituting the web page is scalable content, the display device may decode up to the enhancement layer. Also, in order to ensure real-time properties, the display device only decodes forward reference pictures (I picture, P picture, forward reference only B picture) before being selected or when the communication band is very strict. In addition, the delay between the decoding time of the first picture and the display time (delay from the start of content decoding to the start of display) can be reduced by displaying. Further, the display device may intentionally ignore the reference relationship of pictures and roughly decode all B pictures and P pictures with forward reference, and perform normal decoding as the number of received pictures increases over time.
  • forward reference pictures I picture, P picture, forward reference only B picture
  • the receiving terminal when transmitting and receiving still image or video data such as two-dimensional or three-dimensional map information for automatic driving or driving support of a car, the receiving terminal adds meta data to image data belonging to one or more layers. Weather or construction information may also be received and decoded in association with each other. The meta information may belong to a layer or may be simply multiplexed with image data.
  • the receiving terminal since the car, drone, airplane, or the like including the receiving terminal moves, the receiving terminal transmits the position information of the receiving terminal at the time of the reception request, thereby seamless reception and decoding while switching the base stations ex106 to ex110. Can be realized.
  • the receiving terminal can dynamically switch how much meta-information is received or how much map information is updated according to the user's selection, the user's situation, or the communication band state. become.
  • the encoded information transmitted by the user can be received, decoded and reproduced in real time by the client.
  • the content supply system ex100 can perform not only high-quality and long-time content by a video distributor but also unicast or multicast distribution of low-quality and short-time content by an individual. Moreover, such personal contents are expected to increase in the future.
  • the server may perform the encoding process after performing the editing process. This can be realized, for example, with the following configuration.
  • the server After shooting, the server performs recognition processing such as shooting error, scene search, semantic analysis, and object detection from the original image or encoded data. Then, the server manually or automatically corrects out-of-focus or camera shake based on the recognition result, or selects a less important scene such as a scene whose brightness is lower than that of other pictures or is out of focus. Edit such as deleting, emphasizing the edge of an object, and changing the hue.
  • the server encodes the edited data based on the editing result. It is also known that if the shooting time is too long, the audience rating will decrease, and the server will move not only in the less important scenes as described above, but also in motion according to the shooting time. A scene with few images may be automatically clipped based on the image processing result. Alternatively, the server may generate and encode a digest based on the result of the semantic analysis of the scene.
  • the server may change and encode the face of the person in the periphery of the screen or the inside of the house into an unfocused image.
  • the server recognizes whether or not a face of a person different from the person registered in advance is shown in the encoding target image, and if so, performs processing such as applying a mosaic to the face part. May be.
  • the user designates a person or background area that the user wants to process an image from the viewpoint of copyright, etc., and the server replaces the designated area with another video or blurs the focus. It is also possible to perform such processing. If it is a person, the face image can be replaced while tracking the person in the moving image.
  • the decoding device first receives the base layer with the highest priority and performs decoding and reproduction, depending on the bandwidth.
  • the decoding device may receive the enhancement layer during this time, and may play back high-quality video including the enhancement layer when played back twice or more, such as when playback is looped.
  • a stream that is scalable in this way can provide an experience in which the stream becomes smarter and the image is improved gradually, although it is a rough moving picture when it is not selected or at the beginning of viewing.
  • the same experience can be provided even if the coarse stream played back the first time and the second stream coded with reference to the first video are configured as one stream. .
  • these encoding or decoding processes are generally processed in the LSI ex500 included in each terminal.
  • the LSI ex500 may be configured as a single chip or a plurality of chips.
  • moving image encoding or decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111 and the like, and encoding or decoding processing is performed using the software. Also good.
  • moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex500 included in the smartphone ex115.
  • the LSI ex500 may be configured to download and activate application software.
  • the terminal first determines whether the terminal is compatible with the content encoding method or has a specific service execution capability. If the terminal does not support the content encoding method or does not have the capability to execute a specific service, the terminal downloads a codec or application software, and then acquires and reproduces the content.
  • the digital broadcast system is not limited to at least the moving image encoding device (image encoding device) or the moving image decoding device (image decoding device) of the above embodiment and each modification.
  • One of the decoding devices) can be incorporated.
  • the unicasting of the content supply system ex100 is suitable for multicasting because it uses a satellite or the like to transmit and receive multiplexed data in which video and sound are multiplexed on broadcasting radio waves.
  • the same application is possible for the encoding process and the decoding process.
  • FIG. 24 is a diagram illustrating the smartphone ex115.
  • FIG. 25 is a diagram illustrating a configuration example of the smartphone ex115.
  • the smartphone ex115 receives the antenna ex450 for transmitting / receiving radio waves to / from the base station ex110, the camera unit ex465 capable of taking video and still images, the video captured by the camera unit ex465, and the antenna ex450.
  • a display unit ex458 for displaying data obtained by decoding the video or the like.
  • the smartphone ex115 further includes an operation unit ex466 that is a touch panel or the like, a voice output unit ex457 that is a speaker or the like for outputting voice or sound, a voice input unit ex456 that is a microphone or the like for inputting voice, and photographing.
  • Memory unit ex467 that can store encoded video or still image, recorded audio, received video or still image, encoded data such as mail, or decoded data, and a user, and network
  • An external memory may be used instead of the memory unit ex467.
  • a main control unit ex460 that comprehensively controls the display unit ex458, the operation unit ex466, and the like, a power supply circuit unit ex461, an operation input control unit ex462, a video signal processing unit ex455, a camera interface unit ex463, a display control unit ex459, a modulation / Demodulation unit ex452, multiplexing / demultiplexing unit ex453, audio signal processing unit ex454, slot unit ex464, and memory unit ex467 are connected via bus ex470.
  • the power supply circuit unit ex461 starts up the smartphone ex115 in an operable state by supplying power from the battery pack to each unit.
  • the smartphone ex115 performs processing such as calling and data communication based on the control of the main control unit ex460 having a CPU, a ROM, a RAM, and the like.
  • the voice signal picked up by the voice input unit ex456 is converted into a digital voice signal by the voice signal processing unit ex454, spread spectrum processing is performed by the modulation / demodulation unit ex452, and digital / analog conversion is performed by the transmission / reception unit ex451.
  • the data is transmitted via the antenna ex450.
  • the received data is amplified and subjected to frequency conversion processing and analog-digital conversion processing, spectrum despreading processing is performed by the modulation / demodulation unit ex452, and converted to analog audio signal by the audio signal processing unit ex454, and then this is output to the audio output unit ex457.
  • text, still image, or video data is sent to the main control unit ex460 via the operation input control unit ex462 by the operation of the operation unit ex466 of the main body unit, and transmission / reception processing is performed similarly.
  • the video signal processing unit ex455 uses the video signal stored in the memory unit ex467 or the video signal input from the camera unit ex465 as described in the above embodiment.
  • the video data is compressed and encoded by the moving image encoding method shown in each modification, and the encoded video data is sent to the multiplexing / demultiplexing unit ex453.
  • the audio signal processing unit ex454 encodes the audio signal picked up by the audio input unit ex456 while the camera unit ex465 captures a video or a still image, and sends the encoded audio data to the multiplexing / separating unit ex453. To do.
  • the multiplexing / demultiplexing unit ex453 multiplexes the encoded video data and the encoded audio data by a predetermined method, and the modulation / demodulation unit (modulation / demodulation circuit unit) ex452 and the modulation / demodulation unit ex451 perform modulation processing and conversion.
  • the data is processed and transmitted via the antenna ex450.
  • the multiplexing / demultiplexing unit ex453 performs multiplexing By separating the data, the multiplexed data is divided into a bit stream of video data and a bit stream of audio data, and the encoded video data is supplied to the video signal processing unit ex455 via the synchronization bus ex470. The converted audio data is supplied to the audio signal processing unit ex454.
  • the video signal processing unit ex455 decodes the video signal by a video decoding method corresponding to the video encoding method shown in the above embodiment and each modification, and from the display unit ex458 via the display control unit ex459, A video or still image included in the linked moving image file is displayed.
  • the audio signal processing unit ex454 decodes the audio signal, and the audio is output from the audio output unit ex457. Since real-time streaming is widespread, depending on the user's situation, there may be occasions where audio playback is not socially appropriate. Therefore, it is desirable that the initial value is a configuration in which only the video data is reproduced without reproducing the audio signal. Audio may be synchronized and played back only when the user performs an operation such as clicking on video data.
  • the smartphone ex115 has been described here as an example, in addition to a transmission / reception terminal having both an encoder and a decoder as a terminal, a transmission terminal having only an encoder and a reception having only a decoder There are three possible mounting formats: terminals.
  • terminals In the digital broadcasting system, it has been described as receiving or transmitting multiplexed data in which audio data or the like is multiplexed with video data.
  • multiplexed data includes character data related to video in addition to audio data. Multiplexing may be performed, and video data itself may be received or transmitted instead of multiplexed data.
  • the terminal often includes a GPU. Therefore, a configuration may be adopted in which a wide area is processed in a lump by utilizing the performance of the GPU by using a memory shared by the CPU and the GPU or a memory whose addresses are managed so as to be used in common. As a result, the encoding time can be shortened, real-time performance can be ensured, and low delay can be realized. In particular, it is efficient to perform motion search, deblocking filter, SAO (Sample Adaptive Offset), and transformation / quantization processing in batches in units of pictures or the like instead of the CPU.
  • SAO Sample Adaptive Offset
  • the present disclosure can be used for, for example, a television receiver, a digital video recorder, a car navigation, a mobile phone, a digital camera, or a digital video camera.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

ピクチャの符号化対象ブロックを符号化する符号化装置(100)は、プロセッサ及びメモリを備え、プロセッサはメモリを用いて、符号化対象ブロックにイントラ予測を用いるか否かを判定し、符号化対象ブロックにイントラ予測を用いると判定した場合、(i)第1の変換基底を用いて符号化対象ブロックの残差信号に第1の変換を行うことにより第1の変換係数を生成し、(ii-1)符号化対象ブロックのイントラ予測モードが所定モードであり、かつ、第1の変換基底が所定変換基底と異なる場合は、第1の変換係数を量子化し、(ii-2)符号化対象ブロックのイントラ予測モードが所定モードでない場合、又は、第1の変換基底が所定変換基底と一致する場合は、第2の変換基底を用いて第1の変換係数に第2の変換を行うことにより第2の変換係数を生成し、第2の変換係数を量子化する。

Description

符号化装置、符号化方法、復号装置及び復号方法
 本開示は、ブロック単位での画像/映像の符号化及び復号に関する。
 HEVC(High-Efficiency Video Coding)と称される映像符号化標準規格が、JCT-VC(Joint Collaborative Team on Video Coding)により標準化されている。
H.265(ISO/IEC 23008-2 HEVC(High Efficiency Video Coding))
 このような符号化及び復号技術では、圧縮効率の低下を抑えつつ処理負荷を軽減することが求められている。
 そこで、本開示は、圧縮効率の低下を抑制しつつ処理負荷の軽減を実現できる符号化装置、復号装置、符号化方法又は復号方法を提供する。
 本開示の一態様に係る符号化装置は、ピクチャの符号化対象ブロックを符号化する符号化装置であって、プロセッサ及びメモリを備え、前記プロセッサは前記メモリを用いて、前記符号化対象ブロックにイントラ予測を用いるか否かを判定し、前記符号化対象ブロックにイントラ予測を用いると判定した場合、(i)第1の変換基底を用いて前記符号化対象ブロックの残差信号に第1の変換を行うことにより第1の変換係数を生成し、(ii-1)前記符号化対象ブロックのイントラ予測モードが所定モードであり、かつ、前記第1の変換基底が所定変換基底と異なる場合は、前記第1の変換係数を量子化し、(ii-2)前記符号化対象ブロックのイントラ予測モードが前記所定モードでない場合、又は、前記第1の変換基底が前記所定変換基底と一致する場合は、第2の変換基底を用いて前記第1の変換係数に第2の変換を行うことにより第2の変換係数を生成し、前記第2の変換係数を量子化する。
 なお、これらの全般的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 本開示は、圧縮効率の低下を抑制しつつ処理負荷の軽減を実現できる符号化装置、復号装置、符号化方法又は復号方法を提供することができる。
図1は、実施の形態1に係る符号化装置の機能構成を示すブロック図である。 図2は、実施の形態1におけるブロック分割の一例を示す図である。 図3は、各変換タイプに対応する変換基底関数を示す表である。 図4Aは、ALFで用いられるフィルタの形状の一例を示す図である。 図4Bは、ALFで用いられるフィルタの形状の他の一例を示す図である。 図4Cは、ALFで用いられるフィルタの形状の他の一例を示す図である。 図5Aは、イントラ予測における67個のイントラ予測モードを示す図である。 図5Bは、OBMC処理による予測画像補正処理の概要を説明するためのフローチャートである。 図5Cは、OBMC処理による予測画像補正処理の概要を説明するための概念図である。 図5Dは、FRUCの一例を示す図である。 図6は、動き軌道に沿う2つのブロック間でのパターンマッチング(バイラテラルマッチング)を説明するための図である。 図7は、カレントピクチャ内のテンプレートと参照ピクチャ内のブロックとの間でのパターンマッチング(テンプレートマッチング)を説明するための図である。 図8は、等速直線運動を仮定したモデルを説明するための図である。 図9Aは、複数の隣接ブロックの動きベクトルに基づくサブブロック単位の動きベクトルの導出を説明するための図である。 図9Bは、マージモードによる動きベクトル導出処理の概要を説明するための図である。 図9Cは、DMVR処理の概要を説明するための概念図である。 図9Dは、LIC処理による輝度補正処理を用いた予測画像生成方法の概要を説明するための図である。 図10は、実施の形態1に係る復号装置の機能構成を示すブロック図である。 図11は、実施の形態2に係る符号化装置における変換及び量子化処理を示すフローチャートである。 図12は、実施の形態2に係る復号装置における逆量子化及び逆変換処理を示すフローチャートである。 図13は、実施の形態3に係る符号化装置における変換及び量子化処理を示すフローチャートである。 図14は、実施の形態3に係る復号装置における逆量子化及び逆変換処理を示すフローチャートである。 図15は、実施の形態4に係る符号化装置における変換及び量子化処理を示すフローチャートである。 図16は、実施の形態4に係る符号化装置における符号化処理を示すフローチャートである。 図17は、実施の形態4に係る復号装置における復号処理を示すフローチャートである。 図18は、実施の形態4に係る復号装置における逆量子化及び逆変換処理を示すフローチャートである。 図19は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。 図20は、スケーラブル符号化時の符号化構造の一例を示す図である。 図21は、スケーラブル符号化時の符号化構造の一例を示す図である。 図22は、webページの表示画面例を示す図である。 図23は、webページの表示画面例を示す図である。 図24は、スマートフォンの一例を示す図である。 図25は、スマートフォンの構成例を示すブロック図である。
 以下、実施の形態について図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 まず、後述する本開示の各態様で説明する処理および/または構成を適用可能な符号化装置および復号化装置の一例として、実施の形態1の概要を説明する。ただし、実施の形態1は、本開示の各態様で説明する処理および/または構成を適用可能な符号化装置および復号化装置の一例にすぎず、本開示の各態様で説明する処理および/または構成は、実施の形態1とは異なる符号化装置および復号化装置においても実施可能である。
 実施の形態1に対して本開示の各態様で説明する処理および/または構成を適用する場合、例えば以下のいずれかを行ってもよい。
 (1)実施の形態1の符号化装置または復号化装置に対して、当該符号化装置または復号化装置を構成する複数の構成要素のうち、本開示の各態様で説明する構成要素に対応する構成要素を、本開示の各態様で説明する構成要素に置き換えること
 (2)実施の形態1の符号化装置または復号化装置に対して、当該符号化装置または復号化装置を構成する複数の構成要素のうち一部の構成要素について機能または実施する処理の追加、置き換え、削除などの任意の変更を施した上で、本開示の各態様で説明する構成要素に対応する構成要素を、本開示の各態様で説明する構成要素に置き換えること
 (3)実施の形態1の符号化装置または復号化装置が実施する方法に対して、処理の追加、および/または当該方法に含まれる複数の処理のうちの一部の処理について置き換え、削除などの任意の変更を施した上で、本開示の各態様で説明する処理に対応する処理を、本開示の各態様で説明する処理に置き換えること
 (4)実施の形態1の符号化装置または復号化装置を構成する複数の構成要素のうちの一部の構成要素を、本開示の各態様で説明する構成要素、本開示の各態様で説明する構成要素が備える機能の一部を備える構成要素、または本開示の各態様で説明する構成要素が実施する処理の一部を実施する構成要素と組み合わせて実施すること
 (5)実施の形態1の符号化装置または復号化装置を構成する複数の構成要素のうちの一部の構成要素が備える機能の一部を備える構成要素、または実施の形態1の符号化装置または復号化装置を構成する複数の構成要素のうちの一部の構成要素が実施する処理の一部を実施する構成要素を、本開示の各態様で説明する構成要素、本開示の各態様で説明する構成要素が備える機能の一部を備える構成要素、または本開示の各態様で説明する構成要素が実施する処理の一部を実施する構成要素と組み合わせて実施すること
 (6)実施の形態1の符号化装置または復号化装置が実施する方法に対して、当該方法に含まれる複数の処理のうち、本開示の各態様で説明する処理に対応する処理を、本開示の各態様で説明する処理に置き換えること
 (7)実施の形態1の符号化装置または復号化装置が実施する方法に含まれる複数の処理のうちの一部の処理を、本開示の各態様で説明する処理と組み合わせて実施すること
 なお、本開示の各態様で説明する処理および/または構成の実施の仕方は、上記の例に限定されるものではない。例えば、実施の形態1において開示する動画像/画像符号化装置または動画像/画像復号化装置とは異なる目的で利用される装置において実施されてもよいし、各態様において説明した処理および/または構成を単独で実施してもよい。また、異なる態様において説明した処理および/または構成を組み合わせて実施してもよい。
 [符号化装置の概要]
 まず、実施の形態1に係る符号化装置の概要を説明する。図1は、実施の形態1に係る符号化装置100の機能構成を示すブロック図である。符号化装置100は、動画像/画像をブロック単位で符号化する動画像/画像符号化装置である。
 図1に示すように、符号化装置100は、画像をブロック単位で符号化する装置であって、分割部102と、減算部104と、変換部106と、量子化部108と、エントロピー符号化部110と、逆量子化部112と、逆変換部114と、加算部116と、ブロックメモリ118と、ループフィルタ部120と、フレームメモリ122と、イントラ予測部124と、インター予測部126と、予測制御部128と、を備える。
 符号化装置100は、例えば、汎用プロセッサ及びメモリにより実現される。この場合、メモリに格納されたソフトウェアプログラムがプロセッサにより実行されたときに、プロセッサは、分割部102、減算部104、変換部106、量子化部108、エントロピー符号化部110、逆量子化部112、逆変換部114、加算部116、ループフィルタ部120、イントラ予測部124、インター予測部126及び予測制御部128として機能する。また、符号化装置100は、分割部102、減算部104、変換部106、量子化部108、エントロピー符号化部110、逆量子化部112、逆変換部114、加算部116、ループフィルタ部120、イントラ予測部124、インター予測部126及び予測制御部128に対応する専用の1以上の電子回路として実現されてもよい。
 以下に、符号化装置100に含まれる各構成要素について説明する。
 [分割部]
 分割部102は、入力動画像に含まれる各ピクチャを複数のブロックに分割し、各ブロックを減算部104に出力する。例えば、分割部102は、まず、ピクチャを固定サイズ(例えば128x128)のブロックに分割する。この固定サイズのブロックは、符号化ツリーユニット(CTU)と呼ばれることがある。そして、分割部102は、再帰的な四分木(quadtree)及び/又は二分木(binary tree)ブロック分割に基づいて、固定サイズのブロックの各々を可変サイズ(例えば64x64以下)のブロックに分割する。この可変サイズのブロックは、符号化ユニット(CU)、予測ユニット(PU)あるいは変換ユニット(TU)と呼ばれることがある。なお、本実施の形態では、CU、PU及びTUは区別される必要はなく、ピクチャ内の一部又はすべてのブロックがCU、PU、TUの処理単位となってもよい。
 図2は、実施の形態1におけるブロック分割の一例を示す図である。図2において、実線は四分木ブロック分割によるブロック境界を表し、破線は二分木ブロック分割によるブロック境界を表す。
 ここでは、ブロック10は、128x128画素の正方形ブロック(128x128ブロック)である。この128x128ブロック10は、まず、4つの正方形の64x64ブロックに分割される(四分木ブロック分割)。
 左上の64x64ブロックは、さらに2つの矩形の32x64ブロックに垂直に分割され、左の32x64ブロックはさらに2つの矩形の16x64ブロックに垂直に分割される(二分木ブロック分割)。その結果、左上の64x64ブロックは、2つの16x64ブロック11、12と、32x64ブロック13とに分割される。
 右上の64x64ブロックは、2つの矩形の64x32ブロック14、15に水平に分割される(二分木ブロック分割)。
 左下の64x64ブロックは、4つの正方形の32x32ブロックに分割される(四分木ブロック分割)。4つの32x32ブロックのうち左上のブロック及び右下のブロックはさらに分割される。左上の32x32ブロックは、2つの矩形の16x32ブロックに垂直に分割され、右の16x32ブロックはさらに2つの16x16ブロックに水平に分割される(二分木ブロック分割)。右下の32x32ブロックは、2つの32x16ブロックに水平に分割される(二分木ブロック分割)。その結果、左下の64x64ブロックは、16x32ブロック16と、2つの16x16ブロック17、18と、2つの32x32ブロック19、20と、2つの32x16ブロック21、22とに分割される。
 右下の64x64ブロック23は分割されない。
 以上のように、図2では、ブロック10は、再帰的な四分木及び二分木ブロック分割に基づいて、13個の可変サイズのブロック11~23に分割される。このような分割は、QTBT(quad-tree plus binary tree)分割と呼ばれることがある。
 なお、図2では、1つのブロックが4つ又は2つのブロックに分割されていたが(四分木又は二分木ブロック分割)、分割はこれに限定されない。例えば、1つのブロックが3つのブロックに分割されてもよい(三分木ブロック分割)。このような三分木ブロック分割を含む分割は、MBT(multi type tree)分割と呼ばれることがある。
 [減算部]
 減算部104は、分割部102によって分割されたブロック単位で原信号(原サンプル)から予測信号(予測サンプル)を減算する。つまり、減算部104は、符号化対象ブロック(以下、カレントブロックという)の予測誤差(残差ともいう)を算出する。そして、減算部104は、算出された予測誤差を変換部106に出力する。
 原信号は、符号化装置100の入力信号であり、動画像を構成する各ピクチャの画像を表す信号(例えば輝度(luma)信号及び2つの色差(chroma)信号)である。以下において、画像を表す信号をサンプルともいうこともある。
 [変換部]
 変換部106は、空間領域の予測誤差を周波数領域の変換係数に変換し、変換係数を量子化部108に出力する。具体的には、変換部106は、例えば空間領域の予測誤差に対して予め定められた離散コサイン変換(DCT)又は離散サイン変換(DST)を行う。
 なお、変換部106は、複数の変換タイプの中から適応的に変換タイプを選択し、選択された変換タイプに対応する変換基底関数(transform basis function)を用いて、予測誤差を変換係数に変換してもよい。このような変換は、EMT(explicit multiple core transform)又はAMT(adaptive multiple transform)と呼ばれることがある。
 複数の変換タイプは、例えば、DCT-II、DCT-V、DCT-VIII、DST-I及びDST-VIIを含む。図3は、各変換タイプに対応する変換基底関数を示す表である。図3においてNは入力画素の数を示す。これらの複数の変換タイプの中からの変換タイプの選択は、例えば、予測の種類(イントラ予測及びインター予測)に依存してもよいし、イントラ予測モードに依存してもよい。
 このようなEMT又はAMTを適用するか否かを示す情報(例えばAMTフラグと呼ばれる)及び選択された変換タイプを示す情報は、CUレベルで信号化される。なお、これらの情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。
 また、変換部106は、変換係数(変換結果)を再変換してもよい。このような再変換は、AST(adaptive secondary transform)又はNSST(non-separable secondary transform)と呼ばれることがある。例えば、変換部106は、イントラ予測誤差に対応する変換係数のブロックに含まれるサブブロック(例えば4x4サブブロック)ごとに再変換を行う。NSSTを適用するか否かを示す情報及びNSSTに用いられる変換行列に関する情報は、CUレベルで信号化される。なお、これらの情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。
 ここで、Separableな変換とは、入力の次元の数だけ方向ごとに分離して複数回変換を行う方式であり、Non-Separableな変換とは、入力が多次元であった際に2つ以上の次元をまとめて1次元とみなして、まとめて変換を行う方式である。
 例えば、Non-Separableな変換の1例として、入力が4×4のブロックであった場合にはそれを16個の要素を持ったひとつの配列とみなし、その配列に対して16×16の変換行列で変換処理を行うようなものが挙げられる。
 また、同様に4×4の入力ブロックを16個の要素を持ったひとつの配列とみなした後に、その配列に対してGivens回転を複数回行うようなもの(Hypercube Givens Transform)もNon-Separableな変換の例である。
 [量子化部]
 量子化部108は、変換部106から出力された変換係数を量子化する。具体的には、量子化部108は、カレントブロックの変換係数を所定の走査順序で走査し、走査された変換係数に対応する量子化パラメータ(QP)に基づいて当該変換係数を量子化する。そして、量子化部108は、カレントブロックの量子化された変換係数(以下、量子化係数という)をエントロピー符号化部110及び逆量子化部112に出力する。
 所定の順序は、変換係数の量子化/逆量子化のための順序である。例えば、所定の走査順序は、周波数の昇順(低周波から高周波の順)又は降順(高周波から低周波の順)で定義される。
 量子化パラメータとは、量子化ステップ(量子化幅)を定義するパラメータである。例えば、量子化パラメータの値が増加すれば量子化ステップも増加する。つまり、量子化パラメータの値が増加すれば量子化誤差が増大する。
 [エントロピー符号化部]
 エントロピー符号化部110は、量子化部108から入力である量子化係数を可変長符号化することにより符号化信号(符号化ビットストリーム)を生成する。具体的には、エントロピー符号化部110は、例えば、量子化係数を二値化し、二値信号を算術符号化する。
 [逆量子化部]
 逆量子化部112は、量子化部108からの入力である量子化係数を逆量子化する。具体的には、逆量子化部112は、カレントブロックの量子化係数を所定の走査順序で逆量子化する。そして、逆量子化部112は、カレントブロックの逆量子化された変換係数を逆変換部114に出力する。
 [逆変換部]
 逆変換部114は、逆量子化部112からの入力である変換係数を逆変換することにより予測誤差を復元する。具体的には、逆変換部114は、変換係数に対して、変換部106による変換に対応する逆変換を行うことにより、カレントブロックの予測誤差を復元する。そして、逆変換部114は、復元された予測誤差を加算部116に出力する。
 なお、復元された予測誤差は、量子化により情報が失われているので、減算部104が算出した予測誤差と一致しない。すなわち、復元された予測誤差には、量子化誤差が含まれている。
 [加算部]
 加算部116は、逆変換部114からの入力である予測誤差と予測制御部128からの入力である予測サンプルとを加算することによりカレントブロックを再構成する。そして、加算部116は、再構成されたブロックをブロックメモリ118及びループフィルタ部120に出力する。再構成ブロックは、ローカル復号ブロックと呼ばれることもある。
 [ブロックメモリ]
 ブロックメモリ118は、イントラ予測で参照されるブロックであって符号化対象ピクチャ(以下、カレントピクチャという)内のブロックを格納するための記憶部である。具体的には、ブロックメモリ118は、加算部116から出力された再構成ブロックを格納する。
 [ループフィルタ部]
 ループフィルタ部120は、加算部116によって再構成されたブロックにループフィルタを施し、フィルタされた再構成ブロックをフレームメモリ122に出力する。ループフィルタとは、符号化ループ内で用いられるフィルタ(インループフィルタ)であり、例えば、デブロッキング・フィルタ(DF)、サンプルアダプティブオフセット(SAO)及びアダプティブループフィルタ(ALF)などを含む。
 ALFでは、符号化歪みを除去するための最小二乗誤差フィルタが適用され、例えばカレントブロック内の2x2サブブロックごとに、局所的な勾配(gradient)の方向及び活性度(activity)に基づいて複数のフィルタの中から選択された1つのフィルタが適用される。
 具体的には、まず、サブブロック(例えば2x2サブブロック)が複数のクラス(例えば15又は25クラス)に分類される。サブブロックの分類は、勾配の方向及び活性度に基づいて行われる。例えば、勾配の方向値D(例えば0~2又は0~4)と勾配の活性値A(例えば0~4)とを用いて分類値C(例えばC=5D+A)が算出される。そして、分類値Cに基づいて、サブブロックが複数のクラス(例えば15又は25クラス)に分類される。
 勾配の方向値Dは、例えば、複数の方向(例えば水平、垂直及び2つの対角方向)の勾配を比較することにより導出される。また、勾配の活性値Aは、例えば、複数の方向の勾配を加算し、加算結果を量子化することにより導出される。
 このような分類の結果に基づいて、複数のフィルタの中からサブブロックのためのフィルタが決定される。
 ALFで用いられるフィルタの形状としては例えば円対称形状が利用される。図4A~図4Cは、ALFで用いられるフィルタの形状の複数の例を示す図である。図4Aは、5x5ダイヤモンド形状フィルタを示し、図4Bは、7x7ダイヤモンド形状フィルタを示し、図4Cは、9x9ダイヤモンド形状フィルタを示す。フィルタの形状を示す情報は、ピクチャレベルで信号化される。なお、フィルタの形状を示す情報の信号化は、ピクチャレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、スライスレベル、タイルレベル、CTUレベル又はCUレベル)であってもよい。
 ALFのオン/オフは、例えば、ピクチャレベル又はCUレベルで決定される。例えば、輝度についてはCUレベルでALFを適用するか否かが決定され、色差についてはピクチャレベルでALFを適用するか否かが決定される。ALFのオン/オフを示す情報は、ピクチャレベル又はCUレベルで信号化される。なお、ALFのオン/オフを示す情報の信号化は、ピクチャレベル又はCUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。
 選択可能な複数のフィルタ(例えば15又は25までのフィルタ)の係数セットは、ピクチャレベルで信号化される。なお、係数セットの信号化は、ピクチャレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、スライスレベル、タイルレベル、CTUレベル、CUレベル又はサブブロックレベル)であってもよい。
 [フレームメモリ]
 フレームメモリ122は、インター予測に用いられる参照ピクチャを格納するための記憶部であり、フレームバッファと呼ばれることもある。具体的には、フレームメモリ122は、ループフィルタ部120によってフィルタされた再構成ブロックを格納する。
 [イントラ予測部]
 イントラ予測部124は、ブロックメモリ118に格納されたカレントピクチャ内のブロックを参照してカレントブロックのイントラ予測(画面内予測ともいう)を行うことで、予測信号(イントラ予測信号)を生成する。具体的には、イントラ予測部124は、カレントブロックに隣接するブロックのサンプル(例えば輝度値、色差値)を参照してイントラ予測を行うことでイントラ予測信号を生成し、イントラ予測信号を予測制御部128に出力する。
 例えば、イントラ予測部124は、予め規定された複数のイントラ予測モードのうちの1つを用いてイントラ予測を行う。複数のイントラ予測モードは、1以上の非方向性予測モードと、複数の方向性予測モードと、を含む。
 1以上の非方向性予測モードは、例えばH.265/HEVC(High-Efficiency Video Coding)規格(非特許文献1)で規定されたPlanar予測モード及びDC予測モードを含む。
 複数の方向性予測モードは、例えばH.265/HEVC規格で規定された33方向の予測モードを含む。なお、複数の方向性予測モードは、33方向に加えてさらに32方向の予測モード(合計で65個の方向性予測モード)を含んでもよい。図5Aは、イントラ予測における67個のイントラ予測モード(2個の非方向性予測モード及び65個の方向性予測モード)を示す図である。実線矢印は、H.265/HEVC規格で規定された33方向を表し、破線矢印は、追加された32方向を表す。
 なお、色差ブロックのイントラ予測において、輝度ブロックが参照されてもよい。つまり、カレントブロックの輝度成分に基づいて、カレントブロックの色差成分が予測されてもよい。このようなイントラ予測は、CCLM(cross-component linear model)予測と呼ばれることがある。このような輝度ブロックを参照する色差ブロックのイントラ予測モード(例えばCCLMモードと呼ばれる)は、色差ブロックのイントラ予測モードの1つとして加えられてもよい。
 イントラ予測部124は、水平/垂直方向の参照画素の勾配に基づいてイントラ予測後の画素値を補正してもよい。このような補正をともなうイントラ予測は、PDPC(position dependent intra prediction combination)と呼ばれることがある。PDPCの適用の有無を示す情報(例えばPDPCフラグと呼ばれる)は、例えばCUレベルで信号化される。なお、この情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。
 [インター予測部]
 インター予測部126は、フレームメモリ122に格納された参照ピクチャであってカレントピクチャとは異なる参照ピクチャを参照してカレントブロックのインター予測(画面間予測ともいう)を行うことで、予測信号(インター予測信号)を生成する。インター予測は、カレントブロック又はカレントブロック内のサブブロック(例えば4x4ブロック)の単位で行われる。例えば、インター予測部126は、カレントブロック又はサブブロックについて参照ピクチャ内で動き探索(motion estimation)を行う。そして、インター予測部126は、動き探索により得られた動き情報(例えば動きベクトル)を用いて動き補償を行うことでカレントブロック又はサブブロックのインター予測信号を生成する。そして、インター予測部126は、生成されたインター予測信号を予測制御部128に出力する。
 動き補償に用いられた動き情報は信号化される。動きベクトルの信号化には、予測動きベクトル(motion vector predictor)が用いられてもよい。つまり、動きベクトルと予測動きベクトルとの間の差分が信号化されてもよい。
 なお、動き探索により得られたカレントブロックの動き情報だけでなく、隣接ブロックの動き情報も用いて、インター予測信号が生成されてもよい。具体的には、動き探索により得られた動き情報に基づく予測信号と、隣接ブロックの動き情報に基づく予測信号と、を重み付け加算することにより、カレントブロック内のサブブロック単位でインター予測信号が生成されてもよい。このようなインター予測(動き補償)は、OBMC(overlapped block motion compensation)と呼ばれることがある。
 このようなOBMCモードでは、OBMCのためのサブブロックのサイズを示す情報(例えばOBMCブロックサイズと呼ばれる)は、シーケンスレベルで信号化される。また、OBMCモードを適用するか否かを示す情報(例えばOBMCフラグと呼ばれる)は、CUレベルで信号化される。なお、これらの情報の信号化のレベルは、シーケンスレベル及びCUレベルに限定される必要はなく、他のレベル(例えばピクチャレベル、スライスレベル、タイルレベル、CTUレベル又はサブブロックレベル)であってもよい。
 OBMCモードについて、より具体的に説明する。図5B及び図5Cは、OBMC処理による予測画像補正処理の概要を説明するためのフローチャート及び概念図である。
 まず、符号化対象ブロックに割り当てられた動きベクトル(MV)を用いて通常の動き補償による予測画像(Pred)を取得する。
 次に、符号化済みの左隣接ブロックの動きベクトル(MV_L)を符号化対象ブロックに適用して予測画像(Pred_L)を取得し、前記予測画像とPred_Lとを重みを付けて重ね合わせることで予測画像の1回目の補正を行う。
 同様に、符号化済みの上隣接ブロックの動きベクトル(MV_U)を符号化対象ブロックに適用して予測画像(Pred_U)を取得し、前記1回目の補正を行った予測画像とPred_Uとを重みを付けて重ね合わせることで予測画像の2回目の補正を行い、それを最終的な予測画像とする。
 なお、ここでは左隣接ブロックと上隣接ブロックを用いた2段階の補正の方法を説明したが、右隣接ブロックや下隣接ブロックを用いて2段階よりも多い回数の補正を行う構成とすることも可能である。
 なお、重ね合わせを行う領域はブロック全体の画素領域ではなく、ブロック境界近傍の一部の領域のみであってもよい。
 なお、ここでは1枚の参照ピクチャからの予測画像補正処理について説明したが、複数枚の参照ピクチャから予測画像を補正する場合も同様であり、各々の参照ピクチャから補正した予測画像を取得した後に、得られた予測画像をさらに重ね合わせることで最終的な予測画像とする。
 なお、前記処理対象ブロックは、予測ブロック単位であっても、予測ブロックをさらに分割したサブブロック単位であってもよい。
 OBMC処理を適用するかどうかの判定の方法として、例えば、OBMC処理を適用するかどうかを示す信号であるobmc_flagを用いる方法がある。具体的な一例としては、符号化装置において、符号化対象ブロックが動きの複雑な領域に属しているかどうかを判定し、動きの複雑な領域に属している場合はobmc_flagとして値1を設定してOBMC処理を適用して符号化を行い、動きの複雑な領域に属していない場合はobmc_flagとして値0を設定してOBMC処理を適用せずに符号化を行う。一方、復号化装置では、ストリームに記述されたobmc_flagを復号化するとことで、その値に応じてOBMC処理を適用するかどうかを切替えて復号化を行う。
 なお、動き情報は信号化されずに、復号装置側で導出されてもよい。例えば、H.265/HEVC規格で規定されたマージモードが用いられてもよい。また例えば、復号装置側で動き探索を行うことにより動き情報が導出されてもよい。この場合、カレントブロックの画素値を用いずに動き探索が行われる。
 ここで、復号装置側で動き探索を行うモードについて説明する。この復号装置側で動き探索を行うモードは、PMMVD(pattern matched motion vector derivation)モード又はFRUC(frame rate up-conversion)モードと呼ばれることがある。
 FRUC処理の一例を図5Dに示す。まず、カレントブロックに空間的又は時間的に隣接する符号化済みブロックの動きベクトルを参照して、各々が予測動きベクトルを有する複数の候補のリスト(マージリストと共通であってもよい)が生成される。次に、候補リストに登録されている複数の候補MVの中からベスト候補MVを選択する。例えば、候補リストに含まれる各候補の評価値が算出され、評価値に基づいて1つの候補が選択される。
 そして、選択された候補の動きベクトルに基づいて、カレントブロックのための動きベクトルが導出される。具体的には、例えば、選択された候補の動きベクトル(ベスト候補MV)がそのままカレントブロックのための動きベクトルとして導出される。また例えば、選択された候補の動きベクトルに対応する参照ピクチャ内の位置の周辺領域において、パターンマッチングを行うことにより、カレントブロックのための動きベクトルが導出されてもよい。すなわち、ベスト候補MVの周辺の領域に対して同様の方法で探索を行い、さらに評価値が良い値となるMVがあった場合は、ベスト候補MVを前記MVに更新して、それをカレントブロックの最終的なMVとしてもよい。なお、当該処理を実施しない構成とすることも可能である。
 サブブロック単位で処理を行う場合も全く同様の処理としてもよい。
 なお、評価値は、動きベクトルに対応する参照ピクチャ内の領域と、所定の領域との間のパターンマッチングによって再構成画像の差分値を求めることにより算出される。なお、差分値に加えてそれ以外の情報を用いて評価値を算出してもよい。
 パターンマッチングとしては、第1パターンマッチング又は第2パターンマッチングが用いられる。第1パターンマッチング及び第2パターンマッチングは、それぞれ、バイラテラルマッチング(bilateral matching)及びテンプレートマッチング(template matching)と呼ばれることがある。
 第1パターンマッチングでは、異なる2つの参照ピクチャ内の2つのブロックであってカレントブロックの動き軌道(motion trajectory)に沿う2つのブロックの間でパターンマッチングが行われる。したがって、第1パターンマッチングでは、上述した候補の評価値の算出のための所定の領域として、カレントブロックの動き軌道に沿う他の参照ピクチャ内の領域が用いられる。
 図6は、動き軌道に沿う2つのブロック間でのパターンマッチング(バイラテラルマッチング)の一例を説明するための図である。図6に示すように、第1パターンマッチングでは、カレントブロック(Cur block)の動き軌道に沿う2つのブロックであって異なる2つの参照ピクチャ(Ref0、Ref1)内の2つのブロックのペアの中で最もマッチするペアを探索することにより2つの動きベクトル(MV0、MV1)が導出される。具体的には、カレントブロックに対して、候補MVで指定された第1の符号化済み参照ピクチャ(Ref0)内の指定位置における再構成画像と、前記候補MVを表示時間間隔でスケーリングした対称MVで指定された第2の符号化済み参照ピクチャ(Ref1)内の指定位置における再構成画像との差分を導出し、得られた差分値を用いて評価値を算出する。複数の候補MVの中で最も評価値が良い値となる候補MVを最終MVとして選択するとよい。
 連続的な動き軌道の仮定の下では、2つの参照ブロックを指し示す動きベクトル(MV0、MV1)は、カレントピクチャ(Cur Pic)と2つの参照ピクチャ(Ref0、Ref1)との間の時間的な距離(TD0、TD1)に対して比例する。例えば、カレントピクチャが時間的に2つの参照ピクチャの間に位置し、カレントピクチャから2つの参照ピクチャへの時間的な距離が等しい場合、第1パターンマッチングでは、鏡映対称な双方向の動きベクトルが導出される。
 第2パターンマッチングでは、カレントピクチャ内のテンプレート(カレントピクチャ内でカレントブロックに隣接するブロック(例えば上及び/又は左隣接ブロック))と参照ピクチャ内のブロックとの間でパターンマッチングが行われる。したがって、第2パターンマッチングでは、上述した候補の評価値の算出のための所定の領域として、カレントピクチャ内のカレントブロックに隣接するブロックが用いられる。
 図7は、カレントピクチャ内のテンプレートと参照ピクチャ内のブロックとの間でのパターンマッチング(テンプレートマッチング)の一例を説明するための図である。図7に示すように、第2パターンマッチングでは、カレントピクチャ(Cur Pic)内でカレントブロック(Cur block)に隣接するブロックと最もマッチするブロックを参照ピクチャ(Ref0)内で探索することによりカレントブロックの動きベクトルが導出される。具体的には、カレントブロックに対して、左隣接および上隣接の両方もしくはどちらか一方の符号化済み領域の再構成画像と、候補MVで指定された符号化済み参照ピクチャ(Ref0)内の同等位置における再構成画像との差分を導出し、得られた差分値を用いて評価値を算出し、複数の候補MVの中で最も評価値が良い値となる候補MVをベスト候補MVとして選択するとよい。
 このようなFRUCモードを適用するか否かを示す情報(例えばFRUCフラグと呼ばれる)は、CUレベルで信号化される。また、FRUCモードが適用される場合(例えばFRUCフラグが真の場合)、パターンマッチングの方法(第1パターンマッチング又は第2パターンマッチング)を示す情報(例えばFRUCモードフラグと呼ばれる)がCUレベルで信号化される。なお、これらの情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル、CTUレベル又はサブブロックレベル)であってもよい。
 ここで、等速直線運動を仮定したモデルに基づいて動きベクトルを導出するモードについて説明する。このモードは、BIO(bi-directional optical flow)モードと呼ばれることがある。
 図8は、等速直線運動を仮定したモデルを説明するための図である。図8において、(v,v)は、速度ベクトルを示し、τ、τは、それぞれ、カレントピクチャ(Cur Pic)と2つの参照ピクチャ(Ref,Ref)との間の時間的な距離を示す。(MVx,MVy)は、参照ピクチャRefに対応する動きベクトルを示し、(MVx、MVy)は、参照ピクチャRefに対応する動きベクトルを示す。
 このとき速度ベクトル(v,v)の等速直線運動の仮定の下では、(MVx,MVy)及び(MVx,MVy)は、それぞれ、(vτ,vτ)及び(-vτ,-vτ)と表され、以下のオプティカルフロー等式(1)が成り立つ。
Figure JPOXMLDOC01-appb-M000001
 ここで、I(k)は、動き補償後の参照画像k(k=0,1)の輝度値を示す。このオプティカルフロー等式は、(i)輝度値の時間微分と、(ii)水平方向の速度及び参照画像の空間勾配の水平成分の積と、(iii)垂直方向の速度及び参照画像の空間勾配の垂直成分の積と、の和が、ゼロと等しいことを示す。このオプティカルフロー等式とエルミート補間(Hermite interpolation)との組み合わせに基づいて、マージリスト等から得られるブロック単位の動きベクトルが画素単位で補正される。
 なお、等速直線運動を仮定したモデルに基づく動きベクトルの導出とは異なる方法で、復号装置側で動きベクトルが導出されてもよい。例えば、複数の隣接ブロックの動きベクトルに基づいてサブブロック単位で動きベクトルが導出されてもよい。
 ここで、複数の隣接ブロックの動きベクトルに基づいてサブブロック単位で動きベクトルを導出するモードについて説明する。このモードは、アフィン動き補償予測(affine motion compensation prediction)モードと呼ばれることがある。
 図9Aは、複数の隣接ブロックの動きベクトルに基づくサブブロック単位の動きベクトルの導出を説明するための図である。図9Aにおいて、カレントブロックは、16の4x4サブブロックを含む。ここでは、隣接ブロックの動きベクトルに基づいてカレントブロックの左上角制御ポイントの動きベクトルvが導出され、隣接サブブロックの動きベクトルに基づいてカレントブロックの右上角制御ポイントの動きベクトルvが導出される。そして、2つの動きベクトルv及びvを用いて、以下の式(2)により、カレントブロック内の各サブブロックの動きベクトル(v,v)が導出される。
Figure JPOXMLDOC01-appb-M000002
 ここで、x及びyは、それぞれ、サブブロックの水平位置及び垂直位置を示し、wは、予め定められた重み係数を示す。
 このようなアフィン動き補償予測モードでは、左上及び右上角制御ポイントの動きベクトルの導出方法が異なるいくつかのモードを含んでもよい。このようなアフィン動き補償予測モードを示す情報(例えばアフィンフラグと呼ばれる)は、CUレベルで信号化される。なお、このアフィン動き補償予測モードを示す情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル、CTUレベル又はサブブロックレベル)であってもよい。
 [予測制御部]
 予測制御部128は、イントラ予測信号及びインター予測信号のいずれかを選択し、選択した信号を予測信号として減算部104及び加算部116に出力する。
 ここで、マージモードにより符号化対象ピクチャの動きベクトルを導出する例を説明する。図9Bは、マージモードによる動きベクトル導出処理の概要を説明するための図である。
 まず、予測MVの候補を登録した予測MVリストを生成する。予測MVの候補としては、符号化対象ブロックの空間的に周辺に位置する複数の符号化済みブロックが持つMVである空間隣接予測MV、符号化済み参照ピクチャにおける符号化対象ブロックの位置を投影した近辺のブロックが持つMVである時間隣接予測MV、空間隣接予測MVと時間隣接予測MVのMV値を組合わせて生成したMVである結合予測MV、および値がゼロのMVであるゼロ予測MV等がある。
 次に、予測MVリストに登録されている複数の予測MVの中から1つの予測MVを選択することで、符号化対象ブロックのMVとして決定する。
 さらに可変長符号化部では、どの予測MVを選択したかを示す信号であるmerge_idxをストリームに記述して符号化する。
 なお、図9Bで説明した予測MVリストに登録する予測MVは一例であり、図中の個数とは異なる個数であったり、図中の予測MVの一部の種類を含まない構成であったり、図中の予測MVの種類以外の予測MVを追加した構成であったりしてもよい。
 なお、マージモードにより導出した符号化対象ブロックのMVを用いて、後述するDMVR処理を行うことによって最終的なMVを決定してもよい。
 ここで、DMVR処理を用いてMVを決定する例について説明する。
 図9Cは、DMVR処理の概要を説明するための概念図である。
 まず、処理対象ブロックに設定された最適MVPを候補MVとして、前記候補MVに従って、L0方向の処理済みピクチャである第1参照ピクチャ、およびL1方向の処理済みピクチャである第2参照ピクチャから参照画素をそれぞれ取得し、各参照画素の平均をとることでテンプレートを生成する。
 次に、前記テンプレートを用いて、第1参照ピクチャおよび第2参照ピクチャの候補MVの周辺領域をそれぞれ探索し、最もコストが最小となるMVを最終的なMVとして決定する。なお、コスト値はテンプレートの各画素値と探索領域の各画素値との差分値およびMV値等を用いて算出する。
 なお、符号化装置および復号化装置では、ここで説明した処理の概要は基本的に共通である。
 なお、ここで説明した処理そのものでなくても、候補MVの周辺を探索して最終的なMVを導出することができる処理であれば、他の処理を用いてもよい。
 ここで、LIC処理を用いて予測画像を生成するモードについて説明する。
 図9Dは、LIC処理による輝度補正処理を用いた予測画像生成方法の概要を説明するための図である。
 まず、符号化済みピクチャである参照ピクチャから符号化対象ブロックに対応する参照画像を取得するためのMVを導出する。
 次に、符号化対象ブロックに対して、左隣接および上隣接の符号化済み周辺参照領域の輝度画素値と、MVで指定された参照ピクチャ内の同等位置における輝度画素値とを用いて、参照ピクチャと符号化対象ピクチャとで輝度値がどのように変化したかを示す情報を抽出して輝度補正パラメータを算出する。
 MVで指定された参照ピクチャ内の参照画像に対して前記輝度補正パラメータを用いて輝度補正処理を行うことで、符号化対象ブロックに対する予測画像を生成する。
 なお、図9Dにおける前記周辺参照領域の形状は一例であり、これ以外の形状を用いてもよい。
 また、ここでは1枚の参照ピクチャから予測画像を生成する処理について説明したが、複数枚の参照ピクチャから予測画像を生成する場合も同様であり、各々の参照ピクチャから取得した参照画像に同様の方法で輝度補正処理を行ってから予測画像を生成する。
 LIC処理を適用するかどうかの判定の方法として、例えば、LIC処理を適用するかどうかを示す信号であるlic_flagを用いる方法がある。具体的な一例としては、符号化装置において、符号化対象ブロックが輝度変化が発生している領域に属しているかどうかを判定し、輝度変化が発生している領域に属している場合はlic_flagとして値1を設定してLIC処理を適用して符号化を行い、輝度変化が発生している領域に属していない場合はlic_flagとして値0を設定してLIC処理を適用せずに符号化を行う。一方、復号化装置では、ストリームに記述されたlic_flagを復号化するとことで、その値に応じてLIC処理を適用するかどうかを切替えて復号化を行う。
 LIC処理を適用するかどうかの判定の別の方法として、例えば、周辺ブロックでLIC処理を適用したかどうかに従って判定する方法もある。具体的な一例としては、符号化対象ブロックがマージモードであった場合、マージモード処理におけるMVの導出の際に選択した周辺の符号化済みブロックがLIC処理を適用して符号化したかどうかを判定し、その結果に応じてLIC処理を適用するかどうかを切替えて符号化を行う。なお、この例の場合、復号化における処理も全く同様となる。
 [復号装置の概要]
 次に、上記の符号化装置100から出力された符号化信号(符号化ビットストリーム)を復号可能な復号装置の概要について説明する。図10は、実施の形態1に係る復号装置200の機能構成を示すブロック図である。復号装置200は、動画像/画像をブロック単位で復号する動画像/画像復号装置である。
 図10に示すように、復号装置200は、エントロピー復号部202と、逆量子化部204と、逆変換部206と、加算部208と、ブロックメモリ210と、ループフィルタ部212と、フレームメモリ214と、イントラ予測部216と、インター予測部218と、予測制御部220と、を備える。
 復号装置200は、例えば、汎用プロセッサ及びメモリにより実現される。この場合、メモリに格納されたソフトウェアプログラムがプロセッサにより実行されたときに、プロセッサは、エントロピー復号部202、逆量子化部204、逆変換部206、加算部208、ループフィルタ部212、イントラ予測部216、インター予測部218及び予測制御部220として機能する。また、復号装置200は、エントロピー復号部202、逆量子化部204、逆変換部206、加算部208、ループフィルタ部212、イントラ予測部216、インター予測部218及び予測制御部220に対応する専用の1以上の電子回路として実現されてもよい。
 以下に、復号装置200に含まれる各構成要素について説明する。
 [エントロピー復号部]
 エントロピー復号部202は、符号化ビットストリームをエントロピー復号する。具体的には、エントロピー復号部202は、例えば、符号化ビットストリームから二値信号に算術復号する。そして、エントロピー復号部202は、二値信号を多値化(debinarize)する。これにより、エントロピー復号部202は、ブロック単位で量子化係数を逆量子化部204に出力する。
 [逆量子化部]
 逆量子化部204は、エントロピー復号部202からの入力である復号対象ブロック(以下、カレントブロックという)の量子化係数を逆量子化する。具体的には、逆量子化部204は、カレントブロックの量子化係数の各々について、当該量子化係数に対応する量子化パラメータに基づいて当該量子化係数を逆量子化する。そして、逆量子化部204は、カレントブロックの逆量子化された量子化係数(つまり変換係数)を逆変換部206に出力する。
 [逆変換部]
 逆変換部206は、逆量子化部204からの入力である変換係数を逆変換することにより予測誤差を復元する。
 例えば符号化ビットストリームから読み解かれた情報がEMT又はAMTを適用することを示す場合(例えばAMTフラグが真)、逆変換部206は、読み解かれた変換タイプを示す情報に基づいてカレントブロックの変換係数を逆変換する。
 また例えば、符号化ビットストリームから読み解かれた情報がNSSTを適用することを示す場合、逆変換部206は、変換係数に逆再変換を適用する。
 [加算部]
 加算部208は、逆変換部206からの入力である予測誤差と予測制御部220からの入力である予測サンプルとを加算することによりカレントブロックを再構成する。そして、加算部208は、再構成されたブロックをブロックメモリ210及びループフィルタ部212に出力する。
 [ブロックメモリ]
 ブロックメモリ210は、イントラ予測で参照されるブロックであって復号対象ピクチャ(以下、カレントピクチャという)内のブロックを格納するための記憶部である。具体的には、ブロックメモリ210は、加算部208から出力された再構成ブロックを格納する。
 [ループフィルタ部]
 ループフィルタ部212は、加算部208によって再構成されたブロックにループフィルタを施し、フィルタされた再構成ブロックをフレームメモリ214及び表示装置等に出力する。
 符号化ビットストリームから読み解かれたALFのオン/オフを示す情報がALFのオンを示す場合、局所的な勾配の方向及び活性度に基づいて複数のフィルタの中から1つのフィルタが選択され、選択されたフィルタが再構成ブロックに適用される。
 [フレームメモリ]
 フレームメモリ214は、インター予測に用いられる参照ピクチャを格納するための記憶部であり、フレームバッファと呼ばれることもある。具体的には、フレームメモリ214は、ループフィルタ部212によってフィルタされた再構成ブロックを格納する。
 [イントラ予測部]
 イントラ予測部216は、符号化ビットストリームから読み解かれたイントラ予測モードに基づいて、ブロックメモリ210に格納されたカレントピクチャ内のブロックを参照してイントラ予測を行うことで、予測信号(イントラ予測信号)を生成する。具体的には、イントラ予測部216は、カレントブロックに隣接するブロックのサンプル(例えば輝度値、色差値)を参照してイントラ予測を行うことでイントラ予測信号を生成し、イントラ予測信号を予測制御部220に出力する。
 なお、色差ブロックのイントラ予測において輝度ブロックを参照するイントラ予測モードが選択されている場合は、イントラ予測部216は、カレントブロックの輝度成分に基づいて、カレントブロックの色差成分を予測してもよい。
 また、符号化ビットストリームから読み解かれた情報がPDPCの適用を示す場合、イントラ予測部216は、水平/垂直方向の参照画素の勾配に基づいてイントラ予測後の画素値を補正する。
 [インター予測部]
 インター予測部218は、フレームメモリ214に格納された参照ピクチャを参照して、カレントブロックを予測する。予測は、カレントブロック又はカレントブロック内のサブブロック(例えば4x4ブロック)の単位で行われる。例えば、インター予測部218は、符号化ビットストリームから読み解かれた動き情報(例えば動きベクトル)を用いて動き補償を行うことでカレントブロック又はサブブロックのインター予測信号を生成し、インター予測信号を予測制御部220に出力する。
 なお、符号化ビットストリームから読み解かれた情報がOBMCモードを適用することを示す場合、インター予測部218は、動き探索により得られたカレントブロックの動き情報だけでなく、隣接ブロックの動き情報も用いて、インター予測信号を生成する。
 また、符号化ビットストリームから読み解かれた情報がFRUCモードを適用することを示す場合、インター予測部218は、符号化ストリームから読み解かれたパターンマッチングの方法(バイラテラルマッチング又はテンプレートマッチング)に従って動き探索を行うことにより動き情報を導出する。そして、インター予測部218は、導出された動き情報を用いて動き補償を行う。
 また、インター予測部218は、BIOモードが適用される場合に、等速直線運動を仮定したモデルに基づいて動きベクトルを導出する。また、符号化ビットストリームから読み解かれた情報がアフィン動き補償予測モードを適用することを示す場合には、インター予測部218は、複数の隣接ブロックの動きベクトルに基づいてサブブロック単位で動きベクトルを導出する。
 [予測制御部]
 予測制御部220は、イントラ予測信号及びインター予測信号のいずれかを選択し、選択した信号を予測信号として加算部208に出力する。
 (実施の形態2)
 次に、実施の形態2について説明する。本実施の形態では、変換及び逆変換について詳細に説明する。なお、本実施の形態に係る符号化装置及び復号装置の構成は、実施の形態1と実質的に同一であるので、図示及び説明を省略する。
 [符号化装置の変換部及び量子化部の処理]
 まず、本実施の形態に係る符号化装置100の変換部106及び量子化部108の処理について、図11を参照しながら具体的に説明する。図11は、実施の形態2に係る符号化装置100における変換及び量子化処理を示すフローチャートである。
 まず、変換部106は、符号化対象ブロックにイントラ予測及びインター予測のどちらを用いるかを判定する(S101)。例えば、変換部106は、原画像と圧縮画像をローカル復号して得られる再構成画像との差分及び/又は符号量に基づくコストに基づいて、イントラ予測及びインター予測のどちらを用いるかを判定する。また例えば、変換部106は、差分及び/又は符号量に基づくコストとは異なる情報(例えばピクチャタイプ)に基づいて、イントラ予測及びインター予測のどちらを用いるかを判定してもよい。
 ここで、符号化対象ブロックにインター予測を用いると判定した場合(S101のインター)、変換部106は、1以上の第1の変換基底の候補の中から符号化対象ブロックのための第1の変換基底を選択する(S102)。例えば、変換部106は、DCT-IIの変換基底を符号化対象ブロックのための第1の変換基底として固定的に選択する。また例えば、変換部106は、複数の第1の変換基底の候補の中から第1の変換基底を選択してもよい。
 そして、変換部106は、ステップS102において選択された第1の変換基底を用いて符号化対象ブロックの残差に第1の変換を行うことにより第1の変換係数を生成する(S103)。量子化部108は、生成された第1の変換係数を量子化し(S110)、変換及び量子化処理を終了する。
 一方、符号化対象ブロックにイントラ予測を用いると判定した場合(S101のイントラ)、変換部106は、1以上の第1の変換基底の候補の中から符号化対象ブロックのための第1の変換基底を選択する(S104)。例えば、変換部106は、適応基底選択モードを用いて第1の変換基底を選択することができる。適応基底選択モードとは、原画像と再構成画像との差分及び/又は符号量に基づくコストに基づいて、予め定められた複数の変換基底の候補の中から適応的に変換基底を選択するモードである。この適応基底選択モードは、EMTモードあるいはAMTモードと呼ばれる場合もある。複数の変換基底の候補としては、例えば図6に示す複数の変換基底を用いることができる。なお、複数の変換基底の候補は、図6の複数の変換基底に限定されない。複数の変換基底の候補には、例えば、変換を実施しないことと等価な変換基底が含まれてもよい。
 また例えば、変換部106は、非適応基底選択モードを用いて(つまり、適応基底選択モードを用いずに)第1の変換基底を選択してもよい。非適応基底選択モードでは、例えば、変換部106は、符号化パラメータ(例えばブロックサイズ、量子化パラメータ、イントラ予測モード等)に基づいて第1の変換基底を選択することができる。また、変換部106は、標準規格等において予め定義された変換基底(例えばDCT-IIの変換基底)を固定的に選択することもできる。この場合、変換基底の選択は、1つの予め定義された変換基底を固定的に採用することを意味する。また、変換部106は、適応基底変換モード及び非適応基底選択モードを適応的に切り替えてもよい。
 続いて、変換部106は、ステップS104において選択された第1の変換基底を用いて符号化対象ブロックの残差に第1の変換を行うことにより第1の変換係数を生成する(S105)。変換部106は、符号化対象ブロックのイントラ予測モードが所定モードであるか否かを判定する(S106)。例えば、変換部106は、原画像と再構成画像との差分及び/又は符号量に基づくコストに基づいて、イントラ予測モードが所定モードであるか否かを判定する。なお、イントラ予測モードが所定モードであるか否かの判定は、コストとは異なる情報に基づいて行われてもよい。
 所定モードは、例えば標準規格等で予め定義されてもよい。また例えば、所定モードは、符号化パラメータ等に基づいて決定されてもよい。
 イントラ予測モードが所定モードである場合(S106のYES)、変換部106は、ステップS104で選択された第1の変換基底が所定変換基底と一致するか否かを判定する(S107)。所定変換基底は、例えば、標準規格等で予め定義されてもよい。また例えば、所定変換基底は、符号化パラメータ等に基づいて決定されてもよい。
 イントラ予測モードが所定モードでない場合(S106のNO)、又は、第1の変換基底が所定変換基底と一致する場合(S107のYES)、変換部106は、1以上の第2の変換基底の候補の中から符号化対象ブロックのための第2の変換基底を選択する(S108)。変換部106は、選択された第2の変換基底を用いて第1の変換係数に第2の変換を行うことにより第2の変換係数を生成する(S109)。量子化部108は、生成された第2の変換係数を量子化し(S110)、変換及び量子化処理を終了する。
 第2の変換では、NSSTと呼ばれる2次的な変換が行われてもよいし、複数の第2の変換基底の候補のいずれかを選択的に用いる変換が行われてもよい。このとき、第2の変換基底の選択では、選択される変換基底が固定されてもよい。つまり、予め定められた固定の変換基底が第2の変換基底として選択されてもよい。また、第2の変換基底として、第2の変換を実施しないことと等価な変換基底が用いられてもよい。
 イントラ予測モードが所定モードであり(S106のYES)、かつ、第1の変換基底が所定変換基底と異なる場合(S107のNO)、変換部106は、第2の変換基底の選択ステップ(S108)及び第2の変換ステップ(S109)をスキップする。つまり、変換部106は、第2の変換を行わない。この場合、ステップS105において生成された第1の変換係数が量子化され(S110)、変換及び量子化処理が終了する。
 このように第2の変換ステップがスキップされる場合、第2の変換を実施しないことを示す情報が復号装置に通知されてもよい。また、第2の変換ステップがスキップされる場合に、変換を実施しないことと等価な第2の変換基底を用いて第2の変換が実施され、当該第2の変換基底を示す情報が復号装置に通知されてもよい。
 なお、符号化装置100の逆量子化部112及び逆変換部114は、変換部106及び量子化部108の処理と逆の処理を行うことにより、符号化対象ブロックを再構成することができる。
 [復号装置の逆量子化部及び逆変換部の処理]
 次に、本実施の形態に係る復号装置200の逆量子化部204及び逆変換部206の処理について、図12を参照しながら具体的に説明する。図12は、実施の形態2に係る復号装置200における逆量子化及び逆変換処理を示すフローチャートである。
 まず、逆量子化部204は、復号対象ブロックの量子化係数を逆量子化する(S501)。逆変換部206は、復号対象ブロックにイントラ予測及びインター予測のどちらを用いるかを判定する(S502)。例えば、逆変換部206は、ビットストリームから取得される情報に基づいて、イントラ予測及びインター予測のどちらを用いるかを判定する。
 復号対象ブロックにインター予測を用いると判定した場合(S502のインター)、逆変換部206は、復号対象ブロックのための第1の逆変換基底を選択する(S503)。復号装置200において逆変換基底(第1の逆変換基底又は第2の逆変換基底)を選択するとは、所定情報に基づいて逆変換基底を決定することを意味する。所定情報としては、例えば、基底選択信号を用いることができる。また、所定情報として、イントラ予測モード又はブロックサイズ等を用いることもできる。
 逆変換部206は、ステップS503において選択された第1の逆変換基底を用いて、復号対象ブロックの逆量子化された係数に第1の逆変換を行い(S504)、逆量子化及び逆変換処理を終了する。
 復号対象ブロックにイントラ予測を用いると判定した場合(S502のイントラ)、逆変換部206は、復号対象ブロックのイントラ予測モードが所定モードであるか否かを判定する(S505)。復号装置200で用いられる所定モードは、符号化装置100で用いられた所定モードと同じである。
 イントラ予測モードが所定モードである場合(S505のYES)、逆変換部206は、第1の逆変換基底が所定逆変換基底と一致するか否かを判定する(S506)。所定逆変換基底としては、符号化装置100で用いられた所定変換基底に対応する逆変換基底が用いられる。
 イントラ予測モードが所定モードでない場合(S505のNO)、又は、第1の逆変換基底が所定逆変換基底と一致する場合(S506のYES)、逆変換部206は、復号対象ブロックのための第2の逆変換基底を選択する(S507)。逆変換部206は、選択された第2の逆変換基底を用いて、復号対象ブロックの逆量子化された係数に第2の逆変換を行う(S508)。逆変換部206は、第1の逆変換基底を選択する(S509)。逆変換部206は、選択された第1の逆変換基底を用いて、ステップS508において第2の逆変換によって得られた係数に第1の逆変換を行い(S510)、逆量子化及び逆変換処理を終了する。
 一方、イントラ予測モードが所定モードであり(S505のYES)、かつ、第1の逆変換基底が所定逆変換基底と異なる場合(S506のNO)、逆変換部206は、第2の逆変換基底の選択ステップ(S507)及び第2の逆変換ステップ(S508)をスキップする。つまり、逆変換部206は、第2の逆変換を行わずに、第1の逆変換基底を選択する(S509)。逆変換部206は、選択された第1の逆変換基底を用いて、ステップS501において逆量子化された係数に第1の逆変換を行い(S510)、逆量子化及び逆変換処理を終了する。
 [効果等]
 発明者らは、従来の符号化では、第1の変換及び第2の変換の両方において変換基底及び変換パラメータ(例えばフィルタの係数)の最適な組合せを探索するための処理量が膨大であるという課題を見出した。これに対して、本実施の形態に係る符号化装置100及び復号装置200によれば、イントラ予測モード及び第1の変換基底に応じて、第2の変換をスキップすることができる。その結果、第1の変換及び第2の変換の両方において変換基底及び変換パラメータの最適な組合せを探索するための処理を減少させることができ、圧縮効率の低下を抑制しつつ処理負荷の軽減を実現することができる。
 なお、本実施の形態では、符号化対象ブロックにインター予測を用いる場合に、第2の変換が行われていないが、これに限定されない。つまり、符号化対象ブロックにインター予測を用いる場合に、第1の変換によって生成された第1の変換係数に第2の変換を行ってもよい。この場合、第2の変換によって生成される第2の変換係数が量子化される。
 なお、図11及び図12のフローチャートにおけるステップの順番は、図11及び図12に記載の順番に限定されない。例えば、図11において、イントラ予測モードが所定モードであるか否かの判定ステップ(S106)と、第1の変換基底が所定変換基底と一致するか否かの判定ステップ(S107)とは、逆順であってもよいし、同時に行われてもよい。
 なお、本態様を本開示における他の態様の少なくとも一部と組み合わせて実施してもよい。また、本態様のフローチャートに記載の一部の処理、装置の一部の構成、シンタックスの一部などを他の態様と組み合わせて実施してもよい。
 (実施の形態3)
 次に、実施の形態3について説明する。本実施の形態では、イントラ予測モードの判定に用いられる所定モードが非方向性予測モードに限定される点が、上記実施の形態2と異なる。以下に、本実施の形態について、上記実施の形態2と異なる点を中心に図面を参照しながら説明する。なお、以下の各図において、実施の形態2と実質的に同一のステップについては同一の符号を付し、重複する説明は省略又は簡略化する。
 [符号化装置の変換部及び量子化部の処理]
 まず、本実施の形態に係る符号化装置100の変換部106及び量子化部108の処理について、図13を参照しながら具体的に説明する。図13は、実施の形態3に係る符号化装置100における変換及び量子化処理を示すフローチャートである。
 まず、変換部106は、符号化対象ブロックにイントラ予測及びインター予測のどちらを用いるかを判定する(S101)。ここで、符号化対象ブロックにインター予測を用いると判定した場合(S101のインター)、変換部106は、第1の変換基底を選択し(S102)、選択された第1の変換基底を用いて符号化対象ブロックの残差に第1の変換を行うことにより第1の変換係数を生成する(S103)。量子化部108は、生成された第1の変換係数を量子化し(S110)、変換及び量子化処理を終了する。
 一方、符号化対象ブロックにイントラ予測を用いると判定した場合(S101のイントラ)、変換部106は、符号化対象ブロックのイントラ予測モードが非方向性予測モードであるか否かを判定する(S201)。非方向性予測モードとは、復号対象ブロックの予測に特定の方向を利用しないモードである。具体的には、非方向性予測モードは、例えばDC予測モード及び/又はPlanar予測モードである。非方向性予測モードでは、例えば、参照画素の平均値又は参照画素の補間値などを用いて画素値が予測される。逆に、復号対象ブロックの予測に特定の方向を利用するモードを方向性予測モードと呼ぶ。方向性予測モードでは、参照画素の値を特定の方向に引き延ばすことにより画素値が予測される。なお、画素値とは、ピクチャを構成する画素単位の値であり、例えば輝度値又は色差値である。
 ここで、イントラ予測モードが非方向性予測モードと異なる場合(S201のNO)、変換部106は、符号化対象ブロックのための第1の変換基底を選択する(S202)。変換部106は、ステップS202において選択された第1の変換基底を用いて符号化対象ブロックの残差に第1の変換を行うことにより、第1の変換係数を生成する(S203)。さらに、変換部106は、符号化対象ブロックのための第2の変換基底を選択する(S204)。変換部106は、ステップS204において選択された第2の変換基底を用いて、ステップS203において生成された第1の変換係数に第2の変換を行うことにより、第2の変換係数を生成する(S205)。このステップS202~S205の処理は、図11でステップS106がNOの場合におけるステップS104~S109の処理と実質的に同一である。その後、量子化部108は、ステップS205において生成された第2の変換係数を量子化し(S110)、変換及び量子化処理を終了する。
 一方、イントラ予測モードが非方向性予測モードと一致する場合(S201のYES)、変換部106は、符号化対象ブロックのための第1の変換基底を選択する(S206)。変換部106は、ステップS206において選択された第1の変換基底を用いて符号化対象ブロックの残差に第1の変換を行うことにより、第1の変換係数を生成する(S207)。変換部106は、ステップS206で選択された第1の変換基底が所定変換基底と一致するか否かを判定する(S208)。所定変換基底としては、例えばDCT-IIの変換基底及び/又はそれに類似する変換基底を用いることができる。
 ここで、第1の変換基底が所定変換基底と一致する場合(S208のYES)、変換部106は、符号化対象ブロックのための第2の変換基底を選択する(S209)。そして、変換部106は、ステップS209において選択された第2の変換基底を用いて、ステップS207において生成された第1の変換係数に第2の変換を行うことにより、第2の変換係数を生成する(S210)。その後、量子化部108は、ステップS210において生成された第2の変換係数を量子化し(S110)、変換及び量子化処理を終了する。
 一方、第1の変換基底が所定変換基底と異なる場合(S208のNO)、変換部106は、第2の変換基底の選択ステップ(S209)及び第2の変換ステップ(S210)をスキップする。つまり、変換部106は、第2の変換を行わない。この場合、ステップS207において生成された第1の変換係数が量子化され(S110)、変換及び量子化処理が終了する。
 このステップS206~S209の処理は、図11でステップS106がYESの場合におけるステップS104~S109の処理と実質的に同一である。
 [復号装置の逆量子化部及び逆変換部の処理]
 次に、本実施の形態に係る復号装置200の逆量子化部204及び逆変換部206の処理について、図14を参照しながら具体的に説明する。図14は、実施の形態3に係る復号装置200における逆量子化及び逆変換処理を示すフローチャートである。
 まず、逆量子化部204は、復号対象ブロックの量子化係数を逆量子化する(S501)。逆変換部206は、復号対象ブロックにイントラ予測及びインター予測のどちらを用いるかを判定する(S502)。
 復号対象ブロックにインター予測を用いると判定した場合(S502のインター)、逆変換部206は、復号対象ブロックのための第1の逆変換基底を選択する(S503)。逆変換部206は、ステップS503において選択された第1の逆変換基底を用いて、復号対象ブロックの逆量子化された係数に第1の逆変換を行い(S504)、逆量子化及び逆変換処理を終了する。
 一方、復号対象ブロックにイントラ予測を用いると判定した場合(S502のイントラ)、逆変換部206は、復号対象ブロックのイントラ予測モードが非方向性予測モードであるか否かを判定する(S601)。
 ここで、イントラ予測モードが非方向性予測モードでない場合(S601のNO)、逆変換部206は、復号対象ブロックのための第2の逆変換基底を選択する(S602)。逆変換部206は、選択された第2の逆変換基底を用いて、復号対象ブロックの逆量子化された係数に第2の逆変換を行う(S603)。逆変換部206は、第1の逆変換基底を選択する(S604)。逆変換部206は、選択された第1の逆変換基底を用いて、ステップS603において第2の逆変換によって得られた係数に第1の逆変換を行い(S605)、逆量子化及び逆変換処理を終了する。
 一方、イントラ予測モードが非方向性予測モードである場合(S601のYES)、逆変換部206は、第1の逆変換基底が所定逆変換基底と一致するか否かを判定する(S606)。復号装置200で用いられる所定逆変換基底は、符号化装置100で用いられた所定変換基底に対応する逆変換基底である。
 ここで、第1の逆変換基底が所定逆変換基底と一致する場合(S606のYES)、逆変換部206は、復号対象ブロックのための第2の逆変換基底を選択する(S607)。逆変換部206は、選択された第2の逆変換基底を用いて、復号対象ブロックの逆量子化された係数に第2の逆変換を行う(S608)。逆変換部206は、第1の逆変換基底を選択する(S609)。逆変換部206は、選択された第1の逆変換基底を用いて、ステップS608において第2の逆変換によって得られた係数に第1の逆変換を行い(S610)、逆量子化及び逆変換処理を終了する。
 一方、第1の逆変換基底が所定逆変換基底と異なる場合(S606のNO)、逆変換部206は、第2の逆変換基底の選択ステップ(S607)及び第2の逆変換ステップ(S608)をスキップする。つまり、逆変換部206は、第2の逆変換を行わずに、第1の逆変換基底を選択する(S609)。逆変換部206は、選択された第1の逆変換基底を用いて、ステップS501において逆量子化された係数に第1の逆変換を行い(S610)、逆量子化及び逆変換処理を終了する。
 [効果等]
 以上のように、本実施の形態に係る符号化装置100及び復号装置200によれば、イントラ予測モードが非方向性予測モードの場合に第2の変換をスキップすることができる。非方向性予測モードでは、残差がブロック内で平坦になることが多い。したがって、DCT-IIの変換基底及びそれに類似する変換基底以外の変換基底が用いられれば、高域成分が残りやすく、変換係数の分布がランダムになりやすい。この場合、第2の変換による圧縮効率向上の効果が低減するため、第2の変換をスキップすることにより圧縮効率の低下を抑制しつつ、処理負荷の軽減を実現することができる。
 なお、本実施の形態では、符号化対象ブロックにインター予測を用いる場合に、第2の変換が行われていないが、これに限定されない。つまり、符号化対象ブロックにインター予測を用いる場合に、第1の変換によって生成された第1の変換係数に第2の変換を行ってもよい。この場合、第2の変換によって生成される第2の変換係数が量子化される。
 なお、図13及び図14のフローチャートにおけるステップの順番は、図13及び図14に記載の順番に限定されない。
 なお、本態様を本開示における他の態様の少なくとも一部と組み合わせて実施してもよい。また、本態様のフローチャートに記載の一部の処理、装置の一部の構成、シンタックスの一部などを他の態様と組み合わせて実施してもよい。
 (実施の形態4)
 次に、実施の形態4について説明する。本実施の形態では、適応基底選択モードにおいてブロックサイズに応じて第1の変換基底が固定される点が、上記実施の形態2と異なる。以下に、本実施の形態について、上記実施の形態2及び3と異なる点を中心に図面を参照しながら説明する。なお、以下の各図において、実施の形態2及び3と実質的に同一のステップについては同一の符号を付し、重複する説明は省略又は簡略化する。
 [符号化装置の変換部及び量子化部の処理]
 まず、本実施の形態に係る符号化装置100の変換部106及び量子化部108の処理について、図15を参照しながら具体的に説明する。図15は、実施の形態4に係る符号化装置100における変換及び量子化処理を示すフローチャートである。
 まず、変換部106は、符号化対象ブロックにイントラ予測及びインター予測のどちらを用いるかを判定する(S101)。ここで、符号化対象ブロックにインター予測を用いると判定した場合(S101のインター)、変換部106は、第1の変換基底を選択し(S102)、選択された第1の変換基底を用いて符号化対象ブロックの残差に第1の変換を行うことにより第1の変換係数を生成する(S103)。量子化部108は、生成された第1の変換係数を量子化し(S110)、変換及び量子化処理を終了する。
 一方、符号化対象ブロックにイントラ予測を用いると判定した場合(S101のイントラ)、変換部106は、符号化対象ブロックのサイズが所定サイズと一致するか否か、及び、符号化対象ブロックに適応基底選択モードを用いるか否かを判定する(S301)。適応基底選択モードを用いるか否かは、例えば原画像と再構成画像との差分及び/又は符号量に基づくコストに基づいて判定することができる。
 所定サイズとしては、例えば標準規格等で予め定義された特定のブロックサイズを用いることができる。具体的には、所定サイズとして、例えば4x4画素を用いることができる。また、所定サイズとして、複数のブロックサイズが用いられてもよい。具体的には、所定サイズとして、例えば4x4画素、8x4画素及び4x8画素が用いられてもよい。また、符号化対象ブロックのサイズが所定条件を満たすか否かを判定することにより、符号化対象ブロックのサイズが所定サイズと一致するか否かが判定されてもよい。この場合、所定条件としては、例えば、水平サイズ及び垂直サイズの両方が所定画素以下、又は、水平サイズ及び垂直サイズの少なくとも一方が所定画素以下という条件を用いることができる。
 符号化対象ブロックのサイズが所定サイズと異なる場合、又は、適応基底選択モードを用いない場合(S301のNO)、変換部106は、符号化対象ブロックのイントラ予測モードが非方向性予測モードであるか否かを判定する(S201)。
 ここで、イントラ予測モードが非方向性予測モードと異なる場合(S201のNO)、変換部106は、符号化対象ブロックのための第1の変換基底を選択する(S202)。例えば、適応基底選択モードを用いると判定されている場合には、変換部106は、複数の第1の変換基底の候補の中から適応的に第1の変換基底を選択する。また例えば、適応基底選択モードを用いないと判定されている場合には、変換部106は、予め定義された変換基底(例えばDCT-IIの変換基底)を固定的に選択する。
 変換部106は、ステップS202において選択された第1の変換基底を用いて符号化対象ブロックの残差に第1の変換を行うことにより、第1の変換係数を生成する(S203)。さらに、変換部106は、符号化対象ブロックのための第2の変換基底を選択する(S204)。変換部106は、ステップS204において選択された第2の変換基底を用いて、ステップS203において生成された第1の変換係数に第2の変換を行うことにより、第2の変換係数を生成する(S205)。その後、量子化部108は、ステップS205において生成された第2の変換係数を量子化し(S110)、変換及び量子化処理を終了する。
 一方、イントラ予測モードが非方向性予測モードと一致する場合(S201のYES)、変換部106は、符号化対象ブロックのための第1の変換基底を選択する(S206)。例えば、適応基底選択モードを用いると判定されている場合には、変換部106は、複数の第1の変換基底の候補の中から適応的に第1の変換基底を選択する。また例えば、適応基底選択モードを用いないと判定されている場合には、変換部106は、予め定義された変換基底(例えばDCT-IIの変換基底)を固定的に選択する。
 変換部106は、ステップS206において選択された第1の変換基底を用いて符号化対象ブロックの残差に第1の変換を行うことにより、第1の変換係数を生成する(S207)。変換部106は、ステップS206で選択された第1の変換基底が第2の所定変換基底と一致するか否かを判定する(S208)。第2の所定変換基底としては、例えばDCT-IIの変換基底及び/又はそれに類似する変換基底を用いることができる。
 ここで、第1の変換基底が第2の所定変換基底と一致する場合(S208のYES)、変換部106は、符号化対象ブロックのための第2の変換基底を選択する(S209)。そして、変換部106は、ステップS209において選択された第2の変換基底を用いて、ステップS207において生成された第1の変換係数に第2の変換を行うことにより、第2の変換係数を生成する(S210)。その後、量子化部108は、ステップS210において生成された第2の変換係数を量子化し(S110)、変換及び量子化処理を終了する。
 一方、第1の変換基底が第2の所定変換基底と異なる場合(S208のNO)、変換部106は、第2の変換基底の選択ステップ(S209)及び第2の変換ステップ(S210)をスキップする。つまり、変換部106は、第2の変換を行わない。この場合、ステップS207において生成された第1の変換係数が量子化され(S110)、変換及び量子化処理が終了する。
 符号化対象ブロックのサイズが所定サイズと一致し、かつ、適応基底選択モードを用いる場合(S301のYES)、変換部106は、第1の変換基底を第1の所定変換基底に固定する(S302)。第1の所定変換基底として、例えば、DST-VIIの変換基底を用いることができる。なお、第1の所定変換基底は、DST-VIIの変換基底に限定されない。例えば、第1の所定変換基底として、DCT-Vの変換基底が用いられてもよい。
 変換部106は、ステップS302で固定された第1の変換基底を用いて符号化対象ブロックの残差に第1の変換を行うことにより、第1の変関係数を生成する(S303)。変換部106は、符号化対象ブロックのイントラ予測モードが非方向性予測モードであるか否かを判定する(S304)。
 ここで、イントラ予測モードが非方向性予測モードと異なる場合(S304のNO)、変換部106は、第2の変換基底を選択する(S305)。そして、変換部106は、ステップS305において選択された第2の変換基底を用いて、ステップ303において生成された第1の変換係数に第2の変換を行うことにより、第2の変換係数を生成する(S306)。その後、量子化部108は、ステップS306において生成された第2の変換係数を量子化し(S110)、変換及び量子化処理を終了する。
 一方、イントラ予測モードが非方向性予測モードと一致する場合(S304のYES)、変換部106は、第2の変換基底の選択ステップ(S305)及び第2の変換ステップ(S306)をスキップする。つまり、変換部106は、第2の変換を行わない。この場合、ステップS303において生成された第1の変換係数が量子化され(S110)、変換及び量子化処理が終了する。
 [符号化装置のエントロピー符号化部の処理]
 次に、本実施の形態に係る符号化装置100のエントロピー符号化部110の変換に関する符号化処理について、図16を参照しながら具体的に説明する。図16は、実施の形態4に係る符号化装置100における符号化処理を示すフローチャートである。
 符号化対象ブロックにインター予測が用いられた場合(S401のインター)、エントロピー符号化部110は、第1の基底選択信号をビットストリーム内に符号化する(S402)。ここでは、第1の基底選択信号は、ステップS102において選択された第1の変換基底を示す情報又はデータである。
 ビットストリーム内に信号を符号化するとは、情報を示す符号をビットストリーム内に配置することを意味する。符号は、例えば、コンテキスト適応型二値算術符号化(CABAC)により生成される。なお、符号の生成には、必ずしもCABACが用いられる必要はなく、エントロピー符号化が用いられる必要もない。例えば、符号は、情報そのもの(例えば0又は1のフラグ)であってもよい。
 次に、エントロピー符号化部110は、ステップS110において量子化された係数を符号化して(S403)、符号化処理を終了する。
 符号化対象ブロックにイントラ予測が用いられた場合(S401のイントラ)、エントロピー符号化部110は、符号化対象ブロックのイントラ予測モードを示すイントラ予測モード信号をビットストリーム内に符号化する(S404)。さらに、エントロピー符号化部110は、符号化対象ブロックに適応基底選択モードが用いられたか否かを示す適応選択モード信号をビットストリーム内に符号化する(S405)。
 ここで、適応基底選択モードが用いられ、かつ、符号化対象ブロックのサイズが所定サイズと異なる場合(S406のYES)、エントロピー符号化部110は、第1の基底選択信号をビットストリーム内に符号化する(S407)。ここでは、第1の基底選択信号は、ステップS202又はS206において選択された第1の変換基底を示す情報又はデータである。一方、適応基底選択モードが用いられなかった場合、又は、適応基底選択モードが用いられ、かつ、符号化対象ブロックのサイズが所定サイズと一致する場合(S406のNO)、エントロピー符号化部110は、第1の基底選択信号の符号化ステップ(S407)をスキップする。つまり、エントロピー符号化部110は、第1の基底選択信号を符号化しない。
 ここで、第2の変換が実施された場合(S408のYES)、エントロピー符号化部110は、第2の基底選択信号をビットストリーム内に符号化する(S409)。ここでは、第2の基底選択信号は、ステップS204、S209、又は、S305において選択された第2の変換基底を示す情報又はデータである。一方、第2の変換が実施されなかった場合(S408のNO)、エントロピー符号化部110は、第2の基底選択信号の符号化ステップ(S409)をスキップする。つまり、エントロピー符号化部110は、第2の基底選択信号を符号化しない。
 最後に、エントロピー符号化部110は、ステップS110において量子化された係数を符号化して(S410)、符号化処理を終了する。
 [復号装置のエントロピー復号部の処理]
 次に、本実施の形態に係る復号装置200のエントロピー復号部202の処理について、図17を参照しながら具体的に説明する。図17は、実施の形態4に係る復号装置200における復号処理を示すフローチャートである。
 復号対象ブロックにインター予測が用いられる場合(S701のインター)、エントロピー復号部202は、第1の基底選択信号をビットストリームから復号する(S702)。
 ビットストリームから信号を復号するとは、情報を示す符号をビットストリームから読み解き、読み解かれた符号から情報を復元することを意味する。符号から情報への復元は、例えば、コンテキスト適応型二値算術復号(CABAD)が用いられる。なお、符号から情報への復元には、必ずしもCABADが用いられる必要はなく、エントロピー復号が用いられる必要もない。例えば、読み解かれた符号そのものが情報を示す場合は(例えば0又は1のフラグ)、単に符号が読み解かれればよい。
 次に、エントロピー復号部202は、ビットストリームから量子化係数を復号して(S703)、復号処理を終了する。
 復号対象ブロックにイントラ予測が用いられる場合(S701のイントラ)、エントロピー復号部202は、ビットストリームからイントラ予測モード信号を復号する(S704)。さらに、エントロピー復号部202は、適応選択モード信号を復号する(S705)。
 ここで、適応基底選択モードが用いられ、かつ、復号対象ブロックのサイズが所定サイズと異なる場合(S706のYES)、エントロピー復号部202は、ビットストリームから第1の基底選択信号を復号する(S707)。一方、適応基底選択モードが用いられなかった場合、又は、適応基底選択モードが用いられ、かつ、復号対象ブロックのサイズが所定サイズと一致する場合(S706のNO)、エントロピー復号部202は、第1の基底選択信号の復号ステップ(S707)をスキップする。つまり、エントロピー復号部202は、第1の基底選択信号を復号しない。
 ここで、第2の逆変換を実施する場合(S708のYES)、エントロピー復号部202は、ビットストリームから第2の基底選択信号を復号する(S709)。一方、第2の逆変換を実施しない場合(S708のNO)、エントロピー復号部202は、第2の基底選択信号の復号ステップ(S709)をスキップする。つまり、エントロピー復号部202は、第2の基底選択信号を復号しない。
 最後に、エントロピー復号部202は、ビットストリームから量子化係数を復号して(S710)、復号処理を終了する。
 [復号装置の逆量子化部及び逆変換部の処理]
 次に、本実施の形態に係る復号装置200の逆量子化部204及び逆変換部206の処理について、図18を参照しながら具体的に説明する。図18は、実施の形態4に係る復号装置200における逆量子化及び逆変換処理を示すフローチャートである。
 まず、逆量子化部204は、復号対象ブロックの量子化係数を逆量子化する(S501)。逆変換部206は、復号対象ブロックにイントラ予測及びインター予測のどちらを用いるかを判定する(S502)。復号対象ブロックにインター予測を用いると判定した場合(S502のインター)、逆変換部206は、復号対象ブロックのための第1の逆変換基底を選択する(S503)。逆変換部206は、ステップS503において選択された第1の逆変換基底を用いて、復号対象ブロックの逆量子化された係数に第1の逆変換を行い(S504)、逆量子化及び逆変換処理を終了する。
 復号対象ブロックにイントラ予測を用いると判定した場合(S502のイントラ)、逆変換部206は、復号対象ブロックのサイズが所定サイズと一致するか否か、及び、復号対象ブロックに適応基底選択モードが用いられたか否かを判定する(S801)。例えば、逆変換部206は、図17のステップS705において復号された適応選択モード信号に基づいて、適応基底選択モードが用いられたか否かを判定する。
 復号対象ブロックのサイズが所定サイズと異なる場合、又は、適応基底選択モードが用いられなかった場合(S801のNO)、逆変換部206は、復号対象ブロックのイントラ予測モードが非方向性予測モードであるか否かを判定する(S601)。
 ここで、イントラ予測モードが非方向性予測モードでない場合(S601のNO)、逆変換部206は、復号対象ブロックのための第2の逆変換基底を選択する(S602)。例えば、逆変換部206は、図17のステップS709において復号された第2の基底選択信号に基づいて、第2の逆変換基底を選択する。逆変換部206は、選択された第2の逆変換基底を用いて、復号対象ブロックの逆量子化された係数に第2の逆変換を行う(S603)。逆変換部206は、第1の逆変換基底を選択する(S604)。例えば、適応基底選択モードが用いられた場合には、逆変換部206は、図17のステップS707において復号された第1の基底選択信号に基づいて、第1の逆変換基底を選択する。逆変換部206は、選択された第1の逆変換基底を用いて、ステップS603において第2の逆変換によって得られた係数に第1の逆変換を行い(S605)、逆量子化及び逆変換処理を終了する。
 一方、イントラ予測モードが非方向性予測モードである場合(S601のYES)、逆変換部206は、第1の逆変換基底が第2の所定逆変換基底と一致するか否かを判定する(S606)。例えば、適応基底選択モードが用いられた場合には、逆変換部206は、図17のステップS707において復号された第1の基底選択信号に基づいて、第1の逆変換基底が第2の所定逆変換基底と一致するか否かを判定する。第2の所定逆変換基底としては、符号化装置100で用いられた第2の所定変換基底に対応する逆変換基底が用いられる。
 ここで、第1の逆変換基底が第2の所定逆変換基底と一致する場合(S606のYES)、逆変換部206は、復号対象ブロックのための第2の逆変換基底を選択する(S607)。例えば、逆変換部206は、図17のステップS709において復号された第2の基底選択信号に基づいて、第2の逆変換基底を選択する。逆変換部206は、選択された第2の逆変換基底を用いて、復号対象ブロックの逆量子化された係数に第2の逆変換を行う(S608)。逆変換部206は、第1の逆変換基底を選択する(S609)。例えば、適応基底選択モードが用いられた場合には、逆変換部206は、図17のステップS707において復号された第1の基底選択信号に基づいて、第1の逆変換基底を選択する。逆変換部206は、選択された第1の逆変換基底を用いて、ステップS608において第2の逆変換によって得られた係数に第1の逆変換を行い(S610)、逆量子化及び逆変換処理を終了する。
 復号対象ブロックのサイズが所定サイズと一致し、かつ、適応基底選択モードが用いられた場合(S801のYES)、逆変換部206は、復号対象ブロックのイントラ予測モードが非方向性予測モードであるか否かを判定する(S802)。
 ここで、イントラ予測モードが非方向性予測モードでない場合(S802のNO)、逆変換部206は、復号対象ブロックのための第2の逆変換基底を選択する(S803)。例えば、逆変換部206は、図17のステップS709において復号された第2の基底選択信号に基づいて、第2の逆変換基底を選択する。逆変換部206は、選択された第2の逆変換基底を用いて、復号対象ブロックの逆量子化された係数に第2の逆変換を行う(S804)。逆変換部206は、第1の逆変換基底を第1の所定逆変換基底に固定する(S805)。第1の所定逆変換基底としては、符号化装置100で用いられた第1の所定変換基底に対応する逆変換基底が用いられる。逆変換部206は、固定された第1の逆変換基底を用いて、ステップS804において第2の逆変換によって得られた係数に第1の逆変換を行い(S806)、逆量子化及び逆変換処理を終了する。
 一方、イントラ予測モードが非方向性予測モードである場合(S802のYES)、逆変換部206は、第2の逆変換基底の選択ステップ(S803)及び第2の逆変換ステップ(S804)をスキップする。つまり、逆変換部206は、第2の逆変換を行わずに、第1の逆変換基底を第1の所定逆変換基底に固定する(S805)。逆変換部206は、固定された第1の逆変換基底を用いて、ステップS501において逆量子化された係数に第1の逆変換を行い(S806)、逆量子化及び逆変換処理を終了する。
 [効果等]
 以上のように、本実施の形態に係る符号化装置100及び復号装置200によれば、適応基底選択モードが用いられる場合に、ブロックサイズに応じて第1の変換基底を固定することができる。したがって、適応基底選択モードにおける第1の変換の負荷を低減することができる。
 なお、本実施の形態では、符号化対象ブロックにインター予測を用いる場合に、第2の変換が行われていないが、これに限定されない。つまり、符号化対象ブロックにインター予測を用いる場合に、第1の変換によって生成された第1の変換係数に第2の変換を行ってもよい。この場合、第2の変換によって生成される第2の変換係数が量子化される。
 なお、図15~図18のフローチャートにおけるステップの順番は、図15~図18に記載の順番に限定されない。例えば、図16において、信号の符号化の順番は、標準規格等で予め定義された他の順番であってもよい。
 なお、本実施の形態では、複数の信号(イントラ予測モード信号、適応選択モード信号、第1の基底選択信号、及び、第2の基底選択信号)がビットストリーム内に符号化されていたが、これらの複数の信号はビットストリーム内に符号化されなくてもよい。例えば、これらの複数の信号は、ビットストームとは別に符号化装置100から復号装置200に通知されてもよい。
 なお、本実施の形態において、複数の信号(イントラ予測モード信号、適応選択モード信号、第1の基底選択信号、及び、第2の基底選択信号)の各々のビットストリーム内の位置は特に限定されない。複数の信号は、例えば、複数のヘッダの少なくとも1つに符号化される。複数のヘッダとしては、例えば、ビデオパラメータセット、シーケンスパラメータセット、ピクチャパラメータセット、及びスライスヘッダを用いることができる。なお、信号が複数の階層(例えば、ピクチャパラメータセット及びスライスヘッダ)にある場合は、低い階層(例えばスライスヘッダ)にある信号は、より高い階層(例えば、ピクチャパラメータセット)にある信号を上書きする。
 なお、本態様を本開示における他の態様の少なくとも一部と組み合わせて実施してもよい。また、本態様のフローチャートに記載の一部の処理、装置の一部の構成、シンタックスの一部などを他の態様と組み合わせて実施してもよい。
 (実施の形態5)
 以上の実施の形態及び各変形例において、機能ブロックの各々は、通常、MPU及びメモリ等によって実現可能である。また、機能ブロックの各々による処理は、通常、プロセッサなどのプログラム実行部が、ROM等の記録媒体に記録されたソフトウェア(プログラム)を読み出して実行することで実現される。当該ソフトウェアはダウンロード等により配布されてもよいし、半導体メモリなどの記録媒体に記録して配布されてもよい。なお、各機能ブロックをハードウェア(専用回路)によって実現することも、当然、可能である。
 また、実施の形態及び各変形例において説明した処理は、単一の装置(システム)を用いて集中処理することによって実現してもよく、又は、複数の装置を用いて分散処理することによって実現してもよい。また、上記プログラムを実行するプロセッサは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、又は分散処理を行ってもよい。
 本発明は、以上の実施例に限定されることなく、種々の変更が可能であり、それらも本発明の範囲内に包含される。
 さらにここで、上記実施の形態及び各変形例で示した動画像符号化方法(画像符号化方法)又は動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、画像復号方法を用いた画像復号装置、及び両方を備える画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。
 [使用例]
 図19は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。
 このコンテンツ供給システムex100では、インターネットex101に、インターネットサービスプロバイダex102又は通信網ex104、及び基地局ex106~ex110を介して、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、及びスマートフォンex115などの各機器が接続される。当該コンテンツ供給システムex100は、上記のいずれかの要素を組合せて接続するようにしてもよい。固定無線局である基地局ex106~ex110を介さずに、各機器が電話網又は近距離無線等を介して直接的又は間接的に相互に接続されていてもよい。また、ストリーミングサーバex103は、インターネットex101等を介して、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、及びスマートフォンex115などの各機器と接続される。また、ストリーミングサーバex103は、衛星ex116を介して、飛行機ex117内のホットスポット内の端末等と接続される。
 なお、基地局ex106~ex110の代わりに、無線アクセスポイント又はホットスポット等が用いられてもよい。また、ストリーミングサーバex103は、インターネットex101又はインターネットサービスプロバイダex102を介さずに直接通信網ex104と接続されてもよいし、衛星ex116を介さず直接飛行機ex117と接続されてもよい。
 カメラex113はデジタルカメラ等の静止画撮影、及び動画撮影が可能な機器である。また、スマートフォンex115は、一般に2G、3G、3.9G、4G、そして今後は5Gと呼ばれる移動通信システムの方式に対応したスマートフォン機、携帯電話機、又はPHS(Personal Handyphone System)等である。
 家電ex118は、冷蔵庫、又は家庭用燃料電池コージェネレーションシステムに含まれる機器等である。
 コンテンツ供給システムex100では、撮影機能を有する端末が基地局ex106等を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、端末(コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、スマートフォンex115、及び飛行機ex117内の端末等)は、ユーザが当該端末を用いて撮影した静止画又は動画コンテンツに対して上記実施の形態及び各変形例で説明した符号化処理を行い、符号化により得られた映像データと、映像に対応する音を符号化した音データと多重化し、得られたデータをストリーミングサーバex103に送信する。即ち、各端末は、本発明の一態様に係る画像符号化装置として機能する。
 一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントは、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、スマートフォンex115、又は飛行機ex117内の端末等である。配信されたデータを受信した各機器は、受信したデータを復号化処理して再生する。即ち、各機器は、本発明の一態様に係る画像復号装置として機能する。
 [分散処理]
 また、ストリーミングサーバex103は複数のサーバ又は複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。例えば、ストリーミングサーバex103は、CDN(Contents Delivery Network)により実現され、世界中に分散された多数のエッジサーバとエッジサーバ間をつなぐネットワークによりコンテンツ配信が実現されていてもよい。CDNでは、クライアントに応じて物理的に近いエッジサーバが動的に割り当てられる。そして、当該エッジサーバにコンテンツがキャッシュ及び配信されることで遅延を減らすことができる。また、何らかのエラーが発生した場合又はトラフィックの増加などにより通信状態が変わる場合に複数のエッジサーバで処理を分散したり、他のエッジサーバに配信主体を切り替えたり、障害が生じたネットワークの部分を迂回して配信を続けることができるので、高速かつ安定した配信が実現できる。
 また、配信自体の分散処理にとどまらず、撮影したデータの符号化処理を各端末で行ってもよいし、サーバ側で行ってもよいし、互いに分担して行ってもよい。一例として、一般に符号化処理では、処理ループが2度行われる。1度目のループでフレーム又はシーン単位での画像の複雑さ、又は、符号量が検出される。また、2度目のループでは画質を維持して符号化効率を向上させる処理が行われる。例えば、端末が1度目の符号化処理を行い、コンテンツを受け取ったサーバ側が2度目の符号化処理を行うことで、各端末での処理負荷を減らしつつもコンテンツの質と効率を向上させることができる。この場合、ほぼリアルタイムで受信して復号する要求があれば、端末が行った一度目の符号化済みデータを他の端末で受信して再生することもできるので、より柔軟なリアルタイム配信も可能になる。
 他の例として、カメラex113等は、画像から特徴量抽出を行い、特徴量に関するデータをメタデータとして圧縮してサーバに送信する。サーバは、例えば特徴量からオブジェクトの重要性を判断して量子化精度を切り替えるなど、画像の意味に応じた圧縮を行う。特徴量データはサーバでの再度の圧縮時の動きベクトル予測の精度及び効率向上に特に有効である。また、端末でVLC(可変長符号化)などの簡易的な符号化を行い、サーバでCABAC(コンテキスト適応型二値算術符号化方式)など処理負荷の大きな符号化を行ってもよい。
 さらに他の例として、スタジアム、ショッピングモール、又は工場などにおいては、複数の端末によりほぼ同一のシーンが撮影された複数の映像データが存在する場合がある。この場合には、撮影を行った複数の端末と、必要に応じて撮影をしていない他の端末及びサーバを用いて、例えばGOP(Group of Picture)単位、ピクチャ単位、又はピクチャを分割したタイル単位などで符号化処理をそれぞれ割り当てて分散処理を行う。これにより、遅延を減らし、よりリアルタイム性を実現できる。
 また、複数の映像データはほぼ同一シーンであるため、各端末で撮影された映像データを互いに参照し合えるように、サーバで管理及び/又は指示をしてもよい。または、各端末からの符号化済みデータを、サーバが受信し複数のデータ間で参照関係を変更、又はピクチャ自体を補正或いは差し替えて符号化しなおしてもよい。これにより、一つ一つのデータの質と効率を高めたストリームを生成できる。
 また、サーバは、映像データの符号化方式を変更するトランスコードを行ったうえで映像データを配信してもよい。例えば、サーバは、MPEG系の符号化方式をVP系に変換してもよいし、H.264をH.265に変換してもよい。
 このように、符号化処理は、端末、又は1以上のサーバにより行うことが可能である。よって、以下では、処理を行う主体として「サーバ」又は「端末」等の記載を用いるが、サーバで行われる処理の一部又は全てが端末で行われてもよいし、端末で行われる処理の一部又は全てがサーバで行われてもよい。また、これらに関しては、復号処理についても同様である。
 [3D、マルチアングル]
 近年では、互いにほぼ同期した複数のカメラex113及び/又はスマートフォンex115などの端末により撮影された異なるシーン、又は、同一シーンを異なるアングルから撮影した画像或いは映像を統合して利用することも増えてきている。各端末で撮影した映像は、別途取得した端末間の相対的な位置関係、又は、映像に含まれる特徴点が一致する領域などに基づいて統合される。
 サーバは、2次元の動画像を符号化するだけでなく、動画像のシーン解析などに基づいて自動的に、又は、ユーザが指定した時刻において、静止画を符号化し、受信端末に送信してもよい。サーバは、さらに、撮影端末間の相対的な位置関係を取得できる場合には、2次元の動画像だけでなく、同一シーンが異なるアングルから撮影された映像に基づき、当該シーンの3次元形状を生成できる。なお、サーバは、ポイントクラウドなどにより生成した3次元のデータを別途符号化してもよいし、3次元データを用いて人物又はオブジェクトを認識或いは追跡した結果に基づいて、受信端末に送信する映像を、複数の端末で撮影した映像から選択、又は、再構成して生成してもよい。
 このようにして、ユーザは、各撮影端末に対応する各映像を任意に選択してシーンを楽しむこともできるし、複数画像又は映像を用いて再構成された3次元データから任意視点の映像を切り出したコンテンツを楽しむこともできる。さらに、映像と同様に音も複数の相異なるアングルから収音され、サーバは、映像に合わせて特定のアングル又は空間からの音を映像と多重化して送信してもよい。
 また、近年ではVirtual Reality(VR)及びAugmented Reality(AR)など、現実世界と仮想世界とを対応付けたコンテンツも普及してきている。VRの画像の場合、サーバは、右目用及び左目用の視点画像をそれぞれ作成し、Multi-View Coding(MVC)などにより各視点映像間で参照を許容する符号化を行ってもよいし、互いに参照せずに別ストリームとして符号化してもよい。別ストリームの復号時には、ユーザの視点に応じて仮想的な3次元空間が再現されるように互いに同期させて再生するとよい。
 ARの画像の場合には、サーバは、現実空間のカメラ情報に、仮想空間上の仮想物体情報を、3次元的位置又はユーザの視点の動きに基づいて重畳する。復号装置は、仮想物体情報及び3次元データを取得又は保持し、ユーザの視点の動きに応じて2次元画像を生成し、スムーズにつなげることで重畳データを作成してもよい。または、復号装置は仮想物体情報の依頼に加えてユーザの視点の動きをサーバに送信し、サーバは、サーバに保持される3次元データから受信した視点の動きに合わせて重畳データを作成し、重畳データを符号化して復号装置に配信してもよい。なお、重畳データは、RGB以外に透過度を示すα値を有し、サーバは、3次元データから作成されたオブジェクト以外の部分のα値が0などに設定し、当該部分が透過する状態で、符号化してもよい。もしくは、サーバは、クロマキーのように所定の値のRGB値を背景に設定し、オブジェクト以外の部分は背景色にしたデータを生成してもよい。
 同様に配信されたデータの復号処理はクライアントである各端末で行っても、サーバ側で行ってもよいし、互いに分担して行ってもよい。一例として、ある端末が、一旦サーバに受信リクエストを送り、そのリクエストに応じたコンテンツを他の端末で受信し復号処理を行い、ディスプレイを有する装置に復号済みの信号が送信されてもよい。通信可能な端末自体の性能によらず処理を分散して適切なコンテンツを選択することで画質のよいデータを再生することができる。また、他の例として大きなサイズの画像データをTV等で受信しつつ、鑑賞者の個人端末にピクチャが分割されたタイルなど一部の領域が復号されて表示されてもよい。これにより、全体像を共有化しつつ、自身の担当分野又はより詳細に確認したい領域を手元で確認することができる。
 また今後は、屋内外にかかわらず近距離、中距離、又は長距離の無線通信が複数使用可能な状況下で、MPEG-DASHなどの配信システム規格を利用して、接続中の通信に対して適切なデータを切り替えながらシームレスにコンテンツを受信することが予想される。これにより、ユーザは、自身の端末のみならず屋内外に設置されたディスプレイなどの復号装置又は表示装置を自由に選択しながらリアルタイムで切り替えられる。また、自身の位置情報などに基づいて、復号する端末及び表示する端末を切り替えながら復号を行うことができる。これにより、目的地への移動中に、表示可能なデバイスが埋め込まれた隣の建物の壁面又は地面の一部に地図情報を表示させながら移動することも可能になる。また、符号化データが受信端末から短時間でアクセスできるサーバにキャッシュされている、又は、コンテンツ・デリバリー・サービスにおけるエッジサーバにコピーされている、などの、ネットワーク上での符号化データへのアクセス容易性に基づいて、受信データのビットレートを切り替えることも可能である。
 [スケーラブル符号化]
 コンテンツの切り替えに関して、図20に示す、上記実施の形態及び各変形例で示した動画像符号化方法を応用して圧縮符号化されたスケーラブルなストリームを用いて説明する。サーバは、個別のストリームとして内容は同じで質の異なるストリームを複数有していても構わないが、図示するようにレイヤに分けて符号化を行うことで実現される時間的/空間的スケーラブルなストリームの特徴を活かして、コンテンツを切り替える構成であってもよい。つまり、復号側が性能という内的要因と通信帯域の状態などの外的要因とに応じてどのレイヤまで復号するかを決定することで、復号側は、低解像度のコンテンツと高解像度のコンテンツとを自由に切り替えて復号できる。例えば移動中にスマートフォンex115で視聴していた映像の続きを、帰宅後にインターネットTV等の機器で視聴したい場合には、当該機器は、同じストリームを異なるレイヤまで復号すればよいので、サーバ側の負担を軽減できる。
 さらに、上記のように、レイヤ毎にピクチャが符号化されており、ベースレイヤの上位にエンハンスメントレイヤが存在するスケーラビリティを実現する構成以外に、エンハンスメントレイヤが画像の統計情報などに基づくメタ情報を含み、復号側が、メタ情報に基づきベースレイヤのピクチャを超解像することで高画質化したコンテンツを生成してもよい。超解像とは、同一解像度におけるSN比の向上、及び、解像度の拡大のいずれであってもよい。メタ情報は、超解像処理に用いる線形或いは非線形のフィルタ係数を特定するため情報、又は、超解像処理に用いるフィルタ処理、機械学習或いは最小2乗演算におけるパラメータ値を特定する情報などを含む。
 または、画像内のオブジェクトなどの意味合いに応じてピクチャがタイル等に分割されており、復号側が、復号するタイルを選択することで一部の領域だけを復号する構成であってもよい。また、オブジェクトの属性(人物、車、ボールなど)と映像内の位置(同一画像における座標位置など)とをメタ情報として格納することで、復号側は、メタ情報に基づいて所望のオブジェクトの位置を特定し、そのオブジェクトを含むタイルを決定できる。例えば、図21に示すように、メタ情報は、HEVCにおけるSEIメッセージなど画素データとは異なるデータ格納構造を用いて格納される。このメタ情報は、例えば、メインオブジェクトの位置、サイズ、又は色彩などを示す。
 また、ストリーム、シーケンス又はランダムアクセス単位など、複数のピクチャから構成される単位でメタ情報が格納されてもよい。これにより、復号側は、特定人物が映像内に出現する時刻などが取得でき、ピクチャ単位の情報と合わせることで、オブジェクトが存在するピクチャ、及び、ピクチャ内でのオブジェクトの位置を特定できる。
 [Webページの最適化]
 図22は、コンピュータex111等におけるwebページの表示画面例を示す図である。図23は、スマートフォンex115等におけるwebページの表示画面例を示す図である。図22及び図23に示すようにwebページが、画像コンテンツへのリンクであるリンク画像を複数含む場合があり、閲覧するデバイスによってその見え方は異なる。画面上に複数のリンク画像が見える場合には、ユーザが明示的にリンク画像を選択するまで、又は画面の中央付近にリンク画像が近付く或いはリンク画像の全体が画面内に入るまでは、表示装置(復号装置)は、リンク画像として各コンテンツが有する静止画又はIピクチャを表示したり、複数の静止画又はIピクチャ等でgifアニメのような映像を表示したり、ベースレイヤのみ受信して映像を復号及び表示したりする。
 ユーザによりリンク画像が選択された場合、表示装置は、ベースレイヤを最優先にして復号する。なお、webページを構成するHTMLにスケーラブルなコンテンツであることを示す情報があれば、表示装置は、エンハンスメントレイヤまで復号してもよい。また、リアルタイム性を担保するために、選択される前又は通信帯域が非常に厳しい場合には、表示装置は、前方参照のピクチャ(Iピクチャ、Pピクチャ、前方参照のみのBピクチャ)のみを復号及び表示することで、先頭ピクチャの復号時刻と表示時刻との間の遅延(コンテンツの復号開始から表示開始までの遅延)を低減できる。また、表示装置は、ピクチャの参照関係を敢えて無視して全てのBピクチャ及びPピクチャを前方参照にして粗く復号し、時間が経ち受信したピクチャが増えるにつれて正常の復号を行ってもよい。
 [自動走行]
 また、車の自動走行又は走行支援のため2次元又は3次元の地図情報などの静止画又は映像データを送受信する場合、受信端末は、1以上のレイヤに属する画像データに加えて、メタ情報として天候又は工事の情報なども受信し、これらを対応付けて復号してもよい。なお、メタ情報は、レイヤに属してもよいし、単に画像データと多重化されてもよい。
 この場合、受信端末を含む車、ドローン又は飛行機などが移動するため、受信端末は、当該受信端末の位置情報を受信要求時に送信することで、基地局ex106~ex110を切り替えながらシームレスな受信及び復号を実現できる。また、受信端末は、ユーザの選択、ユーザの状況又は通信帯域の状態に応じて、メタ情報をどの程度受信するか、又は地図情報をどの程度更新していくかを動的に切り替えることが可能になる。
 以上のようにして、コンテンツ供給システムex100では、ユーザが送信した符号化された情報をリアルタイムでクライアントが受信して復号し、再生することができる。
 [個人コンテンツの配信]
 また、コンテンツ供給システムex100では、映像配信業者による高画質で長時間のコンテンツのみならず、個人による低画質で短時間のコンテンツのユニキャスト、又はマルチキャスト配信が可能である。また、このような個人のコンテンツは今後も増加していくと考えられる。個人コンテンツをより優れたコンテンツにするために、サーバは、編集処理を行ってから符号化処理を行ってもよい。これは例えば、以下のような構成で実現できる。
 撮影時にリアルタイム又は蓄積して撮影後に、サーバは、原画又は符号化済みデータから撮影エラー、シーン探索、意味の解析、及びオブジェクト検出などの認識処理を行う。そして、サーバは、認識結果に基いて手動又は自動で、ピントずれ又は手ブレなどを補正したり、明度が他のピクチャに比べて低い又は焦点が合っていないシーンなどの重要性の低いシーンを削除したり、オブジェクトのエッジを強調したり、色合いを変化させるなどの編集を行う。サーバは、編集結果に基いて編集後のデータを符号化する。また撮影時刻が長すぎると視聴率が下がることも知られており、サーバは、撮影時間に応じて特定の時間範囲内のコンテンツになるように上記のように重要性が低いシーンのみならず動きが少ないシーンなどを、画像処理結果に基き自動でクリップしてもよい。または、サーバは、シーンの意味解析の結果に基づいてダイジェストを生成して符号化してもよい。
 なお、個人コンテンツには、そのままでは著作権、著作者人格権、又は肖像権等の侵害となるものが写り込んでいるケースもあり、共有する範囲が意図した範囲を超えてしまうなど個人にとって不都合な場合もある。よって、例えば、サーバは、画面の周辺部の人の顔、又は家の中などを敢えて焦点が合わない画像に変更して符号化してもよい。また、サーバは、符号化対象画像内に、予め登録した人物とは異なる人物の顔が映っているかどうかを認識し、映っている場合には、顔の部分にモザイクをかけるなどの処理を行ってもよい。または、符号化の前処理又は後処理として、著作権などの観点からユーザが画像を加工したい人物又は背景領域を指定し、サーバは、指定された領域を別の映像に置き換える、又は焦点をぼかすなどの処理を行うことも可能である。人物であれば、動画像において人物をトラッキングしながら、顔の部分の映像を置き換えることができる。
 また、データ量の小さい個人コンテンツの視聴はリアルタイム性の要求が強いため、帯域幅にもよるが、復号装置は、まずベースレイヤを最優先で受信して復号及び再生を行う。復号装置は、この間にエンハンスメントレイヤを受信し、再生がループされる場合など2回以上再生される場合に、エンハンスメントレイヤも含めて高画質の映像を再生してもよい。このようにスケーラブルな符号化が行われているストリームであれば、未選択時又は見始めた段階では粗い動画だが、徐々にストリームがスマートになり画像がよくなるような体験を提供することができる。スケーラブル符号化以外にも、1回目に再生される粗いストリームと、1回目の動画を参照して符号化される2回目のストリームとが1つのストリームとして構成されていても同様の体験を提供できる。
 [その他の使用例]
 また、これらの符号化又は復号処理は、一般的に各端末が有するLSIex500において処理される。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化又は復号用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、又はハードディスクなど)に組み込み、そのソフトウェアを用いて符号化又は復号処理を行ってもよい。さらに、スマートフォンex115がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データはスマートフォンex115が有するLSIex500で符号化処理されたデータである。
 なお、LSIex500は、アプリケーションソフトをダウンロードしてアクティベートする構成であってもよい。この場合、端末は、まず、当該端末がコンテンツの符号化方式に対応しているか、又は、特定サービスの実行能力を有するかを判定する。端末がコンテンツの符号化方式に対応していない場合、又は、特定サービスの実行能力を有さない場合、端末は、コーデック又はアプリケーションソフトをダウンロードし、その後、コンテンツ取得及び再生する。
 また、インターネットex101を介したコンテンツ供給システムex100に限らず、デジタル放送用システムにも上記実施の形態及び各変形例の少なくとも動画像符号化装置(画像符号化装置)又は動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。衛星などを利用して放送用の電波に映像と音が多重化された多重化データを載せて送受信するため、コンテンツ供給システムex100のユニキャストがし易い構成に対してマルチキャスト向きであるという違いがあるが符号化処理及び復号処理に関しては同様の応用が可能である。
 [ハードウェア構成]
 図24は、スマートフォンex115を示す図である。また、図25は、スマートフォンex115の構成例を示す図である。スマートフォンex115は、基地局ex110との間で電波を送受信するためのアンテナex450と、映像及び静止画を撮ることが可能なカメラ部ex465と、カメラ部ex465で撮像した映像、及びアンテナex450で受信した映像等が復号されたデータを表示する表示部ex458とを備える。スマートフォンex115は、さらに、タッチパネル等である操作部ex466と、音声又は音響を出力するためのスピーカ等である音声出力部ex457と、音声を入力するためのマイク等である音声入力部ex456と、撮影した映像或いは静止画、録音した音声、受信した映像或いは静止画、メール等の符号化されたデータ、又は、復号化されたデータを保存可能なメモリ部ex467と、ユーザを特定し、ネットワークをはじめ各種データへのアクセスの認証をするためのSIMex468とのインタフェース部であるスロット部ex464とを備える。なお、メモリ部ex467の代わりに外付けメモリが用いられてもよい。
 また、表示部ex458及び操作部ex466等を統括的に制御する主制御部ex460と、電源回路部ex461、操作入力制御部ex462、映像信号処理部ex455、カメラインタフェース部ex463、ディスプレイ制御部ex459、変調/復調部ex452、多重/分離部ex453、音声信号処理部ex454、スロット部ex464、及びメモリ部ex467とがバスex470を介して接続されている。
 電源回路部ex461は、ユーザの操作により電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することによりスマートフォンex115を動作可能な状態に起動する。
 スマートフォンex115は、CPU、ROM及びRAM等を有する主制御部ex460の制御に基づいて、通話及データ通信等の処理を行う。通話時は、音声入力部ex456で収音した音声信号を音声信号処理部ex454でデジタル音声信号に変換し、これを変調/復調部ex452でスペクトラム拡散処理し、送信/受信部ex451でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex450を介して送信する。また受信データを増幅して周波数変換処理及びアナログデジタル変換処理を施し、変調/復調部ex452でスペクトラム逆拡散処理し、音声信号処理部ex454でアナログ音声信号に変換した後、これを音声出力部ex457から出力する。データ通信モード時は、本体部の操作部ex466等の操作によってテキスト、静止画、又は映像データが操作入力制御部ex462を介して主制御部ex460に送出され、同様に送受信処理が行われる。データ通信モード時に映像、静止画、又は映像と音声を送信する場合、映像信号処理部ex455は、メモリ部ex467に保存されている映像信号又はカメラ部ex465から入力された映像信号を上記実施の形態及び各変形例で示した動画像符号化方法によって圧縮符号化し、符号化された映像データを多重/分離部ex453に送出する。また、音声信号処理部ex454は、映像又は静止画等をカメラ部ex465で撮像中に音声入力部ex456で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex453に送出する。多重/分離部ex453は、符号化済み映像データと符号化済み音声データを所定の方式で多重化し、変調/復調部(変調/復調回路部)ex452、及び送信/受信部ex451で変調処理及び変換処理を施してアンテナex450を介して送信する。
 電子メール又はチャットに添付された映像、又はウェブページ等にリンクされた映像を受信した場合、アンテナex450を介して受信された多重化データを復号するために、多重/分離部ex453は、多重化データを分離することにより、多重化データを映像データのビットストリームと音声データのビットストリームとに分け、同期バスex470を介して符号化された映像データを映像信号処理部ex455に供給するとともに、符号化された音声データを音声信号処理部ex454に供給する。映像信号処理部ex455は、上記実施の形態及び各変形例で示した動画像符号化方法に対応した動画像復号化方法によって映像信号を復号し、ディスプレイ制御部ex459を介して表示部ex458から、リンクされた動画像ファイルに含まれる映像又は静止画が表示される。また音声信号処理部ex454は、音声信号を復号し、音声出力部ex457から音声が出力される。なおリアルタイムストリーミングが普及しているため、ユーザの状況によっては音声の再生が社会的にふさわしくない場も起こりえる。そのため、初期値としては、音声信号は再生せず映像データのみを再生する構成の方が望ましい。ユーザが映像データをクリックするなど操作を行った場合にのみ音声を同期して再生してもよい。
 またここではスマートフォンex115を例に説明したが、端末としては符号化器及び復号化器を両方持つ送受信型端末の他に、符号化器のみを有する送信端末、及び、復号化器のみを有する受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムにおいて、映像データに音声データなどが多重化された多重化データを受信又は送信するとして説明したが、多重化データには、音声データ以外に映像に関連する文字データなどが多重化されてもよいし、多重化データではなく映像データ自体が受信又は送信されてもよい。
 なお、CPUを含む主制御部ex460が符号化又は復号処理を制御するとして説明したが、端末はGPUを備えることも多い。よって、CPUとGPUで共通化されたメモリ、又は共通に使用できるようにアドレスが管理されているメモリにより、GPUの性能を活かして広い領域を一括して処理する構成でもよい。これにより符号化時間を短縮でき、リアルタイム性を確保し、低遅延を実現できる。特に動き探索、デブロックフィルタ、SAO(Sample Adaptive Offset)、及び変換・量子化の処理を、CPUではなく、GPUでピクチャなどの単位で一括して行うと効率的である。
 本開示は、例えば、テレビジョン受像機、デジタルビデオレコーダー、カーナビゲーション、携帯電話、デジタルカメラ、または、デジタルビデオカメラ等に利用可能である。
 100 符号化装置
 102 分割部
 104 減算部
 106 変換部
 108 量子化部
 110 エントロピー符号化部
 112、204 逆量子化部
 114、206 逆変換部
 116、208 加算部
 118、210 ブロックメモリ
 120、212 ループフィルタ部
 122、214 フレームメモリ
 124、216 イントラ予測部
 126、218 インター予測部
 128、220 予測制御部
 200 復号装置
 202 エントロピー復号部

Claims (8)

  1.  ピクチャの符号化対象ブロックを符号化する符号化装置であって、
     プロセッサ及びメモリを備え、前記プロセッサは前記メモリを用いて、
     前記符号化対象ブロックにイントラ予測を用いるか否かを判定し、
     前記符号化対象ブロックにイントラ予測を用いると判定した場合、
     (i)第1の変換基底を用いて前記符号化対象ブロックの残差信号に第1の変換を行うことにより第1の変換係数を生成し、
     (ii-1)前記符号化対象ブロックのイントラ予測モードが所定モードであり、かつ、前記第1の変換基底が所定変換基底と異なる場合は、前記第1の変換係数を量子化し、
     (ii-2)前記符号化対象ブロックのイントラ予測モードが前記所定モードでない場合、又は、前記第1の変換基底が前記所定変換基底と一致する場合は、第2の変換基底を用いて前記第1の変換係数に第2の変換を行うことにより第2の変換係数を生成し、前記第2の変換係数を量子化する、
     符号化装置。
  2.  前記所定モードは、非方向性予測モードである、
     請求項1に記載の符号化装置。
  3.  前記所定変換基底は、タイプIIの離散コサイン変換の基底である、
     請求項1又は2に記載の符号化装置。
  4.  ピクチャの符号化対象ブロックを符号化する符号化方法であって、
     前記符号化対象ブロックにイントラ予測を用いるか否かを判定し、
     前記符号化対象ブロックにイントラ予測を用いると判定した場合、
     (i)第1の変換基底を用いて前記符号化対象ブロックの残差信号に第1の変換を行うことにより第1の変換係数を生成し、
     (ii-1)前記符号化対象ブロックのイントラ予測モードが所定モードであり、かつ、前記第1の変換基底が所定変換基底と異なる場合は、前記第1の変換係数を量子化し、
     (ii-2)前記符号化対象ブロックのイントラ予測モードが前記所定モードでない場合、又は、前記第1の変換基底が前記所定変換基底と一致する場合は、第2の変換基底を用いて前記第1の変換係数に第2の変換を行うことにより第2の変換係数を生成し、前記第2の変換係数を量子化する、
     符号化方法。
  5.  ピクチャの復号対象ブロックを復号する復号装置であって、
     プロセッサ及びメモリを備え、前記プロセッサは前記メモリを用いて、
     前記復号対象ブロックにイントラ予測を用いるか否かを判定し、
     前記復号対象ブロックにイントラ予測を用いると判定した場合、前記復号対象ブロックのイントラ予測モードが所定モードであるか否か、及び、前記復号対象ブロックのための第1の逆変換基底が所定逆変換基底と一致するか否かを判定し、
     前記イントラ予測モードが前記所定モードでない場合、又は、前記第1の逆変換基底が前記所定逆変換基底と一致する場合は、前記復号対象ブロックの逆量子化された係数に、第2の逆変換基底を用いて第2の逆変換を行い、さらに前記第1の逆変換基底を用いて第1の逆変換を行い、
     前記イントラ予測モードが前記所定モードであり、かつ、前記第1の逆変換基底が前記所定逆変換基底と異なる場合は、前記第2の逆変換をスキップし、前記復号対象ブロックの逆量子化された係数に、前記第1の逆変換基底を用いて第1の逆変換を行う、
     復号装置。
  6.  前記所定モードは、非方向性予測モードである、
     請求項5に記載の復号装置。
  7.  前記所定逆変換基底は、タイプIIの離散コサイン変換の逆変換の基底である、
     請求項5又は6に記載の復号装置。
  8.  ピクチャの復号対象ブロックを復号する復号方法であって、
     前記復号対象ブロックにイントラ予測を用いるか否かを判定し、
     前記復号対象ブロックにイントラ予測を用いると判定した場合、前記復号対象ブロックのイントラ予測モードが所定モードであるか否か、及び、前記復号対象ブロックのための第1の逆変換基底が所定逆変換基底と一致するか否かを判定し、
     前記イントラ予測モードが前記所定モードでない場合、又は、前記第1の逆変換基底が前記所定逆変換基底と一致する場合は、前記復号対象ブロックの逆量子化された係数に、第2の逆変換基底を用いて第2の逆変換を行い、さらに前記第1の逆変換基底を用いて第1の逆変換を行い、
     前記イントラ予測モードが前記所定モードであり、かつ、前記第1の逆変換基底が前記所定逆変換基底と異なる場合は、前記第2の逆変換をスキップし、前記復号対象ブロックの逆量子化された係数に、前記第1の逆変換基底を用いて第1の逆変換を行う、
     復号方法。
PCT/JP2018/020656 2017-06-01 2018-05-30 符号化装置、符号化方法、復号装置及び復号方法 WO2018221553A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019521252A JP6767579B2 (ja) 2017-06-01 2018-05-30 符号化装置、符号化方法、復号装置及び復号方法
US16/697,525 US11044481B2 (en) 2017-06-01 2019-11-27 Encoder, encoding method, decoder, and decoding method
US17/188,448 US11375207B2 (en) 2017-06-01 2021-03-01 Encoder, encoding method, decoder, and decoding method
US17/737,594 US11818362B2 (en) 2017-06-01 2022-05-05 Encoder, encoding method, decoder, and decoding method
US18/376,618 US12096005B2 (en) 2017-06-01 2023-10-04 Encoder, encoding method, decoder, and decoding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762513637P 2017-06-01 2017-06-01
US62/513,637 2017-06-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/697,525 Continuation US11044481B2 (en) 2017-06-01 2019-11-27 Encoder, encoding method, decoder, and decoding method

Publications (1)

Publication Number Publication Date
WO2018221553A1 true WO2018221553A1 (ja) 2018-12-06

Family

ID=64455801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020656 WO2018221553A1 (ja) 2017-06-01 2018-05-30 符号化装置、符号化方法、復号装置及び復号方法

Country Status (4)

Country Link
US (4) US11044481B2 (ja)
JP (4) JP6767579B2 (ja)
TW (1) TW201911865A (ja)
WO (1) WO2018221553A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221554A1 (ja) * 2017-06-01 2018-12-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 符号化装置、符号化方法、復号装置及び復号方法
JP6767579B2 (ja) 2017-06-01 2020-10-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 符号化装置、符号化方法、復号装置及び復号方法
WO2019009129A1 (ja) * 2017-07-03 2019-01-10 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 符号化装置、復号装置、符号化方法及び復号方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013176111A (ja) * 2013-04-10 2013-09-05 Toshiba Corp 画像復号化装置
US20170094314A1 (en) * 2015-09-29 2017-03-30 Qualcomm Incorporated Non-separable secondary transform for video coding with reorganizing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011127964A2 (en) * 2010-04-13 2011-10-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus for intra predicting a block, apparatus for reconstructing a block of a picture, apparatus for reconstructing a block of a picture by intra prediction
KR101549912B1 (ko) * 2011-10-17 2015-09-03 주식회사 케이티 화면 내 예측 모드에 기초한 적응적인 변환 방법 및 이러한 방법을 사용하는 장치
WO2013154366A1 (ko) * 2012-04-12 2013-10-17 주식회사 팬택 블록 정보에 따른 변환 방법 및 이러한 방법을 사용하는 장치
US9501865B2 (en) * 2013-09-13 2016-11-22 Nvidia Corporation System, method, and computer program product for determining a quantity of light received by an element of a scene
CN116915985A (zh) * 2016-10-04 2023-10-20 Lx 半导体科技有限公司 图像编码/解码方法和发送方法
JP6767579B2 (ja) 2017-06-01 2020-10-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 符号化装置、符号化方法、復号装置及び復号方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013176111A (ja) * 2013-04-10 2013-09-05 Toshiba Corp 画像復号化装置
US20170094314A1 (en) * 2015-09-29 2017-03-30 Qualcomm Incorporated Non-separable secondary transform for video coding with reorganizing

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANKUR, SAXENA AND FELIX, C. FERNANDES: "On secondary transforms for intra/inter prediction residual", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) 9TH MEETING, vol. JCTVC-I0232-v3.zip, 7 May 2012 (2012-05-07), Geneva *
CHEN, JIANLE ET AL.: "Algorithm description of joint exploration test model 6 (JEM 6)", JOINT VIDEO EXPLORATION TEAM (JVET) 6TH MEETING: JVET-F1001-V2.ZIP, 31 May 2017 (2017-05-31), Hobart *
SHIBAHARA, JOUJI., NISHI, TAKAHIRO: "CE9: Mode dependent 2-step transform for intra coding", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) 5TH MEETING: JCTVC-E074-V2.ZIP, 23 May 2011 (2011-05-23), Geneva *
ZHAO, X. ET AL.: "EE2.7: TU-level non-seperable secondary transform", JOINT VIDEO EXPLORATION TEAM (JVET) 3RD MEETING, vol. JVET-C0053-v3.zip, 1 June 2016 (2016-06-01), Geneva *

Also Published As

Publication number Publication date
US11818362B2 (en) 2023-11-14
JP2022173390A (ja) 2022-11-18
JP7149995B2 (ja) 2022-10-07
TW201911865A (zh) 2019-03-16
US20210185327A1 (en) 2021-06-17
JP7314382B2 (ja) 2023-07-25
JP2020198655A (ja) 2020-12-10
US12096005B2 (en) 2024-09-17
US20240031581A1 (en) 2024-01-25
JP6767579B2 (ja) 2020-10-14
US11044481B2 (en) 2021-06-22
US11375207B2 (en) 2022-06-28
JPWO2018221553A1 (ja) 2020-04-02
US20200099938A1 (en) 2020-03-26
US20220264112A1 (en) 2022-08-18
JP2023126387A (ja) 2023-09-07

Similar Documents

Publication Publication Date Title
WO2018199051A1 (ja) 符号化装置、復号装置、符号化方法および復号方法
WO2018181448A1 (ja) 画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法
WO2018212110A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
WO2019208677A1 (ja) 符号化装置、復号装置、符号化方法および復号方法
WO2019151279A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
WO2018021374A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
JP2019017066A (ja) 符号化装置、復号装置、符号化方法及び復号方法
WO2018221631A1 (ja) 符号化装置、復号装置、符号化方法および復号方法
JPWO2018190207A1 (ja) 復号装置、復号方法及びプログラム
WO2018101288A1 (ja) 符号化装置、符号化方法、復号装置および復号方法
WO2018190207A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
WO2019155971A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
WO2019208372A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
JP7026747B2 (ja) 復号装置及び復号方法
WO2019189346A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
WO2018212111A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
WO2018199050A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
WO2019221103A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
WO2018225594A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
WO2019151284A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
WO2018225593A1 (ja) 符号化装置、復号装置、符号化方法および復号方法
WO2018097115A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
WO2019189344A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
JP2020198655A (ja) 復号装置及び復号方法
WO2018105579A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809286

Country of ref document: EP

Kind code of ref document: A1