WO2018220858A1 - Roll feeder - Google Patents

Roll feeder Download PDF

Info

Publication number
WO2018220858A1
WO2018220858A1 PCT/JP2017/021405 JP2017021405W WO2018220858A1 WO 2018220858 A1 WO2018220858 A1 WO 2018220858A1 JP 2017021405 W JP2017021405 W JP 2017021405W WO 2018220858 A1 WO2018220858 A1 WO 2018220858A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
shaft
shaft portion
strip
motor
Prior art date
Application number
PCT/JP2017/021405
Other languages
French (fr)
Japanese (ja)
Inventor
穂積 遠藤
太志 漆畑
Original Assignee
オリイメック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリイメック株式会社 filed Critical オリイメック株式会社
Priority to CN201780056654.8A priority Critical patent/CN110691746B/en
Priority to PCT/JP2017/021405 priority patent/WO2018220858A1/en
Priority to JP2019521932A priority patent/JP6845320B2/en
Publication of WO2018220858A1 publication Critical patent/WO2018220858A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H20/00Advancing webs
    • B65H20/02Advancing webs by friction roller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/022Registering, tensioning, smoothing or guiding webs transversely by tentering devices
    • B65H23/025Registering, tensioning, smoothing or guiding webs transversely by tentering devices by rollers

Definitions

  • the present invention relates to, for example, a roll feeder for supplying a strip material to a press machine.
  • Patent Document 1 discloses a processing step of continuously supplying a strip-like material (hereinafter referred to as a strip) made of steel, aluminum or the like to a press machine or the like and performing pressing or cutting. Such is done by a series of equipment. That is, a coiled strip of material (that is, a coil material) is rotated in a unwinding direction by a machine called an uncoiler to draw out the strip from the outer periphery at any time, and the wake of the uncoiler (press machine etc.
  • a coiled strip of material that is, a coil material
  • the above-mentioned strip material is sent out to a press machine or the like by a predetermined amount and positioned by a machine called a roll feeder (or simply referred to as a feeder or the like) in the forestream of the above (see Patent Document 1) .
  • the roll feeder generally has a configuration including a pair of rolls (upper roll and lower roll) for realizing the feeding operation of the strip material by holding the strip material and rotating it.
  • belt-shaped material is aluminum in particular, there exist some with a large camber amount, It is calculated
  • camber means that the strip is bent in the left-right direction (the width direction of the strip) with respect to the feeding direction (traveling direction) of the strip (unrolling by being wound in a coil shape) Is not a curve), and the amount that is bent to the left and right is called the camber amount.
  • the amount of camber tends to be large in a foreign-made or poor-quality metal material, and the following problems occur due to the large amount of camber.
  • A When feeding a strip with a roll feeder, the strip is bent to the left or right in the direction of movement, and the strip can not be passed or passed to a device such as a press machine in a post process. Will be very difficult.
  • passing refers to passing a material to a predetermined position of the device, and if it can not be passed, it is not possible naturally to press or the like with the device in the post process.
  • the strip material having a large amount of camber may be discarded, in which case the cost of the product manufactured from the strip material is increased.
  • the equipment for example, a guide member for guiding the strip material
  • the camber causes a reduction in the feeding accuracy (the accuracy of the distance and speed of feeding the strip material) of the roll feeder.
  • Patent Document 2 discloses that the angle with respect to the lower roll of the upper roll can be adjusted by the driving force of the motor.
  • These roll feeders change the relative distance or angle between the upper roll and the lower roll during the feeding operation, so that the axial direction of the pressure for sandwiching the strip between the upper roll and the lower roll during the feeding operation
  • the distribution in the longitudinal direction of each roll which is a direction perpendicular to the feeding direction, is changed according to the state of the camber of the strip, whereby the strip is corrected by the clamping pressure at the time of feeding operation, It is an attempt to reduce the amount of camber.
  • the strip material and pressure-sensitive paper to be actually fed are sandwiched between the upper roll and the lower roll, and then the pressure-sensitive paper is taken out and the magnitude and distribution of pressure are checked.
  • the strip and pressure-sensitive paper are again sandwiched between the upper roll and the lower roll, and then the pressure-sensitive paper is removed. It is necessary to repeat the human work of checking the magnitude and distribution of pressure by looking as many times as necessary.
  • the roll feeder disclosed in Patent Document 2 is a member that supports the rotation of the output shaft of the motor by means of a screw mechanism with a large backlash consisting of an external thread and an internal thread (the end of the upper roll is supported via a bearing) ) To change the vertical angle of the upper roll by raising and lowering only one end of the upper roll by this linear movement. Therefore, in the case of the roll feeder disclosed in Patent Document 2, for example, the relative distance and angle between the upper roll and the lower roll at the time of feeding operation can be adjusted with high accuracy and finely adjusted. There were problems such as being difficult or impossible. In particular, since only one end of the upper roll is moved up and down, the distance between the other end of the upper roll and the lower roll can not be adjusted at all by the driving force of the motor.
  • the present invention is provided with a pair of rolls that realize the feeding operation of the strip by pinching and rotating the strip, and the relative distance and angle of these rolls are desirably adjusted with high accuracy and fineness.
  • the purpose is to provide a roll feeder that is easy to use.
  • the roll feeder described in claim 1 of the present application is a roll feeder including a pair of rolls that realizes a feeding operation of the strip material by holding the strip material and rotating it.
  • the first roll relative to the second roll such that the distance between the first roll, which is one of the rolls, and the second roll, which is the other of the rolls, is separately variable at each end of each roll
  • a mechanism that makes it displaceable And a plurality of drive sources for driving an operation of displacing the first roll relative to the second roll by the mechanism.
  • the roll feeder described in claim 2 of the present invention is characterized in that the mechanism is a five-bar link mechanism.
  • the roll feeder described in claim 3 of the present application is The mechanism is driven by a first motor which is one of the drive source, a first member rotatably supporting the first roll, a second member rotatably supporting the second roll, and the drive source.
  • a node having a first rotating shaft, a second rotating shaft disposed parallel to the first rotating shaft and driven by a second motor which is the other of the drive sources, and a third member
  • a nodal rotation type link mechanism (a link mechanism in which five nodes (links) are connected by five joints (joints) for achieving a turning couple)
  • a first shaft portion rotatably attached to the second member and rotationally driven by the first motor, and the first rotation shaft is provided eccentrically on an extension of the first shaft portion; 1 with eccentric shaft,
  • the second rotation shaft is rotatably attached to the second member at a position different from the first shaft portion so as to be parallel to the first shaft portion, and rotationally driven by the second motor.
  • the third member is rotatably attached to the first member by a connecting shaft having one end side parallel to the first rotating shaft, and the other end is rotatably attached to a first eccentric shaft portion of the first rotating shaft It is characterized by the following.
  • the roll feeder described in claim 4 of the present application is The first rotation shaft, the second rotation shaft, and the connection shaft are disposed in a torsional positional relationship with respect to the roll, and the first rotation shaft, the second rotation shaft, and the connection are provided.
  • the axial direction of the shaft is set to be 90 degrees different from the axial direction of the roll
  • the first member is a front first wall portion located forward of the center line of the roll in the front-rear direction, and a rear first wall portion located rearward of the center line of the roll in the front-rear direction
  • the second member includes a front second wall portion positioned forward of the front first wall portion in the front-rear direction, and a rear side second rear portion positioned rearward of the rear first wall portion in the front-rear direction With 2 walls
  • the third member is a front third member located on the front side with respect to the center line of the roll in the front-rear direction and having one end rotatably attached to the first front wall by the connecting shaft; There is provided a rear third member which is positioned rearward of the center line of the roll in the direction and one end of which is rotatably attached to the rear first wall by the connecting shaft,
  • the first rotation shaft is, as the first shaft portion, a front first shaft portion rotatably attached to
  • the second rotation shaft is, as the second shaft portion, a front second shaft portion rotatably attached to the front second wall portion, and a rear side second rotatably attached to the rear second wall portion. It has a shaft, and as the second eccentric shaft, it is rotatably attached to the front second eccentric shaft that is rotatably attached to the front first wall and to the rear first wall.
  • the mechanism comprises a front link mechanism and a rear link mechanism
  • the front side link mechanism includes the front side first wall portion, the front side second wall portion, the front side first shaft portion and the front side first eccentric shaft portion, the front side second shaft portion and the front side second eccentricity. It is a 5-node rotation type link mechanism which makes a shaft part and said front 3rd member a node
  • the rear side link mechanism includes the rear side first wall portion, the rear side second wall portion, the rear side first shaft portion and the rear side first eccentric shaft portion, and the rear side second shaft portion.
  • a 5-node rotary type link mechanism having a rear second eccentric shaft portion and the rear third member as nodes.
  • the front link mechanism and the rear link mechanism are provided (preferably symmetrically) on the front side and the rear side with respect to a plane including the center line of the roll and orthogonal to the front-rear direction. It is characterized by
  • the distance between the first roll which is one of the pair of rolls which realizes the feeding operation of the strip material by the operation of the plurality of drive sources and the second roll which is the other since it becomes separately variable at both ends of each roll, it is possible to easily adjust (or change) the relative distance and angle of these rolls. Thereby, it is possible to easily reduce the amount of camber of the strip material by the roll feeder.
  • the mechanism that makes the first roll displaceable with respect to the second roll is a five-bar link mechanism that can reduce the backlash compared to the screw mechanism. It is possible to adjust or change the relative distance and angle of the rolls with high accuracy and fineness.
  • the mechanism is a 5-node rotary link mechanism
  • the first rotary shaft and the second rotary shaft which are two nodes (links) constituting the link mechanism
  • the first member supporting the first roll can be operated in two degrees of freedom with respect to the second member supporting the second roll by rotationally driving each of the first motor and the second motor.
  • all joints (joints) connecting the nodes and the nodes can be generally constituted by rotary bearings (bearings) with less rattling compared with a slide mechanism, a screw mechanism and the like.
  • a front side link mechanism and a rear side link mechanism are provided as the mechanism, and these link mechanisms include the center line of the roll and the front and rear direction (the axial direction of the roll It is configured to be provided (preferably, symmetrically) on the front side and the rear side with respect to a plane which is different from the direction which is different, that is, the feeding direction of the strip material).
  • the force by which the third member or the like pushes the first member in the direction to press the first roll against the second roll Distributed on the near side.
  • the first rotating shaft, the second rotating shaft, and the connecting shaft are attached (or connected) to either the front or rear wall portion at both ends and supported Support structure. Therefore, according to the fourth aspect of the present invention, during the feeding operation for sandwiching the strip material by the roll, the stress or the deformation generated in the first member or each rotation shaft constituting the mechanism is suppressed. Problems such as deviation of the first roll from the proper position and posture due to this deformation are suppressed.
  • the force for sandwiching the strip material is appropriately biased in the width direction of the strip material (that is, the axial distribution of the pressure for sandwiching the strip material is appropriate. It is possible to reduce the amount of camber of the belt-like material by setting it to (2) with high reliability and good results. Further, as described above, the force for pressing the first member is dispersed, and each shaft has a dual support structure, so that the load on each bearing that connects each shaft to the member and rotatably supports, for example, is reduced. There is also an effect of extending the life until the parts such as the bearing constituting the roll feeder are damaged by fatigue.
  • FIG. 1 is a top view of a roll feeder.
  • FIG. 2 is a front view (view in the direction of arrow X) of the roll feeder.
  • FIG. 3 is a side view (as viewed in the direction of the arrow Y) of the roll feeder.
  • FIG. 4 is a longitudinal cross-sectional view of the roll feeder, and is a cross-sectional view taken along line A in FIG. (A) of FIG. 5 is a partially enlarged view of the A sectional view, and (b) of FIG. 5 is a view showing a first rotation axis.
  • FIG. 6 is a cross-sectional view of the roll feeder and is a cross-sectional view taken along line B in FIG. 7 is a cross-sectional view of C in FIG.
  • FIG. 8 is a cross-sectional view taken along the line D in FIG. 4 (a partial cross-sectional view taken along the line F).
  • FIG. 9 is a view showing an operation example of the first roll, in which (a) shows only the first roll, and (b) shows also the second roll.
  • FIG. 10 is a view showing an operation example of the first roll, in which (a) shows only the first roll, and (b) shows also the second roll.
  • FIG. 11 is a view showing an operation example of the first roll, in which (a) shows only the first roll, and (b) shows also the second roll.
  • FIG. 12 is a view for explaining the mechanical configuration and operation of a link mechanism which makes the first roll displaceable.
  • FIG. 13 is a figure which shows an example of supply equipment of a strip
  • (b) of FIG. 13 is a flowchart explaining the position setting (initial setting) of the 1st roll of a roll feeder.
  • (A) of FIG. 14 shows an example of a timing chart at the time of operation of the roll feeder, and (b) of FIG. 14 is a view for explaining the direction of the camber of the strip and the position to be rolled.
  • (A) of FIG. 15 shows a modification 1 of the timing chart during operation of the roll feeder, and (b) of FIG. 15 shows a modification 2 of the timing chart during operation of the roll feeder.
  • (A) of FIG. 16 is a view showing a modification of the roll feeder, and (b) of FIG. 16 is a view showing a comparative example of a timing chart at the time of operation of the roll feeder.
  • the equipment of this example includes an uncoiler 2 that rotates the coil material 1a in the unwinding direction and feeds the strip material 1 from the outer periphery at any time, and passes the strip material 1 downstream of the uncoiler 2
  • the leveler feeder 5 corrects flatly, the roll feeder 10 feeds out and positions the strip material 1 after correction to the press machine etc. by a predetermined amount downstream of the leveler feeder 5, the roll feeder 10 and the leveler feeder 5 are fixed.
  • the controller 20 has a controller 20 that operates with small intermittent feed and continuously operates the uncoiler 2 basically at a constant speed (however, there may be speed switching).
  • the roll feeder 10 has a pair of feed rolls 11 a and 11 b that realize the feeding operation of the strip 1 by holding the strip 1 and rotating, and the feed rolls 11 a and 11 b.
  • a motor 12 (servo motor) for driving at least one of them and a position detector 13 (for example, a pulse generator; a so-called encoder) for outputting a position detection signal according to the rotation of the motor 12 are provided.
  • roll feeder 10 of this example may be called upper feed roll 11a (following, upper roll 11a or the 1st roll 11a) in addition to motor 12 (feed motor) for sending.
  • motors 14 and 16 (servo motors) for moving the lower feed roll 11b with respect to the lower feed roll 11b (hereinafter sometimes referred to as the lower roll 11b or the second roll 11b) and the rotation of these motors 14 and 16).
  • a position detector for example, a pulse generator; a so-called encoder
  • the feed roll may be referred to simply as a roll.
  • an R guide 10a (for example, one comprising a plurality of guide rolls not shown) contacting the lower surface of the end of the slack portion (loop 1b) of the strip 1 .
  • the feed rolls 11a and 11b are rolls that apply a force to the strip material 1 to feed the strip material 1 to the downstream equipment (for example, a press machine).
  • the feed roll 11 b on the side is rotationally driven by the motor 12.
  • the operation of each of the motors 12, 14, 16 is feedback-controlled by a controller (not shown) in the control device 20.
  • FIG. 13A schematically shows the roll feeder 10 and the like, and the detailed configuration of the roll feeder 10 will be described later.
  • the leveler feeder 5 can perform feedback control of the feeding operation in the same manner as the roll feeder 10. For example, as shown in FIG. 13, in addition to the correction rollers 6 alternately arranged for correction, the pair of feed rolls 7a which realize the feeding operation of the strip 1 by holding the strip 1 and rotating it.
  • a motor 8 for driving at least one of the feed rolls 7a and 7b
  • a position detector 9 for example, a pulse generator for outputting a position detection signal according to the rotation of the motor 8.
  • a so-called encoder for example, a pulse generator for outputting a position detection signal according to the rotation of the motor 8.
  • encoder for example, a pulse generator for outputting a position detection signal according to the rotation of the motor 8.
  • a plurality of R guides 5a and 5b are in contact with the lower surface of the end of the slack portion (loop 1b or loop 1c described later) of the strip 1 Are provided respectively).
  • the operation of the motor 8 is feedback controlled by a controller (not shown) in the controller 20.
  • the correction roller 6 is configured to flatten the strip material 1 by removing the winding bend caused by the strip material 1 being wound in a coil shape.
  • the uncoiler 2 includes a drum 2a that supports the coil material 1a from the inside, and a motor 3 that drives the drum 2a.
  • the motor 3 is controlled by a controller (not shown) for the uncoiler 2 in the controller 20.
  • the slack portion (loop 1c) of the strip 1 is also formed between the uncoiler 2 and the leveler feeder 5.
  • a sensor for detecting the size (loop amount) of the slack portion of the loop 1c is provided, and the motor 3 is set to the loop amount of the loop 1c detected by the loop sensor. In response, the rotational speed is switched. Therefore, the controller for the uncoiler 2 that controls the motor 3 does not necessarily need to perform feedback control, as long as it can simply change the rotational speed of the motor 3. In addition, the acceleration at the time of switching of the rotational speed of the motor 3 is controlled to a small value (a value significantly smaller than 1 G) in consideration of the magnitude of inertia of the load (the coil material 1a etc.).
  • the control device 20 corresponds to the entire control system including the above-described controllers (the controller for the uncoiler 2, the controller for the leveler feeder 5, and the controller for the roll feeder 10), and corresponds to control means.
  • the control device 20 includes an operation panel (operation unit) provided with various push buttons for operation and a display unit. Manual operation of each motor and various data setting operations are possible from this operation panel.
  • a target feed amount in a single feeding operation of the strip 1 for example, the strip 1 is specified for one operation of a press machine which is a downstream equipment).
  • FIG. 14 (a) acceleration time and deceleration time illustrated in the lower part of FIG. 14 (a), FIG. Data for specifying the vertical position (described later) of the upper roll both ends illustrated in the upper part of) (data for specifying the position change pattern during release operation in addition to the set values Z1 and Z2 input in the initial setting described later)
  • FIG. 13 (a) the relative acceleration of the loop (the slack portion of the strip 1) during operation is realized while realizing the highest acceleration of the feeding operation of the strip to the press machine or the like.
  • each motor 3 of each feed mechanism (uncoiler 2, leveler feeder 5, roll feeder 10) so that relative acceleration of each loop (loop 1b, loop 1c) is always 1 G or less (gravitational acceleration or less).
  • the upstream feed mechanism for example, for example, when the feed operation of the downstream feed mechanism (for example, the roll feeder 10) downstream of the loop 1b is in an accelerated state of, for example, 2G (twice the gravitational acceleration), the upstream feed mechanism (for example, For example, when the feed operation of the feeder 5) is in an acceleration state of 1 G (gravity acceleration) and the feed operation of the downstream side feed mechanism is a deceleration state of 2 G, the feed operation of the upstream side feed mechanism is in a deceleration state of 1 G With such control, the relative acceleration of each loop is always 1 G or less, and the swing acceleration of each loop is significantly reduced because gravity acceleration is not exceeded.
  • the maximum acceleration of the supply operation to the press machine or the like (in this case, the maximum value of the acceleration of the feed operation by the roll feeder 10) can be set to 2 G, for example.
  • the configuration shown in FIG. 13A is only one specific example, and various other configurations may be possible (other configuration examples will be described later).
  • the roll feeder 10 to which the present invention is applied will be described in detail below.
  • the above-described leveler feeder 5 includes a configuration as a roll feeder consisting of a pair of rolls (feed rolls 7a and 7b) for feeding the strip 1, and the present invention is directed to the roll feeder portion of the leveler feeder 5.
  • FIG. 1 is a top view of the roll feeder 10
  • FIG. 2 is a front view of the roll feeder 10 (viewed in the direction of arrow X in FIG. 1)
  • FIG. 3 is a side view of the roll feeder 10 (in the view of arrow Y in FIG. 4A is a cross-sectional view of FIG. 1A
  • FIG. 5A is a partial enlarged view of the A cross-sectional view
  • FIG. 5B is a view showing a first rotation shaft 43 described later.
  • 6 is a B cross-sectional view in FIG. 2, FIG.
  • the roll feeder 10 may be provided with a device such as the above-mentioned R guide 10a for guiding the strip 1, for example. The illustration is omitted in FIG.
  • the roll feeders 10 are disposed in parallel to each other as shown in FIGS.
  • first rolls 11 a The distance between the second roll 11 b), the first roll 11 a (upper roll 11 a) which is one of the rolls, and the second roll 11 b (lower roll 11 b) which is the other of the rolls is both axial ends of each roll
  • two drive sources are the motors 14 and 16 described above, and hereinafter, the motor 14 may be referred to as a first motor 14 and the motor 16 may be referred to as a second motor 16.
  • the rolls have, as shown in FIG. 8, a cylindrical portion (reference numeral omitted) for holding the strip at the outer periphery in the central portion. It has a configuration having a mounting shaft portion (reference numeral omitted) smaller in diameter than the cylindrical portion coaxially extending from both sides.
  • the mechanism 40 is mechanistically a five-bar linkage.
  • the five-bar linkage mechanism includes, for example, a linear motion type five-bar linkage mechanism in which two pairs are constituted by straight pairs (for example, a pair consisting of cylinders etc.), but in the mechanism 40 of this example, all pairs are rotational pairs. It is a rotating five-bar linkage that is (rotational couple).
  • the mechanism 40 includes a first member 41 rotatably supporting the first roll 11 a, a second member 42 rotatably supporting the second roll 11 b, and the second member 42.
  • a first rotary shaft 43 (shown in FIG. 6 and the like) driven by a first motor 14 which is one of the drive sources, and the two drives arranged in parallel to the first rotary shaft 43
  • the second rotation shaft 44 (shown in FIG. 6 and the like) driven by the second motor 16, which is the other of the sources, and the third member 45 or 46 (FIG. 5) connected to the first member 41 by the connecting shaft 47.
  • This is a five-bar rotating link mechanism in which five nodes are shown in (a) and the like.
  • the five-link type link mechanism (also referred to as a rotary five-link mechanism etc.) has five joints (links) by five joints (for example, joints such as a rotary bearing called bearings) that realize a turning couple. It is a linked link mechanism.
  • the first rotation shaft 43, the second rotation shaft 44, and the connecting shaft 47 are twisted relative to the rolls (the first roll 11a and the second roll 11b) as shown in FIGS.
  • the first rotary shaft 43, the second rotary shaft 44, and the axial direction of the connecting shaft 47 are set in the front-rear direction different by 90 degrees from the axial direction of the roll. For example, the upward direction in the paper surface of FIG.
  • the feed direction for feeding the strip 1 (the feed direction for the strip 1)
  • a direction parallel to this feed direction is referred to as the front-rear direction of the roll feeder.
  • the entry side of the strip material 1 into the roll feeder 10 is referred to as the rear side of the roll feeder 10
  • the delivery side from which the strip material 1 exits the roll feeder 10 Is called the front side of the roll feeder 10.
  • the said front-back direction is usually parallel to the floor surface (usually horizontal surface) which installs the roll feeder 10 (that is, normally horizontal direction). Further, the left-right direction in the paper surface of FIG.
  • the first member 41 has a front first wall portion 41 a positioned on the front side of the center line of the roll in the front and rear direction, and a center line of the roll in the front and rear direction.
  • the rear first wall portion 41b located on the rear side than the rear side, the left first wall portion 41c (see FIG. 2 etc.) whose lower end extends to the left position of the first roll 11a, and the lower end is the first roll 11a And the right side first wall portion 41 d (see FIG. 2 etc.) extending to the right side position.
  • the part 41e is provided on the left side of the lower end portion of the front side first wall portion 41a.
  • a notch 41f is provided on the left side of the lower end portion of the rear first wall 41b so as to prevent the first rotary shaft 43 from interfering with the rear first wall 41b (see FIG. 7 and 16).
  • the both ends of the 1st roll 11a (ends of the above-mentioned attachment axial part) are left-hand 1st wall 41c and bearing 48 and 49 (for example, ball bearings; ball bearings) respectively.
  • the first roll 11 a is rotatably supported by the first member 41 by being attached to the right first wall portion 41 d.
  • the second member 42 includes a front second wall portion 42a positioned on the front side of the front first wall portion 41a in the front-rear direction, and a second rear portion in the front-rear direction The second rear wall 42b located rearward of the first wall 41b, and the second rear wall 42c whose lower end extends further downward through the left side of the second roll 11b (see FIG.
  • the right lower second wall 42 d (see FIG. 2 etc.) extending at the lower end by passing the right side of the second roll 11 b, and the rear lower side further behind the rear second wall 42 b)
  • a side outer wall 42e (see FIG. 1 and the like) and a front side wall 42f (see FIGS. 2 and 3 and the like) located below the front second wall 42a.
  • the second member 42 is basic to the floor surface on which the roll feeder 10 is installed, for example, in any one or more of the front side wall portion 42f, the left side second wall portion 42c, and the right side second wall portion 42d. Fixed. At this time, it may be fixed directly to the floor or may be fixed to a rack mounted on the floor.
  • the roll feeder 10 is installed at a predetermined place by the second member 42 being fixed.
  • the roll feeder 10 (second member 42) may be fixed to a movable carriage (not shown), for example, and may be moved during non-operation to easily change the installation location.
  • both end portions of the second roll 11b (end portions of the mounting shaft portion) are respectively connected to the left second wall portion 42c via bearings 51 and 52 (for example, ball bearings; ball bearings).
  • the second roll 11b is rotatably supported by the second member 42 by being attached to the right second wall portion 42d.
  • the lower synchronization gear 53 meshes with the above-described upper synchronization gear 50 to synchronize and rotate the first roll 11 a as the second roll 11 b rotates.
  • the first roll 11a can move up and down or tilt relative to the second roll 11b by means of a mechanism 40 (five-bar link mechanism) (details will be described later), but the movement is small.
  • the state in which the teeth of the lower synchronous gear 53 and the teeth of the upper synchronous gear 50 are engaged with each other is maintained even if the first roll 11a moves.
  • FIG. 1 what is shown with the code
  • the inside of the mounting member 54 is hollow, and a coupling (part connecting the shaft and the shaft) 55 is disposed inside the mounting member 54.
  • the coupling 55 as shown in FIG. 2, includes the output shaft 12a of the feed motor 12 disposed substantially on the same axial center line as the second roll 11b, and the end of the attachment shaft on the right side of the second roll 11b. Are linked.
  • the second roll 11 b is directly connected to the output shaft 12 a of the feed motor 12 and driven by the feed motor 12 to rotate.
  • the first member 41 and the second member 42 are independent members, and the first member 41 is a vertical direction with respect to the second member 42 (a direction perpendicular to the front-rear direction and the left-right direction, and is usually vertical While being able to move in the direction), it is also possible to move slightly in the lateral direction. That is, as shown in FIG. 6 and FIG. 16 described later, it comprises the front first wall 41a, the rear first wall 41b, the left first wall 41c, and the right first wall 41d of the first member 41.
  • the horizontal cross section has a hollow rectangular shape
  • the horizontal cross section including the front second wall 42a, the rear second wall 42b, the left second wall 42c, and the right second wall 42d of the second member 42 is hollow.
  • the first member 41 can be moved up and down with respect to the second member 42 by a predetermined clearance in the inside of the rectangular portion, and further in the left and right direction. It is possible to move slightly.
  • the predetermined gap means a gap that allows the first member 41 to move relative to the second member 42 (including tilting to move in an inclined manner) by the operation of the mechanism 40 (five-bar link mechanism). Do.
  • the first member 41 can hardly move in the front-rear direction, and the first roll 11a is approximately directly above the second roll 11b (the center line of the first roll 11a And the state in which the center line of the second roll 11b is in substantially the same plane orthogonal to the front-rear direction is maintained.
  • the vertical direction (the direction perpendicular to the longitudinal direction (the feeding direction of the strip material) and the horizontal direction (the axial direction of each roll) in the sheet of FIG. 2 is referred to as the vertical direction for convenience.
  • the vertical direction is usually the vertical direction, it is not limited to the vertical direction. This is because the entire roll feeder 10 may be installed obliquely with respect to the vertical direction.
  • the third members 45 and 46 are rotatably attached to the first member 41 by the connecting shaft 47 whose one end side (upper end side in this example) is parallel to the first rotation shaft 43, and the other end side (this example) Then, the lower end side is rotatably attached to a first eccentric shaft (the front first eccentric shaft 43c or the rear first eccentric shaft 43d) of the first rotation shaft 43 described later.
  • a third front member 45 positioned on the front side of the center line of the roll in the front-rear direction and a center line of the roll in the front-rear direction
  • a rear side third member 46 located at the rear side is provided.
  • the front third member 45 is rotatably attached to the front first wall 41a of the first member 41 by the connecting shaft 47 at one end (the upper end in this example), and the other end (the lower end in this example) ) Is rotatably attached to a front first eccentric shaft portion 43c (described later) of the first rotation shaft 43.
  • the rear side third member 46 is rotatably attached to the rear side first wall portion 41b of the first member 41 by the connecting shaft 47 at one end side (upper end side in this example), and the other end side (in this example) The lower end side) is rotatably attached to a rear first eccentric shaft portion 43 d of the first rotation shaft 43 described later.
  • the connecting shaft 47 has its front end attached to the front first wall 41 a of the first member 41 and its rear end attached to the rear first wall 41 b of the first member 41. It is an axis that Further, as shown in FIG. 5, the upper end of the front third member 45 is attached to the outer periphery on the front side of the center of the connecting shaft 47 via a bearing 61 (for example, roller bearing), whereby the front third member 45 is connected to the connecting shaft It is rotatable around 47. Similarly, the upper end of the rear third member 46 is attached to the outer periphery on the rear side of the center of the connecting shaft 47 via a bearing 62 (for example, a roller bearing), whereby the rear third member 46 is connected to the connecting shaft 47.
  • a bearing 61 for example, roller bearing
  • both ends of the connecting shaft 47 may be non-rotatably fixed to the front first wall portion 41a and the rear first wall portion 41b, or may be rotatably mounted.
  • the connecting shaft 47 may be attached to the first member 41 so as not to drop off from the attachment position shown in FIG. 5 with respect to the front side first wall portion 41a and the rear side first wall portion 41b.
  • a first shaft 43 (left eccentric shaft) is rotatably attached to the second member 42 and is rotatably driven by the first motor 14, and an extension of the first shaft.
  • a first eccentric shaft provided eccentrically.
  • the first rotary shaft 43 is a front first shaft portion 43a rotatably attached to the front second wall portion 42a as the first shaft portion, and a rear second wall portion And a rear first shaft portion 43b rotatably attached to 42b, and rotatably attached to the other end side (the lower end side in this example) of the front third member 45 as the first eccentric shaft portion. It has a front first eccentric shaft portion 43c and a rear first eccentric shaft portion 43d rotatably mounted on the other end side (lower end side in this example) of the rear third member 46.
  • the center lines of the front side first shaft portion 43a and the rear side first shaft portion 43b coincide, and the center lines of the front side first eccentric shaft portion 43c and the rear first eccentric shaft portion 43d coincide with each other. ing.
  • the center lines of the front first shaft portion 43a and the rear first shaft portion 43b, and the center lines of the front first eccentric shaft portion 43c and the rear first eccentric shaft portion 43d are shown in FIG. 5 (b).
  • the eccentricity is offset by a predetermined eccentricity amount G1. Therefore, the first rotary shaft 43 is driven by the first motor 14 in the first eccentric shaft portion (the first front eccentric shaft portion 43c and the rear first eccentric shaft portion 43d) of the first rotary shaft 43.
  • the first rotation shaft 43 can be considered mechanically as a link (node) having a length of the eccentricity amount G1.
  • the amount of eccentricity G1 varies depending on the range of the thickness of the strip 1 to be handled, etc., it is, for example, a small size about the maximum thickness of the strip 1 to be handled. Further, as shown in FIG.
  • the first rotary shaft 43 is rotatably attached to the front second wall portion 42a by bearings 63 (for example, roller bearings) on the outer periphery of the front first shaft portion 43a, and the rear first shaft It is rotatably attached to the rear second wall portion 42b by a bearing 64 (for example, a roller bearing) on the outer periphery of the portion 43b.
  • a bearing 64 for example, a roller bearing
  • the lower end of the front third member 45 is attached to the outer periphery of the front first eccentric shaft portion 43c via a bearing 65 (for example, a roller bearing), whereby the front third member 45 is It is rotatable about the eccentric shaft portion 43c.
  • the lower end of the rear third member 46 is attached to the outer periphery of the rear first eccentric shaft portion 43d via a bearing 66 (for example, a roller bearing), whereby the rear third member 46 is mounted on the rear third side. It is rotatable about the eccentric shaft portion 43d.
  • a bearing 66 for example, a roller bearing
  • cylindrical or donut shapes whose reference numerals are omitted at positions adjacent to the bearings on the outer periphery of the first rotary shaft 43, the second rotary shaft 44 and the connecting shaft 47.
  • a member is attached.
  • These cylindrical or doughnut-shaped members are members having functions such as positioning by restricting movement of the bearings, the first member 41, the third member 45 or 46 in the front-rear direction, and the like.
  • FIG. 6 there are places where illustration is omitted about a part of these cylindrical or doughnut-shaped members.
  • the rear first shaft portion 43b of the first rotation shaft 43 extends rearward through the rear second wall portion 42b, and the rear first shaft portion
  • the first motor 14 is disposed substantially on the same center line as 43 b.
  • the first motor 14 is fixed to the aforementioned rear outer wall portion 42e of the second member 42 with the output shaft 14a thereof directed forward.
  • the output shaft 14a of the first motor 14 extends forward of the rear outer wall 42e, and the coupling 70 is disposed in the space between the rear outer wall 42e and the rear second wall 42b. It is connected with the back side 1st axial part 43b.
  • the first rotation shaft 43 is directly connected to the output shaft 14 a of the first motor 14 and driven by the first motor 14 to rotate.
  • the second rotation shaft 44 (right eccentric shaft) is parallel to the first shaft portion of the first rotation shaft 43 (front first shaft portion 43a, rear first shaft portion 43b).
  • a second shaft portion rotatably attached to the second member 42 at a position different from the first shaft portion and rotationally driven by the second motor 16, and provided eccentrically on an extension of the second shaft portion
  • a second eccentric shaft portion rotatably attached to the first member 41.
  • the second rotation shaft 44 is a second shaft portion, and a front second shaft portion 44a rotatably attached to the front second wall portion 42a, and a rear second wall portion A front second eccentric shaft 44c rotatably attached to the front first wall 41a as the second eccentric shaft, and having a rear second shaft 44b rotatably attached to the housing 42b; And a rear second eccentric shaft 44d rotatably mounted on the rear first wall 41b.
  • the center lines of the front side second shaft portion 44a and the rear side second shaft portion 44b coincide, and the center lines of the front side second eccentric shaft portion 44c and the rear second eccentric shaft portion 44d coincide with each other. ing.
  • the eccentricity is offset by a predetermined eccentricity amount G2. Therefore, the second rotary shaft 44 is driven by the second motor 16 in the second eccentric shaft portion of the second rotary shaft 44 (the front second eccentric shaft portion 44c and the rear second eccentric shaft portion 44d). Then, it rotates with respect to the second member 42 and revolves with the eccentricity amount G2 as a radius of revolution. Therefore, the second rotation shaft 44 can be considered mechanically as a link (node) having a length of the eccentricity amount G2.
  • the eccentricity amount G2 is different depending on the range of the thickness of the strip 1 to be handled, etc., but is, for example, a small size about the maximum thickness of the strip 1 to be handled.
  • the eccentricity amount G2 may be the same as the eccentricity amount G1 described above, but may be different.
  • the second rotary shaft 44 is rotatably attached to the front second wall portion 42a by a bearing 71 (for example, a roller bearing) on the outer periphery of the front second shaft portion 44a. It is rotatably attached to the rear second wall portion 42b by a bearing 72 (for example, a roller bearing) on the outer periphery of the portion 44b. Further, as shown in FIG.
  • the second rotation shaft 44 is rotatably attached to the front first wall portion 41a by bearings 73 (for example, roller bearings) on the outer periphery of the front second eccentric shaft portion 44c.
  • a bearing 74 (for example, a roller bearing) is rotatably attached to the rear first wall portion 41b on the outer periphery of the bi-axial shaft portion 44d.
  • the rear second shaft portion 44b of the second rotary shaft 44 extends rearward through the rear second wall portion 42b, and substantially extends with the rear second shaft portion 44b.
  • the second motor 16 is disposed on the same center line. The second motor 16 is fixed to the aforementioned rear outer wall portion 42e of the second member 42 with the output shaft 16a thereof directed forward.
  • the output shaft 16a of the second motor 16 extends forward of the rear outer wall 42e, and the coupling 75 is disposed in the space between the rear outer wall 42e and the rear second wall 42b. It is connected to the rear second shaft portion 44b. Thus, the second rotary shaft 44 is directly connected to the output shaft 16 a of the second motor 16 and driven by the second motor 16 to rotate.
  • the mechanism 40 is a rotary five-bar linkage mechanism in which all the pairs are mechanically rotational pairs (rotational pairs) as described above. As can be understood from the structure shown in FIG.
  • the mechanism 40 of this example is configured such that two identical link mechanisms are provided in parallel in the front-rear direction. That is, the mechanism 40 of this example includes a front link mechanism 40a and a rear link mechanism 40b driven by a common drive source (the first motor 14 and the second motor 16), and these front link mechanism 40a and the rear link
  • the mechanism 40b is provided symmetrically with respect to a plane including the center line of the roll and orthogonal to the front-rear direction (a plane corresponding to the F cross section shown in FIG. 4).
  • the front side link mechanism 40a includes a front side first wall portion 41a, a front side second wall portion 42a, a front side first shaft portion 43a and a front side first eccentric shaft portion 43c, a front side second shaft portion 44a and a front side. It is a five-node rotation type link mechanism in which the second eccentric shaft portion 44c and the front third member 45 form five nodes.
  • the bearings as joints connecting the respective nodes of the front link mechanism 40a are bearings 61, 63, 65, 71, 73.
  • the rear link mechanism 40b includes the rear first wall portion 41b, the rear second wall portion 42b, the rear first shaft portion 43b and the rear first eccentric shaft portion 43d, and the rear second It is a five-link rotation type link mechanism in which the shaft portion 44b, the rear second eccentric shaft portion 44d, and the rear third member 46 form five nodes.
  • Bearings as joints connecting the respective nodes of the rear link mechanism 40b are bearings 62, 64, 66, 72, 74.
  • FIG. 12 is a diagram for easily understanding the mechanical configuration and operation of the mechanism 40 (the front link mechanism 40a and the rear link mechanism 40b), but the ratio of the length of the nodes and the angle of the nodes are different from the actual FIGS.
  • FIG. 12 is a mechanical framework when the mechanism 40 is viewed from the rear in the front-rear direction (that is, from the direction indicated by X in FIG. 1).
  • FIG. 12 is a mechanical framework when the mechanism 40 is viewed from the rear in the front-rear direction (that is, from the direction indicated by X in FIG. 1).
  • a node (link D) between the joint 64 and the joint 66 is a node consisting of the first rotation shaft 43 (left eccentric shaft) and has a length corresponding to the eccentricity amount G1 described above. It is. Further, in FIG. 12, a node (link E) between the joint 72 and the joint 74 is a node consisting of the second rotation axis 44 (right eccentric axis) and has a length corresponding to the eccentricity amount G2 described above. It is.
  • the output shaft 14a of the first motor 14 is stopped at a fixed rotational position and only the second motor 16 is operated to rotate only the output shaft 16a.
  • the right rotation (clockwise rotation) of the second rotation shaft 44 (link E) is viewed from the rear.
  • the mechanism 40 can be regarded as a link mechanism with one four-joint degree of freedom, and the first member 41 (link B) as shown by a dotted line along with the clockwise rotation of the second rotation shaft 44 (link E).
  • the third member 46 (link A) moves, and as a result, the first member 41 is displaced while being inclined so that the right side of the first member 41 mainly rises.
  • the first roll 11a (upper roll) supported by the first member 41 is also displaced while being inclined so that the right side mainly rises.
  • the output shaft 16a of the second motor 16 is stopped at a fixed rotational position and only the first motor 14 is operated to rotate only the output shaft 14a.
  • the mechanism 40 can be regarded as a link mechanism having four-joint degrees of freedom 1 and the first member 41 (link B as shown by a dotted line along with the counterclockwise rotation of the first rotation shaft 43 (link D).
  • the third member 46 (link A) move, and as a result, the first member 41 is displaced while being inclined so that the left side of the first member 41 mainly rises.
  • the first roll 11a (upper roll) supported by the first member 41 is also displaced while being inclined so that the left side is mainly lifted.
  • the direction in which both motors 14 and 16 are simultaneously described from the upper state of FIG. 12 can move the first member 41 so that the left and right end sides of the first roll 11a ascend as a whole by approximately the same distance.
  • the first member 41 and the first roll 11a are described above by moving the motors 14 and 16 in the opposite direction to the direction described above (the first rotation shaft 43 is clockwise and the second rotation shaft 44 is counterclockwise).
  • the mechanism 40 it is also possible to lower as in the rising operation (lowering mainly the right side, mainly lowering the left side, and further, approximately the same distance as a whole).
  • a predetermined direction for example, the direction in which the first rotation shaft 43 rotates clockwise and the second rotation shaft 44 also rotates clockwise
  • the first roll 11a is displaced relative to the second roll 11b so that the distance between the first roll 11a and the second roll 11b can be varied independently and independently at both ends of each roll.
  • FIGS. 9 to 11 are cross-sectional views (mainly showing a C cross section in FIG. 4) substantially similar to FIG. 7 described above. However, FIGS. 9 to 11 also show the rear first shaft portion 43b and the rear second shaft portion 44b which can not be seen in the C cross section so that the eccentricity state of the rotary shafts 43 and 44 can be understood.
  • FIG. 9 shows a state in which the position of the first roll 11a and the rotational positions of the first rotation shaft 43 and the second rotation shaft 44 are at the origin (hereinafter referred to as the origin state).
  • the origin state the position of the first roll 11a and the second roll 11b (the distance between the outer peripheries of the central cylindrical portions sandwiching the strip material 1) is zero.
  • the center of the eccentric portion of the second rotation shaft 44 such as the rear second eccentric shaft portion 44d and the eccentricity of the rear second shaft portion 44b It shows a state in which the second rotation shaft 44 is rotated clockwise until the distance in the vertical direction with respect to the center of the non-portion becomes about 0 mm, and the operating condition is slightly different from FIG. 10 (b) . Further, the principle that the right side of the first member 41 and the first roll 11a (upper roll) is raised more largely in the right side rotation state is as described in the middle part of FIG. Next, in FIG. 11, from the origin state described above, only the first motor 14 is operated while the second motor 16 is stopped, and the first rotation shaft 43 (left side) is stopped while the second rotation shaft 44 is stopped at the origin state.
  • a state in which only the eccentric shaft is rotated counterclockwise (hereinafter, referred to as a left side rotation state) is shown.
  • the left-handed rotation state as shown in FIG. 11A, the first roll 11a ascends and rises together with the first member 41, and the left side of the first roll 11a ascends larger.
  • the distance between the first roll 11a and the second roll 11b (the distance between the outer circumferences of the central cylindrical portions sandwiching the strip 1) is, for example, 1. It becomes 6 mm, and becomes 0.04 mm at the right end.
  • the left side rotation state as shown in FIG.
  • the center of the eccentric portion of the first rotation shaft 43 such as the rear first eccentric shaft portion 43d and the eccentricity of the rear first shaft portion 43b It shows a state in which the first rotation shaft 43 is rotated counterclockwise until the distance in the vertical direction with respect to the center of the non-portion becomes about 0 mm, and the operating condition is slightly different from FIG. It is different. Further, the principle that the left side of the first member 41 and the first roll 11a (upper roll) is raised more largely in the left-handed rotation state is as described in the lower part of FIG. Next, the operation including the feeding operation of the roll feeder 10 will be described together with the function of the control device 20 related to the roll feeder 10.
  • the control device 20 can initialize the vertical direction positions of both ends of the first roll 11a (upper roll), for example, by the operation input from the operation panel described above.
  • the two ends of the first roll 11a mean the left and right ends of the lower edge of the central cylindrical portion (the part holding the strip 1) of the first roll 11a.
  • a state where the clearance between the lower edge of the cylindrical portion of the first roll 11a (upper roll) and the upper edge of the cylindrical portion of the second roll 11b (lower roll) is zero (FIG. 9)
  • the vertical length of the gap between the lower edge of the cylindrical portion of the first roll 11a and the upper edge of the cylindrical portion of the second roll 11b is It corresponds to the value of the vertical position of the first roll 11a.
  • the vertical length of the gap at the left end of the cylindrical portion of the first roll 11a and the second roll 11b corresponds to the value of the vertical position of the left end of the first roll 11a, for example, as shown in FIG. In the state of), the value of 0.04 mm corresponds to the value of the vertical position of the left end of the first roll 11a.
  • the vertical length of the gap at the right end of the cylindrical portion of the first roll 11a and the second roll 11b corresponds to the value of the vertical position of the right end of the first roll 11a, for example, as shown in FIG. In the state of), a value of 1.6 mm corresponds to the value of the vertical position of the right end of the first roll 11a.
  • step S1 the vertical position of the reverse drive side (left end) of the first roll 11a is set first (step S1), and then the vertical position of the drive side (right end) of the first roll 11a
  • step S2 the vertical position of the reverse side (left end) and the driving side (right end) of the first roll 11a is set to the position (Z1, S2) set in steps S1 and S2, respectively.
  • step S2 the vertical position of the reverse side (left end) and the driving side (right end) of the first roll 11a is set to the position (Z1, S2) set in steps S1 and S2, respectively.
  • a move to Z2) is performed.
  • steps S1 and S2 for example, when the operator operates the operation panel of the control device 20, the values of the vertical position of the left end or the right end of the first roll 11a are respectively in predetermined units (for example, 0.001 mm units, 0 , 005 mm, or 0.01 mm, etc.).
  • a signal for controlling the rotational position of each motor is, for example, a pulse signal, and both ends of the first roll 11a per pulse of this pulse signal. It has been confirmed that the amount of movement in the vertical direction is approximately 0,001 mm, and that the position in the vertical direction can be set in such a fine unit as described above.
  • step S3 for example, the rotational position (ie, the rotational position of each of the motors 14 and 16 that realizes the vertical position (Z1, Z2) set in steps S1 and S2 by the control device 20 according to preset data or program.
  • the rotational positions of the first rotational shaft 43 and the second rotational shaft 44 are determined by calculation, and the upper and lower sides set by automatically operating the respective motors 14 and 16 to reach the determined rotational position. Movement to the direction position (Z1, Z2) is performed.
  • the movement in step S3 may be automatically started and executed under the control of control device 20 when the setting in steps S1 and S2 is completed, or the operator may perform the setting in steps S1 and S2.
  • It may be configured to be executed under control of the control device 20 when an operation of instructing movement to the vertical position set to the control device 20 is performed.
  • the control of determining the positions by vertically changing the vertical positions of both ends of the first roll 11a with an accuracy of 0.01 mm or less is possible.
  • the above-described initial setting can be easily repeated several times while changing the numerical value to be input.
  • the above-mentioned initial setting can be easily performed again with a different numerical value in consideration of the state of the camber of the strip 1 which has been fed out by temporarily stopping the feeding operation.
  • a different numerical value for example, in order to know the numerical value of the vertical position that is optimal for the type and properties of the strip 1, it is possible to feed the strip 1 by actually performing the feeding operation of the strip 1 while changing the values set in steps S1 and S2. It is also possible to easily carry out trial and error work such as re-doing the above initial setting with different numerical values until the amount of camber is sufficiently reduced in view of the state of the camber of the strip material 1 as described above.
  • the above-described initial setting may be performed only once.
  • the control device 20 displays the roll feeder 10 as shown in FIG. 14A, for example, according to various data preset by the operator and a program registered in advance. Perform control to operate.
  • the data set in advance includes the length of the feed period and interval period described later, the maximum value of the feed speed in the feed period, and the acceleration (during deceleration The feed amount (the length of sending the strip 1 in a single feed period) that determines the acceleration of (1), and setting data etc. for the vertical position of the left end and the right end of the first roll 11a in the interval period.
  • FIG. 14A is an example of a timing chart when the roll feeder 10 is in operation, where the horizontal axis is time, and the upper vertical axis is the vertical position of both ends of the upper roll (that is, both ends of the first roll 11a). The lower vertical axis is the feed speed.
  • the feed speed is the rotational speed of the feed motor 12 and the second roll 11b (lower roll) driven thereby, and in the case of this example, the first roll 11a (upper roll) that rotates in synchronization with the second roll 11b. It is also the rotational speed of Further, the feeding speed is a feeding speed of the strip 1 pinched and fed by each roll in a normal state without slip.
  • the vertical position of the left end of the first roll 11a (the vertical position of the upper end of the upper roll) is indicated by a solid line
  • the vertical position of the right end of the first roll 11a (upper roll right end The vertical position of) is indicated by a dotted line.
  • the minimum pressing amount for preventing the strip 1 from slipping due to the thickness of the strip 1 by the above-described initial setting in the vertical direction position (Z1) of the upper roll left end This is a specific example in which the vertical roll position (Z2) at the right end of the upper roll is set to a value obtained by subtracting the rolling down amount in addition to the minimum pressing down from the thickness of the material. .
  • the feed speed rises to a predetermined maximum value (top speed) (that is, the feed motor 12 accelerates), and then the feed speed is increased.
  • the feed motor 12 is controlled to be maintained at a predetermined maximum value (i.e., the feed motor 12 is operated at a constant speed) and then the feed rate is reduced to zero (i.e., the feed motor 12 decelerates and stops).
  • the feeding operation of sending the strip material 1 by a set predetermined amount that is, sending a fixed size
  • the vertical position of the upper end of the upper roll is maintained at Z1 set in the initial setting, and the vertical position of the right end of the upper roll is maintained at Z2 set in the initial setting,
  • Each motor (the first motor 14 and the second motor 16) is controlled.
  • the strip 1 is fed while the right side of the strip 1 is rolled by the amount of depression of the rolling set in the initial setting, and correction for reducing the amount of camber can be realized (this effect will be described in detail) Will be described later).
  • the feed period mentioned above is periodically repeated according to operation
  • the upper roll (the first roll 11a) is entirely on the upper surface of the material while the feed motor 12 is stopped.
  • the release operation for forming the release period can be well realized by the mechanism 40 (link mechanism).
  • the release operation is an operation in which at least one of the rolls is moved in a direction away from the other roll such that the gap between the rolls is larger than the thickness of the strip as described above. is there. According to the embodiment described above, the following effects can be obtained.
  • the roll feeder 10 of the present embodiment the first of the pair of rolls that realizes the feeding operation of the strip material by the operation of the two drive sources (the first motor 14 and the second motor 16) As the distance between the roll 11a and the other second roll 11b becomes variable independently at both ends of each roll, it is easy to adjust (or change) the relative distance and angle of these rolls Possible.
  • the amount of camber of the strip 1 can be easily reduced by the roll feeder 10. That is, for example, when a camber with a right curve is present in the strip 1 as shown on the right side of FIG. 14 (b), the left end of the first roll 11a as shown on the upper side of FIG.
  • the setting value (Z1) of the vertical position of the first roll 11a is smaller than the thickness of the strip 1 by the minimum pressing amount, and the setting value (Z2) of the vertical position of the right end of the first roll 11a is added to the minimum pressing amount.
  • the first roll 11a is inclined in the direction in which the right end approaches the second roll 11b by the amount of depression of rolling, if the amount of depression of rolling is set smaller than the thickness of the strip 1, and the feeding period
  • the strip 1 is more strongly clamped at the right end side of the first roll 11a.
  • the right side of the strip 1 is appropriately stretched by holding the right side of the strip 1 more firmly with each roll and appropriately stretching it.
  • the amount of right-handed camber is made substantially zero (or largely reduced), for example, the strip 1 is sent out to the wake as an ideal linear state (that is, after correcting the existing camber Can be sent out).
  • the strip 1 is sent out to the wake as an ideal linear state (that is, after correcting the existing camber Can be sent out).
  • the right end of the first roll 11a The set value (Z2) of the vertical position is smaller than the thickness of the strip 1 by the minimum pressing amount, and the setting value (Z1) of the vertical position of the left end of the first roll 11a is added to the minimum pressing amount.
  • the first roll 11a is inclined in the direction in which the left end approaches the second roll 11b by the amount of depression of rolling, during the feeding period.
  • the strip 1 is more strongly clamped at the left end side of the first roll 11a.
  • the left side of the strip 1 is appropriately stretched by holding the left side of the strip 1 more firmly with each roll and appropriately stretching it.
  • the amount of left-handed camber is made substantially zero (or greatly reduced), and the strip 1 is sent to the wake as, for example, an ideal linear state (that is, after correcting the existing camber Can be sent out).
  • the direction of the camber present in the strip 1 is corrected to the left or right to correct the strip 1 into, for example, an ideal straight line state and feed it as a wake
  • the camber of any orientation is extremely easy and short as compared with the conventional method using shims etc. only by setting the rotational positions of the two drive sources (first motor 14 and second motor 16). It is possible to correct the camber of the strip 1 by work. For this reason, various practically effective effects such as improvement of productivity (or efficiency of processing, etc.) in equipment using the roll feeder 10, improvement of quality of products and processed products, reduction of discarded materials, reduction of worn parts, etc. realizable. This effect is particularly remarkable when the material is aluminum.
  • the roll feeder 10 of this example in addition to the movement of the camber straightening roll (in this case, the first roll 11a) by the mechanism 40 and the two drive sources, the roll of the interval period release operation. Movement is also realized. For this reason, compared with the case where a drive source and a drive mechanism are separately provided for the release operation, the configuration of the roll feeder 10 is greatly simplified, and the downsizing and cost reduction of the roll feeder are also realized.
  • the mechanism 40 that allows the first roll 11a to be displaced relative to the second roll 11b is a 5-node link mechanism that can reduce backlash more than a screw mechanism or the like.
  • the mechanism 40 is a 5-node rotary type link mechanism (a link mechanism in which five nodes (links) are connected by five joints (joints) for achieving a rotating couple).
  • the first roller 11a is driven by rotating the first rotating shaft 43 and the second rotating shaft 44, which are the two nodes (links) that make up this link mechanism, by the first motor 14 and the second motor 16, respectively.
  • the force f by which the front first wall portion 41 a is pushed down by the third members 45 and 46 via the connecting shaft 47 and the rear first wall portion 41 b via the connecting shaft 47 The force f is distributed to the forces f pushed down by the third members 45 and 46, and these forces are in balance with the reaction force 2f applied to the first member 41 from the first roll 11a.
  • the first rotating shaft 43, the second rotating shaft 44, and the connecting shaft 47 are attached to (or connected to) either the front or rear wall at both ends. Support structure.
  • the stress and the deformation generated in the first member 41 and the respective rotation shafts 43 and 44 constituting the mechanism 40 are suppressed during the feeding operation of sandwiching the strip 1 by the roll. Problems such as deviation from the proper position and posture of the first roll 11a due to this deformation are suppressed. Therefore, along with the feeding operation which is the original function of the roll feeder, the force for sandwiching the strip 1 is appropriately biased in the width direction of the strip 1 (that is, the pressure in the axial direction of the roll for sandwiching the strip 1). It can be realized with high reliability and good reduction of the amount of camber of the strip material 1 by setting the distribution appropriately.
  • the force for pressing the first member 41 is dispersed, and each shaft has a double-supported support structure, thereby reducing the load of each bearing or the like that connects each shaft to the member and rotatably supports it. Therefore, there is also an effect of extending the life until the parts such as the bearing constituting the roll feeder are damaged by fatigue.
  • the second member 42 is, for example, a member fixed to a rack on which the roll feeder 10 is installed at the installation location, and the feed motor 12 for driving the roll is shown in FIG.
  • the output shaft 12a of the feed motor 12 is connected to the second roll 11b, whereby the driving force of the feed motor 12 drives the second roll 11b. It is configured to be rotationally driven.
  • the first motor 14 and the second motor 16 for moving the first roll 11a in the vertical direction are attached to the rear surface side of the second member 42 in the front-rear direction as shown in FIG.
  • the output shafts of the motor 14 and the second motor 16 are connected to the first rotation shaft 43 and the second rotation shaft 44, respectively, and rotationally drive the first rotation shaft 43 and the second rotation shaft 44, respectively.
  • the installation space of the equipment including the roll feeder 10 in the front-rear direction (the feeding direction of the strip 1) can be reduced (or kept small). Since the feed motor 12 is disposed on the side surface of the second member 42 and the first motor 14 and the second motor 16 are disposed to project rearward on the rear surface of the second member 42, these motors are disposed. This is because the installation space does not increase in the front-rear direction in order to do so. As described with reference to FIG. 13A, the loop 1b (slack portion) of the strip 1 is provided on the rear side of the roll feeder 10 (the flow of the strip 1 on the upstream side of the roll feeder 10).
  • a vacant space above the loop 1 b (for example, the above-described The space above the R guide 10a shown in FIG. 13 (a) is effectively used as the arrangement space for the first motor 14 and the second motor 16, and the installation space is increased by the arrangement of the first motor 14 and the second motor 16 Absent.
  • the mechanism 40 including the front link mechanism 40a and the rear link mechanism 40b is disposed mainly in the upper space of each roll (the first roll 11a and the second roll 11b). Also in terms of the arrangement of the mechanism 40, the empty space is effectively used and the installation space in the front-rear direction is not enlarged.
  • the operation mode (operation pattern) of the movable side roll (the first roll 11a which is the upper roll in the first embodiment) controlled by the control device 20 is not limited to the mode illustrated in the upper stage of FIG.
  • the aspect shown in FIG. 15 (a) or FIG. 15 (b) may be used.
  • the maximum value of the vertical position of the upper roll right end in the release period described above is the same position as the upper roll left end. That is, in the release operation, the upper roll right end is also raised to the same height as the upper roll left end.
  • FIG. 16 (a) is a perspective view showing a structure of a modification of a roll feeder in which the mechanism 40 comprises only the rear link mechanism 40b.
  • FIG. 16A the components corresponding to the components of the first embodiment described above are denoted by the same reference numerals, and the first member 41, the second member 42, etc. are partially shown to show the inside. The broken state is illustrated.
  • the structure can be simplified as an aspect including only the link mechanism on one side, and cost reduction and the like can be achieved.
  • the force pressing the first member 41 in the direction of pressing the first roll 11a against the second roll 11b during the feeding operation of sandwiching the strip 1 by the roll The effects distributed to the forward side and the front side disappear.
  • the two forces f shown in FIG. 4 are the third member 46 with the rear first wall portion 41b via the connecting shaft 47, for example.
  • the force changes only to a force 2 f (not shown) pressed down by this force, and this force balances with the reaction force 2 f applied to the first member 41 from the first roll 11 a.
  • the 1st rotating shaft 43, the 2nd rotating shaft 44, and the connecting shaft 47 are attached to (or connected with) only the wall part 41b or 42b of back side, and are supported. Support structure.
  • the stress and deformation generated in the first member 41 and the respective rotation shafts 43, 44, etc. constituting the mechanism 40 are relatively large during the feeding operation of sandwiching the strip 1 by the roll.
  • the roll which can be displaced in the roll feeder may be a lower roll (lower roll) of a pair of rolls for holding the material.
  • a structure obtained by inverting the structure of the first embodiment shown in FIGS. 2 and 3 up and down may be in principle possible.
  • the lower synchronous gear 53 and the upper synchronous gear 50 for synchronizing the rotation of each roll may be omitted.
  • the present invention is applied to the component as a roll feeder in the leveler feeder 5 shown in FIG. 13 (a), and in the equipment configuration illustrated in FIG. 13 (a)
  • the correction of the since the correction of the camber of the strip 1 is also performed by the leveler feeder 5 in addition to the correction for flattening the strip 1, the roll feeder 10 thereafter has the strip 1 with a camber amount of zero or a slight amount. It will be good if it sends out as it is. That is, in this case, the roll feeder 10 can be specialized to the original feeding operation. Further, in the equipment configuration illustrated in FIG.
  • the present invention is applied to both the leveler feeder 5 and the roll feeder 10, and both the leveler feeder 5 and the roll feeder 10 have cambers of the strip 1 in multiple stages, for example. There may also be a mode in which correction is performed. Moreover, it is set as the installation configuration which deleted one of the leveler feeder 5 or the roll feeder 10 in the installation configuration illustrated to Fig.13 (a), applies this invention to the leveler feeder 5 or the roll feeder 10 in this installation configuration, The said leveler feeder There may also be an aspect in which the camber is corrected by the 5 or roll feeder 10.

Landscapes

  • Advancing Webs (AREA)
  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)

Abstract

Provided is a roll feeder having an excellent camper correction function. This roll feeder comprises a pair of rollers (11a, 11b) that grip and rotate a strip-shaped member to perform an operation of feeding the strip-form member, wherein the roll feeder is provided with a mechanism (40) that enables one first roller (11a) to be displaced relative to the other second roller (11b) such that the distance between the first roller (11a) and the second roller (11b) can be individually varied at both ends of the rollers (11a, 11b), and two drive sources (first motor (14), second motor (16)) that drive an operation whereby the first roller (11a) is displaced relative to the second roller (11b) by the mechanism (40).

Description

ロールフィーダRoll feeder
 本発明は、例えばプレス機械に対して帯状材を供給するロールフィーダに関する。 The present invention relates to, for example, a roll feeder for supplying a strip material to a press machine.
 一般に、鋼やアルミニウム等よりなる帯状の素材(以下、帯状材という)を連続的にプレス機械等に供給して、プレス加工や切断加工などを行う加工工程は、例えば特許文献1に開示されたような一連の設備によって行われる。即ち、帯状材をコイル状に巻回したもの(即ち、コイル材)をアンコイラと呼ばれる機械で巻き出し方向に回転させてその外周から帯状材を随時繰り出すとともに、このアンコイラの後流(プレス機械等の前流)においてロールフィーダと呼ばれる(或いは単にフィーダなどとも呼ばれる)機械によって前記帯状材を所定量ずつプレス機械等に対して送り出して位置決めし、プレス加工等を行っている(特許文献1参照)。また、上記ロールフィーダは、帯状材を挟み付けて回転することによって帯状材の送り動作を実現する一対のロール(上ロールと下ロール)を備える構成が一般的である。
 そして上記帯状材は、特に材質がアルミニウムである場合には、キャンバー量が多いものがあり、このキャンバー量を送給時に低減させることが求められる。
 ここで、キャンバーとは、帯状材の送給方向(進行方向)に対して帯状材が左右方向(帯状材の幅方向)に曲がっていること(コイル状に巻回されていたことによる巻きぐせの曲がりではない)であり、そのように左右に曲がっている量をキャンバー量という。海外製又は品質の悪い金属材では、このキャンバー量が多い傾向があり、このキャンバー量が多い事で次のような不具合が生じる。
(a)ロールフィーダで帯状材を送る際に、進行方向に対して、帯状材が左右に曲がって行き、後工程にあるプレス機械等の装置へ帯状材が通板できないか、通板する作業が非常に困難になる。ここで、「通板」とは、装置の所定位置へ素材を通すことであり、通板できないと後工程にある装置でのプレス加工等は当然できない。
(b)キャンバー量が多い帯状材については、廃棄する場合もあり、その場合当該帯状材から製造される製品のコスト増になる。
(c)帯状材が左右方向の一方側に曲がりながら進むこと(或いは蛇行して進む場合も含む)によって、設備機器(例えば、帯状材をガイドするガイド部材等)が帯状材の曲がった側と強く擦れ続ける事により摩耗し、その設備機器の破損交換修理が必要になる。
(d)キャンバーによりロールフィーダの送り精度(帯状材を送る距離及び速度の精度)の低下が発生する。
 そこで従来では、例えば上ロール又は下ロールを支持する部材にシム(薄い楔(くさび))を挿入することによって、送り動作時(帯状材を挟み付けて送る時)の上ロールと下ロールの相対的な距離及び角度(傾き具合)を人的作業で調整できるようにしたロールフィーダがある。また、上ロールの下ロールに対する角度をモータの駆動力により調整可能としたものが、特許文献2に開示されている。これらのロールフィーダは、送り動作時の上ロールと下ロールの相対的な距離又は角度を変更することによって、送り動作時に上ロールと下ロールで帯状材を挟み付ける圧力の軸方向(帯状材の送給方向と直交する方向であり、各ロールの長手方向)の分布を帯状材のキャンバーの状態に応じて変更し、これにより送り動作時に前記挟み付ける圧力によって帯状材を矯正し、帯状材のキャンバー量を低減しようとするものである。
Generally, for example, Patent Document 1 discloses a processing step of continuously supplying a strip-like material (hereinafter referred to as a strip) made of steel, aluminum or the like to a press machine or the like and performing pressing or cutting. Such is done by a series of equipment. That is, a coiled strip of material (that is, a coil material) is rotated in a unwinding direction by a machine called an uncoiler to draw out the strip from the outer periphery at any time, and the wake of the uncoiler (press machine etc. The above-mentioned strip material is sent out to a press machine or the like by a predetermined amount and positioned by a machine called a roll feeder (or simply referred to as a feeder or the like) in the forestream of the above (see Patent Document 1) . Further, the roll feeder generally has a configuration including a pair of rolls (upper roll and lower roll) for realizing the feeding operation of the strip material by holding the strip material and rotating it.
And when the said strip | belt-shaped material is aluminum in particular, there exist some with a large camber amount, It is calculated | required to reduce this camber amount at the time of delivery.
Here, the term "camber" means that the strip is bent in the left-right direction (the width direction of the strip) with respect to the feeding direction (traveling direction) of the strip (unrolling by being wound in a coil shape) Is not a curve), and the amount that is bent to the left and right is called the camber amount. The amount of camber tends to be large in a foreign-made or poor-quality metal material, and the following problems occur due to the large amount of camber.
(A) When feeding a strip with a roll feeder, the strip is bent to the left or right in the direction of movement, and the strip can not be passed or passed to a device such as a press machine in a post process. Will be very difficult. Here, the term "passing" refers to passing a material to a predetermined position of the device, and if it can not be passed, it is not possible naturally to press or the like with the device in the post process.
(B) The strip material having a large amount of camber may be discarded, in which case the cost of the product manufactured from the strip material is increased.
(C) The equipment (for example, a guide member for guiding the strip material) is a bent side of the strip material as the strip material bends to one side in the left-right direction Continued rubbing causes wear and requires repair and repair of the equipment.
(D) The camber causes a reduction in the feeding accuracy (the accuracy of the distance and speed of feeding the strip material) of the roll feeder.
Therefore, in the prior art, for example, by inserting a shim (a thin wedge) into the member supporting the upper roll or the lower roll, the relative movement between the upper roll and the lower roll during the feeding operation (when sandwiching and feeding the strip material) There is a roll feeder which enables to adjust a certain distance and angle (inclination degree) by human work. Patent Document 2 discloses that the angle with respect to the lower roll of the upper roll can be adjusted by the driving force of the motor. These roll feeders change the relative distance or angle between the upper roll and the lower roll during the feeding operation, so that the axial direction of the pressure for sandwiching the strip between the upper roll and the lower roll during the feeding operation The distribution in the longitudinal direction of each roll, which is a direction perpendicular to the feeding direction, is changed according to the state of the camber of the strip, whereby the strip is corrected by the clamping pressure at the time of feeding operation, It is an attempt to reduce the amount of camber.
特開2003−181573号公報Unexamined-Japanese-Patent No. 2003-181573 特開2001−30029号公報JP 2001-30029 A
 ところが、まず、上ロールと下ロールの相対的な距離及び角度を人的作業で調整できるようにした前記ロールフィーダの場合には、次のような問題があった。即ち、このロールフィーダの場合には、実際に送ろうとする帯状材と感圧紙を上ロールと下ロールの間に挟み、その後感圧紙を取り出して見て圧力の大きさや分布を確認し、この確認結果によってはシムを外したり挿入したり、或いは挿入するシムの種類や数量を変更したりした後、再度前記帯状材と感圧紙を上ロールと下ロールの間に挟み、その後感圧紙を取り出して見て圧力の大きさや分布を確認する、という人的作業を必要に応じて何回も繰り返す必要がある。このため、調整に例えば2~3時間程度の長時間を要するという問題があった。また、実際の帯状材を使用する材料合わせの調整になるので、次に扱う帯状材のキャンバーの状態が前回とは異なるもの(例えば逆側に曲がっているもの)であると、その度に長時間の上記人的作業を再度実行する必要があるという問題があった。
 また、特許文献2に開示されたロールフィーダは、雄ネジと雌ネジよりなるバックラッシュの多いネジ機構によって、モータの出力軸の回転を可動プレート(上ロールの一端を軸受を介して支持する部材)の直線運動(上下運動)に変換し、この直線運動によって上ロールの一端のみを昇降させることによって上ロールの鉛直方向の角度を変更するものである。このため、この特許文献2に開示されたロールフィーダの場合には、例えば送り動作時の上ロールと下ロールの相対的な距離及び角度を高精度に調整すること、及び微細に調整することが困難か不可能であるなどの問題があった。特に、上ロールの一端のみを昇降させるものであるため、上ロールの他端と下ロールとの距離は、モータの駆動力によっては全く調整できず、例えば前述したようなシムを使用する人的作業により調整する構成とせざるを得ないという問題があった。
 そこで本発明は、帯状材を挟み付けて回転することによって帯状材の送り動作を実現する一対のロールを備え、これらロールの相対的な距離及び角度を、望ましくは高精度かつ微細に調整することが容易なロールフィーダを提供することを目的としている。
However, first, in the case of the above-described roll feeder in which the relative distance and angle between the upper roll and the lower roll can be adjusted by human work, the following problems occur. That is, in the case of this roll feeder, the strip material and pressure-sensitive paper to be actually fed are sandwiched between the upper roll and the lower roll, and then the pressure-sensitive paper is taken out and the magnitude and distribution of pressure are checked. Depending on the results, after removing and inserting shims or changing the type and number of shims to be inserted, the strip and pressure-sensitive paper are again sandwiched between the upper roll and the lower roll, and then the pressure-sensitive paper is removed. It is necessary to repeat the human work of checking the magnitude and distribution of pressure by looking as many times as necessary. For this reason, there has been a problem that the adjustment requires a long time of, for example, about 2 to 3 hours. In addition, since it will be adjustment of the material combination which uses the actual strip material, if the condition of the camber of the strip material to be handled next is different from the previous one (for example, it is bent to the opposite side) There was a problem that the above-mentioned human work of time had to be performed again.
Further, the roll feeder disclosed in Patent Document 2 is a member that supports the rotation of the output shaft of the motor by means of a screw mechanism with a large backlash consisting of an external thread and an internal thread (the end of the upper roll is supported via a bearing) ) To change the vertical angle of the upper roll by raising and lowering only one end of the upper roll by this linear movement. Therefore, in the case of the roll feeder disclosed in Patent Document 2, for example, the relative distance and angle between the upper roll and the lower roll at the time of feeding operation can be adjusted with high accuracy and finely adjusted. There were problems such as being difficult or impossible. In particular, since only one end of the upper roll is moved up and down, the distance between the other end of the upper roll and the lower roll can not be adjusted at all by the driving force of the motor. There was a problem that it could not but be made the composition adjusted by work.
Therefore, the present invention is provided with a pair of rolls that realize the feeding operation of the strip by pinching and rotating the strip, and the relative distance and angle of these rolls are desirably adjusted with high accuracy and fineness. The purpose is to provide a roll feeder that is easy to use.
 本願の請求項1に記載したロールフィーダは、帯状材を挟み付けて回転することによって帯状材の送り動作を実現する一対のロールを備えたロールフィーダであって、
 前記ロールの一方である第1ロールと前記ロールの他方である第2ロールとの距離が、各ロールの両端側で別個に可変となるように、前記第1ロールを前記第2ロールに対して変位可能とする機構と、
 前記機構によって前記第1ロールが前記第2ロールに対して変位する動作を駆動する複数の駆動源と、を備えることを特徴とする。
 また、本願の請求項2に記載したロールフィーダは、前記機構が5節リンク機構であることを特徴とする。
 また、本願の請求項3に記載したロールフィーダは、
 前記機構が、前記第1ロールを回転自在に支持する第1部材と、前記第2ロールを回転自在に支持する第2部材と、前記駆動源のうちの一方である第1モータによって駆動される第1回転軸と、この第1回転軸と平行に配設されて前記駆動源のうちの他方である第2モータによって駆動される第2回転軸と、第3部材と、を節とする5節回転型のリンク機構(回り対偶を実現する5個の関節(ジョイント)によって5個の節(リンク)が連結されたリンク機構)であり、
 前記第1回転軸は、前記第2部材に回転自在に取り付けられて前記第1モータによって回転駆動される第1軸部と、この第1軸部の延長上に偏芯して設けられた第1偏芯軸部とを有し、
 前記第2回転軸は、前記第1軸部に対して平行になるように前記第1軸部と異なる位置において前記第2部材に回転自在に取り付けられて前記第2モータによって回転駆動される第2軸部と、この第2軸部の延長上に偏芯して設けられて前記第1部材に回転自在に取り付けられる第2偏芯軸部とを有し、
 前記第3部材は、一端側が前記第1回転軸と平行な連結軸によって前記第1部材に回転自在に取り付けられ、他端側が前記第1回転軸の第1偏芯軸部に回転自在に取り付けられる構成であることを特徴とする。
 また、本願の請求項4に記載したロールフィーダは、
 前記第1回転軸、前記第2回転軸、及び前記連結軸は、前記ロールに対してねじれの位置関係になるように配設され、前記第1回転軸、前記第2回転軸、及び前記連結軸の軸方向は、前記ロールの軸方向と90度異なる前後方向に設定され、
 前記第1部材は、前記前後方向において前記ロールの中心線よりも前側に位置する前側第1壁部と、前記前後方向において前記ロールの中心線よりも後側に位置する後側第1壁部とを有し、
 前記第2部材は、前記前後方向において前記前側第1壁部よりも前側に位置する前側第2壁部と、前記前後方向において前記後側第1壁部よりも後側に位置する後側第2壁部とを有し、
 前記第3部材としては、前記前後方向において前記ロールの中心線よりも前側に位置して、一端側が前記連結軸によって前記前側第1壁部に回転自在に取り付けられる前側第3部材と、前記前後方向において前記ロールの中心線よりも後側に位置して、一端側が前記連結軸によって前記後側第1壁部に回転自在に取り付けられる後側第3部材と、が設けられ、
 前記第1回転軸は、前記第1軸部として、前記前側第2壁部に回転自在に取り付けられる前側第1軸部と、前記後側第2壁部に回転自在に取り付けられる後側第1軸部とを有するとともに、前記第1偏芯軸部として、前記前側第3部材の他端側に回転自在に取り付けられる前側第1偏芯軸部と、前記後側第3部材の他端側に回転自在に取り付けられる後側第1偏芯軸部とを有し、
 前記第2回転軸は、前記第2軸部として、前記前側第2壁部に回転自在に取り付けられる前側第2軸部と、前記後側第2壁部に回転自在に取り付けられる後側第2軸部とを有するとともに、前記第2偏芯軸部として、前記前側第1壁部に回転自在に取り付けられる前側第2偏芯軸部と、前記後側第1壁部に回転自在に取り付けられる後側第2偏芯軸部とを有し、
 前記機構は、前側リンク機構と後側リンク機構とよりなり、
 前記前側リンク機構は、前記前側第1壁部と、前記前側第2壁部と、前記前側第1軸部及び前側第1偏芯軸部と、前記前側第2軸部及び前側第2偏芯軸部と、前記前側第3部材と、を節とする5節回転型のリンク機構であり、
 前記後側リンク機構は、前記後側第1壁部と、前記後側第2壁部と、前記後側第1軸部及び後側第1偏芯軸部と、前記後側第2軸部及び後側第2偏芯軸部と、前記後側第3部材と、を節とする5節回転型のリンク機構であり、
 前記前側リンク機構と、前記後側リンク機構とが、前記ロールの中心線を含み前記前後方向に直交する平面に対して前側と後側に(好ましくは対称的に)設けられた構成であることを特徴とする。
The roll feeder described in claim 1 of the present application is a roll feeder including a pair of rolls that realizes a feeding operation of the strip material by holding the strip material and rotating it.
The first roll relative to the second roll such that the distance between the first roll, which is one of the rolls, and the second roll, which is the other of the rolls, is separately variable at each end of each roll A mechanism that makes it displaceable,
And a plurality of drive sources for driving an operation of displacing the first roll relative to the second roll by the mechanism.
The roll feeder described in claim 2 of the present invention is characterized in that the mechanism is a five-bar link mechanism.
In addition, the roll feeder described in claim 3 of the present application is
The mechanism is driven by a first motor which is one of the drive source, a first member rotatably supporting the first roll, a second member rotatably supporting the second roll, and the drive source. A node having a first rotating shaft, a second rotating shaft disposed parallel to the first rotating shaft and driven by a second motor which is the other of the drive sources, and a third member A nodal rotation type link mechanism (a link mechanism in which five nodes (links) are connected by five joints (joints) for achieving a turning couple),
A first shaft portion rotatably attached to the second member and rotationally driven by the first motor, and the first rotation shaft is provided eccentrically on an extension of the first shaft portion; 1 with eccentric shaft,
The second rotation shaft is rotatably attached to the second member at a position different from the first shaft portion so as to be parallel to the first shaft portion, and rotationally driven by the second motor. And a second eccentric shaft portion provided eccentrically on an extension of the second shaft portion and rotatably mounted on the first member,
The third member is rotatably attached to the first member by a connecting shaft having one end side parallel to the first rotating shaft, and the other end is rotatably attached to a first eccentric shaft portion of the first rotating shaft It is characterized by the following.
The roll feeder described in claim 4 of the present application is
The first rotation shaft, the second rotation shaft, and the connection shaft are disposed in a torsional positional relationship with respect to the roll, and the first rotation shaft, the second rotation shaft, and the connection are provided. The axial direction of the shaft is set to be 90 degrees different from the axial direction of the roll,
The first member is a front first wall portion located forward of the center line of the roll in the front-rear direction, and a rear first wall portion located rearward of the center line of the roll in the front-rear direction Have and
The second member includes a front second wall portion positioned forward of the front first wall portion in the front-rear direction, and a rear side second rear portion positioned rearward of the rear first wall portion in the front-rear direction With 2 walls,
The third member is a front third member located on the front side with respect to the center line of the roll in the front-rear direction and having one end rotatably attached to the first front wall by the connecting shaft; There is provided a rear third member which is positioned rearward of the center line of the roll in the direction and one end of which is rotatably attached to the rear first wall by the connecting shaft,
The first rotation shaft is, as the first shaft portion, a front first shaft portion rotatably attached to the front second wall portion, and a rear side first rotatably mounted to the rear second wall portion. A front first eccentric shaft portion rotatably attached to the other end side of the front third member as the first eccentric shaft portion and having the shaft portion, and the other end side of the rear third member And a rear first eccentric shaft portion rotatably mounted on the
The second rotation shaft is, as the second shaft portion, a front second shaft portion rotatably attached to the front second wall portion, and a rear side second rotatably attached to the rear second wall portion. It has a shaft, and as the second eccentric shaft, it is rotatably attached to the front second eccentric shaft that is rotatably attached to the front first wall and to the rear first wall. And a rear second eccentric shaft portion,
The mechanism comprises a front link mechanism and a rear link mechanism,
The front side link mechanism includes the front side first wall portion, the front side second wall portion, the front side first shaft portion and the front side first eccentric shaft portion, the front side second shaft portion and the front side second eccentricity. It is a 5-node rotation type link mechanism which makes a shaft part and said front 3rd member a node,
The rear side link mechanism includes the rear side first wall portion, the rear side second wall portion, the rear side first shaft portion and the rear side first eccentric shaft portion, and the rear side second shaft portion. And a 5-node rotary type link mechanism having a rear second eccentric shaft portion and the rear third member as nodes.
The front link mechanism and the rear link mechanism are provided (preferably symmetrically) on the front side and the rear side with respect to a plane including the center line of the roll and orthogonal to the front-rear direction. It is characterized by
 本願の請求項1に記載のロールフィーダによれば、複数の駆動源の動作によって、帯状材の送り動作を実現する一対のロールの一方である第1ロールと他方である第2ロールとの距離が、各ロールの両端側で別個に可変となるため、これらロールの相対的な距離及び角度を調整すること(或いは変化させること)が容易に可能となる。これにより、ロールフィーダによって帯状材のキャンバー量を低減させることが容易に可能となる。
 しかも、本願の請求項2及び3に記載の態様では、前記第1ロールを前記第2ロールに対して変位可能とする機構が、ネジ機構よりもバックラッシュを少なくできる5節リンク機構であるため、前記ロールの相対的な距離及び角度を調整すること或いは変化させることが高精度かつ微細に可能となる。
 特に、本願の請求項3に記載の態様では、前記機構が5節回転型のリンク機構であり、このリンク機構を構成する二つの節(リンク)である第1回転軸と第2回転軸を第1モータと第2モータによって各々回転駆動することによって、第1ロールを支持する第1部材を第2ロールを支持する第2部材に対して2自由度で動作させることができる。また、5節回転型のリンク機構であるため、節と節を連結する関節(ジョイント)は全て、スライド機構やネジ機構などに比べて一般的にガタつきの少ない回転軸受(ベアリング)によって構成できる。このため、送り動作用の一対のロールの相対的な距離及び角度を、前記二つのモータを制御することによって、高精度かつ微細に調整すること(或いは変化させること)が容易に可能となる。
 また、本願の請求項4に記載の態様では、前記機構として前側リンク機構と後側リンク機構とが設けられ、これらリンク機構が前記ロールの中心線を含み前後方向(前記ロールの軸方向と90度異なる方向、即ち帯状材の送給方向)に直交する平面に対して前側と後側に(好ましくは対称的に)設けられた構成となっている。これにより、前記ロールで帯状材を挟み付ける送り動作時に、第1ロールを第2ロールに押し付ける向きに前記第3部材等が前記第1部材を押す力が、前記前後方向において前記ロールの向う側と手前側とに分散される。また、本願の請求項4に記載の態様では、前記第1回転軸、前記第2回転軸、及び前記連結軸が両端側で前後何れかの壁部に取り付けられて(或いは連結されて)支持される両持ち支持構造となっている。このため、本願の請求項4に記載の態様によれば、前記ロールで帯状材を挟み付ける送り動作時に、前記機構を構成する前記第1部材や各回転軸等に生じる応力や変形が抑制され、この変形による例えば前記第1ロールの適正な位置・姿勢からのずれ等の弊害が抑制される。したがって、ロールフィーダの本来の機能である送り動作とともに、帯状材を挟む力を帯状材の幅方向において適度に偏らせて(即ち、帯状材を挟み付ける圧力の前記ロールの軸方向の分布を適度に設定して)帯状材のキャンバー量を低減させることが、信頼性高く良好に実現できる。また、上述したように前記第1部材を押す力が分散され、各軸が両持ち支持構造となることによって、例えば各軸を部材に連結して回転自在に支持する各軸受の負荷が軽減され、ロールフィーダを構成するこの軸受等の部品が疲労によって損傷するまでの寿命が伸びる効果もある。
According to the roll feeder of claim 1 of the present application, the distance between the first roll which is one of the pair of rolls which realizes the feeding operation of the strip material by the operation of the plurality of drive sources and the second roll which is the other. However, since it becomes separately variable at both ends of each roll, it is possible to easily adjust (or change) the relative distance and angle of these rolls. Thereby, it is possible to easily reduce the amount of camber of the strip material by the roll feeder.
Moreover, in the embodiments according to claims 2 and 3 of the present application, the mechanism that makes the first roll displaceable with respect to the second roll is a five-bar link mechanism that can reduce the backlash compared to the screw mechanism. It is possible to adjust or change the relative distance and angle of the rolls with high accuracy and fineness.
In particular, according to the third aspect of the present invention, the mechanism is a 5-node rotary link mechanism, and the first rotary shaft and the second rotary shaft, which are two nodes (links) constituting the link mechanism, are used. The first member supporting the first roll can be operated in two degrees of freedom with respect to the second member supporting the second roll by rotationally driving each of the first motor and the second motor. In addition, since it is a 5-node rotation type link mechanism, all joints (joints) connecting the nodes and the nodes can be generally constituted by rotary bearings (bearings) with less rattling compared with a slide mechanism, a screw mechanism and the like. Therefore, by controlling the two motors, it is possible to easily adjust (or change) the relative distance and angle of the pair of rolls for feeding operation with high accuracy and fineness.
Further, in the aspect described in claim 4 of the present application, a front side link mechanism and a rear side link mechanism are provided as the mechanism, and these link mechanisms include the center line of the roll and the front and rear direction (the axial direction of the roll It is configured to be provided (preferably, symmetrically) on the front side and the rear side with respect to a plane which is different from the direction which is different, that is, the feeding direction of the strip material). As a result, at the time of the feeding operation for pinching the strip material by the roll, the force by which the third member or the like pushes the first member in the direction to press the first roll against the second roll Distributed on the near side. Moreover, in the aspect as set forth in claim 4 of the present application, the first rotating shaft, the second rotating shaft, and the connecting shaft are attached (or connected) to either the front or rear wall portion at both ends and supported Support structure. Therefore, according to the fourth aspect of the present invention, during the feeding operation for sandwiching the strip material by the roll, the stress or the deformation generated in the first member or each rotation shaft constituting the mechanism is suppressed. Problems such as deviation of the first roll from the proper position and posture due to this deformation are suppressed. Therefore, along with the feeding operation which is the original function of the roll feeder, the force for sandwiching the strip material is appropriately biased in the width direction of the strip material (that is, the axial distribution of the pressure for sandwiching the strip material is appropriate. It is possible to reduce the amount of camber of the belt-like material by setting it to (2) with high reliability and good results. Further, as described above, the force for pressing the first member is dispersed, and each shaft has a dual support structure, so that the load on each bearing that connects each shaft to the member and rotatably supports, for example, is reduced. There is also an effect of extending the life until the parts such as the bearing constituting the roll feeder are damaged by fatigue.
 図1は、ロールフィーダの上面図である。
 図2は、ロールフィーダの正面図(X矢視図)である。
 図3は、ロールフィーダの側面図(Y矢視図)である。
 図4は、ロールフィーダの縦断面図であり、図1におけるA断面図である。
 図5の(a)は前記A断面図の部分拡大図であり、図5の(b)は第1回転軸を示す図である。
 図6は、ロールフィーダの横断面図であり、図2におけるB断面図である。
 図7は、図4におけるC断面図(部分的にE断面図又はF断面図)である。
 図8は、図4におけるD断面図(部分的にF断面図)である。
 図9は、第1ロールの動作例を示す図であり、(a)は第1ロールのみを示した図、(b)は第2ロールも示した図である。
 図10は、第1ロールの動作例を示す図であり、(a)は第1ロールのみを示した図、(b)は第2ロールも示した図である。
 図11は、第1ロールの動作例を示す図であり、(a)は第1ロールのみを示した図、(b)は第2ロールも示した図である。
 図12は、第1ロールを変位可能とするリンク機構の機構学的構成及び動作を説明する図である。
 図13の(a)は帯状材の供給設備の一例を示す図、図13の(b)はロールフィーダの第1ロールの位置設定(初期設定)を説明するフローチャートである。
 図14の(a)はロールフィーダの稼働時のタイミングチャートの一例を示す図、図14の(b)は帯状材のキャンバーの向きと圧延すべき位置を説明する図である。
 図15の(a)はロールフィーダの稼働時のタイミングチャートの変形例1を示す図、図15の(b)はロールフィーダの稼働時のタイミングチャートの変形例2を示す図である。
 図16の(a)はロールフィーダの変形例を示す図、図16の(b)はロールフィーダの稼働時のタイミングチャートの比較例を示す図である。
FIG. 1 is a top view of a roll feeder.
FIG. 2 is a front view (view in the direction of arrow X) of the roll feeder.
FIG. 3 is a side view (as viewed in the direction of the arrow Y) of the roll feeder.
FIG. 4 is a longitudinal cross-sectional view of the roll feeder, and is a cross-sectional view taken along line A in FIG.
(A) of FIG. 5 is a partially enlarged view of the A sectional view, and (b) of FIG. 5 is a view showing a first rotation axis.
FIG. 6 is a cross-sectional view of the roll feeder and is a cross-sectional view taken along line B in FIG.
7 is a cross-sectional view of C in FIG. 4 (partially E cross-sectional view or F cross-sectional view).
FIG. 8 is a cross-sectional view taken along the line D in FIG. 4 (a partial cross-sectional view taken along the line F).
FIG. 9 is a view showing an operation example of the first roll, in which (a) shows only the first roll, and (b) shows also the second roll.
FIG. 10 is a view showing an operation example of the first roll, in which (a) shows only the first roll, and (b) shows also the second roll.
FIG. 11 is a view showing an operation example of the first roll, in which (a) shows only the first roll, and (b) shows also the second roll.
FIG. 12 is a view for explaining the mechanical configuration and operation of a link mechanism which makes the first roll displaceable.
(A) of FIG. 13 is a figure which shows an example of supply equipment of a strip | belt-shaped material, (b) of FIG. 13 is a flowchart explaining the position setting (initial setting) of the 1st roll of a roll feeder.
(A) of FIG. 14 shows an example of a timing chart at the time of operation of the roll feeder, and (b) of FIG. 14 is a view for explaining the direction of the camber of the strip and the position to be rolled.
(A) of FIG. 15 shows a modification 1 of the timing chart during operation of the roll feeder, and (b) of FIG. 15 shows a modification 2 of the timing chart during operation of the roll feeder.
(A) of FIG. 16 is a view showing a modification of the roll feeder, and (b) of FIG. 16 is a view showing a comparative example of a timing chart at the time of operation of the roll feeder.
 以下、本発明の実施の形態の一例である第1実施形態を図面に基づいて説明する。
 まず、本例のロールフィーダ10が使用される帯状材供給設備の一例を図13(a)により説明する。本例の設備は、図13(a)に示すように、コイル材1aを巻き出し方向に回転させてその外周から帯状材1を随時繰り出すアンコイラ2と、このアンコイラ2の下流において帯状材1を通して平坦に矯正するレベラフィーダ5と、このレベラフィーダ5の下流において矯正後の帯状材1を所定量ずつプレス機械等に対して送り出して位置決めするロールフィーダ10と、ロールフィーダ10とレベラフィーダ5を定寸間欠送りで運転するとともにアンコイラ2を基本的に定速(但し、速度の切り替えが有ってもよい)で連続運転する制御装置20とを有する。
 ここでロールフィーダ10は、図13に示すように、帯状材1を挟み付けて回転することによって帯状材1の送り動作を実現する一対のフィードロール11a,11bと、このフィードロール11a,11bのうちの少なくとも一方を駆動するモータ12(サーボモータ)と、このモータ12の回転に応じた位置検出信号を出力する位置検出器13(例えば、パルス発生器;いわゆるエンコーダ)とを備える。そして、本例のロールフィーダ10は、詳細は後述するが、送り用のモータ12(送りモータ)に加えて、上側のフィードロール11a(以下、上ロール11a又は第1ロール11aと呼ぶことがある)を下側のフィードロール11b(以下、下ロール11b又は第2ロール11bと呼ぶことがある)に対して動かすためのモータ14,16(サーボモータ)と、これらモータ14,16の回転に応じた位置検出信号をそれぞれ出力する位置検出器15,17(例えば、パルス発生器;いわゆるエンコーダ)とを備える。なお本願では、上記フィードロールを単にロールと称する場合がある。
 また、ロールフィーダ10の上流側には、帯状材1のたるみ部分(ループ1b)の端の下面に接触するRガイド10a(例えば、図示省略した複数の案内ロールよりなるもの)が設けられている。また、フィードロール11a,11bは、帯状材1を後流設備(例えば、プレス機械)に送り込む力を帯状材1に加えるロールであり、稼働時には帯状材1を挟み付けた状態で、この場合下側のフィードロール11bがモータ12によって回転駆動される。また各モータ12,14,16の動作は、制御装置20内の図示省略したコントローラによってフィードバック制御される。即ち稼働時には、制御装置20によって、例えばモータ12の回転位置の偏差(指令値とフィードバック値の差)が常にゼロに近づくようにモータ12が駆動され、その結果、帯状材1が後流設備の運転に同期した所定タイミングで設定された送り量だけ送り出される。なお図13(a)は、ロールフィーダ10等の概略を図示したものであり、ロールフィーダ10の詳細構成については後述する。
 次にレベラフィーダ5は、単なるレベラとは異なり、ロールフィーダ10と同様に送り動作をフィードバック制御可能なものである。例えば、図13に示すように、矯正用に互い違いに複数配置された矯正用ローラ6に加え、帯状材1を挟み付けて回転することによって帯状材1の送り動作を実現する一対のフィードロール7a,7bと、このフィードロール7a,7bのうちの少なくとも一方を駆動するモータ8(サーボモータ)と、このモータ8の回転に応じた位置検出信号を出力する位置検出器9(例えば、パルス発生器;いわゆるエンコーダ)とを備える。また、このレベラフィーダ5の下流側と上流側には、帯状材1のたるみ部分(ループ1b又は後述するループ1c)の端の下面に接触するRガイド5aと5b(例えば、図示省略した複数の案内ロールよりなるもの)がそれぞれ設けられている。またモータ8の動作は、制御装置20内の図示省略したコントローラによってフィードバック制御される。ここで、矯正用ローラ6は、帯状材1がコイル状に巻回されていたことによる巻きぐせの曲がりを除去して、帯状材1を平坦にするものである。
 次にアンコイラ2は、コイル材1aを内側から支持するドラム2aと、このドラム2aを駆動するモータ3とを備える。モータ3は、制御装置20内の図示省略したアンコイラ2用のコントローラによって制御される。なお本例の場合、アンコイラ2とレベラフィーダ5との間にも帯状材1のたるみ部分(ループ1c)が形成される。そして図示省略しているが、このループ1cのたるみ部分の大きさ(ループ量)を検出するセンサ(ループセンサ)が設けられ、モータ3は、このループセンサによって検知されるループ1cのループ量に応じて、回転速度が切り替えられる。したがって、モータ3を制御する上記アンコイラ2用のコントローラは、フィードバック制御を行う必要は必ずしもなく、単純にモータ3の回転速度を変化させることができるものであればよい。なお、モータ3の回転速度の切り替え時の加速度は、負荷(コイル材1a等)の慣性の大きさを考慮して、小さな値(1Gよりも格段に小さい値)に制御される。
 制御装置20は、上述した各コントローラ(アンコイラ2用のコントローラ、レベラフィーダ5用のコントローラ、ロールフィーダ10用のコントローラ)から構成される制御系全体に相当し、制御手段に相当する。
 制御装置20には、図示省略しているが、操作用の各種押しボタンや表示部が設けられた操作パネル(操作部)が備えられている。各モータのマニュアル操作や、各種のデータ設定操作などが、この操作パネルから可能となっている。なお、操作パネルから予め作業者が設定するデータとしては、帯状材1の一度の送り動作での目標送り量(後流設備である例えばプレス機械の1周期の動作に対して帯状材1を所定タイミングで送る際の送り長さ)、図14(a)の下段に例示する送り速度の所定値(トップスピード)、図14(a)の下段に例示する加速時間及び減速時間、図14(a)の上段に例示する上ロール両端の上下方向位置(後述する)を指定するデータ(後述する初期設定で入力する設定値Z1,Z2に加え、リリース動作時の位置変化パターンを指定するデータ)などがある。
 なお、図13(a)に示した構成例は、帯状材のプレス機械等への供給動作の最高加速度を高く実現しつつ、稼働時のループ(帯状材1のたるみ部分)の相対的な加速度を低減してループの揺れ(バタツキ)による帯状材1の損傷やロールフィーダ等の機械の破損を防止するために、送り機構の一種であるアンコイラ2の後流に二つの送り機構(レベラフィーダ5とロールフィーダ10)を設け、この二つの送り機構の間にも帯状材のループ(ループ1b)を形成し、アンコイラ2を含めて三つの送り機構と二つのループ(ループ1b、ループ1c)を設けたものである。この構成では、各ループ(ループ1b、ループ1c)の相対的な加速度が常に1G以下(重力加速度以下)となるように各送り機構(アンコイラ2、レベラフィーダ5、ロールフィーダ10)の各モータ3,8,12を制御することにより、ループの揺れを格段に低減し、しかも、プレス機械等への供給動作の最高加速度(この場合、ロールフィーダ10による送り動作の加速度の最大値)を例えば2Gとすることができる。例えば、ループ1bの下流にある下流側送り機構(例えばロールフィーダ10)の送り動作が例えば2G(重力加速度の2倍)の加速状態であるときには、ループの上流にある上流側送り機構(例えばレベラフィーダ5)の送り動作を例えば1G(重力加速度)の加速状態とし、逆に下流側送り機構の送り動作が2Gの減速状態であるときには、上流側送り機構の送り動作は1Gの減速状態とするように制御すれば、各ループの相対的な加速度は常に1G以下となり、重力加速度を超えないため、各ループの揺れが格段に低減される。しかも、プレス機械等への供給動作の最高加速度(この場合、ロールフィーダ10による送り動作の加速度の最大値)を例えば2Gとすることができる。
 但し、図13(a)に示した構成は一つの具体例にすぎず、他にも各種の構成があり得る(その他の構成例は後述する)。
 次に、本発明が適用されたロールフィーダ10について、以下詳細に説明する。
 なお、前述のレベラフィーダ5は、帯状材1を送るための一対のロール(フィードロール7a,7b)からなるロールフィーダとしての構成を含んでおり、このレベラフィーダ5のロールフィーダの部分に本発明を適用することも可能であるが、本例では、後流側のロールフィーダ10に本発明を適用した場合について以下説明する。
 図1はロールフィーダ10の上面図であり、図2はロールフィーダ10の正面図(図1におけるX矢視図)であり、図3はロールフィーダ10の側面図(図1におけるY矢視図)であり、図4は図1におけるA断面図であり、図5(a)は前記A断面図の部分拡大図であり、図5(b)は後述する第1回転軸43を示す図であり、図6は図2におけるB断面図であり、図7は図4におけるC断面図(部分的にE断面図又はF断面図)であり、図8は図4におけるD断面図(部分的にF断面図)である。
 なお、図13(a)で説明したように、ロールフィーダ10には例えば帯状材1を案内する前述のRガイド10aのような機器が付設されることがあるが、このような付帯機器についは、図1等では図示省略している。
 ロールフィーダ10は、図1~3等に示すように、互いに平行に配置されて帯状材1を挟み付けて回転することによって帯状材1の送り動作を実現する一対のロール(第1ロール11a、第2ロール11b)と、このロールの一方である第1ロール11a(上ロール11a)と前記ロールの他方である第2ロール11b(下ロール11b)との距離が、各ロールの軸方向の両端側で別個独立に可変となるように、第1ロール11aを第2ロール11bに対して変位可能とする機構40と、この機構40によって第1ロール11aが第2ロール11bに対して変位する動作を駆動する2個の駆動源(モータ14,16)と、を備える。ここで、2個の駆動源は、前述したモータ14,16であり、以下ではモータ14を第1モータ14と呼び、モータ16を第2モータ16と呼ぶことがある。
 なお、前記ロール(第1ロール11a及び第2ロール11b)は、図8に示すように、外周で帯状材を挟み付ける円柱状部分(符号省略)を中央部に有し、この円柱状部分の両側から同軸上に伸びる前記円柱状部分よりも小径な取付軸部(符号省略)を有する構成となっている。
 機構40は、機構学的には5節リンク機構である。5節リンク機構には、例えば二つの対偶を直進対偶(例えばシリンダ等よりなる対偶)で構成した直動型5節リンク機構などもあるが、本例の機構40は、全ての対偶が回転対偶(回り対偶)である回転型5節リンク機構である。
 即ち、機構40は、図2~図8に示すように、第1ロール11aを回転自在に支持する第1部材41と、第2ロール11bを回転自在に支持する第2部材42と、前記2個の駆動源のうちの一方である第1モータ14によって駆動される第1回転軸43(図6等に示す)と、この第1回転軸43と平行に配設されて前記2個の駆動源のうちの他方である第2モータ16によって駆動される第2回転軸44(図6等に示す)と、連結軸47によって第1部材41に連結される第3部材45又は46(図5(a)等に示す)と、を5個の節とする5節回転型のリンク機構である。5節回転型のリンク機構(或いは回転型5節リンク機構などともいう)は、回り対偶を実現する5個の関節(例えばベアリングと呼ばれる回転軸受などのジョイント)によって5個の節(リンク)が連結されたリンク機構である。
 ここで、第1回転軸43、第2回転軸44、及び連結軸47は、図1,図4等に示すように、前記ロール(第1ロール11a及び第2ロール11b)に対してねじれの位置関係になるように配設され、第1回転軸43、第2回転軸44、及び連結軸47の軸方向は、前記ロールの軸方向と90度異なる前後方向に設定されている。
 なお、例えば図1の紙面における上向が帯状材1を送給する送り方向(帯状材1を送る向き)であり、この送り方向に平行な方向を本願ではロールフィーダの前後方向という。そして、図3に示すように、この前後方向において、ロールフィーダ10に帯状材1が入ってくる入側をロールフィーダ10の後側といい、ロールフィーダ10から帯状材1が出てゆく出側をロールフィーダ10の前側という。そして、上記前後方向は、通常は、ロールフィーダ10を設置する床面(通常は水平面)に平行である(つまり、通常は水平方向)である。
 また、図2の紙面における左右方向が、ロール(第1ロール11a及び第2ロール11b)の軸方向(即ち、ロールに挟み付けられる帯状材1の幅方向)であり、本実施形態では、この左右方向における右側(送りモータ12が取り付けられている側)を駆動側といい、この左右方向における左側を反駆動側と呼ぶことがある。そして、上記左右方向も、通常は、ロールフィーダ10を設置する床面(通常は水平面)に平行である(つまり、通常は水平方向)である。
 また、第1部材41は、図1~図8に示すように、前記前後方向において前記ロールの中心線よりも前側に位置する前側第1壁部41aと、前記前後方向において前記ロールの中心線よりも後側に位置する後側第1壁部41bと、下端部が第1ロール11aの左側の位置まで伸びる左側第1壁部41c(図2等参照)と、下端部が第1ロール11aの右側の位置まで伸びる右側第1壁部41d(図2等参照)とを有する。このうち、前側第1壁部41aの下端部左側には、図5(a)に示すように、第1回転軸43をこの前側第1壁部41aとの干渉を避けて通すための切り欠き部41eが設けられている。同様に、後側第1壁部41bの下端部左側には、第1回転軸43をこの後側第1壁部41bとの干渉を避けて通すための切り欠き部41fが設けられている(図7及び図16参照)。そして図7に示すように、第1ロール11aの両端部(前記取付軸部の端部)は、それぞれ軸受48,49(例えば、玉軸受;ボールベアリング)を介して左側第1壁部41cと右側第1壁部41dに取り付けられ、これにより第1ロール11aが第1部材41に回転自在に支持されている。なお、図2において符号50で示すものは、第1ロール11aの右端部(右側の取付軸部)であって右側第1壁部41dよりも内側の位置に固定される上側同期歯車である。この上側同期歯車50は、図7、図8等では図示省略している。
 次に、第2部材42は、図1~図8に示すように、前記前後方向において前側第1壁部41aよりも前側に位置する前側第2壁部42aと、前記前後方向において後側第1壁部41bよりも後側に位置する後側第2壁部42bと、下端部が第2ロール11bの左側の位置を通過してさらに下方に伸びる左側第2壁部42c(図2等参照)と、下端部が第2ロール11bの右側を通過してさらに下方に伸びる右側第2壁部42d(図2等参照)と、後側第2壁部42bよりもさらに後側に位置する後側外壁部42e(図1等参照)と、前側第2壁部42aの下方に位置する前側壁部42f(図2,図3等参照)とを有する。
 この第2部材42は、例えば前側壁部42f、左側第2壁部42c、及び右側第2壁部42dのうちの何れか一つ以上の部分において、ロールフィーダ10を据え付ける床面に対して基本的に固定される。この際、床面に直接固定されてもよいし床面に据え付けた架台に対して固定されてもよい。このように、ロールフィーダ10は、第2部材42が固定されることによって所定の場所に据え付けられる。但し、ロールフィーダ10(第2部材42)は、例えば移動可能な台車(図示省略)に固定されて設置され、非稼働中に移動させて据え付け場所を容易に変更可能な構成でもよい。
 そして図8に示すように、第2ロール11bの両端部(前記取付軸部の端部)は、それぞれ軸受51,52(例えば、玉軸受;ボールベアリング)を介して左側第2壁部42cと右側第2壁部42dに取り付けられ、これにより第2ロール11bが第2部材42に回転自在に支持されている。なお、図2、図8等において符号53で示すものは、第2ロール11bの右端部(右側の取付軸部)であって右側第2壁部42dよりも内側の位置に固定される下側同期歯車である。この下側同期歯車53は、前述した上側同期歯車50と噛み合うことにより、第2ロール11bの回転に伴って第1ロール11aを同期させて回転させる。
 なお、第1ロール11aは機構40(5節リンク機構)により第2ロール11bに対して上昇又は下降したり傾動したりする動きが可能であるが(詳細は後述する)、その動きは小さいので、これら下側同期歯車53と上側同期歯車50の歯が互いに噛み合った状態は、第1ロール11aが動いても維持される。
 また、図1において符号54で示すものは、送りモータ12を第2部材42の右側第2壁部42dの外面側に固定するための取付部材である。この取付部材54は内部が中空となっており、この取付部材54の内部にはカップリング(軸と軸を連結する部品)55が配置されている。このカップリング55は、図2に示すように、第2ロール11bと略同一軸中心線上に配置された送りモータ12の出力軸12aと、第2ロール11bの右側の取付軸部の端部とを連結している。これにより、第2ロール11bは送りモータ12の出力軸12aに直結されて送りモータ12に駆動されて回転する構成となっている。
 以上、第1部材41と第2部材42について説明したが、ここで第1部材41と第2部材42の関係について説明しておく。第1部材41と第2部材42は、別個独立の部材であり、第1部材41は第2部材42に対して上下方向(前記前後方向と前記左右方向に直交する方向であり、通常は鉛直方向)に動くことが可能であるとともに、前記左右方向にも僅かに動くことが可能となっている。即ち、図6や後述する図16に示すように、第1部材41の前側第1壁部41a、後側第1壁部41b、左側第1壁部41c、及び右側第1壁部41dよりなる水平断面が中空長方形状の部分は、第2部材42の前側第2壁部42a、後側第2壁部42b、左側第2壁部42c、及び右側第2壁部42dよりなる水平断面が中空長方形状の部分の内側に所定の隙間ではまり込んだ状態とされ、これによって第1部材41が第2部材42に対して上下方向に動くことが可能となっており、さらに前記左右方向にも僅かに動くことが可能となっている。ここで、所定の隙間とは、機構40(5節リンク機構)の動作によって第1部材41が第2部材42に対して動くこと(傾くように動く傾動含む)が可能な程度の隙間を意味する。但し本例の場合、第1部材41は前後方向にはほとんど動くことができない構成となっており、第1ロール11aが第2ロール11bの略真上にある状態(第1ロール11aの中心線と第2ロール11bの中心線が前記前後方向に直交する略同一平面内にある状態)が維持される構成となっている。
 なお、本明細書では、図2の紙面における上下方向(前記前後方向(帯状材の送り方向)と前記左右方向(各ロールの軸方向)とに直交する方向)を便宜上、前記上下方向と呼ぶことにする。但し、この前記上下方向は、通常は鉛直方向であるが鉛直方向に限定されるものではない。ロールフィーダ10全体が鉛直方向に対して斜めに設置される場合もあり得るからである。
 次に、第3部材45,46は、一端側(本例では上端側)が第1回転軸43と平行な連結軸47によって第1部材41に回転自在に取り付けられ、他端側(本例では下端側)が第1回転軸43の後述する第1偏芯軸部(前側第1偏芯軸部43c又は後側第1偏芯軸部43d)に回転自在に取り付けられる構成である。
 詳細には図5等に示すように、第3部材としては、前記前後方向において前記ロールの中心線よりも前側に位置する前側第3部材45と、前記前後方向において前記ロールの中心線よりも後側に位置する後側第3部材46と、が設けられている。そして、前側第3部材45は、一端側(本例では上端側)が連結軸47によって第1部材41の前側第1壁部41aに回転自在に取り付けられ、他端側(本例では下端側)が第1回転軸43の後述する前側第1偏芯軸部43cに回転自在に取り付けられる構成である。また、後側第3部材46は、一端側(本例では上端側)が連結軸47によって第1部材41の後側第1壁部41bに回転自在に取り付けられ、他端側(本例では下端側)が第1回転軸43の後述する後側第1偏芯軸部43dに回転自在に取り付けられる構成である。
 ここで、連結軸47は、図5に示すように、その前端が第1部材41の前側第1壁部41aに取り付けられ、その後端が第1部材41の後側第1壁部41bに取り付けられた軸である。また図5に示すように、前側第3部材45の上端は軸受61(例えばコロ軸受)を介して連結軸47の中央よりも前側の外周に取り付けられ、これにより前側第3部材45が連結軸47を中心に回転自在となっている。また同様に、後側第3部材46の上端は軸受62(例えばコロ軸受)を介して連結軸47の中央よりも後側の外周に取り付けられ、これにより後側第3部材46が連結軸47を中心に回転自在となっている。なお、連結軸47の両端は前側第1壁部41aと後側第1壁部41bに回転不能に固定されていてもよいし、回転可能に取り付けられていてもよい。連結軸47は、前側第1壁部41aや後側第1壁部41bに対する図5に示す取付位置から脱落しないように第1部材41に対して取り付けられていればよい。
 次に、第1回転軸43(左側偏芯軸)は、第2部材42に回転自在に取り付けられて第1モータ14によって回転駆動される第1軸部と、この第1軸部の延長上に偏芯して設けられた第1偏芯軸部とを有する。詳細には図5に示すように、第1回転軸43は、前記第1軸部として、前側第2壁部42aに回転自在に取り付けられる前側第1軸部43aと、後側第2壁部42bに回転自在に取り付けられる後側第1軸部43bとを有するとともに、前記第1偏芯軸部として、前側第3部材45の他端側(本例では下端側)に回転自在に取り付けられる前側第1偏芯軸部43cと、後側第3部材46の他端側(本例では下端側)に回転自在に取り付けられる後側第1偏芯軸部43dとを有する。
 ここで、前側第1軸部43aと後側第1軸部43bは中心線が一致しており、前側第1偏芯軸部43cと後側第1偏芯軸部43dは中心線が一致している。しかし、前側第1軸部43a及び後側第1軸部43bの中心線と、前側第1偏芯軸部43c及び後側第1偏芯軸部43dの中心線とは、図5(b)に示すように所定の偏芯量G1だけずれて偏芯している。このため、第1回転軸43の第1偏芯軸部(前側第1偏芯軸部43c及び後側第1偏芯軸部43d)は、第1回転軸43が第1モータ14により駆動されると、第2部材42に対して自転するとともに、上記偏芯量G1を公転半径として公転することになる。したがって、この第1回転軸43は、機構学的には上記偏芯量G1の長さを持つリンク(節)と見なすことができる。
 なお、上記偏芯量G1は扱う帯状材1の板厚の範囲等によって異なるが、例えば扱う帯状材1の最大の板厚程度の僅かな大きさである。
 また図5に示すように、第1回転軸43は、前側第1軸部43aの外周において軸受63(例えばコロ軸受)により前側第2壁部42aに回転自在に取り付けられ、後側第1軸部43bの外周において軸受64(例えばコロ軸受)により後側第2壁部42bに回転自在に取り付けられている。また図5に示すように、前側第3部材45の下端は軸受65(例えばコロ軸受)を介して前側第1偏芯軸部43cの外周に取り付けられ、これにより前側第3部材45が前側第1偏芯軸部43cを中心に回転自在となっている。また同様に、後側第3部材46の下端は軸受66(例えばコロ軸受)を介して後側第1偏芯軸部43dの外周に取り付けられ、これにより後側第3部材46が後側第1偏芯軸部43dを中心に回転自在となっている。
 なお、図5や図6等に示すように、第1回転軸43や第2回転軸44や連結軸47の外周における各軸受に隣接する位置には、符号を省略した円筒状又はドーナツ状の部材が取り付けられている。これら円筒状又はドーナツ状の部材は、各軸受や第1部材41や第3部材45又は46等の前後方向の動きを規制して位置決めするなどの機能を持つ部材である。但し、図6では、これら円筒状又はドーナツ状の部材の一部について図示を省略している箇所がある。
 また図4及び図6に示すように、第1回転軸43の後側第1軸部43bは、後側第2壁部42bを貫通して後方に伸びており、この後側第1軸部43bと略同一中心線上には第1モータ14が配置されている。第1モータ14は、その出力軸14aを前方に向けて第2部材42の前述した後側外壁部42eに固定されている。そして、この第1モータ14の出力軸14aは、後側外壁部42eよりも前方に伸び、後側外壁部42eと後側第2壁部42bの間の空間に配置されたカップリング70によって前述した後側第1軸部43bに連結されている。これにより、第1回転軸43は第1モータ14の出力軸14aに直結されて第1モータ14に駆動されて回転する構成となっている。
 次に、第2回転軸44(右側偏芯軸)は、第1回転軸43の第1軸部(前側第1軸部43a、後側第1軸部43b)に対して平行になるように前記第1軸部と異なる位置において第2部材42に回転自在に取り付けられて第2モータ16によって回転駆動される第2軸部と、この第2軸部の延長上に偏芯して設けられて第1部材41に回転自在に取り付けられる第2偏芯軸部とを有する。詳細には図6に示すように、第2回転軸44は、前記第2軸部として、前側第2壁部42aに回転自在に取り付けられる前側第2軸部44aと、後側第2壁部42bに回転自在に取り付けられる後側第2軸部44bとを有するとともに、前記第2偏芯軸部として、前側第1壁部41aに回転自在に取り付けられる前側第2偏芯軸部44cと、後側第1壁部41bに回転自在に取り付けられる後側第2偏芯軸部44dとを有する。
 ここで、前側第2軸部44aと後側第2軸部44bは中心線が一致しており、前側第2偏芯軸部44cと後側第2偏芯軸部44dは中心線が一致している。しかし、前側第2軸部44a及び後側第2軸部44bの中心線と、前側第2偏芯軸部44c及び後側第2偏芯軸部44dの中心線とは、図6に示すように所定の偏芯量G2だけずれて偏芯している。このため、第2回転軸44の第2偏芯軸部(前側第2偏芯軸部44c及び後側第2偏芯軸部44d)は、第2回転軸44が第2モータ16により駆動されると、第2部材42に対して自転するとともに、上記偏芯量G2を公転半径として公転することになる。したがって、この第2回転軸44は、機構学的には上記偏芯量G2の長さを持つリンク(節)と見なすことができる。
 なお、上記偏芯量G2は扱う帯状材1の板厚の範囲等によって異なるが、例えば扱う帯状材1の最大の板厚程度の僅かな大きさである。この偏芯量G2は、前述した偏芯量G1と同じでもよいが、異なっていてもよい。
 また図6に示すように、第2回転軸44は、前側第2軸部44aの外周において軸受71(例えばコロ軸受)により前側第2壁部42aに回転自在に取り付けられ、後側第2軸部44bの外周において軸受72(例えばコロ軸受)により後側第2壁部42bに回転自在に取り付けられている。また図6に示すように、第2回転軸44は、前側第2偏芯軸部44cの外周において軸受73(例えばコロ軸受)により前側第1壁部41aに回転自在に取り付けられ、後側第2偏芯軸部44dの外周において軸受74(例えばコロ軸受)により後側第1壁部41bに回転自在に取り付けられている。
 また図6に示すように、第2回転軸44の後側第2軸部44bは、後側第2壁部42bを貫通して後方に伸びており、この後側第2軸部44bと略同一中心線上には第2モータ16が配置されている。第2モータ16は、その出力軸16aを前方に向けて第2部材42の前述した後側外壁部42eに固定されている。そして、この第2モータ16の出力軸16aは、後側外壁部42eよりも前方に伸び、後側外壁部42eと後側第2壁部42bの間の空間に配置されたカップリング75によって前述した後側第2軸部44bに連結されている。これにより、第2回転軸44は第2モータ16の出力軸16aに直結されて第2モータ16に駆動されて回転する構成となっている。
 次に、以上の説明を踏まえて、第1モータ14と第2モータ16の駆動力によって第1ロール11aを第2ロール11bに対して変位させる機構40についての特徴的構成や動作について説明する。機構40は、前述したように機構学的には全ての対偶が回転対偶(回り対偶)である回転型5節リンク機構である。
 図5(a)や図6等に図示された構造やここまでの説明で分かるように、本例の機構40は前後方向に二つの同じリンク機構が並列に設けられた構成となっている。即ち、本例の機構40は、共通の駆動源(第1モータ14と第2モータ16)によって駆動される前側リンク機構40aと後側リンク機構40bを含み、これら前側リンク機構40aと後側リンク機構40bとが、前記ロールの中心線を含み前記前後方向に直交する平面(図4に示すF断面に相当する平面)に対して対称的に設けられた構成である。
 ここで、前側リンク機構40aは、前側第1壁部41aと、前側第2壁部42aと、前側第1軸部43a及び前側第1偏芯軸部43cと、前側第2軸部44a及び前側第2偏芯軸部44cと、前側第3部材45と、を5個の節とする5節回転型のリンク機構である。この前側リンク機構40aの各節を連結する関節としての軸受は、軸受61,63,65,71,73である。
 また、後側リンク機構40bは、後側第1壁部41bと、後側第2壁部42bと、後側第1軸部43b及び後側第1偏芯軸部43dと、後側第2軸部44b及び後側第2偏芯軸部44dと、後側第3部材46と、を5個の節とする5節回転型のリンク機構である。この後側リンク機構40bの各節を連結する関節としての軸受は、軸受62,64,66,72,74である。
 図12は、機構40(前側リンク機構40a及び後側リンク機構40b)の機構学的構成や動作を分かり易く示した図であり、節の長さの比や節の角度は実際とは異なるが、機構40の原理的な構成及び動作を見易く示した図である。図12の上段において、各関節(この場合、回り対偶を実現する関節)に付けた符号は、前述した後側リンク機構40bの対応する各軸受の符号としている。但し、前側リンク機構40aと後側リンク機構40bは配置が異なるのみで構成及び動作は全く同じであり、前側リンク機構40aの対応する各軸受の符号を付しても同じ構成及び動作となる。
 ここで、図12に図示している機構学的構成は、前記前後方向の後方から(即ち、図1においてXで示す方向から)機構40を見た場合の機構学的な骨組みである。この図12において、関節64と関節66の間の節(リンクD)は、第1回転軸43(左側偏芯軸)よりなる節であり、前述した偏芯量G1に相当する長さの節である。また図12において、関節72と関節74の間の節(リンクE)は、第2回転軸44(右側偏芯軸)よりなる節であり、前述した偏芯量G2に相当する長さの節である。
 ここで、図12の中段は、図12の上段の状態から、第1モータ14の出力軸14aを一定の回転位置に停止させて第2モータ16のみを作動させて出力軸16aのみを回転させ、第2回転軸44(リンクE)のみを後方から見て右回転(時計回りに回転)させた場合である。この場合、機構40は4節自由度1のリンク機構と見なすことができ、第2回転軸44(リンクE)の時計回りの回転に伴って点線で示すように第1部材41(リンクB)と第3部材46(リンクA)が動き、この結果として、第1部材41の主に右側が上昇するように第1部材41が傾きつつ変位する。そして、この第1部材41の変位に伴って、第1部材41に支持された第1ロール11a(上ロール)も同様に主に右側が上昇するように傾きつつ変位する。
 次に、図12の下段は、図12の上段の状態から、第2モータ16の出力軸16aを一定の回転位置に停止させて第1モータ14のみを作動させて出力軸14aのみを回転させ、第1回転軸43のみを後方から見て左回転(反時計回りに回転)させた場合である。この場合、機構40は4節自由度1のリンク機構と見なすことができ、第1回転軸43(リンクD)の反時計回りの回転に伴って点線で示すように第1部材41(リンクB)と第3部材46(リンクA)が動き、この結果として、第1部材41の主に左側が上昇するように第1部材41が傾きつつ変位する。そして、この第1部材41の変位に伴って、第1部材41に支持された第1ロール11a(上ロール)も同様に主に左側が上昇するように傾きつつ変位する。
 なお、図示省略しているが、以上の説明から分かるように、図12の上段の状態から両方のモータ14,16を同時に上述した向き(第1回転軸43は反時計回り、第2回転軸44は時計回り)に動かせば、第1ロール11aの左右両端側が全体的に略同距離上昇するように第1部材41を変位させることが可能となる。
 また、各モータ14,16を上述した向きと逆向き(第1回転軸43は時計回り、第2回転軸44は反時計回り)に動かすことにより、第1部材41及び第1ロール11aを上述した上昇動作と同様に下降させること(主に右側を下降させること、主に左側を下降させること、さらには、全体的に略同距離下降させること)も可能である。
 また、各モータ14,16を同時に所定の向き(例えば、第1回転軸43が時計回りに回転し、第2回転軸44も時計回りに回転する向き)に動かすことにより、第1ロール11aの一端側の上下方向位置を変化させないで他端側のみの上下方向位置を変化させることも可能である。
 したがって、機構40によれば、第1ロール11aと第2ロール11bとの距離が、各ロールの両端側で別個独立に可変となるように、第1ロール11aを第2ロール11bに対して変位させることが可能である。さらにいえば、各モータ14,16の回転位置を制御することによって、第1ロール11aと第2ロール11bの左端位置における間隔(隙間)と、第1ロール11aと第2ロール11bの右端位置における間隔(隙間)とを、別個独立に設定し、別個独立に変化させることができる。
 次に、図9~図11により、機構40の実際の動作例を説明する。なお、図9~図11は、前述した図7と略同様の断面図(主に図4におけるC断面を示した図)である。但し図9~図11は、回転軸43,44の偏芯の状態が分かるように、前記C断面では見えない後側第1軸部43bや後側第2軸部44bも図示した図(一部に図4におけるD断面を含む図)となっている。また、図9~図11に示した具体的数字は、試作機等のものであり、一例にすぎない。
 図9は、第1ロール11aの位置や第1回転軸43及び第2回転軸44の回転位置が原点にある状態(以下、原点状態という)を示している。この原点の状態では、図9(a)に示すように、第1ロール11aと第2ロール11bの間隔(帯状材1を挟む中央の円柱状部分の外周間の距離)がゼロであり、図9(b)に示すように、第2ロール11b(下ロール)の中心線から第1ロール11a(上ロール)の外周(帯状材1を挟む中央の円柱状部分の外周)の下縁までの距離が、第2ロール11b(下ロール)の半径である31.5mmとなっている。
 また、上記原点の状態では、第1回転軸43(左側偏芯軸)と第2回転軸44(右側偏芯軸)の偏芯の向きは図9(a)に示すようになっている。
 即ち、第1回転軸43における後側第1偏芯軸部43d等の偏芯した部分の中心は、図9(a)の紙面において、後側第1軸部43b等の偏芯していない部分の中心に対して右下に偏芯量G1だけ離れた位置にある。そして、これら中心の前記上下方向の距離は、図9(a)に示すように例えば1.5mmとなっている。また、第2回転軸44における後側第2偏芯軸部44d等の偏芯した部分の中心は、図9(a)の紙面において、後側第2軸部44b等の偏芯していない部分の中心に対して左下に偏芯量G2だけ離れた位置にある。そして、これら中心の前記上下方向の距離は、やはり例えば1.5mmとなっている。
 次に図10は、前述した原点状態から、第1モータ14は停止させたまま第2モータ16のみを作動させ、第1回転軸43を原点状態に停止させたまま第2回転軸44(右側偏芯軸)のみを時計回りに回転させた状態(以下、右側回転状態という)を示している。この右側回転状態では、図10(a)に示すように、第1ロール11aが第1部材41とともに傾きつつ上昇し、第1ロール11aの右側がより大きく上昇する。この右側回転状態では、図10(a)に示すように、第1ロール11aと第2ロール11bの間隔(帯状材1を挟む中央の円柱状部分の外周間の距離)が左端で例えば0.04mmとなり、右端で例えば1.6mmとなる。また、この右側回転状態では、図10(b)に示すように、第2ロール11b(下ロール)の中心線から第1ロール11a(上ロール)の外周(帯状材1を挟む中央の円柱状部分の外周)の下縁までの距離が、第2ロール11b(下ロール)の半径より大きく、左端で例えば32mmとなり、右端で例えば33mmとなる。
 なお、図10(a)に示す右側回転状態は、第2回転軸44における後側第2偏芯軸部44d等の偏芯した部分の中心と、後側第2軸部44b等の偏芯していない部分の中心との前記上下方向の距離が約0mmになるまで、第2回転軸44を時計回りに回転させた状態を示しており、図10(b)とは動作条件が若干異なる。
 また、上記右側回転状態で第1部材41及び第1ロール11a(上ロール)の右側がより大きく上昇する原理は、図12の中段の図で説明したとおりである。
 次に図11は、前述した原点状態から、第2モータ16は停止させたまま第1モータ14のみを作動させ、第2回転軸44を原点状態に停止させたまま第1回転軸43(左側偏芯軸)のみを反時計回りに回転させた状態(以下、左側回転状態という)を示している。この左側回転状態では、図11(a)に示すように、第1ロール11aが第1部材41とともに傾きつつ上昇し、第1ロール11aの左側がより大きく上昇する。この左側回転状態では、図11(a)に示すように、第1ロール11aと第2ロール11bの間隔(帯状材1を挟む中央の円柱状部分の外周間の距離)が左端で例えば1.6mmとなり、右端で例えば0.04mmとなる。また、この左側回転状態では、図11(b)に示すように、第2ロール11b(下ロール)の中心線から第1ロール11a(上ロール)の外周(帯状材1を挟む中央の円柱状部分の外周)の下縁までの距離が、第2ロール11b(下ロール)の半径より大きく、左端で例えば33mmとなり、右端で例えば32mmとなる。
 なお、図11(a)に示す左側回転状態は、第1回転軸43における後側第1偏芯軸部43d等の偏芯した部分の中心と、後側第1軸部43b等の偏芯していない部分の中心との前記上下方向の距離が約0mmになるまで、第1回転軸43を反時計回りに回転させた状態を示しており、図11(b)とは動作条件が若干異なる。
 また、上記左側回転状態で第1部材41及び第1ロール11a(上ロール)の左側がより大きく上昇する原理は、図12の下段の図で説明したとおりである。
 次に、ロールフィーダ10の送り動作を含めた動作を、ロールフィーダ10に関する制御装置20の機能とともに説明する。
 制御装置20は、例えば前述した操作パネルからの操作入力によって、第1ロール11a(上ロール)の両端の上下方向位置の初期設定が可能である。ここで、第1ロール11aの両端とは、第1ロール11aの中央の円柱状部分(帯状材1を挟み付ける部分)の下縁の左右両端を意味する。そして本例の場合、第1ロール11a(上ロール)の前記円柱状部分の下縁と第2ロール11b(下ロール)の前記円柱状部分の上縁との隙間がゼロの状態(図9に示す)が原点であるため、具体的には、第1ロール11aの前記円柱状部分の下縁と第2ロール11bの前記円柱状部分の上縁との間の隙間の上下方向長さが、第1ロール11aの上下方向位置の値に相当する。つまり、第1ロール11aと第2ロール11bの前記円柱状部分の左端における前記隙間の上下方向長さが、第1ロール11aの左端の上下方向位置の値に相当し、例えば前記図10(a)の状態では0.04mmという値が第1ロール11aの左端の上下方向位置の値に相当する。また、第1ロール11aと第2ロール11bの前記円柱状部分の右端における前記隙間の上下方向長さが、第1ロール11aの右端の上下方向位置の値に相当し、例えば前記図10(a)の状態では1.6mmという値が第1ロール11aの右端の上下方向位置の値に相当する。
 図13(b)は、上述した第1ロール11aの両端の上下方向位置の初期設定の動作を示すフローチャートである。この初期設定では、まず第1ロール11aの反駆動側(左端)の上下方向位置(Z1)の設定が行われ(ステップS1)、次に第1ロール11aの駆動側(右端)の上下方向位置(Z2)の設定が行われ(ステップS2)、次に第1ロール11aの反駆動側(左端)及び駆動側(右端)の上下方向位置をそれぞれステップS1、S2で設定された位置(Z1、Z2)にする移動が行われる。
 ここで、ステップS1、S2は、例えば操作者が制御装置20の操作パネルを操作して、第1ロール11aの左端又は右端の上下方向位置の値をそれぞれ所定単位(例えば0.001mm単位、0,005mm単位、或いは0.01mm単位など)で入力して設定することによって行われる。出願人が試作した試作機では、各モータ(第1モータ14及び第2モータ16)の回転位置を制御する信号は例えばパルス信号であり、このパルス信号の1パルス当たりの第1ロール11aの両端の上下方向の移動量がそれぞれ約0,001mmであり、前記上下方向位置が上述したような細かな単位で設定可能であることを確認している。
 またステップS3では、例えば制御装置20が予め設定されたデータやプログラムによって、ステップS1、S2で設定された前記上下方向位置(Z1、Z2)を実現する各モータ14,16の回転位置(即ち、第1回転軸43と第2回転軸44のそれぞれの回転位置)を計算によって求め、求めた前記回転位置になるように各モータ14,16を自動的に作動させることにより、設定された前記上下方向位置(Z1、Z2)への移動が行われる。
 なお、ステップS3の移動は、ステップS1,S2の設定が終了すると制御装置20の制御によって自動的に開始されて実行されてもよいし、ステップS1,S2の設定が行われた後に操作者が制御装置20に対して設定された前記上下方向位置への移動を指令する操作を行うと制御装置20の制御によって実行される構成でもよい。
 出願人が試作した試作機によれば、第1ロール11aの両端の上下方向位置を、それぞれ0.01mm以下の精度で実際に変化させて位置決める制御が可能であることを確認している。
 なお、以上説明した初期設定は、入力する数値を変えつつ複数回繰り返し行うことも容易に可能である。また、帯状材1をロールフィーダ10に通板したまま(つまり、各ロール11a、11bの間に帯状材1を挟んだまま)、上記初期設定を行うことも可能である。そして上記初期設定は、送り動作を一時中断して送り出された帯状材1のキャンバーの状態を見て再度異なる数値でやり直すことも容易に可能である。例えば、帯状材1の種類や性状に対して最適な前記上下方向位置の数値を知るために、ステップS1、S2で設定する数値を変えつつ実際に帯状材1の送り動作を行ってみて、送り出された帯状材1のキャンバーの状態を見てキャンバー量が十分に小さくなるまで再度異なる数値で上記初期設定をやり直す、といった試行錯誤する作業も容易に可能である。但し、例えばステップS1、S2で設定する数値として予め最適な数値が分かっている帯状材1である場合には、上記初期設定は1回行うだけでよい。
 次に制御装置20は、帯状材1を送給する設備の稼働時には、操作者によって予め設定された各種データと予め登録されたプログラムに従って、ロールフィーダ10を例えば図14(a)に示すように作動させる制御を行う。なお、予め設定されるデータには、前述した上下方向位置の設定値(Z1、Z2)に加え、後述する送り期間やインターバル期間の長さ、送り期間における送り速度の最大値や加速度(減速時の加速度含む)を決める送り量(帯状材1を1回の送り期間で送り出す長さ)、インターバル期間における第1ロール11aの左端と右端の上下方向位置についての設定データ等がある。
 図14(a)は、ロールフィーダ10の稼働時のタイミングチャートの一例であり、横軸が時間、上段の縦軸が上ロール両端(即ち、第1ロール11aの両端)の上下方向位置であり、下段の縦軸が送り速度である。送り速度とは、送りモータ12及びこれに駆動される第2ロール11b(下ロール)の回転速度であり、本例の場合第2ロール11bに同期して回転する第1ロール11a(上ロール)の回転速度でもある。また、送り速度は、滑りがない正常な状態では、各ロールによって挟み付けられて送り出される帯状材1の送給速度である。
 図14(a)の上段のタイミングチャートでは、第1ロール11aの左端の上下方向位置(上ロール左端の上下方向位置)を実線で示し、第1ロール11aの右端の上下方向位置(上ロール右端の上下方向位置)を点線で示している。
 この図14(a)の上段のタイミングチャートは、前述した初期設定によって、上ロール左端の上下方向位置(Z1)が帯状材1の板厚から帯状材1の滑りを防止するための最低押し下げ量を差し引いた値に設定され、上ロール右端の上下方向位置(Z2)が材料の板厚から前記最低押し下げ量に加えて圧延分の押し下げ量も差し引いた値に設定された場合の具体例である。
 この場合、図14(a)の下段に示すように、送り期間においては、送り速度が所定の最大値(トップスピード)まで上昇し(即ち、送りモータ12が加速し)、次に送り速度が所定の最大値に維持され(即ち、送りモータ12が定速運転され)、次いで送り速度がゼロまで減少する(即ち、送りモータ12が減速して停止する)ように送りモータ12が制御されることにより、帯状材1を設定された所定量だけ送る(即ち、定寸送りする)送り動作が実行される。そしてこの送り期間には、上ロール左端の上下方向位置が前記初期設定で設定されたZ1に維持され、上ロール右端の上下方向位置が前記初期設定で設定されたZ2に維持されるように、各モータ(第1モータ14及び第2モータ16)が制御される。これにより、前記初期設定で設定された圧延分の押し下げ量だけ帯状材1の右側が圧延されつつ帯状材1が送り出されることになり、キャンバー量を低減させる矯正が実現できる(この効果については詳細後述する)。なお、図14(a)に示すように、上述した送り期間は、プレス機械等を含む設備が稼働中にはプレス機械等の動作に合わせて周期的に繰り返される。
 そして、図14(a)に示すように、送り期間と次の送り期間の間のインターバル期間には、送りモータ12は停止されたまま、上ロール(第1ロール11a)が全体的に材料上面位置(帯状材1の上面の位置)よりも高い位置に上昇し、次に材料上面位置よりも全体的に高い位置に維持され、次いで初期設定された位置(Z1、Z2)まで下降して戻るように各モータ(第1モータ14及び第2モータ16)が制御される。これにより、このインターバル期間中に、帯状材1が各ロールによって挟み付けられた状態から解放される(つまり、リリースされる)リリース期間が実現される。なお通常、後流のプレス機械等では素材(帯状材1)を加工等する際に独自に位置決めを行うため、このリリース期間が必要になる。ロールフィーダが各ロールによって帯状材1を挟み付けた状態のままでは、帯状材1の動きが妨げられて後流のプレス機械等で独自の位置決めが困難になるためである。本願発明が適用されたロールフィーダ10では、このリリース期間を形成するリリース動作も機構40(リンク機構)によって良好に実現できる。ここで、リリース動作とは、上述したように帯状材の板厚よりも各ロール間の隙間が大きくなるように、一方のロールが他方のロールから離れる向きに少なくともロールの一方を移動させる動作である。
 以上説明した本実施形態であると、次のような作用効果が得られる。
 即ち、本実施形態のロールフィーダ10によれば、2個の駆動源(第1モータ14、第2モータ16)の動作によって、帯状材の送り動作を実現する一対のロールの一方である第1ロール11aと他方である第2ロール11bとの距離が、各ロールの両端側で別個独立に可変となるため、これらロールの相対的な距離及び角度を調整すること(或いは変化させること)が容易に可能となる。これにより、ロールフィーダ10によって帯状材1のキャンバー量を低減させることが容易に可能となる。
 即ち、例えば図14(b)の右側に示すように右曲がりのキャンバーが帯状材1に存在していた場合には、前述した図14(a)上段に示すように、第1ロール11aの左端の上下方向位置の設定値(Z1)は前記最低押し下げ量だけ帯状材1の板厚より小さい値とし、第1ロール11aの右端の上下方向位置の設定値(Z2)を前記最低押し下げ量に加えて圧延分の押し下げ量の分も帯状材1の板厚より小さく設定すれば、第1ロール11aが圧延分の押し下げ量だけ第2ロール11bに対して右端が接近する向きに傾き、前記送り期間中に第1ロール11aの右端側において帯状材1をより強く挟み付けることになる。この結果、前記送り期間中に、図14(b)の右側に示すように帯状材1の右側を各ロールでより強く挟み付けて適度に圧延することで帯状材1の右側が適度に伸び、この伸びにより右曲がりのキャンバー量を略ゼロにして(或いは大幅に減らして)帯状材1を例えば理想的な直線的状態として後流に送り出すこと(つまり、存在していたキャンバーを矯正して後流に送り出すこと)ができる。
 また、例えば図14(b)の左側に示すように左曲がりのキャンバーが帯状材1に存在していた場合には、前述した図14(a)上段とは逆に第1ロール11aの右端の上下方向位置の設定値(Z2)は前記最低押し下げ量だけ帯状材1の板厚より小さい値とし、第1ロール11aの左端の上下方向位置の設定値(Z1)を前記最低押し下げ量に加えて圧延分の押し下げ量の分も帯状材1の板厚より小さく設定すれば、第1ロール11aが圧延分の押し下げ量だけ第2ロール11bに対して左端が接近する向きに傾き、前記送り期間中に第1ロール11aの左端側において帯状材1をより強く挟み付けることになる。この結果、前記送り期間中に、図14(b)の左側に示すように帯状材1の左側を各ロールでより強く挟み付けて適度に圧延することで帯状材1の左側が適度に伸び、この伸びにより左曲がりのキャンバー量を略ゼロにして(或いは大幅に減らして)帯状材1を例えば理想的な直線的状態として後流に送り出すこと(つまり、存在していたキャンバーを矯正して後流に送り出すこと)ができる。
 このように本例のロールフィーダ10によれば、帯状材1に存在しているキャンバーの向きが左曲がりでも右曲がりでも矯正して帯状材1を例えば理想的な直線状態にして後流に送り出すことができ、何れの向きのキャンバーでも二つの駆動源(第1モータ14、第2モータ16)の回転位置の設定作業のみによって、従来のシムを使う方法等に比べて極めて容易かつ短時間の作業で帯状材1のキャンバーの矯正が可能となる。このため、ロールフィーダ10を使う設備における生産性(或いは加工等の効率)の向上、生産品や加工品の品質向上、破棄する材料の減少、摩耗部品の減少など実用上優れた各種の効果が実現できる。なおこの効果は、特に材質がアルミニウムである場合に顕著である。
 また、本例のロールフィーダ10では、機構40と二つの駆動源によって前記キャンバーの矯正のためのロール(この場合第1ロール11a)の動きに加え、前記インターバル期間のリリース動作のためのロールの動きも実現している。このため、リリース動作のために駆動源と駆動機構を別途設ける場合に比べて、ロールフィーダ10の構成が格段に簡素化されて、ロールフィーダの小型化やコスト低減も実現される。
 しかも、本例のロールフィーダ10では、第1ロール11aを第2ロール11bに対して変位可能とする機構40が、ネジ機構等よりもバックラッシュを少なくできる5節リンク機構であるため、一対のロール(第1ロール11aと第2ロール11b)の相対的な距離及び角度を調整すること(或いは変化させること)が高精度かつ微細に可能となる。これにより、前述したキャンバーの矯正やリリース動作がより高精度に行える。
 特に、本例のロールフィーダ10では、前記機構40が5節回転型のリンク機構(回り対偶を実現する5個の関節(ジョイント)によって5個の節(リンク)が連結されたリンク機構)であり、このリンク機構を構成する二つの節(リンク)である第1回転軸43と第2回転軸44とを第1モータ14と第2モータ16によって各々回転駆動することによって、第1ロール11aを支持する第1部材41を第2ロール11bを支持する第2部材42に対して2自由度で動作させることができる。また、5節回転型のリンク機構であるため、節と節を連結する関節(ジョイント)は全て、スライド機構やネジ機構などに比べて一般的にガタつきの少ない回転軸受(ベアリング)によって構成できる。このため、送り動作用の一対のロールの相対的な距離及び角度を、前記二つのモータ14,16を制御することによって、高精度かつ微細に調整すること(或いは変化させること)が容易に可能となり、前述したキャンバーの矯正に加えてリリース動作についても良好に実現できる。
 なお、ロール(例えば上ロール)を動かす駆動伝達系にネジ機構などのバックラッシュが大きい要素が含まれる場合、例えば図16(b)に示すように、リリース動作における理想的なロールの位置変化に対して、実際のロールの位置変化に遅れや不足が生じて、良好なリリース動作が困難になる。また同様にして、帯状材のキャンバーの矯正のために一方のロールを変位させる動作も高精度かつ微細に行うことが困難になる。しかし、本例のロールフィーダ10では、前記駆動伝達系にネジ機構などのバックラッシュが大きい要素が無いため、このような問題は無く、例えば図14(a)上段に示したような理想的な位置変化を実際の動きでも実現できる。
 また、本例のロールフィーダ10では、機構40として前側リンク機構40aと後側リンク機構40bとが設けられ、これらリンク機構40a,40bが前記ロール(第1ロール11a、第2ロール11b)の中心線を含み前記前後方向(即ち帯状材の送給方向)に直交する平面に対して前側と後側に対称的に設けられた構成となっている。これにより、前記ロールで帯状材1を挟み付ける送り動作時に、第1ロール11aを第2ロール11bに押し付ける向きに例えば第3部材45,46等が第1部材41を押す力が、前記前後方向において前記ロールの向う側と手前側とに分散される。例えば図4に矢印で示すように、前側第1壁部41aが連結軸47を介して第3部材45,46によって押し下げられる力fと、後側第1壁部41bが連結軸47を介して第3部材45,46によって押し下げられる力fとに分散され、これらの力が、第1ロール11aから第1部材41に加わる反力2fと釣り合うことになる。
 しかも、本例のロールフィーダ10の態様では、第1回転軸43、第2回転軸44、及び連結軸47が両端側で前後何れかの壁部に取り付けられて(或いは連結されて)支持される両持ち支持構造となっている。このため、本例の態様によれば、前記ロールで帯状材1を挟み付ける送り動作時に、機構40を構成する第1部材41や各回転軸43,44等に生じる応力や変形が抑制され、この変形による例えば第1ロール11aの適正な位置・姿勢からのずれ等の弊害が抑制される。したがって、ロールフィーダの本来の機能である送り動作とともに、帯状材1を挟む力を帯状材1の幅方向において適度に偏らせて(即ち、帯状材1を挟み付ける圧力の前記ロールの軸方向の分布を適度に設定して)帯状材1のキャンバー量を低減させることが、信頼性高く良好に実現できる。また、上述したように第1部材41を押す力が分散され、各軸が両持ち支持構造となることによって、例えば各軸を部材に連結して回転自在に支持する各軸受等の負荷が軽減され、ロールフィーダを構成するこの軸受等の部品が疲労によって損傷するまでの寿命が伸びる効果もある。
 さらに本実施形態では、第2部材42は例えば当該ロールフィーダ10を設置場所に設置する架台に対して固定される部材であり、前記ロールを駆動する送りモータ12が、図1に示すように、前記ロールの軸方向における第2部材42の側面に取り付けられて、この送りモータ12の出力軸12aが第2ロール11bに連結されることによって、当該送りモータ12の駆動力が第2ロール11bを回転駆動する構成である。また、第1ロール11aを上下方向に動かすための第1モータ14と第2モータ16は、図1に示すように、前記前後方向における第2部材42の後面側に取り付けられて、これら第1モータ14と第2モータ16の前記出力軸がそれぞれ第1回転軸43と第2回転軸44とに連結されて、第1回転軸43と第2回転軸44とをそれぞれ回転駆動する構成である。
 このため、ロールフィーダ10を含む設備の前記前後方向(帯状材1の送り方向)の設置スペースを小さくできる(或いは小さく維持できる)効果がある。送りモータ12が第2部材42の側面に配置され、第1モータ14と第2モータ16が第2部材42の後面に後方に突出するように配置される構成であるため、これら各モータを配置するために前記前後方向に設置スペースが増えないからである。なお、ロールフィーダ10の後方側(帯状材1の流れとしては、ロールフィーダ10の上流側)には、図13(a)で説明したように、帯状材1のループ1b(たるみ部分)を設けることが一般的に必要になるため、上述したように第1モータ14と第2モータ16を後方に配置する本例の構成であれば、このループ1bの上方の空き空間(例えば、前述の図13(a)に示したRガイド10aの上方空間)が第1モータ14と第2モータ16の配置空間として有効利用され、第1モータ14と第2モータ16の配置により設置スペースが増えることはない。また、本例のロールフィーダ10は、前側リンク機構40aと後側リンク機構40bよりなる機構40を、各ロール(第1ロール11a、第2ロール11b)の主に上方空間に配置しているため、機構40の配置の点でも、空きスペースが有効利用されて前記前後方向の設置スペースが大型化しない。
 なお、本発明は以上説明した第1実施形態に限られず、各種の変形や応用があり得る。
 例えば、制御装置20が制御する可動側のロール(前記第1実施形態では上ロールである第1ロール11a)の動作態様(動作パターン)は、図14(a)上段に示す態様に限らず、例えば図15(a)や図15(b)に示す態様でもよい。ここで、図15(a)や図15(b)に示す態様は、前述したリリース期間における上ロール右端の上下方向位置の最大値を、上ロール左端と同じ位置にしたものである。つまり、リリース動作時に上ロール右端も上ロール左端と同じ高さまで上昇させる態様である。このうち図15(b)に示す態様は、図15(a)に示す態様に比べて、リリース動作開始時に上ロール右端をより高速で上昇させ、またリリース動作終了時に上ロール右端をより高速で下降させる態様である。この場合、上ロール右端は、帯状材1のキャンバーを矯正すべく上ロール左端よりも送り期間の上下方向位置が僅かだが下方に下げられている。このため、この図15(a)や図15(b)に示すように、リリース動作時に上ロール左端よりも上ロール右端を高速で上昇・下降させることで、上ロール右端についても上ロール左端と同程度の余裕のあるリリース動作が実現でき、前述したインターバル期間を変えないでリリース期間を増やすことができる。なお、上ロール右端と上ロール左端の関係は、帯状材1のキャンバーの向きが変われば逆になる。
 次に、機構40の構成は、前述したように二つのリンク機構が並列に設けられる構成に限らず、例えば前側リンク機構40aだけの構成でもよし、後側リンク機構40bだけの構成でもよい。
 例えば図16(a)は、機構40が後側リンク機構40bのみからなるロールフィーダの変形例の構造を示す斜視図である。この図16(a)では、前述した第1実施形態の各構成要素に対応する構成要素には同じ符号を付し、第1部材41や第2部材42等は内部を見せるために部分的に破断した状態を図示している。
 このように、一方側のリンク機構のみからなる態様として構造を簡素化し、コスト低減等を図ることができる。但しこの態様の場合には、前記ロールで帯状材1を挟み付ける送り動作時に、第1ロール11aを第2ロール11bに押し付ける向きに第1部材41を押す力が、前記前後方向において前記ロールの向う側と手前側とに分散される作用効果は無くなる。例えば図16(a)に示すように後側リンク機構40bのみとした場合、図4に示した二つの力fは、後側第1壁部41bが例えば連結軸47を介して第3部材46によって押し下げられる力2f(図示省略)のみに変わり、この力が第1ロール11aから第1部材41に加わる反力2fと釣り合うことになる。また、図16(a)に示す態様では、第1回転軸43、第2回転軸44、及び連結軸47が後側の壁部41b又は42bのみに取り付けられて(或いは連結されて)支持される片持ち支持構造となっている。このため、図16(a)の態様では、前記ロールで帯状材1を挟み付ける送り動作時に、機構40を構成する第1部材41や各回転軸43,44等に生じる応力や変形が比較的大きくなり易く、この変形による例えば第1ロール11aの適正な位置・姿勢からのずれ等の弊害を抑制するために各部材の厚さや回転軸の直径を増やして強度を増やす必要が生じる等の短所がある。
 また、ロールフィーダにおいて変位可能とするロールは、素材を挟み付ける一対のロールのうちで下側のロール(下ロール)であってもよい。例えば、図2や図3に示した第1実施形態の構造を上下反転させた構造も、原理的にはあり得る。
 また、各ロールの回転を同期させる下側同期歯車53及び上側同期歯車50が無い態様でもよい。
 次に、前述した第1実施形態では、図13(a)に例示した設備構成におけるロールフィーダ10に本発明を適用した例について説明したが、本発明の適用範囲はこれに限定されるものではない。
 例えば、図13(a)に示したレベラフィーダ5内のロールフィーダとしての構成部分に本発明を適用し、図13(a)に例示した設備構成において、レベラフィーダ5のみで帯状材1のキャンバーの矯正を行う態様でもよい。この場合、帯状材1を平坦にする矯正に加えて、帯状材1のキャンバーの矯正もレベラフィーダ5で行われるので、その後のロールフィーダ10ではキャンバー量がゼロか僅かな状態の帯状材1をそのまま送り出せばよいことになる。つまりこの場合、ロールフィーダ10は本来の送り動作に特化したものとすることができる。
 また、図13(a)に例示した設備構成において、レベラフィーダ5とロールフィーダ10の両方に本発明を適用し、レベラフィーダ5とロールフィーダ10の両方で例えば多段階に帯状材1のキャンバーの矯正を行う態様もあり得る。
 また、図13(a)に例示した設備構成においてレベラフィーダ5又はロールフィーダ10の一方を削除した設備構成とし、この設備構成においてレベラフィーダ5又はロールフィーダ10に本発明を適用し、当該レベラフィーダ5又はロールフィーダ10によってキャンバーの矯正を行う態様もあり得る。
Hereinafter, a first embodiment which is an example of an embodiment of the present invention will be described based on the drawings.
First, an example of a strip material supply facility in which the roll feeder 10 of this embodiment is used will be described with reference to FIG. As shown in FIG. 13 (a), the equipment of this example includes an uncoiler 2 that rotates the coil material 1a in the unwinding direction and feeds the strip material 1 from the outer periphery at any time, and passes the strip material 1 downstream of the uncoiler 2 The leveler feeder 5 corrects flatly, the roll feeder 10 feeds out and positions the strip material 1 after correction to the press machine etc. by a predetermined amount downstream of the leveler feeder 5, the roll feeder 10 and the leveler feeder 5 are fixed. The controller 20 has a controller 20 that operates with small intermittent feed and continuously operates the uncoiler 2 basically at a constant speed (however, there may be speed switching).
Here, as shown in FIG. 13, the roll feeder 10 has a pair of feed rolls 11 a and 11 b that realize the feeding operation of the strip 1 by holding the strip 1 and rotating, and the feed rolls 11 a and 11 b. A motor 12 (servo motor) for driving at least one of them and a position detector 13 (for example, a pulse generator; a so-called encoder) for outputting a position detection signal according to the rotation of the motor 12 are provided. And although roll feeder 10 of this example is mentioned below for details, it may be called upper feed roll 11a (following, upper roll 11a or the 1st roll 11a) in addition to motor 12 (feed motor) for sending. And motors 14 and 16 (servo motors) for moving the lower feed roll 11b with respect to the lower feed roll 11b (hereinafter sometimes referred to as the lower roll 11b or the second roll 11b) and the rotation of these motors 14 and 16). And a position detector (for example, a pulse generator; a so-called encoder) for outputting each position detection signal. In the present application, the feed roll may be referred to simply as a roll.
Further, on the upstream side of the roll feeder 10, there is provided an R guide 10a (for example, one comprising a plurality of guide rolls not shown) contacting the lower surface of the end of the slack portion (loop 1b) of the strip 1 . Also, the feed rolls 11a and 11b are rolls that apply a force to the strip material 1 to feed the strip material 1 to the downstream equipment (for example, a press machine). The feed roll 11 b on the side is rotationally driven by the motor 12. Further, the operation of each of the motors 12, 14, 16 is feedback-controlled by a controller (not shown) in the control device 20. That is, during operation, the motor 12 is driven by the control device 20 so that, for example, the deviation of the rotational position of the motor 12 (the difference between the command value and the feedback value) always approaches zero. It is sent out by a set feed amount at a predetermined timing synchronized with the operation. FIG. 13A schematically shows the roll feeder 10 and the like, and the detailed configuration of the roll feeder 10 will be described later.
Next, unlike the simple leveler, the leveler feeder 5 can perform feedback control of the feeding operation in the same manner as the roll feeder 10. For example, as shown in FIG. 13, in addition to the correction rollers 6 alternately arranged for correction, the pair of feed rolls 7a which realize the feeding operation of the strip 1 by holding the strip 1 and rotating it. , 7b and a motor 8 (servo motor) for driving at least one of the feed rolls 7a and 7b, and a position detector 9 (for example, a pulse generator for outputting a position detection signal according to the rotation of the motor 8). A so-called encoder). Further, on the downstream side and the upstream side of the leveler feeder 5, a plurality of R guides 5a and 5b (for example, not shown) are in contact with the lower surface of the end of the slack portion (loop 1b or loop 1c described later) of the strip 1 Are provided respectively). Further, the operation of the motor 8 is feedback controlled by a controller (not shown) in the controller 20. Here, the correction roller 6 is configured to flatten the strip material 1 by removing the winding bend caused by the strip material 1 being wound in a coil shape.
Next, the uncoiler 2 includes a drum 2a that supports the coil material 1a from the inside, and a motor 3 that drives the drum 2a. The motor 3 is controlled by a controller (not shown) for the uncoiler 2 in the controller 20. In the case of this example, the slack portion (loop 1c) of the strip 1 is also formed between the uncoiler 2 and the leveler feeder 5. Although not shown, a sensor (loop sensor) for detecting the size (loop amount) of the slack portion of the loop 1c is provided, and the motor 3 is set to the loop amount of the loop 1c detected by the loop sensor. In response, the rotational speed is switched. Therefore, the controller for the uncoiler 2 that controls the motor 3 does not necessarily need to perform feedback control, as long as it can simply change the rotational speed of the motor 3. In addition, the acceleration at the time of switching of the rotational speed of the motor 3 is controlled to a small value (a value significantly smaller than 1 G) in consideration of the magnitude of inertia of the load (the coil material 1a etc.).
The control device 20 corresponds to the entire control system including the above-described controllers (the controller for the uncoiler 2, the controller for the leveler feeder 5, and the controller for the roll feeder 10), and corresponds to control means.
Although not shown, the control device 20 includes an operation panel (operation unit) provided with various push buttons for operation and a display unit. Manual operation of each motor and various data setting operations are possible from this operation panel. In addition, as data preset by the operator from the operation panel, a target feed amount in a single feeding operation of the strip 1 (for example, the strip 1 is specified for one operation of a press machine which is a downstream equipment). 14 (a), a predetermined value (top speed) of the feed speed illustrated in the lower part of FIG. 14 (a), acceleration time and deceleration time illustrated in the lower part of FIG. 14 (a), FIG. Data for specifying the vertical position (described later) of the upper roll both ends illustrated in the upper part of) (data for specifying the position change pattern during release operation in addition to the set values Z1 and Z2 input in the initial setting described later) There is.
In the configuration example shown in FIG. 13 (a), the relative acceleration of the loop (the slack portion of the strip 1) during operation is realized while realizing the highest acceleration of the feeding operation of the strip to the press machine or the like. In order to prevent damage to the strip 1 and damage to the machine such as the roll feeder due to loop fluttering (looping), two feed mechanisms (leveler feeder 5) in the wake of the uncoiler 2, which is a type of feed mechanism. And a roll feeder 10), and also form a strip loop (loop 1b) between the two feeding mechanisms, including the uncoiler 2, three feeding mechanisms and two loops (loop 1b, loop 1c). It is provided. In this configuration, each motor 3 of each feed mechanism (uncoiler 2, leveler feeder 5, roll feeder 10) so that relative acceleration of each loop (loop 1b, loop 1c) is always 1 G or less (gravitational acceleration or less). , 8 and 12 greatly reduce loop sway, and further, the maximum acceleration of the feeding operation to the press machine etc. (in this case, the maximum value of the acceleration of the feeding operation by the roll feeder 10) It can be done. For example, when the feed operation of the downstream feed mechanism (for example, the roll feeder 10) downstream of the loop 1b is in an accelerated state of, for example, 2G (twice the gravitational acceleration), the upstream feed mechanism (for example, For example, when the feed operation of the feeder 5) is in an acceleration state of 1 G (gravity acceleration) and the feed operation of the downstream side feed mechanism is a deceleration state of 2 G, the feed operation of the upstream side feed mechanism is in a deceleration state of 1 G With such control, the relative acceleration of each loop is always 1 G or less, and the swing acceleration of each loop is significantly reduced because gravity acceleration is not exceeded. Moreover, the maximum acceleration of the supply operation to the press machine or the like (in this case, the maximum value of the acceleration of the feed operation by the roll feeder 10) can be set to 2 G, for example.
However, the configuration shown in FIG. 13A is only one specific example, and various other configurations may be possible (other configuration examples will be described later).
Next, the roll feeder 10 to which the present invention is applied will be described in detail below.
The above-described leveler feeder 5 includes a configuration as a roll feeder consisting of a pair of rolls (feed rolls 7a and 7b) for feeding the strip 1, and the present invention is directed to the roll feeder portion of the leveler feeder 5. It is also possible to apply the present invention, but in the present example, the case where the present invention is applied to the downstream side roll feeder 10 will be described below.
1 is a top view of the roll feeder 10, FIG. 2 is a front view of the roll feeder 10 (viewed in the direction of arrow X in FIG. 1), and FIG. 3 is a side view of the roll feeder 10 (in the view of arrow Y in FIG. 4A is a cross-sectional view of FIG. 1A, FIG. 5A is a partial enlarged view of the A cross-sectional view, and FIG. 5B is a view showing a first rotation shaft 43 described later. 6 is a B cross-sectional view in FIG. 2, FIG. 7 is a C cross-sectional view (partially E cross-sectional view or F cross-sectional view) in FIG. 4 and FIG. 8 is a D cross-sectional view in FIG. F cross section).
As described with reference to FIG. 13A, the roll feeder 10 may be provided with a device such as the above-mentioned R guide 10a for guiding the strip 1, for example. The illustration is omitted in FIG.
The roll feeders 10 are disposed in parallel to each other as shown in FIGS. 1 to 3 and the like, and hold the strip 1 and rotate it to realize a pair of rolls (first rolls 11 a, The distance between the second roll 11 b), the first roll 11 a (upper roll 11 a) which is one of the rolls, and the second roll 11 b (lower roll 11 b) which is the other of the rolls is both axial ends of each roll A mechanism 40 for enabling the first roll 11a to be displaced relative to the second roll 11b so as to be independently variable on the side, and an operation for the first roll 11a to be displaced relative to the second roll 11b by this mechanism 40 And two drive sources (motors 14 and 16) for driving the Here, the two drive sources are the motors 14 and 16 described above, and hereinafter, the motor 14 may be referred to as a first motor 14 and the motor 16 may be referred to as a second motor 16.
The rolls (the first roll 11a and the second roll 11b) have, as shown in FIG. 8, a cylindrical portion (reference numeral omitted) for holding the strip at the outer periphery in the central portion. It has a configuration having a mounting shaft portion (reference numeral omitted) smaller in diameter than the cylindrical portion coaxially extending from both sides.
The mechanism 40 is mechanistically a five-bar linkage. The five-bar linkage mechanism includes, for example, a linear motion type five-bar linkage mechanism in which two pairs are constituted by straight pairs (for example, a pair consisting of cylinders etc.), but in the mechanism 40 of this example, all pairs are rotational pairs. It is a rotating five-bar linkage that is (rotational couple).
That is, as shown in FIGS. 2 to 8, the mechanism 40 includes a first member 41 rotatably supporting the first roll 11 a, a second member 42 rotatably supporting the second roll 11 b, and the second member 42. A first rotary shaft 43 (shown in FIG. 6 and the like) driven by a first motor 14 which is one of the drive sources, and the two drives arranged in parallel to the first rotary shaft 43 The second rotation shaft 44 (shown in FIG. 6 and the like) driven by the second motor 16, which is the other of the sources, and the third member 45 or 46 (FIG. 5) connected to the first member 41 by the connecting shaft 47. This is a five-bar rotating link mechanism in which five nodes are shown in (a) and the like. The five-link type link mechanism (also referred to as a rotary five-link mechanism etc.) has five joints (links) by five joints (for example, joints such as a rotary bearing called bearings) that realize a turning couple. It is a linked link mechanism.
Here, the first rotation shaft 43, the second rotation shaft 44, and the connecting shaft 47 are twisted relative to the rolls (the first roll 11a and the second roll 11b) as shown in FIGS. The first rotary shaft 43, the second rotary shaft 44, and the axial direction of the connecting shaft 47 are set in the front-rear direction different by 90 degrees from the axial direction of the roll.
For example, the upward direction in the paper surface of FIG. 1 is the feed direction for feeding the strip 1 (the feed direction for the strip 1), and a direction parallel to this feed direction is referred to as the front-rear direction of the roll feeder. Then, as shown in FIG. 3, in the front-rear direction, the entry side of the strip material 1 into the roll feeder 10 is referred to as the rear side of the roll feeder 10, and the delivery side from which the strip material 1 exits the roll feeder 10 Is called the front side of the roll feeder 10. And the said front-back direction is usually parallel to the floor surface (usually horizontal surface) which installs the roll feeder 10 (that is, normally horizontal direction).
Further, the left-right direction in the paper surface of FIG. 2 is the axial direction of the rolls (the first roll 11a and the second roll 11b) (that is, the width direction of the strip 1 pinched by the rolls). The right side in the left-right direction (the side on which the feed motor 12 is attached) may be referred to as the drive side, and the left side in the left-right direction may be referred to as the reverse drive side. And the said left-right direction is also parallel to the floor surface (usually horizontal surface) which installs the roll feeder 10 normally (that is, it is normally horizontal).
Further, as shown in FIGS. 1 to 8, the first member 41 has a front first wall portion 41 a positioned on the front side of the center line of the roll in the front and rear direction, and a center line of the roll in the front and rear direction. The rear first wall portion 41b located on the rear side than the rear side, the left first wall portion 41c (see FIG. 2 etc.) whose lower end extends to the left position of the first roll 11a, and the lower end is the first roll 11a And the right side first wall portion 41 d (see FIG. 2 etc.) extending to the right side position. Among them, on the left side of the lower end portion of the front side first wall portion 41a, as shown in FIG. 5A, a notch for passing the first rotation shaft 43 while avoiding interference with the front side first wall portion 41a. The part 41e is provided. Similarly, a notch 41f is provided on the left side of the lower end portion of the rear first wall 41b so as to prevent the first rotary shaft 43 from interfering with the rear first wall 41b (see FIG. 7 and 16). And as shown in FIG. 7, the both ends of the 1st roll 11a (ends of the above-mentioned attachment axial part) are left-hand 1st wall 41c and bearing 48 and 49 (for example, ball bearings; ball bearings) respectively. The first roll 11 a is rotatably supported by the first member 41 by being attached to the right first wall portion 41 d. In addition, what is shown with the code | symbol 50 in FIG. 2 is an upper side synchronous gear which is a right end part (attachment axial part of the right side) of the 1st roll 11a, and is fixed inside the right side 1st wall part 41d. The upper synchronization gear 50 is not shown in FIGS. 7 and 8 or the like.
Next, as shown in FIGS. 1 to 8, the second member 42 includes a front second wall portion 42a positioned on the front side of the front first wall portion 41a in the front-rear direction, and a second rear portion in the front-rear direction The second rear wall 42b located rearward of the first wall 41b, and the second rear wall 42c whose lower end extends further downward through the left side of the second roll 11b (see FIG. 2 etc.) , The right lower second wall 42 d (see FIG. 2 etc.) extending at the lower end by passing the right side of the second roll 11 b, and the rear lower side further behind the rear second wall 42 b) A side outer wall 42e (see FIG. 1 and the like) and a front side wall 42f (see FIGS. 2 and 3 and the like) located below the front second wall 42a.
The second member 42 is basic to the floor surface on which the roll feeder 10 is installed, for example, in any one or more of the front side wall portion 42f, the left side second wall portion 42c, and the right side second wall portion 42d. Fixed. At this time, it may be fixed directly to the floor or may be fixed to a rack mounted on the floor. Thus, the roll feeder 10 is installed at a predetermined place by the second member 42 being fixed. However, the roll feeder 10 (second member 42) may be fixed to a movable carriage (not shown), for example, and may be moved during non-operation to easily change the installation location.
Then, as shown in FIG. 8, both end portions of the second roll 11b (end portions of the mounting shaft portion) are respectively connected to the left second wall portion 42c via bearings 51 and 52 (for example, ball bearings; ball bearings). The second roll 11b is rotatably supported by the second member 42 by being attached to the right second wall portion 42d. In addition, what is shown with the code | symbol 53 in FIG. 2, FIG. 8 etc. is a right end part (attachment axial part of the right side) of the 2nd roll 11b, and the lower side fixed to the inside inside rather than the 2nd right wall part 42d. It is a synchronous gear. The lower synchronization gear 53 meshes with the above-described upper synchronization gear 50 to synchronize and rotate the first roll 11 a as the second roll 11 b rotates.
The first roll 11a can move up and down or tilt relative to the second roll 11b by means of a mechanism 40 (five-bar link mechanism) (details will be described later), but the movement is small. The state in which the teeth of the lower synchronous gear 53 and the teeth of the upper synchronous gear 50 are engaged with each other is maintained even if the first roll 11a moves.
Moreover, what is shown with the code | symbol 54 in FIG. 1 is an attachment member for fixing the feed motor 12 to the outer surface side of the right side 2nd wall 42d of the 2nd member 42. As shown in FIG. The inside of the mounting member 54 is hollow, and a coupling (part connecting the shaft and the shaft) 55 is disposed inside the mounting member 54. The coupling 55, as shown in FIG. 2, includes the output shaft 12a of the feed motor 12 disposed substantially on the same axial center line as the second roll 11b, and the end of the attachment shaft on the right side of the second roll 11b. Are linked. As a result, the second roll 11 b is directly connected to the output shaft 12 a of the feed motor 12 and driven by the feed motor 12 to rotate.
As mentioned above, although the 1st member 41 and the 2nd member 42 were explained, the relation of the 1st member 41 and the 2nd member 42 is explained here. The first member 41 and the second member 42 are independent members, and the first member 41 is a vertical direction with respect to the second member 42 (a direction perpendicular to the front-rear direction and the left-right direction, and is usually vertical While being able to move in the direction), it is also possible to move slightly in the lateral direction. That is, as shown in FIG. 6 and FIG. 16 described later, it comprises the front first wall 41a, the rear first wall 41b, the left first wall 41c, and the right first wall 41d of the first member 41. When the horizontal cross section has a hollow rectangular shape, the horizontal cross section including the front second wall 42a, the rear second wall 42b, the left second wall 42c, and the right second wall 42d of the second member 42 is hollow. The first member 41 can be moved up and down with respect to the second member 42 by a predetermined clearance in the inside of the rectangular portion, and further in the left and right direction. It is possible to move slightly. Here, the predetermined gap means a gap that allows the first member 41 to move relative to the second member 42 (including tilting to move in an inclined manner) by the operation of the mechanism 40 (five-bar link mechanism). Do. However, in the case of this example, the first member 41 can hardly move in the front-rear direction, and the first roll 11a is approximately directly above the second roll 11b (the center line of the first roll 11a And the state in which the center line of the second roll 11b is in substantially the same plane orthogonal to the front-rear direction is maintained.
In the present specification, the vertical direction (the direction perpendicular to the longitudinal direction (the feeding direction of the strip material) and the horizontal direction (the axial direction of each roll)) in the sheet of FIG. 2 is referred to as the vertical direction for convenience. To However, although the vertical direction is usually the vertical direction, it is not limited to the vertical direction. This is because the entire roll feeder 10 may be installed obliquely with respect to the vertical direction.
Next, the third members 45 and 46 are rotatably attached to the first member 41 by the connecting shaft 47 whose one end side (upper end side in this example) is parallel to the first rotation shaft 43, and the other end side (this example) Then, the lower end side is rotatably attached to a first eccentric shaft (the front first eccentric shaft 43c or the rear first eccentric shaft 43d) of the first rotation shaft 43 described later.
In detail, as shown in FIG. 5 and the like, as the third member, a third front member 45 positioned on the front side of the center line of the roll in the front-rear direction and a center line of the roll in the front-rear direction A rear side third member 46 located at the rear side is provided. The front third member 45 is rotatably attached to the front first wall 41a of the first member 41 by the connecting shaft 47 at one end (the upper end in this example), and the other end (the lower end in this example) ) Is rotatably attached to a front first eccentric shaft portion 43c (described later) of the first rotation shaft 43. Further, the rear side third member 46 is rotatably attached to the rear side first wall portion 41b of the first member 41 by the connecting shaft 47 at one end side (upper end side in this example), and the other end side (in this example) The lower end side) is rotatably attached to a rear first eccentric shaft portion 43 d of the first rotation shaft 43 described later.
Here, as shown in FIG. 5, the connecting shaft 47 has its front end attached to the front first wall 41 a of the first member 41 and its rear end attached to the rear first wall 41 b of the first member 41. It is an axis that Further, as shown in FIG. 5, the upper end of the front third member 45 is attached to the outer periphery on the front side of the center of the connecting shaft 47 via a bearing 61 (for example, roller bearing), whereby the front third member 45 is connected to the connecting shaft It is rotatable around 47. Similarly, the upper end of the rear third member 46 is attached to the outer periphery on the rear side of the center of the connecting shaft 47 via a bearing 62 (for example, a roller bearing), whereby the rear third member 46 is connected to the connecting shaft 47. It is rotatable around the Note that both ends of the connecting shaft 47 may be non-rotatably fixed to the front first wall portion 41a and the rear first wall portion 41b, or may be rotatably mounted. The connecting shaft 47 may be attached to the first member 41 so as not to drop off from the attachment position shown in FIG. 5 with respect to the front side first wall portion 41a and the rear side first wall portion 41b.
Next, a first shaft 43 (left eccentric shaft) is rotatably attached to the second member 42 and is rotatably driven by the first motor 14, and an extension of the first shaft. And a first eccentric shaft provided eccentrically. In detail, as shown in FIG. 5, the first rotary shaft 43 is a front first shaft portion 43a rotatably attached to the front second wall portion 42a as the first shaft portion, and a rear second wall portion And a rear first shaft portion 43b rotatably attached to 42b, and rotatably attached to the other end side (the lower end side in this example) of the front third member 45 as the first eccentric shaft portion. It has a front first eccentric shaft portion 43c and a rear first eccentric shaft portion 43d rotatably mounted on the other end side (lower end side in this example) of the rear third member 46.
Here, the center lines of the front side first shaft portion 43a and the rear side first shaft portion 43b coincide, and the center lines of the front side first eccentric shaft portion 43c and the rear first eccentric shaft portion 43d coincide with each other. ing. However, the center lines of the front first shaft portion 43a and the rear first shaft portion 43b, and the center lines of the front first eccentric shaft portion 43c and the rear first eccentric shaft portion 43d are shown in FIG. 5 (b). As shown in FIG. 5, the eccentricity is offset by a predetermined eccentricity amount G1. Therefore, the first rotary shaft 43 is driven by the first motor 14 in the first eccentric shaft portion (the first front eccentric shaft portion 43c and the rear first eccentric shaft portion 43d) of the first rotary shaft 43. Then, it rotates with respect to the second member 42, and revolves with the eccentricity amount G1 as a radius of revolution. Therefore, the first rotation shaft 43 can be considered mechanically as a link (node) having a length of the eccentricity amount G1.
Although the amount of eccentricity G1 varies depending on the range of the thickness of the strip 1 to be handled, etc., it is, for example, a small size about the maximum thickness of the strip 1 to be handled.
Further, as shown in FIG. 5, the first rotary shaft 43 is rotatably attached to the front second wall portion 42a by bearings 63 (for example, roller bearings) on the outer periphery of the front first shaft portion 43a, and the rear first shaft It is rotatably attached to the rear second wall portion 42b by a bearing 64 (for example, a roller bearing) on the outer periphery of the portion 43b. As shown in FIG. 5, the lower end of the front third member 45 is attached to the outer periphery of the front first eccentric shaft portion 43c via a bearing 65 (for example, a roller bearing), whereby the front third member 45 is It is rotatable about the eccentric shaft portion 43c. Similarly, the lower end of the rear third member 46 is attached to the outer periphery of the rear first eccentric shaft portion 43d via a bearing 66 (for example, a roller bearing), whereby the rear third member 46 is mounted on the rear third side. It is rotatable about the eccentric shaft portion 43d.
In addition, as shown in FIG. 5 and FIG. 6 etc., cylindrical or donut shapes whose reference numerals are omitted at positions adjacent to the bearings on the outer periphery of the first rotary shaft 43, the second rotary shaft 44 and the connecting shaft 47. A member is attached. These cylindrical or doughnut-shaped members are members having functions such as positioning by restricting movement of the bearings, the first member 41, the third member 45 or 46 in the front-rear direction, and the like. However, in FIG. 6, there are places where illustration is omitted about a part of these cylindrical or doughnut-shaped members.
As shown in FIGS. 4 and 6, the rear first shaft portion 43b of the first rotation shaft 43 extends rearward through the rear second wall portion 42b, and the rear first shaft portion The first motor 14 is disposed substantially on the same center line as 43 b. The first motor 14 is fixed to the aforementioned rear outer wall portion 42e of the second member 42 with the output shaft 14a thereof directed forward. The output shaft 14a of the first motor 14 extends forward of the rear outer wall 42e, and the coupling 70 is disposed in the space between the rear outer wall 42e and the rear second wall 42b. It is connected with the back side 1st axial part 43b. Thus, the first rotation shaft 43 is directly connected to the output shaft 14 a of the first motor 14 and driven by the first motor 14 to rotate.
Next, the second rotation shaft 44 (right eccentric shaft) is parallel to the first shaft portion of the first rotation shaft 43 (front first shaft portion 43a, rear first shaft portion 43b). A second shaft portion rotatably attached to the second member 42 at a position different from the first shaft portion and rotationally driven by the second motor 16, and provided eccentrically on an extension of the second shaft portion And a second eccentric shaft portion rotatably attached to the first member 41. In detail, as shown in FIG. 6, the second rotation shaft 44 is a second shaft portion, and a front second shaft portion 44a rotatably attached to the front second wall portion 42a, and a rear second wall portion A front second eccentric shaft 44c rotatably attached to the front first wall 41a as the second eccentric shaft, and having a rear second shaft 44b rotatably attached to the housing 42b; And a rear second eccentric shaft 44d rotatably mounted on the rear first wall 41b.
Here, the center lines of the front side second shaft portion 44a and the rear side second shaft portion 44b coincide, and the center lines of the front side second eccentric shaft portion 44c and the rear second eccentric shaft portion 44d coincide with each other. ing. However, as shown in FIG. 6, the central lines of the front second axial portion 44a and the rear second axial portion 44b and the central lines of the front second eccentric shaft portion 44c and the rear second eccentric shaft portion 44d. The eccentricity is offset by a predetermined eccentricity amount G2. Therefore, the second rotary shaft 44 is driven by the second motor 16 in the second eccentric shaft portion of the second rotary shaft 44 (the front second eccentric shaft portion 44c and the rear second eccentric shaft portion 44d). Then, it rotates with respect to the second member 42 and revolves with the eccentricity amount G2 as a radius of revolution. Therefore, the second rotation shaft 44 can be considered mechanically as a link (node) having a length of the eccentricity amount G2.
The eccentricity amount G2 is different depending on the range of the thickness of the strip 1 to be handled, etc., but is, for example, a small size about the maximum thickness of the strip 1 to be handled. The eccentricity amount G2 may be the same as the eccentricity amount G1 described above, but may be different.
Further, as shown in FIG. 6, the second rotary shaft 44 is rotatably attached to the front second wall portion 42a by a bearing 71 (for example, a roller bearing) on the outer periphery of the front second shaft portion 44a. It is rotatably attached to the rear second wall portion 42b by a bearing 72 (for example, a roller bearing) on the outer periphery of the portion 44b. Further, as shown in FIG. 6, the second rotation shaft 44 is rotatably attached to the front first wall portion 41a by bearings 73 (for example, roller bearings) on the outer periphery of the front second eccentric shaft portion 44c. A bearing 74 (for example, a roller bearing) is rotatably attached to the rear first wall portion 41b on the outer periphery of the bi-axial shaft portion 44d.
Further, as shown in FIG. 6, the rear second shaft portion 44b of the second rotary shaft 44 extends rearward through the rear second wall portion 42b, and substantially extends with the rear second shaft portion 44b. The second motor 16 is disposed on the same center line. The second motor 16 is fixed to the aforementioned rear outer wall portion 42e of the second member 42 with the output shaft 16a thereof directed forward. The output shaft 16a of the second motor 16 extends forward of the rear outer wall 42e, and the coupling 75 is disposed in the space between the rear outer wall 42e and the rear second wall 42b. It is connected to the rear second shaft portion 44b. Thus, the second rotary shaft 44 is directly connected to the output shaft 16 a of the second motor 16 and driven by the second motor 16 to rotate.
Next, based on the above description, the characteristic configuration and operation of the mechanism 40 for displacing the first roll 11a with respect to the second roll 11b by the driving force of the first motor 14 and the second motor 16 will be described. The mechanism 40 is a rotary five-bar linkage mechanism in which all the pairs are mechanically rotational pairs (rotational pairs) as described above.
As can be understood from the structure shown in FIG. 5A, FIG. 6 and the like and the description so far, the mechanism 40 of this example is configured such that two identical link mechanisms are provided in parallel in the front-rear direction. That is, the mechanism 40 of this example includes a front link mechanism 40a and a rear link mechanism 40b driven by a common drive source (the first motor 14 and the second motor 16), and these front link mechanism 40a and the rear link The mechanism 40b is provided symmetrically with respect to a plane including the center line of the roll and orthogonal to the front-rear direction (a plane corresponding to the F cross section shown in FIG. 4).
Here, the front side link mechanism 40a includes a front side first wall portion 41a, a front side second wall portion 42a, a front side first shaft portion 43a and a front side first eccentric shaft portion 43c, a front side second shaft portion 44a and a front side. It is a five-node rotation type link mechanism in which the second eccentric shaft portion 44c and the front third member 45 form five nodes. The bearings as joints connecting the respective nodes of the front link mechanism 40a are bearings 61, 63, 65, 71, 73.
Further, the rear link mechanism 40b includes the rear first wall portion 41b, the rear second wall portion 42b, the rear first shaft portion 43b and the rear first eccentric shaft portion 43d, and the rear second It is a five-link rotation type link mechanism in which the shaft portion 44b, the rear second eccentric shaft portion 44d, and the rear third member 46 form five nodes. Bearings as joints connecting the respective nodes of the rear link mechanism 40b are bearings 62, 64, 66, 72, 74.
FIG. 12 is a diagram for easily understanding the mechanical configuration and operation of the mechanism 40 (the front link mechanism 40a and the rear link mechanism 40b), but the ratio of the length of the nodes and the angle of the nodes are different from the actual FIGS. 6A and 6B are diagrams showing the basic configuration and operation of the mechanism 40 in an easy-to-see manner. In the upper part of FIG. 12, the reference numerals attached to the joints (in this case, the joints realizing the turning couple) are the reference numerals of the corresponding bearings of the rear link mechanism 40b described above. However, the front link mechanism 40a and the rear link mechanism 40b have the same configuration and operation except that they are arranged differently, and even if the reference numerals of the corresponding bearings of the front link mechanism 40a are given, the same configuration and operation are obtained.
Here, the mechanical configuration illustrated in FIG. 12 is a mechanical framework when the mechanism 40 is viewed from the rear in the front-rear direction (that is, from the direction indicated by X in FIG. 1). In FIG. 12, a node (link D) between the joint 64 and the joint 66 is a node consisting of the first rotation shaft 43 (left eccentric shaft) and has a length corresponding to the eccentricity amount G1 described above. It is. Further, in FIG. 12, a node (link E) between the joint 72 and the joint 74 is a node consisting of the second rotation axis 44 (right eccentric axis) and has a length corresponding to the eccentricity amount G2 described above. It is.
Here, in the middle stage of FIG. 12, from the state of the upper stage of FIG. 12, the output shaft 14a of the first motor 14 is stopped at a fixed rotational position and only the second motor 16 is operated to rotate only the output shaft 16a. The right rotation (clockwise rotation) of the second rotation shaft 44 (link E) is viewed from the rear. In this case, the mechanism 40 can be regarded as a link mechanism with one four-joint degree of freedom, and the first member 41 (link B) as shown by a dotted line along with the clockwise rotation of the second rotation shaft 44 (link E). The third member 46 (link A) moves, and as a result, the first member 41 is displaced while being inclined so that the right side of the first member 41 mainly rises. Then, along with the displacement of the first member 41, the first roll 11a (upper roll) supported by the first member 41 is also displaced while being inclined so that the right side mainly rises.
Next, in the lower part of FIG. 12, from the state of the upper part in FIG. 12, the output shaft 16a of the second motor 16 is stopped at a fixed rotational position and only the first motor 14 is operated to rotate only the output shaft 14a. This is a case where only the first rotation shaft 43 is turned left (counterclockwise) when viewed from the rear. In this case, the mechanism 40 can be regarded as a link mechanism having four-joint degrees of freedom 1 and the first member 41 (link B as shown by a dotted line along with the counterclockwise rotation of the first rotation shaft 43 (link D). And the third member 46 (link A) move, and as a result, the first member 41 is displaced while being inclined so that the left side of the first member 41 mainly rises. Then, along with the displacement of the first member 41, the first roll 11a (upper roll) supported by the first member 41 is also displaced while being inclined so that the left side is mainly lifted.
Although not shown, as can be understood from the above description, the direction in which both motors 14 and 16 are simultaneously described from the upper state of FIG. 12 (the first rotation shaft 43 rotates counterclockwise, the second rotation shaft 44) can move the first member 41 so that the left and right end sides of the first roll 11a ascend as a whole by approximately the same distance.
Further, the first member 41 and the first roll 11a are described above by moving the motors 14 and 16 in the opposite direction to the direction described above (the first rotation shaft 43 is clockwise and the second rotation shaft 44 is counterclockwise). It is also possible to lower as in the rising operation (lowering mainly the right side, mainly lowering the left side, and further, approximately the same distance as a whole).
In addition, by simultaneously moving the motors 14 and 16 in a predetermined direction (for example, the direction in which the first rotation shaft 43 rotates clockwise and the second rotation shaft 44 also rotates clockwise), It is also possible to change the vertical direction position of only the other end side without changing the vertical direction position of one end side.
Therefore, according to the mechanism 40, the first roll 11a is displaced relative to the second roll 11b so that the distance between the first roll 11a and the second roll 11b can be varied independently and independently at both ends of each roll. It is possible to Furthermore, by controlling the rotational position of each of the motors 14 and 16, the distance (gap) at the left end position of the first roll 11a and the second roll 11b and the right end position of the first roll 11a and the second roll 11b The intervals (gaps) can be set independently and can be changed independently.
Next, an actual operation example of the mechanism 40 will be described with reference to FIGS. 9 to 11. 9 to 11 are cross-sectional views (mainly showing a C cross section in FIG. 4) substantially similar to FIG. 7 described above. However, FIGS. 9 to 11 also show the rear first shaft portion 43b and the rear second shaft portion 44b which can not be seen in the C cross section so that the eccentricity state of the rotary shafts 43 and 44 can be understood. 4 is a view including the D cross section in FIG. The specific numerals shown in FIGS. 9 to 11 are those of a prototype or the like, and are merely an example.
FIG. 9 shows a state in which the position of the first roll 11a and the rotational positions of the first rotation shaft 43 and the second rotation shaft 44 are at the origin (hereinafter referred to as the origin state). In the state of this origin, as shown in FIG. 9A, the distance between the first roll 11a and the second roll 11b (the distance between the outer peripheries of the central cylindrical portions sandwiching the strip material 1) is zero. As shown in 9 (b), from the center line of the second roll 11b (lower roll) to the lower edge of the outer circumference (the outer circumference of the central cylindrical portion sandwiching the strip 1) of the first roll 11a (upper roll) The distance is 31.5 mm, which is the radius of the second roll 11 b (lower roll).
Further, in the state of the origin, the direction of eccentricity of the first rotation shaft 43 (left eccentric shaft) and the second rotation shaft 44 (right eccentric shaft) is as shown in FIG. 9A.
That is, the center of the decentered portion of the first rotation shaft 43 such as the rear first eccentric shaft portion 43d is not eccentric such as the rear first shaft portion 43b in the plane of FIG. 9A. It is at a position separated by the eccentricity amount G1 to the lower right from the center of the part. And the distance of the above-mentioned up-and-down direction of these centers is 1.5 mm, as shown in Drawing 9 (a). Further, the center of the decentered portion of the second rotation shaft 44 such as the rear second eccentric shaft portion 44d is not eccentric such as the rear second shaft portion 44b in the plane of FIG. 9A. It is located at the lower left from the center of the part by the eccentricity amount G2. The distance between the centers in the vertical direction is also, for example, 1.5 mm.
Next, in FIG. 10, from the above-described origin state, only the second motor 16 is operated while the first motor 14 is stopped, and the second rotation shaft 44 (right side) is stopped while the first rotation shaft 43 is stopped at the origin state. A state in which only the eccentric shaft is rotated clockwise (hereinafter, referred to as a right side rotation state) is shown. In the right-handed rotation state, as shown in FIG. 10A, the first roll 11a ascends and rises together with the first member 41, and the right side of the first roll 11a ascends larger. In this rightward rotation state, as shown in FIG. 10A, the distance between the first roll 11a and the second roll 11b (the distance between the outer peripheries of the central cylindrical portions sandwiching the strip 1) is, for example, 0. It becomes 04 mm, and becomes 1.6 mm at the right end. Also, in this right-handed rotation state, as shown in FIG. 10 (b), the central cylindrical shape sandwiching the strip 1 from the center line of the second roll 11b (lower roll) from the center line of the first roll 11a. The distance to the lower edge of the outer circumference of the portion is larger than the radius of the second roll 11b (lower roll), and is 32 mm at the left end and 33 mm at the right end.
In the right side rotation state shown in FIG. 10A, the center of the eccentric portion of the second rotation shaft 44 such as the rear second eccentric shaft portion 44d and the eccentricity of the rear second shaft portion 44b It shows a state in which the second rotation shaft 44 is rotated clockwise until the distance in the vertical direction with respect to the center of the non-portion becomes about 0 mm, and the operating condition is slightly different from FIG. 10 (b) .
Further, the principle that the right side of the first member 41 and the first roll 11a (upper roll) is raised more largely in the right side rotation state is as described in the middle part of FIG.
Next, in FIG. 11, from the origin state described above, only the first motor 14 is operated while the second motor 16 is stopped, and the first rotation shaft 43 (left side) is stopped while the second rotation shaft 44 is stopped at the origin state. A state in which only the eccentric shaft is rotated counterclockwise (hereinafter, referred to as a left side rotation state) is shown. In the left-handed rotation state, as shown in FIG. 11A, the first roll 11a ascends and rises together with the first member 41, and the left side of the first roll 11a ascends larger. In this left-handed rotation state, as shown in FIG. 11A, the distance between the first roll 11a and the second roll 11b (the distance between the outer circumferences of the central cylindrical portions sandwiching the strip 1) is, for example, 1. It becomes 6 mm, and becomes 0.04 mm at the right end. Further, in the left side rotation state, as shown in FIG. 11B, a cylindrical shape in the center of the outer periphery (upper roll) of the first roll 11a (upper roll) from the center line of the second roll 11b (lower roll). The distance to the lower edge of the outer circumference of the portion is larger than the radius of the second roll 11b (lower roll), and is 33 mm at the left end and 32 mm at the right end.
In the left side rotation state shown in FIG. 11A, the center of the eccentric portion of the first rotation shaft 43 such as the rear first eccentric shaft portion 43d and the eccentricity of the rear first shaft portion 43b It shows a state in which the first rotation shaft 43 is rotated counterclockwise until the distance in the vertical direction with respect to the center of the non-portion becomes about 0 mm, and the operating condition is slightly different from FIG. It is different.
Further, the principle that the left side of the first member 41 and the first roll 11a (upper roll) is raised more largely in the left-handed rotation state is as described in the lower part of FIG.
Next, the operation including the feeding operation of the roll feeder 10 will be described together with the function of the control device 20 related to the roll feeder 10.
The control device 20 can initialize the vertical direction positions of both ends of the first roll 11a (upper roll), for example, by the operation input from the operation panel described above. Here, the two ends of the first roll 11a mean the left and right ends of the lower edge of the central cylindrical portion (the part holding the strip 1) of the first roll 11a. And in the case of this example, a state where the clearance between the lower edge of the cylindrical portion of the first roll 11a (upper roll) and the upper edge of the cylindrical portion of the second roll 11b (lower roll) is zero (FIG. 9) Specifically, the vertical length of the gap between the lower edge of the cylindrical portion of the first roll 11a and the upper edge of the cylindrical portion of the second roll 11b is It corresponds to the value of the vertical position of the first roll 11a. That is, the vertical length of the gap at the left end of the cylindrical portion of the first roll 11a and the second roll 11b corresponds to the value of the vertical position of the left end of the first roll 11a, for example, as shown in FIG. In the state of), the value of 0.04 mm corresponds to the value of the vertical position of the left end of the first roll 11a. The vertical length of the gap at the right end of the cylindrical portion of the first roll 11a and the second roll 11b corresponds to the value of the vertical position of the right end of the first roll 11a, for example, as shown in FIG. In the state of), a value of 1.6 mm corresponds to the value of the vertical position of the right end of the first roll 11a.
FIG. 13 (b) is a flowchart showing an operation of initial setting of vertical positions of both ends of the first roll 11 a described above. In this initial setting, the vertical position (Z1) of the reverse drive side (left end) of the first roll 11a is set first (step S1), and then the vertical position of the drive side (right end) of the first roll 11a The setting of (Z2) is performed (step S2), and then the vertical position of the reverse side (left end) and the driving side (right end) of the first roll 11a is set to the position (Z1, S2) set in steps S1 and S2, respectively. A move to Z2) is performed.
Here, in steps S1 and S2, for example, when the operator operates the operation panel of the control device 20, the values of the vertical position of the left end or the right end of the first roll 11a are respectively in predetermined units (for example, 0.001 mm units, 0 , 005 mm, or 0.01 mm, etc.). In a prototype manufactured by the applicant, a signal for controlling the rotational position of each motor (the first motor 14 and the second motor 16) is, for example, a pulse signal, and both ends of the first roll 11a per pulse of this pulse signal. It has been confirmed that the amount of movement in the vertical direction is approximately 0,001 mm, and that the position in the vertical direction can be set in such a fine unit as described above.
In step S3, for example, the rotational position (ie, the rotational position of each of the motors 14 and 16 that realizes the vertical position (Z1, Z2) set in steps S1 and S2 by the control device 20 according to preset data or program. The rotational positions of the first rotational shaft 43 and the second rotational shaft 44 are determined by calculation, and the upper and lower sides set by automatically operating the respective motors 14 and 16 to reach the determined rotational position. Movement to the direction position (Z1, Z2) is performed.
The movement in step S3 may be automatically started and executed under the control of control device 20 when the setting in steps S1 and S2 is completed, or the operator may perform the setting in steps S1 and S2. It may be configured to be executed under control of the control device 20 when an operation of instructing movement to the vertical position set to the control device 20 is performed.
According to the prototype manufactured by the applicant, it has been confirmed that the control of determining the positions by vertically changing the vertical positions of both ends of the first roll 11a with an accuracy of 0.01 mm or less is possible.
The above-described initial setting can be easily repeated several times while changing the numerical value to be input. Moreover, it is also possible to carry out the above-mentioned initial setting while passing the strip 1 through the roll feeder 10 (that is, keeping the strip 1 between the rolls 11a and 11b). The above-mentioned initial setting can be easily performed again with a different numerical value in consideration of the state of the camber of the strip 1 which has been fed out by temporarily stopping the feeding operation. For example, in order to know the numerical value of the vertical position that is optimal for the type and properties of the strip 1, it is possible to feed the strip 1 by actually performing the feeding operation of the strip 1 while changing the values set in steps S1 and S2. It is also possible to easily carry out trial and error work such as re-doing the above initial setting with different numerical values until the amount of camber is sufficiently reduced in view of the state of the camber of the strip material 1 as described above. However, for example, in the case of the strip material 1 whose optimum numerical value is known in advance as the numerical value set in steps S1 and S2, the above-described initial setting may be performed only once.
Next, when the equipment for feeding the strip 1 is in operation, the control device 20 displays the roll feeder 10 as shown in FIG. 14A, for example, according to various data preset by the operator and a program registered in advance. Perform control to operate. In addition to the preset values (Z1 and Z2) of the vertical position described above, the data set in advance includes the length of the feed period and interval period described later, the maximum value of the feed speed in the feed period, and the acceleration (during deceleration The feed amount (the length of sending the strip 1 in a single feed period) that determines the acceleration of (1), and setting data etc. for the vertical position of the left end and the right end of the first roll 11a in the interval period.
FIG. 14A is an example of a timing chart when the roll feeder 10 is in operation, where the horizontal axis is time, and the upper vertical axis is the vertical position of both ends of the upper roll (that is, both ends of the first roll 11a). The lower vertical axis is the feed speed. The feed speed is the rotational speed of the feed motor 12 and the second roll 11b (lower roll) driven thereby, and in the case of this example, the first roll 11a (upper roll) that rotates in synchronization with the second roll 11b. It is also the rotational speed of Further, the feeding speed is a feeding speed of the strip 1 pinched and fed by each roll in a normal state without slip.
In the timing chart in the upper part of FIG. 14A, the vertical position of the left end of the first roll 11a (the vertical position of the upper end of the upper roll) is indicated by a solid line, and the vertical position of the right end of the first roll 11a (upper roll right end The vertical position of) is indicated by a dotted line.
In the timing chart in the upper part of FIG. 14A, the minimum pressing amount for preventing the strip 1 from slipping due to the thickness of the strip 1 by the above-described initial setting in the vertical direction position (Z1) of the upper roll left end This is a specific example in which the vertical roll position (Z2) at the right end of the upper roll is set to a value obtained by subtracting the rolling down amount in addition to the minimum pressing down from the thickness of the material. .
In this case, as shown in the lower part of FIG. 14A, in the feed period, the feed speed rises to a predetermined maximum value (top speed) (that is, the feed motor 12 accelerates), and then the feed speed is increased. The feed motor 12 is controlled to be maintained at a predetermined maximum value (i.e., the feed motor 12 is operated at a constant speed) and then the feed rate is reduced to zero (i.e., the feed motor 12 decelerates and stops). As a result, the feeding operation of sending the strip material 1 by a set predetermined amount (that is, sending a fixed size) is performed. During this feeding period, the vertical position of the upper end of the upper roll is maintained at Z1 set in the initial setting, and the vertical position of the right end of the upper roll is maintained at Z2 set in the initial setting, Each motor (the first motor 14 and the second motor 16) is controlled. As a result, the strip 1 is fed while the right side of the strip 1 is rolled by the amount of depression of the rolling set in the initial setting, and correction for reducing the amount of camber can be realized (this effect will be described in detail) Will be described later). In addition, as shown to Fig.14 (a), the feed period mentioned above is periodically repeated according to operation | movement, such as a press machine etc., while the installation containing a press machine etc. is in operation.
Then, as shown in FIG. 14 (a), in the interval period between the feeding period and the next feeding period, the upper roll (the first roll 11a) is entirely on the upper surface of the material while the feed motor 12 is stopped. Ascends to a position higher than the position (the position of the upper surface of the strip 1), then is maintained at a position generally higher than the upper surface position of the material, and then descends back to the initialized position (Z1, Z2) Thus, each motor (the first motor 14 and the second motor 16) is controlled. As a result, a release period in which the strip 1 is released from the pinched state by each roll (that is, released) is realized during this interval period. In addition, usually, in the case of processing a material (strip 1) in a downstream press machine or the like, this release period is required because positioning is performed uniquely. If the roll feeder holds the strip 1 by the respective rolls, the movement of the strip 1 is impeded, which makes it difficult to position the strip 1 in a downstream press machine or the like. In the roll feeder 10 to which the present invention is applied, the release operation for forming the release period can be well realized by the mechanism 40 (link mechanism). Here, the release operation is an operation in which at least one of the rolls is moved in a direction away from the other roll such that the gap between the rolls is larger than the thickness of the strip as described above. is there.
According to the embodiment described above, the following effects can be obtained.
That is, according to the roll feeder 10 of the present embodiment, the first of the pair of rolls that realizes the feeding operation of the strip material by the operation of the two drive sources (the first motor 14 and the second motor 16) As the distance between the roll 11a and the other second roll 11b becomes variable independently at both ends of each roll, it is easy to adjust (or change) the relative distance and angle of these rolls Possible. Thus, the amount of camber of the strip 1 can be easily reduced by the roll feeder 10.
That is, for example, when a camber with a right curve is present in the strip 1 as shown on the right side of FIG. 14 (b), the left end of the first roll 11a as shown on the upper side of FIG. The setting value (Z1) of the vertical position of the first roll 11a is smaller than the thickness of the strip 1 by the minimum pressing amount, and the setting value (Z2) of the vertical position of the right end of the first roll 11a is added to the minimum pressing amount. The first roll 11a is inclined in the direction in which the right end approaches the second roll 11b by the amount of depression of rolling, if the amount of depression of rolling is set smaller than the thickness of the strip 1, and the feeding period The strip 1 is more strongly clamped at the right end side of the first roll 11a. As a result, during the feeding period, as shown on the right side of FIG. 14 (b), the right side of the strip 1 is appropriately stretched by holding the right side of the strip 1 more firmly with each roll and appropriately stretching it. By this elongation, the amount of right-handed camber is made substantially zero (or largely reduced), for example, the strip 1 is sent out to the wake as an ideal linear state (that is, after correcting the existing camber Can be sent out).
For example, as shown on the left side of FIG. 14 (b), when a camber having a left curve is present in the strip 1, contrary to the upper stage of FIG. 14 (a) described above, the right end of the first roll 11a The set value (Z2) of the vertical position is smaller than the thickness of the strip 1 by the minimum pressing amount, and the setting value (Z1) of the vertical position of the left end of the first roll 11a is added to the minimum pressing amount. If the amount of depression of rolling is set smaller than the thickness of the strip 1, the first roll 11a is inclined in the direction in which the left end approaches the second roll 11b by the amount of depression of rolling, during the feeding period. The strip 1 is more strongly clamped at the left end side of the first roll 11a. As a result, during the feeding period, as shown on the left side of FIG. 14 (b), the left side of the strip 1 is appropriately stretched by holding the left side of the strip 1 more firmly with each roll and appropriately stretching it. By this elongation, the amount of left-handed camber is made substantially zero (or greatly reduced), and the strip 1 is sent to the wake as, for example, an ideal linear state (that is, after correcting the existing camber Can be sent out).
As described above, according to the roll feeder 10 of the present embodiment, the direction of the camber present in the strip 1 is corrected to the left or right to correct the strip 1 into, for example, an ideal straight line state and feed it as a wake The camber of any orientation is extremely easy and short as compared with the conventional method using shims etc. only by setting the rotational positions of the two drive sources (first motor 14 and second motor 16). It is possible to correct the camber of the strip 1 by work. For this reason, various practically effective effects such as improvement of productivity (or efficiency of processing, etc.) in equipment using the roll feeder 10, improvement of quality of products and processed products, reduction of discarded materials, reduction of worn parts, etc. realizable. This effect is particularly remarkable when the material is aluminum.
Further, in the roll feeder 10 of this example, in addition to the movement of the camber straightening roll (in this case, the first roll 11a) by the mechanism 40 and the two drive sources, the roll of the interval period release operation. Movement is also realized. For this reason, compared with the case where a drive source and a drive mechanism are separately provided for the release operation, the configuration of the roll feeder 10 is greatly simplified, and the downsizing and cost reduction of the roll feeder are also realized.
Moreover, in the roll feeder 10 of the present embodiment, the mechanism 40 that allows the first roll 11a to be displaced relative to the second roll 11b is a 5-node link mechanism that can reduce backlash more than a screw mechanism or the like. It becomes possible to adjust (or change) the relative distance and angle of the rolls (the first roll 11a and the second roll 11b) with high accuracy and fineness. Thus, the camber correction and release operations described above can be performed with higher accuracy.
In particular, in the roll feeder 10 of the present embodiment, the mechanism 40 is a 5-node rotary type link mechanism (a link mechanism in which five nodes (links) are connected by five joints (joints) for achieving a rotating couple). The first roller 11a is driven by rotating the first rotating shaft 43 and the second rotating shaft 44, which are the two nodes (links) that make up this link mechanism, by the first motor 14 and the second motor 16, respectively. Can be operated with two degrees of freedom with respect to the second member 42 supporting the second roll 11 b. In addition, since it is a 5-node rotation type link mechanism, all joints (joints) connecting the nodes and the nodes can be generally constituted by rotary bearings (bearings) with less rattling compared with a slide mechanism, a screw mechanism and the like. For this reason, it is possible to easily adjust (or change) the relative distance and angle of the pair of rolls for the feeding operation by controlling the two motors 14 and 16 with high accuracy and fineness. In addition to the correction of the camber described above, the release operation can be well realized.
In the case where the drive transmission system for moving the roll (for example, the upper roll) includes an element with a large backlash such as a screw mechanism, as shown in FIG. On the other hand, a delay or an insufficiency occurs in the actual position change of the roll, which makes a good release operation difficult. Similarly, it is difficult to accurately and finely shift one of the rolls for correcting the strip camber. However, in the roll feeder 10 of this example, since there is no element with a large backlash such as a screw mechanism in the drive transmission system, such a problem does not occur, and for example, the ideal as shown in the upper stage of FIG. Position change can be realized by actual movement.
Further, in the roll feeder 10 of this embodiment, the front link mechanism 40a and the rear link mechanism 40b are provided as the mechanism 40, and these link mechanisms 40a and 40b are the centers of the rolls (the first roll 11a and the second roll 11b). It is configured to be symmetrically provided on the front side and the rear side with respect to a plane including the line and orthogonal to the front-rear direction (that is, the feeding direction of the strip material). As a result, at the time of the feeding operation for sandwiching the strip 1 by the rolls, the force by which, for example, the third members 45 and 46 press the first member 41 in the direction of pressing the first roll 11a against the second roll 11b Are dispersed on the side of the roll and on the side of the roll. For example, as shown by an arrow in FIG. 4, the force f by which the front first wall portion 41 a is pushed down by the third members 45 and 46 via the connecting shaft 47 and the rear first wall portion 41 b via the connecting shaft 47 The force f is distributed to the forces f pushed down by the third members 45 and 46, and these forces are in balance with the reaction force 2f applied to the first member 41 from the first roll 11a.
Moreover, in the aspect of the roll feeder 10 of the present embodiment, the first rotating shaft 43, the second rotating shaft 44, and the connecting shaft 47 are attached to (or connected to) either the front or rear wall at both ends. Support structure. For this reason, according to the aspect of the present embodiment, the stress and the deformation generated in the first member 41 and the respective rotation shafts 43 and 44 constituting the mechanism 40 are suppressed during the feeding operation of sandwiching the strip 1 by the roll. Problems such as deviation from the proper position and posture of the first roll 11a due to this deformation are suppressed. Therefore, along with the feeding operation which is the original function of the roll feeder, the force for sandwiching the strip 1 is appropriately biased in the width direction of the strip 1 (that is, the pressure in the axial direction of the roll for sandwiching the strip 1). It can be realized with high reliability and good reduction of the amount of camber of the strip material 1 by setting the distribution appropriately. Further, as described above, the force for pressing the first member 41 is dispersed, and each shaft has a double-supported support structure, thereby reducing the load of each bearing or the like that connects each shaft to the member and rotatably supports it. Therefore, there is also an effect of extending the life until the parts such as the bearing constituting the roll feeder are damaged by fatigue.
Furthermore, in the present embodiment, the second member 42 is, for example, a member fixed to a rack on which the roll feeder 10 is installed at the installation location, and the feed motor 12 for driving the roll is shown in FIG. It is attached to the side surface of the second member 42 in the axial direction of the roll, and the output shaft 12a of the feed motor 12 is connected to the second roll 11b, whereby the driving force of the feed motor 12 drives the second roll 11b. It is configured to be rotationally driven. The first motor 14 and the second motor 16 for moving the first roll 11a in the vertical direction are attached to the rear surface side of the second member 42 in the front-rear direction as shown in FIG. The output shafts of the motor 14 and the second motor 16 are connected to the first rotation shaft 43 and the second rotation shaft 44, respectively, and rotationally drive the first rotation shaft 43 and the second rotation shaft 44, respectively. .
Therefore, the installation space of the equipment including the roll feeder 10 in the front-rear direction (the feeding direction of the strip 1) can be reduced (or kept small). Since the feed motor 12 is disposed on the side surface of the second member 42 and the first motor 14 and the second motor 16 are disposed to project rearward on the rear surface of the second member 42, these motors are disposed. This is because the installation space does not increase in the front-rear direction in order to do so. As described with reference to FIG. 13A, the loop 1b (slack portion) of the strip 1 is provided on the rear side of the roll feeder 10 (the flow of the strip 1 on the upstream side of the roll feeder 10). In the case of the configuration of the present example in which the first motor 14 and the second motor 16 are disposed rearward as described above, a vacant space above the loop 1 b (for example, the above-described The space above the R guide 10a shown in FIG. 13 (a) is effectively used as the arrangement space for the first motor 14 and the second motor 16, and the installation space is increased by the arrangement of the first motor 14 and the second motor 16 Absent. Further, in the roll feeder 10 of this example, the mechanism 40 including the front link mechanism 40a and the rear link mechanism 40b is disposed mainly in the upper space of each roll (the first roll 11a and the second roll 11b). Also in terms of the arrangement of the mechanism 40, the empty space is effectively used and the installation space in the front-rear direction is not enlarged.
The present invention is not limited to the above-described first embodiment, and various modifications and applications may be made.
For example, the operation mode (operation pattern) of the movable side roll (the first roll 11a which is the upper roll in the first embodiment) controlled by the control device 20 is not limited to the mode illustrated in the upper stage of FIG. For example, the aspect shown in FIG. 15 (a) or FIG. 15 (b) may be used. Here, in the mode shown in FIG. 15A and FIG. 15B, the maximum value of the vertical position of the upper roll right end in the release period described above is the same position as the upper roll left end. That is, in the release operation, the upper roll right end is also raised to the same height as the upper roll left end. Among them, the mode shown in FIG. 15 (b) raises the right end of the upper roll at a higher speed at the start of the release operation and the speed of the right end of the upper roll at the higher speed at the end of the release operation. It is a mode to which it descends. In this case, in order to correct the camber of the strip 1, the upper roll right end is slightly lowered in the vertical direction of the feeding period than the upper roll left end, but downward. For this reason, as shown in FIGS. 15A and 15B, the upper end of the upper roll is raised and lowered at high speed than the upper end of the upper roll at the time of release operation. The release operation can be realized with the same margin, and the release period can be increased without changing the above-mentioned interval period. The relationship between the upper roll right end and the upper roll left end is reversed if the direction of the camber of the strip 1 changes.
Next, the configuration of the mechanism 40 is not limited to the configuration in which two link mechanisms are provided in parallel as described above, and may be, for example, only the front link mechanism 40a or only the rear link mechanism 40b.
For example, FIG. 16 (a) is a perspective view showing a structure of a modification of a roll feeder in which the mechanism 40 comprises only the rear link mechanism 40b. In FIG. 16A, the components corresponding to the components of the first embodiment described above are denoted by the same reference numerals, and the first member 41, the second member 42, etc. are partially shown to show the inside. The broken state is illustrated.
As described above, the structure can be simplified as an aspect including only the link mechanism on one side, and cost reduction and the like can be achieved. However, in the case of this aspect, the force pressing the first member 41 in the direction of pressing the first roll 11a against the second roll 11b during the feeding operation of sandwiching the strip 1 by the roll The effects distributed to the forward side and the front side disappear. For example, in the case where only the rear link mechanism 40b is used as shown in FIG. 16A, the two forces f shown in FIG. 4 are the third member 46 with the rear first wall portion 41b via the connecting shaft 47, for example. The force changes only to a force 2 f (not shown) pressed down by this force, and this force balances with the reaction force 2 f applied to the first member 41 from the first roll 11 a. Moreover, in the aspect shown to Fig.16 (a), the 1st rotating shaft 43, the 2nd rotating shaft 44, and the connecting shaft 47 are attached to (or connected with) only the wall part 41b or 42b of back side, and are supported. Support structure. For this reason, in the mode of FIG. 16 (a), the stress and deformation generated in the first member 41 and the respective rotation shafts 43, 44, etc. constituting the mechanism 40 are relatively large during the feeding operation of sandwiching the strip 1 by the roll. It tends to be large, and it is necessary to increase the strength by increasing the thickness of each member and the diameter of the rotation shaft to suppress the adverse effects such as the deviation from the proper position and posture of the first roll 11a due to this deformation. There is.
Further, the roll which can be displaced in the roll feeder may be a lower roll (lower roll) of a pair of rolls for holding the material. For example, a structure obtained by inverting the structure of the first embodiment shown in FIGS. 2 and 3 up and down may be in principle possible.
Further, the lower synchronous gear 53 and the upper synchronous gear 50 for synchronizing the rotation of each roll may be omitted.
Next, in the first embodiment described above, an example in which the present invention is applied to the roll feeder 10 in the equipment configuration illustrated in FIG. 13A has been described, but the scope of application of the present invention is limited to this Absent.
For example, the present invention is applied to the component as a roll feeder in the leveler feeder 5 shown in FIG. 13 (a), and in the equipment configuration illustrated in FIG. 13 (a) The correction of the In this case, since the correction of the camber of the strip 1 is also performed by the leveler feeder 5 in addition to the correction for flattening the strip 1, the roll feeder 10 thereafter has the strip 1 with a camber amount of zero or a slight amount. It will be good if it sends out as it is. That is, in this case, the roll feeder 10 can be specialized to the original feeding operation.
Further, in the equipment configuration illustrated in FIG. 13A, the present invention is applied to both the leveler feeder 5 and the roll feeder 10, and both the leveler feeder 5 and the roll feeder 10 have cambers of the strip 1 in multiple stages, for example. There may also be a mode in which correction is performed.
Moreover, it is set as the installation configuration which deleted one of the leveler feeder 5 or the roll feeder 10 in the installation configuration illustrated to Fig.13 (a), applies this invention to the leveler feeder 5 or the roll feeder 10 in this installation configuration, The said leveler feeder There may also be an aspect in which the camber is corrected by the 5 or roll feeder 10.
 1 帯状材(素材)
 10 ロールフィーダ
 11a フィードロール(上ロール、第1ロール、ロール)
11b フィードロール(下ロール、第2ロール、ロール)
 12 モータ(送りモータ)
 14 モータ(第1モータ)
 16 モータ(第2モータ)
 40 機構
 40a 前側リンク機構
 40b 後側リンク機構
 41 第1部材
 41a 前側第1壁部
 41b 後側第1壁部
 41c 左側第1壁部
 41d 右側第1壁部
 42 第2部材
 42a 前側第2壁部
 42b 後側第2壁部
 42c 左側第2壁部
 42d 右側第2壁部
 43 第1回転軸
 43a 前側第1軸部
 43b 後側第1軸部
 43c 前側第1偏芯軸部
 43d 後側第1偏芯軸部
 44 第2回転軸
 44a 前側第2軸部
 44b 後側第2軸部
 44c 前側第2偏芯軸部
 44d 後側第2偏芯軸部
 45 第3部材(前側第3部材)
 46 第3部材(後側第3部材)
 47 連結軸
1 Band material (material)
10 roll feeder 11a feed roll (upper roll, first roll, roll)
11b Feed roll (lower roll, second roll, roll)
12 Motor (feed motor)
14 Motor (1st motor)
16 motor (second motor)
40 mechanism 40a front side link mechanism 40b rear side link mechanism 41 first member 41a front side first wall portion 41b rear side first wall portion 41c left side first wall portion 41d right side first wall portion 42 second member 42a front side second wall portion 42b rear side second wall portion 42c left side second wall portion 42d right side second wall portion 43 first rotation shaft 43a front side first shaft portion 43b rear side first shaft portion 43c front side first eccentric shaft portion 43d rear side first Eccentric shaft 44 Second rotating shaft 44a Front second shaft 44b Rear second shaft 44c Front second eccentric shaft 44d Rear second eccentric shaft 45 Third member (front third member)
46 Third member (rear third member)
47 connecting shaft

Claims (4)

  1.  帯状材を挟み付けて回転することによって帯状材の送り動作を実現する一対のロールを備えたロールフィーダであって、
     前記ロールの一方である第1ロールと前記ロールの他方である第2ロールとの距離が、各ロールの両端側で別個に可変となるように、前記第1ロールを前記第2ロールに対して変位可能とする機構と、
     前記機構によって前記第1ロールが前記第2ロールに対して変位する動作を駆動する複数の駆動源と、を備えることを特徴とするロールフィーダ。
    A roll feeder comprising a pair of rolls for realizing a feeding operation of a strip material by holding the strip material and rotating it.
    The first roll relative to the second roll such that the distance between the first roll, which is one of the rolls, and the second roll, which is the other of the rolls, is separately variable at each end of each roll A mechanism that makes it displaceable,
    And a plurality of driving sources for driving an operation of displacing the first roll relative to the second roll by the mechanism.
  2.  前記機構が5節リンク機構であることを特徴とする請求項1に記載のロールフィーダ。 The roll feeder according to claim 1, wherein the mechanism is a five-bar linkage.
  3.  前記機構は、前記第1ロールを回転自在に支持する第1部材と、前記第2ロールを回転自在に支持する第2部材と、前記駆動源のうちの一方である第1モータによって駆動される第1回転軸と、この第1回転軸と平行に配設されて前記駆動源のうちの他方である第2モータによって駆動される第2回転軸と、第3部材と、を節とする5節回転型のリンク機構であり、
     前記第1回転軸は、前記第2部材に回転自在に取り付けられて前記第1モータによって回転駆動される第1軸部と、この第1軸部の延長上に偏芯して設けられた第1偏芯軸部とを有し、
     前記第2回転軸は、前記第1軸部に対して平行になるように前記第1軸部と異なる位置において前記第2部材に回転自在に取り付けられて前記第2モータによって回転駆動される第2軸部と、この第2軸部の延長上に偏芯して設けられて前記第1部材に回転自在に取り付けられる第2偏芯軸部とを有し、
     前記第3部材は、一端側が前記第1回転軸と平行な連結軸によって前記第1部材に回転自在に取り付けられ、他端側が前記第1回転軸の第1偏芯軸部に回転自在に取り付けられる構成であることを特徴とする請求項2に記載のロールフィーダ。
    The mechanism is driven by a first motor which is one of the drive source, a first member rotatably supporting the first roll, a second member rotatably supporting the second roll, and the drive source. A node having a first rotating shaft, a second rotating shaft disposed parallel to the first rotating shaft and driven by a second motor which is the other of the drive sources, and a third member Nodal rotation type link mechanism,
    A first shaft portion rotatably attached to the second member and rotationally driven by the first motor, and the first rotation shaft is provided eccentrically on an extension of the first shaft portion; 1 with eccentric shaft,
    The second rotation shaft is rotatably attached to the second member at a position different from the first shaft portion so as to be parallel to the first shaft portion, and rotationally driven by the second motor. And a second eccentric shaft portion provided eccentrically on an extension of the second shaft portion and rotatably mounted on the first member,
    The third member is rotatably attached to the first member by a connecting shaft having one end side parallel to the first rotating shaft, and the other end is rotatably attached to a first eccentric shaft portion of the first rotating shaft The roll feeder according to claim 2, characterized in that:
  4.  前記第1回転軸、前記第2回転軸、及び前記連結軸は、前記ロールに対してねじれの位置関係になるように配設され、前記第1回転軸、前記第2回転軸、及び前記連結軸の軸方向は、前記ロールの軸方向と90度異なる前後方向に設定され、
     前記第1部材は、前記前後方向において前記ロールの中心線よりも前側に位置する前側第1壁部と、前記前後方向において前記ロールの中心線よりも後側に位置する後側第1壁部とを有し、
     前記第2部材は、前記前後方向において前記前側第1壁部よりも前側に位置する前側第2壁部と、前記前後方向において前記後側第1壁部よりも後側に位置する後側第2壁部とを有し、
     前記第3部材としては、前記前後方向において前記ロールの中心線よりも前側に位置して、一端側が前記連結軸によって前記前側第1壁部に回転自在に取り付けられる前側第3部材と、前記前後方向において前記ロールの中心線よりも後側に位置して、一端側が前記連結軸によって前記後側第1壁部に回転自在に取り付けられる後側第3部材と、が設けられ、
     前記第1回転軸は、前記第1軸部として、前記前側第2壁部に回転自在に取り付けられる前側第1軸部と、前記後側第2壁部に回転自在に取り付けられる後側第1軸部とを有するとともに、前記第1偏芯軸部として、前記前側第3部材の他端側に回転自在に取り付けられる前側第1偏芯軸部と、前記後側第3部材の他端側に回転自在に取り付けられる後側第1偏芯軸部とを有し、
     前記第2回転軸は、前記第2軸部として、前記前側第2壁部に回転自在に取り付けられる前側第2軸部と、前記後側第2壁部に回転自在に取り付けられる後側第2軸部とを有するとともに、前記第2偏芯軸部として、前記前側第1壁部に回転自在に取り付けられる前側第2偏芯軸部と、前記後側第1壁部に回転自在に取り付けられる後側第2偏芯軸部とを有し、
     前記機構は、前側リンク機構と後側リンク機構とよりなり、
     前記前側リンク機構は、前記前側第1壁部と、前記前側第2壁部と、前記前側第1軸部及び前側第1偏芯軸部と、前記前側第2軸部及び前側第2偏芯軸部と、前記前側第3部材と、を節とする5節回転型のリンク機構であり、
     前記後側リンク機構は、前記後側第1壁部と、前記後側第2壁部と、前記後側第1軸部及び後側第1偏芯軸部と、前記後側第2軸部及び後側第2偏芯軸部と、前記後側第3部材と、を節とする5節回転型のリンク機構であり、
     前記前側リンク機構と、前記後側リンク機構とが、前記ロールの中心線を含み前記前後方向に直交する平面に対して前側と後側に設けられた構成であることを特徴とする請求項3に記載のロールフィーダ。
    The first rotation shaft, the second rotation shaft, and the connection shaft are disposed in a torsional positional relationship with respect to the roll, and the first rotation shaft, the second rotation shaft, and the connection are provided. The axial direction of the shaft is set to be 90 degrees different from the axial direction of the roll,
    The first member is a front first wall portion located forward of the center line of the roll in the front-rear direction, and a rear first wall portion located rearward of the center line of the roll in the front-rear direction Have and
    The second member includes a front second wall portion positioned forward of the front first wall portion in the front-rear direction, and a rear side second rear portion positioned rearward of the rear first wall portion in the front-rear direction With 2 walls,
    The third member is a front third member located on the front side with respect to the center line of the roll in the front-rear direction and having one end rotatably attached to the first front wall by the connecting shaft; There is provided a rear third member which is positioned rearward of the center line of the roll in the direction and one end of which is rotatably attached to the rear first wall by the connecting shaft,
    The first rotation shaft is, as the first shaft portion, a front first shaft portion rotatably attached to the front second wall portion, and a rear side first rotatably mounted to the rear second wall portion. A front first eccentric shaft portion rotatably attached to the other end side of the front third member as the first eccentric shaft portion and having the shaft portion, and the other end side of the rear third member And a rear first eccentric shaft portion rotatably mounted on the
    The second rotation shaft is, as the second shaft portion, a front second shaft portion rotatably attached to the front second wall portion, and a rear side second rotatably attached to the rear second wall portion. It has a shaft, and as the second eccentric shaft, it is rotatably attached to the front second eccentric shaft that is rotatably attached to the front first wall and to the rear first wall. And a rear second eccentric shaft portion,
    The mechanism comprises a front link mechanism and a rear link mechanism,
    The front side link mechanism includes the front side first wall portion, the front side second wall portion, the front side first shaft portion and the front side first eccentric shaft portion, the front side second shaft portion and the front side second eccentricity. It is a 5-node rotation type link mechanism which makes a shaft part and said front 3rd member a node,
    The rear side link mechanism includes the rear side first wall portion, the rear side second wall portion, the rear side first shaft portion and the rear side first eccentric shaft portion, and the rear side second shaft portion. And a 5-node rotary type link mechanism having a rear second eccentric shaft portion and the rear third member as nodes.
    The front link mechanism and the rear link mechanism are provided on the front side and the rear side with respect to a plane including the center line of the roll and orthogonal to the front-rear direction. Roll feeder described in.
PCT/JP2017/021405 2017-06-02 2017-06-02 Roll feeder WO2018220858A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780056654.8A CN110691746B (en) 2017-06-02 2017-06-02 Roller feeder
PCT/JP2017/021405 WO2018220858A1 (en) 2017-06-02 2017-06-02 Roll feeder
JP2019521932A JP6845320B2 (en) 2017-06-02 2017-06-02 Roll feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021405 WO2018220858A1 (en) 2017-06-02 2017-06-02 Roll feeder

Publications (1)

Publication Number Publication Date
WO2018220858A1 true WO2018220858A1 (en) 2018-12-06

Family

ID=64456232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021405 WO2018220858A1 (en) 2017-06-02 2017-06-02 Roll feeder

Country Status (3)

Country Link
JP (1) JP6845320B2 (en)
CN (1) CN110691746B (en)
WO (1) WO2018220858A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021137829A (en) * 2020-03-03 2021-09-16 東芝産業機器システム株式会社 Progressive working method and progressive working device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117003037B (en) * 2023-10-08 2024-01-12 广州市易鸿智能装备股份有限公司 Electrode conductor rolling deflection correction equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136664A (en) * 1981-02-18 1982-08-23 Canon Inc Continuous sheet conveyor
JPS63154565A (en) * 1986-12-15 1988-06-27 Kazuyuki Tanaka Edge control device
JPH1143248A (en) * 1997-07-25 1999-02-16 Plus Seiki Kk Web line meandering adjusting device
JP2008055481A (en) * 2006-08-31 2008-03-13 Orii & Mec Corp Leveler feeder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5967512A (en) * 1997-01-24 1999-10-19 Irsik; Allen D. Assembly for adjusting nip roll spacing
JP2001030029A (en) * 1999-07-22 2001-02-06 Yamada Dobby Co Ltd Roll feeder
WO2010087218A1 (en) * 2009-01-28 2010-08-05 富士電機ホールディングス株式会社 Position controller for flexible substrate
DE102014004020A1 (en) * 2014-03-20 2015-09-24 Brückner Maschinenbau GmbH & Co. KG Angle-adjustable pressure or nip roll

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136664A (en) * 1981-02-18 1982-08-23 Canon Inc Continuous sheet conveyor
JPS63154565A (en) * 1986-12-15 1988-06-27 Kazuyuki Tanaka Edge control device
JPH1143248A (en) * 1997-07-25 1999-02-16 Plus Seiki Kk Web line meandering adjusting device
JP2008055481A (en) * 2006-08-31 2008-03-13 Orii & Mec Corp Leveler feeder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021137829A (en) * 2020-03-03 2021-09-16 東芝産業機器システム株式会社 Progressive working method and progressive working device
JP7510261B2 (en) 2020-03-03 2024-07-03 東芝産業機器システム株式会社 Progressive processing method and progressive processing device

Also Published As

Publication number Publication date
CN110691746B (en) 2021-06-22
CN110691746A (en) 2020-01-14
JP6845320B2 (en) 2021-03-17
JPWO2018220858A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
JP3964303B2 (en) Coil material supply device
JP6608635B2 (en) Sheet material feeder
CN108367333B (en) Roller feeder and coil conveying method
JP5132197B2 (en) Plastic working method and plastic working system
WO2018220858A1 (en) Roll feeder
JPH11514927A (en) Roll forming apparatus and method
JP2766633B2 (en) Multi-articulated floating bar, sheet material feeding mechanism having multi-articulated floating bar, and sheet material working device
JP4712179B2 (en) Winding spring manufacturing equipment
JP3848945B2 (en) Variable width roll forming equipment
JP2002143962A (en) Coil spring manufacturing apparatus
JP2020508879A (en) Roll straightener and method of operating such roll straightener
JP2003025018A (en) Leveler feeder line
EP2448694B1 (en) Continuously smoothly adjustable and self-aligning variable width roll forming apparatus
WO2023063201A1 (en) Coil material correction device and coil material conveyance method
US20240017317A1 (en) Drawing unit and corresponding method for metal products
JPH0390214A (en) Leveler feed
JP7462487B2 (en) Metal bending method and device
WO2023074600A1 (en) Coil material straightening device, coil material straightening method, and coil material straightening program
JP2001150021A (en) Winding device and winding method for metallic foil strip
JP2008260619A (en) Impeller sheet material speed reducing mechanism
JPH0517140B2 (en)
JP2002153915A (en) Coil straightening device, and detector of outside diameter of coil
KR20020049317A (en) Blank guide roller auto position controlled device
CN115072365A (en) Cloth machine is used in cloth processing
JP2004034152A (en) Coil strip supply arrangement for thin plate of high-speed press

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019521932

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912126

Country of ref document: EP

Kind code of ref document: A1