WO2018221132A1 - ベンチュリスクラバー装置およびその運転方法 - Google Patents
ベンチュリスクラバー装置およびその運転方法 Download PDFInfo
- Publication number
- WO2018221132A1 WO2018221132A1 PCT/JP2018/017806 JP2018017806W WO2018221132A1 WO 2018221132 A1 WO2018221132 A1 WO 2018221132A1 JP 2018017806 W JP2018017806 W JP 2018017806W WO 2018221132 A1 WO2018221132 A1 WO 2018221132A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scrubber
- rod
- rods
- venturi
- venturi scrubber
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D47/00—Separating dispersed particles from gases, air or vapours by liquid as separating agent
- B01D47/10—Venturi scrubbers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/18—Absorbing units; Liquid distributors therefor
Definitions
- the present invention relates to a venturi scrubber device and an operating method thereof, and more particularly, to a venturi scrubber device used for removing dust contained in gas and an operating method thereof.
- the rod type scrubber rods arranged at regular intervals pass through the gap between the processing gas and liquid particles containing dust and remove the dust contained in the processing gas by the collision of the dust and liquid particles.
- a venturi scrubber device is known (see Patent Document 1).
- Such a venturi scrubber device increases or decreases the number of scrubber rods according to the processing gas flow rate per unit time, so that the processing gas passes through the gap between the scrubber rods even under different conditions.
- the passage speed is constant, and a constant dust removal efficiency can be maintained.
- venturi scrubber device in order to change the number of scrubber rods, it is necessary to temporarily stop the operation of the venturi scrubber device. For this reason, when the flow rate of the processing gas fluctuates during operation of the venturi scrubber device, it is necessary to temporarily stop the device and increase or decrease the number of scrubber rods. As a result, the venturi scrubber device has a problem that it cannot be operated continuously under working conditions in which the amount of processing gas varies.
- the present invention has been made in view of the above points, and maintains the speed of the processing gas passing between the scrubber rods constant without stopping the operation even under working conditions in which the amount of the processing gas varies. It is an object of the present invention to provide a venturi scrubber device that can be operated and a method of operating the same.
- a plurality of cylindrical scrubber rods arranged substantially in parallel at intervals; A rotation mechanism that rotates each of the scrubber rods synchronously about a longitudinal central axis; and
- the scrubber rod has an oval cross-sectional shape;
- a venturi scrubber device is provided.
- the scrubber rod rotates around the central axis in the longitudinal direction, so that the adjacent scrubber rods It is possible to change the interval. Since the above rotation of the scrubber rod is possible even during operation of the venturi scrubber device, the above configuration is a process of changing between the scrubber rods and passing between the scrubber rods even during operation of the venturi scrubber device. It becomes possible to change the gas flow rate.
- the rotation mechanism includes a link mechanism to which a tip side portion of each scrubber rod is connected, and an actuator that operates the link mechanism.
- each scrubber rod since each scrubber rod is connected to the link mechanism that is operated by the actuator, each scrubber rod can be moved simultaneously by the operation of the actuator.
- the link mechanism includes an elongated rotary shaft bracket whose longitudinal center portion is fixed to the tip side of each scrubber rod, a first connecting rod that connects one end side portion of each rotary shaft bracket, and each rotary shaft bracket.
- each scrubber rod can be rotated synchronously with a simple configuration of the rotary shaft bracket and the first and second connecting rods.
- the actuator has an output shaft;
- the output shaft is fixed to a longitudinal central portion of the elongated actuator bracket;
- the actuator bracket has a first end portion and a second end portion that are swingably connected to the first and second connecting rods.
- the scrubber rod has a round bar-shaped rotating shaft and a scrubber collar having an oval contour shape that is detachably attached to the outer periphery of the rotating shaft.
- the scrubber collar in contact with the processing gas can be exchanged. Therefore, when it is necessary to change the material of the scrubber rod in order to process the processing gas with different characteristics, only the scrubber collar which is the outer part can be replaced with one corresponding to the characteristics of the processing gas. The cost required for changing the rod is reduced.
- a differential pressure gauge for detecting a differential pressure between the upstream side and the downstream side of the scrubber rod is further provided.
- the venturi scrubber device can be operated so that the differential pressure between the upstream side and the downstream side of the scrubber rod is constant.
- a control unit for controlling the operation of the venturi scrubber device controls the operation of the actuator based on the detection result of the differential pressure gauge, and rotates each scrubber rod about the longitudinal axis via the link mechanism.
- a method of operating a venturi scrubber device comprising a plurality of scrubber rods, Measuring the differential pressure upstream and downstream of the scrubber rod;
- the control unit comprises a step rod having an oval cross-sectional shape and rotating about a longitudinal axis so that the measured differential pressure becomes a preset control value.
- the interval between the scrubber rods can be changed to control the flow rate of the processing gas.
- the control unit rotates the scrubber rod by operating an actuator.
- a venturi scrubber device capable of maintaining a constant speed of a processing gas passing between scrubber rods without stopping the operation even under working conditions in which the amount of the processing gas varies, and its operation A method is provided.
- FIG. 1 It is a longitudinal cross-sectional view which shows typically the structure of the venturi scrubber apparatus of the preferable aspect of this invention. It is a schematic top view of the dust removal mechanism of a venturi scrubber device. It is a side view from the right direction of FIG. It is drawing which shows the scrubber color which comprises the scrubber rod of FIG. 1, (a) is a side view, (b) is a top view, (c) is a front view. (A) thru
- FIG. 1 It is the figure which showed the relationship between the plane angle (angle which a long axis turns into a perpendicular direction) and the space
- FIG. 1 It is the same longitudinal cross-sectional view as FIG. 1 which shows typically the structure of the venturi scrubber of other preferable embodiment.
- FIG. 1 is a longitudinal sectional view schematically showing the configuration of the venturi scrubber device 1.
- the venturi scrubber device of the present embodiment is a device that removes dust from the processing gas.
- the processing gas to be processed by the venturi scrubber device of the present embodiment is not limited to any kind, but the venturi scrubber of the present embodiment is particularly suitable when it has flammability and toxicity. Specifically, it is suitable for treatment of gas generated in a gasification facility using biomass as a raw material.
- the venturi scrubber device 1 includes a prismatic casing 2.
- a processing gas introduction port 4 is provided on one side surface of the upper portion of the housing 2, and a processing gas discharge port 6 is provided on the other side surface.
- the internal space 10 of the housing 2 is divided into an inlet-side processing chamber 12 and a discharge-side processing chamber 14 by a partition wall 8 extending downward from the center position in the width direction of the top plate 2a of the housing 2.
- An introduction port 4 is formed in the upper part of the introduction port side processing chamber 12, and a discharge port 6 is arranged in the upper part of the discharge side processing chamber 14.
- the partition wall 8 terminates without reaching the lower end of the internal space of the housing 2.
- the inlet-side processing chamber 12 and the discharge-side processing chamber 14 are in fluid communication via the communication region 16 at the lower end portion of the internal space 10 of the housing 2.
- the processing gas introduced from the inlet 4 as indicated by the arrow A flows downward in the discharge side processing chamber 14 and passes through the communication region 16 from the lower part of the discharge side processing chamber 14. Then, it flows into the lower part of the discharge side processing chamber 14, further flows upward through the discharge side processing chamber 14, and is discharged from the discharge port 6 to the upper part of the discharge side processing chamber 14 as indicated by an arrow B. .
- a spray nozzle 18 is provided at each of the upper positions inside the inlet-side processing chamber 12 and the discharge-side processing chamber 14. From the upper portions of the inlet-side processing chamber 12 and the discharge-side processing chamber 14, the inlet side Water is sprayed toward the processing gas flowing in the processing chamber 12 and the discharge-side processing chamber 14.
- a drain port 20 for discharging water from the internal space 10 (inlet side processing chamber 12 and discharge side processing chamber 14) is provided at the lower part of the housing 2, and the drain port 20 is a water storage tank 22 for storing waste water.
- a plurality of scrubber rods 24 for removing dust from the processing gas are arranged at an intermediate position in the height direction of the inlet side processing chamber 12.
- the plurality of scrubber rods 24 are installed in a state of blocking the flow of the processing gas flowing downward in the introduction port side processing chamber 12.
- the scrubber rod 24 constitutes a soot removal mechanism 26 that removes soot from the processing gas.
- the scrubber rod 24 is connected to a motor 28 that is an actuator for rotating the scrubber rod 24.
- the motor (servo motor) 28 is connected to a control unit 30 that controls its operation.
- the control unit 30 detects a pressure difference between the inlet side processing chamber 12 and the discharge side processing chamber 14.
- a pressure gauge 31 is connected.
- FIG. 2 is a schematic plan view of the dust removal mechanism 26, and FIG. 3 is a side view from the right direction of FIG.
- FIG. 4 is a drawing showing a scrubber collar constituting the scrubber rod 24, wherein (a) is a side view, (b) is a plan view, and (c) is a front view.
- the scrubber rod 24 has an elongated cylindrical rotary shaft 32 and a scrubber collar 34 detachably attached to the rotary shaft 32 at the outer peripheral portion on the tip end side.
- a scrubber collar 34 detachably attached to the rotary shaft 32 at the outer peripheral portion on the tip end side.
- two scrubber collars 34 are attached to one rotating shaft 32 in series.
- the number of scrubber collars attached to the rotating shaft 32 is not limited to two.
- each scrubber rod 24 is rotatably attached to a scrubber rod plate 37 through a bearing 36 at the tip.
- the scrubber rod plate 37 is a frame-shaped support plate that is attached so as to cross the introduction port side processing chamber 12 at the center position in the height direction of the introduction port side processing chamber 12.
- the number of scrubber rods 24 included in the dust removal mechanism 26 can be appropriately changed depending on the size of the venturi scrubber device 1.
- the dust removal mechanism 26 includes a rotation mechanism that rotates (spins) each scrubber rod 24 in synchronization with the central axis in the longitudinal direction.
- Each scrubber rod 24 has a base end side coupled to a rotation mechanism, and the rotation mechanism has a link mechanism to which a base end side portion of each scrubber rod is connected.
- each scrubber rod 24 is supported by a bearing 40 having a base end portion attached to a bearing plate 38, and the base end is fixed to a central portion in the longitudinal direction of a rotary shaft bracket 42 having an elongated shape. Further, as shown in FIG. 3, the first connecting rod 44 that connects one end portion of each rotating shaft bracket 42 and the second connecting rod that connects the other end portion of each rotating shaft bracket 42. 46 is provided.
- the rotary shaft brackets 42 are arranged in parallel with each other, and both ends of the rotary shaft brackets 42 are connected to the first and second connecting rods 44 and 46 so as to be rotatable (swingable) about the connecting portion 42a. As a result, each rotary shaft bracket 42 is rotated (oscillated) around the central position in the longitudinal direction as the first or second connecting rods 44 and 46 move in the longitudinal direction.
- One end portions of the first and second connecting rods 44 and 46 are connected to an actuator bracket 48 having the same size and shape as the rotary shaft bracket 42. Both ends of the actuator bracket 48 are coupled to the first and second coupling rods 44 and 46 so as to be rotatable (swingable) about the coupling portion 48a, similarly to the both ends of the rotary shaft bracket 42. .
- the actuator bracket 48 is configured such that the output shaft 52 of the motor 28 as an actuator is fixed at the center in the longitudinal direction, and can be rotated around the center portion in the longitudinal direction by the motor 28.
- the mechanism that enables all the scrubber rods 24 to rotate in the same direction in this manner is referred to as a link mechanism, and in this embodiment, the rotating shaft bracket 42 and the first and second connecting rods 44. , 46 and the actuator bracket 48 constitute a link mechanism.
- the present invention is not limited to this, and other forms may be employed as long as the scrubber rod 24 moves in synchronization.
- the scrubber collar 34 has an elliptical (ellipsoidal) columnar shape as shown in FIG. 4A, and includes an opening 34a extending along the longitudinal central axis.
- the opening 34a has a dimension and shape that allows the rotary shaft 32 to be fitted and inserted.
- the scrubber collar 34 further has a screw hole 34b that allows the opening 34a to communicate with the outside on the side wall. With such a configuration, the scrubber collar 34 can be detachably fixed to the rotary shaft 32 by screwing a bolt into the screw hole 34b from the outside while the rotary shaft 32 is inserted into the opening 34a. .
- the material of the material constituting the scrubber collar 34 different materials can be selected according to the characteristics of the processing gas.
- a rigid body such as metal is used when it is necessary to prevent wear caused by dust in the processing gas, and a corrosion-resistant member such as stainless steel is used when the corrosion prevention effect due to corrosive gas is required. Used.
- a fluororesin is used when it is necessary to prevent adhesion of dust or the like in the processing gas.
- FIGS. 5A to 5E are diagrams schematically showing the state of the gaps between the scrubber rods 24 when the scrubber rods are rotated 90 ° by the motor 28.
- FIG. 5A to 5E are diagrams schematically showing the state of the gaps between the scrubber rods 24 when the scrubber rods are rotated 90 ° by the motor 28.
- FIG. 5A shows a state in which the scrubber rod is arranged at a rotational position (angular position) in which the long axis M of the ellipse constituting the cross section is oriented in the vertical direction by the operation of the motor. In this state, the gap between adjacent scrubber rods is the widest.
- FIG. 6 is a view showing the relationship between the scrubber rod plane angle (angle formed by the long axis and the vertical direction) and the scrubber rod interval (gap) when the scrubber rod is rotated as shown in FIG. Yes, the distance between the adjacent scrubber rods when the plane angle of the scrubber rods changes from 0 ° to 90 ° is shown continuously.
- the processing gas introduced from the inlet 4 as indicated by the arrow A flows downward in the discharge-side processing chamber 14.
- Water is sprayed from the spray nozzle 18 to the processing gas flowing downward in the discharge-side processing chamber 14, and the processing gas in a high temperature state is cooled.
- the processing gas is passed through the gap between the adjacent scrubber rods 24 of the dust removal mechanism 26 provided at the center of the housing 2.
- the dust contained in the processing gas and the water particles sprayed from the spray nozzle 18 collide with each other, and the dust in the gas is taken into the water particles. And the water particle which took in soot falls as a water droplet, falls in the water storage tank 22, and is collect
- the processing gas purified by the dust removal mechanism 26 including the scrubber rod 24 flows from the lower part of the discharge side processing chamber 14 through the communication region 16 to the lower part of the discharge side processing chamber 14, and further, the discharge side processing chamber 14. And is discharged to the outside from the discharge port 6 at the upper part of the discharge side processing chamber 14 as indicated by an arrow B.
- the processing gas is cooled by water from the spray nozzle 18 even when flowing upward in the discharge-side processing chamber 14.
- the gap between the scrubber rods 24 of the dust removal mechanism 26 can be changed by rotating (spinning) the scrubber rods 24 according to the change in the amount of processing gas.
- the angular position of the scrubber rod 24 is controlled by the control unit 30 so that the numerical value of the differential pressure gauge 31 that detects the differential pressure between the upstream side and the downstream side of the scrubber rod 24 becomes a preset management value.
- the differential pressure gauge 31 and the motor 28 that drives the scrubber rod 24 by a link mechanism are connected to a control unit 30 that stores a preset management value.
- the management value set in advance is a numerical value set by the administrator as the optimum value of the differential pressure between the upstream side and the downstream side of the scrubber rod 24.
- the control unit 30 compares the control value with the measured value of the differential pressure value. If the measured value is high, the control unit 30 moves the scrubber rod 24 by the motor 28 and the link mechanism so as to widen the gap between the scrubber rods 24. Rotate. Further, when the actual measurement value is small, the control unit 30 rotates the scrubber rod 24 by the motor 28 and the link mechanism so as to narrow the gap between the scrubber rods 24.
- FIG. 7 is a schematic drawing showing the water flow in the venturi scrubber device and wastewater treatment.
- the venturi scrubber device 100 of FIG. 7 has a configuration in which two venturi scrubber devices 1 of the above embodiment are connected in series. Accordingly, two dust removal mechanisms 26 are provided.
- the water sprayed from the spray nozzle 18 of the venturi scrubber device 100 is stored in the water storage tank 22 through the drain port 20. Waste water collected in the water storage tank 22 is separated into a supernatant liquid and a precipitation liquid in the water storage tank 22 by natural sedimentation.
- a part of the supernatant of the waste water is sent to the cooling tower 104 by the liquid feed pump 102, cooled in the cooling tower 104, and then returned to the water tank 22.
- the other part of the supernatant is supplied to the spray nozzle 18 by another liquid feed pump 106 and reused as spray water.
- the sediment solution at the lower part of the water storage tank 22 is supplied to the waste water treatment unit 110 by the dedicated liquid feed pump 108, processed by the waste water treatment unit 110, and then discharged to the outside.
- the water tank 22 is configured such that clean water 112 is added so that the water storage level is constant.
- FIG. 8 is a diagram showing a detailed configuration of the wastewater treatment unit 110.
- the wastewater treatment unit 110 uses a precoat vacuum filtration device 114 that is optimal for treating wastewater from exhaust gas treatment.
- a liquid in which a precoat material for example, diatomaceous earth
- a precoat tank 118 is precoated.
- a pre-coat layer is formed on the filter drum 116 by supplying a pump to the treatment tank 120 of the vacuum filtration device and evacuating the inside of the filter drum 116 with a vacuum pump 122.
- the waste liquid is supplied from the water storage tank 22 to the waste liquid storage tank 124, and after being put into a state in which it is easy to form a floc by chemical treatment, the waste liquid is supplied to the processing tank 120 of the precoat type vacuum filtration device by a pump. Thereafter, the pressure inside the filter drum 116 is reduced by the vacuum pump 122, and the precoat layer formed on the filter drum 116 captures the fine particles in the waste liquid. The trapped fine particles in the waste liquid form a cake layer.
- the scraper 126 is moved toward the cake layer at a predetermined speed to scrape the cake layer.
- the surface layer of the precoat layer is also scraped off together with the cake layer, a new surface of the precoat layer is exposed, and the solid-liquid separation operation can be continuously performed.
- FIG. 9 is a longitudinal sectional view similar to FIG. 1 schematically showing the configuration of a venturi scrubber device 200 of another preferred embodiment.
- venturi scrubber device 200 is characterized in that it includes a pre-dust removal mechanism 202.
- the pre-dust removal mechanism 202 is effective when the processing gas is very contaminated. This is because if a very contaminated processing gas is processed with a normal rod scrubber, the gap between the rod scrubbers may be blocked.
- an S-shaped impeller as shown in FIG. 9 is used.
- this venturi scrubber device 200 water is stored in a lower part of the device up to a certain level height position.
- An S-shaped impeller is provided between the height position of the surface of the water and the vertical partition of the venturi scrubber device (FIG. 9).
- the S-shaped impeller has two semi-cylindrical members.
- the two semi-cylindrical members are arranged in a state in which the openings extending in the radial direction are opposed to each other and are offset from each other in the radial direction.
- the space between the two semi-cylindrical members becomes an S-shaped flow path.
- the principle of dust removal of the S-shaped impeller is that the process gas flows from the top to the bottom of the venturi scrubber device, reverses at the bottom of the venturi scrubber device, and passes through the S-shaped impeller. Bubbles are generated at the portion where the lower water and the S-shaped impeller are in contact. This bubble exhibits an action of removing coarse dusts in the processing gas. And by using this S-shaped impeller, possibility that the clearance gap between rod scrubbers will be reduced is reduced.
- the radial cross-sectional shape of the scrubber rod is an ellipse, but may be another ellipse shape or a flat eccentric shape.
- a motor is used as an actuator, but other actuators such as a hydraulic cylinder, a pneumatic cylinder, and an electric cylinder may be used.
- Electric cylinders and servo motors have the advantage that the structure of the actuator is simplified because piping and hydraulic pumps are not required.
- Venturi scrubber device 2 Case 4: Inlet 6: Outlet 8: Partition 12: Inlet side processing chamber 14: Outlet side processing chamber 16: Communication area 18: Spray nozzle 20: Drain port 22: Water tank 24 : Scrubber rod 26: Dust removal mechanism 28: Motor (actuator) 30: Control unit 32: Differential pressure gauge 34: Scrubber collar 36: Bearing 38: Bearing plate 40: Bearing 42: Rotating shaft bracket 44: First connecting rod 46: Second connecting rod 48: Actuator bracket 50: Output shaft
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation Of Particles Using Liquids (AREA)
- Treating Waste Gases (AREA)
Abstract
本発明は、ガス中に含まれる煤塵を除去するために用いられるベンチュリスクラバー装置(1)であって、間隔をおいて略平行に配置された円柱状の複数のスクラバーロッド(24)と、スクラバーロッドの各々を、長手方向中央軸線を中心に同期して回転させる回転機構(28)と、を備え、スクラバーロッドが長円形状の断面形状を有しているベンチュリスクラバー装置に関する。
Description
本発明は、ベンチュリスクラバー装置およびその運転方法に関し、詳細には、ガス中に含まれる煤塵を除去するために用いられるベンチュリスクラバー装置およびその運転方法に関する。
一定間隔で配置した複数の丸棒状のスクラバーロッド間の間隙を、煤塵を含む処理ガスと液粒子を通過させ、煤塵と液粒子との衝突により処理ガス中に含まれる煤塵を除去するロッド式のベンチュリスクラバー装置が知られている(特許文献1参照)。
このようなベンチュリスクラバー装置は、単位時間当たりの処理ガス流量に応じて、スクラバーロッドの本数を増減することによって、処理ガス流量が異なった条件下でも、処理ガスがスクラバーロッド間の間隙を通過する通過速度を一定とし、一定の除塵効率を維持することができるようにしている。
しかしながら、上記ベンチュリスクラバー装置では、スクラバーロッドの本数を変更するためには、ベンチュリスクラバー装置の作動を、一旦、停止する必要がある。このため、ベンチュリスクラバー装置の稼働中に、処理ガスの流量が変動した場合には、一旦、装置を停止させて、スクラバーロッド数を増減する必要があった。この結果、上記ベンチュリスクラバー装置は、処理ガス量が変動する作業条件下では、連続運転することができないという問題点があった。
本発明はこのような点に鑑みてなされたものであり、処理ガス量が変動する作業条件下においても、運転を停止することなく、スクラバーロッド間を通過する処理ガスの速度を一定に維持することが可能なベンチュリスクラバー装置およびその運転方法を提供することを目的とする。
本発明によれば、
間隔をおいて略平行に配置された円柱状の複数のスクラバーロッドと、
前記スクラバーロッドの各々を、長手方向中央軸線を中心に同期して回転させる回転機構と、を備え、
前記スクラバーロッドが長円形状の断面形状を有している、
ことを特徴とするベンチュリスクラバー装置が提供される。
間隔をおいて略平行に配置された円柱状の複数のスクラバーロッドと、
前記スクラバーロッドの各々を、長手方向中央軸線を中心に同期して回転させる回転機構と、を備え、
前記スクラバーロッドが長円形状の断面形状を有している、
ことを特徴とするベンチュリスクラバー装置が提供される。
このような構成によれば、間隔をおいて略平行に配置されたスクラバーロッドの断面が長円形状であるため、スクラバーロッドが長手方向中央軸線を中心として回転することにより、隣接するスクラバーロッドとの間隔を変更することが可能となる。スクラバーロッドの上記回転は、ベンチュリスクラバー装置の運転中においても可能であるので、上記構成は、ベンチュリスクラバー装置の運転中においても、スクラバーロッドとの間隙を変更して、スクラバーロッド間を通過する処理ガス流量を変化させることが可能となる。
本発明の他の好ましい態様によれば、
前記回転機構が、前記各スクラバーロッドの先端側部分が接続されたリンク機構と、該リンク機構を作動させるアクチュエータとを備えている。
前記回転機構が、前記各スクラバーロッドの先端側部分が接続されたリンク機構と、該リンク機構を作動させるアクチュエータとを備えている。
このような構成によれば、各スクラバーロッドが、アクチュエータによって作動するリンク機構に連結されているので、アクチュエータの作動で各スクラバーロッドを同時に動かすことができる。
本発明の他の好ましい態様によれば、
前記リンク機構は、前記各スクラバーロッドの先端側に長手方向中央部分が固定された細長い回転軸ブラケットと、各回転軸ブラケットの一端側部分を接続する第1の連結ロッドと、各回転軸ブラケットの他端側部分を接続する第2の連結ロッドと、を有し、
前記第1および第2の連結ロッドが、前記各回転軸ブラケットの一端側部分および他端側部分を揺動可能に連結している。
前記リンク機構は、前記各スクラバーロッドの先端側に長手方向中央部分が固定された細長い回転軸ブラケットと、各回転軸ブラケットの一端側部分を接続する第1の連結ロッドと、各回転軸ブラケットの他端側部分を接続する第2の連結ロッドと、を有し、
前記第1および第2の連結ロッドが、前記各回転軸ブラケットの一端側部分および他端側部分を揺動可能に連結している。
このような構成によれば、回転軸ブラケットと、第1および第2の連結ロッドという簡単な構成で、各スクラバーロッドを同期して回転させることが可能となる。
本発明の他の好ましい態様によれば、
前記アクチュエータが出力軸を有し、
該出力軸が、細長いアクチュエータブラケットの長手方向中央部分に固定され、
前記アクチュエータブラケットは、一端側部分および他端側部分が、前記第1および第2の連結ロッドに揺動可能に連結されている。
前記アクチュエータが出力軸を有し、
該出力軸が、細長いアクチュエータブラケットの長手方向中央部分に固定され、
前記アクチュエータブラケットは、一端側部分および他端側部分が、前記第1および第2の連結ロッドに揺動可能に連結されている。
このような構成によれば、細長いアクチュエータブラケットを介して、アクチュエータの動きを第1および第2の連結ロッドに伝達することが可能となる。
本発明の他の好ましい態様によれば、
前記スクラバーロッドは、丸棒状の回転軸と、該回転軸の外周に脱着可能に取り付けられた長円形の輪郭形状を有するスクラバーカラーと、を有している。
前記スクラバーロッドは、丸棒状の回転軸と、該回転軸の外周に脱着可能に取り付けられた長円形の輪郭形状を有するスクラバーカラーと、を有している。
このような構成によれば、処理ガスに接触するスクラバーカラーが交換可能なる。したがって、特性が異なる処理ガスを処理するために、スクラバーロッドの材質の変更が必要な場合には、外側部分であるスクラバーカラーのみを処理ガスの特性に対応したものに交換することができ、スクラバーロッドの変更に必要なコストが抑制される。
本発明の他の好ましい態様によれば、
前記スクラバーロッドの上流側と下流側の差圧を検出する差圧計をさらに備えている。
前記スクラバーロッドの上流側と下流側の差圧を検出する差圧計をさらに備えている。
このような構成によれば、スクラバーロッドの上流側と下流側の差圧が一定になるようにベンチュリスクラバー装置を稼働させることができる。
本発明の他の好ましい態様によれば、
前記ベンチュリスクラバー装置の作動を制御する制御ユニットをさらに備え、
前記制御ユニットが、前記差圧計の検出結果に基づいて、前記アクチュエータの作動を制御し、前記リンク機構を介して前記各スクラバーロッドを長手方向軸線を中心に回転させる。
前記ベンチュリスクラバー装置の作動を制御する制御ユニットをさらに備え、
前記制御ユニットが、前記差圧計の検出結果に基づいて、前記アクチュエータの作動を制御し、前記リンク機構を介して前記各スクラバーロッドを長手方向軸線を中心に回転させる。
本発明の他の態様によれば、
複数のスクラバーロッドを備えたベンチュリスクラバー装置の運転方法であって、
前記スクラバーロッドの上流側と下流側の差圧を測定するステップと、
前記測定された差圧が予め設定された管理値となるように、制御ユニットが、長円形の断面形状を有するステップロッドを、長手方向軸線を中心に回転させるステップと、を備えている、
ことを特徴とするベンチュリスクラバー装置の運転方法が提供される。
複数のスクラバーロッドを備えたベンチュリスクラバー装置の運転方法であって、
前記スクラバーロッドの上流側と下流側の差圧を測定するステップと、
前記測定された差圧が予め設定された管理値となるように、制御ユニットが、長円形の断面形状を有するステップロッドを、長手方向軸線を中心に回転させるステップと、を備えている、
ことを特徴とするベンチュリスクラバー装置の運転方法が提供される。
このような構成によれば、スクラバーロッドの上流側と下流側の差圧値が予め設定された管理値となるように、スクラバーロッドの断面の中心点を軸としてスクラバーロッドを回転させることにより、ベンチュリスクラバー装置を運転しながらスクラバーロッドの間隔を変更し、処理ガスの流量を制御することができる。
本発明の他の態様によれば、
前記制御ユニットは、アクチュエ-タを作動させることによって、前記スクラバーロッドを回転させる。
前記制御ユニットは、アクチュエ-タを作動させることによって、前記スクラバーロッドを回転させる。
本発明によれば、処理ガス量が変動する作業条件下においても、運転を停止することなく、スクラバーロッド間を通過する処理ガスの速度を一定に維持することが可能なベンチュリスクラバー装置およびその運転方法が提供される。
以下、本発明の好ましい実施形態のベンチュリスクラバー装置1の構成を図面に沿って説明する。図1は、ベンチュリスクラバー装置1の構成を模式的に示す縦断面図である。
本実施形態のベンチュリスクラバー装置は、処理ガスから煤塵を除去する装置である。本実施態様のベンチュリスクラバー装置で処理する処理ガスは、その種類を問わないが、可燃性や有毒性を有する場合には、本実施態様のベンチュリスクラバーは特に好適である。具体的には、バイオマスを原料とするガス化設備で発生するガスの処理に好適である。
図1に示されているように、ベンチュリスクラバー装置1は、角柱状の筐体2を備えている。筐体2の上部の一側面には、処理ガスの導入口4が設けられ、他側面には処理ガスの排出口6が設けられている。
筐体2の内部空間10は、筐体2の天板2aの幅方向中央位置から下方に延びる隔壁8によって、導入口側処理室12と、排出側処理室14に分割されている。導入口側処理室12の上部に導入口4が形成され、排出側処理室14の上部に排出口6が配置されている。
図1に示されているように、隔壁8は、筐体2の内部空間の下端まで至らずに終端している。この結果、導入口側処理室12と排出側処理室14とは、筐体2の内部空間10の下端部の連通領域16を介して流体連通している。
このような構成によって、矢印Aで示されるように導入口4から導入された処理ガスは、排出側処理室14内を下方に向かって流れ、排出側処理室14の下部から連通領域16を通って排出側処理室14の下部に流入し、さらに、排出側処理室14を上方に向かって流れ、矢印Bで示されるように排出側処理室14の上部に排出口6から外部に排出される。
導入口側処理室12と排出側処理室14の内部の上部位置には、それぞれ、噴霧ノズル18が設けられており、導入口側処理室12と排出側処理室14の上部から、導入口側処理室12と排出側処理室14内を流れる処理ガスに向けて水が噴霧されるように構造されている。
筐体2の下部には、内部空間10(導入口側処理室12と排出側処理室14)から水を排出するための排水口20が設けられ、排水口20は、廃水を貯める貯水槽22に連通している。
導入口側処理室12の高さ方向中間位置には、処理ガスから煤塵を除去するための複数本のスクラバーロッド24が配置されている。複数本のスクラバーロッド24は、導入口側処理室12内を下方に向かって流れる処理ガスの流れを遮る状態で設置されている。スクラバーロッド24は、処理ガスから煤塵を除去する煤塵除去機構26を構成している。
スクラバーロッド24は、スクラバーロッド24を回転させるアクチュエータであるモータ28が連結されている。また、モータ(サーボモータ)28には、その作動を制御する制御ユニット30が接続され、制御ユニット30には、導入口側処理室12と排出側処理室14の間の圧力差を検出する差圧計31が接続されている。
次に、スクラバーロッド24によって処理ガスから煤塵を除去する煤塵除去機構26の構成について、図2乃至図4に沿って詳細に説明する。図2は、煤塵除去機構26の概略的な平面図であり、図3は、図2の右方向からの側面図である。図4は、スクラバーロッド24を構成するスクラバーカラーを示す図面であり、(a)が側面図、(b)が平面図、(c)が正面図である。
スクラバーロッド24は、細長い円柱状の回転軸32と、回転軸32に先端側外周部に着脱自在に取付けられたスクラバーカラー34とを有している。本実施態様では、1本の回転軸32に、2本のスクラバーカラー34が直列状態で取付けられている。尚、本発明において、回転軸32に取付けられるスクラバーカラーは、2本に限定されるものではない。
図2に示すように、煤塵除去機構26では、7本のスクラバーロッド24が、一定間隔をおいて同一平面内で略平行に配置されている。各スクラバーロッド24は、先端部が軸受36を介してスクラバーロッドプレート37に回転自在に取付けられている。スクラバーロッドプレート37は、導入口側処理室12の高さ方向中央位置で、導入口側処理室12を横切るように取付けられた枠状の支持プレートである。
煤塵除去機構26に含まれるスクラバーロッド24の本数は、ベンチュリスクラバー装置1の大きさにより適宜変更することができる。
煤塵除去機構26は、各スクラバーロッド24を、長手方向中央軸線を中心に同期して回転(自転)させる回転機構を備えている。各スクラバーロッド24は、基端側が回転機構に連結され、回転機構は、各スクラバーロッドの基端側部分が接続されたリンク機構を有している。
詳細には、各スクラバーロッド24は、基端部が軸受プレート38に取付けられた軸受40で支持され、基端が、細長い形状を有する回転軸ブラケット42の長手方向中央部に固定されている。さらに、図3に示されているように、各回転軸ブラケット42の一端側部分を接続する第1の連結ロッド44と、各回転軸ブラケット42の他端側部分を接続する第2の連結ロッド46とが設けられている。
各回転軸ブラケット42は、互いに平行状態に配置され、両端が第1および第2の連結ロッド44、46に対して連結部42aを中心に回転可能(揺動可能)に連結されている。この結果、各回転軸ブラケット42は、第1または第2の連結ロッド44、46の長手方向移動に伴って、長手方向中央位置を中心に回転(揺動)される。
第1および第2の連結ロッド44、46の一端部は、回転軸ブラケット42と同様の寸法形状を有するアクチュエータブラケット48に連結されている。アクチュエータブラケット48は、両端が、回転軸ブラケット42の両端と同様に、第1および第2の連結ロッド44、46に対して連結部48aを中心に回転可能(揺動可能)に連結されている。
アクチュエータブラケット48は、長手方向中央にアクチュエータであるモータ28の出力軸52が固定され、モータ28により、長手方向中央部分を中心に回転可能に構成されている。
このような構成において、モータ28の回転により、モータ28の出力軸52が、図3に矢印Cで示される方向に回転すると、出力軸52が長手方向中央位置に固定されているアクチュエータブラケット48も矢印Cで示される方向に回転する。この回転に伴い、第1の連結ロッド44が矢印Dで示される方向に、第2の連結ロッド46が矢印Eで示される方向に並進移動する。そして、第1の連結ロッド44および第2の連結ロッド46に両端が相対回転自在に連結されている各回転軸ブラケット42は、矢印Fで示される方向に同期して回動し、各回転軸ブラケット42の長手方向中央に先端が固定された全てのスクラバーロッド24(回転軸32)も回転(自転)することになる。
このように、全てのスクラバーロッド24が同期して同一方向に回転することができるようにする機構をリンク機構と称し、本実施形態では、回転軸ブラケット42、第1および第2の連結ロッド44、46およびアクチュエータブラケット48等が、リンク機構を構成している。しかしながら、これに限らず、スクラバーロッド24が同期して動く機構であれば別の形態を採用することもできる。
スクラバーカラー34は、図4(a)に示すような楕円(長円)柱形状を有し、長手方向中央軸線に沿って延びる開口部34aを備えている。開口部34aは、回転軸32が嵌合して挿通可能な寸法形状を備えている。スクラバーカラー34は、側壁部に開口部34aを外部に連通させるネジ孔34bを更に有している。このような構成によって、開口部34aに回転軸32を挿通した状態で、ネジ孔34bに外方からボルトをねじ込むことによって、スクラバーカラー34を回転軸32に着脱自在に固定することが可能となる。
スクラバーカラー34を構成する材料の材質は、処理ガスの特性等に合わせて、異なる材質を選択することができる。処理ガス中の煤塵等による摩耗防止効果が必要な場合には、金属などの剛性体が用いられ、腐食性ガスによる腐食防止効果が必要な場合には、ステンレス鋼のような耐腐食性部材が用いられる。また、処理ガス中の煤塵等の付着防止効果が必要な場合には、フッ素樹脂が用いられる。
次に、本実施形態のベンチュリスクラバー装置においてスクラバーロッド24を回転させた場合のスクラバーロッド24の配置について説明する。図5の(a)ないし(e)は、モータ28によってスクラバーロッドを90°回転させていく際の、各スクラバーロッド24間の間隙の状態を模式的に示した図である。
上述したように、モータ28によりリンク機構を作動させ、各スクラバーロッドを同期して回転(自転)させ、任意に回転位置に配置することができる。図5(a)は、モータの作動により、スクラバーロッドを、断面を構成する楕円の長軸Mが鉛直方向に配向された回転位置(角度位置)に配置した状態を示している。この状態で、隣接するスクラバーロッド間の間隙が、最も広くなる。
図5(a)の配置から、モータ28によりスクラバーロッド24を、矢印Gで示すように、時計回り方向に回転(自転)させていくと、スクラバーロッド24(スクラバーカラー34)の扁平な断面形状に起因して、図5(b)ないし(d)に示されているように、スクラバーロッド間の間隔が、漸次、減少していく。スクラバーロッド24間の間隔は、スクラバーロッド24の断面を構成する楕円の長軸Mが水平方向に配向された図5(e)の回転位置(角度位置)で最も狭くなる。このように本実施態様では、スクラバーロッド24を回転させることにより、スクラバーロッド24間の間隙の幅を変更させ、この間隙を通過する処理ガスの流量を調整することが可能となる。
図6は、図5に示したようにスクラバーロッドを回転させた時の、スクラバーロッドの平面角(長軸が鉛直方向となす角)と、スクラバーロッド間隔(隙間)の関係を示した図であり、スクラバーロッドの平面角が0°から90°まで変化した時の隣接するスクラバーロッド間隔を連続的に表している。スクラバーロッドに用いるスクラバーカラーの断面形状を変更することにより、スクラバーロッド間の間隙に数値、および自転に対する変化のプロファイルを変更することが可能である。
次に、本実施態様のベンチュリスクラバー装置1における処理ガスの処理方法を図1に沿って説明する。
上述したように、矢印Aで示されるように導入口4から導入された処理ガスは、排出側処理室14内を下方に向かって流れる。
排出側処理室14内において下方に向かって流れる処理ガスに対し、噴霧ノズル18から水が噴霧され、高温状態である処理ガスは冷却される。次いで、処理ガスは、筐体2の中央部に設けられた煤塵除去機構26の隣接するスクラバーロッド24の間の間隙を通過させられる。通過中、処理ガスに含まれる煤塵と噴霧ノズル18から噴霧された水粒子とが互いに衝突し、ガス中の煤塵が水粒子に取り込まれる。そして、煤塵を取り込んだ水粒子は、水滴となって貯水槽22に落下し、回収される。このように煤塵除去機構26を通り抜けることにより、処理ガスは浄化されることになる。
スクラバーロッド24を備えた煤塵除去機構26により浄化された処理ガスは、排出側処理室14の下部から連通領域16を通って排出側処理室14の下部に流入し、さらに、排出側処理室14を上方に向かって流れ、矢印Bで示されるように排出側処理室14の上部に排出口6から外部に排出される。
なお、処理ガスは、排出側処理室14を上方に向かって流れ際にも、噴霧ノズル18からの水で冷却される。
なお、処理ガスは、排出側処理室14を上方に向かって流れ際にも、噴霧ノズル18からの水で冷却される。
煤塵除去機構26のスクラバーロッド24間の隙間は、処理ガス量の変動に応じて、スクラバーロッド24を回転(自転)させることで変更することができる。スクラバーロッド24の角度位置は、スクラバーロッド24の上流側と下流側の差圧を検出する差圧計31の数値が予め設定された管理値となるように、制御ユニット30によって制御される。
なお、差圧計31と、リンク機構によりスクラバーロッド24を駆動するモータ28は、予め設定された管理値を記憶した制御ユニット30に接続されている。この予め設定された管理値は、スクラバーロッド24の上流側と下流側の差圧の最適値として管理者が設定した数値である。
制御ユニット30は、管理値と、差圧値の実測値とを比較して、実測値が高い場合には、スクラバーロッド24間の隙間を広げるように、モータ28とリンク機構によってスクラバーロッド24を回転させる。また、制御ユニット30は、実測値が小さい場合には、スクラバーロッド24間の隙間を狭くするように、モータ28とリンク機構によってスクラバーロッド24を回転させる。
次に、ベンチュリスクラバー装置1における処理ガス中に含まれていた煤塵を含む廃水について、図7および図8に沿って説明する。
図7は、ベンチュリスクラバー装置と廃水処理における水の流れを示す模式的な図面である。図7のベンチュリスクラバー装置100は、上記実施形態のベンチュリスクラバー装置1が2台、直列に連結された構成を備えている。したがって、2機の煤塵除去機構26が設けられている。
尚、図7の構成において、上記実施形態の構成を対応する要素については、上記実施形態と同一の参照符号を付している。
ベンチュリスクラバー装置100の噴霧ノズル18から噴霧された水は、排水口20を通って貯水槽22に貯水される。貯水槽22に溜まった廃水は、貯水槽22内で、自然沈降により上澄み液と沈殿部液に分離される。
廃水の上澄み液の一部は、送液ポンプ102によりクーリングタワー104へ送られ、クーリングタワー104内で冷却された後、貯水槽22に戻される。上澄み液の他の部分は、別の送液ポンプ106により噴霧ノズル18へ供給され、噴霧用の水として再利用される。
貯水槽22の下部の沈殿部液は、専用の送液ポンプ108により廃水処理部110に供給され、廃水処理部110で処理された後に外部に排出される。また、貯水槽22は、貯水レベルが一定となるように清浄な水112が追加されように構成されている。
図8は、廃水処理部110の詳細な構成示す図面である。廃水処理部110には、排ガス処理からの廃水の処理として最適なプレコート式真空濾過装置114が用いられる。
プレコート式真空濾過装置114では、フィルタドラム116上にフィルタの役割を果たすプレコート層を予め、形成するために、プレコート槽118内でプレコート材(例えば珪藻土)を水に分散させた液を、プレコート式真空濾過装置の処理槽120にポンプで供給し、フィルタドラム116内を真空ポンプ122により真空にして、フィルタドラム116上にプレコート層を形成している。
廃液が、貯水槽22から廃液貯留槽124に供給され、薬液処理によりフロックを形成しやすい状態にされた後に、プレコート式真空濾過装置の処理槽120にポンプで供給される。その後、フィルタドラム116内を真空ポンプ122により減圧にし、フィルタドラム116上に形成されたプレコート層が、廃液中の微粒子を捕獲する。捕獲された廃液中の微粒子は、ケーク層を形成する。
これと同時に、スクレーパ126をケーク層に向けて所定の速度で移動させてケーク層を削り取る。この際、プレコート層の表層もケーク層とともに削り取るため、プレコート層の新しい面が露出し、連続して固液分離操作を行うことができる。
次に、本発明の他の好ましい実施形態のベンチュリスクラバー装置200について説明する。図9は、他の好ましい実施形態のベンチュリスクラバー装置200の構成を模式的に示す図1と同様の縦断面図である。
他の好ましい実施形態のベンチュリスクラバー装置200は、プレ除塵機構202を備えている点に特徴がある。プレ除塵機構202は、処理ガスが非常に汚染されている場合に有効である。これは、非常に汚染された処理ガスを通常のロッドスクラバーにて処理すると、ロッドスクラバーの隙間が閉塞してしまう可能性があるためである。
プレ除塵機構202として、図9に示すようなS字状インペラーが用いられる。このベンチュリスクラバー装置200では、装置下部には、水が一定レベルの高さ位置まで貯留されている。この水の表面の高さ位置とベンチュリスクラバー装置の上下方向の隔壁の間にS字状インペラーが設けられている(図9)。
S字状インペラーは、2つの半円筒部材を備えている。2つの半円筒部材は、互いに径方向に延びる開口を対向させ、且つ径方向に互いにオフセットした状態で配置されている。この結果、S字状インペラーでは、2つの半円筒部材の間の空間が、S字状の流路となる。
S字状インペラーの除塵原理は、処理ガスがベンチュリスクラバー装置の筐体内を上から下方向に流れ、ベンチュリスクラバー装置の下部の水面で反転し、S字状インペラー内を通過する際に、装置内下部の水とS字状インペラーが接している部分に泡が発生する。この泡が処理ガス中の粗大な煤塵類を除塵する作用を示すこととなる。そして、このS字状インペラーを用いることにより、ロッドスクラバーの隙間が閉塞する可能性が低減される。
本発明の前記実施形態に限定されることなく、特許請求の範囲に記載された技術的思想の範囲内で種々の変更、変形が可能である。
上記実施形態のベンチュリスクラバー装置では、スクラバーロッドの径方向断面形状は、楕円であったが、他の長円形状、あるいは扁平な偏心形状であってよい。
上記実施形態では、アクチュエータとしてモータを使用したが、他のアクチュエータ、例えば、油圧シリンダ、空圧シリンダ、電動シリンダ等を使用しても良い。電動シリンダ、サーボモータは、配管や油圧ポンプなどが不要となるため、アクチュエ-タの構造が簡単になるという利点を有している。
1:ベンチュリスクラバー装置
2:筐体
4:導入口
6:排出口
8:隔壁
12:導入口側処理室
14:排出側処理室
16:連通領域
18:噴霧ノズル
20:排水口
22:貯水槽
24:スクラバーロッド
26:煤塵除去機構
28:モータ(アクチュエータ)
30:制御ユニット
32:差圧計
34:スクラバーカラー
36:軸受
38:軸受プレート
40:軸受
42:回転軸ブラケット
44:第1の連結ロッド
46:第2の連結ロッド
48:アクチュエータブラケット
50:出力軸
2:筐体
4:導入口
6:排出口
8:隔壁
12:導入口側処理室
14:排出側処理室
16:連通領域
18:噴霧ノズル
20:排水口
22:貯水槽
24:スクラバーロッド
26:煤塵除去機構
28:モータ(アクチュエータ)
30:制御ユニット
32:差圧計
34:スクラバーカラー
36:軸受
38:軸受プレート
40:軸受
42:回転軸ブラケット
44:第1の連結ロッド
46:第2の連結ロッド
48:アクチュエータブラケット
50:出力軸
Claims (9)
- 間隔をおいて略平行に配置された円柱状の複数のスクラバーロッドと、
前記スクラバーロッドの各々を、長手方向中央軸線を中心に同期して回転させる回転機構と、を備え、
前記スクラバーロッドが長円形状の断面形状を有している、
ことを特徴とするベンチュリスクラバー装置。 - 前記回転機構が、前記各スクラバーロッドの基端側部分が接続されたリンク機構と、該リンク機構を作動させるアクチュエータとを備えている、
請求項1に記載のベンチュリスクラバー装置。 - 前記リンク機構は、前記各スクラバーロッドの基端側に長手方向中央部分が固定された細長い回転軸ブラケットと、各回転軸ブラケットの一端側部分を接続する第1の連結ロッドと、各回転軸ブラケットの他端側部分を接続する第2の連結ロッドと、を有し、
前記第1および第2の連結ロッドが、前記各回転軸ブラケットの一端側部分および他端側部分を揺動可能に連結している、
請求項2に記載のベンチュリスクラバー装置。 - 前記アクチュエータが出力軸を有し、
該出力軸が、細長いアクチュエータブラケットの長手方向中央部分に固定され、
前記アクチュエータブラケットは、一端側部分および他端側部分が、前記第1および第2の連結ロッドに揺動可能に連結されている、
請求項3に記載のベンチュリスクラバー装置。 - 前記スクラバーロッドは、丸棒状の回転軸と、該回転軸の外周に脱着可能に取り付けられた長円形の輪郭形状を有するスクラバーカラーと、を有している、
請求項1ないし4のいずれか1項に記載のベンチュリスクラバー装置。 - 前記スクラバーロッドの上流側と下流側の差圧を検出する差圧計をさらに備えている、
請求項1ないし5のいずれか1項に記載のベンチュリスクラバー装置。 - 前記ベンチュリスクラバー装置の作動を制御する制御ユニットをさらに備え、
前記制御ユニットが、前記差圧計の検出結果に基づいて、前記アクチュエータの作動を制御し、前記リンク機構を介して前記各スクラバーロッドを長手方向軸線を中心に回転させる、
請求項6に記載のベンチュリスクラバー装置。 - 複数のスクラバーロッドを備えたベンチュリスクラバー装置の運転方法であって、
前記スクラバーロッドの上流側と下流側の差圧を測定するステップと、
前記測定された差圧が予め設定された管理値となるように、制御ユニットが、長円形の断面形状を有するステップロッドを、長手方向軸線を中心に回転させるステップと、を備えている、
ことを特徴とするベンチュリスクラバー装置の運転方法。 - 前記制御ユニットは、アクチュエ-タを作動させることによって、前記スクラバーロッドを回転させる、
請求項8に記載のベンチュリスクラバー装置の運転方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019522058A JP6974802B2 (ja) | 2017-06-02 | 2018-05-08 | ベンチュリスクラバー装置およびその運転方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017110064 | 2017-06-02 | ||
JP2017-110064 | 2017-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018221132A1 true WO2018221132A1 (ja) | 2018-12-06 |
Family
ID=64455353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/017806 WO2018221132A1 (ja) | 2017-06-02 | 2018-05-08 | ベンチュリスクラバー装置およびその運転方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6974802B2 (ja) |
TW (1) | TW201902557A (ja) |
WO (1) | WO2018221132A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102251117B1 (ko) * | 2020-09-10 | 2021-05-11 | 김택호 | 배출가스에 포함된 용제의 회수장치 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50117074A (ja) * | 1974-02-28 | 1975-09-12 | ||
JPS5233830B2 (ja) * | 1973-04-03 | 1977-08-31 | ||
JP2012075967A (ja) * | 2010-09-30 | 2012-04-19 | Dowa Eco-System Co Ltd | ベンチュリスクラバ |
-
2018
- 2018-05-03 TW TW107115041A patent/TW201902557A/zh unknown
- 2018-05-08 JP JP2019522058A patent/JP6974802B2/ja active Active
- 2018-05-08 WO PCT/JP2018/017806 patent/WO2018221132A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5233830B2 (ja) * | 1973-04-03 | 1977-08-31 | ||
JPS50117074A (ja) * | 1974-02-28 | 1975-09-12 | ||
JP2012075967A (ja) * | 2010-09-30 | 2012-04-19 | Dowa Eco-System Co Ltd | ベンチュリスクラバ |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102251117B1 (ko) * | 2020-09-10 | 2021-05-11 | 김택호 | 배출가스에 포함된 용제의 회수장치 |
Also Published As
Publication number | Publication date |
---|---|
JP6974802B2 (ja) | 2021-12-01 |
JPWO2018221132A1 (ja) | 2020-04-02 |
TW201902557A (zh) | 2019-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100934578B1 (ko) | 유동링 자전 구조의 스크류식 탈수장치 | |
EP2771292B1 (en) | Water filter | |
US9422738B2 (en) | Filter apparatus with filter cleaning arrangement | |
US20220355225A1 (en) | Externally Fed Screen for Filtration | |
WO2014012883A2 (en) | Drum cleaner | |
WO2018221132A1 (ja) | ベンチュリスクラバー装置およびその運転方法 | |
KR20000063103A (ko) | 액체 여과용 필터의 연속세척장치 | |
JP5869623B2 (ja) | ストレーナーアセンブリ | |
KR20060021848A (ko) | 액체에서 입자를 연속 여과하는 방법 및 장치 | |
JP5507908B2 (ja) | 回転濾板式濾過機 | |
KR101499781B1 (ko) | 오토 스트레이너 | |
US1762560A (en) | Method of filtering | |
RU2329085C1 (ru) | Фильтр щелевой ножевой | |
KR20210088261A (ko) | 역세척이 가능한 회전 여과식 수처리장치 | |
KR100372502B1 (ko) | 스크류식 탈수장치 | |
KR200452308Y1 (ko) | 자동 세정 필터 시스템 | |
KR20020038426A (ko) | 스크류식 탈수장치 | |
JP2007038068A (ja) | 固液分離装置 | |
CN2925583Y (zh) | 旋风式自清扫过滤器 | |
CN105916590A (zh) | 自清洁离心分离器 | |
JP2004084688A (ja) | シール用ガスのフィルター装置 | |
RU126087U1 (ru) | Фильтр-грязевик механической очистки горизонтальный (фгмо-г) | |
KR200476522Y1 (ko) | 오토 스트레이너 | |
JPH03127601A (ja) | 金属切粉等の加工液の濾過装置 | |
KR200219164Y1 (ko) | 스크류식 탈수장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18809202 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019522058 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18809202 Country of ref document: EP Kind code of ref document: A1 |