WO2018220731A1 - Processing device - Google Patents

Processing device Download PDF

Info

Publication number
WO2018220731A1
WO2018220731A1 PCT/JP2017/020169 JP2017020169W WO2018220731A1 WO 2018220731 A1 WO2018220731 A1 WO 2018220731A1 JP 2017020169 W JP2017020169 W JP 2017020169W WO 2018220731 A1 WO2018220731 A1 WO 2018220731A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
stage
substrate
processing chamber
processing
Prior art date
Application number
PCT/JP2017/020169
Other languages
French (fr)
Japanese (ja)
Inventor
川邉 丈晴
本多 祐二
健 木島
哲平 鈴木
Original Assignee
アドバンストマテリアルテクノロジーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アドバンストマテリアルテクノロジーズ株式会社 filed Critical アドバンストマテリアルテクノロジーズ株式会社
Priority to PCT/JP2017/020169 priority Critical patent/WO2018220731A1/en
Priority to JP2019521584A priority patent/JPWO2018220731A1/en
Publication of WO2018220731A1 publication Critical patent/WO2018220731A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present invention relates to a processing apparatus.
  • FIG. 9 is a plan view schematically showing a conventional processing apparatus.
  • the processing apparatus includes a load lock chamber 101, a transfer chamber 102, a transfer robot 103, a YSZ sputtering chamber 104, a sputtering chamber 105 of a substance having magnetism, a sputtering chamber 106 of a substance having a specific lattice constant, and a PZT.
  • a sputter chamber 107 is a plan view schematically showing a conventional processing apparatus.
  • the processing apparatus includes a load lock chamber 101, a transfer chamber 102, a transfer robot 103, a YSZ sputtering chamber 104, a sputtering chamber 105 of a substance having magnetism, a sputtering chamber 106 of a substance having a specific lattice constant, and a PZT.
  • a vacuum pump (not shown) is connected to the load lock chamber 101, and a Si substrate (for example, a Si wafer) to be subjected to film formation is introduced into the load lock chamber 101. It is designed to be evacuated.
  • the transfer chamber 102 is connected to the load lock chamber 101 via a gate valve 151.
  • a transfer robot 103 is disposed in the transfer chamber 102.
  • a vacuum pump (not shown) is connected to the transfer chamber 102, and the inside of the transfer chamber 102 is evacuated by the vacuum pump.
  • the YSZ sputtering chamber 104 is for forming a YSZ film on a Si wafer (also referred to as a Si substrate) 123 by reactive sputtering, and is connected to the transfer chamber 102 via a gate valve 151.
  • the YSZ sputtering chamber 104 has a first chamber, and the processing apparatus has a first sputtering apparatus (not shown) having a first chamber.
  • the Si wafer 123 is transferred from the load lock chamber 101 through the transfer chamber 102 to the first chamber of the YSZ sputtering chamber 104 by the transfer robot 103.
  • the sputtering chamber 105 of magnetic material is for depositing a conductive film containing a magnetic material on the Si wafer 123 by sputtering, and is connected to the transfer chamber 102 via a gate valve 151.
  • the sputtering chamber 105 has a second sputtering apparatus (not shown) having a second chamber.
  • the transfer robot 103 transfers the Si wafer 123 from the first chamber of the YSZ sputtering 10 chamber 4 to the second chamber of the sputtering chamber 105 through the transfer chamber 102.
  • the sputter chamber 106 of a material having a specific lattice constant is for forming a conductive film containing a material having a specific lattice constant on the Si wafer 123 by sputtering, and is connected to the transfer chamber 102 via a gate valve 151.
  • the sputtering chamber 106 has a third sputtering apparatus (not shown) having a third chamber.
  • the Si wafer 123 is transferred from the second chamber of the sputtering chamber 105 through the transfer chamber 102 to the third chamber of the sputtering chamber 106 by the transfer robot 103.
  • the PZT sputtering chamber 107 is for depositing a PZT film on the Si wafer 123 by sputtering, and is connected to the transfer chamber 102 via a gate valve 151.
  • the PZT sputtering chamber 107 has a fourth sputtering apparatus (not shown) having a fourth chamber.
  • the Si wafer 123 is transferred from the third chamber of the sputtering chamber 106 to the fourth chamber of the sputtering chamber 107 by the transfer robot 103 (see, for example, Patent Document 1).
  • a plurality of processing chambers are arranged around one transfer chamber 102 having one transfer robot 103. Therefore, when the number of processing chambers increases, the transfer robot 103 transfers the Si substrate to the processing chamber. Waiting time when transporting from the process chamber to the processing chamber increases. As a result, there arises a problem that the throughput is lowered. Further, in the above-described conventional processing apparatus, when the number of processing chambers is increased, the mutual interval between the processing chambers is narrowed, and there is a problem that maintenance in the processing chambers becomes difficult.
  • An object of one embodiment of the present invention is to provide a processing apparatus that can reduce waiting time when a transfer robot transfers a substrate from a processing chamber to a processing chamber even when the number of processing chambers increases.
  • a first delivery room A first stage disposed in the first delivery chamber and holding a substrate; A first transfer chamber connected to the first delivery chamber via a first gate valve; A first transfer robot disposed in the first transfer chamber; A first processing chamber connected to the first transfer chamber via a second gate valve; A second stage disposed in the first processing chamber and holding the substrate; A second processing chamber connected to the first transfer chamber via a third gate valve; A third stage disposed in the second processing chamber and holding the substrate; A second delivery chamber connected to the first transfer chamber via a first opening; A fourth stage disposed in the second delivery chamber and holding the substrate; A second transfer chamber connected to the second delivery chamber via a second opening; A second transfer robot disposed in the second transfer chamber; A third processing chamber connected to the second transfer chamber via a fourth gate valve; A fifth stage disposed in the third processing chamber and holding the substrate; A fourth processing chamber connected to the second transfer chamber via a fifth gate valve; A sixth stage disposed in the fourth processing chamber and holding the substrate;
  • a processing apparatus comprising:
  • a processing apparatus comprising a heater for heating the substrate disposed in at least one of the first delivery chamber, the second delivery chamber, and the third delivery chamber.
  • the processing apparatus wherein the first processing chamber is a processing chamber for forming a film by vapor deposition on the substrate held by the second stage.
  • the distance between the first processing chamber and the third processing chamber is 500 mm or less
  • the distance between the third processing chamber and the fifth processing chamber is 500 mm or less
  • the distance between the second processing chamber and the fourth processing chamber is 500 mm or less
  • the processing apparatus characterized in that a distance between the fourth processing chamber and the sixth processing chamber is 500 mm or less.
  • a processing apparatus comprising:
  • the film formed in the first processing chamber is a Zr film;
  • the gas introduced into the third processing chamber is oxygen;
  • the fifth processing chamber has a mechanism for inverting the substrate held on the eighth stage,
  • the sixth processing chamber is a processing chamber for forming a Pt film on the substrate held on the ninth stage by sputtering, A heater for heating the substrate disposed in the third delivery chamber;
  • the fourth processing chamber is a processing chamber for forming an SRO film on the substrate held on the sixth stage by sputtering,
  • the processing apparatus is characterized in that the second processing chamber is a processing chamber for forming a PZT film on the substrate held by the third stage by sputtering.
  • a Zr film is formed on the substrate held on the second stage in the first processing chamber, By irradiating the Zr film with the lamp light in a pressurized oxygen atmosphere in the third processing chamber, a part of the Zr film is oxidized to form a stacked film of the Zr film and the ZrO 2 film.
  • a processing device By irradiating the Zr film with the lamp light in a pressurized oxygen atmosphere in the third processing chamber, a part of the Zr film is oxidized to form a stacked film of the Zr film and the ZrO 2 film.
  • a processing apparatus wherein a fifth opening is formed in the third transfer chamber, and the fifth opening is closed by a lid.
  • the fifth opening is for connecting a fourth delivery chamber and further adding a processing chamber. Thereby, a process chamber can be easily increased as needed.
  • a third processing chamber [10] a third processing chamber; A fifth stage disposed in the third processing chamber and holding a substrate on which a Zr film is formed; A gas introduction mechanism for introducing pressurized oxygen gas into the third processing chamber; A gas exhaust mechanism for exhausting the gas in the third processing chamber; A lamp heater for irradiating the substrate held on the fifth stage with lamp light; Comprising A processing apparatus, wherein the Zr film is irradiated with the lamp light in a pressurized oxygen atmosphere to oxidize a part of the Zr film to form a laminated film of a Zr film and a ZrO 2 film.
  • FIG. 5 is a cross-sectional view taken along line AA ′ shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the line BB ′ shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the line BB ′ shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the line BB ′ shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the line BB ′ shown in FIG.
  • FIG. 1 is a plan view schematically showing a processing apparatus according to one aspect of the present invention.
  • This processing apparatus has an atmospheric transfer system 211, and this atmospheric transfer system 211 is connected to the first delivery chamber 231 through a gate valve 221.
  • a first stage 241 that holds the substrate 251 is disposed in the first delivery chamber 231.
  • the first delivery chamber 231 is connected to the first transfer chamber 261 via the first gate valve 222, and the first vacuum transfer robot 261a is disposed in the first transfer chamber 261.
  • the first transfer chamber 261 is connected to the first processing chamber 212 via a second gate valve 223, and a second stage 242 that holds the substrate 251 is disposed in the first processing chamber 212. ing.
  • the first transfer chamber 261 is connected to the second processing chamber 213 via a third gate valve 224, and a third stage 243 that holds the substrate 251 is disposed in the second processing chamber 213. ing.
  • the first transfer chamber 261 is connected to the second delivery chamber 232 via the first opening 271, and a fourth stage 244 that holds the substrate 251 is disposed in the second delivery chamber 232. Yes.
  • the second delivery chamber 232 is connected to the second transfer chamber 262 through the second opening 272, and the second vacuum transfer robot 262a is disposed in the second transfer chamber 262.
  • the second transfer chamber 262 is connected to the third processing chamber 214 via the fourth gate valve 225, and a fifth stage 245 that holds the substrate 251 is disposed in the third processing chamber 214. Yes.
  • the second transfer chamber 262 is connected to the fourth processing chamber 215 via the fifth gate valve 226, and a sixth stage 246 that holds the substrate 251 is disposed in the fourth processing chamber 215. ing.
  • the second transfer chamber 262 is connected to the third delivery chamber 233 via the third opening 273, and a seventh stage 247 that holds the substrate 251 is disposed in the third delivery chamber 233.
  • the fourth processing chamber 215 is preferably a processing chamber in which a SrRuO 3 film (also referred to as an SRO film) is formed by sputtering on the substrate 251 held by the sixth stage 246.
  • the third delivery chamber 233 is connected to the third transfer chamber 263 through the fourth opening 274, and the third transfer robot 263a is disposed in the third transfer chamber 263.
  • the third transfer chamber 263 is connected to the fifth processing chamber 216 via a sixth gate valve 227, and an eighth stage 248 that holds the substrate 251 is disposed in the fifth processing chamber 216.
  • the fifth treatment chamber 216 preferably includes a mechanism for inverting the substrate 251 held on the eighth stage 248.
  • the third transfer chamber 263 is connected to the sixth processing chamber 217 via a seventh gate valve 228, and a ninth stage 249 that holds the substrate 251 is disposed in the sixth processing chamber 217. ing.
  • the sixth processing chamber 217 is preferably a processing chamber in which a Pt film is formed on the substrate 251 held by the ninth stage 249 by sputtering.
  • the first transfer robot 261a transfers the substrate 251 between the first stage 241 and the second stage 242 through the first gate valve 222, the first transfer chamber 261, and the second gate valve 223. A function of transporting the substrate 251 between the second stage 242 and the fourth stage 244 through the second gate valve 223, the first transport chamber 261, and the first opening 271. Having a function of transporting the substrate 251 between the fourth stage 244 and the third stage 243 through the first opening 271, the first transport chamber 261 and the third gate valve 224, The substrate 251 is transferred between the third stage 243 and the first stage 241 through the third gate valve 224, the first transfer chamber 261, and the first gate valve 222.
  • the second transfer robot 262a transfers the substrate 251 between the fourth stage 244 and the fifth stage 245 through the second opening 272, the second transfer chamber 262, and the fourth gate valve 225. And has a function of transporting the substrate 251 between the fifth stage 245 and the seventh stage 247 through the fourth gate valve 225, the second transport chamber 262, and the third opening 273. And has a function of transporting the substrate 251 between the seventh stage 247 and the sixth stage 246 through the third opening 273, the second transport chamber 262, and the fifth gate valve 226, and 5 has a function of transporting the substrate between the sixth stage 246 and the fourth stage 244 through the gate valve 226, the second transport chamber 262, and the second opening 272.
  • the third transfer robot 263a transfers the substrate 251 between the seventh stage 247 and the eighth stage 248 through the fourth opening 274, the third transfer chamber 263, and the sixth gate valve 227.
  • the atmospheric transfer system 211 has a chamber 211b having a door 211a, and a cassette (not shown) for holding a plurality of substrates is disposed in the chamber 211b.
  • the atmospheric transfer system has a function of transferring the substrate held in the cassette to the first stage 241 in the first delivery chamber 231 through the gate valve 221.
  • the distance 200 between the first processing chamber 212 and the third processing chamber 214 is 500 mm or less, and the distance between the third processing chamber 214 and the fifth processing chamber 216 is 500 mm or less.
  • the distance between the second processing chamber 213 and the fourth processing chamber 215 is 500 mm or less, and the distance between the fourth processing chamber 215 and the sixth processing chamber 217 is 500 mm or less. In this way, the footprint can be reduced.
  • the first to third delivery chambers 231 to 233, the first to third transfer chambers 261 to 263, and the first to sixth processing chambers 212 to 217 are each connected to a vacuum exhaust mechanism (not shown).
  • the waiting time when the transfer robot transfers the substrate from the processing chamber to the processing chamber can be reduced as compared with the processing apparatus shown in FIG. As a result, a decrease in throughput can be suppressed.
  • the third transfer chamber 263 is formed with a fifth opening 275 located on the side opposite to the fourth opening 274, and the fifth opening 275 is closed by a lid (not shown). Good.
  • a transfer chamber similar to the third transfer chamber 233, a transfer chamber similar to the third transfer chamber 263, and the first to second It is easy to add processing chambers similar to the six processing chambers 212 to 217 as shown in FIG.
  • the inside of the additional processing chamber does not need to be exactly the same as the first to sixth processing chambers 212 to 217, and can be appropriately changed to an appropriate one.
  • FIG. 2 is a cross-sectional view schematically showing the internal structure of the third delivery chamber 233 shown in FIG.
  • the third delivery chamber 233 includes a chamber 233a, and a third opening 273 and a fourth opening 274 are formed in the chamber 233a.
  • a twelfth stage 247a is disposed under the seventh stage 247 in the chamber 233a.
  • the seventh stage 247 and the twelfth stage 247a are moved as shown by an arrow 247b by a vertical movement mechanism (not shown). It is configured to be movable up and down.
  • the third delivery chamber 233 includes a lamp heater 201 that heats the substrate 251 held on the seventh stage 247 and a lamp heater 202 that heats the substrate 251a held on the twelfth stage 247a. Yes.
  • the transfer arm 262b of the second transfer robot 262a moves as indicated by an arrow 262c to transfer the substrate 251a onto the twelfth stage 247a through the third opening 273, or to transfer the substrate 251a to the twelfth stage.
  • the stage 247a can be transported to another stage.
  • the transfer arm 263b of the third transfer robot 263a moves as indicated by an arrow 263c to transfer the substrate 251 onto the seventh stage 247 through the fourth opening 274, or to transfer the substrate 251. It can be conveyed from the seventh stage 247 to another stage.
  • each of the first delivery chamber 231 and the second delivery chamber 232 may be the same as that of the third delivery chamber 233.
  • the internal structure of each of the first to third delivery chambers 231 to 233 can be appropriately changed from the structure shown in FIG. 2, for example, the stage may be one stage instead of two stages,
  • the lamp heaters 201 and 202 may be only one, or the lamp heater may be omitted.
  • the first to third delivery chambers 231 to 233 include two stages as shown in FIG. 2, for example, the first processing chamber 212, the third processing chamber 214, the fifth processing chamber 216.
  • the waiting time for transfer due to the fact that the stage of the delivery chamber is not empty is set. Can be almost eliminated. That is, even when a plurality of substrates are processed at the same time using the processing chamber without waste, it is possible to almost eliminate the waiting time for transport due to the absence of the stage in the delivery chamber. Accordingly, the processing time of the substrate can be reduced.
  • a fourth delivery chamber connected to the third transfer chamber 263 through the fifth opening 275 is provided, and a tenth stage for holding the substrate 251 is disposed in the fourth delivery chamber. Good.
  • the fourth delivery chamber is useful for reducing the waiting time for conveyance due to the absence of the delivery chamber stage.
  • the internal structure of the fourth delivery chamber may be the same as the structure shown in FIG.
  • FIG. 3 is a cross-sectional view schematically showing the details of the structure of the first processing chamber 212 shown in FIG. 1, in which an epitaxial film is formed by depositing a Zr film on the substrate 251 held on the second stage 242. It is a vapor deposition device.
  • a second stage 242 that holds the substrate 251 is disposed in the chamber 301, and the substrate 251 is transported through the second gate valve 223.
  • a halogen lamp heater 302 is disposed on the substrate 251, and the substrate 251 is heated by the halogen lamp heater 302.
  • the halogen lamp heater 302 is configured to be rotated as indicated by an arrow by a motor M, and a heater power source and a temperature controller 303 are connected to the halogen lamp heater 302.
  • a rotary sensor type film thickness monitor 304 is disposed in the vicinity of the substrate 251, and the film thickness monitor 304 includes a four-crystal switching unit 305.
  • a deposition source 307 including an EB gun 306 is disposed below the substrate 251, and a shutter 308 is disposed between the deposition source 307 and the substrate 251.
  • the shutter is configured to be opened and closed by a drive unit 309.
  • a gas introduction mechanism that introduces Ar gas into the chamber 301 is attached to the chamber 301. Note that a gas introduction mechanism for introducing O 2 gas into the chamber 301 may also be attached to the chamber 301.
  • the first processing chamber 212 has a door 310 for the operator 311 to maintain the inside of the chamber 301 as shown in FIG.
  • the deposition apparatus provided with the large door 310 for maintenance is preferably disposed in the first processing chamber 212. This is because the door 310 cannot secure a sufficient space for the operator 311 to work at an interval of 500 mm.
  • FIG. 4 is a cross-sectional view schematically showing the internal structure of the third processing chamber 214 shown in FIG. 1, and is a pressure type having a lamp heater for irradiating the substrate 251 held by the fifth stage 245 with lamp light. This is a lamp annealing device.
  • FIG. 5 is a cross-sectional view taken along the line AA ′ shown in FIG.
  • FIG. 6 is a cross-sectional view taken along the line BB ′ shown in FIG.
  • the pressure-type lamp annealing apparatus has an Al chamber 21, and a third processing chamber 214 is formed inside the chamber 21.
  • a surface treatment is applied to the inner surface 21 a of the chamber 21. That is, a reflective film is formed on the inner surface 21 a of the chamber 21.
  • Au plating treatment or oxalic acid alumite treatment can be used. Thereby, an Au plating film or an oxalate alumite film is formed on the inner surface 21a of the chamber 21, and the lamp light can be reflected by the Au plating film or the oxalate alumite film. As a result, the temperature increase rate can be increased. In addition, power consumption can be reduced.
  • the chamber 21 is configured to be water cooled by a cooling mechanism (not shown).
  • Au plating treatment or oxalic acid alumite treatment is used as the surface treatment, but the present invention is not limited to this, and is made of Al, Au, Ag, Cu, Pt, Ti. It is also possible to use a coating film whose main component is one metal selected from the group.
  • a fifth stage 245 for holding a wafer as a substrate 251 is provided in the chamber 21.
  • the fifth stage 245 is made of a material that transmits lamp light, for example, quartz.
  • a plurality of transparent tubes 20 are arranged below the fifth stage 245, and these transparent tubes 20 are made of a material that transmits lamp light, for example, quartz.
  • a lamp heater 19 is disposed inside each of the plurality of transparent tubes 20.
  • a groove 18 is formed in the upper inner wall 21 b of the chamber 21, and the inner wall of the groove 18 has a curved surface along the outer surface of the transparent tube 20.
  • the transparent tube 20 can be disposed in the groove 18 with its outer surface in contact with the curved surface of the inner wall of the groove 18.
  • the lamp light of the lamp heater 19 is applied to the substrate 251 held on the fifth stage 245 through the transparent tube 20.
  • one end 20 a of the transparent tube 20 is connected to the inside of a metal first housing 26 a located outside the chamber 21, and the other end 20 b of the transparent tube 20 is It is connected to the inside of the second housing 26b made of metal located outside the chamber 21.
  • An exhaust duct (not shown) is connected to the first casing 26a, and this exhaust duct exhausts heat inside each of the first casing 26a, the transparent tube 20, and the second casing 26b. Is.
  • White O-rings 28 are arranged between the chambers 21 and both ends 20a, 20b of the transparent tube 20. These O-rings 28 maintain the airtightness in the third processing chamber 214.
  • the reason why the white O-ring 28 is used is that, for example, if a black O-ring is used, the O-ring is melted by the lamp light from the lamp heater 19, but if the white O-ring is used, the O-ring is melted by the lamp light. This is because it can be suppressed.
  • a window is provided above the chamber 21 located above the fifth stage 245, and calcium fluoride 8 is disposed in this window.
  • a radiation thermometer 9 is disposed above the calcium fluoride 8. In order to measure the temperature of the substrate with the radiation thermometer 9, the calcium fluoride 8 is arranged to take in light in the wavelength region to be measured (infrared light having a wavelength of 5 ⁇ m).
  • the third processing chamber 214 formed in the chamber 21 is preferably narrow. This is because the time required to pressurize or depressurize to a predetermined pressure can be shortened. Further, the height in the third treatment chamber 214 is preferably low. The reason is that the distance between the substrate 251 and the lamp heater 19 disposed in the third processing chamber 214 can be shortened, thereby increasing the temperature rising rate.
  • the third processing chamber 214 in the chamber 21 is connected to the pressurization line (pressurization mechanism) 12.
  • the pressurization line 12 has a pressurization line using argon gas, a pressurization line using oxygen gas, and a pressurization line using nitrogen gas.
  • the argon gas pressurization line includes an argon gas supply source 13, and this argon gas supply source 13 is connected to a check valve 14 through a pipe, and the check valve 14 removes impurities through the pipe.
  • the filter 17 is connected to a valve 50 through a pipe, and this pipe is connected to a pressure gauge 47.
  • the valve 50 is connected to a regulator 53 via a pipe, and the regulator 53 is connected to the mass flow controller 31 via a pipe.
  • the regulator 53 sets the differential pressure between the upstream side and the downstream side of the mass flow controller 31 to a predetermined pressure by gradually increasing the gas pressure.
  • the mass flow controller 31 is connected to a valve 34 via a pipe, and this valve 34 is connected to a heating unit 37 via a pipe.
  • the heating unit 37 makes the gas temperature constant (for example, about 40 to 50 ° C.) in order to stabilize the process.
  • the heating unit 37 is connected to a third processing chamber 214 in the chamber 21 through a pipe
  • the pressurization line using oxygen gas is configured in the same manner as the pressurization line using argon gas.
  • the pressurization line by oxygen gas is provided with the oxygen gas supply source 29, and this oxygen gas supply source 29 is connected to the check valve 15 via piping, and this check valve 15 is connected via piping. It is connected to a filter 30 for removing impurities.
  • the filter 30 is connected to the valve 24 via a pipe, and this pipe is connected to a pressure gauge 48.
  • the valve 24 is connected to a regulator 27 via piping, and this regulator 27 is connected to the mass flow controller 32 via piping.
  • the mass flow controller 32 is connected to a valve 35 via a pipe, and this valve 35 is connected to a heating unit 37 via a pipe.
  • the heating unit 37 is connected to a third processing chamber 214 in the chamber 21 through a pipe 51.
  • the pressurization line with nitrogen gas has the same configuration as the pressurization line with argon gas.
  • the pressurization line by nitrogen gas is provided with the nitrogen gas supply source 38, and this nitrogen gas supply source 38 is connected to the check valve 16 via piping, and this check valve 16 is connected via piping. It is connected to a filter 46a for removing impurities.
  • the filter 46 a is connected to a valve 53 a via a pipe, and this pipe is connected to a pressure gauge 49.
  • the valve 53a is connected to a regulator 54 via a pipe, and this regulator 54 is connected to the mass flow controller 33 via a pipe.
  • the mass flow controller 33 is connected to a valve 36 via a pipe, and this valve 36 is connected to a heating unit 37 via a pipe.
  • the heating unit 37 is connected to a third processing chamber 214 in the chamber 21 through a pipe 51.
  • the third processing chamber 214 in the chamber 21 is connected to a pressure adjustment line.
  • the third processing chamber 214 in the chamber 21 can be pressurized to a predetermined pressure (for example, less than 1 MPa) by the pressure adjustment line and the pressure line 12.
  • the pressure adjustment line includes a variable valve 39, and one side of the variable valve 39 is connected to a third processing chamber 214 in the chamber 21 through a pipe 52.
  • the pipe 52 is connected to the pressure gauge 40, and the pressure gauge 40 can measure the pressure in the third processing chamber 214.
  • the other side of the variable valve 39 is connected to piping.
  • the third processing chamber 214 in the chamber 21 is connected to a safety line.
  • This safety line is for lowering the inside of the processing chamber to the atmospheric pressure when the inside of the third processing chamber 214 is excessively pressurized and exceeds a certain pressure.
  • the safety line is provided with an open valve 41.
  • One side of the open valve 41 is connected to the third processing chamber 214 in the chamber 21 via the pipe 52, and the other side of the open valve 41 is connected to the pipe.
  • the release valve 41 is configured to allow gas to flow when a certain pressure is applied.
  • the third processing chamber 214 in the chamber 21 is connected to the air release line.
  • This atmospheric release line returns the inside of the third processing chamber 214 that has been normally pressurized to atmospheric pressure.
  • the atmosphere opening line is provided with an opening valve 42.
  • One side of the release valve 42 is connected to the third processing chamber 214 in the chamber 21 via the pipe 52, and the other side of the release valve 42 is connected to the pipe.
  • the release valve 42 gradually allows the gas in the third processing chamber 214 to flow in order to return the inside of the third processing chamber 214 to atmospheric pressure.
  • the third processing chamber 214 in the chamber 21 is connected to a line for returning from the reduced pressure state to the atmospheric pressure.
  • This line is used to return from the reduced pressure state to the atmospheric pressure when the inside of the third processing chamber 214 is in a reduced pressure state (vacuum state).
  • the line includes a leak valve 43.
  • One side of the leak valve 43 is connected to a third processing chamber 214 in the chamber 21 via a pipe 52, and the other side of the leak valve 43 is connected to a check valve 44 via a pipe.
  • the check valve 44 is connected to a nitrogen gas supply source 45 through a pipe. In other words, the line returns the processing chamber to atmospheric pressure by gradually introducing nitrogen gas from the nitrogen gas supply source 45 into the third processing chamber 214 via the check valve 44 and the leak valve 43. ing.
  • the third processing chamber 214 in the chamber 21 is connected to a vacuum exhaust line for reducing the pressure in the third processing chamber 214.
  • the evacuation line has a valve 69, and one end of the valve 69 is connected to the third processing chamber 214 via a pipe. The other end of the valve 69 is connected to the vacuum pump 70 via a pipe.
  • This evacuation line is used, for example, when performing pressurized RTA in a reduced pressure atmosphere.
  • the lamp heaters 19 in the first and second casings 26a and 26b and the transparent tube 20 are each connected to a dry air supply source (not shown) or a nitrogen gas supply source (not shown) via a pipe. .
  • a dry air supply source not shown
  • a nitrogen gas supply source not shown
  • the lamp heater 19 is cooled, and the casing and transparent Heat accumulated in the tube 20 can be exhausted from the exhaust duct.
  • Argon gas, oxygen gas and nitrogen gas introduced from the pressurization line 12 are supplied onto the substrate 251 while being dispersed in a shower shape in a direction substantially parallel to the surface of the substrate 251.
  • the gas supplied onto the wafer is exhausted from a second shower-like gas passage (not shown) arranged in a direction substantially parallel to the surface of the substrate 251.
  • the pipe 51 is connected to a first shower-like gas passage (not shown), and the pipe 52 is connected to a second shower-like gas passage.
  • the first and second shower-like gas passages are formed in the chamber 21. In this manner, the gas can be supplied to the substrate 251 with good uniformity by flowing while dispersing the gas in a shower and exhausting through the second shower-like gas passage.
  • a gate valve (not shown) is arranged on one side of the chamber 21, and a transfer robot (not shown) for transferring a wafer is arranged near the gate valve.
  • a cassette (not shown) for storing wafers is disposed in the vicinity of the transfer robot.
  • the pressure-type lamp annealing apparatus can perform a pressure annealing process on the substrate 251.
  • the pressure annealing process will be described.
  • the inside of the third treatment chamber 214 of the chamber is a pressurized atmosphere.
  • oxygen gas is supplied from the oxygen gas supply source 29 of the pressurization line 12 through the check valve 15, the filter 30, the valve 24, the regulator 27, the mass flow controller 32, the valve 35, the heating unit 37, and the pipe 51. It is introduced into the processing chamber 214.
  • by gradually closing the variable valve 39 of the pressure adjustment line the inside of the third processing chamber 214 is gradually pressurized while maintaining an oxygen atmosphere.
  • the inside of the third processing chamber 214 is pressurized to a predetermined pressure of less than 1 MPa and is maintained at that pressure.
  • the substrate 251 is annealed in a pressurized oxygen atmosphere by irradiating the substrate 251 with lamp light from the lamp heater 19 through the transparent tube 20.
  • FIG. 7 is a cross-sectional view schematically showing details of the structure of the second processing chamber 213 shown in FIG. 1, and Pb (Zr, Ti) O 3 is sputtered onto the substrate 251 held on the third stage 243.
  • a sputtering apparatus forms a film (also referred to as a PZT film).
  • a third stage 243 that holds the substrate 251 is disposed in the chamber 401, and the substrate 251 is transported through the third gate valve 224.
  • a halogen lamp heater 402 is disposed under the substrate 251, and the substrate 251 is heated by the halogen lamp heater 402.
  • a heater power supply and temperature controller 403 is connected to the halogen lamp heater 402.
  • the sputtering apparatus includes a radiation thermometer 410 that measures the temperature of the substrate 251.
  • a rotary magnet cathode is disposed above the substrate 251, and the rotary magnet cathode has a sputtering target 411.
  • Pulsed RF (high frequency) 412 is supplied to the sputtering target 411 through the matching box MB.
  • a shutter 408 is disposed between the sputtering target 411 and the substrate 251. The shutter 408 is configured to be opened and closed by a drive unit 409.
  • a gas introduction mechanism for introducing Ar gas into the chamber 401 is attached to the chamber 301.
  • a gas introduction mechanism for introducing O 2 gas into the chamber 401 is attached to the chamber 401.
  • a Si substrate is used as the substrate.
  • a Si natural oxide film 501 is formed on the Si substrate 251 by several nm.
  • the Si substrate 251 in the atmospheric transfer system 211 shown in FIG. 1 is transferred to the first delivery chamber 231 by opening the gate valve 221, and held on the first stage 241 in the first delivery chamber 231. Then, the gate valve 221 is closed. Next, the inside of the first delivery chamber 231 is evacuated. The insides of the first to third transfer chambers 261 to 263, the second delivery chamber 232, and the third delivery chamber 233 are also evacuated.
  • first gate valve 222 and the second gate valve 223 are opened, and the substrate 251 on the first stage 241 in the first delivery chamber 231 is moved into the first processing chamber 212 by the first transfer robot 261a.
  • the second stage 242 is conveyed.
  • the first and second gate valves 222 and 223 are closed.
  • a Zr film having a thickness of 37.5 nm is formed on the natural oxide film 501 by a deposition apparatus of the deposition type shown in FIG.
  • the film formation time at this time is 12.5 minutes.
  • the total of the film formation time and the time for transporting the substrate is about 30 minutes.
  • the second gate valve 223 and the fourth gate valve 225 are opened, and the substrate 251 on the second stage 242 in the first processing chamber 212 is moved into the second delivery chamber 232 by the first transfer robot 261a.
  • the fourth stage 244 is conveyed.
  • the substrate 251 on the fourth stage 244 in the second delivery chamber 232 is transferred to the fifth stage 245 in the third processing chamber 214 by the second transfer robot 262a.
  • the second and fourth gate valves 223 and 225 are closed.
  • a part of the Zr film is oxidized, and the Zr film And a ZrO 2 film are formed.
  • a Zr film 502 having a thickness of about 3 nm is formed on the natural oxide film 501, and a ZrO 2 film 503 having a thickness of about 47 nm is formed on the Zr film 502.
  • the total time for substrate transport and pressure lamp annealing is about 11 minutes. Therefore, the total time for forming the ZrO 2 film 503 is about 41 minutes.
  • the processing time becomes remarkably long. End up. Specifically, when the ZrO 2 film 503 is formed by the vapor deposition apparatus shown in FIG. 3, an O 2 gas is introduced into the chamber, and ZrO 2 is synthesized while producing a Zr vapor deposition product on the Zr film 502. Therefore, the deposition rate of the ZrO 2 film is lowered, and as a result, the processing time is lengthened. Accordingly, the total time for forming the ZrO 2 film is about 60 minutes, which is about 19 minutes longer than when the pressure type lamp annealing apparatus is used.
  • the fourth gate valve 225 and the sixth gate valve 227 are opened, and the substrate 251 on the fifth stage 245 in the third processing chamber 214 is transferred to the third delivery chamber 233 by the second transfer robot 262a. It is conveyed onto the seventh stage 247 in the inside. Next, the substrate 251 on the seventh stage 247 in the third delivery chamber 233 is transferred to the eighth stage 248 in the fifth processing chamber 216 by the third transfer robot 263a. Then, the fourth and sixth gate valves 225 and 227 are closed.
  • the substrate 251 held on the eighth stage 248 is inverted in the fifth processing chamber 216.
  • the sixth gate valve 227 and the seventh gate valve 228 are opened, and the substrate 251 on the eighth stage 248 in the fifth processing chamber 216 is transferred to the third delivery chamber 233 by the third transfer robot 263a. It is conveyed onto the seventh stage 247 in the inside. Next, the substrate 251 on the seventh stage 247 in the third delivery chamber 233 is transferred to the ninth stage 249 in the sixth processing chamber 217 by the third transfer robot 263a. Then, the sixth and seventh gate valves 227 and 228 are closed. Note that in this embodiment mode, the substrate 251 is once transferred to the seventh stage 247 and then transferred to the ninth stage 249 as described above, but another substrate is processed in the sixth processing chamber 217. Is completed and the sixth processing chamber 217 is empty, the substrate 251 may be directly transferred from the eighth stage 248 to the ninth stage 249.
  • a Pt film 504 is formed to a thickness of 150 nm on the ZrO 2 film 503 by using a deposition down type DC sputtering apparatus in the sixth processing chamber 217.
  • the film forming temperature at this time is about 650 ° C.
  • the seventh gate valve 228 is opened, and the substrate 251 on the ninth stage 249 in the sixth processing chamber 217 is transferred to the seventh stage 247 in the third delivery chamber 233 by the third transfer robot 263a. Carry up. Then, the seventh gate valve 228 is closed.
  • heat treatment is performed at a temperature of about 450 ° C. by the lamp heater 201 shown in FIG. 2 in the third delivery chamber 233.
  • the fifth gate valve 226 is opened, and the substrate 251 on the seventh stage 247 in the third delivery chamber 233 is transferred to the sixth stage 246 in the fourth processing chamber 215 by the second transfer robot 262a. Carry up. Then, the fifth gate valve 226 is closed.
  • an SrRuO 3 film (SRO film) 505 is formed to a thickness of about 7 nm on the Pt film 504 by a deposition down type RF sputtering apparatus in the fourth processing chamber 215.
  • the third gate valve 224 and the fifth gate valve 226 are opened, and the substrate 251 on the sixth stage 246 in the fourth processing chamber 215 is transferred to the second delivery chamber 232 by the second transfer robot 262a. It is conveyed onto the fourth stage 244 in the inside. Next, the substrate 251 on the fourth stage 244 in the second delivery chamber 232 is transferred to the third stage 243 in the second processing chamber 213 by the first transfer robot 261a. Then, the third and fifth gate valves 224 and 226 are closed.
  • a PZT film 506 is formed to a thickness of 1000 nm on the SRO film 505 by the deposition down type sputtering apparatus shown in FIG. 7 in the second treatment chamber 213.
  • Each of the first to ninth stages 241 to 249 is not limited to a table-like stage as long as it has a mechanism for holding a substrate, and various stages can be used. For example, it may be held on a pin as shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

[Problem] To provide a processing device that is able to reduce the waiting time period when a conveyance robot conveys a substrate from a processing chamber to another processing chamber, even if the number of processing chambers is increased. [Solution] One aspect of the present invention is a processing device provided with: a first delivery chamber 231; a first stage 241 that holds a substrate; a first conveyance chamber 261 that is connected to the first delivery chamber via a first gate valve 222; a first conveyance robot 261a; a first processing chamber 212 that is connected to the first conveyance chamber via a second gate valve 223; a second stage 242 that holds a substrate; a second processing chamber 213 that is connected to the first conveyance chamber via a third gate valve 224; a third stage 243 that holds a substrate; a second delivery chamber 232 that is connected to the first conveyance chamber via a first opening 271; and a fourth stage 244 that holds a substrate.

Description

処理装置Processing equipment
 本発明は、処理装置に関する。 The present invention relates to a processing apparatus.
 図9は、従来の処理装置を模式的に示す平面図である。
 処理装置は、ロードロック室101と、搬送室102と、搬送ロボット103と、YSZスパッタ室104と、磁性を持つ物質のスパッタ室105と、特定の格子定数を持つ物質のスパッタ室106と、PZTスパッタ室107とを有している。
FIG. 9 is a plan view schematically showing a conventional processing apparatus.
The processing apparatus includes a load lock chamber 101, a transfer chamber 102, a transfer robot 103, a YSZ sputtering chamber 104, a sputtering chamber 105 of a substance having magnetism, a sputtering chamber 106 of a substance having a specific lattice constant, and a PZT. A sputter chamber 107.
 ロードロック室101には真空ポンプ(図示せず)が接続されており、成膜処理を施すSi基板(例えばSiウエハ)をロードロック室101内に導入し、真空ポンプによってロードロック室101内が真空排気されるようになっている。 A vacuum pump (not shown) is connected to the load lock chamber 101, and a Si substrate (for example, a Si wafer) to be subjected to film formation is introduced into the load lock chamber 101. It is designed to be evacuated.
 搬送室102は、ゲートバルブ151を介してロードロック室101に接続されている。搬送室102内には搬送ロボット103が配置されている。搬送室102には真空ポンプ(図示せず)が接続されており、その真空ポンプによって搬送室102内が真空排気されるようになっている。 The transfer chamber 102 is connected to the load lock chamber 101 via a gate valve 151. A transfer robot 103 is disposed in the transfer chamber 102. A vacuum pump (not shown) is connected to the transfer chamber 102, and the inside of the transfer chamber 102 is evacuated by the vacuum pump.
 YSZスパッタ室104は、Siウエハ(Si基板ともいう)123上にYSZ膜を反応性スパッタリングによって成膜するものであり、ゲートバルブ151を介して搬送室102に接続されている。YSZスパッタ室104は第1のチャンバーを有しており、処理装置は第1のチャンバーを有する第1のスパッタリング装置(図示せず)を有している。搬送ロボット103によってSiウエハ123をロードロック室101内から搬送室102を通ってYSZスパッタ室104の第1のチャンバーに搬送するようになっている。 The YSZ sputtering chamber 104 is for forming a YSZ film on a Si wafer (also referred to as a Si substrate) 123 by reactive sputtering, and is connected to the transfer chamber 102 via a gate valve 151. The YSZ sputtering chamber 104 has a first chamber, and the processing apparatus has a first sputtering apparatus (not shown) having a first chamber. The Si wafer 123 is transferred from the load lock chamber 101 through the transfer chamber 102 to the first chamber of the YSZ sputtering chamber 104 by the transfer robot 103.
 磁性を持つ物質のスパッタ室105は、Siウエハ123上に磁性を持つ物質を含む導電膜をスパッタリングによって成膜するものであり、ゲートバルブ151を介して搬送室102に接続されている。スパッタ室105は、第2のチャンバーを有する第2のスパッタリング装置(図示せず)を有している。搬送ロボット103によってSiウエハ123をYSZスパッタ10室4の第1のチャンバー内から搬送室102を通ってスパッタ室105の第2のチャンバー内に搬送するようになっている。 The sputtering chamber 105 of magnetic material is for depositing a conductive film containing a magnetic material on the Si wafer 123 by sputtering, and is connected to the transfer chamber 102 via a gate valve 151. The sputtering chamber 105 has a second sputtering apparatus (not shown) having a second chamber. The transfer robot 103 transfers the Si wafer 123 from the first chamber of the YSZ sputtering 10 chamber 4 to the second chamber of the sputtering chamber 105 through the transfer chamber 102.
 特定の格子定数を持つ物質のスパッタ室106は、Siウエハ123上に特定の格子定数を持つ物質を含む導電膜をスパッタリングによって成膜するものであり、ゲートバルブ151を介して搬送室102に接続されている。スパッタ室106は、第3のチャンバーを有する第3のスパッタリング装置(図示せず)を有している。搬送ロボット103によってSiウエハ123をスパッタ室105の第2のチャンバー内から搬送室102を通ってスパッタ室106の第3のチャンバー内に搬送するようになっている。 The sputter chamber 106 of a material having a specific lattice constant is for forming a conductive film containing a material having a specific lattice constant on the Si wafer 123 by sputtering, and is connected to the transfer chamber 102 via a gate valve 151. Has been. The sputtering chamber 106 has a third sputtering apparatus (not shown) having a third chamber. The Si wafer 123 is transferred from the second chamber of the sputtering chamber 105 through the transfer chamber 102 to the third chamber of the sputtering chamber 106 by the transfer robot 103.
 PZTスパッタ室107は、Siウエハ123上にPZT膜をスパッタリングによって成膜するものであり、ゲートバルブ151を介して搬送室102に接続されている。PZTスパッタ室107は、第4のチャンバーを有する第4のスパッタリング装置(図示せず)を有している。搬送ロボット103によってSiウエハ123をスパッタ室106の第3のチャンバー内から搬送室102を通ってスパッタ室107の第4のチャンバー内に搬送するようになっている(例えば特許文献1参照)。 The PZT sputtering chamber 107 is for depositing a PZT film on the Si wafer 123 by sputtering, and is connected to the transfer chamber 102 via a gate valve 151. The PZT sputtering chamber 107 has a fourth sputtering apparatus (not shown) having a fourth chamber. The Si wafer 123 is transferred from the third chamber of the sputtering chamber 106 to the fourth chamber of the sputtering chamber 107 by the transfer robot 103 (see, for example, Patent Document 1).
 上記従来の処理装置では、一つの搬送ロボット103を有する一つの搬送室102の周囲に複数の処理室を配置しているため、処理室の数が増えると、搬送ロボット103がSi基板を処理室から処理室へ搬送する際の待ち時間が増加する。その結果、スループットが低下するという問題が生じる。また、上記従来の処理装置では、処理室の数が増えると処理室の相互間隔が狭くなり、処理室内のメンテナンスが困難になるという問題が発生する。 In the conventional processing apparatus, a plurality of processing chambers are arranged around one transfer chamber 102 having one transfer robot 103. Therefore, when the number of processing chambers increases, the transfer robot 103 transfers the Si substrate to the processing chamber. Waiting time when transporting from the process chamber to the processing chamber increases. As a result, there arises a problem that the throughput is lowered. Further, in the above-described conventional processing apparatus, when the number of processing chambers is increased, the mutual interval between the processing chambers is narrowed, and there is a problem that maintenance in the processing chambers becomes difficult.
特開2014-170784号公報JP 2014-170784 A
 本発明の一態様は、処理室の数が増えても搬送ロボットが基板を処理室から処理室へ搬送する際の待ち時間を少なくできる処理装置を提供することを課題とする。 An object of one embodiment of the present invention is to provide a processing apparatus that can reduce waiting time when a transfer robot transfers a substrate from a processing chamber to a processing chamber even when the number of processing chambers increases.
 以下に、本発明の種々の態様について説明する。
[1]第1の受渡室と、
 前記第1の受渡室内に配置され、基板を保持する第1のステージと、
 前記第1の受渡室に第1のゲートバルブを介して接続された第1の搬送室と、
 前記第1の搬送室内に配置された第1の搬送ロボットと、
 前記第1の搬送室に第2のゲートバルブを介して接続された第1の処理室と、
 前記第1の処理室内に配置され、前記基板を保持する第2のステージと、
 前記第1の搬送室に第3のゲートバルブを介して接続された第2の処理室と、
 前記第2の処理室内に配置され、前記基板を保持する第3のステージと、
 前記第1の搬送室に第1の開口を介して接続された第2の受渡室と、
 前記第2の受渡室内に配置され、前記基板を保持する第4のステージと、
 前記第2の受渡室に第2の開口を介して接続された第2の搬送室と、
 前記第2の搬送室内に配置された第2の搬送ロボットと、
 前記第2の搬送室に第4のゲートバルブを介して接続された第3の処理室と、
 前記第3の処理室内に配置され、前記基板を保持する第5のステージと、
 前記第2の搬送室に第5のゲートバルブを介して接続された第4の処理室と、
 前記第4の処理室内に配置され、前記基板を保持する第6のステージと、
 前記第2の搬送室に第3の開口を介して接続された第3の受渡室と、
 前記第3の受渡室内に配置され、前記基板を保持する第7のステージと、
 前記第3の受渡室に第4の開口を介して接続された第3の搬送室と、
 前記第3の搬送室内に配置された第3の搬送ロボットと、
 前記第3の搬送室に第6のゲートバルブを介して接続された第5の処理室と、
 前記第5の処理室内に配置され、前記基板を保持する第8のステージと、
 前記第3の搬送室に第7のゲートバルブを介して接続された第6の処理室と、
 前記第6の処理室内に配置され、前記基板を保持する第9のステージと、
を具備し、
 前記第1の搬送ロボットは、前記第1のステージと前記第2のステージの間、前記第2のステージと前記第4のステージの間、前記第4のステージと前記第3のステージの間、前記第3のステージと前記第1のステージの間で前記基板を搬送する機能を有し、
 前記第2の搬送ロボットは、前記第4のステージと前記第5のステージの間、前記第5のステージと前記第7のステージの間、前記第7のステージと前記第6のステージの間、前記第6のステージと前記第4のステージの間で前記基板を搬送する機能を有し、
 前記第3の搬送ロボットは、前記第7のステージと前記第8のステージの間、前記第8のステージと前記第9のステージの間、前記第9のステージと前記第7のステージの間で前記基板を搬送する機能を有することを特徴とする処理装置。
Hereinafter, various aspects of the present invention will be described.
[1] a first delivery room;
A first stage disposed in the first delivery chamber and holding a substrate;
A first transfer chamber connected to the first delivery chamber via a first gate valve;
A first transfer robot disposed in the first transfer chamber;
A first processing chamber connected to the first transfer chamber via a second gate valve;
A second stage disposed in the first processing chamber and holding the substrate;
A second processing chamber connected to the first transfer chamber via a third gate valve;
A third stage disposed in the second processing chamber and holding the substrate;
A second delivery chamber connected to the first transfer chamber via a first opening;
A fourth stage disposed in the second delivery chamber and holding the substrate;
A second transfer chamber connected to the second delivery chamber via a second opening;
A second transfer robot disposed in the second transfer chamber;
A third processing chamber connected to the second transfer chamber via a fourth gate valve;
A fifth stage disposed in the third processing chamber and holding the substrate;
A fourth processing chamber connected to the second transfer chamber via a fifth gate valve;
A sixth stage disposed in the fourth processing chamber and holding the substrate;
A third delivery chamber connected to the second transfer chamber via a third opening;
A seventh stage disposed in the third delivery chamber and holding the substrate;
A third transfer chamber connected to the third delivery chamber via a fourth opening;
A third transfer robot disposed in the third transfer chamber;
A fifth processing chamber connected to the third transfer chamber via a sixth gate valve;
An eighth stage disposed in the fifth processing chamber and holding the substrate;
A sixth treatment chamber connected to the third transfer chamber via a seventh gate valve;
A ninth stage disposed in the sixth processing chamber and holding the substrate;
Comprising
The first transfer robot is between the first stage and the second stage, between the second stage and the fourth stage, between the fourth stage and the third stage, Having a function of transporting the substrate between the third stage and the first stage;
The second transfer robot is between the fourth stage and the fifth stage, between the fifth stage and the seventh stage, between the seventh stage and the sixth stage, Having a function of transporting the substrate between the sixth stage and the fourth stage;
The third transfer robot is provided between the seventh stage and the eighth stage, between the eighth stage and the ninth stage, and between the ninth stage and the seventh stage. A processing apparatus having a function of transporting the substrate.
[2]上記[1]において、
 前記第1の受渡室内に配置され、前記基板を保持する第10のステージと、
 前記第2の受渡室内に配置され、前記基板を保持する第11のステージと、
 前記第3の受渡室内に配置され、前記基板を保持する第12のステージと、
を有することを特徴とする処理装置。
[2] In the above [1],
A tenth stage disposed in the first delivery chamber and holding the substrate;
An eleventh stage disposed in the second delivery chamber and holding the substrate;
A twelfth stage disposed in the third delivery chamber and holding the substrate;
A processing apparatus comprising:
[3]上記[1]または[2]において、
 前記第1の受渡室、前記第2の受渡室及び前記第3の受渡室の少なくとも一つに配置された前記基板を加熱するヒータを有することを特徴とする処理装置。
[3] In the above [1] or [2],
A processing apparatus comprising a heater for heating the substrate disposed in at least one of the first delivery chamber, the second delivery chamber, and the third delivery chamber.
[4]上記[1]乃至[3]のいずれか一項において、
 前記第1の処理室は、前記第2のステージに保持された前記基板に蒸着法により膜を成膜する処理室であることを特徴とする処理装置。
[4] In any one of [1] to [3] above,
The processing apparatus, wherein the first processing chamber is a processing chamber for forming a film by vapor deposition on the substrate held by the second stage.
[5]上記[4]において、
 前記第1の処理室と前記第3の処理室の間の距離は500mm以下であり、
 前記第3の処理室と前記第5の処理室の間の距離は500mm以下であり、
 前記第2の処理室と前記第4の処理室の間の距離は500mm以下であり、
 前記第4の処理室と前記第6の処理室の間の距離は500mm以下であることを特徴とする処理装置。
[5] In the above [4],
The distance between the first processing chamber and the third processing chamber is 500 mm or less,
The distance between the third processing chamber and the fifth processing chamber is 500 mm or less,
The distance between the second processing chamber and the fourth processing chamber is 500 mm or less,
The processing apparatus characterized in that a distance between the fourth processing chamber and the sixth processing chamber is 500 mm or less.
[6]上記[4]または[5]において、
 前記第3の処理室内に加圧されたガスを導入するガス導入機構と、
 前記第3の処理室内のガスを排気するガス排気機構と、
 前記第5のステージに保持された前記基板にランプ光を照射するランプヒータと、
を具備することを特徴とする処理装置。
[6] In the above [4] or [5],
A gas introduction mechanism for introducing pressurized gas into the third processing chamber;
A gas exhaust mechanism for exhausting the gas in the third processing chamber;
A lamp heater for irradiating the substrate held on the fifth stage with lamp light;
A processing apparatus comprising:
[7]上記[6]において、
 前記第1の処理室で成膜される前記膜はZr膜であり、
 前記第3の処理室内に導入される前記ガスは酸素であり、
 前記第5の処理室は、前記第8のステージに保持された前記基板を反転させる機構を有し、
 前記第6の処理室は、前記第9のステージに保持された前記基板にスパッタリングによりPt膜を成膜する処理室であり、
 前記第3の受渡室に配置された前記基板を加熱するヒータを有し、
 前記第4の処理室は、前記第6のステージに保持された前記基板にスパッタリングによりSRO膜を成膜する処理室であり、
 前記第2の処理室は、前記第3のステージに保持された前記基板にスパッタリングによりPZT膜を成膜する処理室であることを特徴とする処理装置。
[7] In the above [6],
The film formed in the first processing chamber is a Zr film;
The gas introduced into the third processing chamber is oxygen;
The fifth processing chamber has a mechanism for inverting the substrate held on the eighth stage,
The sixth processing chamber is a processing chamber for forming a Pt film on the substrate held on the ninth stage by sputtering,
A heater for heating the substrate disposed in the third delivery chamber;
The fourth processing chamber is a processing chamber for forming an SRO film on the substrate held on the sixth stage by sputtering,
The processing apparatus is characterized in that the second processing chamber is a processing chamber for forming a PZT film on the substrate held by the third stage by sputtering.
[8]上記[7]において、
 前記第1の処理室内で前記第2のステージに保持された前記基板上にZr膜が成膜され、
 前記第3の処理室内で加圧酸素雰囲気により前記Zr膜に前記ランプ光を照射することで、前記Zr膜の一部を酸化させ、Zr膜とZrO膜の積層膜を形成することを特徴とする処理装置。
[8] In the above [7],
A Zr film is formed on the substrate held on the second stage in the first processing chamber,
By irradiating the Zr film with the lamp light in a pressurized oxygen atmosphere in the third processing chamber, a part of the Zr film is oxidized to form a stacked film of the Zr film and the ZrO 2 film. A processing device.
[9]上記[1]乃至[8]のいずれか一項において、
 前記第3の搬送室には第5の開口が形成され、前記第5の開口が蓋により塞がれていることを特徴とする処理装置。
 なお、第5の開口は、第4の受渡室を接続して処理室をさらに増設させるためのものである。これにより、必要に応じて処理室を簡単に増やすことができる。
[9] In any one of [1] to [8] above,
A processing apparatus, wherein a fifth opening is formed in the third transfer chamber, and the fifth opening is closed by a lid.
The fifth opening is for connecting a fourth delivery chamber and further adding a processing chamber. Thereby, a process chamber can be easily increased as needed.
[10]第3の処理室と、
 前記第3の処理室内に配置され、Zr膜が成膜された基板を保持する第5のステージと、
 前記第3の処理室内に加圧された酸素ガスを導入するガス導入機構と、
 前記第3の処理室内のガスを排気するガス排気機構と、
 前記第5のステージに保持された前記基板にランプ光を照射するランプヒータと、
を具備し、
 加圧酸素雰囲気で前記Zr膜に前記ランプ光を照射することで、前記Zr膜の一部を酸化させ、Zr膜とZrO膜の積層膜を形成することを特徴とする処理装置。
[10] a third processing chamber;
A fifth stage disposed in the third processing chamber and holding a substrate on which a Zr film is formed;
A gas introduction mechanism for introducing pressurized oxygen gas into the third processing chamber;
A gas exhaust mechanism for exhausting the gas in the third processing chamber;
A lamp heater for irradiating the substrate held on the fifth stage with lamp light;
Comprising
A processing apparatus, wherein the Zr film is irradiated with the lamp light in a pressurized oxygen atmosphere to oxidize a part of the Zr film to form a laminated film of a Zr film and a ZrO 2 film.
 本発明の一態様によれば、処理室の数が増えても搬送ロボットが基板を処理室から処理室へ搬送する際の待ち時間を少なくできる処理装置を提供することができる。 According to one embodiment of the present invention, it is possible to provide a processing apparatus that can reduce the waiting time when the transfer robot transfers a substrate from the processing chamber to the processing chamber even when the number of processing chambers increases.
本発明の一態様に係る処理装置を模式的に示す平面図である。It is a top view which shows typically the processing apparatus which concerns on 1 aspect of this invention. 図1に示す第3の受渡室233の内部構造を模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the 3rd delivery chamber 233 shown in FIG. 図1に示す第1の処理室212の内部構造を模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the 1st process chamber 212 shown in FIG. 図1に示す第3の処理室214の内部構造を模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the 3rd process chamber 214 shown in FIG. 図4に示すA-A'部の断面図である。FIG. 5 is a cross-sectional view taken along line AA ′ shown in FIG. 図4に示すB-B'部の断面図である。FIG. 5 is a cross-sectional view taken along the line BB ′ shown in FIG. 図1に示す第2の処理室213の内部構造を模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the 2nd process chamber 213 shown in FIG. 図1の処理装置を用いてSi基板上に膜を成膜した膜構造を示す断面図である。It is sectional drawing which shows the film | membrane structure which formed the film | membrane on Si substrate using the processing apparatus of FIG. 従来の処理装置を模式的に示す平面図である。It is a top view which shows the conventional processing apparatus typically.
 以下では、本発明の実施形態及び実施例について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施形態の記載内容及び実施例に限定して解釈されるものではない。 Hereinafter, embodiments and examples of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it will be easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments and examples below.
 図1は、本発明の一態様に係る処理装置を模式的に示す平面図である。この処理装置は大気搬送システム211を有し、この大気搬送システム211はゲートバルブ221を介して第1の受渡室231に接続されている。第1の受渡室231内には基板251を保持する第1のステージ241が配置されている。 FIG. 1 is a plan view schematically showing a processing apparatus according to one aspect of the present invention. This processing apparatus has an atmospheric transfer system 211, and this atmospheric transfer system 211 is connected to the first delivery chamber 231 through a gate valve 221. A first stage 241 that holds the substrate 251 is disposed in the first delivery chamber 231.
 第1の受渡室231は第1のゲートバルブ222を介して第1の搬送室261に接続されており、第1の搬送室261内には第1の真空搬送ロボット261aが配置されている。第1の搬送室261は第2のゲートバルブ223を介して第1の処理室212に接続されており、第1の処理室212内には基板251を保持する第2のステージ242が配置されている。 The first delivery chamber 231 is connected to the first transfer chamber 261 via the first gate valve 222, and the first vacuum transfer robot 261a is disposed in the first transfer chamber 261. The first transfer chamber 261 is connected to the first processing chamber 212 via a second gate valve 223, and a second stage 242 that holds the substrate 251 is disposed in the first processing chamber 212. ing.
 第1の搬送室261は第3のゲートバルブ224を介して第2の処理室213に接続されており、第2の処理室213内には基板251を保持する第3のステージ243が配置されている。第1の搬送室261は第1の開口271を介して第2の受渡室232に接続されており、第2の受渡室232内には基板251を保持する第4のステージ244が配置されている。 The first transfer chamber 261 is connected to the second processing chamber 213 via a third gate valve 224, and a third stage 243 that holds the substrate 251 is disposed in the second processing chamber 213. ing. The first transfer chamber 261 is connected to the second delivery chamber 232 via the first opening 271, and a fourth stage 244 that holds the substrate 251 is disposed in the second delivery chamber 232. Yes.
 第2の受渡室232は第2の開口272を介して第2の搬送室262に接続されており、第2の搬送室262内には第2の真空搬送ロボット262aが配置されている。第2の搬送室262は第4のゲートバルブ225を介して第3の処理室214に接続されており、第3の処理室214内には基板251を保持する第5のステージ245配置されている。 The second delivery chamber 232 is connected to the second transfer chamber 262 through the second opening 272, and the second vacuum transfer robot 262a is disposed in the second transfer chamber 262. The second transfer chamber 262 is connected to the third processing chamber 214 via the fourth gate valve 225, and a fifth stage 245 that holds the substrate 251 is disposed in the third processing chamber 214. Yes.
 第2の搬送室262は第5のゲートバルブ226を介して第4の処理室215に接続されており、第4の処理室215内には基板251を保持する第6のステージ246が配置されている。第2の搬送室262は第3の開口273を介して第3の受渡室233に接続されており、第3の受渡室233内には基板251を保持する第7のステージ247が配置されている。なお、第4の処理室215は、第6のステージ246に保持された基板251にスパッタリングによりSrRuO膜(SRO膜ともいう。)を成膜する処理室であるとよい。 The second transfer chamber 262 is connected to the fourth processing chamber 215 via the fifth gate valve 226, and a sixth stage 246 that holds the substrate 251 is disposed in the fourth processing chamber 215. ing. The second transfer chamber 262 is connected to the third delivery chamber 233 via the third opening 273, and a seventh stage 247 that holds the substrate 251 is disposed in the third delivery chamber 233. Yes. Note that the fourth processing chamber 215 is preferably a processing chamber in which a SrRuO 3 film (also referred to as an SRO film) is formed by sputtering on the substrate 251 held by the sixth stage 246.
 第3の受渡室233は第4の開口274を介して第3の搬送室263に接続されており、第3の搬送室263内には第3の搬送ロボット263aが配置されている。第3の搬送室263は第6のゲートバルブ227を介して第5の処理室216に接続されており、第5の処理室216内には基板251を保持する第8のステージ248が配置されている。なお、第5の処理室216は、第8のステージ248上に保持された基板251を反転させる機構を有するとよい。 The third delivery chamber 233 is connected to the third transfer chamber 263 through the fourth opening 274, and the third transfer robot 263a is disposed in the third transfer chamber 263. The third transfer chamber 263 is connected to the fifth processing chamber 216 via a sixth gate valve 227, and an eighth stage 248 that holds the substrate 251 is disposed in the fifth processing chamber 216. ing. Note that the fifth treatment chamber 216 preferably includes a mechanism for inverting the substrate 251 held on the eighth stage 248.
 第3の搬送室263は第7のゲートバルブ228を介して第6の処理室217に接続されており、第6の処理室217内には基板251を保持する第9のステージ249が配置されている。なお、第6の処理室217は、第9のステージ249に保持された基板251にスパッタリングによりPt膜を成膜する処理室であるとよい。 The third transfer chamber 263 is connected to the sixth processing chamber 217 via a seventh gate valve 228, and a ninth stage 249 that holds the substrate 251 is disposed in the sixth processing chamber 217. ing. Note that the sixth processing chamber 217 is preferably a processing chamber in which a Pt film is formed on the substrate 251 held by the ninth stage 249 by sputtering.
 第1の搬送ロボット261aは、第1のゲートバルブ222、第1の搬送室261及び第2のゲートバルブ223を通って、第1のステージ241と第2のステージ242の間で基板251を搬送する機能を有し、第2のゲートバルブ223、第1の搬送室261及び第1の開口271を通って、第2のステージ242と第4のステージ244の間で基板251を搬送する機能を有し、第1の開口271、第1の搬送室261及び第3のゲートバルブ224を通って、第4のステージ244と第3のステージ243の間で基板251を搬送する機能を有し、第3のゲートバルブ224、第1の搬送室261及び第1のゲートバルブ222を通って、第3のステージ243と第1のステージ241の間で基板251を搬送する機能を有する。 The first transfer robot 261a transfers the substrate 251 between the first stage 241 and the second stage 242 through the first gate valve 222, the first transfer chamber 261, and the second gate valve 223. A function of transporting the substrate 251 between the second stage 242 and the fourth stage 244 through the second gate valve 223, the first transport chamber 261, and the first opening 271. Having a function of transporting the substrate 251 between the fourth stage 244 and the third stage 243 through the first opening 271, the first transport chamber 261 and the third gate valve 224, The substrate 251 is transferred between the third stage 243 and the first stage 241 through the third gate valve 224, the first transfer chamber 261, and the first gate valve 222.
 第2の搬送ロボット262aは、第2の開口272、第2の搬送室262及び第4のゲートバルブ225を通って、第4のステージ244と第5のステージ245の間で基板251を搬送する機能を有し、第4のゲートバルブ225、第2の搬送室262及び第3の開口273を通って、第5のステージ245と第7のステージ247の間で基板251を搬送する機能を有し、第3の開口273、第2の搬送室262及び第5のゲートバルブ226を通って、第7のステージ247と第6のステージ246の間で基板251を搬送する機能を有し、第5のゲートバルブ226、第2の搬送室262及び第2の開口272を通って、第6のステージ246と第4のステージ244の間で基板を搬送する機能を有する。 The second transfer robot 262a transfers the substrate 251 between the fourth stage 244 and the fifth stage 245 through the second opening 272, the second transfer chamber 262, and the fourth gate valve 225. And has a function of transporting the substrate 251 between the fifth stage 245 and the seventh stage 247 through the fourth gate valve 225, the second transport chamber 262, and the third opening 273. And has a function of transporting the substrate 251 between the seventh stage 247 and the sixth stage 246 through the third opening 273, the second transport chamber 262, and the fifth gate valve 226, and 5 has a function of transporting the substrate between the sixth stage 246 and the fourth stage 244 through the gate valve 226, the second transport chamber 262, and the second opening 272.
 第3の搬送ロボット263aは、第4の開口274、第3の搬送室263及び第6のゲートバルブ227を通って、第7のステージ247と第8のステージ248の間で基板251を搬送する機能を有し、第6のゲートバルブ227、第3の搬送室263及び第7のゲートバルブ228を通って、第8のステージ248と第9のステージ249の間で基板251を搬送する機能を有し、第7のゲートバルブ228、第3の搬送室263及び第4の開口274を通って、第9のステージ249と第7のステージ247の間で基板を搬送する機能を有する。 The third transfer robot 263a transfers the substrate 251 between the seventh stage 247 and the eighth stage 248 through the fourth opening 274, the third transfer chamber 263, and the sixth gate valve 227. A function of transporting the substrate 251 between the eighth stage 248 and the ninth stage 249 through the sixth gate valve 227, the third transport chamber 263, and the seventh gate valve 228. And has a function of transporting the substrate between the ninth stage 249 and the seventh stage 247 through the seventh gate valve 228, the third transport chamber 263, and the fourth opening 274.
 大気搬送システム211は扉211aを備えたチャンバー211bを有し、このチャンバー211b内には複数の基板を保持するカセット(図示せず)が配置されている。このカセットに保持された基板を、第1の受渡室231内の第1のステージ241にゲートバルブ221を通って搬送する機能を大気搬送システムは有している。 The atmospheric transfer system 211 has a chamber 211b having a door 211a, and a cassette (not shown) for holding a plurality of substrates is disposed in the chamber 211b. The atmospheric transfer system has a function of transferring the substrate held in the cassette to the first stage 241 in the first delivery chamber 231 through the gate valve 221.
 第1の処理室212と第3の処理室214の間の距離200は500mm以下であり、第3の処理室214と第5の処理室216の間の距離は500mm以下である。第2の処理室213と第4の処理室215の間の距離は500mm以下であり、記第4の処理室215と第6の処理室217の間の距離は500mm以下である。このようにすることで、フットプリントを縮小することができる。 The distance 200 between the first processing chamber 212 and the third processing chamber 214 is 500 mm or less, and the distance between the third processing chamber 214 and the fifth processing chamber 216 is 500 mm or less. The distance between the second processing chamber 213 and the fourth processing chamber 215 is 500 mm or less, and the distance between the fourth processing chamber 215 and the sixth processing chamber 217 is 500 mm or less. In this way, the footprint can be reduced.
 第1~第3の受渡室231~233、第1~第3の搬送室261~263及び第1~第6の処理室212~217は、それぞれ図示せぬ真空排気機構に接続されている。 The first to third delivery chambers 231 to 233, the first to third transfer chambers 261 to 263, and the first to sixth processing chambers 212 to 217 are each connected to a vacuum exhaust mechanism (not shown).
 図1の処理装置によれば、処理室の数が増えても搬送ロボットが基板を処理室から処理室へ搬送する際の待ち時間を図9に示す処理装置に比べて少なくすることができる。その結果、スループットの低下を抑制することができる。 According to the processing apparatus of FIG. 1, even when the number of processing chambers increases, the waiting time when the transfer robot transfers the substrate from the processing chamber to the processing chamber can be reduced as compared with the processing apparatus shown in FIG. As a result, a decrease in throughput can be suppressed.
 第3の搬送室263には、第4の開口274と反対側に位置する第5の開口275が形成されており、この第5の開口275が蓋(図示せず)により塞がれているとよい。このようにしておけば、第3の搬送室263の第5の開口275側に、第3の受渡室233と同様の受渡室、第3の搬送室263と同様の搬送室、第1~第6の処理室212~217と同様の処理室を、図1に示すように増設することが容易となる。但し、増設する処理室の内部は第1~第6の処理室212~217と全く同様である必要はなく、適切なものに適宜変更して実施することも可能である。 The third transfer chamber 263 is formed with a fifth opening 275 located on the side opposite to the fourth opening 274, and the fifth opening 275 is closed by a lid (not shown). Good. In this way, on the fifth opening 275 side of the third transfer chamber 263, a transfer chamber similar to the third transfer chamber 233, a transfer chamber similar to the third transfer chamber 263, and the first to second It is easy to add processing chambers similar to the six processing chambers 212 to 217 as shown in FIG. However, the inside of the additional processing chamber does not need to be exactly the same as the first to sixth processing chambers 212 to 217, and can be appropriately changed to an appropriate one.
 図2は、図1に示す第3の受渡室233の内部構造を模式的に示す断面図である。第3の受渡室233はチャンバー233aを有し、チャンバー233aには第3の開口273及び第4の開口274が形成されている。チャンバー233a内には第7のステージ247の下に第12のステージ247aが配置されており、第7のステージ247及び第12のステージ247aは上下移動機構(図示せず)により矢印247bのように上下移動可能に構成されている。ま FIG. 2 is a cross-sectional view schematically showing the internal structure of the third delivery chamber 233 shown in FIG. The third delivery chamber 233 includes a chamber 233a, and a third opening 273 and a fourth opening 274 are formed in the chamber 233a. A twelfth stage 247a is disposed under the seventh stage 247 in the chamber 233a. The seventh stage 247 and the twelfth stage 247a are moved as shown by an arrow 247b by a vertical movement mechanism (not shown). It is configured to be movable up and down. Ma
 また、第3の受渡室233は、第7のステージ247に保持された基板251を加熱するランプヒータ201と、第12のステージ247aに保持された基板251aを加熱するランプヒータ202を有している。 The third delivery chamber 233 includes a lamp heater 201 that heats the substrate 251 held on the seventh stage 247 and a lamp heater 202 that heats the substrate 251a held on the twelfth stage 247a. Yes.
 第2の搬送ロボット262aの搬送アーム262bは、矢印262cのように移動することで、第3の開口273を通って基板251aを第12のステージ247a上に搬送すること、または基板251aを第12のステージ247aから別のステージへ搬送することができるようになっている。また、第3の搬送ロボット263aの搬送アーム263bは、矢印263cのように移動することで、第4の開口274を通って基板251を第7のステージ247上に搬送すること、または基板251を第7のステージ247から別のステージへ搬送することができるようになっている。 The transfer arm 262b of the second transfer robot 262a moves as indicated by an arrow 262c to transfer the substrate 251a onto the twelfth stage 247a through the third opening 273, or to transfer the substrate 251a to the twelfth stage. The stage 247a can be transported to another stage. Further, the transfer arm 263b of the third transfer robot 263a moves as indicated by an arrow 263c to transfer the substrate 251 onto the seventh stage 247 through the fourth opening 274, or to transfer the substrate 251. It can be conveyed from the seventh stage 247 to another stage.
 第1の受渡室231及び第2の受渡室232それぞれの内部構造は、第3の受渡室233と同様とするとよい。但し、第1~第3の受渡室231~233それぞれの内部構造は、図2に示す構造から適宜変更することが可能であり、例えば、ステージを2段ではなく1段にしても良いし、ランプヒータ201,202を一方のみにしても良いし、ランプヒータを無くしてもよい。 The internal structure of each of the first delivery chamber 231 and the second delivery chamber 232 may be the same as that of the third delivery chamber 233. However, the internal structure of each of the first to third delivery chambers 231 to 233 can be appropriately changed from the structure shown in FIG. 2, for example, the stage may be one stage instead of two stages, The lamp heaters 201 and 202 may be only one, or the lamp heater may be omitted.
 第1~第3の受渡室231~233が図2に示すように2段のステージを備えることで、例えば、第1の処理室212、第3の処理室214、第5の処理室216、第6の処理室217、第4の処理室215、第2の処理室213の順に基板を連続的に処理して搬送する際に、受渡室のステージが空いていないことによる搬送待ちの時間をほとんど無くすことができる。つまり、処理室を無駄なく使用して複数の基板を同時に処理する場合でも、受渡室のステージが空いていないことによる搬送待ちの時間をほとんど無くすことができる。従って、基板の処理時間を削減することができる。
 なお、第3の搬送室263に第5の開口275を介して接続された第4の受渡室を設け、第4の受渡室内には基板251を保持する第10のステージが配置されているとよい。この第4の受渡室は、受渡室のステージが空いていないことによる搬送待ちの時間を削減することに役立つ。また、第4の受渡室の内部構造は図2に示す構造と同様であってもよい。
Since the first to third delivery chambers 231 to 233 include two stages as shown in FIG. 2, for example, the first processing chamber 212, the third processing chamber 214, the fifth processing chamber 216, When the substrate is successively processed and transferred in the order of the sixth processing chamber 217, the fourth processing chamber 215, and the second processing chamber 213, the waiting time for transfer due to the fact that the stage of the delivery chamber is not empty is set. Can be almost eliminated. That is, even when a plurality of substrates are processed at the same time using the processing chamber without waste, it is possible to almost eliminate the waiting time for transport due to the absence of the stage in the delivery chamber. Accordingly, the processing time of the substrate can be reduced.
Note that a fourth delivery chamber connected to the third transfer chamber 263 through the fifth opening 275 is provided, and a tenth stage for holding the substrate 251 is disposed in the fourth delivery chamber. Good. The fourth delivery chamber is useful for reducing the waiting time for conveyance due to the absence of the delivery chamber stage. Further, the internal structure of the fourth delivery chamber may be the same as the structure shown in FIG.
 図3は、図1に示す第1の処理室212の構造の詳細を模式的に示す断面図であり、第2のステージ242に保持された基板251に蒸着法によりZr膜を成膜するエピタキシャル蒸着装置である。チャンバー301内には基板251を保持する第2のステージ242が配置されており、基板251は第2のゲートバルブ223を通して搬送される。基板251上にはハロゲンランプヒータ302が配置されており、このハロゲンランプヒータ302によって基板251が加熱されるようになっている。ハロゲンランプヒータ302はモーターMによって矢印のように回転されるように構成されており、ハロゲンランプヒータ302にはヒータ電源及び温調器303が接続されている。基板251の近傍にはロータリーセンサー式膜厚モニター304が配置されており、この膜厚モニター304はクリスタル4枚切替部305を備えている。 FIG. 3 is a cross-sectional view schematically showing the details of the structure of the first processing chamber 212 shown in FIG. 1, in which an epitaxial film is formed by depositing a Zr film on the substrate 251 held on the second stage 242. It is a vapor deposition device. A second stage 242 that holds the substrate 251 is disposed in the chamber 301, and the substrate 251 is transported through the second gate valve 223. A halogen lamp heater 302 is disposed on the substrate 251, and the substrate 251 is heated by the halogen lamp heater 302. The halogen lamp heater 302 is configured to be rotated as indicated by an arrow by a motor M, and a heater power source and a temperature controller 303 are connected to the halogen lamp heater 302. A rotary sensor type film thickness monitor 304 is disposed in the vicinity of the substrate 251, and the film thickness monitor 304 includes a four-crystal switching unit 305.
 基板251の下方にはEBガン306を備えた蒸着源307が配置されており、蒸着源307と基板251との間にはシャッター308が配置されている。シャッターは駆動部309によって開閉可能に構成されている。また、チャンバー301内にArガスを導入するガス導入機構がチャンバー301に取り付けられている。なお、チャンバー301内にOガスを導入するガス導入機構もチャンバー301に取り付けられていてもよい。 A deposition source 307 including an EB gun 306 is disposed below the substrate 251, and a shutter 308 is disposed between the deposition source 307 and the substrate 251. The shutter is configured to be opened and closed by a drive unit 309. A gas introduction mechanism that introduces Ar gas into the chamber 301 is attached to the chamber 301. Note that a gas introduction mechanism for introducing O 2 gas into the chamber 301 may also be attached to the chamber 301.
 第1の処理室212は、図1に示すようにチャンバー301の内部をオペレータ311がメンテナンスするための扉310を有している。フットプリントを縮小するために処理室の相互間の距離200を500mm以下とすると、メンテナンスのための大きな扉310を設けた蒸着装置は第1の処理室212に配置することが好ましい。この扉310は500mmの間隔ではオペレータ311が作業する空間を十分に確保できないからである。 The first processing chamber 212 has a door 310 for the operator 311 to maintain the inside of the chamber 301 as shown in FIG. When the distance 200 between the processing chambers is set to 500 mm or less in order to reduce the footprint, the deposition apparatus provided with the large door 310 for maintenance is preferably disposed in the first processing chamber 212. This is because the door 310 cannot secure a sufficient space for the operator 311 to work at an interval of 500 mm.
 図4は、図1に示す第3の処理室214の内部構造を模式的に示す断面図であり、第5のステージ245に保持された基板251にランプ光を照射するランプヒータを有する加圧式ランプアニール装置である。図5は、図4に示すA-A'部の断面図である。図6は、図4に示すB-B'部の断面図である。 FIG. 4 is a cross-sectional view schematically showing the internal structure of the third processing chamber 214 shown in FIG. 1, and is a pressure type having a lamp heater for irradiating the substrate 251 held by the fifth stage 245 with lamp light. This is a lamp annealing device. FIG. 5 is a cross-sectional view taken along the line AA ′ shown in FIG. FIG. 6 is a cross-sectional view taken along the line BB ′ shown in FIG.
 図4乃至図6に示すように、加圧式ランプアニール装置はAl製のチャンバー21を有しており、このチャンバー21の内部によって第3の処理室214が形成されている。チャンバー21の内表面21aには表面処理が施されている。つまり、チャンバー21の内表面21aには反射膜が形成されている。具体的な表面処理としては、Auメッキ処理又はシュウ酸アルマイト処理を用いることが可能である。これにより、チャンバー21の内表面21aにはAuメッキ膜又はシュウ酸アルマイト膜が形成され、このAuメッキ膜又はシュウ酸アルマイト膜でランプ光を反射させることができる。その結果、昇温レートを上げることができる。また、消費電力を少なくすることができる。また、チャンバー21は図示せぬ冷却機構によって水冷されるように構成されている。 As shown in FIGS. 4 to 6, the pressure-type lamp annealing apparatus has an Al chamber 21, and a third processing chamber 214 is formed inside the chamber 21. A surface treatment is applied to the inner surface 21 a of the chamber 21. That is, a reflective film is formed on the inner surface 21 a of the chamber 21. As a specific surface treatment, Au plating treatment or oxalic acid alumite treatment can be used. Thereby, an Au plating film or an oxalate alumite film is formed on the inner surface 21a of the chamber 21, and the lamp light can be reflected by the Au plating film or the oxalate alumite film. As a result, the temperature increase rate can be increased. In addition, power consumption can be reduced. The chamber 21 is configured to be water cooled by a cooling mechanism (not shown).
 尚、本実施形態では、前記表面処理としてAuメッキ処理又はシュウ酸アルマイト処理を用いているが、本発明はこれに限定されるものではなく、Al、Au、Ag、Cu、Pt、Tiからなる群から選択された一の金属を主成分としたコーティング膜を用いることも可能である。 In this embodiment, Au plating treatment or oxalic acid alumite treatment is used as the surface treatment, but the present invention is not limited to this, and is made of Al, Au, Ag, Cu, Pt, Ti. It is also possible to use a coating film whose main component is one metal selected from the group.
 チャンバー21内には基板251としてのウエハを保持する第5のステージ245が設けられている。第5のステージ245はランプ光が透過する材料、例えば石英で形成されている。第5のステージ245の下方には複数の透明管20が配置されており、これら透明管20はランプ光が透過する材料、例えば石英で形成されている。複数の透明管20それぞれの内部にはランプヒータ19が配置されている。 A fifth stage 245 for holding a wafer as a substrate 251 is provided in the chamber 21. The fifth stage 245 is made of a material that transmits lamp light, for example, quartz. A plurality of transparent tubes 20 are arranged below the fifth stage 245, and these transparent tubes 20 are made of a material that transmits lamp light, for example, quartz. A lamp heater 19 is disposed inside each of the plurality of transparent tubes 20.
 チャンバー21の上部内壁21bには溝18が形成されており、この溝18の内壁は、透明管20の外表面に沿った曲面を有している。これにより、透明管20を、その外表面が溝18の内壁の曲面に接触した状態で溝18内に配置することができる。ランプヒータ19のランプ光は、第5のステージ245に保持された基板251に透明管20を通して照射されるようになっている。 A groove 18 is formed in the upper inner wall 21 b of the chamber 21, and the inner wall of the groove 18 has a curved surface along the outer surface of the transparent tube 20. Thereby, the transparent tube 20 can be disposed in the groove 18 with its outer surface in contact with the curved surface of the inner wall of the groove 18. The lamp light of the lamp heater 19 is applied to the substrate 251 held on the fifth stage 245 through the transparent tube 20.
 図5及び図6に示すように、透明管20の一方端20aはチャンバー21の外側に位置する金属製の第1の筐体26aの内部に繋げられており、透明管20の他方端20bはチャンバー21の外側に位置する金属製の第2の筐体26bの内部に繋げられている。第1の筐体26aには排気ダクト(図示せず)が接続されており、この排気ダクトは第1の筐体26a、透明管20及び第2の筐体26bそれぞれの内部の熱を排気するものである。 As shown in FIGS. 5 and 6, one end 20 a of the transparent tube 20 is connected to the inside of a metal first housing 26 a located outside the chamber 21, and the other end 20 b of the transparent tube 20 is It is connected to the inside of the second housing 26b made of metal located outside the chamber 21. An exhaust duct (not shown) is connected to the first casing 26a, and this exhaust duct exhausts heat inside each of the first casing 26a, the transparent tube 20, and the second casing 26b. Is.
 透明管20の両端20a,20bそれぞれとチャンバー21との間には白色のOリング28が配置されている。これらのOリング28は第3の処理室214内の気密性を保持するものである。白色のOリング28を用いる理由は、例えば黒色のOリングを用いるとランプヒータ19からのランプ光によってOリングが融けてしまうが、白色のOリングを用いるとランプ光によってOリングが融けることを抑制できるからである。 White O-rings 28 are arranged between the chambers 21 and both ends 20a, 20b of the transparent tube 20. These O-rings 28 maintain the airtightness in the third processing chamber 214. The reason why the white O-ring 28 is used is that, for example, if a black O-ring is used, the O-ring is melted by the lamp light from the lamp heater 19, but if the white O-ring is used, the O-ring is melted by the lamp light. This is because it can be suppressed.
 第5のステージ245の上方に位置するチャンバー21の上部には窓が設けられており、この窓にはフッ化カルシウム8が配置されている。フッ化カルシウム8の上方には放射温度計9が配置されている。フッ化カルシウム8は、放射温度計9で基板の温度を測定するために、測定する波長領域の光(波長5μmの赤外線)を取り込むために配置している。 A window is provided above the chamber 21 located above the fifth stage 245, and calcium fluoride 8 is disposed in this window. A radiation thermometer 9 is disposed above the calcium fluoride 8. In order to measure the temperature of the substrate with the radiation thermometer 9, the calcium fluoride 8 is arranged to take in light in the wavelength region to be measured (infrared light having a wavelength of 5 μm).
 チャンバー21内に形成される第3の処理室214は狭い方が好ましい。その理由は、所定の圧力まで加圧又は減圧するのに必要な時間を短くすることができるからである。また、第3の処理室214内の高さは低い方が好ましい。その理由は、第3の処理室214内に配置された基板251とランプヒータ19との間の距離を短くでき、それによって昇温レートを上げることができるからである。 The third processing chamber 214 formed in the chamber 21 is preferably narrow. This is because the time required to pressurize or depressurize to a predetermined pressure can be shortened. Further, the height in the third treatment chamber 214 is preferably low. The reason is that the distance between the substrate 251 and the lamp heater 19 disposed in the third processing chamber 214 can be shortened, thereby increasing the temperature rising rate.
 チャンバー21内の第3の処理室214は加圧ライン(加圧機構)12に接続されている。加圧ライン12は、アルゴンガスによる加圧ライン、酸素ガスによる加圧ライン及び窒素ガスによる加圧ラインを有している。 The third processing chamber 214 in the chamber 21 is connected to the pressurization line (pressurization mechanism) 12. The pressurization line 12 has a pressurization line using argon gas, a pressurization line using oxygen gas, and a pressurization line using nitrogen gas.
 アルゴンガスによる加圧ラインはアルゴンガス供給源13を備え、このアルゴンガス供給源13は配管を介して逆止弁14に接続されており、この逆止弁14は配管を介して不純物を除去するためのフィルタ17に接続されている。このフィルタ17は配管を介してバルブ50に接続されており、この配管は圧力計47に接続されている。バルブ50は配管を介してレギュレータ53に接続されており、このレギュレータ53は配管を介してマスフローコントローラ31に接続されている。レギュレータ53は、ガスの圧力を徐々に上げることによりマスフローコントローラ31の上流側と下流側の差圧を所定圧に設定するものである。マスフローコントローラ31は配管を介してバルブ34に接続されており、このバルブ34は配管を介して加熱ユニット37に接続されている。加熱ユニット37は、プロセスを安定させるためにガス温度を一定(例えば40~50℃程度)にするものである。加熱ユニット37は配管51を介してチャンバー21内の第3の処理室214に接続されている。 The argon gas pressurization line includes an argon gas supply source 13, and this argon gas supply source 13 is connected to a check valve 14 through a pipe, and the check valve 14 removes impurities through the pipe. Is connected to a filter 17. The filter 17 is connected to a valve 50 through a pipe, and this pipe is connected to a pressure gauge 47. The valve 50 is connected to a regulator 53 via a pipe, and the regulator 53 is connected to the mass flow controller 31 via a pipe. The regulator 53 sets the differential pressure between the upstream side and the downstream side of the mass flow controller 31 to a predetermined pressure by gradually increasing the gas pressure. The mass flow controller 31 is connected to a valve 34 via a pipe, and this valve 34 is connected to a heating unit 37 via a pipe. The heating unit 37 makes the gas temperature constant (for example, about 40 to 50 ° C.) in order to stabilize the process. The heating unit 37 is connected to a third processing chamber 214 in the chamber 21 through a pipe 51.
 酸素ガスによる加圧ラインは、アルゴンガスによる加圧ラインと同様に構成されている。詳細には、酸素ガスによる加圧ラインは酸素ガス供給源29を備え、この酸素ガス供給源29は配管を介して逆止弁15に接続されており、この逆止弁15は配管を介して不純物を除去するためのフィルタ30に接続されている。このフィルタ30は配管を介してバルブ24に接続されており、この配管は圧力計48に接続されている。バルブ24は配管を介してレギュレータ27に接続されており、このレギュレータ27は配管を介してマスフローコントローラ32に接続されている。マスフローコントローラ32は配管を介してバルブ35に接続されており、このバルブ35は配管を介して加熱ユニット37に接続されている。加熱ユニット37は配管51を介してチャンバー21内の第3の処理室214に接続されている。 The pressurization line using oxygen gas is configured in the same manner as the pressurization line using argon gas. In detail, the pressurization line by oxygen gas is provided with the oxygen gas supply source 29, and this oxygen gas supply source 29 is connected to the check valve 15 via piping, and this check valve 15 is connected via piping. It is connected to a filter 30 for removing impurities. The filter 30 is connected to the valve 24 via a pipe, and this pipe is connected to a pressure gauge 48. The valve 24 is connected to a regulator 27 via piping, and this regulator 27 is connected to the mass flow controller 32 via piping. The mass flow controller 32 is connected to a valve 35 via a pipe, and this valve 35 is connected to a heating unit 37 via a pipe. The heating unit 37 is connected to a third processing chamber 214 in the chamber 21 through a pipe 51.
 窒素ガスによる加圧ラインは、アルゴンガスによる加圧ラインと同様に構成されている。詳細には、窒素ガスによる加圧ラインは窒素ガス供給源38を備え、この窒素ガス供給源38は配管を介して逆止弁16に接続されており、この逆止弁16は配管を介して不純物を除去するためのフィルタ46aに接続されている。このフィルタ46aは配管を介してバルブ53aに接続されており、この配管は圧力計49に接続されている。バルブ53aは配管を介してレギュレータ54に接続されており、このレギュレータ54は配管を介してマスフローコントローラ33に接続されている。マスフローコントローラ33は配管を介してバルブ36に接続されており、このバルブ36は配管を介して加熱ユニット37に接続されている。加熱ユニット37は配管51を介してチャンバー21内の第3の処理室214に接続されている。 The pressurization line with nitrogen gas has the same configuration as the pressurization line with argon gas. In detail, the pressurization line by nitrogen gas is provided with the nitrogen gas supply source 38, and this nitrogen gas supply source 38 is connected to the check valve 16 via piping, and this check valve 16 is connected via piping. It is connected to a filter 46a for removing impurities. The filter 46 a is connected to a valve 53 a via a pipe, and this pipe is connected to a pressure gauge 49. The valve 53a is connected to a regulator 54 via a pipe, and this regulator 54 is connected to the mass flow controller 33 via a pipe. The mass flow controller 33 is connected to a valve 36 via a pipe, and this valve 36 is connected to a heating unit 37 via a pipe. The heating unit 37 is connected to a third processing chamber 214 in the chamber 21 through a pipe 51.
 また、チャンバー21内の第3の処理室214は圧力調整ラインに接続されている。この圧力調整ライン及び加圧ライン12によってチャンバー21内の第3の処理室214を所定の圧力(例えば1MPa未満)に加圧できるようになっている。前記圧力調整ラインは可変バルブ39を備えており、この可変バルブ39の一方側は配管52を介してチャンバー21内の第3の処理室214に接続されている。配管52は圧力計40に接続されており、この圧力計40によって第3の処理室214内の圧力を測定できるようになっている。可変バルブ39の他方側は配管に接続されている。 Further, the third processing chamber 214 in the chamber 21 is connected to a pressure adjustment line. The third processing chamber 214 in the chamber 21 can be pressurized to a predetermined pressure (for example, less than 1 MPa) by the pressure adjustment line and the pressure line 12. The pressure adjustment line includes a variable valve 39, and one side of the variable valve 39 is connected to a third processing chamber 214 in the chamber 21 through a pipe 52. The pipe 52 is connected to the pressure gauge 40, and the pressure gauge 40 can measure the pressure in the third processing chamber 214. The other side of the variable valve 39 is connected to piping.
 また、チャンバー21内の第3の処理室214は安全ラインに接続されている。この安全ラインは、第3の処理室214内が異常に加圧され過ぎてある一定の圧力以上になった時に処理室内を大気圧まで下げるためのものである。安全ラインは開放バルブ41を備えている。この開放バルブ41の一方側は配管52を介してチャンバー21内の第3の処理室214に接続されており、開放バルブ41の他方側は配管に接続されている。開放バルブ41はある一定の圧力がかかるとガスが流れるようになっている。 The third processing chamber 214 in the chamber 21 is connected to a safety line. This safety line is for lowering the inside of the processing chamber to the atmospheric pressure when the inside of the third processing chamber 214 is excessively pressurized and exceeds a certain pressure. The safety line is provided with an open valve 41. One side of the open valve 41 is connected to the third processing chamber 214 in the chamber 21 via the pipe 52, and the other side of the open valve 41 is connected to the pipe. The release valve 41 is configured to allow gas to flow when a certain pressure is applied.
 また、チャンバー21内の第3の処理室214は大気開放ラインに接続されている。この大気開放ラインは、正常に加圧された第3の処理室214内を大気圧に戻すものである。大気開放ラインは開放バルブ42を備えている。この開放バルブ42の一方側は配管52を介してチャンバー21内の第3の処理室214に接続されており、開放バルブ42の他方側は配管に接続されている。開放バルブ42は、第3の処理室214内を大気圧に戻すために該第3の処理室214内のガスを徐々に流すようになっている。 In addition, the third processing chamber 214 in the chamber 21 is connected to the air release line. This atmospheric release line returns the inside of the third processing chamber 214 that has been normally pressurized to atmospheric pressure. The atmosphere opening line is provided with an opening valve 42. One side of the release valve 42 is connected to the third processing chamber 214 in the chamber 21 via the pipe 52, and the other side of the release valve 42 is connected to the pipe. The release valve 42 gradually allows the gas in the third processing chamber 214 to flow in order to return the inside of the third processing chamber 214 to atmospheric pressure.
 また、チャンバー21内の第3の処理室214は減圧状態から大気圧に戻すラインに接続されている。このラインは、第3の処理室214内が減圧状態(真空状態)となっている場合に、減圧状態から大気圧に戻すものである。前記ラインはリークバルブ43を備えている。このリークバルブ43の一方側は配管52を介してチャンバー21内の第3の処理室214に接続されており、リークバルブ43の他方側は配管を介して逆止弁44に接続されている。この逆止弁44は配管を介して窒素ガス供給源45に接続されている。つまり、前記ラインは、窒素ガス供給源45から逆止弁44、リークバルブ43を介して第3の処理室214内に窒素ガスを徐々に導入することにより処理室内を大気圧に戻すようになっている。 Further, the third processing chamber 214 in the chamber 21 is connected to a line for returning from the reduced pressure state to the atmospheric pressure. This line is used to return from the reduced pressure state to the atmospheric pressure when the inside of the third processing chamber 214 is in a reduced pressure state (vacuum state). The line includes a leak valve 43. One side of the leak valve 43 is connected to a third processing chamber 214 in the chamber 21 via a pipe 52, and the other side of the leak valve 43 is connected to a check valve 44 via a pipe. The check valve 44 is connected to a nitrogen gas supply source 45 through a pipe. In other words, the line returns the processing chamber to atmospheric pressure by gradually introducing nitrogen gas from the nitrogen gas supply source 45 into the third processing chamber 214 via the check valve 44 and the leak valve 43. ing.
 また、チャンバー21内の第3の処理室214は、該第3の処理室214内を減圧状態にするための真空排気ラインに接続されている。この真空排気ラインはバルブ69を有しており、このバルブ69の一端は配管を介して第3の処理室214に接続されている。バルブ69の他端は配管を介して真空ポンプ70に接続されている。この真空排気ラインは、例えば減圧雰囲気で加圧RTAを行う場合などに使用される。 The third processing chamber 214 in the chamber 21 is connected to a vacuum exhaust line for reducing the pressure in the third processing chamber 214. The evacuation line has a valve 69, and one end of the valve 69 is connected to the third processing chamber 214 via a pipe. The other end of the valve 69 is connected to the vacuum pump 70 via a pipe. This evacuation line is used, for example, when performing pressurized RTA in a reduced pressure atmosphere.
 第1及び第2の筐体26a,26b、透明管20内のランプヒータ19それぞれは配管を介してドライエアー供給源(図示せず)又は窒素ガス供給源(図示せず)に接続されている。ドライエアー供給源又は窒素ガス供給源からドライエアー又は窒素ガスを第1及び第2の筐体26a,26b内及び透明管20内に導入することにより、ランプヒータ19を冷却し、筐体内及び透明管20内に溜まる熱を前記排気ダクトから排気することができる。 The lamp heaters 19 in the first and second casings 26a and 26b and the transparent tube 20 are each connected to a dry air supply source (not shown) or a nitrogen gas supply source (not shown) via a pipe. . By introducing dry air or nitrogen gas from the dry air supply source or nitrogen gas supply source into the first and second casings 26a and 26b and the transparent tube 20, the lamp heater 19 is cooled, and the casing and transparent Heat accumulated in the tube 20 can be exhausted from the exhaust duct.
 加圧ライン12から導入されるアルゴンガス、酸素ガス及び窒素ガスそれぞれは、基板251の表面と略平行方向にシャワー状に分散させながら基板251上に供給されるようになっている。このウエハ上に供給されたガスは、基板251の表面と略平行方向に並べられた第2のシャワー状ガス通路(図示せず)から排気されるようになっている。詳細には、配管51は第1のシャワー状ガス通路(図示せず)に接続されており、配管52は第2のシャワー状ガス通路に接続されている。第1及び第2のシャワー状ガス通路はチャンバー21に形成されている。このようにガスをシャワー状に分散させながら流し、且つ第2のシャワー状ガス通路を通して排気することにより、基板251上に均一性よくガスを供給することが可能となる。 Argon gas, oxygen gas and nitrogen gas introduced from the pressurization line 12 are supplied onto the substrate 251 while being dispersed in a shower shape in a direction substantially parallel to the surface of the substrate 251. The gas supplied onto the wafer is exhausted from a second shower-like gas passage (not shown) arranged in a direction substantially parallel to the surface of the substrate 251. Specifically, the pipe 51 is connected to a first shower-like gas passage (not shown), and the pipe 52 is connected to a second shower-like gas passage. The first and second shower-like gas passages are formed in the chamber 21. In this manner, the gas can be supplied to the substrate 251 with good uniformity by flowing while dispersing the gas in a shower and exhausting through the second shower-like gas passage.
 チャンバー21の一方側にはゲートバルブ(図示せず)が配置されており、このゲートバルブの近傍にはウエハを搬送する搬送ロボット(図示せず)が配置されている。この搬送ロボットの近傍にはウエハを収容するカセット(図示せず)が配置されている。ゲートバルブを開いた状態で、チャンバー21内の第3の処理室214に基板251を搬送ロボットにより搬入、搬出するようになっている。 A gate valve (not shown) is arranged on one side of the chamber 21, and a transfer robot (not shown) for transferring a wafer is arranged near the gate valve. A cassette (not shown) for storing wafers is disposed in the vicinity of the transfer robot. With the gate valve opened, the substrate 251 is carried into and out of the third processing chamber 214 in the chamber 21 by a transfer robot.
 次に、上記加圧式ランプアニール装置を使用する方法について説明する。
 上記加圧式ランプアニール装置は、基板251に加圧アニール処理を行うことが可能である。
Next, a method of using the pressure type lamp annealing apparatus will be described.
The pressure-type lamp annealing apparatus can perform a pressure annealing process on the substrate 251.
 加圧アニール処理について説明する。
 チャンバーの第3の処理室214内を加圧雰囲気とする。詳細には、例えば加圧ライン12の酸素ガス供給源29から逆止弁15、フィルタ30、バルブ24、レギュレータ27、マスフローコントローラ32、バルブ35、加熱ユニット37、配管51を通して酸素ガスを第3の処理室214内に導入する。これと共に、圧力調整ラインの可変バルブ39を徐々に閉じていくことにより、第3の処理室214内を酸素雰囲気としながら徐々に加圧する。そして、第3の処理室214内は1MPa未満の所定の圧力まで加圧され、その圧力で維持される。次いで、ランプヒータ19から透明管20を通してランプ光を基板251に照射することにより、基板251に加圧酸素雰囲気でアニール処理が施される。
The pressure annealing process will be described.
The inside of the third treatment chamber 214 of the chamber is a pressurized atmosphere. Specifically, for example, oxygen gas is supplied from the oxygen gas supply source 29 of the pressurization line 12 through the check valve 15, the filter 30, the valve 24, the regulator 27, the mass flow controller 32, the valve 35, the heating unit 37, and the pipe 51. It is introduced into the processing chamber 214. At the same time, by gradually closing the variable valve 39 of the pressure adjustment line, the inside of the third processing chamber 214 is gradually pressurized while maintaining an oxygen atmosphere. The inside of the third processing chamber 214 is pressurized to a predetermined pressure of less than 1 MPa and is maintained at that pressure. Next, the substrate 251 is annealed in a pressurized oxygen atmosphere by irradiating the substrate 251 with lamp light from the lamp heater 19 through the transparent tube 20.
 図7は、図1に示す第2の処理室213の構造の詳細を模式的に示す断面図であり、第3のステージ243に保持された基板251にスパッタリングによりPb(Zr,Ti)O膜(PZT膜ともいう。)を成膜するスパッタリング装置である。チャンバー401内には基板251を保持する第3のステージ243が配置されており、基板251は第3のゲートバルブ224を通して搬送される。基板251の下にはハロゲンランプヒータ402が配置されており、このハロゲンランプヒータ402によって基板251が加熱されるようになっている。ハロゲンランプヒータ402にはヒータ電源及び温調器403が接続されている。また、基板251の温度を測定する放射温度計410をスパッタリング装置は備えている。 FIG. 7 is a cross-sectional view schematically showing details of the structure of the second processing chamber 213 shown in FIG. 1, and Pb (Zr, Ti) O 3 is sputtered onto the substrate 251 held on the third stage 243. A sputtering apparatus forms a film (also referred to as a PZT film). A third stage 243 that holds the substrate 251 is disposed in the chamber 401, and the substrate 251 is transported through the third gate valve 224. A halogen lamp heater 402 is disposed under the substrate 251, and the substrate 251 is heated by the halogen lamp heater 402. A heater power supply and temperature controller 403 is connected to the halogen lamp heater 402. Further, the sputtering apparatus includes a radiation thermometer 410 that measures the temperature of the substrate 251.
 基板251の上方にはロータリーマグネットカソードが配置されており、ロータリーマグネットカソードはスパッタリングターゲット411を有する。スパッタリングターゲット411にはパルス状のRF(高周波)412がマッチングボックスMBを通して供給されるようになっている。スパッタリングターゲット411と基板251との間にはシャッター408が配置されている。シャッター408は駆動部409によって開閉可能に構成されている。また、チャンバー401内にArガスを導入するガス導入機構がチャンバー301に取り付けられている。また、チャンバー401内にOガスを導入するガス導入機構がチャンバー401に取り付けられている。 A rotary magnet cathode is disposed above the substrate 251, and the rotary magnet cathode has a sputtering target 411. Pulsed RF (high frequency) 412 is supplied to the sputtering target 411 through the matching box MB. A shutter 408 is disposed between the sputtering target 411 and the substrate 251. The shutter 408 is configured to be opened and closed by a drive unit 409. A gas introduction mechanism for introducing Ar gas into the chamber 401 is attached to the chamber 301. A gas introduction mechanism for introducing O 2 gas into the chamber 401 is attached to the chamber 401.
 次に、図1の処理装置を用いて図8に示す膜を成膜する方法について説明する。なお、基板はSi基板を用いる。Si基板251にはSiの自然酸化膜501が数nm形成されている。 Next, a method for forming the film shown in FIG. 8 using the processing apparatus of FIG. 1 will be described. Note that a Si substrate is used as the substrate. A Si natural oxide film 501 is formed on the Si substrate 251 by several nm.
 図1に示す大気搬送システム211内のSi基板251を、ゲートバルブ221を開いて第1の受渡室231に搬送し、第1の受渡室231内の第1のステージ241に保持する。そして、ゲートバルブ221を閉じる。次いで、第1の受渡室231内を真空排気する。第1~第3の搬送室261~263、第2の受渡室232及び第3の受渡室233それぞれの内部も真空排気する。 The Si substrate 251 in the atmospheric transfer system 211 shown in FIG. 1 is transferred to the first delivery chamber 231 by opening the gate valve 221, and held on the first stage 241 in the first delivery chamber 231. Then, the gate valve 221 is closed. Next, the inside of the first delivery chamber 231 is evacuated. The insides of the first to third transfer chambers 261 to 263, the second delivery chamber 232, and the third delivery chamber 233 are also evacuated.
 次いで、第1のゲートバルブ222及び第2のゲートバルブ223を開き、第1の搬送ロボット261aにより第1の受渡室231内の第1のステージ241上の基板251を第1の処理室212内の第2のステージ242上に搬送する。そして、第1及び第2のゲートバルブ222,223を閉じる。 Next, the first gate valve 222 and the second gate valve 223 are opened, and the substrate 251 on the first stage 241 in the first delivery chamber 231 is moved into the first processing chamber 212 by the first transfer robot 261a. The second stage 242 is conveyed. Then, the first and second gate valves 222 and 223 are closed.
 次に、第1の処理室212の図3に示すデポアップ方式の蒸着装置により自然酸化膜501上にZr膜を37.5nmの膜厚で成膜する。この際の成膜時間は12.5分である。なお、この成膜時間と基板の搬送等の時間との合計は30分程度である。 Next, a Zr film having a thickness of 37.5 nm is formed on the natural oxide film 501 by a deposition apparatus of the deposition type shown in FIG. The film formation time at this time is 12.5 minutes. The total of the film formation time and the time for transporting the substrate is about 30 minutes.
 次いで、第2のゲートバルブ223及び第4のゲートバルブ225を開き、第1の搬送ロボット261aにより第1の処理室212内の第2のステージ242上の基板251を第2の受渡室232内の第4のステージ244上に搬送する。次いで、第2の搬送ロボット262aにより第2の受渡室232内の第4のステージ244上の基板251を第3の処理室214内の第5のステージ245に搬送する。そして、第2及び第4のゲートバルブ223,225を閉じる。 Next, the second gate valve 223 and the fourth gate valve 225 are opened, and the substrate 251 on the second stage 242 in the first processing chamber 212 is moved into the second delivery chamber 232 by the first transfer robot 261a. The fourth stage 244 is conveyed. Next, the substrate 251 on the fourth stage 244 in the second delivery chamber 232 is transferred to the fifth stage 245 in the third processing chamber 214 by the second transfer robot 262a. Then, the second and fourth gate valves 223 and 225 are closed.
 次に、図4~図6に示すデポアップ方式の加圧式ランプアニール装置により基板251上のZr膜に加圧酸素雰囲気でランプ光を照射することで、Zr膜の一部を酸化させ、Zr膜とZrO膜の積層膜を形成する。これにより、図8に示すように、自然酸化膜501上に膜厚が約3nmのZr膜502が形成され、Zr膜502上に膜厚が約47nmのZrO膜503が形成される。なお、基板の搬送と加圧式ランプアニール処理の合計時間は11分程度である。従って、ZrO膜503まで形成する工程の合計時間は41分程度となる。 Next, by irradiating the Zr film on the substrate 251 with lamp light in a pressurized oxygen atmosphere by the depot up type pressurization lamp annealing apparatus shown in FIGS. 4 to 6, a part of the Zr film is oxidized, and the Zr film And a ZrO 2 film are formed. As a result, as shown in FIG. 8, a Zr film 502 having a thickness of about 3 nm is formed on the natural oxide film 501, and a ZrO 2 film 503 having a thickness of about 47 nm is formed on the Zr film 502. Note that the total time for substrate transport and pressure lamp annealing is about 11 minutes. Therefore, the total time for forming the ZrO 2 film 503 is about 41 minutes.
 上記のZrO膜503まで形成する工程を、加圧式ランプアニール装置を用いずに、図3に示す蒸着装置のみで形成することも可能であるが、その場合、処理時間が格段に長くなってしまう。詳細には、図3に示す蒸着装置でZrO膜503を成膜する場合は、チャンバー内にOガスを導入し、Zrの蒸着物を生成しながらZrOを合成してZr膜502上に堆積させるため、ZrO膜の成膜レートが低くなり、その結果、処理時間が長くなる。従って、ZrO膜まで形成する工程の合計時間は60分程度となり、加圧式ランプアニール装置を用いた場合より19分程度長くなる。 It is possible to form the process up to the ZrO 2 film 503 by using only the vapor deposition apparatus shown in FIG. 3 without using a pressure-type lamp annealing apparatus. In this case, however, the processing time becomes remarkably long. End up. Specifically, when the ZrO 2 film 503 is formed by the vapor deposition apparatus shown in FIG. 3, an O 2 gas is introduced into the chamber, and ZrO 2 is synthesized while producing a Zr vapor deposition product on the Zr film 502. Therefore, the deposition rate of the ZrO 2 film is lowered, and as a result, the processing time is lengthened. Accordingly, the total time for forming the ZrO 2 film is about 60 minutes, which is about 19 minutes longer than when the pressure type lamp annealing apparatus is used.
 この後、第4のゲートバルブ225及び第6のゲートバルブ227を開き、第2の搬送ロボット262aにより第3の処理室214内の第5のステージ245上の基板251を第3の受渡室233内の第7のステージ247上に搬送する。次いで、第3の搬送ロボット263aにより第3の受渡室233内の第7のステージ247上の基板251を第5の処理室216内の第8のステージ248に搬送する。そして、第4及び第6のゲートバルブ225,227を閉じる。 Thereafter, the fourth gate valve 225 and the sixth gate valve 227 are opened, and the substrate 251 on the fifth stage 245 in the third processing chamber 214 is transferred to the third delivery chamber 233 by the second transfer robot 262a. It is conveyed onto the seventh stage 247 in the inside. Next, the substrate 251 on the seventh stage 247 in the third delivery chamber 233 is transferred to the eighth stage 248 in the fifth processing chamber 216 by the third transfer robot 263a. Then, the fourth and sixth gate valves 225 and 227 are closed.
 次いで、第5の処理室216内で第8のステージ248上に保持された基板251を反転させる。 Next, the substrate 251 held on the eighth stage 248 is inverted in the fifth processing chamber 216.
 この後、第6のゲートバルブ227及び第7のゲートバルブ228を開き、第3の搬送ロボット263aにより第5の処理室216内の第8のステージ248上の基板251を第3の受渡室233内の第7のステージ247上に搬送する。次いで、第3の搬送ロボット263aにより第3の受渡室233内の第7のステージ247上の基板251を第6の処理室217内の第9のステージ249に搬送する。そして、第6及び第7のゲートバルブ227,228を閉じる。
 なお、本実施の形態では、上記のように一旦第7のステージ247に基板251を搬送してから第9のステージ249に搬送しているが、第6の処理室217で別の基板の処理が終了していて第6の処理室217が空いている場合は、基板251を第8のステージ248から第9のステージ249に直接搬送してもよい。
Thereafter, the sixth gate valve 227 and the seventh gate valve 228 are opened, and the substrate 251 on the eighth stage 248 in the fifth processing chamber 216 is transferred to the third delivery chamber 233 by the third transfer robot 263a. It is conveyed onto the seventh stage 247 in the inside. Next, the substrate 251 on the seventh stage 247 in the third delivery chamber 233 is transferred to the ninth stage 249 in the sixth processing chamber 217 by the third transfer robot 263a. Then, the sixth and seventh gate valves 227 and 228 are closed.
Note that in this embodiment mode, the substrate 251 is once transferred to the seventh stage 247 and then transferred to the ninth stage 249 as described above, but another substrate is processed in the sixth processing chamber 217. Is completed and the sixth processing chamber 217 is empty, the substrate 251 may be directly transferred from the eighth stage 248 to the ninth stage 249.
 次に、第6の処理室217のデポダウン方式のDCスパッタリング装置によりZrO膜503上にPt膜504を150nmの膜厚で成膜する。この際の成膜温度は650℃程度である。 Next, a Pt film 504 is formed to a thickness of 150 nm on the ZrO 2 film 503 by using a deposition down type DC sputtering apparatus in the sixth processing chamber 217. The film forming temperature at this time is about 650 ° C.
 この後、第7のゲートバルブ228を開き、第3の搬送ロボット263aにより第6の処理室217内の第9のステージ249上の基板251を第3の受渡室233内の第7のステージ247上に搬送する。そして、第7のゲートバルブ228を閉じる。 Thereafter, the seventh gate valve 228 is opened, and the substrate 251 on the ninth stage 249 in the sixth processing chamber 217 is transferred to the seventh stage 247 in the third delivery chamber 233 by the third transfer robot 263a. Carry up. Then, the seventh gate valve 228 is closed.
 次に、第3の受渡室233内の図2に示すランプヒータ201により450℃程度の温度で熱処理を行う。 Next, heat treatment is performed at a temperature of about 450 ° C. by the lamp heater 201 shown in FIG. 2 in the third delivery chamber 233.
 この後、第5のゲートバルブ226を開き、第2の搬送ロボット262aにより第3の受渡室233内の第7のステージ247上の基板251を第4の処理室215内の第6のステージ246上に搬送する。そして、第5のゲートバルブ226を閉じる。 Thereafter, the fifth gate valve 226 is opened, and the substrate 251 on the seventh stage 247 in the third delivery chamber 233 is transferred to the sixth stage 246 in the fourth processing chamber 215 by the second transfer robot 262a. Carry up. Then, the fifth gate valve 226 is closed.
 次に、第4の処理室215のデポダウン方式のRFスパッタリング装置によりPt膜504上にSrRuO膜(SRO膜)505を7nm程度の膜厚で成膜する。 Next, an SrRuO 3 film (SRO film) 505 is formed to a thickness of about 7 nm on the Pt film 504 by a deposition down type RF sputtering apparatus in the fourth processing chamber 215.
 この後、第3のゲートバルブ224及び第5のゲートバルブ226を開き、第2の搬送ロボット262aにより第4の処理室215内の第6のステージ246上の基板251を第2の受渡室232内の第4のステージ244上に搬送する。次いで、第1の搬送ロボット261aにより第2の受渡室232内の第4のステージ244上の基板251を第2の処理室213内の第3のステージ243に搬送する。そして、第3及び第5のゲートバルブ224,226を閉じる。 Thereafter, the third gate valve 224 and the fifth gate valve 226 are opened, and the substrate 251 on the sixth stage 246 in the fourth processing chamber 215 is transferred to the second delivery chamber 232 by the second transfer robot 262a. It is conveyed onto the fourth stage 244 in the inside. Next, the substrate 251 on the fourth stage 244 in the second delivery chamber 232 is transferred to the third stage 243 in the second processing chamber 213 by the first transfer robot 261a. Then, the third and fifth gate valves 224 and 226 are closed.
 次に、第2の処理室213の図7に示すデポダウン方式のスパッタリング装置によりSRO膜505上にPZT膜506を1000nmの膜厚で成膜する。
 なお、第1~第9のステージ241~249それぞれは、基板を保持する機構を有するものであれば、テーブル状のステージに限定されるものではなく、種々のステージを用いることが可能であり、例えば、図2に示すようなピン上に保持するものでもよい。
Next, a PZT film 506 is formed to a thickness of 1000 nm on the SRO film 505 by the deposition down type sputtering apparatus shown in FIG. 7 in the second treatment chamber 213.
Each of the first to ninth stages 241 to 249 is not limited to a table-like stage as long as it has a mechanism for holding a substrate, and various stages can be used. For example, it may be held on a pin as shown in FIG.
  8  フッ化カルシウム
  9  放射温度計
 12  加圧ライン
 13  アルゴンガス供給源
 14~16 逆止弁
 17 フィルタ
 18  溝
 19  ランプヒータ
 20  透明管
 20a 透明管の一方端
 20b 透明管の他方端
 21  チャンバー
 21a チャンバーの内表面
 21b 上部内壁
 24  バルブ
 26a 第1の筐体
 26b 第2の筐体
 27  レギュレータ
 28  Oリング
 29  酸素ガス供給源
 30  フィルタ
 31~33 マスフローコントローラ
 34~36 バルブ
 37  加熱ユニット
 38  窒素ガス供給源
 39  可変バルブ
 40  圧力計
 41,42 開放バルブ
 43  リークバルブ
 44  逆止弁
 45  窒素ガス供給源
 46a フィルタ
 47~49 圧力計
 50  バルブ
 51,52 配管
 53,54 レギュレータ
 53a,69 バルブ
 70  真空ポンプ
201,202 ランプヒータ
211  大気搬送システム
211a 扉
211b チャンバー
212  第1の処理室
213  第2の処理室
214  第3の処理室
215  第4の処理室
216  第5の処理室
217  第6の処理室
221  ゲートバルブ
222  第1のゲートバルブ
223  第2のゲートバルブ
224  第3のゲートバルブ
225  第4のゲートバルブ
226  第5のゲートバルブ
227  第6のゲートバルブ
228  第7のゲートバルブ
231  第1の受渡室
232  第2の受渡室
233  第3の受渡室
233a チャンバー
241  第1のステージ
242  第2のステージ
243  第3のステージ
244  第4のステージ
245  第5のステージ
246  第6のステージ
247  第7のステージ
247a 第12のステージ
247b 矢印
248  第8のステージ
249  第9のステージ
251,251a 基板
261  第1の搬送室
261a 第1の搬送ロボット
262  第2の搬送室
262a 第2の搬送ロボット
262b 第2の搬送ロボットの搬送アーム
262c 矢印
263  第3の搬送室
263a 第3の搬送ロボット
263b 第3の搬送ロボットの搬送アーム
263c 矢印
271  第1の開口
272  第2の開口
273  第3の開口
274  第4の開口
275  第5の開口
301  チャンバー
302  ハロゲンランプヒータ
303  ヒータ電源及び温調器
304  ロータリーセンサー式膜厚モニター
305  クリスタル4枚切替部
306  EBガン
307  蒸着源
308  シャッター
309  駆動部
310  扉
311  オペレータ
401  チャンバー
402  ハロゲンランプヒータ
403  ヒータ電源及び温調器
408  シャッター
409  駆動部
410  放射温度計
411  スパッタリングターゲット
412  パルス状のRF(高周波)
501  Siの自然酸化膜
502  Zr膜
503  ZrO
504  Pt膜
505  SrRuO膜(SRO膜)
506  PZT膜
8 Calcium fluoride 9 Radiation thermometer 12 Pressurization line 13 Argon gas supply source 14-16 Check valve 17 Filter 18 Groove 19 Lamp heater 20 Transparent tube 20a One end of the transparent tube 20b The other end of the transparent tube 21 Chamber 21a Inner surface 21b Upper inner wall 24 Valve 26a First housing 26b Second housing 27 Regulator 28 O-ring 29 Oxygen gas supply source 30 Filter 31 to 33 Mass flow controller 34 to 36 Valve 37 Heating unit 38 Nitrogen gas supply source 39 Variable Valve 40 Pressure gauge 41, 42 Open valve 43 Leak valve 44 Check valve 45 Nitrogen gas supply source 46a Filter 47-49 Pressure gauge 50 Valve 51, 52 Piping 53, 54 Regulator 53a, 69 Valve 70 Vacuum pump 20 , 202 Lamp heater 211 Atmospheric transfer system 211a Door 211b Chamber 212 First processing chamber 213 Second processing chamber 214 Third processing chamber 215 Fourth processing chamber 216 Fifth processing chamber 217 Sixth processing chamber 221 Gate Valve 222 first gate valve 223 second gate valve 224 third gate valve 225 fourth gate valve 226 fifth gate valve 227 sixth gate valve 228 seventh gate valve 231 first delivery chamber 232 Second delivery chamber 233 Third delivery chamber 233a Chamber 241 First stage 242 Second stage 243 Third stage 244 Fourth stage 245 Fifth stage 246 Sixth stage 247 Seventh stage 247a Second 12 stages 247b arrow 248 8th stage 249 Ninth stage 251, 251a Substrate 261 First transfer chamber 261a First transfer robot 262 Second transfer chamber 262a Second transfer robot 262b Transfer arm 262c of second transfer robot Arrow 263 Third Transfer chamber 263a Third transfer robot 263b Transfer arm 263c of third transfer robot Arrow 271 First opening 272 Second opening 273 Third opening 274 Fourth opening 275 Fifth opening 301 Chamber 302 Halogen lamp heater 303 Heater power source and temperature controller 304 Rotary sensor type film thickness monitor 305 Crystal four-sheet switching unit 306 EB gun 307 Deposition source 308 Shutter 309 Drive unit 310 Door 311 Operator 401 Chamber 402 Halogen lamp heater 403 Heater power source and temperature Adjuster 408 Shutter 409 Drive unit 410 Radiation thermometer 411 Sputtering target 412 Pulsed RF (high frequency)
501 Si natural oxide film 502 Zr film 503 ZrO 2 film 504 Pt film 505 SrRuO 3 film (SRO film)
506 PZT film

Claims (10)

  1.  第1の受渡室と、
     前記第1の受渡室内に配置され、基板を保持する第1のステージと、
     前記第1の受渡室に第1のゲートバルブを介して接続された第1の搬送室と、
     前記第1の搬送室内に配置された第1の搬送ロボットと、
     前記第1の搬送室に第2のゲートバルブを介して接続された第1の処理室と、
     前記第1の処理室内に配置され、前記基板を保持する第2のステージと、
     前記第1の搬送室に第3のゲートバルブを介して接続された第2の処理室と、
     前記第2の処理室内に配置され、前記基板を保持する第3のステージと、
     前記第1の搬送室に第1の開口を介して接続された第2の受渡室と、
     前記第2の受渡室内に配置され、前記基板を保持する第4のステージと、
     前記第2の受渡室に第2の開口を介して接続された第2の搬送室と、
     前記第2の搬送室内に配置された第2の搬送ロボットと、
     前記第2の搬送室に第4のゲートバルブを介して接続された第3の処理室と、
     前記第3の処理室内に配置され、前記基板を保持する第5のステージと、
     前記第2の搬送室に第5のゲートバルブを介して接続された第4の処理室と、
     前記第4の処理室内に配置され、前記基板を保持する第6のステージと、
     前記第2の搬送室に第3の開口を介して接続された第3の受渡室と、
     前記第3の受渡室内に配置され、前記基板を保持する第7のステージと、
     前記第3の受渡室に第4の開口を介して接続された第3の搬送室と、
     前記第3の搬送室内に配置された第3の搬送ロボットと、
     前記第3の搬送室に第6のゲートバルブを介して接続された第5の処理室と、
     前記第5の処理室内に配置され、前記基板を保持する第8のステージと、
     前記第3の搬送室に第7のゲートバルブを介して接続された第6の処理室と、
     前記第6の処理室内に配置され、前記基板を保持する第9のステージと、
    を具備し、
     前記第1の搬送ロボットは、前記第1のステージと前記第2のステージの間、前記第2のステージと前記第4のステージの間、前記第4のステージと前記第3のステージの間、前記第3のステージと前記第1のステージの間で前記基板を搬送する機能を有し、
     前記第2の搬送ロボットは、前記第4のステージと前記第5のステージの間、前記第5のステージと前記第7のステージの間、前記第7のステージと前記第6のステージの間、前記第6のステージと前記第4のステージの間で前記基板を搬送する機能を有し、
     前記第3の搬送ロボットは、前記第7のステージと前記第8のステージの間、前記第8のステージと前記第9のステージの間、前記第9のステージと前記第7のステージの間で前記基板を搬送する機能を有することを特徴とする処理装置。
    A first delivery room;
    A first stage disposed in the first delivery chamber and holding a substrate;
    A first transfer chamber connected to the first delivery chamber via a first gate valve;
    A first transfer robot disposed in the first transfer chamber;
    A first processing chamber connected to the first transfer chamber via a second gate valve;
    A second stage disposed in the first processing chamber and holding the substrate;
    A second processing chamber connected to the first transfer chamber via a third gate valve;
    A third stage disposed in the second processing chamber and holding the substrate;
    A second delivery chamber connected to the first transfer chamber via a first opening;
    A fourth stage disposed in the second delivery chamber and holding the substrate;
    A second transfer chamber connected to the second delivery chamber via a second opening;
    A second transfer robot disposed in the second transfer chamber;
    A third processing chamber connected to the second transfer chamber via a fourth gate valve;
    A fifth stage disposed in the third processing chamber and holding the substrate;
    A fourth processing chamber connected to the second transfer chamber via a fifth gate valve;
    A sixth stage disposed in the fourth processing chamber and holding the substrate;
    A third delivery chamber connected to the second transfer chamber via a third opening;
    A seventh stage disposed in the third delivery chamber and holding the substrate;
    A third transfer chamber connected to the third delivery chamber via a fourth opening;
    A third transfer robot disposed in the third transfer chamber;
    A fifth processing chamber connected to the third transfer chamber via a sixth gate valve;
    An eighth stage disposed in the fifth processing chamber and holding the substrate;
    A sixth treatment chamber connected to the third transfer chamber via a seventh gate valve;
    A ninth stage disposed in the sixth processing chamber and holding the substrate;
    Comprising
    The first transfer robot is between the first stage and the second stage, between the second stage and the fourth stage, between the fourth stage and the third stage, Having a function of transporting the substrate between the third stage and the first stage;
    The second transfer robot is between the fourth stage and the fifth stage, between the fifth stage and the seventh stage, between the seventh stage and the sixth stage, Having a function of transporting the substrate between the sixth stage and the fourth stage;
    The third transfer robot is provided between the seventh stage and the eighth stage, between the eighth stage and the ninth stage, and between the ninth stage and the seventh stage. A processing apparatus having a function of transporting the substrate.
  2.  請求項1において、
     前記第1の受渡室内に配置され、前記基板を保持する第10のステージと、
     前記第2の受渡室内に配置され、前記基板を保持する第11のステージと、
     前記第3の受渡室内に配置され、前記基板を保持する第12のステージと、
    を有することを特徴とする処理装置。
    In claim 1,
    A tenth stage disposed in the first delivery chamber and holding the substrate;
    An eleventh stage disposed in the second delivery chamber and holding the substrate;
    A twelfth stage disposed in the third delivery chamber and holding the substrate;
    A processing apparatus comprising:
  3.  請求項1または2において、
     前記第1の受渡室、前記第2の受渡室及び前記第3の受渡室の少なくとも一つに配置された前記基板を加熱するヒータを有することを特徴とする処理装置。
    In claim 1 or 2,
    A processing apparatus comprising a heater for heating the substrate disposed in at least one of the first delivery chamber, the second delivery chamber, and the third delivery chamber.
  4.  請求項1乃至3のいずれか一項において、
     前記第1の処理室は、前記第2のステージに保持された前記基板に蒸着法により膜を成膜する処理室であることを特徴とする処理装置。
    In any one of Claims 1 thru | or 3,
    The processing apparatus, wherein the first processing chamber is a processing chamber for forming a film by vapor deposition on the substrate held by the second stage.
  5.  請求項4において、
     前記第1の処理室と前記第3の処理室の間の距離は500mm以下であり、
     前記第3の処理室と前記第5の処理室の間の距離は500mm以下であり、
     前記第2の処理室と前記第4の処理室の間の距離は500mm以下であり、
     前記第4の処理室と前記第6の処理室の間の距離は500mm以下であることを特徴とする処理装置。
    In claim 4,
    The distance between the first processing chamber and the third processing chamber is 500 mm or less,
    The distance between the third processing chamber and the fifth processing chamber is 500 mm or less,
    The distance between the second processing chamber and the fourth processing chamber is 500 mm or less,
    The processing apparatus characterized in that a distance between the fourth processing chamber and the sixth processing chamber is 500 mm or less.
  6.  請求項4または5において、
     前記第3の処理室内に加圧されたガスを導入するガス導入機構と、
     前記第3の処理室内のガスを排気するガス排気機構と、
     前記第5のステージに保持された前記基板にランプ光を照射するランプヒータと、
    を具備することを特徴とする処理装置。
    In claim 4 or 5,
    A gas introduction mechanism for introducing pressurized gas into the third processing chamber;
    A gas exhaust mechanism for exhausting the gas in the third processing chamber;
    A lamp heater for irradiating the substrate held on the fifth stage with lamp light;
    A processing apparatus comprising:
  7.  請求項6において、
     前記第1の処理室で成膜される前記膜はZr膜であり、
     前記第3の処理室内に導入される前記ガスは酸素であり、
     前記第5の処理室は、前記第8のステージに保持された前記基板を反転させる機構を有し、
     前記第6の処理室は、前記第9のステージに保持された前記基板にスパッタリングによりPt膜を成膜する処理室であり、
     前記第3の受渡室に配置された前記基板を加熱するヒータを有し、
     前記第4の処理室は、前記第6のステージに保持された前記基板にスパッタリングによりSRO膜を成膜する処理室であり、
     前記第2の処理室は、前記第3のステージに保持された前記基板にスパッタリングによりPZT膜を成膜する処理室であることを特徴とする処理装置。
    In claim 6,
    The film formed in the first processing chamber is a Zr film;
    The gas introduced into the third processing chamber is oxygen;
    The fifth processing chamber has a mechanism for inverting the substrate held on the eighth stage,
    The sixth processing chamber is a processing chamber for forming a Pt film on the substrate held on the ninth stage by sputtering,
    A heater for heating the substrate disposed in the third delivery chamber;
    The fourth processing chamber is a processing chamber for forming an SRO film on the substrate held on the sixth stage by sputtering,
    The processing apparatus is characterized in that the second processing chamber is a processing chamber for forming a PZT film on the substrate held by the third stage by sputtering.
  8.  請求項7において、
     前記第1の処理室内で前記第2のステージに保持された前記基板上にZr膜が成膜され、
     前記第3の処理室内で加圧酸素雰囲気により前記Zr膜に前記ランプ光を照射することで、前記Zr膜の一部を酸化させ、Zr膜とZrO膜の積層膜を形成することを特徴とする処理装置。
    In claim 7,
    A Zr film is formed on the substrate held on the second stage in the first processing chamber,
    By irradiating the Zr film with the lamp light in a pressurized oxygen atmosphere in the third processing chamber, a part of the Zr film is oxidized to form a stacked film of the Zr film and the ZrO 2 film. A processing device.
  9.  請求項1乃至8のいずれか一項において、
     前記第3の搬送室には第5の開口が形成され、前記第5の開口が蓋により塞がれていることを特徴とする処理装置。
    In any one of Claims 1 thru | or 8,
    A processing apparatus, wherein a fifth opening is formed in the third transfer chamber, and the fifth opening is closed by a lid.
  10.  第3の処理室と、
     前記第3の処理室内に配置され、Zr膜が成膜された基板を保持する第5のステージと、
     前記第3の処理室内に加圧された酸素ガスを導入するガス導入機構と、
     前記第3の処理室内のガスを排気するガス排気機構と、
     前記第5のステージに保持された前記基板にランプ光を照射するランプヒータと、
    を具備し、
     加圧酸素雰囲気で前記Zr膜に前記ランプ光を照射することで、前記Zr膜の一部を酸化させ、Zr膜とZrO膜の積層膜を形成することを特徴とする処理装置。
    A third processing chamber;
    A fifth stage disposed in the third processing chamber and holding a substrate on which a Zr film is formed;
    A gas introduction mechanism for introducing pressurized oxygen gas into the third processing chamber;
    A gas exhaust mechanism for exhausting the gas in the third processing chamber;
    A lamp heater for irradiating the substrate held on the fifth stage with lamp light;
    Comprising
    A processing apparatus, wherein the Zr film is irradiated with the lamp light in a pressurized oxygen atmosphere to oxidize a part of the Zr film to form a laminated film of a Zr film and a ZrO 2 film.
PCT/JP2017/020169 2017-05-31 2017-05-31 Processing device WO2018220731A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/020169 WO2018220731A1 (en) 2017-05-31 2017-05-31 Processing device
JP2019521584A JPWO2018220731A1 (en) 2017-05-31 2017-05-31 Processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020169 WO2018220731A1 (en) 2017-05-31 2017-05-31 Processing device

Publications (1)

Publication Number Publication Date
WO2018220731A1 true WO2018220731A1 (en) 2018-12-06

Family

ID=64455733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020169 WO2018220731A1 (en) 2017-05-31 2017-05-31 Processing device

Country Status (2)

Country Link
JP (1) JPWO2018220731A1 (en)
WO (1) WO2018220731A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114641589A (en) * 2019-10-28 2022-06-17 应用材料公司 Idle shield, deposition apparatus, deposition system and methods of assembly and operation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314729A (en) * 1993-04-28 1994-11-08 Tel Varian Ltd Vacuum processing apparatus
JP2001077102A (en) * 1999-09-01 2001-03-23 Matsushita Electric Ind Co Ltd Dielectric film and forming method therefor
WO2007013424A1 (en) * 2005-07-25 2007-02-01 Canon Anelva Corporation Vacuum processing apparatus, semiconductor device manufacturing method and semiconductor device manufacturing system
JP2011176028A (en) * 2010-02-23 2011-09-08 Utec:Kk Pressurizing-type lamp annealing device, method for manufacturing thin film, and method for using pressurizing-type lamp annealing device
JP2012069707A (en) * 2010-09-22 2012-04-05 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2015025166A (en) * 2013-07-25 2015-02-05 株式会社ユーテック Crystal film, production method of crystal film, vapor deposition apparatus and multichamber device
JP2015204544A (en) * 2014-04-15 2015-11-16 セイコーエプソン株式会社 Mems element, method of manufacturing mems element, and electronic apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314729A (en) * 1993-04-28 1994-11-08 Tel Varian Ltd Vacuum processing apparatus
JP2001077102A (en) * 1999-09-01 2001-03-23 Matsushita Electric Ind Co Ltd Dielectric film and forming method therefor
WO2007013424A1 (en) * 2005-07-25 2007-02-01 Canon Anelva Corporation Vacuum processing apparatus, semiconductor device manufacturing method and semiconductor device manufacturing system
JP2011176028A (en) * 2010-02-23 2011-09-08 Utec:Kk Pressurizing-type lamp annealing device, method for manufacturing thin film, and method for using pressurizing-type lamp annealing device
JP2012069707A (en) * 2010-09-22 2012-04-05 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2015025166A (en) * 2013-07-25 2015-02-05 株式会社ユーテック Crystal film, production method of crystal film, vapor deposition apparatus and multichamber device
JP2015204544A (en) * 2014-04-15 2015-11-16 セイコーエプソン株式会社 Mems element, method of manufacturing mems element, and electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114641589A (en) * 2019-10-28 2022-06-17 应用材料公司 Idle shield, deposition apparatus, deposition system and methods of assembly and operation
JP2023501929A (en) * 2019-10-28 2023-01-20 アプライド マテリアルズ インコーポレイテッド Idle Shield, Deposition Apparatus, Deposition System, and Methods of Assembling and Operating
JP7439253B2 (en) 2019-10-28 2024-02-27 アプライド マテリアルズ インコーポレイテッド Idle Shield, Deposition Apparatus, Deposition System, and Methods of Assembling and Operating

Also Published As

Publication number Publication date
JPWO2018220731A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
JP4729035B2 (en) Pressurized lamp annealing system
JP5410174B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing system
KR101177366B1 (en) Method of manufacturing semiconductor device and substrate processing apparatus
TWI258806B (en) Silicon film forming equipment
WO1996025760A1 (en) Method and device for manufacturing semiconductor
KR20080075202A (en) Vacuum treating device and vacuum treating method
CN106920760B (en) Substrate processing apparatus and method for manufacturing semiconductor device
US20140087567A1 (en) Substrate processing apparatus and method of manufacturing semiconductor device
KR20140000265A (en) Load lock device
WO2011135731A1 (en) Substrate processing apparatus and method for manufacturing thin film
KR101096601B1 (en) Substrate processing apparatus
WO2016013401A1 (en) Semiconductor manufacturing device, and method of manufacturing semiconductor
JP2007149948A (en) Vacuum treatment device
CN109314071B (en) Dodecagon transfer chamber and processing system with same
US20160053377A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and substrate processing method
JPH07142391A (en) Method of processing
WO2011104904A1 (en) Pressurizing-type lamp annealing device, method for producing thin film, and method for using pressurizing-type lamp annealing device
WO2018220731A1 (en) Processing device
TWI794773B (en) Manufacturing method of semiconductor device, substrate processing apparatus, program, and substrate processing method
KR20230033558A (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
KR20210066017A (en) Spatial wafer processing with improved temperature uniformity
WO2018150536A1 (en) Substrate processing device, semiconductor device manufacturing method, and program
JP5366157B2 (en) Pressurized lamp annealing system
JP2012064857A (en) Semiconductor device manufacturing method and substrate processing apparatus
JP2010212391A (en) Method of manufacturing semiconductor device and substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521584

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911719

Country of ref document: EP

Kind code of ref document: A1