WO2018220918A1 - Load generation device - Google Patents

Load generation device Download PDF

Info

Publication number
WO2018220918A1
WO2018220918A1 PCT/JP2018/007157 JP2018007157W WO2018220918A1 WO 2018220918 A1 WO2018220918 A1 WO 2018220918A1 JP 2018007157 W JP2018007157 W JP 2018007157W WO 2018220918 A1 WO2018220918 A1 WO 2018220918A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
spring
cylinder
moving member
clutch pedal
Prior art date
Application number
PCT/JP2018/007157
Other languages
French (fr)
Japanese (ja)
Inventor
雄輝 汲川
中村 祐一郎
大志 須山
亮祐 永谷
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Publication of WO2018220918A1 publication Critical patent/WO2018220918A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/02Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for main transmission clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/30Controlling members actuated by foot

Definitions

  • the technology disclosed in the present application relates to a load generator that generates a load (reaction force) on a clutch pedal.
  • the load generator disclosed in Patent Document 1 includes a piston that engages with a cylinder, a spring that is disposed between the piston and the end of the cylinder, and a piston that is formed on the piston and gradually increases from the tip toward the center.
  • the cam part which has an outer diameter which reduces gradually toward a rear end from a part, and the cylindrical member provided facing the cam part in a cylinder are included.
  • the cylindrical member formed of an elastic material has an opening for receiving the cam portion, and a plurality of elastic pieces divided by a plurality of slits extending along the axial direction adjacent to the opening.
  • the piston slides toward the end of the cylinder against the biasing force of the spring.
  • the cam portion pressed by the piston enters the inside of the cylindrical member from the opening against the urging force of the plurality of elastic pieces trying to maintain the original shape.
  • the cam portion receives a biasing force that gradually increases from a plurality of elastic pieces, and the remaining portion of the cam portion is inside the cylindrical member.
  • Patent Document 1 During the intrusion, the cam portion receives a biasing force that gradually decreases from the plurality of elastic pieces. Thereby, the load generator disclosed in Patent Document 1 generates a reaction force (load) against the clutch by combining the urging force caused by the spring and the urging force caused by the plurality of elastic pieces.
  • the entire contents of Patent Document 1 are incorporated herein by reference.
  • the present application provides a load generator having improved performance with respect to the conventional problems according to various embodiments.
  • a load generator includes a first cylinder, a first moving member that slides in the first cylinder in response to an operation force of a clutch pedal, and the first moving member that engages with the first moving member.
  • a first load generating portion having a first load generating spring disposed in a pre-compressed manner in the cylinder; a second cylinder; and a second moving member that slides in the second cylinder in response to the operating force.
  • a second load generating spring that is engaged with the second moving member and is pre-compressed in the second cylinder, and a rotation of the clutch pedal.
  • the first moving member and the second moving member are slid in series in cooperation with a rotation assist spring that is locked at a position different from the axis and reverses the operation force during rotation. Extending or contracting at least one of the first load generating spring and the second load generating spring And by those which generate a load against the clutch pedal.
  • FIG. 3 is a schematic diagram for conceptually explaining load characteristics shown in FIG. 2. It is a schematic diagram which shows the structural example of the load generator which concerns on another embodiment. It is a schematic diagram which shows the structural example of the load generator which concerns on another embodiment. It is a schematic diagram which shows the structural example of the load generator which concerns on another embodiment. It is a schematic diagram which shows the structural example of the load generator which concerns on another embodiment.
  • a load generating device is mounted on a vehicle adopting a system in which an actuator controls a load on a clutch to execute connection / disconnection of the clutch instead of an operation by a driver on a clutch pedal. Is.
  • the load generator according to the present embodiment generates a load (reaction force) on the clutch pedal.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a load generator according to an embodiment.
  • the load generating device 10 extends from one end 102 to the other end 104 and rotates around a central axis 106, and is provided so as to be rotatable with respect to the rotating member 100.
  • the sliding member 200, the master cylinder 300 engaged with the sliding member 200, the load generating unit 400 connected to the master cylinder 300, and the rotating member 100 are provided so as to be rotatable (rotating).
  • a torsion spring 700 (as one mode of the assist spring).
  • the load generator 10 can optionally include a reservoir tank 800 coupled to the master cylinder 300.
  • Rotating member 100 The rotating member 100 extends from one end 102 to the other end 104, and can be formed as a rod-shaped member with a metal such as iron, steel, an aluminum alloy, or a titanium alloy.
  • a clutch pedal C is fixed to one end 102 of the rotating member 100.
  • a combination of the rotating member 100 and the clutch pedal C can be understood as a “clutch pedal”.
  • a direction orthogonal to the extending direction of the rotating member 100 (on the paper surface).
  • a central axis 106 extending in the depth direction) is formed.
  • the first wall surface W 1 of the vehicle, bearing unit 2 for rotatably supported by inserting the pivot member 110 is provided.
  • the rotation member 100 rotates in the forward direction (X 1 ) around the central axis 106 supported rotatably by the bearing portion 2 (forward rotation) or in the reverse direction (X 2 ) ( Can be reversed).
  • the rotating member 100 rotates (forward) around the central axis 106 in the forward direction (X 1 ). Later, when the clutch pedal C is released by the driver, the clutch pedal C can be rotated (reversely rotated) in the reverse direction (X 2 ) around the central axis 106.
  • the central axis 106 can also be understood as the central axis of the clutch pedal. Is possible.
  • a torsion spring 700 is rotatably provided at the other end 104 of the rotating member 100.
  • a central axis (not shown) extending in a direction orthogonal to the extending direction of the rotating member 100 is provided at the other end 104 of the rotating member 100, and the torsion spring 700 is provided. It is possible to provide a bearing portion (not shown) that is inserted into the central axis of the other end 704 and is supported rotatably.
  • the other end 704 of the torsion spring 700 is provided with a central axis (not shown) extending in a direction orthogonal to the extending direction of the rotating member 100, and the central axis applied to the other end 104 of the rotating member 100 is inserted. It is also possible to provide a bearing portion (not shown) that is rotatably supported.
  • the sliding member 200 is rotatably provided at the connecting portion 108 between the one end 102 of the rotating member 100 and the central shaft 106.
  • a connecting shaft 108 of the rotating member 100 is provided with a central axis (not shown) extending in a direction orthogonal to the extending direction of the rotating member 100, and the sliding member A bearing portion (not shown) that is rotatably supported by inserting a central axis applied to one end 202 of 200 can be provided.
  • a central axis (not shown) extending in a direction orthogonal to the extending direction of the rotating member 100 is provided at one end 202 of the sliding member 200, and the central axis applied to the connecting portion 108 of the rotating member 100 is inserted. It is also possible to provide a bearing portion (not shown) that is rotatably supported.
  • the sliding member 200 extends from one end 202 to the other end 204, and can be formed as a rod-shaped member with a metal such as iron, steel, an aluminum alloy, or a titanium alloy.
  • the one end 202 of the sliding member 200 is provided so as to be rotatable with respect to the connecting portion 108 of the rotating member 100.
  • the sliding member 200 moves in the direction intersecting the extending direction of the rotating member 100 (in the example shown in FIG. 1, for example, the extending direction of the master cylinder 300). Slide relative to the cylinder 300.
  • Master cylinder 300 The master cylinder 300 extends from one end 302 to the other end 304, and can be formed as a cylindrical member from a metal such as iron, steel, an aluminum alloy, or a titanium alloy.
  • the master cylinder 300 has a cylindrical storage region 306 that stores hydraulic oil or the like inside.
  • the master cylinder 300 has a through hole 308 that communicates with the outside at one end 302 and receives the other end 204 of the sliding member 200.
  • the master cylinder 300 has a columnar piston 310 coupled to the other end 204 of the sliding member 200 in the accommodation region 306.
  • the piston 310 can be formed as a cylindrical member with a metal such as iron, steel, an aluminum alloy, or a titanium alloy.
  • the master cylinder 300 has an output port 312 that communicates with the first pipe 4 at the other end 304.
  • the sliding member 200 fixed to the piston 310 moves in a direction away from the other end 304 of the master cylinder 300. Since the rotating member 100 pressed by the sliding member 200 rotates (reverses) around the central axis 106 in the reverse direction (X 2 ), the clutch pedal C returns to the original position.
  • the load generating unit 400 includes a plurality of load generating units (two load generating units in the present embodiment). Specifically, the load generation unit 400 includes a first load generation unit 500 and a second load generation unit 600.
  • the first load generating unit 500 is disposed inside the first cylinder 510 facing the one end 502 of the first cylinder 510 and the first cylinder 510 extending from the one end 502 to the other end 504.
  • the second load generating part 600 extends from one end 602 to the other end 604 and is connected between the first cylinder 510 and the second cylinder 610 integrally formed with the first cylinder 510.
  • a cylindrical second piston (second moving member) 620 disposed with the first spring 530 interposed therebetween, and a second spring (second assembly) disposed between the second piston 620 and the other end 604 of the second cylinder 610.
  • 2 load generating springs) 630 2 load generating springs
  • First load generator 500 An input port (first through hole) 506 communicating with both the first pipe 4 and the inside of the first cylinder 510 is formed at one end 502 of the first cylinder 510.
  • a plurality of annular grooves (two grooves 522 and 524 in the example shown in FIG. 1) extending along the circumferential direction are formed on the outer periphery of the first piston 520.
  • a cup (sealing) 526 and a cup (sealing) 528 are attached to the groove 522 and the groove 524, respectively, for preventing hydraulic oil from entering.
  • a first convex portion 529 protruding from the surface of the first piston 520 facing the second piston 620 is formed.
  • the first spring 530 is disposed between the first piston 520 and the second piston 620 in a pre-compressed state (in a previously contracted state). Specifically, the first spring 530 is inserted (engaged) with the first protrusion 529 of the first piston 520 at one end 532, and the second protrusion described later is formed at the other end 534 on the second piston 620. By inserting (engaging) the portion 622, the portion 622 is disposed between the first piston 520 and the second piston 620. Accordingly, the first piston 520 is urged in the direction away from the second piston 620 by the first spring 530.
  • the first pre-compression amount (pre-compressed / contracted amount) of the first spring 530 and the first spring constant are set by the first spring 530 arranged pre-compressed as shown in FIG. Is set so as to contract when receiving a force (operation force of the clutch pedal) equal to or higher than a first threshold value from the first piston 520 pressed by the hydraulic oil supplied via the valve.
  • second cylinder 610 is formed to have an inner diameter that is larger than the inner diameter of first cylinder 510.
  • the second cylinder 610 has a protrusion (stepped portion) 606 formed on the inner wall near one end 602 thereof.
  • the protruding portion 606 may extend, for example, in an annular shape.
  • the protrusion 606 functions to contact the surface of the second piston 620 facing the first piston 520 and to restrict the sliding of the second piston 620 toward the first piston 520.
  • the second cylinder 610 has a columnar wall member 612 provided opposite to the second piston 620 in the vicinity of the other end 604.
  • the wall member 612 is fixed by a snap ring 614 attached to the inner wall near the other end 604 of the second cylinder 610.
  • a third convex portion 616 protruding from the surface of the wall member 612 facing the second piston 620 is formed.
  • the surface of the second piston 620 facing the first piston 520 is formed with a second convex portion 622 protruding from the surface.
  • the second convex portion 622 is inserted into the other end 534 of the first spring 530 as described above. As a result, the second piston 620 is biased in a direction away from the first piston 520 by the first spring 530.
  • the surface of the second piston 620 that faces the second spring 630 or the wall member 612 is formed with a fourth convex portion 624 that protrudes from the surface.
  • the second spring 630 is disposed between the second piston 620 and the wall member 612 in a pre-compressed state (in a contracted state in advance). Specifically, the second spring 630 has one end 632 inserted (engaged) with the fourth convex portion 624 of the second piston 620 and the other end 634 inserted with the third convex portion 616 of the wall member 612 (engagement). By combining, the second piston 620 and the wall member 612 are disposed. As a result, the second piston 620 is biased in a direction away from the wall member 612 by the second spring 630.
  • the second pre-compression amount (pre-compressed / contracted amount) of the second spring 630 and the second spring constant are determined by the second spring 630 disposed in a pre-compressed manner as shown in FIG. Is set so as to contract when receiving a force (operation force of the clutch pedal) equal to or greater than a second threshold.
  • This second threshold value is larger than the first threshold value described above.
  • the first piston 520 is pressed by the hydraulic oil supplied via the first pipe 4 as the clutch pedal C is depressed by the driver.
  • the first spring 530 disposed in the first cylinder 510 by being pre-compressed further contracts.
  • the first spring 530 presses the second piston 620 and thus the second spring 630 in a direction toward the wall member 612.
  • the second spring 630 disposed in the second cylinder 610 by being pre-compressed does not further contract.
  • the clutch pedal C is further depressed by the driver, the force received by the second spring 630 from the second piston 620 reaches the second threshold value and exceeds the second threshold value.
  • the second spring 630 disposed in a compressed state further contracts.
  • Torsion spring 700 The torsion spring 700 can be used as one mode of a rotation assist spring that generates a load on the clutch pedal C in cooperation with the first load generation unit 500 and the second load generation unit 600.
  • the torsion spring 700 extends from one end 702 to the other end 704 and can be formed of a linear elastic material.
  • the torsion spring 700 includes a winding portion 706 that is wound a plurality of times between one end 702 and the other end 704 and extends annularly.
  • One end 702 of the torsion spring 700 is provided rotatably relative to the second wall W 2 of the vehicle.
  • the one end 702 and the second wall W 2 of the torsion spring 700 has either one (the paper-depth extending in a direction) central axis (not shown), the other It is possible to have a bearing portion (not shown) through which the central shaft is inserted and rotatably supported.
  • the other end 704 of the torsion spring 700 is provided so as to be rotatable with respect to the other end 104 of the rotating member 100 as described above.
  • one of the other end 704 of the torsion spring 700 and the other end 104 of the rotating member 100 has a central axis (extending in the depth direction on the paper surface) (see FIG. And a bearing portion (not shown) that rotatably supports the other center shaft.
  • the torsion spring 700 functions to press the other end 104 of the rotation member 100 so as to resist or assist the rotation of the rotation member 100 according to the rotation of the rotation member 100.
  • a virtual line connecting one end 702 of the torsion spring 700 and the central axis 106 of the rotating member 100 is defined as a reference line L
  • the other end 704 of the torsion spring 700 is as shown in FIG.
  • the torsion spring 700 resists rotation (forward rotation) in the forward direction (X 1 ) of the rotation member 100 (in other words, rotation).
  • the other end 104 of the rotating member 100 is pressed such that the moving member 100 assists in the rotation (reverse rotation) of the moving member 100 in the reverse direction (X 2 ).
  • the torsion spring 700 is rotated in the Y 1 direction shown in FIG. 1 around the end 702, in the position of the winding portion 706 and the same side and the other end 704 of the torsion spring 700 is viewed from the reference line L ( In other words, the position where the other end 704 is displaced in the direction opposite to the direction in which the sliding member 200 is pressed when viewed from the reference line L (the right direction on the paper).
  • the torsion spring 700 assists in the rotation (forward rotation) of the rotation member 100 in the forward direction (X 1 ) (in other words, the rotation of the rotation member 100 in the reverse direction (X 2 )).
  • the other end 104 of the rotating member 100 is pressed so as to resist (reverse rotation).
  • Reservoir tank 800 (optional) The reservoir tank 800 and the second pipe 6) used therewith are selectively used as an option.
  • the 1st piping 4 which connects the master cylinder 300 and the load generator 400 (the 1st load generator 500) and conveys hydraulic fluid has the possibility of retaining air in the inside with use. is there.
  • a reservoir tank 800 can be provided to replenish hydraulic oil to the master cylinder 300 when the hydraulic oil is insufficient.
  • the reservoir tank 800 stores hydraulic oil in the storage area 802.
  • the reservoir tank 800 and the master cylinder 300 are connected by the second pipe 6.
  • the second pipe 6 is attached to the reservoir tank 800 and the master cylinder 300 so as to communicate with the storage area 802 of the reservoir tank 800 and the storage area 306 of the master cylinder 300.
  • the first piston 520 is pressed in the direction toward the second piston 620 by the hydraulic oil supplied to the input port 506. At this time, it is assumed that the force received by the first spring 530 from the first piston 520 is not less than the first threshold and less than the second threshold. If it does so, the 1st spring 530 arrange
  • the second piston 620 is pressed in the direction toward the wall member 612 by the first spring 530.
  • the second piston 620 since the force received by the second spring 630 from the second piston 630 is less than the second threshold value, the second piston 620 has a surface facing the first piston 520 abutted against the protrusion 606 of the second cylinder 610. It does not slide so as to maintain the contacted state and approach the wall member 612.
  • the torsion spring 700 rotates around the one end 702 in the Y 1 direction by pressing the other end 704 against the other end 104 of the rotation member 100.
  • the other end 704 of the torsion spring 700 is still located on the left side of the drawing from the reference line L.
  • the torsion spring 700 receives a force that brings the one end 702 and the other end 704 closer from the other end 104 of the rotating member 100.
  • the torsion spring 700 that has received such force tends to deform so as to return to its original shape (the one end 702 and the other end 704 are separated).
  • the torsion spring 700 presses the other end 704 of the rotating member 100 so as to resist forward rotation of the rotating member 100 (helping reverse rotation).
  • the torsion spring 700 presses the other end 704 from the other end 104 of the rotating member 100 at almost the same timing as when the second spring 630 receives a force equal to or greater than the second threshold and starts to contract further. by being, by continued to rotate in the Y 1 direction around the end 702), the other end 704 of the torsion spring 700 located in the plane on the left side of the reference line L, beyond the reference line L , Located on the right side of the reference line L on the paper surface. Even in this state, the torsion spring 700 receives a force from the other end 104 of the rotating member 100 to bring the one end 702 and the other end 704 closer to each other.
  • the torsion spring 700 receiving such a force tends to deform so as to return to its original shape (the one end 702 and the other end 704 are separated). Thereby, the torsion spring 700 presses the other end 704 of the rotating member 100 so as to assist the forward rotation of the rotating member 100 (resist the reverse rotation).
  • the clutch pedal C is continuously depressed by the driver, the first spring 530 of the first load generating unit 500 and the second spring 630 of the second load generating unit 600 continue to contract, as described above.
  • the torsion spring 700 is deformed so as to separate the one end 702 and the other end 704 in order to return to the original shape, and thereby the other end of the rotating member 100 is assisted to forward rotation of the rotating member 100. Continue pressing 104.
  • FIG. Return to the state shown. Accordingly, the hydraulic oil pressed by the first piston 520 flows into the storage area 306 of the master cylinder 300 via the input port 506, the first pipe 4, and the output port 312. The piston 310 pressed by the hydraulic oil slides in a direction toward the one end 302 of the master cylinder 300. The sliding member 200 pressed by the piston 310 moves in a direction away from the master cylinder 300.
  • Rotating member 100 which is pressed by the sliding member 200, the X 2 direction to rotate (reverse) about a central axis 106. Along with the rotation member 100 rotates, the torsion spring 700, and rotates Y 2 direction about one end 702, returns to the state shown in FIG.
  • FIG. 2 is a diagram showing a specific example (one example) of the characteristics of the load applied to the clutch pedal by the load generating device shown in FIG. FIG. 2 shows how much load or reaction force (unit [N]) is applied to the clutch pedal in association with the amount of depression of the clutch pedal, that is, the pedal stroke (unit [mm]). Are shown for each of the forward path (solid line) and the backward path (one-dot chain line).
  • the load on the clutch pedal is the pedal stroke. It is increasing in proportion to In the section (section B) from when the pedal stroke exceeds S2 [mm] to S3 [mm], the load on the clutch pedal decreases in inverse proportion to the pedal stroke. That is, in this section B, the load characteristic has a negative gradient. Thereafter, in the section (section C) from when the pedal stroke exceeds S3 [mm] to the end, the load on the clutch pedal is slightly increased in proportion to the pedal stroke.
  • a half-clutch is obtained at any point in section B that results in a negative slope. As a result, the driver can feel that the half-clutch has been obtained in the section B where the clutch feels lighter than the section A.
  • the return path load characteristics are generally similar to the forward load characteristics except that the magnitude of the load is reduced overall. It has become. There is a difference (hysteresis) in the magnitude of the load between the forward load characteristic and the return load characteristic (for example, when the pedal stroke is S2, the load is P2 in the forward load characteristic).
  • the load characteristic of the return path the load is P1 ( ⁇ P2) due to the frictional force caused by the sliding in the master cylinder 300, the first load generating unit 500, the second load generating unit 600, and the like. It is considered a thing.
  • FIG. 3 is a schematic diagram for conceptually explaining the load characteristics shown in FIG.
  • the horizontal axis and the vertical axis indicate the pedal stroke and the load, respectively, as in FIG. 2, but for the purpose of schematically showing the concept of the load characteristics, Therefore, it should be noted that the notation of the horizontal axis and the vertical axis is omitted.
  • the first curve (the curve extending from the point P 1 indicated by the two-dot chain line to the portion indicated by the dotted line via the point P 2 ) uses only the first spring 530 (that is, An example of load characteristics obtained when the second spring 630 and the torsion spring 700 are not used) is shown. As shown in the first curve, the load on the clutch pedal is proportional (increases) to the pedal stroke.
  • the second curve (the curve indicated by the two-dot chain line extending from the point P 1 to the point P 3 via the point P 2 ) uses only the first spring 530 and the second spring 630 (that is, torsion).
  • An example of load characteristics obtained when the spring 700 is not used) is shown.
  • the second curve in the section from the point P 1 to the point P 2 although the force which the first spring 530 receives from the first piston 520 is in the first threshold value or more, the second spring 630 second Since the force received from the piston 620 is greater than or equal to the first threshold and less than the second threshold, only the first spring 530 contracts (that is, the second spring 630 does not contract).
  • the force which the first spring 530 receives from the first piston 520 is smaller than the first threshold value, and the force which the second spring 630 receives from the second piston 620 second Since it is more than a threshold value, both the 1st spring 530 and the 2nd spring 630 contract.
  • the first spring 530 and the second spring 630 are combined 1
  • the spring constants of the two springs are smaller than the spring constant of the first spring 530 alone due to Hooke's law.
  • the gradient in the section from the point P 2 to the point P 3 is smaller than the gradient in the section from the point P 1 to the point P 2 .
  • the third curve (the curve indicated by the alternate long and short dash line extending from the point Q 1 to the point Q 3 via the point Q 2 ) is used only with the torsion spring 700 (ie, the first spring 530 and the second spring 630).
  • An example of the load characteristic obtained when (when is not used) is shown.
  • the torsion spring 700 presses the other end 104 of the rotating member 100 so as to resist forward rotation of the rotating member 100.
  • the load on the clutch pedal decreases according to the pedal stroke.
  • the other end 704 of the torsion spring 700 exists at a certain position on the right side of the drawing with respect to the reference line L to the reference line L.
  • the other end 104 of the rotating member 100 is pressed so as to assist the forward rotation of the moving member 100.
  • the load on the clutch pedal decreases in the negative region as the pedal stroke increases.
  • the load characteristic shown as the second curve By adding the load characteristic shown as the second curve and the load characteristic shown as the third curve, the load characteristic obtained when all of the first spring 530, the second spring 630 and the torsion spring 700 are used in combination. (The load characteristic indicated by the fourth curve shown by the solid line extending from the point P 0 to the point P 4 via the point P 2 , that is, the load characteristic shown in FIG. 2) is obtained.
  • FIG. 4 is a schematic diagram showing a configuration example of a load generator according to another embodiment. 4 will be described by focusing attention only on the configuration different from that shown in FIG. 1, and the same configuration as that shown in FIG. 1 among the configurations shown in FIG. 4 will be described in detail. Omitted.
  • the load generating unit 2000 includes a first load generating unit 1000 and a second load generating unit 1500 that are formed separately from each other.
  • the load generator 20 includes a third pipe 7, a fourth pipe 8, and a fifth pipe 9 instead of the first pipe 4 shown in FIG.
  • One end of the third pipe 7 is connected to the output port 312 of the master cylinder 300, and the other end of the third pipe 7 is connected to both one end of the fourth pipe 8 and one end of the fifth pipe 9.
  • the other end of the fourth pipe 8 is connected to the first load generator 1000, and the other end of the fifth pipe 9 is connected to the second load generator 1500.
  • First load generator 1000 Roughly speaking, the first load generating unit 1000 is disposed inside the first cylinder 1100 facing the one end 1102 of the cylindrical first cylinder 1100 extending from one end 1102 to the other end 1104 and the first cylinder 1100.
  • a cylindrical first piston 1200, and a first spring 1300 disposed between the first piston 1200 and the other end 1104 of the first cylinder 1100.
  • An input port (first through hole) 1106 that communicates with both the fourth pipe 8 and the first cylinder 1100 is formed at one end 1102 of the first cylinder 1100.
  • the first cylinder 1100 has a columnar wall member 1110 provided to face the first piston 1200 in the vicinity of the other end 1104.
  • the wall member 1110 may be attached to the first cylinder 1100 using a snap ring 1112.
  • a first convex portion 1114 that protrudes from the surface of the wall member 1110 that faces the first piston 1200 is formed.
  • a cup (sealing) for preventing intrusion of hydraulic oil can be provided on the outer periphery of the first piston 1200. This point is the same as described above. Therefore, detailed description thereof is omitted.
  • the surface of the first piston 1200 that faces the wall member 1110 is formed with a second protrusion 1202 that protrudes from the surface.
  • the first spring 1300 is pre-compressed (in a contracted state) between the first piston 1200 and the wall member 1110. Specifically, the first spring 1300 has one end 1302 inserted (engaged) with the second convex portion 1202 of the first piston 1200 and the other end 1304 formed with the first convex portion 1114 formed on the wall member 1110. By being inserted (engaged), it is disposed between the first piston 1200 and the wall member 1110. Accordingly, the first piston 1200 is urged in the direction away from the wall member 1110 by the first spring 1300.
  • the first precompression amount (precompression / contraction amount) of the first spring 1300 and the first spring constant are determined by the first spring 1300 arranged in a precompressed manner as shown in FIG. Is set so as to contract when receiving a force (operation force of the clutch pedal) equal to or higher than a first threshold value from the first piston 1200 pressed by the hydraulic oil supplied via the valve.
  • Second load generation unit 1500 Roughly speaking, the second load generating unit 1500 is disposed inside the second cylinder 1600 so as to face the cylindrical second cylinder 1600 extending from one end 1502 to the other end 1504 and the one end 1502 of the second cylinder 1600.
  • a cylindrical second piston 1700, and a second spring 1800 disposed between the second piston 1700 and the other end 1504 of the second cylinder 1600.
  • An input port (second through hole) 1506 communicating with both the fifth pipe 9 and the second cylinder 1600 is formed at one end 1502 of the second cylinder 1600.
  • the second cylinder 1600 has a columnar wall member 1610 provided to face the second piston 1700 in the vicinity of the other end 1504.
  • the wall member 1610 can be attached to the second cylinder 1600 using a snap ring 1612.
  • a first convex portion 1614 protruding from the surface of the wall member 1610 facing the second piston 1700 is formed.
  • the outer periphery of the second piston 1700 may be provided with a cup (sealing) for preventing hydraulic oil from entering similarly to the first piston 520 shown in FIG. 1, but this is the same as described above. Therefore, detailed description thereof is omitted.
  • 2nd convex part 1702 which protrudes from the surface is formed in the surface facing the wall member 1610 of the 2nd piston 1700.
  • the second spring 1800 is disposed in a pre-compressed state (in a contracted state in advance) between the second piston 1700 and the wall member 1610. Specifically, the second spring 1800 has one end 1802 inserted (engaged) with the second convex portion 1702 of the second piston 1700 and the other end 1804 with the first convex portion 1614 formed on the wall member 1610. By being inserted (engaged), it is disposed between the second piston 1700 and the wall member 1610. As a result, the second piston 1700 is biased in a direction away from the wall member 1610 by the second spring 1800.
  • the second pre-compression amount (the amount compressed / contracted in advance) and the second spring constant of the second spring 1800 are set so that the second spring 1800 arranged pre-compressed as shown in FIG. Is set so as to contract when receiving a force (operation force of the clutch pedal) equal to or greater than a second threshold value from the second piston 1700 pressed by the hydraulic oil supplied via the valve.
  • the second piston 1700 is provided with a protrusion 1704 protruding from the outer periphery thereof, and the second cylinder 1600 protrudes from the inner wall (step). 1616 may be provided.
  • the second piston 1700 can be restricted from sliding in the direction toward the one end 1502 of the second cylinder 1600 by the protrusion 1704 coming into contact with the protrusion 1616 of the second cylinder 1600.
  • the operation load generator 20 of the load generator 20 is different from the load generator 10 shown in FIG. 1 only in that the first load generator 1000 and the second load generator 1500 are configured as separate bodies. .
  • the load generator 20 further When the second spring 1800 that contracts and is pre-compressed and disposed in the second cylinder 1600 of the second load generating unit 1500 receives a force greater than a second threshold value (greater than the first threshold value) from the second piston 1700. 1 (the first piston 1200 and the second piston 1700 can slide in series), and has the same configuration as the load generator 10 shown in FIG. Therefore, the load generator 20 operates in the same manner as the load generator 10 described above with reference to FIG.
  • the first load generation unit 1000 and the second load generation unit 1500 are formed as separate bodies, which is required as compared with the load generation device 10 shown in FIG.
  • the axial lengths of the cylinders (that is, the first cylinder 1100 and the second cylinder 1600) can be shortened.
  • the workability of the cylinder required for the load generator 20 is higher than that of the cylinder required for the load generator 10. Improved. Such an advantage becomes even more remarkable when three or more load generating parts are used.
  • the load generator 20 by forming a plurality of load generators as separate bodies, even if any one of the plurality of load generators fails, the failed load generator Only the part can be exchanged for a new one.
  • Second Modification In the embodiment shown in FIG. 1, a case has been described in which a configuration in which transmission of a load between the clutch pedal C and the load generation unit 400 is realized via hydraulic oil is employed. Instead, in another embodiment, as described below, a configuration that realizes transmission of a load between the clutch pedal C and the load generation unit without using hydraulic oil may be employed.
  • FIG. 5 is a schematic diagram showing a configuration example of a load generator according to still another embodiment. Only the configuration different from that shown in FIG. 1 will be described in the configuration shown in FIG. 5, and the same configuration as that shown in FIG. 1 will be described in detail for the configuration shown in FIG. Omitted.
  • the load generation unit 3000 is different from the load generating unit 400 shown in FIG. 1 mainly in that it has a through hole 3010 instead of the input port 506.
  • a through hole (first through hole) 3010 that receives the sliding member 200 (the other end 204 thereof) and allows contact with the first piston 520 is formed at one end 502 of the first cylinder 510 of the first load generating unit 500. Has been.
  • the first piston 520 comes into contact with the other end 204 on the surface facing the other end 204 of the sliding member 200.
  • the first piston 520 can also have a recess 520C on the surface facing the other end 204 of the sliding member 200 to receive the other end 204 and properly engage with the other end 204 (FIG. 5). A recess 520C is shown).
  • the first piston 520 receives a force from the rotating member 100 via the sliding member 200 connected to the rotating member 100 according to the rotation of the rotating member 100. More specifically, when the clutch pedal C is depressed by the driver, as described above, the rotating member 100, the X 1 direction to rotate (forward) about the central axis 106. Along with this, the sliding member 200 moves in a direction approaching the load generating unit 3000. Thereby, the first piston 520 is pressed in a direction toward the second piston 620.
  • the first piston 520 since no hydraulic oil is used, the first piston 520 does not need to have a cup (sealing) on the outer periphery (and need to have a groove for mounting such a cup). Needless to say.
  • the first pre-compression amount (pre-compressed / contracted amount) of the first spring 530 and the first 1 spring constant is a force (the clutch pedal operating force) that is greater than or equal to a first threshold value from the first piston 520 pressed by the sliding member 200 when the first spring 530 arranged pre-compressed as shown in FIG. ) Is set to contract when receiving.
  • the second pre-compression amount (the amount to be pre-compressed / contracted) of the second spring 630 and the second spring constant are determined by the second spring 630 disposed by pre-compression as shown in FIG.
  • the load generator 30 operates in the same manner as the load generator 10 described above with reference to FIG. 1 (note that the first piston 520 and the second piston 620 can slide in series).
  • FIG. 6 is a schematic diagram showing a configuration example of a load generator according to still another embodiment. 6 will be described by focusing attention only on the configuration different from that shown in FIG. 1, and the same configuration as that shown in FIG. 1 among the configurations shown in FIG. 6 will be described in detail. Omitted.
  • a rotation assist unit 4000 extending from one end 4000a to the other end 4000b shown in FIG. 6 is provided to be opposed to the first support member 4100 having a generally cylindrical shape as a whole, and to be substantially circular as a whole.
  • Turning assist unit 4000 around 4000a (central axis extending in the plane on the depth direction) central shaft provided at an end portion of the fixing member 4400 having a wall surface W 2 which is fixed to the example substantially triangular cross-section of the vehicle It is provided rotatably.
  • the rotation assist unit 4000 is provided so as to be rotatable around a central axis (a central axis extending in the depth direction on the paper surface) 4000b provided at the other end 104 of the rotation member 100.
  • the first support member 4100 has a fifth convex portion 4120 on the surface facing the second support member 4200.
  • the first support member 4100 has a bearing portion 4110 that pivotally supports the central shaft 4000b on a surface opposite to the second support member 4200.
  • the second support member 4200 has a sixth convex portion 4220 on the surface facing the first support member 4100.
  • the second support member 4200 has a bearing portion 4210 that pivotally supports the central shaft 4000a on the surface opposite to the first support member 4100.
  • the fourth spring 4300 is provided between the first support member 4100 and the second support member 4200 with the fifth protrusion 4120 inserted through one end and the sixth protrusion 4220 inserted through the other end. As a result, the fourth spring 4300 biases the first support member 4100 away from the second support member 4200.
  • the rotation assist unit 4000 having the above-described configuration has the other end 4000 b as viewed from the reference line L (a reference line connecting the one end 4000 a and the central axis 106 of the rotation member 100). Is in a position displaced in the pressing direction (left direction on the paper surface), resists rotation (forward rotation) of the rotation member 100 in the forward direction (X 1 ) (in other words, rotation member 100). The other end 104 of the rotating member 100 is pressed so as to assist in the rotation (reverse rotation) in the opposite direction (X 2 ). Such an operation is common to the operation of the torsion spring 700 described with reference to FIG.
  • the other end 4000b is the direction opposite to the direction in which the sliding member 200 is pressed when viewed from the reference line L (the reference line connecting the one end 4000a and the central axis 106 of the rotating member 100) (the right direction on the paper).
  • the reference line L the reference line connecting the one end 4000a and the central axis 106 of the rotating member 100
  • the rotation of the rotation member 100 in the reverse direction (X 2 ) the rotation of the rotation member 100 in the reverse direction (X 2 )
  • the other end 104 of the rotating member 100 is pressed so as to resist the reverse rotation).
  • Such an operation is common to the operation of the torsion spring 700 described with reference to FIG.
  • the end portion of the fixing member 4400 may support the central shaft 4000a, or the other end 104 of the rotating member 100 may support the central shaft 4000b.
  • the rotation assist unit 4000 has been described focusing on the case where it is used in the configuration shown in FIG. 1, but the rotation assist unit 4000 is also referred to FIG. 1 in the configuration shown in FIGS. 4 and 5. It can be used as an operation similar to that described above. 7).
  • Other Modifications In the embodiment described with reference to FIGS. 1, 4, and 6, as an example, an example in which a cylinder included in a load generation unit is formed to extend in the vertical direction has been described. However, in another embodiment, the cylinder included in the load generation unit may be formed to extend in an arbitrary direction (for example, the horizontal direction).
  • the diameter of the second cylinder included in the second load generation unit is included in the first load generation unit.
  • An example in which the diameter is larger than the diameter of one cylinder has been described.
  • the diameter of the second cylinder included in the second load generation unit may be formed smaller than the diameter of the first cylinder included in the first load generation unit, or the diameter of the first cylinder. And substantially the same.
  • the pre-compressed first spring further contracts when receiving a force greater than or equal to the first threshold value from the first piston, and the pre-compression
  • Both of the conditions that the second spring arranged in this way further contracts when subjected to a force greater than a second threshold (greater than the first threshold) from the second piston need to be satisfied.
  • the material, length, diameter, and the like for each of the first spring and the second spring can be designed so that these conditions are satisfied.
  • the plurality of load generation units include two load generation units, a first load generation unit and a second load generation unit.
  • the example formed by the above has been described.
  • the plurality of load generation units may include N (N is a natural number of 2 or more) load generation units. Even in this case, the condition that the N-th spring arranged in a pre-compression state further contracts when receiving a force greater than the N-th threshold value greater than the (N-1) -th threshold value from the N-th piston. Need to be met.
  • the load generating devices according to the various embodiments described above do not use a member having a friction coefficient that greatly affects the load characteristics with respect to the clutch pedal in each load generating unit, torsion spring, and the like. Thereby, the load generators according to the various embodiments described above can eliminate the need for extra processing such as surface treatment and heat treatment required to stabilize the friction coefficient of such members, Therefore, the cost resulting from such processing can be suppressed.
  • the load generating apparatus uses a member that does not maintain the originally intended load characteristics due to wear with use in each load generating portion, torsion spring, and the like. is not.
  • the load generator which concerns on various embodiment mentioned above can generate
  • the load characteristics according to the various embodiments described above do not use a member that may become a generation source of abnormal noise due to sliding in each load generation section and torsion spring. Thereby, the load characteristic which concerns on various embodiment mentioned above can keep the navigation environment in a vehicle interior favorable.
  • a load generator includes a first cylinder, a first moving member that slides in the first cylinder in response to an operation force of a clutch pedal, and the first moving member.
  • a first load generating portion having a first load generating spring disposed in a pre-compressed manner in the first cylinder, a second cylinder, and a slide in the second cylinder according to the operating force.
  • a second load generating portion having a second moving member that moves, and a second load generating spring that is engaged with the second moving member and is pre-compressed in the second cylinder.
  • the first moving member and the second moving member are connected in series in cooperation with a rotation assist spring that is locked at a position different from the rotation axis of the clutch pedal and reverses the operation force during rotation. At least one of the first load generating spring and the second load generating spring. By stretching towards those which generate a load against the clutch pedal.
  • the load obtained by combining the load obtained by the plurality of sliding control springs sliding inside the cylinder and the load obtained by the rotation assist spring is applied to the clutch pedal, thereby providing a manual.
  • a load similar to a load on a clutch pedal used in a transmission type vehicle can be generated.
  • the first cylinder and the second cylinder communicate with each other, and the first load generation spring includes the first moving member and the second movement.
  • the first moving member is extended between the first load generating spring and the first load generating spring according to the operation force transmitted through the hydraulic oil, and the second load generating spring is the first load generating spring.
  • the second moving member is disposed so as to sandwich the second moving member between the load generating spring, and the second cylinder abuts on a surface of the second moving member facing the first moving member, so that the second moving member A protrusion for restricting sliding toward the first moving member;
  • a load generating device having a configuration in which a load generated by the rotation of the clutch pedal is transmitted by hydraulic oil and a plurality of load generating springs are arranged in the same cylinder.
  • the load generator according to a third aspect is the load generator according to the first aspect, wherein the first cylinder and the second cylinder are formed as separate bodies, and the first moving member is transmitted via hydraulic oil.
  • the first load generating spring is expanded and contracted according to the operated force
  • the second moving member is expanded and contracted according to the operating force transmitted through the hydraulic oil.
  • a load generating device having a configuration in which a load generated by the rotation of the clutch pedal is transmitted by hydraulic oil, and a load generating spring unique to the cylinder is arranged in each cylinder.
  • the first cylinder and the second cylinder communicate with each other, and the first load generation spring includes the first moving member and the second movement.
  • the first moving member is disposed between the first moving member and the first load according to the operating force transmitted via the sliding member disposed between the first moving member and the clutch pedal.
  • the generating spring is extended and contracted, and the second load generating spring is disposed so as to sandwich the second moving member between the second load generating spring and the second cylinder, and the second cylinder is the first moving member of the second moving member.
  • a protrusion that abuts against a surface facing the first moving member and restricts sliding of the second moving member toward the first moving member;
  • a load generating device having a configuration in which a load generated by the rotation of the clutch pedal is transmitted without using hydraulic oil and a plurality of load generating springs are arranged in the same cylinder.
  • the load generator according to a fifth aspect is the load generator according to any one of the first aspect to the fourth aspect, wherein the first load generation spring contracts by receiving the operation force equal to or greater than a first threshold, The second load generating spring contracts by receiving the operation force that is greater than or equal to a second threshold value that is greater than the first threshold value.
  • the load obtained by combining the load obtained by the plurality of sliding control springs sliding inside the cylinder and the load obtained by the rotation assist spring is applied to the clutch pedal, thereby providing a manual.
  • a load similar to a load on a clutch pedal used in a transmission type vehicle can be generated.
  • the load generator according to a sixth aspect is the load generator according to any one of the first to fifth aspects, wherein the rotation assist spring is disposed at an end of the clutch pedal at the other end of the rotation assist spring.
  • a first support member that is pivotably provided; a second support member that is pivotally provided on a wall of a vehicle at one end of the rotation assist spring; and the first support member and the second support member. And a spring disposed therebetween.
  • the load obtained by combining the load obtained by the plurality of sliding control springs sliding inside the cylinder and the load obtained by the rotation assist spring is applied to the clutch pedal, thereby providing a manual.
  • a load similar to a load on a clutch pedal used in a transmission type vehicle can be generated.
  • the rotation assist spring is a torsion spring having a winding portion between one end and the other end.
  • the other end is rotatably provided at an end of the clutch pedal, and the one end is rotatably provided on a vehicle wall.
  • the load obtained by combining the load obtained by the plurality of sliding control springs sliding inside the cylinder and the load obtained by the rotation assist spring is applied to the clutch pedal, thereby providing a manual.
  • a load similar to a load on a clutch pedal used in a transmission type vehicle can be generated.
  • the end portion of the clutch pedal includes the rotation shaft of the clutch pedal and the one end of the rotation assist spring.
  • the clutch pedal is pressed by the rotation assist spring so that the end of the clutch pedal is directed to the one side, and the clutch pedal is When the end portion is located on the side opposite to the one side as viewed from the reference line, the clutch pedal is configured so that the end portion of the clutch pedal faces the opposite side. It is pressed by.
  • the rotation assist spring can operate so as to resist or assist the rotation of the clutch pedal in accordance with the rotation of the clutch pedal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Mechanical Control Devices (AREA)

Abstract

[Problem] To provide a load generation device having improved performance with respect to existing problems. [Solution] This load generation device is provided with: a first movable member which slides inside a first cylinder according to an operating force of a clutch pedal; a first load generation part disposed inside the first cylinder and including a first load generation spring; a second movable member which slides inside a second cylinder according to the operating force; and a second load generation part disposed inside the second cylinder and including a second load generation spring, wherein a load is generated on the clutch pedal by sliding the first and second movable members in series and thereby stretching/contracting the first and second load generation springs in conjunction with a rotation assist spring that is locked in a different position than a rotation shaft of the clutch pedal and inverts the operating force during rotation.

Description

荷重発生装置Load generator
 本出願において開示された技術は、クラッチペダルに対する荷重(反力)を発生させる荷重発生装置に関する。 The technology disclosed in the present application relates to a load generator that generates a load (reaction force) on a clutch pedal.
 クラッチペダルに対する操作に代えて、アクチュエータがクラッチに対する荷重を制御してクラッチの断接を実行する一方、荷重発生装置がクラッチペダルに対して荷重(反力)を発生させる方式を採用した車両が、従来から知られている。 Instead of an operation on the clutch pedal, a vehicle that employs a system in which the load generator generates a load (reaction force) on the clutch pedal while the actuator controls the load on the clutch to execute connection / disconnection of the clutch. Conventionally known.
 特許文献1に開示された荷重発生装置は、シリンダに係合するピストンと、ピストンとシリンダの端部との間に配置されたスプリングと、ピストンに形成され先端から中央部に向かって漸増し中央部から後端に向かって漸減する外径を有するカム部と、シリンダ内においてカム部に対向して設けられた筒状部材と、を含む。 The load generator disclosed in Patent Document 1 includes a piston that engages with a cylinder, a spring that is disposed between the piston and the end of the cylinder, and a piston that is formed on the piston and gradually increases from the tip toward the center. The cam part which has an outer diameter which reduces gradually toward a rear end from a part, and the cylindrical member provided facing the cam part in a cylinder are included.
 弾性材料により形成された筒状部材は、カム部を受け入れる開口と、この開口に隣接して軸方向に沿って延びる複数のスリットにより分割された複数の弾性片とを有する。クラッチに対する踏み込みに応じて、ピストンは、スプリングの付勢力に抗してシリンダの端部に向かって摺動する。これと並行して、ピストンに押圧されたカム部が、元の形状を維持しようとする複数の弾性片の付勢力に抗して開口から筒状部材の内部に侵入する。カム部の先端から中央部までが筒状部材の内部に侵入していく間においては、カム部は複数の弾性片から漸増する付勢力を受け、カム部の残りの部分が筒状部材の内部に侵入していく間においては、カム部は複数の弾性片から漸減する付勢力を受ける。これにより、特許文献1に開示された荷重発生装置は、スプリングに起因する付勢力と複数の弾性片に起因する付勢力とを組み合わせてクラッチに対する反力(荷重)を発生させる。なお、特許文献1の全体の内容が引用により本明細書に組み入れられる。 The cylindrical member formed of an elastic material has an opening for receiving the cam portion, and a plurality of elastic pieces divided by a plurality of slits extending along the axial direction adjacent to the opening. In response to depression of the clutch, the piston slides toward the end of the cylinder against the biasing force of the spring. In parallel with this, the cam portion pressed by the piston enters the inside of the cylindrical member from the opening against the urging force of the plurality of elastic pieces trying to maintain the original shape. While the leading end to the center of the cam portion enters the inside of the cylindrical member, the cam portion receives a biasing force that gradually increases from a plurality of elastic pieces, and the remaining portion of the cam portion is inside the cylindrical member. During the intrusion, the cam portion receives a biasing force that gradually decreases from the plurality of elastic pieces. Thereby, the load generator disclosed in Patent Document 1 generates a reaction force (load) against the clutch by combining the urging force caused by the spring and the urging force caused by the plurality of elastic pieces. The entire contents of Patent Document 1 are incorporated herein by reference.
独国特許出願公開第102014225996号明細書German Patent Application Publication No. 102014425996
 しかしながら、特許文献1に記載された荷重発生装置においては、筒状部材に対して摺動するカム部の摩擦係数が荷重特性に与える影響が大きいので、かかる摩擦係数の安定化のために、カム部に対する表面処理及び熱処理等に起因するコストが生ずる。また、荷重発生装置を繰り返し使用することに伴い、カム部が摩耗することによって、当初意図された荷重特性が得られなくなる恐れがある。さらには、カム部が、筒状部材に対して摺動することによって異音の発生源となり得るおそれがあるため、車室内のナビゲーション環境を悪化させてしまう恐れがある。 However, in the load generator described in Patent Document 1, since the friction coefficient of the cam portion that slides with respect to the cylindrical member has a large influence on the load characteristics, the cam can be stabilized to stabilize the friction coefficient. Costs resulting from surface treatment, heat treatment, and the like on the part occur. In addition, with repeated use of the load generating device, the cam portion may wear, and the originally intended load characteristics may not be obtained. Furthermore, since there is a possibility that the cam portion may become a source of abnormal noise by sliding with respect to the cylindrical member, there is a possibility that the navigation environment in the vehicle interior is deteriorated.
 そこで、本件出願は、様々な実施形態により、従来の課題に対し、改善された性能を有する荷重発生装置を提供する。 Therefore, the present application provides a load generator having improved performance with respect to the conventional problems according to various embodiments.
 一態様に係る荷重発生装置は、第1シリンダと、クラッチペダルの操作力に応じて該第1シリンダ内を摺動する第1移動部材と、該第1移動部材に係合して前記第1シリンダ内に予圧縮して配置された第1荷重発生バネと、を有する第1荷重発生部と、第2シリンダと、前記操作力に応じて該第2シリンダ内を摺動する第2移動部材と、該第2移動部材に係合して前記第2シリンダ内に予圧縮して配置された第2荷重発生バネと、を有する第2荷重発生部と、を具備し、前記クラッチペダルの回転軸とは異なる位置にて係止され、前記操作力を回動途中で反転させる回動アシストバネと連携して、前記第1移動部材及び前記第2移動部材を直列的に摺動させ、前記第1荷重発生バネ及び前記第2荷重発生バネの少なくとも一方を伸縮させることにより、前記クラッチペダルに対する荷重を発生させるものである。 A load generator according to an aspect includes a first cylinder, a first moving member that slides in the first cylinder in response to an operation force of a clutch pedal, and the first moving member that engages with the first moving member. A first load generating portion having a first load generating spring disposed in a pre-compressed manner in the cylinder; a second cylinder; and a second moving member that slides in the second cylinder in response to the operating force. And a second load generating spring that is engaged with the second moving member and is pre-compressed in the second cylinder, and a rotation of the clutch pedal. The first moving member and the second moving member are slid in series in cooperation with a rotation assist spring that is locked at a position different from the axis and reverses the operation force during rotation. Extending or contracting at least one of the first load generating spring and the second load generating spring And by those which generate a load against the clutch pedal.
一実施形態に係る荷重発生装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the load generator which concerns on one Embodiment. 図1に示した荷重発生装置によりクラッチペダルに与えられる荷重の特性の具体例を示す図である。It is a figure which shows the specific example of the characteristic of the load given to a clutch pedal by the load generator shown in FIG. 図2に示した荷重特性を概念的に説明するための模式図である。FIG. 3 is a schematic diagram for conceptually explaining load characteristics shown in FIG. 2. 別の実施形態に係る荷重発生装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the load generator which concerns on another embodiment. さらに別の実施形態に係る荷重発生装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the load generator which concerns on another embodiment. さらに別の実施形態に係る荷重発生装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the load generator which concerns on another embodiment.
 以下、添付図面を参照して様々な実施形態を説明する。なお、図面において共通した構成要素には同一の参照符号が付されている。また、或る図面に表現された構成要素が、説明の便宜上、別の図面においては省略されていることがある点に留意されたい。さらにまた、添付した図面が必ずしも正確な縮尺で記載されている訳ではないということに注意されたい。 Hereinafter, various embodiments will be described with reference to the accompanying drawings. In addition, the same referential mark is attached | subjected to the same component in drawing. It should also be noted that components represented in one drawing may be omitted in another drawing for convenience of explanation. Furthermore, it should be noted that the attached drawings are not necessarily drawn to scale.
 1.荷重発生装置の構成
 一実施形態に係る荷重発生装置は、クラッチペダルに対する運転者による操作に代えて、アクチュエータがクラッチに対する荷重を制御してクラッチの断接を実行する方式を採用した車両に搭載されるものである。本実施形態に係る荷重発生装置は、クラッチペダルに対して荷重(反力)を発生させるものである。
1. Configuration of Load Generating Device A load generating device according to an embodiment is mounted on a vehicle adopting a system in which an actuator controls a load on a clutch to execute connection / disconnection of the clutch instead of an operation by a driver on a clutch pedal. Is. The load generator according to the present embodiment generates a load (reaction force) on the clutch pedal.
 図1は、一実施形態に係る荷重発生装置の構成例を示す模式図である。図1に示すように、荷重発生装置10は、一端102から他端104まで延び、中心軸106の周りに回動する回動部材100と、回動部材100に対して回動自在に設けられた摺動部材200と、摺動部材200に係合するマスターシリンダ300と、マスターシリンダ300に連結された荷重発生部400と、回動部材100に対して回動自在に設けられた(回動アシストバネの一態様としての)捩りバネ700と、を含む。さらに、荷重発生装置10は、オプションとして、マスターシリンダ300に連結されたリザーバタンク800を含むことができる。 FIG. 1 is a schematic diagram illustrating a configuration example of a load generator according to an embodiment. As shown in FIG. 1, the load generating device 10 extends from one end 102 to the other end 104 and rotates around a central axis 106, and is provided so as to be rotatable with respect to the rotating member 100. The sliding member 200, the master cylinder 300 engaged with the sliding member 200, the load generating unit 400 connected to the master cylinder 300, and the rotating member 100 are provided so as to be rotatable (rotating). And a torsion spring 700 (as one mode of the assist spring). Further, the load generator 10 can optionally include a reservoir tank 800 coupled to the master cylinder 300.
 1-1.回動部材100
 回動部材100は、一端102から他端104まで延び、例えば、鉄、鉄鋼、アルミニウム合金、チタン合金等の金属により棒状の部材として形成され得る。回動部材100の一端102には、クラッチペダルCが固定される。なお、回動部材100とクラッチペダルCとを組み合わせたものを「クラッチペダル」と理解することも可能である。
1-1. Rotating member 100
The rotating member 100 extends from one end 102 to the other end 104, and can be formed as a rod-shaped member with a metal such as iron, steel, an aluminum alloy, or a titanium alloy. A clutch pedal C is fixed to one end 102 of the rotating member 100. A combination of the rotating member 100 and the clutch pedal C can be understood as a “clutch pedal”.
 回動部材100の一端102と他端104との間(図1に示す例では回動部材100の他端104の付近)には、回動部材100の延設方向に直交する方向(紙面上奥行方向)に延びる中心軸106が形成されている。車両の第1壁面Wには、回動部材110を挿通させて回動自在に支持する軸受部2が設けられている。これにより、回動部材100は、軸受部2により回動自在に支持された中心軸106の周りに正方向(X)に回動(正転)又は逆方向(X)に回動(逆転)することができる。具体的には、回動部材100は、クラッチペダルCが運転者(図示せず)により踏まれたときには、中心軸106の周りに正方向(X)に回動(正転)し、この後、クラッチペダルCが運転者により解放されたときには、中心軸106の周りに逆方向(X)に回動(逆転)することができる。なお、上述したように、回動部材100とクラッチペダルCとを組み合わせたものを「クラッチペダル」と理解することも可能であるので、中心軸106は、クラッチペダルの中心軸と理解することも可能である。 Between the one end 102 and the other end 104 of the rotating member 100 (in the vicinity of the other end 104 of the rotating member 100 in the example shown in FIG. 1), a direction orthogonal to the extending direction of the rotating member 100 (on the paper surface). A central axis 106 extending in the depth direction) is formed. The first wall surface W 1 of the vehicle, bearing unit 2 for rotatably supported by inserting the pivot member 110 is provided. Thereby, the rotation member 100 rotates in the forward direction (X 1 ) around the central axis 106 supported rotatably by the bearing portion 2 (forward rotation) or in the reverse direction (X 2 ) ( Can be reversed). Specifically, when the clutch pedal C is stepped on by a driver (not shown), the rotating member 100 rotates (forward) around the central axis 106 in the forward direction (X 1 ). Later, when the clutch pedal C is released by the driver, the clutch pedal C can be rotated (reversely rotated) in the reverse direction (X 2 ) around the central axis 106. As described above, since the combination of the rotating member 100 and the clutch pedal C can be understood as a “clutch pedal”, the central axis 106 can also be understood as the central axis of the clutch pedal. Is possible.
 回動部材100の他端104には、捩りバネ700が回動自在に設けられている。このような接続を実現するためには、例えば、回動部材100の他端104に回動部材100の延設方向に直交する方向に延びる中心軸(図示せず)が設けられ、捩りバネ700の他端704にかかる中心軸を挿通させて回動自在に支持する軸受部(図示せず)を設けることができる。或いは、捩りバネ700の他端704に回動部材100の延設方向に直交する方向に延びる中心軸(図示せず)が設けられ、回動部材100の他端104にかかる中心軸を挿通させて回動自在に支持する軸受部(図示せず)を設けることも可能である。 A torsion spring 700 is rotatably provided at the other end 104 of the rotating member 100. In order to realize such a connection, for example, a central axis (not shown) extending in a direction orthogonal to the extending direction of the rotating member 100 is provided at the other end 104 of the rotating member 100, and the torsion spring 700 is provided. It is possible to provide a bearing portion (not shown) that is inserted into the central axis of the other end 704 and is supported rotatably. Alternatively, the other end 704 of the torsion spring 700 is provided with a central axis (not shown) extending in a direction orthogonal to the extending direction of the rotating member 100, and the central axis applied to the other end 104 of the rotating member 100 is inserted. It is also possible to provide a bearing portion (not shown) that is rotatably supported.
 回動部材100の一端102と中心軸106との間にある接続部108には、摺動部材200が回動自在に設けられている。このような接続を実現するためには、例えば、回動部材100の接続部108に回動部材100の延設方向に直交する方向に延びる中心軸(図示せず)が設けられ、摺動部材200の一端202にかかる中心軸を挿通させて回動自在に支持する軸受部(図示せず)を設けることができる。或いは、摺動部材200の一端202に回動部材100の延設方向に直交する方向に延びる中心軸(図示せず)が設けられ、回動部材100の接続部108にかかる中心軸を挿通させて回動自在に支持する軸受部(図示せず)を設けることも可能である。 The sliding member 200 is rotatably provided at the connecting portion 108 between the one end 102 of the rotating member 100 and the central shaft 106. In order to realize such a connection, for example, a connecting shaft 108 of the rotating member 100 is provided with a central axis (not shown) extending in a direction orthogonal to the extending direction of the rotating member 100, and the sliding member A bearing portion (not shown) that is rotatably supported by inserting a central axis applied to one end 202 of 200 can be provided. Alternatively, a central axis (not shown) extending in a direction orthogonal to the extending direction of the rotating member 100 is provided at one end 202 of the sliding member 200, and the central axis applied to the connecting portion 108 of the rotating member 100 is inserted. It is also possible to provide a bearing portion (not shown) that is rotatably supported.
 1-2.摺動部材200
 摺動部材200は、一端202から他端204まで延び、例えば、鉄、鉄鋼、アルミニウム合金、チタン合金等の金属により棒状の部材として形成され得る。摺動部材200の一端202は、上述したように、回動部材100の接続部108に対して回動自在に設けられている。摺動部材200は、回動部材100の回動に伴って、回動部材100の延設方向に交差する方向(図1に示す例では、例えば、マスターシリンダ300の延設方向)において、マスターシリンダ300に対して摺動する。
1-2. Sliding member 200
The sliding member 200 extends from one end 202 to the other end 204, and can be formed as a rod-shaped member with a metal such as iron, steel, an aluminum alloy, or a titanium alloy. As described above, the one end 202 of the sliding member 200 is provided so as to be rotatable with respect to the connecting portion 108 of the rotating member 100. As the rotating member 100 rotates, the sliding member 200 moves in the direction intersecting the extending direction of the rotating member 100 (in the example shown in FIG. 1, for example, the extending direction of the master cylinder 300). Slide relative to the cylinder 300.
 1-3.マスターシリンダ300
 マスターシリンダ300は、一端302から他端304まで延び、例えば、鉄、鉄鋼、アルミニウム合金、チタン合金等の金属により筒状の部材として形成され得る。マスターシリンダ300は、その内部において作動油等を収容する円柱状の収容領域306を有する。
1-3. Master cylinder 300
The master cylinder 300 extends from one end 302 to the other end 304, and can be formed as a cylindrical member from a metal such as iron, steel, an aluminum alloy, or a titanium alloy. The master cylinder 300 has a cylindrical storage region 306 that stores hydraulic oil or the like inside.
 マスターシリンダ300は、一端302において、外部に連通し、摺動部材200の他端204を受け入れる貫通孔308を有する。マスターシリンダ300は、収容領域306において、摺動部材200の他端204に結合された円柱状のピストン310を有する。ピストン310は、例えば、鉄、鉄鋼、アルミニウム合金、チタン合金等の金属により円柱状の部材として形成され得る。 The master cylinder 300 has a through hole 308 that communicates with the outside at one end 302 and receives the other end 204 of the sliding member 200. The master cylinder 300 has a columnar piston 310 coupled to the other end 204 of the sliding member 200 in the accommodation region 306. The piston 310 can be formed as a cylindrical member with a metal such as iron, steel, an aluminum alloy, or a titanium alloy.
 マスターシリンダ300は、他端304において、第1配管4に連通する出力ポート312を有する。 The master cylinder 300 has an output port 312 that communicates with the first pipe 4 at the other end 304.
 クラッチペダルCが運転者により踏み込まれることに伴い、回動部材100が中心軸106の周りに正方向(X)に回動(正転)したときには、回動部材100に押圧された摺動部材200は、マスターシリンダ300の他端304に向かって移動する。これに伴い、摺動部材200の他端204に固定されたピストン310は、マスターシリンダ300の他端304に向かって摺動するため、収容領域306に収容された作動油を、出力ポート312及び第1配管4を介して荷重発生部400に向かって押圧する。この後、クラッチペダルCが運転者により解放されたときには、荷重発生部400から作動油を介して荷重を受けることにより、ピストン310は、マスターシリンダ300の一端302に向かって摺動する。これに伴い、ピストン310に固定された摺動部材200は、マスターシリンダ300の他端304から離れる方向に移動する。摺動部材200に押圧された回動部材100は、中心軸106の周りに逆方向(X)に回動(逆転)するため、クラッチペダルCは元の位置に復帰する。 When the rotating member 100 is rotated in the forward direction (X 1 ) around the central axis 106 (forward rotation) as the clutch pedal C is depressed by the driver, the sliding pressed by the rotating member 100 The member 200 moves toward the other end 304 of the master cylinder 300. Along with this, the piston 310 fixed to the other end 204 of the sliding member 200 slides toward the other end 304 of the master cylinder 300, so that the hydraulic oil stored in the storage region 306 is supplied to the output port 312 and The load is pressed toward the load generating unit 400 via the first pipe 4. Thereafter, when the clutch pedal C is released by the driver, the piston 310 slides toward the one end 302 of the master cylinder 300 by receiving a load from the load generating unit 400 via the hydraulic oil. Along with this, the sliding member 200 fixed to the piston 310 moves in a direction away from the other end 304 of the master cylinder 300. Since the rotating member 100 pressed by the sliding member 200 rotates (reverses) around the central axis 106 in the reverse direction (X 2 ), the clutch pedal C returns to the original position.
 1-4.荷重発生部400
 荷重発生部400は、複数の荷重発生部(本実施形態では2つの荷重発生部)を含む。具体的には、荷重発生部400は、第1荷重発生部500及び第2荷重発生部600を含む。
1-4. Load generator 400
The load generating unit 400 includes a plurality of load generating units (two load generating units in the present embodiment). Specifically, the load generation unit 400 includes a first load generation unit 500 and a second load generation unit 600.
 第1荷重発生部500は、大まかにいえば、一端502から他端504まで延びる筒状の第1シリンダ510と、第1シリンダ510の一端502に対向して第1シリンダ510の内部に配置された円柱状の第1ピストン(第1移動部材)520と、第1ピストン520に係合して第1シリンダ510の内部に配置された第1バネ(第1荷重発生バネ)530と、を含む。 Roughly speaking, the first load generating unit 500 is disposed inside the first cylinder 510 facing the one end 502 of the first cylinder 510 and the first cylinder 510 extending from the one end 502 to the other end 504. A cylindrical first piston (first moving member) 520, and a first spring (first load generating spring) 530 that engages with the first piston 520 and is disposed inside the first cylinder 510. .
 第2荷重発生部600は、大まかにいえば、一端602から他端604まで延び、第1シリンダ510と連通して一体的に形成された第2シリンダ610と、第1ピストン520との間に第1バネ530を挟んで配置された円柱状の第2ピストン(第2移動部材)620と、第2ピストン620と第2シリンダ610の他端604との間に配置された第2バネ(第2荷重発生バネ)630と、を含む。 Roughly speaking, the second load generating part 600 extends from one end 602 to the other end 604 and is connected between the first cylinder 510 and the second cylinder 610 integrally formed with the first cylinder 510. A cylindrical second piston (second moving member) 620 disposed with the first spring 530 interposed therebetween, and a second spring (second assembly) disposed between the second piston 620 and the other end 604 of the second cylinder 610. 2 load generating springs) 630.
 1-5.第1荷重発生部500
 第1シリンダ510の一端502には、第1配管4及び第1シリンダ510の内部の両方に連通する入力ポート(第1貫通孔)506が形成されている。
1-5. First load generator 500
An input port (first through hole) 506 communicating with both the first pipe 4 and the inside of the first cylinder 510 is formed at one end 502 of the first cylinder 510.
 第1ピストン520の外周には、周方向に沿って延びる環状の溝が複数(図1に示す例では2つの溝522、524)形成されている。溝522及び溝524には、それぞれ、作動油の侵入を防止するためのカップ(シーリング)526及びカップ(シーリング)528が取り付けられている。第1ピストン520の第2ピストン620に対向する面には、その面から突出する第1凸部529が形成されている。 A plurality of annular grooves (two grooves 522 and 524 in the example shown in FIG. 1) extending along the circumferential direction are formed on the outer periphery of the first piston 520. A cup (sealing) 526 and a cup (sealing) 528 are attached to the groove 522 and the groove 524, respectively, for preventing hydraulic oil from entering. A first convex portion 529 protruding from the surface of the first piston 520 facing the second piston 620 is formed.
 第1バネ530は、第1ピストン520と第2ピストン620との間に予圧縮して(予め収縮した状態で)配置されている。具体的には、第1バネ530は、その一端532に第1ピストン520の第1凸部529を挿通(係合)させ、その他端534に第2ピストン620に形成された後述する第2凸部622を挿通(係合)させることにより、第1ピストン520と第2ピストン620との間に配置されている。これにより、第1ピストン520は、第1バネ530により第2ピストン620から離れる方向に付勢される。 The first spring 530 is disposed between the first piston 520 and the second piston 620 in a pre-compressed state (in a previously contracted state). Specifically, the first spring 530 is inserted (engaged) with the first protrusion 529 of the first piston 520 at one end 532, and the second protrusion described later is formed at the other end 534 on the second piston 620. By inserting (engaging) the portion 622, the portion 622 is disposed between the first piston 520 and the second piston 620. Accordingly, the first piston 520 is urged in the direction away from the second piston 620 by the first spring 530.
 第1バネ530の第1予圧縮量(予め圧縮/収縮される量)及び第1ばね定数は、図1に示したように予圧縮して配置された第1バネ530が、第1配管4を介して供給される作動油に押圧された第1ピストン520から第1閾値以上の力(クラッチペダルの操作力)を受けたときに収縮するように、設定されている。 The first pre-compression amount (pre-compressed / contracted amount) of the first spring 530 and the first spring constant are set by the first spring 530 arranged pre-compressed as shown in FIG. Is set so as to contract when receiving a force (operation force of the clutch pedal) equal to or higher than a first threshold value from the first piston 520 pressed by the hydraulic oil supplied via the valve.
 1-6.第2荷重発生部600
 第2シリンダ610は、一実施形態では、第1シリンダ510の内径よりも大きい内径を有するように形成されている。第2シリンダ610は、その一端602の付近の内壁に形成された突起部(段差部)606を有する。突起部606は、例えば環状に延びるものであってもよい。突起部606は、第2ピストン620の第1ピストン520に対向する面に当接して、第2ピストン620の第1ピストン520に向かう摺動を規制するように機能する。
1-6. Second load generator 600
In one embodiment, second cylinder 610 is formed to have an inner diameter that is larger than the inner diameter of first cylinder 510. The second cylinder 610 has a protrusion (stepped portion) 606 formed on the inner wall near one end 602 thereof. The protruding portion 606 may extend, for example, in an annular shape. The protrusion 606 functions to contact the surface of the second piston 620 facing the first piston 520 and to restrict the sliding of the second piston 620 toward the first piston 520.
 第2シリンダ610は、その他端604の付近において、第2ピストン620に対向して設けられた円柱状の壁部材612を有する。壁部材612は、第2シリンダ610の他端604の付近の内壁に取り付けられたスナップリング614により固定されている。壁部材612の第2ピストン620に対向する面には、その面から突出する第3凸部616が形成されている。 The second cylinder 610 has a columnar wall member 612 provided opposite to the second piston 620 in the vicinity of the other end 604. The wall member 612 is fixed by a snap ring 614 attached to the inner wall near the other end 604 of the second cylinder 610. A third convex portion 616 protruding from the surface of the wall member 612 facing the second piston 620 is formed.
 第2ピストン620の第1ピストン520に対向する面には、その面から突出する第2凸部622が形成されている。この第2凸部622は上述のとおり第1バネ530の他端534に挿通される。これにより、第2ピストン620は、第1バネ530により第1ピストン520から離れる方向に付勢される。 The surface of the second piston 620 facing the first piston 520 is formed with a second convex portion 622 protruding from the surface. The second convex portion 622 is inserted into the other end 534 of the first spring 530 as described above. As a result, the second piston 620 is biased in a direction away from the first piston 520 by the first spring 530.
 第2ピストン620の第2バネ630又は壁部材612に対向する面には、その面から突出する第4凸部624が形成されている。 The surface of the second piston 620 that faces the second spring 630 or the wall member 612 is formed with a fourth convex portion 624 that protrudes from the surface.
 第2バネ630は、第2ピストン620と壁部材612との間に予圧縮して(予め収縮した状態で)配置されている。具体的には、第2バネ630は、その一端632に第2ピストン620の第4凸部624を挿通(係合)させ、その他端634に壁部材612の第3凸部616を挿通(係合)させることにより、第2ピストン620と壁部材612との間に配置されている。これにより、第2ピストン620は、第2バネ630により壁部材612から離れる方向に付勢される。 The second spring 630 is disposed between the second piston 620 and the wall member 612 in a pre-compressed state (in a contracted state in advance). Specifically, the second spring 630 has one end 632 inserted (engaged) with the fourth convex portion 624 of the second piston 620 and the other end 634 inserted with the third convex portion 616 of the wall member 612 (engagement). By combining, the second piston 620 and the wall member 612 are disposed. As a result, the second piston 620 is biased in a direction away from the wall member 612 by the second spring 630.
 第2バネ630の第2予圧縮量(予め圧縮/収縮される量)及び第2ばね定数は、図1に示したように予圧縮して配置された第2バネ630が、第2ピストン620から第2閾値以上の力(クラッチペダルの操作力)を受けたときに収縮するように、設定されている。この第2閾値は、上述した第1閾値より大きいものである。 The second pre-compression amount (pre-compressed / contracted amount) of the second spring 630 and the second spring constant are determined by the second spring 630 disposed in a pre-compressed manner as shown in FIG. Is set so as to contract when receiving a force (operation force of the clutch pedal) equal to or greater than a second threshold. This second threshold value is larger than the first threshold value described above.
 上記構成を有する荷重発生部400によれば、クラッチペダルCが運転者により踏み込まれることに伴い、第1バネ530が第1配管4を介して供給された作動油に押圧された第1ピストン520から受ける力が、第1閾値に到達してこれを上回っていくと、第1シリンダ510に予圧縮して配置された第1バネ530はさらに収縮していく。この状態において、第1バネ530は、第2ピストン620ひいては第2バネ630を壁部材612に向かう方向に押圧する。しかし、第2バネ630が第2ピストン620から受ける力が第2閾値に満たないときには、第2シリンダ610に予圧縮して配置された第2バネ630は、さらに収縮することはない。この後、クラッチペダルCが運転者によりさらに踏み込まれることに伴い、第2バネ630が第2ピストン620から受ける力が第2閾値に到達してこれを上回っていくと、第2シリンダ610に予圧縮して配置された第2バネ630は、さらに収縮していく。 According to the load generator 400 having the above-described configuration, the first piston 520 is pressed by the hydraulic oil supplied via the first pipe 4 as the clutch pedal C is depressed by the driver. When the force received from the first threshold value reaches and exceeds the first threshold value, the first spring 530 disposed in the first cylinder 510 by being pre-compressed further contracts. In this state, the first spring 530 presses the second piston 620 and thus the second spring 630 in a direction toward the wall member 612. However, when the force received by the second spring 630 from the second piston 620 is less than the second threshold value, the second spring 630 disposed in the second cylinder 610 by being pre-compressed does not further contract. Thereafter, when the clutch pedal C is further depressed by the driver, the force received by the second spring 630 from the second piston 620 reaches the second threshold value and exceeds the second threshold value. The second spring 630 disposed in a compressed state further contracts.
 1-7.捩りバネ700
 捩りバネ700は、第1荷重発生部500及び第2荷重発生部600と連携してクラッチペダルCに対する荷重を発生させる回動アシストバネの一態様として用いられ得るものである。
1-7. Torsion spring 700
The torsion spring 700 can be used as one mode of a rotation assist spring that generates a load on the clutch pedal C in cooperation with the first load generation unit 500 and the second load generation unit 600.
 捩りバネ700は、一端702から他端704まで延び、線状の弾性材料により形成され得るものである。捩りバネ700は、一端702と他端704との間において複数回にわたって巻回され環状に延びる巻回部706を有する。 The torsion spring 700 extends from one end 702 to the other end 704 and can be formed of a linear elastic material. The torsion spring 700 includes a winding portion 706 that is wound a plurality of times between one end 702 and the other end 704 and extends annularly.
 捩りバネ700の一端702は、車両の第2壁面Wに対して回動自在に設けられる。このような接続を実現するために、捩りバネ700の一端702及び第2壁面Wのうち、いずれか一方が(紙面上奥行方向に延びる)中心軸(図示せず)を有し、他方がかかる中心軸を挿通させ回動自在に支持する軸受部(図示せず)を有するものとすることができる。 One end 702 of the torsion spring 700 is provided rotatably relative to the second wall W 2 of the vehicle. To achieve such a connection, among the one end 702 and the second wall W 2 of the torsion spring 700 has either one (the paper-depth extending in a direction) central axis (not shown), the other It is possible to have a bearing portion (not shown) through which the central shaft is inserted and rotatably supported.
 捩りバネ700の他端704は、上述したように、回動部材100の他端104に対して回動自在に設けられる。このような接続を実現するために、上述したように、捩りバネ700の他端704及び回動部材100の他端104のうち、いずれか一方が(紙面上奥行方向に延びる)中心軸(図示せず)を有し、他方がかかる中心軸を挿通させ回動自在に支持する軸受部(図示せず)を有するものとすることができる。 The other end 704 of the torsion spring 700 is provided so as to be rotatable with respect to the other end 104 of the rotating member 100 as described above. In order to realize such a connection, as described above, one of the other end 704 of the torsion spring 700 and the other end 104 of the rotating member 100 has a central axis (extending in the depth direction on the paper surface) (see FIG. And a bearing portion (not shown) that rotatably supports the other center shaft.
 捩りバネ700は、回動部材100の回動に応じて、回動部材100の回動に抵抗又は助力するように回動部材100の他端104を押圧するように機能する。 The torsion spring 700 functions to press the other end 104 of the rotation member 100 so as to resist or assist the rotation of the rotation member 100 according to the rotation of the rotation member 100.
 具体的には、捩りバネ700の一端702と回動部材100の中心軸106とを結ぶ仮想的な線を基準線Lと定義すると、捩りバネ700の他端704が、図1に示すように、巻回部706との間に基準線Lを挟む位置にある(基準線Lより紙面上左側の位置にある)ときには、すなわち、他端704が、基準線Lからみて摺動部材200が押圧される方向(紙面上左方向)に変位した位置にあるときには、捩りバネ700は、回動部材100の正方向(X)の回動(正転)に抵抗する(別言すれば、回動部材100の逆方向(X)の回動(逆転)に助力する)ように、回動部材100の他端104を押圧する。 Specifically, if a virtual line connecting one end 702 of the torsion spring 700 and the central axis 106 of the rotating member 100 is defined as a reference line L, the other end 704 of the torsion spring 700 is as shown in FIG. When the reference line L is sandwiched between the winding part 706 (at the position on the left side of the drawing with respect to the reference line L), that is, the other end 704 is pressed by the sliding member 200 when viewed from the reference line L. The torsion spring 700 resists rotation (forward rotation) in the forward direction (X 1 ) of the rotation member 100 (in other words, rotation). The other end 104 of the rotating member 100 is pressed such that the moving member 100 assists in the rotation (reverse rotation) of the moving member 100 in the reverse direction (X 2 ).
 一方、捩りバネ700が一端702の周りに図1に示すY方向に回動することによって、捩りバネ700の他端704が基準線Lからみて巻回部706と同一側の位置にある(基準線Lより紙面上右側の位置にある)ときには、すなわち、他端704が、基準線Lからみて摺動部材200が押圧される方向とは反対の方向(紙面上右方向)に変位した位置にあるときには、捩りバネ700は、回動部材100の正方向(X)の回動(正転)に助力する(別言すれば、回動部材100の逆方向(X)の回動(逆転)に抵抗する)ように、回動部材100の他端104を押圧する。 On the other hand, by the torsion spring 700 is rotated in the Y 1 direction shown in FIG. 1 around the end 702, in the position of the winding portion 706 and the same side and the other end 704 of the torsion spring 700 is viewed from the reference line L ( In other words, the position where the other end 704 is displaced in the direction opposite to the direction in which the sliding member 200 is pressed when viewed from the reference line L (the right direction on the paper). The torsion spring 700 assists in the rotation (forward rotation) of the rotation member 100 in the forward direction (X 1 ) (in other words, the rotation of the rotation member 100 in the reverse direction (X 2 )). The other end 104 of the rotating member 100 is pressed so as to resist (reverse rotation).
 1-8.リザーバタンク800(オプション)
 リザーバタンク800及びこれに付随して用いられる第2配管6)は、オプションとして選択的に用いられるものである。
1-8. Reservoir tank 800 (optional)
The reservoir tank 800 and the second pipe 6) used therewith are selectively used as an option.
 マスターシリンダ300と荷重発生装置400(の第1荷重発生装置500)とを接続して作動油を搬送する第1配管4は、使用に伴ってその内部に空気を滞留させる可能性があるものである。第1配管4からそのような空気を抜く作業を行う際には、第1配管4から空気だけでなく作動油まで排出されてしまうことがある。そのようにして作動油が不足した場合に、マスターシリンダ300に対して作動油を補給するために設けられ得るものが、リザーバタンク800である。 The 1st piping 4 which connects the master cylinder 300 and the load generator 400 (the 1st load generator 500) and conveys hydraulic fluid has the possibility of retaining air in the inside with use. is there. When such an operation of extracting air from the first pipe 4 is performed, not only air but also hydraulic oil may be discharged from the first pipe 4. A reservoir tank 800 can be provided to replenish hydraulic oil to the master cylinder 300 when the hydraulic oil is insufficient.
 リザーバタンク800は、収容領域802において作動油を収容する。リザーバタンク800とマスターシリンダ300とは、第2配管6により接続される。第2配管6は、リザーバタンク800の収容領域802及びマスターシリンダ300の収容領域306に連通するように、リザーバタンク800及びマスターシリンダ300に取り付けられる。 The reservoir tank 800 stores hydraulic oil in the storage area 802. The reservoir tank 800 and the master cylinder 300 are connected by the second pipe 6. The second pipe 6 is attached to the reservoir tank 800 and the master cylinder 300 so as to communicate with the storage area 802 of the reservoir tank 800 and the storage area 306 of the master cylinder 300.
 2.荷重発生装置10の動作
 まず、クラッチペダルCが運転者により何ら踏み込まれていない状態が図1に示されている。この状態では、第1荷重発生部500に着目すると、第1バネ530が予圧縮して配置されていることにより、第1ピストン520の上面が第1シリンダ510の一端502に隣接している。また、第2荷重発生部600に着目すると、第2バネ630が予圧縮して配置されていることにより、第2ピストン620の第1ピストン520に対向する面が第2シリンダ610に形成された突起部606に当接している。さらに、捩りバネ700に着目すると、捩りバネ700の他端704は、基準線Lの紙面上左側に位置している。
2. Operation of the load generator 10 First, a state in which the clutch pedal C is not depressed at all by the driver is shown in FIG. In this state, paying attention to the first load generating unit 500, the upper surface of the first piston 520 is adjacent to one end 502 of the first cylinder 510 because the first spring 530 is pre-compressed and disposed. Further, when focusing on the second load generating unit 600, the second spring 630 is disposed in a pre-compressed manner, so that a surface of the second piston 620 facing the first piston 520 is formed on the second cylinder 610. It is in contact with the protrusion 606. Further, focusing on the torsion spring 700, the other end 704 of the torsion spring 700 is located on the left side of the reference line L in the drawing.
 クラッチペダルCが運転者により踏み込まれると、回動部材100が中心軸106の周りに正転する。これに伴い、摺動部材200がマスターシリンダ300の他端304に向かって移動することにより、マスターシリンダ300の収容領域306においてピストン310がマスターシリンダ300の他端304に向かって摺動する。これにより、収容領域306に収容された作動油が、ピストン310により押圧され第1配管4を介して第1荷重発生部500の入力ポート506に供給される。 When the clutch pedal C is depressed by the driver, the rotating member 100 rotates forward around the central axis 106. Accordingly, the sliding member 200 moves toward the other end 304 of the master cylinder 300, so that the piston 310 slides toward the other end 304 of the master cylinder 300 in the accommodation region 306 of the master cylinder 300. As a result, the hydraulic oil stored in the storage region 306 is pressed by the piston 310 and supplied to the input port 506 of the first load generating unit 500 via the first pipe 4.
 第1荷重発生部500においては、入力ポート506に供給された作動油により、第1ピストン520は第2ピストン620に向かう方向に押圧される。この時点では、第1バネ530が第1ピストン520から受ける力が第1閾値以上第2閾値未満であるとする。そうすると、予圧縮して配置された第1バネ530は、第1閾値以上の力を受けることにより、さらに収縮する。これにより、第1ピストン520は、第2ピストン620に近づく方向に摺動する。 In the first load generating unit 500, the first piston 520 is pressed in the direction toward the second piston 620 by the hydraulic oil supplied to the input port 506. At this time, it is assumed that the force received by the first spring 530 from the first piston 520 is not less than the first threshold and less than the second threshold. If it does so, the 1st spring 530 arrange | positioned by pre-compression will shrink | contract further by receiving the force beyond a 1st threshold value. Thereby, the first piston 520 slides in a direction approaching the second piston 620.
 第2荷重発生部600においては、第2ピストン620は、第1バネ530により壁部材612に向かう方向に押圧される。ここでは、第2バネ630が第2ピストン630から受ける力は第2閾値未満であるため、第2ピストン620は、その第1ピストン520に対向する面を第2シリンダ610の突起部606に当接させた状態を維持し、壁部材612に近づくようには摺動しない。 In the second load generation unit 600, the second piston 620 is pressed in the direction toward the wall member 612 by the first spring 530. Here, since the force received by the second spring 630 from the second piston 630 is less than the second threshold value, the second piston 620 has a surface facing the first piston 520 abutted against the protrusion 606 of the second cylinder 610. It does not slide so as to maintain the contacted state and approach the wall member 612.
 一方、捩りバネ700に着目すると、捩りバネ700は、他端704が回動部材100の他端104に押圧されることによって、一端702の周りにY方向に回動する。ここで、捩りバネ700の他端704は、依然として基準線Lより紙面上左側に位置している。この状態では、捩りバネ700は、一端702と他端704とを近づけるような力を回動部材100の他端104から受ける。このような力を受けた捩りバネ700は、元の形状に戻る(一端702と他端704とを離す)ように変形しようとする。これにより、捩りバネ700は、回動部材100の正転に抵抗する(逆転に助力する)ように回動部材100の他端704を押圧する。 On the other hand, paying attention to the torsion spring 700, the torsion spring 700 rotates around the one end 702 in the Y 1 direction by pressing the other end 704 against the other end 104 of the rotation member 100. Here, the other end 704 of the torsion spring 700 is still located on the left side of the drawing from the reference line L. In this state, the torsion spring 700 receives a force that brings the one end 702 and the other end 704 closer from the other end 104 of the rotating member 100. The torsion spring 700 that has received such force tends to deform so as to return to its original shape (the one end 702 and the other end 704 are separated). As a result, the torsion spring 700 presses the other end 704 of the rotating member 100 so as to resist forward rotation of the rotating member 100 (helping reverse rotation).
 この後、クラッチペダルCが運転者により踏み込まれ続けると、上述したものと同様の動作が、マスターシリンダ300、第1荷重発生部500、第2荷重発生部600及び捩りバネ700において行われる。 Thereafter, when the clutch pedal C is continuously depressed by the driver, operations similar to those described above are performed in the master cylinder 300, the first load generating unit 500, the second load generating unit 600, and the torsion spring 700.
 このようにクラッチペダルCが運転者により踏み込まれ続けると、やがて、第2バネ630が第2ピストン620から受ける力が第2閾値に到達する。そうすると、予圧縮して配置されていた第2バネ630は、さらに収縮していく。これにより、第2ピストン620は、第2バネ630からの付勢力に抗して、壁部材612に近づく方向に摺動する(この時点において、第1ピストン520及び第2ピストン620が直列的に摺動しているといえる。)。 As described above, when the clutch pedal C is continuously depressed by the driver, the force received by the second spring 630 from the second piston 620 eventually reaches the second threshold value. Then, the second spring 630 that has been pre-compressed is further contracted. Thus, the second piston 620 slides in a direction approaching the wall member 612 against the biasing force from the second spring 630 (at this time, the first piston 520 and the second piston 620 are connected in series. It can be said that it is sliding.)
 第2バネ630が第2閾値以上の力を受けることを契機としてさらに収縮を開始したことと殆ど同一のタイミングで、(捩りバネ700は、他端704を回動部材100の他端104から押圧されることによって、一端702の周りにY方向に回動し続けたことによって)、基準線Lの紙面上左側に位置していた捩りバネ700の他端704は、基準線Lを越えて、基準線Lの紙面上右側に位置する。この状態でも、捩りバネ700は、一端702と他端704とを近づけるような力を回動部材100の他端104から受けている。このような力を受けている捩りバネ700は、元の形状に戻る(一端702と他端704とを離す)ように変形しようとする。これにより、捩りバネ700は、回動部材100の正転に助力する(逆転に抵抗する)ように回動部材100の他端704を押圧する。 The torsion spring 700 presses the other end 704 from the other end 104 of the rotating member 100 at almost the same timing as when the second spring 630 receives a force equal to or greater than the second threshold and starts to contract further. by being, by continued to rotate in the Y 1 direction around the end 702), the other end 704 of the torsion spring 700 located in the plane on the left side of the reference line L, beyond the reference line L , Located on the right side of the reference line L on the paper surface. Even in this state, the torsion spring 700 receives a force from the other end 104 of the rotating member 100 to bring the one end 702 and the other end 704 closer to each other. The torsion spring 700 receiving such a force tends to deform so as to return to its original shape (the one end 702 and the other end 704 are separated). Thereby, the torsion spring 700 presses the other end 704 of the rotating member 100 so as to assist the forward rotation of the rotating member 100 (resist the reverse rotation).
 この後、クラッチペダルCが運転者により踏み込まれ続けると、上述したものと同様に、第1荷重発生部500の第1バネ530及び第2荷重発生部600の第2バネ630は、引き続き収縮していき、捩りバネ700は、元の形状に戻ろうとして一端702と他端704とを離すように変形することにより、回動部材100の正転に助力するように回動部材100の他端104を押圧し続ける。 Thereafter, when the clutch pedal C is continuously depressed by the driver, the first spring 530 of the first load generating unit 500 and the second spring 630 of the second load generating unit 600 continue to contract, as described above. The torsion spring 700 is deformed so as to separate the one end 702 and the other end 704 in order to return to the original shape, and thereby the other end of the rotating member 100 is assisted to forward rotation of the rotating member 100. Continue pressing 104.
 さらにこの後、クラッチペダルCが運転者から解放されると、第1荷重発生部500の第1バネ530及び第2荷重発生部600の第2バネ630は、ともに伸長していき、図1に示した状態に戻る。これに伴って、第1ピストン520により押圧された作動油が、入力ポート506、第1配管4及び出力ポート312を介してマスターシリンダ300の収容領域306に流入する。作動油に押圧されたピストン310は、マスターシリンダ300の一端302に向かう方向に摺動する。ピストン310に押圧された摺動部材200は、マスターシリンダ300から離れる方向に移動する。 After this, when the clutch pedal C is released from the driver, the first spring 530 of the first load generating unit 500 and the second spring 630 of the second load generating unit 600 both expand, and FIG. Return to the state shown. Accordingly, the hydraulic oil pressed by the first piston 520 flows into the storage area 306 of the master cylinder 300 via the input port 506, the first pipe 4, and the output port 312. The piston 310 pressed by the hydraulic oil slides in a direction toward the one end 302 of the master cylinder 300. The sliding member 200 pressed by the piston 310 moves in a direction away from the master cylinder 300.
 摺動部材200により押圧された回動部材100は、中心軸106の周りにX方向に回動(逆転)する。回動部材100が回動することに伴い、捩りバネ700は、一端702の周りにY方向に回動することによって、図1に示した状態に戻る。なお、捩りバネ700がこのようにY方向に回動する間においても、捩りバネ700の他端704が基準線Lより紙面上右側に位置しているときには、捩りバネ700は、回動部材100のX方向の回動(逆転)に抵抗し、捩りバネ700の他端704が基準線Lより紙面上左側に位置しているときには、捩りバネ700は、回動部材100のX方向の回動(逆転)に助力する、という点に変わりはない。 Rotating member 100 which is pressed by the sliding member 200, the X 2 direction to rotate (reverse) about a central axis 106. Along with the rotation member 100 rotates, the torsion spring 700, and rotates Y 2 direction about one end 702, returns to the state shown in FIG. Even during the torsion spring 700 is rotated in this manner in the Y 2 direction, when the other end 704 of the torsion spring 700 is positioned on paper right side of the reference line L, the torsion spring 700, the rotary member resist 100 X 2 direction rotation (reverse rotation), when the other end 704 of the torsion spring 700 is positioned on paper left side of the reference line L, the torsion spring 700, X 2 direction of the rotating member 100 There is no change in that it helps the rotation (reverse rotation).
 3.荷重発生装置10の荷重特性
 図2は、図1に示した荷重発生装置によりクラッチペダルに与えられる荷重の特性の具体例(一例)を示す図である。図2には、運転者がクラッチペダルを踏み込んだ量すなわちペダルストローク(単位[mm])に対応付けて、クラッチペダルに対してどの程度の荷重又は反力(単位[N])が与えられるかが、往路(実線)及び復路(一点鎖線)の各々について示されている。
3. Load Characteristics of Load Generating Device 10 FIG. 2 is a diagram showing a specific example (one example) of the characteristics of the load applied to the clutch pedal by the load generating device shown in FIG. FIG. 2 shows how much load or reaction force (unit [N]) is applied to the clutch pedal in association with the amount of depression of the clutch pedal, that is, the pedal stroke (unit [mm]). Are shown for each of the forward path (solid line) and the backward path (one-dot chain line).
 図2に示す荷重特性の例では、まず往路に着目すると、ペダルストロークがS1[mm]を越えた時点からS2[mm]までの区間(区間A)においては、クラッチペダルに対する荷重は、ペダルストロークに比例して増加している。ペダルストロークが S2[mm]を越えた時点からS3[mm]の時点までの区間(区間B)においては、クラッチペダルに対する荷重は、ペダルストロークに反比例して減少している。すなわち、この区間Bでは、荷重特性は、負勾配をもたらしている。この後、ペダルストロークがS3[mm]を越えた時点から最後までの区間(区間C)においては、クラッチペダルに対する荷重は、ペダルストロークに比例してごく僅かに増加している。 In the example of the load characteristic shown in FIG. 2, focusing on the forward path, in the section (section A) from the time when the pedal stroke exceeds S1 [mm] to S2 [mm], the load on the clutch pedal is the pedal stroke. It is increasing in proportion to In the section (section B) from when the pedal stroke exceeds S2 [mm] to S3 [mm], the load on the clutch pedal decreases in inverse proportion to the pedal stroke. That is, in this section B, the load characteristic has a negative gradient. Thereafter, in the section (section C) from when the pedal stroke exceeds S3 [mm] to the end, the load on the clutch pedal is slightly increased in proportion to the pedal stroke.
 一実施形態では、負勾配をもたらす区間Bのいずれかの時点において半クラッチが得られる。これにより、運転者は、区間Aに比べてクラッチを軽く感じる区間Bにおいて、半クラッチが得られたことを感ずることができる。 In one embodiment, a half-clutch is obtained at any point in section B that results in a negative slope. As a result, the driver can feel that the half-clutch has been obtained in the section B where the clutch feels lighter than the section A.
 次に、復路に着目すると、図2に示す荷重特性の例では、復路の荷重特性は、荷重の大きさが全体的に減少している点を除き、往路の荷重特性と概ね類似したものとなっている。往路の荷重特性と復路の荷重特性との間において荷重の大きさに差(ヒステリシス)が生じている(例えば、ペダルストロークがS2であるときに、往路の荷重特性では、荷重はP2であるのに対して、復路の荷重特性では、荷重はP1(<P2)である)のは、マスターシリンダ300、第1荷重発生部500及び第2荷重発生部600等における摺動に起因する摩擦力によるものと考えられる。 Next, focusing on the return path, in the example of the load characteristics shown in FIG. 2, the return path load characteristics are generally similar to the forward load characteristics except that the magnitude of the load is reduced overall. It has become. There is a difference (hysteresis) in the magnitude of the load between the forward load characteristic and the return load characteristic (for example, when the pedal stroke is S2, the load is P2 in the forward load characteristic). On the other hand, in the load characteristic of the return path, the load is P1 (<P2) due to the frictional force caused by the sliding in the master cylinder 300, the first load generating unit 500, the second load generating unit 600, and the like. It is considered a thing.
 次に、図2に示した荷重特性が得られる理由について、図3を参照して説明する。図3は、図2に示した荷重特性を概念的に説明するための模式図である。なお、図3に示す荷重特性において、横軸及び縦軸は、図2と同様に、それぞれ、ペダルストローク及び荷重を示すが、荷重特性の概念を模式的に示すことを目的として、簡略化のため、横軸及び縦軸の表記は省略されていることに留意されたい。 Next, the reason why the load characteristic shown in FIG. 2 is obtained will be described with reference to FIG. FIG. 3 is a schematic diagram for conceptually explaining the load characteristics shown in FIG. In the load characteristics shown in FIG. 3, the horizontal axis and the vertical axis indicate the pedal stroke and the load, respectively, as in FIG. 2, but for the purpose of schematically showing the concept of the load characteristics, Therefore, it should be noted that the notation of the horizontal axis and the vertical axis is omitted.
 図3に示すように、第1曲線(二点鎖線で示した点Pから点Pを経由して点線で示した部分まで延びる曲線)は、第1バネ530のみを用いた場合(すなわち、第2バネ630及び捩りバネ700を用いない場合)に得られる荷重特性の一例を示す。第1曲線に示すように、クラッチペダルに対する荷重はペダルストロークに比例している(増加している)。 As shown in FIG. 3, the first curve (the curve extending from the point P 1 indicated by the two-dot chain line to the portion indicated by the dotted line via the point P 2 ) uses only the first spring 530 (that is, An example of load characteristics obtained when the second spring 630 and the torsion spring 700 are not used) is shown. As shown in the first curve, the load on the clutch pedal is proportional (increases) to the pedal stroke.
 さらに、第2曲線(点Pから点Pを経由して点Pまで延びる二点鎖線で示した曲線)は、第1バネ530及び第2バネ630のみを用いた場合(すなわち、捩りバネ700を用いない場合)に得られる荷重特性の一例を示す。この第2曲線に示すように、点Pから点Pまでの区間においては、第1バネ530が第1ピストン520から受ける力が第1閾値以上ではあるものの、第2バネ630が第2ピストン620から受ける力が第1閾値以上であって第2閾値未満であるため、第1バネ530しか収縮しない(すなわち、第2バネ630は収縮しない)。 Furthermore, the second curve (the curve indicated by the two-dot chain line extending from the point P 1 to the point P 3 via the point P 2 ) uses only the first spring 530 and the second spring 630 (that is, torsion). An example of load characteristics obtained when the spring 700 is not used) is shown. As shown in the second curve in the section from the point P 1 to the point P 2, although the force which the first spring 530 receives from the first piston 520 is in the first threshold value or more, the second spring 630 second Since the force received from the piston 620 is greater than or equal to the first threshold and less than the second threshold, only the first spring 530 contracts (that is, the second spring 630 does not contract).
 点Pから点Pまでの区間においては、第1バネ530が第1ピストン520から受ける力が第1閾値以上であり、かつ、第2バネ630が第2ピストン620から受ける力が第2閾値以上であるため、第1バネ530及び第2バネ630の両方が収縮する。この場合、第1バネ530と第2バネ630とが結合して実質的には1つのバネを形成していると考えることができるため、第1バネ530と第2バネ630とが結合した1つのバネのばね定数は、フックの法則により、第1バネ530単体のばね定数よりも小さくなる。この結果、点Pから点Pまでの区間における勾配は、点Pから点Pまでの区間における勾配よりも小さくなっている。 In the section from the point P 2 to the point P 3, the force which the first spring 530 receives from the first piston 520 is smaller than the first threshold value, and the force which the second spring 630 receives from the second piston 620 second Since it is more than a threshold value, both the 1st spring 530 and the 2nd spring 630 contract. In this case, since it can be considered that the first spring 530 and the second spring 630 are combined to form one spring substantially, the first spring 530 and the second spring 630 are combined 1 The spring constants of the two springs are smaller than the spring constant of the first spring 530 alone due to Hooke's law. As a result, the gradient in the section from the point P 2 to the point P 3 is smaller than the gradient in the section from the point P 1 to the point P 2 .
 さらにまた、第3曲線(点Qから点Qを経由して点Qまで延びる一点鎖線で示した曲線)捩りバネ700のみを用いた場合(すなわち、第1バネ530及び第2バネ630を用いない場合)に得られる荷重特性の一例を示す。第3曲線に示すように、点Qから点Qまでの区間においては、捩りバネ700の他端704は、基準線Lより紙面上左側の或る位置~基準線Lまでの位置に存在しているため、捩りバネ700は、回動部材100の正転に抵抗するように回動部材100の他端104を押圧する。この区間においては、クラッチペダルに対する荷重はペダルストロークに従って減少している。 Furthermore, when the third curve (the curve indicated by the alternate long and short dash line extending from the point Q 1 to the point Q 3 via the point Q 2 ) is used only with the torsion spring 700 (ie, the first spring 530 and the second spring 630). An example of the load characteristic obtained when (when is not used) is shown. As shown in the third curve in the section from the point Q 1 to the point Q 2, present in the position of the other end 704 of the torsion spring 700, to a certain position and the reference line L of the paper on the left side of the reference line L Therefore, the torsion spring 700 presses the other end 104 of the rotating member 100 so as to resist forward rotation of the rotating member 100. In this section, the load on the clutch pedal decreases according to the pedal stroke.
 点Qから点Qまでの区間においては、捩りバネ700の他端704は、基準線L~基準線Lより紙面上右側の或る位置に存在しているため、捩りバネ700は、回動部材100の正転に助力するように回動部材100の他端104を押圧する。これにより、この区間においては、クラッチペダルに対する荷重はペダルストロークが増加するのに応じて負の領域において減少している。 In the section from the point Q 2 to the point Q 3 , the other end 704 of the torsion spring 700 exists at a certain position on the right side of the drawing with respect to the reference line L to the reference line L. The other end 104 of the rotating member 100 is pressed so as to assist the forward rotation of the moving member 100. As a result, in this section, the load on the clutch pedal decreases in the negative region as the pedal stroke increases.
 第2曲線として示した荷重特性と第3曲線として示した荷重特性とを足し合わせることによって、第1バネ530、第2バネ630及び捩りバネ700のすべてを組み合わせて用いた場合に得られる荷重特性(点Pから点Pを経由して点Pまで延びる実線で示した第4曲線に示す荷重特性、すなわち、図2に示した荷重特性)が得られる。 By adding the load characteristic shown as the second curve and the load characteristic shown as the third curve, the load characteristic obtained when all of the first spring 530, the second spring 630 and the torsion spring 700 are used in combination. (The load characteristic indicated by the fourth curve shown by the solid line extending from the point P 0 to the point P 4 via the point P 2 , that is, the load characteristic shown in FIG. 2) is obtained.
 図2と図3とを比較して検討することから分かるように、図3の第2曲線における点Pから点Pまでの区間において、直列に接続された第1バネ530及び第2バネ630の両方が同時に収縮することによって、点Pから点Pまでの区間における勾配よりも小さい勾配が得られる。さらに、第2曲線に示された荷重特性に対して、第3曲線に示された点Qから点Qまでの区間において負勾配をもたらす捩りバネ700の荷重特性を足し合わせることによって、最終的には、図2に示したような(区間Bにおいて)負勾配が生じた荷重特性が得られる。 As can be seen from a comparison between FIG. 2 and FIG. 3, the first spring 530 and the second spring connected in series in the section from the point P 2 to the point P 3 in the second curve of FIG. 3. by both 630 contracts simultaneously, a small gradient is obtained than the gradient in the section from the point P 1 to point P 2. Further, with respect to the load characteristics shown in the second curve, by adding the load characteristic of the torsion spring 700 to provide a negative slope in the third from the point Q 2 to which was shown in the curve to the point Q 3 sections, final Specifically, a load characteristic having a negative gradient (in section B) as shown in FIG. 2 is obtained.
 4.第1の変形例
 図1に示した実施形態では、第1荷重発生部500と第2荷重発生部600とを一体的に形成した構成を採用した場合について説明した。これに代えて、別の実施形態では、以下に説明するとおり、第1荷重発生部500と第2荷重発生部600とをそれぞれ別体として形成した構成を採用してもよい。
4). 1st modification In embodiment shown in FIG. 1, the case where the structure which formed the 1st load generation part 500 and the 2nd load generation part 600 integrally was employ | adopted was demonstrated. Instead, in another embodiment, as described below, a configuration in which the first load generation unit 500 and the second load generation unit 600 are formed as separate bodies may be employed.
 図4は、別の実施形態に係る荷重発生装置の構成例を示す模式図である。図4に示した構成のうち図1に示したものと異なる構成のみに着目して説明し、図4に示した構成のうち図1に示したものと同様の構成についてはその詳細な説明を省略する。 FIG. 4 is a schematic diagram showing a configuration example of a load generator according to another embodiment. 4 will be described by focusing attention only on the configuration different from that shown in FIG. 1, and the same configuration as that shown in FIG. 1 among the configurations shown in FIG. 4 will be described in detail. Omitted.
 図4に示す荷重発生装置20は、図1に示した荷重発生部400に代えて、荷重発生部2000を含む。荷重発生部2000は、相互に別体として形成された第1荷重発生部1000及び第2荷重発生部1500を含む。 4 includes a load generator 2000 instead of the load generator 400 shown in FIG. The load generating unit 2000 includes a first load generating unit 1000 and a second load generating unit 1500 that are formed separately from each other.
 さらに、荷重発生装置20は、図1に示した第1配管4に代えて、第3配管7、第4配管8及び第5配管9を含む。第3配管7の一端はマスターシリンダ300の出力ポート312に連結され、第3配管7の他端は、第4配管8の一端及び第5配管9の一端の両方に連結されている。第4配管8の他端は第1荷重発生部1000に連結され、第5配管9の他端は第2荷重発生部1500に連結されている。 Furthermore, the load generator 20 includes a third pipe 7, a fourth pipe 8, and a fifth pipe 9 instead of the first pipe 4 shown in FIG. One end of the third pipe 7 is connected to the output port 312 of the master cylinder 300, and the other end of the third pipe 7 is connected to both one end of the fourth pipe 8 and one end of the fifth pipe 9. The other end of the fourth pipe 8 is connected to the first load generator 1000, and the other end of the fifth pipe 9 is connected to the second load generator 1500.
 4-1.第1荷重発生部1000
 第1荷重発生部1000は、大まかにいえば、一端1102から他端1104まで延びる筒状の第1シリンダ1100と、第1シリンダ1100の一端1102に対向して第1シリンダ1100の内部に配置された円柱状の第1ピストン1200と、第1ピストン1200と第1シリンダ1100の他端1104との間に配置された第1バネ1300と、を含む。
4-1. First load generator 1000
Roughly speaking, the first load generating unit 1000 is disposed inside the first cylinder 1100 facing the one end 1102 of the cylindrical first cylinder 1100 extending from one end 1102 to the other end 1104 and the first cylinder 1100. A cylindrical first piston 1200, and a first spring 1300 disposed between the first piston 1200 and the other end 1104 of the first cylinder 1100.
 第1シリンダ1100の一端1102には、第4配管8及び第1シリンダ1100の両方に連通する入力ポート(第1貫通孔)1106が形成されている。第1シリンダ1100は、その他端1104の付近において、第1ピストン1200に対向して設けられた円柱状の壁部材1110を有する。壁部材1110は、スナップリング1112を用いて第1シリンダ1100に取り付けられ得る。壁部材1110の第1ピストン1200に対向する面には、その面から突出する第1凸部1114が形成されている。 An input port (first through hole) 1106 that communicates with both the fourth pipe 8 and the first cylinder 1100 is formed at one end 1102 of the first cylinder 1100. The first cylinder 1100 has a columnar wall member 1110 provided to face the first piston 1200 in the vicinity of the other end 1104. The wall member 1110 may be attached to the first cylinder 1100 using a snap ring 1112. A first convex portion 1114 that protrudes from the surface of the wall member 1110 that faces the first piston 1200 is formed.
 第1ピストン1200の外周には、図1に示した第1ピストン520と同様に作動油の侵入を防止するためのカップ(シーリング)が設けられ得るが、この点については、上述したものと同様であるので、その詳細な説明を省略する。 As with the first piston 520 shown in FIG. 1, a cup (sealing) for preventing intrusion of hydraulic oil can be provided on the outer periphery of the first piston 1200. This point is the same as described above. Therefore, detailed description thereof is omitted.
 第1ピストン1200の壁部材1110に対向する面には、その面から突出する第2凸部1202が形成されている。 The surface of the first piston 1200 that faces the wall member 1110 is formed with a second protrusion 1202 that protrudes from the surface.
 第1バネ1300は、第1ピストン1200と壁部材1110との間に予圧縮して(予め収縮した状態で)配置されている。具体的には、第1バネ1300は、その一端1302に第1ピストン1200の第2凸部1202を挿通(係合)させ、その他端1304に壁部材1110に形成された第1凸部1114を挿通(係合)させることにより、第1ピストン1200と壁部材1110との間に配置されている。これにより、第1ピストン1200は、第1バネ1300により壁部材1110から離れる方向に付勢される。 The first spring 1300 is pre-compressed (in a contracted state) between the first piston 1200 and the wall member 1110. Specifically, the first spring 1300 has one end 1302 inserted (engaged) with the second convex portion 1202 of the first piston 1200 and the other end 1304 formed with the first convex portion 1114 formed on the wall member 1110. By being inserted (engaged), it is disposed between the first piston 1200 and the wall member 1110. Accordingly, the first piston 1200 is urged in the direction away from the wall member 1110 by the first spring 1300.
 第1バネ1300の第1予圧縮量(予め圧縮/収縮される量)及び第1ばね定数は、図4に示したように予圧縮して配置された第1バネ1300が、第4配管8を介して供給される作動油に押圧された第1ピストン1200から第1閾値以上の力(クラッチペダルの操作力)を受けたときに収縮するように、設定されている。 The first precompression amount (precompression / contraction amount) of the first spring 1300 and the first spring constant are determined by the first spring 1300 arranged in a precompressed manner as shown in FIG. Is set so as to contract when receiving a force (operation force of the clutch pedal) equal to or higher than a first threshold value from the first piston 1200 pressed by the hydraulic oil supplied via the valve.
 4-2.第2荷重発生部1500
 第2荷重発生部1500は、大まかにいえば、一端1502から他端1504まで延びる筒状の第2シリンダ1600と、第2シリンダ1600の一端1502に対向して第2シリンダ1600の内部に配置された円柱状の第2ピストン1700と、第2ピストン1700と第2シリンダ1600の他端1504との間に配置された第2バネ1800と、を含む。
4-2. Second load generation unit 1500
Roughly speaking, the second load generating unit 1500 is disposed inside the second cylinder 1600 so as to face the cylindrical second cylinder 1600 extending from one end 1502 to the other end 1504 and the one end 1502 of the second cylinder 1600. A cylindrical second piston 1700, and a second spring 1800 disposed between the second piston 1700 and the other end 1504 of the second cylinder 1600.
 第2シリンダ1600の一端1502には、第5配管9及び第2シリンダ1600の両方に連通する入力ポート(第2貫通孔)1506が形成されている。第2シリンダ1600は、その他端1504の付近において、第2ピストン1700に対向して設けられた円柱状の壁部材1610を有する。壁部材1610は、スナップリング1612を用いて第2シリンダ1600に取り付けられ得る。壁部材1610の第2ピストン1700に対向する面には、その面から突出する第1凸部1614が形成されている。 An input port (second through hole) 1506 communicating with both the fifth pipe 9 and the second cylinder 1600 is formed at one end 1502 of the second cylinder 1600. The second cylinder 1600 has a columnar wall member 1610 provided to face the second piston 1700 in the vicinity of the other end 1504. The wall member 1610 can be attached to the second cylinder 1600 using a snap ring 1612. A first convex portion 1614 protruding from the surface of the wall member 1610 facing the second piston 1700 is formed.
 第2ピストン1700の外周には、図1に示した第1ピストン520と同様に作動油の侵入を防止するためのカップ(シーリング)が設けられ得るが、この点については、上述したものと同様であるので、その詳細な説明を省略する。 The outer periphery of the second piston 1700 may be provided with a cup (sealing) for preventing hydraulic oil from entering similarly to the first piston 520 shown in FIG. 1, but this is the same as described above. Therefore, detailed description thereof is omitted.
 第2ピストン1700の壁部材1610に対向する面には、その面から突出する第2凸部1702が形成されている。 2nd convex part 1702 which protrudes from the surface is formed in the surface facing the wall member 1610 of the 2nd piston 1700.
 第2バネ1800は、第2ピストン1700と壁部材1610との間に予圧縮して(予め収縮した状態で)配置されている。具体的には、第2バネ1800は、その一端1802に第2ピストン1700の第2凸部1702を挿通(係合)させ、その他端1804に壁部材1610に形成された第1凸部1614を挿通(係合)させることにより、第2ピストン1700と壁部材1610との間に配置されている。これにより、第2ピストン1700は、第2バネ1800により壁部材1610から離れる方向に付勢される。 The second spring 1800 is disposed in a pre-compressed state (in a contracted state in advance) between the second piston 1700 and the wall member 1610. Specifically, the second spring 1800 has one end 1802 inserted (engaged) with the second convex portion 1702 of the second piston 1700 and the other end 1804 with the first convex portion 1614 formed on the wall member 1610. By being inserted (engaged), it is disposed between the second piston 1700 and the wall member 1610. As a result, the second piston 1700 is biased in a direction away from the wall member 1610 by the second spring 1800.
 第2バネ1800の第2予圧縮量(予め圧縮/収縮される量)及び第2ばね定数は、図4に示したように予圧縮して配置された第2バネ1800が、第5配管9を介して供給される作動油に押圧された第2ピストン1700から第2閾値以上の力(クラッチペダルの操作力)を受けたときに収縮するように、設定されている。 The second pre-compression amount (the amount compressed / contracted in advance) and the second spring constant of the second spring 1800 are set so that the second spring 1800 arranged pre-compressed as shown in FIG. Is set so as to contract when receiving a force (operation force of the clutch pedal) equal to or greater than a second threshold value from the second piston 1700 pressed by the hydraulic oil supplied via the valve.
 なお、選択的には、図4に示されているように、第2ピストン1700においてその外周から突出する突起部1704が設けられ、第2シリンダ1600においてその内壁から突出する突起部(段差部)1616が設けられるようにしてもよい。この場合、第2ピストン1700は、その突起部1704が第2シリンダ1600の突起部1616に当接することによって、第2シリンダ1600の一端1502に向かう方向に摺動することを規制され得る。 As an alternative, as shown in FIG. 4, the second piston 1700 is provided with a protrusion 1704 protruding from the outer periphery thereof, and the second cylinder 1600 protrudes from the inner wall (step). 1616 may be provided. In this case, the second piston 1700 can be restricted from sliding in the direction toward the one end 1502 of the second cylinder 1600 by the protrusion 1704 coming into contact with the protrusion 1616 of the second cylinder 1600.
 4-3.荷重発生装置20の動作
 荷重発生装置20は、第1荷重発生部1000と第2荷重発生部1500とが別体として構成されている点のみにおいて、図1に示した荷重発生装置10と相違する。しかし、荷重発生装置20は、第1荷重発生部1000の第1シリンダ1100に予圧縮して配置された第1バネ1300が、第1ピストン1200から第1閾値以上の力を受けたときにさらに収縮し、第2荷重発生部1500の第2シリンダ1600に予圧縮して配置された第2バネ1800が、第2ピストン1700から(第1閾値より大きい)第2閾値以上の力を受けたときにさらに収縮する(第1ピストン1200及び第2ピストン1700は直列的に摺動し得る)、という点において、図1に示した荷重発生装置10と同様の構成を有するものである。したがって、荷重発生装置20は、図1を参照して上述した荷重発生装置10と同様に動作する。
4-3. The operation load generator 20 of the load generator 20 is different from the load generator 10 shown in FIG. 1 only in that the first load generator 1000 and the second load generator 1500 are configured as separate bodies. . However, when the first spring 1300 pre-compressed and disposed in the first cylinder 1100 of the first load generator 1000 receives a force greater than or equal to the first threshold value from the first piston 1200, the load generator 20 further When the second spring 1800 that contracts and is pre-compressed and disposed in the second cylinder 1600 of the second load generating unit 1500 receives a force greater than a second threshold value (greater than the first threshold value) from the second piston 1700. 1 (the first piston 1200 and the second piston 1700 can slide in series), and has the same configuration as the load generator 10 shown in FIG. Therefore, the load generator 20 operates in the same manner as the load generator 10 described above with reference to FIG.
 上述した荷重発生装置20によれば、第1荷重発生部1000と第2荷重発生部1500とを別体として形成することによって、図1に示した荷重発生装置10に比べて、必要とされるシリンダ(すなわち、第1シリンダ1100及び第2シリンダ1600)の軸長を短くすることができる。一般的には軸長の長いシリンダの加工性が悪いという事実によれば、荷重発生装置20に必要とされるシリンダの加工性は、荷重発生装置10に必要とされるシリンダの加工性に比べて改善される。このような利点は、3つ以上の荷重発生部を用いる場合にはさらに顕著なものとなる。 According to the load generation device 20 described above, the first load generation unit 1000 and the second load generation unit 1500 are formed as separate bodies, which is required as compared with the load generation device 10 shown in FIG. The axial lengths of the cylinders (that is, the first cylinder 1100 and the second cylinder 1600) can be shortened. In general, due to the fact that the workability of a cylinder with a long shaft length is poor, the workability of the cylinder required for the load generator 20 is higher than that of the cylinder required for the load generator 10. Improved. Such an advantage becomes even more remarkable when three or more load generating parts are used.
 また、荷重発生装置20によれば、複数の荷重発生部をそれぞれ別体として形成することにより、複数の荷重発生部のうちのいずれかが万が一故障した場合であっても、その故障した荷重発生部のみを新たなものに交換することができる。 Further, according to the load generator 20, by forming a plurality of load generators as separate bodies, even if any one of the plurality of load generators fails, the failed load generator Only the part can be exchanged for a new one.
 5.第2の変形例
 図1に示した実施形態では、クラッチペダルCと荷重発生部400との間における荷重の伝達を作動油を介して実現する構成を採用した場合について説明した。これに代えて、別の実施形態では、以下に説明するとおり、クラッチペダルCと荷重発生部との間における荷重の伝達を作動油を用いることなく実現する構成を採用してもよい。
5). Second Modification In the embodiment shown in FIG. 1, a case has been described in which a configuration in which transmission of a load between the clutch pedal C and the load generation unit 400 is realized via hydraulic oil is employed. Instead, in another embodiment, as described below, a configuration that realizes transmission of a load between the clutch pedal C and the load generation unit without using hydraulic oil may be employed.
 図5は、さらに別の実施形態に係る荷重発生装置の構成例を示す模式図である。図5に示した構成のうち図1に示したものと異なる構成のみに着目して説明し、図5に示した構成のうち図1に示したものと同様の構成についてはその詳細な説明を省略する。 FIG. 5 is a schematic diagram showing a configuration example of a load generator according to still another embodiment. Only the configuration different from that shown in FIG. 1 will be described in the configuration shown in FIG. 5, and the same configuration as that shown in FIG. 1 will be described in detail for the configuration shown in FIG. Omitted.
 図5に示す荷重発生装置30は、図1に示した荷重発生部400に代えて、荷重発生部3000を含む。荷重発生部3000は、主に、入力ポート506に代えて貫通孔3010を有する点において、図1に示した荷重発生部400と異なるものである。 5 includes a load generation unit 3000 in place of the load generation unit 400 illustrated in FIG. The load generating unit 3000 is different from the load generating unit 400 shown in FIG. 1 mainly in that it has a through hole 3010 instead of the input port 506.
 第1荷重発生部500の第1シリンダ510の一端502には、摺動部材200(の他端204)を受け入れ第1ピストン520に対する当接を許容する貫通孔(第1貫通孔)3010が形成されている。 A through hole (first through hole) 3010 that receives the sliding member 200 (the other end 204 thereof) and allows contact with the first piston 520 is formed at one end 502 of the first cylinder 510 of the first load generating unit 500. Has been.
 第1ピストン520は、摺動部材200の他端204に対向する面において、その他端204と当接する。第1ピストン520は、摺動部材200の他端204と対向する面において、その他端204を受け入れてその他端204と適切に係合するように、凹部520Cを有することもできる(図5には凹部520Cが図示されている)。 The first piston 520 comes into contact with the other end 204 on the surface facing the other end 204 of the sliding member 200. The first piston 520 can also have a recess 520C on the surface facing the other end 204 of the sliding member 200 to receive the other end 204 and properly engage with the other end 204 (FIG. 5). A recess 520C is shown).
 第1ピストン520は、回動部材100の回動に応じて、回動部材100に連結された摺動部材200を介して、回動部材100から力を受ける。具体的には、クラッチペダルCが運転者により踏み込まれたときには、上述したように、回動部材100は、中心軸106の周りにX方向に回動(正転)する。これに伴い、摺動部材200は、荷重発生部3000に近づく方向に移動する。これにより、第1ピストン520は、第2ピストン620に向かう方向に押圧される。 The first piston 520 receives a force from the rotating member 100 via the sliding member 200 connected to the rotating member 100 according to the rotation of the rotating member 100. More specifically, when the clutch pedal C is depressed by the driver, as described above, the rotating member 100, the X 1 direction to rotate (forward) about the central axis 106. Along with this, the sliding member 200 moves in a direction approaching the load generating unit 3000. Thereby, the first piston 520 is pressed in a direction toward the second piston 620.
 図5に例示した実施形態では、作動油が用いられないため、第1ピストン520は、外周においてカップ(シーリング)を有する必要がない(し、そのようなカップを取り付けるための溝を有する必要もない)ことはいうまでもない。 In the embodiment illustrated in FIG. 5, since no hydraulic oil is used, the first piston 520 does not need to have a cup (sealing) on the outer periphery (and need to have a groove for mounting such a cup). Needless to say.
 上記構成を有する荷重発生装置30においては、(図1に示した荷重発生装置10と実質的に同様に)、第1バネ530の第1予圧縮量(予め圧縮/収縮される量)及び第1ばね定数は、図5に示したように予圧縮して配置された第1バネ530が、摺動部材200により押圧された第1ピストン520から第1閾値以上の力(クラッチペダルの操作力)を受けたときに収縮するように、設定されている。同様に、第2バネ630の第2予圧縮量(予め圧縮/収縮される量)及び第2ばね定数は、図5に示したように予圧縮して配置された第2バネ630が、第2ピストン620から第2閾値以上の力(クラッチペダルの操作力)を受けたときに収縮するように、設定されている。この第2閾値は、上述した第1閾値より大きいものである。したがって、荷重発生装置30は、図1を参照して上述した荷重発生装置10と同様に動作する(なお、第1ピストン520及び第2ピストン620は直列的に摺動し得る。)。 In the load generating device 30 having the above-described configuration (substantially similar to the load generating device 10 shown in FIG. 1), the first pre-compression amount (pre-compressed / contracted amount) of the first spring 530 and the first 1 spring constant is a force (the clutch pedal operating force) that is greater than or equal to a first threshold value from the first piston 520 pressed by the sliding member 200 when the first spring 530 arranged pre-compressed as shown in FIG. ) Is set to contract when receiving. Similarly, the second pre-compression amount (the amount to be pre-compressed / contracted) of the second spring 630 and the second spring constant are determined by the second spring 630 disposed by pre-compression as shown in FIG. It is set so that it contracts when receiving a force (operation force of the clutch pedal) equal to or greater than the second threshold value from the two pistons 620. This second threshold value is larger than the first threshold value described above. Therefore, the load generator 30 operates in the same manner as the load generator 10 described above with reference to FIG. 1 (note that the first piston 520 and the second piston 620 can slide in series).
 6.第3の変形例
 図1、図4及び図5を参照して説明した実施形態では、回動アシストバネの一態様として捩りバネを用いる場合について説明した。別の実施形態では、回動アシストバネの別態様として、図6に示した回動アシストユニットを用いることも可能である。
6). Third Modification In the embodiment described with reference to FIGS. 1, 4, and 5, the case where a torsion spring is used as one aspect of the rotation assist spring has been described. In another embodiment, the rotation assist unit shown in FIG. 6 can be used as another aspect of the rotation assist spring.
 図6は、さらに別の実施形態に係る荷重発生装置の構成例を示す模式図である。図6に示した構成のうち図1に示したものと異なる構成のみに着目して説明し、図6に示した構成のうち図1に示したものと同様の構成についてはその詳細な説明を省略する。 FIG. 6 is a schematic diagram showing a configuration example of a load generator according to still another embodiment. 6 will be described by focusing attention only on the configuration different from that shown in FIG. 1, and the same configuration as that shown in FIG. 1 among the configurations shown in FIG. 6 will be described in detail. Omitted.
 図6に示す一端4000aから他端4000bまで延びる回動アシストユニット4000は、全体として略円柱状の形状を有する第1支持部材4100と、第1支持部材4100に対向して設けられ全体として略円柱状の形状を有する第2支持部材4200と、第1支持部材4100と第2支持部材4200との間に配置され、これら第1支持部材4100及び第2支持部材4200に固定された第4バネ(巻回部)4300と、を主に含む。 A rotation assist unit 4000 extending from one end 4000a to the other end 4000b shown in FIG. 6 is provided to be opposed to the first support member 4100 having a generally cylindrical shape as a whole, and to be substantially circular as a whole. A second support member 4200 having a columnar shape, and a fourth spring (which is disposed between the first support member 4100 and the second support member 4200 and fixed to the first support member 4100 and the second support member 4200 ( Winding part) 4300.
 回動アシストユニット4000は、車両の壁面Wに固定された例えば略三角形状の断面を有する固定部材4400の端部に設けられた中心軸(紙面上奥行方向に延びる中心軸)4000aの周りに回動自在に設けられる。また、回動アシストユニット4000は、回動部材100の他端104に設けられた中心軸(紙面上奥行方向に延びる中心軸)4000bの周りに回動自在に設けられる。 Turning assist unit 4000, around 4000a (central axis extending in the plane on the depth direction) central shaft provided at an end portion of the fixing member 4400 having a wall surface W 2 which is fixed to the example substantially triangular cross-section of the vehicle It is provided rotatably. The rotation assist unit 4000 is provided so as to be rotatable around a central axis (a central axis extending in the depth direction on the paper surface) 4000b provided at the other end 104 of the rotation member 100.
 第1支持部材4100は、第2支持部材4200に対向する面において第5凸部4120を有する。第1支持部材4100は、第2支持部材4200とは反対側の面において中心軸4000bを回動自在に軸支する軸受部4110を有する。 The first support member 4100 has a fifth convex portion 4120 on the surface facing the second support member 4200. The first support member 4100 has a bearing portion 4110 that pivotally supports the central shaft 4000b on a surface opposite to the second support member 4200.
 第2支持部材4200は、第1支持部材4100に対向する面において第6凸部4220を有する。第2支持部材4200は、第1支持部材4100とは反対側の面において中心軸4000aを回動自在に軸支する軸受部4210を有する。 The second support member 4200 has a sixth convex portion 4220 on the surface facing the first support member 4100. The second support member 4200 has a bearing portion 4210 that pivotally supports the central shaft 4000a on the surface opposite to the first support member 4100.
 第4バネ4300は、一端に第5凸部4120を挿通させ他端に第6凸部4220を挿通させて、第1支持部材4100と第2支持部材4200との間に設けられる。これにより、第4バネ4300は、第1支持部材4100を第2支持部材4200から離す方向に付勢する。 The fourth spring 4300 is provided between the first support member 4100 and the second support member 4200 with the fifth protrusion 4120 inserted through one end and the sixth protrusion 4220 inserted through the other end. As a result, the fourth spring 4300 biases the first support member 4100 away from the second support member 4200.
 上記構成を有する回動アシストユニット4000は、図6に示すように、他端4000bが、基準線L(一端4000aと回動部材100の中心軸106とを結ぶ基準線)からみて摺動部材200が押圧される方向(紙面上左方向)に変位した位置にあるときには、回動部材100の正方向(X)の回動(正転)に抵抗する(別言すれば、回動部材100の逆方向(X)の回動(逆転)に助力する)ように、回動部材100の他端104を押圧する。かかる動作は、図1を参照して説明した捩りバネ700の動作と共通するものである。 As shown in FIG. 6, the rotation assist unit 4000 having the above-described configuration has the other end 4000 b as viewed from the reference line L (a reference line connecting the one end 4000 a and the central axis 106 of the rotation member 100). Is in a position displaced in the pressing direction (left direction on the paper surface), resists rotation (forward rotation) of the rotation member 100 in the forward direction (X 1 ) (in other words, rotation member 100). The other end 104 of the rotating member 100 is pressed so as to assist in the rotation (reverse rotation) in the opposite direction (X 2 ). Such an operation is common to the operation of the torsion spring 700 described with reference to FIG.
 一方、他端4000bが、基準線L(一端4000aと回動部材100の中心軸106とを結ぶ基準線)からみて摺動部材200が押圧される方向とは反対の方向(紙面上右方向)に変位した位置にあるときには、回動部材100の正方向(X)の回動(正転)に助力する(別言すれば、回動部材100の逆方向(X)の回動(逆転)に抵抗する)ように、回動部材100の他端104を押圧する。かかる動作は、図1を参照して説明した捩りバネ700の動作と共通するものである。 On the other hand, the other end 4000b is the direction opposite to the direction in which the sliding member 200 is pressed when viewed from the reference line L (the reference line connecting the one end 4000a and the central axis 106 of the rotating member 100) (the right direction on the paper). When it is in the position displaced, it assists in the rotation (forward rotation) of the rotation member 100 in the forward direction (X 1 ) (in other words, the rotation of the rotation member 100 in the reverse direction (X 2 ) ( The other end 104 of the rotating member 100 is pressed so as to resist the reverse rotation). Such an operation is common to the operation of the torsion spring 700 described with reference to FIG.
 なお、ここでは、一例として、回動アシストユニット4000の第2支持部材4200が中心軸4000aを軸支し、回動アシストユニット4000の第1支持部材4100が中心軸4000bを軸支する場合について説明したが、固定部材4400の端部が中心軸4000aを軸支するようにしてもよいし、回動部材100の他端104が中心軸4000bを軸支するようにしてもよい。 Here, as an example, a case where the second support member 4200 of the rotation assist unit 4000 supports the center shaft 4000a and the first support member 4100 of the rotation assist unit 4000 supports the center shaft 4000b will be described. However, the end portion of the fixing member 4400 may support the central shaft 4000a, or the other end 104 of the rotating member 100 may support the central shaft 4000b.
 以上、回動アシストユニット4000が図1に示した構成において用いられる場合に着目して説明したが、回動アシストユニット4000は、図4及び図5に示した構成においても、図1を参照して説明したものと同様に動作するものとして利用可能なものである。

 7.その他の変形例
 図1、図4及び図6を参照して説明した実施形態では、一例として、荷重発生部に含まれるシリンダが鉛直方向に延びるように形成される例について説明した。しかし、別の実施形態では、荷重発生部に含まれるシリンダは、任意の方向(例えば水平方向)に延びるように形成されるものであってもよい。
The rotation assist unit 4000 has been described focusing on the case where it is used in the configuration shown in FIG. 1, but the rotation assist unit 4000 is also referred to FIG. 1 in the configuration shown in FIGS. 4 and 5. It can be used as an operation similar to that described above.

7). Other Modifications In the embodiment described with reference to FIGS. 1, 4, and 6, as an example, an example in which a cylinder included in a load generation unit is formed to extend in the vertical direction has been described. However, in another embodiment, the cylinder included in the load generation unit may be formed to extend in an arbitrary direction (for example, the horizontal direction).
 図1、図4、図5及び図6を参照して説明した実施形態では、最も好ましい例として、第2荷重発生部に含まれる第2シリンダの径が、第1荷重発生部に含まれる第1シリンダの径よりも大きく形成される例について説明した。しかし、別の実施形態では、第2荷重発生部に含まれる第2シリンダの径は、第1荷重発生部に含まれる第1シリンダの径より小さく形成されてもよいし、第1シリンダの径と略同一に形成されてもよい。但し、このような場合であっても、予圧縮して配置された第1バネが、第1ピストンから第1閾値以上の力を受けたときに、さらに収縮するという条件、及び、予圧縮して配置された第2バネが、第2ピストンから(第1閾値より大きい)第2閾値以上の力を受けたときに、さらに収縮するという条件の両方が、満たされることが必要である。これらの条件が満たされるように、第1バネ及び第2バネの各々についての材料、長さ及び径等が設計され得る。 In the embodiment described with reference to FIGS. 1, 4, 5, and 6, as a most preferable example, the diameter of the second cylinder included in the second load generation unit is included in the first load generation unit. An example in which the diameter is larger than the diameter of one cylinder has been described. However, in another embodiment, the diameter of the second cylinder included in the second load generation unit may be formed smaller than the diameter of the first cylinder included in the first load generation unit, or the diameter of the first cylinder. And substantially the same. However, even in such a case, the pre-compressed first spring further contracts when receiving a force greater than or equal to the first threshold value from the first piston, and the pre-compression Both of the conditions that the second spring arranged in this way further contracts when subjected to a force greater than a second threshold (greater than the first threshold) from the second piston need to be satisfied. The material, length, diameter, and the like for each of the first spring and the second spring can be designed so that these conditions are satisfied.
 図1、図4、図5及び図6を参照して説明した実施形態では、最も好ましい例として、複数の荷重発生部が、第1荷重発生部及び第2荷重発生部という2つの荷重発生部により形成される例について説明した。しかし、複数の荷重発生部は、N(Nは2以上の自然数)個の荷重発生部を含むものであってもよい。この場合であっても、予圧縮して配置された第Nばねが、第Nピストンから第(N-1)閾値より大きい第N閾値以上の力を受けたときに、さらに収縮する、という条件が満たされることが必要である。 In the embodiment described with reference to FIGS. 1, 4, 5, and 6, as a most preferable example, the plurality of load generation units include two load generation units, a first load generation unit and a second load generation unit. The example formed by the above has been described. However, the plurality of load generation units may include N (N is a natural number of 2 or more) load generation units. Even in this case, the condition that the N-th spring arranged in a pre-compression state further contracts when receiving a force greater than the N-th threshold value greater than the (N-1) -th threshold value from the N-th piston. Need to be met.
 これに関して、図1に示した実施形態において、3つの荷重発生部を用いた場合には、例えば、次のような利点が生ずる。図2に示した荷重特性における区間Cにおいて、第1バネ、第2バネ及び第3バネを組み合わせたものを1つのバネとしてみると、そのばね定数はフックの法則により小さくなる(荷重特性における勾配が小さくなる)。そうすると、これら3つのバネによる荷重特性と捩りバネによる荷重特性とを足し合わせることによって得られる荷重特性においては、区間Cでは、クラッチペダルに対する荷重は、ペダルストロークに応じて(例えば僅かに)減少するものとなる。これにより、荷重特性の設計自由度を向上させることができる。 In this regard, in the embodiment shown in FIG. 1, when three load generating portions are used, for example, the following advantages arise. In the section C in the load characteristic shown in FIG. 2, when the combination of the first spring, the second spring, and the third spring is viewed as one spring, the spring constant is reduced by Hook's law (gradient in the load characteristic). Becomes smaller). Then, in the load characteristic obtained by adding the load characteristic due to these three springs and the load characteristic due to the torsion spring, in section C, the load on the clutch pedal decreases (for example, slightly) according to the pedal stroke. It will be a thing. Thereby, the design freedom degree of a load characteristic can be improved.
 7.効果
 上述した様々な実施形態に係る荷重発生装置は、クラッチペダルに対する荷重特性に大きな影響を与えるような摩擦係数を有する部材を、各荷重発生部及び捩りバネ等において用いるものではない。これにより、上述した様々な実施形態に係る荷重発生装置は、そのような部材の摩擦係数を安定化するために必要とされる表面処理や熱処理等の余計な処理を不要とすることができ、したがって、かかる処理に起因するコストを抑えることができる。
7). Effects The load generating devices according to the various embodiments described above do not use a member having a friction coefficient that greatly affects the load characteristics with respect to the clutch pedal in each load generating unit, torsion spring, and the like. Thereby, the load generators according to the various embodiments described above can eliminate the need for extra processing such as surface treatment and heat treatment required to stabilize the friction coefficient of such members, Therefore, the cost resulting from such processing can be suppressed.
 さらに、上述した様々な実施形態に係る荷重発生装置は、使用に伴って摩耗することによって当初意図された荷重特性を維持できなくするような部材を、各荷重発生部及び捩りバネ等において用いるものではない。これにより、上述した様々な実施形態に係る荷重発生装置は、当初意図された特性を有する荷重を、より長い期間にわたって発生することができる。 Furthermore, the load generating apparatus according to the various embodiments described above uses a member that does not maintain the originally intended load characteristics due to wear with use in each load generating portion, torsion spring, and the like. is not. Thereby, the load generator which concerns on various embodiment mentioned above can generate | occur | produce the load which has the characteristic originally intended over a longer period.
 さらにまた、上述した様々な実施形態に係る荷重特性は、摺動に起因して異音の発生源となり得るおそれのあるような部材を、各荷重発生部及び捩りバネ等において用いるものではない。これにより、上述した様々な実施形態に係る荷重特性は、車室内のナビゲーション環境を良好に保つことができる。 Furthermore, the load characteristics according to the various embodiments described above do not use a member that may become a generation source of abnormal noise due to sliding in each load generation section and torsion spring. Thereby, the load characteristic which concerns on various embodiment mentioned above can keep the navigation environment in a vehicle interior favorable.
 以上のように、様々な実施形態によれば、上述した従来の課題に対し、改善された性能を有する荷重発生装置を提供することができる。 As described above, according to various embodiments, it is possible to provide a load generator having improved performance with respect to the above-described conventional problems.
 8.様々な実施態様
 第1の態様に係る荷重発生装置は、第1シリンダと、クラッチペダルの操作力に応じて該第1シリンダ内を摺動する第1移動部材と、該第1移動部材に係合して前記第1シリンダ内に予圧縮して配置された第1荷重発生バネと、を有する第1荷重発生部と、第2シリンダと、前記操作力に応じて該第2シリンダ内を摺動する第2移動部材と、該第2移動部材に係合して前記第2シリンダ内に予圧縮して配置された第2荷重発生バネと、を有する第2荷重発生部と、を具備し、前記クラッチペダルの回転軸とは異なる位置にて係止され、前記操作力を回動途中で反転させる回動アシストバネと連携して、前記第1移動部材及び前記第2移動部材を直列的に摺動させ、前記第1荷重発生バネ及び前記第2荷重発生バネの少なくとも一方を伸縮させることにより、前記クラッチペダルに対する荷重を発生させるものである。
8). Various Embodiments A load generator according to a first aspect includes a first cylinder, a first moving member that slides in the first cylinder in response to an operation force of a clutch pedal, and the first moving member. In addition, a first load generating portion having a first load generating spring disposed in a pre-compressed manner in the first cylinder, a second cylinder, and a slide in the second cylinder according to the operating force. A second load generating portion having a second moving member that moves, and a second load generating spring that is engaged with the second moving member and is pre-compressed in the second cylinder. The first moving member and the second moving member are connected in series in cooperation with a rotation assist spring that is locked at a position different from the rotation axis of the clutch pedal and reverses the operation force during rotation. At least one of the first load generating spring and the second load generating spring. By stretching towards those which generate a load against the clutch pedal.
 この態様によれば、シリンダの内部において摺動する複数の摺動制御バネにより得られる荷重と、回動アシストバネにより得られる荷重と、を組み合わせて得られる荷重をクラッチペダルに与えることにより、マニュアルトランスミッション方式の車両に用いられるクラッチペダルに対する荷重に類似した荷重を発生させることができる。 According to this aspect, the load obtained by combining the load obtained by the plurality of sliding control springs sliding inside the cylinder and the load obtained by the rotation assist spring is applied to the clutch pedal, thereby providing a manual. A load similar to a load on a clutch pedal used in a transmission type vehicle can be generated.
 また、この態様によれば、クラッチペダルに対する荷重特性に大きな影響を与えるような摩擦係数を有する部材を用いる必要がない。これにより、そのような部材の摩擦係数を安定化するために必要とされる表面処理や熱処理等の余計な処理を不要とすることができ、したがって、かかる処理に起因するコストを抑えることができる。 Further, according to this aspect, there is no need to use a member having a friction coefficient that greatly affects the load characteristics with respect to the clutch pedal. As a result, unnecessary processing such as surface treatment and heat treatment required to stabilize the friction coefficient of such a member can be eliminated, and thus the costs resulting from such treatment can be suppressed. .
 さらに、この態様によれば、使用に伴って摩耗することによって当初意図された荷重特性を維持できなくするような部材を用いる必要がない。これにより、当初意図された特性を有する荷重を、より長い期間にわたって発生することができる。 Furthermore, according to this aspect, there is no need to use a member that cannot maintain the originally intended load characteristics due to wear with use. As a result, a load having the originally intended characteristics can be generated over a longer period.
 さらにまた、この態様によれば、摺動に起因して異音の発生源となり得るおそれのあるような部材を用いる必要がない。これにより、車室内のナビゲーション環境を良好に保つことができる。 Furthermore, according to this aspect, there is no need to use a member that may be a source of abnormal noise due to sliding. Thereby, the navigation environment in the passenger compartment can be kept good.
 第2の態様に係る荷重発生装置は、上記第1の態様において、前記第1シリンダと前記第2シリンダとが連通し、前記第1荷重発生バネは、前記第1移動部材と前記第2移動部材との間に配置され、前記第1移動部材は、作動油を介して伝達された前記操作力に応じて前記第1荷重発生バネを伸縮させ、前記第2荷重発生バネは、前記第1荷重発生バネとの間に前記第2移動部材を挟むように配置され、前記第2シリンダは、前記第2移動部材の前記第1移動部材に対向する面に当接して前記第2移動部材の前記第1移動部材に向かう摺動を規制する突起部を有する。 In the load generator according to a second aspect, in the first aspect, the first cylinder and the second cylinder communicate with each other, and the first load generation spring includes the first moving member and the second movement. The first moving member is extended between the first load generating spring and the first load generating spring according to the operation force transmitted through the hydraulic oil, and the second load generating spring is the first load generating spring. The second moving member is disposed so as to sandwich the second moving member between the load generating spring, and the second cylinder abuts on a surface of the second moving member facing the first moving member, so that the second moving member A protrusion for restricting sliding toward the first moving member;
 この態様によれば、クラッチペダルの回動により生じた荷重を作動油により伝達し、同一のシリンダに複数の荷重発生バネを配置した構成を有する荷重発生装置を提供することができる。 According to this aspect, it is possible to provide a load generating device having a configuration in which a load generated by the rotation of the clutch pedal is transmitted by hydraulic oil and a plurality of load generating springs are arranged in the same cylinder.
 第3の態様に係る荷重発生装置は、上記第1の態様において、前記第1シリンダと前記第2シリンダとは相互に別体として形成され、前記第1移動部材は、作動油を介して伝達された前記操作力に応じて前記第1荷重発生バネを伸縮させ、前記第2移動部材は、作動油を介して伝達された前記操作力に応じて前記第2荷重発生バネを伸縮させる。 The load generator according to a third aspect is the load generator according to the first aspect, wherein the first cylinder and the second cylinder are formed as separate bodies, and the first moving member is transmitted via hydraulic oil. The first load generating spring is expanded and contracted according to the operated force, and the second moving member is expanded and contracted according to the operating force transmitted through the hydraulic oil.
 この態様によれば、クラッチペダルの回動により生じた荷重を作動油により伝達し、各シリンダにそのシリンダに固有の荷重発生バネを配置した構成を有する荷重発生装置を提供することができる。 According to this aspect, it is possible to provide a load generating device having a configuration in which a load generated by the rotation of the clutch pedal is transmitted by hydraulic oil, and a load generating spring unique to the cylinder is arranged in each cylinder.
 第4の態様に係る荷重発生装置は、上記第1の態様において、前記第1シリンダと前記第2シリンダとが連通し、前記第1荷重発生バネは、前記第1移動部材と前記第2移動部材との間に配置され、前記第1移動部材は、該第1移動部材と前記クラッチペダルとの間に配置された摺動部材を介して伝達された前記操作力に応じて前記第1荷重発生バネを伸縮させ、前記第2荷重発生バネは、前記第1荷重発生バネとの間に前記第2移動部材を挟むように配置され、前記第2シリンダは、前記第2移動部材の前記第1移動部材に対向する面に当接して前記第2移動部材の前記第1移動部材に向かう摺動を規制する突起部を有する。 In the load generator according to a fourth aspect, in the first aspect, the first cylinder and the second cylinder communicate with each other, and the first load generation spring includes the first moving member and the second movement. The first moving member is disposed between the first moving member and the first load according to the operating force transmitted via the sliding member disposed between the first moving member and the clutch pedal. The generating spring is extended and contracted, and the second load generating spring is disposed so as to sandwich the second moving member between the second load generating spring and the second cylinder, and the second cylinder is the first moving member of the second moving member. A protrusion that abuts against a surface facing the first moving member and restricts sliding of the second moving member toward the first moving member;
 この態様によれば、クラッチペダルの回動により生じた荷重を作動油によらず伝達し、同一のシリンダに複数の荷重発生バネを配置した構成を有する荷重発生装置を提供することができる。 According to this aspect, it is possible to provide a load generating device having a configuration in which a load generated by the rotation of the clutch pedal is transmitted without using hydraulic oil and a plurality of load generating springs are arranged in the same cylinder.
 第5の態様に係る荷重発生装置は、上記第1の態様から上記第4の態様のいずれかにおいて、前記第1荷重発生バネは、第1閾値以上の前記操作力を受けることにより収縮し、前記第2荷重発生バネは、前記第1閾値より大きい第2閾値以上の前記操作力を受けることにより収縮する。 The load generator according to a fifth aspect is the load generator according to any one of the first aspect to the fourth aspect, wherein the first load generation spring contracts by receiving the operation force equal to or greater than a first threshold, The second load generating spring contracts by receiving the operation force that is greater than or equal to a second threshold value that is greater than the first threshold value.
 この態様によれば、シリンダの内部において摺動する複数の摺動制御バネにより得られる荷重と、回動アシストバネにより得られる荷重と、を組み合わせて得られる荷重をクラッチペダルに与えることにより、マニュアルトランスミッション方式の車両に用いられるクラッチペダルに対する荷重に類似した荷重を発生させることができる。 According to this aspect, the load obtained by combining the load obtained by the plurality of sliding control springs sliding inside the cylinder and the load obtained by the rotation assist spring is applied to the clutch pedal, thereby providing a manual. A load similar to a load on a clutch pedal used in a transmission type vehicle can be generated.
 第6の態様に係る荷重発生装置は、上記第1の態様から上記第5の態様のいずれかにおいて、前記回動アシストバネが、前記回動アシストバネの他端において前記クラッチペダルの端部に回動自在に設けられる第1支持部材と、前記回動アシストバネの一端において車両の壁部に回動自在に設けられる第2支持部材と、前記第1支持部材と前記第2支持部材との間に配置されたバネと、を有する。 The load generator according to a sixth aspect is the load generator according to any one of the first to fifth aspects, wherein the rotation assist spring is disposed at an end of the clutch pedal at the other end of the rotation assist spring. A first support member that is pivotably provided; a second support member that is pivotally provided on a wall of a vehicle at one end of the rotation assist spring; and the first support member and the second support member. And a spring disposed therebetween.
 この態様によれば、シリンダの内部において摺動する複数の摺動制御バネにより得られる荷重と、回動アシストバネにより得られる荷重と、を組み合わせて得られる荷重をクラッチペダルに与えることにより、マニュアルトランスミッション方式の車両に用いられるクラッチペダルに対する荷重に類似した荷重を発生させることができる。 According to this aspect, the load obtained by combining the load obtained by the plurality of sliding control springs sliding inside the cylinder and the load obtained by the rotation assist spring is applied to the clutch pedal, thereby providing a manual. A load similar to a load on a clutch pedal used in a transmission type vehicle can be generated.
 第7の態様に係る荷重発生装置は、上記第1の態様から上記第5の態様のいずれかにおいて、前記回動アシストバネが、一端と他端との間に巻回部を有する捩りバネであって、
 前記他端が前記クラッチペダルの端部に回動自在に設けられ、前記一端が車両の壁部に回動自在に設けられるものである。
In the load generator according to a seventh aspect, in any one of the first aspect to the fifth aspect, the rotation assist spring is a torsion spring having a winding portion between one end and the other end. There,
The other end is rotatably provided at an end of the clutch pedal, and the one end is rotatably provided on a vehicle wall.
 この態様によれば、シリンダの内部において摺動する複数の摺動制御バネにより得られる荷重と、回動アシストバネにより得られる荷重と、を組み合わせて得られる荷重をクラッチペダルに与えることにより、マニュアルトランスミッション方式の車両に用いられるクラッチペダルに対する荷重に類似した荷重を発生させることができる。 According to this aspect, the load obtained by combining the load obtained by the plurality of sliding control springs sliding inside the cylinder and the load obtained by the rotation assist spring is applied to the clutch pedal, thereby providing a manual. A load similar to a load on a clutch pedal used in a transmission type vehicle can be generated.
 第8の態様に係る荷重発生装置は、上記第6の態様又は上記第7の態様において、前記クラッチペダルの前記端部が、前記クラッチペダルの前記回転軸と前記回動アシストバネの前記一端とを結ぶ基準線からみて一方の側に位置するときには、前記クラッチペダルは、前記クラッチペダルの前記端部が前記一方の側に向かうように、前記回動アシストバネにより押圧され、前記クラッチペダルの前記端部が、前記基準線からみて前記一方の側とは反対の側に位置するときには、前記クラッチペダルは、前記クラッチペダルの前記端部が前記反対の側に向かうように、前記回動アシストバネにより押圧されるものである。 In the load generator according to an eighth aspect, in the sixth aspect or the seventh aspect, the end portion of the clutch pedal includes the rotation shaft of the clutch pedal and the one end of the rotation assist spring. The clutch pedal is pressed by the rotation assist spring so that the end of the clutch pedal is directed to the one side, and the clutch pedal is When the end portion is located on the side opposite to the one side as viewed from the reference line, the clutch pedal is configured so that the end portion of the clutch pedal faces the opposite side. It is pressed by.
 この態様によれば、回動アシストバネは、クラッチペダルの回動に応じて、クラッチペダルの回動に抵抗又は助力するように動作することができる。 According to this aspect, the rotation assist spring can operate so as to resist or assist the rotation of the clutch pedal in accordance with the rotation of the clutch pedal.
 様々な実施形態によれば、従来の課題に対し、改善された性能を有する荷重発生装置を提供することができる。 According to various embodiments, it is possible to provide a load generator having improved performance with respect to conventional problems.
 本出願は、「荷重発生装置」と題して2017年5月31日に提出された日本国特許出願第2017-107882に基づくものであって、この日本国特許出願による優先権の利益を享受するものである。この日本国特許出願の全体の内容が引用により本明細書に組み入れられる。 This application is based on Japanese Patent Application No. 2017-107882 filed May 31, 2017 entitled “Load Generating Device”, and enjoys the benefit of the priority right from this Japanese Patent Application. Is. The entire contents of this Japanese patent application are incorporated herein by reference.
 C クラッチペダル
 L 基準線
 4 第1配管
 6 第2配管
 7 第3配管
 8 第4配管
 9 第5配管
 10、20、30 荷重発生装置
 100 回動部材
 102 回動部材の一端
 104 回動部材の他端
 106 回動部材の中心軸
 108 回動部材の接続部
 200 摺動部材
 202 摺動部材の一端
 204 摺動部材の他端
 400、2000、3000 荷重発生部
 506、1106 入力ポート(第1貫通孔)
 500、1000 第1荷重発生部
 600、1500 第2荷重発生部
 606、1616 突起部(段差部)
 510、1100 第1シリンダ
 610、1600 第2シリンダ
 520、1200 第1ピストン(第1移動部材)
 620、1700 第2ピストン(第2移動部材)
 530、1300 第1バネ(第1荷重発生バネ)
 630、1800 第2バネ(第2荷重発生バネ)
 700 捩りバネ(回動アシストバネ)
 702 捩りバネの一端
 704 捩りバネの他端
 706 捩りバネの巻回部
 1506 入力ポート(第2貫通孔)
 3010 貫通孔(第1貫通孔)
 4000 回動アシストユニット(回動アシストバネ)
 4000a 回動アシストバネの一端(中心軸)
 4000b 回動アシストバネの他端(中心軸)
 4100 第1支持部材
 4110 軸受部
 4120 第5凸部
 4200 第2支持部材
 4210 軸受部
 4220 第6凸部
 4300 第4バネ(巻回部)
 4400 固定部材
C Clutch pedal L Reference line 4 1st piping 6 2nd piping 7 3rd piping 8 4th piping 9 5th piping 10, 20, 30 Load generating device 100 Rotating member 102 One end of the rotating member 104 Other than rotating member End 106 Center axis of rotating member 108 Connecting portion of rotating member 200 Sliding member 202 One end of sliding member 204 Other end of sliding member 400, 2000, 3000 Load generating portion 506, 1106 Input port (first through hole )
500, 1000 1st load generation part 600, 1500 2nd load generation part 606, 1616 Protrusion part (step part)
510, 1100 First cylinder 610, 1600 Second cylinder 520, 1200 First piston (first moving member)
620, 1700 Second piston (second moving member)
530, 1300 First spring (first load generating spring)
630, 1800 Second spring (second load generating spring)
700 Torsion spring (rotation assist spring)
702 One end of torsion spring 704 Other end of torsion spring 706 Torsion spring winding portion 1506 Input port (second through hole)
3010 Through hole (first through hole)
4000 Rotation assist unit (Rotation assist spring)
4000a One end of rotation assist spring (center axis)
4000b The other end (center axis) of the rotation assist spring
4100 1st support member 4110 Bearing part 4120 5th convex part 4200 2nd support member 4210 Bearing part 4220 6th convex part 4300 4th spring (winding part)
4400 Fixing member

Claims (8)

  1.  第1シリンダと、クラッチペダルの操作力に応じて該第1シリンダ内を摺動する第1移動部材と、該第1移動部材に係合して前記第1シリンダ内に予圧縮して配置された第1荷重発生バネと、を有する第1荷重発生部と、
     第2シリンダと、前記操作力に応じて該第2シリンダ内を摺動する第2移動部材と、該第2移動部材に係合して前記第2シリンダ内に予圧縮して配置された第2荷重発生バネと、を有する第2荷重発生部と、
    を具備し、
     前記クラッチペダルの回転軸とは異なる位置にて係止され、前記操作力を回動途中で反転させる回動アシストバネと連携して、前記第1移動部材及び前記第2移動部材を直列的に摺動させ、前記第1荷重発生バネ及び前記第2荷重発生バネの少なくとも一方を伸縮させることにより、前記クラッチペダルに対する荷重を発生させる荷重発生装置。
    A first cylinder, a first moving member that slides in the first cylinder in response to an operating force of the clutch pedal, and a precompressed arrangement in the first cylinder that engages with the first moving member. A first load generating portion having a first load generating spring;
    A second cylinder, a second moving member that slides in the second cylinder in response to the operating force, and a second moving member that is engaged with the second moving member and pre-compressed in the second cylinder. A second load generating portion having two load generating springs;
    Comprising
    The first moving member and the second moving member are connected in series in cooperation with a rotation assist spring that is locked at a position different from the rotation axis of the clutch pedal and reverses the operation force during rotation. A load generating device that generates a load on the clutch pedal by sliding and expanding and contracting at least one of the first load generating spring and the second load generating spring.
  2.  前記第1シリンダと前記第2シリンダとが連通し、
     前記第1荷重発生バネは、前記第1移動部材と前記第2移動部材との間に配置され、
     前記第1移動部材は、作動油を介して伝達された前記操作力に応じて前記第1荷重発生バネを伸縮させ、
     前記第2荷重発生バネは、前記第1荷重発生バネとの間に前記第2移動部材を挟むように配置され、
     前記第2シリンダは、前記第2移動部材の前記第1移動部材に対向する面に当接して前記第2移動部材の前記第1移動部材に向かう摺動を規制する突起部を有する、請求項1に記載の荷重発生装置。
    The first cylinder and the second cylinder communicate with each other;
    The first load generating spring is disposed between the first moving member and the second moving member,
    The first moving member expands and contracts the first load generating spring according to the operation force transmitted through the hydraulic oil,
    The second load generating spring is disposed so as to sandwich the second moving member between the first load generating spring and the second load generating spring.
    The said 2nd cylinder has a projection part which contact | abuts the surface which faces the said 1st moving member of the said 2nd moving member, and controls the sliding toward the said 1st moving member of the said 2nd moving member. The load generator according to 1.
  3.  前記第1シリンダと前記第2シリンダとは相互に別体として形成され、
     前記第1移動部材は、作動油を介して伝達された前記操作力に応じて前記第1荷重発生バネを伸縮させ、
     前記第2移動部材は、作動油を介して伝達された前記操作力に応じて前記第2荷重発生バネを伸縮させる、請求項1に記載の荷重発生装置。
    The first cylinder and the second cylinder are formed as separate bodies,
    The first moving member expands and contracts the first load generating spring according to the operation force transmitted through the hydraulic oil,
    2. The load generating device according to claim 1, wherein the second moving member expands and contracts the second load generating spring according to the operation force transmitted through the hydraulic oil.
  4.  前記第1シリンダと前記第2シリンダとが連通し、
     前記第1荷重発生バネは、前記第1移動部材と前記第2移動部材との間に配置され、
     前記第1移動部材は、該第1移動部材と前記クラッチペダルとの間に配置された摺動部材を介して伝達された前記操作力に応じて前記第1荷重発生バネを伸縮させ、
     前記第2荷重発生バネは、前記第1荷重発生バネとの間に前記第2移動部材を挟むように配置され、
     前記第2シリンダは、前記第2移動部材の前記第1移動部材に対向する面に当接して前記第2移動部材の前記第1移動部材に向かう摺動を規制する突起部を有する、請求項1に記載の荷重発生装置。
    The first cylinder and the second cylinder communicate with each other;
    The first load generating spring is disposed between the first moving member and the second moving member,
    The first moving member expands and contracts the first load generating spring according to the operation force transmitted through a sliding member disposed between the first moving member and the clutch pedal.
    The second load generating spring is disposed so as to sandwich the second moving member between the first load generating spring and the second load generating spring.
    The said 2nd cylinder has a projection part which contact | abuts the surface which faces the said 1st moving member of the said 2nd moving member, and controls the sliding toward the said 1st moving member of the said 2nd moving member. The load generator according to 1.
  5.  前記第1荷重発生バネは、第1閾値以上の前記操作力を受けることにより収縮し、
     前記第2荷重発生バネは、前記第1閾値より大きい第2閾値以上の前記操作力を受けることにより収縮する、請求項1から請求項4のいずれか1項に記載の荷重発生装置。
    The first load generating spring contracts by receiving the operation force equal to or greater than a first threshold value,
    5. The load generation device according to claim 1, wherein the second load generation spring contracts by receiving the operation force that is greater than or equal to a second threshold value that is greater than the first threshold value.
  6.  前記回動アシストバネは、前記回動アシストバネの他端において前記クラッチペダルの端部に回動自在に設けられる第1支持部材と、前記回動アシストバネの一端において車両の壁部に回動自在に設けられる第2支持部材と、前記第1支持部材と前記第2支持部材との間に配置されたバネと、を有する、請求項1から請求項5のいずれか1項に記載の荷重発生装置。 The rotation assist spring rotates at the other end of the rotation assist spring at the end of the clutch pedal, and rotates at the vehicle wall at one end of the rotation assist spring. The load according to any one of claims 1 to 5, further comprising: a second support member provided freely, and a spring disposed between the first support member and the second support member. Generator.
  7.  前記回動アシストバネは、一端と他端との間に巻回部を有する捩りバネであって、
     前記他端が前記クラッチペダルの端部に回動自在に設けられ、前記一端が車両の壁部に回動自在に設けられる、請求項1から請求項5のいずれか1項に記載の荷重発生装置。
    The rotation assist spring is a torsion spring having a winding portion between one end and the other end,
    The load generation according to any one of claims 1 to 5, wherein the other end is rotatably provided at an end portion of the clutch pedal, and the one end is rotatably provided on a wall portion of a vehicle. apparatus.
  8.  前記クラッチペダルの前記端部が、前記クラッチペダルの前記回転軸と前記回動アシストバネの前記一端とを結ぶ基準線からみて一方の側に位置するときには、前記クラッチペダルは、前記クラッチペダルの前記端部が前記一方の側に向かうように、前記回動アシストバネにより押圧され、
     前記クラッチペダルの前記端部が、前記基準線からみて前記一方の側とは反対の側に位置するときには、前記クラッチペダルは、前記クラッチペダルの前記端部が前記反対の側に向かうように、前記回動アシストバネにより押圧される、請求項6又は請求項7に記載の荷重発生装置。
    When the end portion of the clutch pedal is located on one side when viewed from a reference line connecting the rotating shaft of the clutch pedal and the one end of the rotation assist spring, the clutch pedal is Pressed by the rotation assist spring so that the end portion is directed to the one side,
    When the end portion of the clutch pedal is located on the side opposite to the one side as viewed from the reference line, the clutch pedal is arranged so that the end portion of the clutch pedal faces the opposite side. The load generator according to claim 6 or 7, wherein the load generator is pressed by the rotation assist spring.
PCT/JP2018/007157 2017-05-31 2018-02-27 Load generation device WO2018220918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-107882 2017-05-31
JP2017107882A JP2018205884A (en) 2017-05-31 2017-05-31 Lord generating device

Publications (1)

Publication Number Publication Date
WO2018220918A1 true WO2018220918A1 (en) 2018-12-06

Family

ID=64455242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007157 WO2018220918A1 (en) 2017-05-31 2018-02-27 Load generation device

Country Status (2)

Country Link
JP (1) JP2018205884A (en)
WO (1) WO2018220918A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727962A (en) * 1980-07-19 1982-02-15 Tatsurou Okamura Construction material
JP2585682Y2 (en) * 1992-01-16 1998-11-25 三菱自動車工業株式会社 Clutch control device
JP2004330966A (en) * 2003-05-09 2004-11-25 Nissan Motor Co Ltd Stroke simulator of brake device
US20140069093A1 (en) * 2012-09-11 2014-03-13 Mando Corporation Pedal simulator for active brake system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727962A (en) * 1980-07-19 1982-02-15 Tatsurou Okamura Construction material
JP2585682Y2 (en) * 1992-01-16 1998-11-25 三菱自動車工業株式会社 Clutch control device
JP2004330966A (en) * 2003-05-09 2004-11-25 Nissan Motor Co Ltd Stroke simulator of brake device
US20140069093A1 (en) * 2012-09-11 2014-03-13 Mando Corporation Pedal simulator for active brake system

Also Published As

Publication number Publication date
JP2018205884A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP5205450B2 (en) Gearbox for motor vehicle
WO2015041124A1 (en) Brake device
WO2015174434A1 (en) Disk brake device
JP6596292B2 (en) Brake device for vehicle
US9200681B2 (en) Clutch and straddle-type vehicle with the same
JP2020537613A (en) Hydraulic hydraulic brake actuator
JP2019116155A (en) Brake fluid pressure control device
JP6436769B2 (en) Electric booster
WO2018220918A1 (en) Load generation device
JP6347522B2 (en) Input device
WO2018199114A1 (en) Disc brake device
JP4840600B2 (en) Electric booster
JP2014046758A (en) Electric booster
JP4767402B2 (en) Master cylinder
JP2021109649A (en) Separate type electric brake booster
US9527383B2 (en) Pedal effort adjusting apparatus for vehicles
JP5071477B2 (en) Operating device
KR20080016214A (en) Clutch pedal return power diminution apparatus for car
JP6888464B2 (en) Oil channel switching device
KR20080014234A (en) Clutch release cylinder of vehicle
CN216269202U (en) Decoupled brake booster
JP2006273290A (en) Accelerator pedal device and damper used for this
JP2000233742A (en) Brake device
US20140182985A1 (en) Shock absorber
US9574620B2 (en) Clutch for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809855

Country of ref document: EP

Kind code of ref document: A1