WO2018219002A1 - Mems地面大气电场传感器 - Google Patents

Mems地面大气电场传感器 Download PDF

Info

Publication number
WO2018219002A1
WO2018219002A1 PCT/CN2018/077780 CN2018077780W WO2018219002A1 WO 2018219002 A1 WO2018219002 A1 WO 2018219002A1 CN 2018077780 W CN2018077780 W CN 2018077780W WO 2018219002 A1 WO2018219002 A1 WO 2018219002A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
mems
cavity
field sensor
sensor according
Prior art date
Application number
PCT/CN2018/077780
Other languages
English (en)
French (fr)
Inventor
杨鹏飞
彭春荣
夏善红
刘宇涛
吴双
Original Assignee
北京中科飞龙传感技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中科飞龙传感技术有限责任公司 filed Critical 北京中科飞龙传感技术有限责任公司
Priority to EP18714420.9A priority Critical patent/EP3441776B1/en
Publication of WO2018219002A1 publication Critical patent/WO2018219002A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/16Measuring atmospheric potential differences, e.g. due to electrical charges in clouds

Definitions

  • the present invention relates to the field of sensor technologies, and in particular, to a MEMS ground atmospheric electric field sensor.
  • Thunder and lightning disasters are one of the top ten natural disasters announced by the United Nations. According to incomplete statistics, thousands of casualties caused by lightning strikes each year in China and huge property losses. Lightning is also an important weather factor that directly affects the success or failure of aerospace launches. In spacecraft launch specifications, atmospheric electric field strength has been listed as one of the main conditions for spacecraft launch. Lightning strikes can cause serious damage to the power grid, including line trips, power transmission and transformation equipment failures, unplanned outages, etc., which directly affect the safe and stable operation of the power grid and the safety and reliability of power supply. In addition to the large number of electrical and electronic equipment and auxiliary facilities that are very sensitive to lightning, the petrochemical industry has a large part of the storage and transportation of materials and finished products in the production process.
  • the electrostatic field sensor is used to monitor and analyze changes in the intensity and polarity of the atmospheric electric field, identify the changes in the atmospheric electric field that may cause lightning strikes, and provide early warning before the disaster. It is of great significance and is also the future for lightning protection and disaster reduction.
  • the meteorological department conducts trends in the development of severe weather forecasts such as lightning.
  • the electrostatic field sensors that have been commercialized at home and abroad basically adopt the traditional machining technology, and there are mechanical parts that are easy to wear. There are also some problems in terms of volume, power consumption and other properties, which cannot be widely applied.
  • the present invention proposes a MEMS ground atmospheric electric field sensor.
  • a MEMS ground atmospheric electric field sensor comprising: an arc top detecting structure, comprising: a conductive arc top rainproof casing, the top is curved, the bottom is provided with a groove toward the top, and the conductive connecting column And being disposed at the top of the groove and electrically connected to the arc-shaped rainproof casing; the upper portion of the solid-supporting cavity is a cylindrical body with a top closed and a bottom opening, and is disposed in the groove, and the connecting column penetrates through the solid a top portion of the upper portion of the cavity, and electrically insulated from the upper portion of the solid support cavity; and a lower portion of the solid support cavity, a bottom opening of the upper portion of the closed solid support cavity, for forming a solid support cavity, and a MEMS electric field measurement module,
  • the utility model is disposed in the solid support cavity for detecting an external electric field through the conductive connecting post and the conductive arc top rainproof casing.
  • a MEMS ground atmospheric electric field sensor further comprising: a cavity structure disposed under the arc top detecting structure, comprising: a main casing, a cylinder closed at the top and a bottom opening, and the top is first An opening; and a back cover for closing a bottom opening of the main casing, the MEMS electric field measuring module being disposed within the cavity structure.
  • a MEMS ground electric field sensor includes: a MEMS electric field sensitive chip that detects an external electric field to generate an induced current; a preamplifier circuit that converts a current signal into a voltage signal; and a driving solution
  • the modulating circuit provides a working signal for the MEMS electric field sensitive chip and performs electric field information solving on the voltage signal, and the top of the package of the MEMS electric field sensitive chip is a metal cover.
  • the metal cover plate and the conductive connection post are electrically connected by a wire.
  • a MEMS ground atmospheric electric field sensor is provided with a second opening in a lower portion of the fixed cavity, and the first opening and the second opening are used for the wire to pass through.
  • a MEMS ground electric field sensor further includes: an insulating sealing case for accommodating the MEMS electric field sensitive chip, a preamplifier circuit, and a metal sensing arranged in a stack a plate disposed outside the wall of the insulating cover of the metal cover of the MEMS electric field sensitive chip.
  • the metal sensing plate and the conductive connecting post are electrically connected by a wire.
  • a MEMS ground atmospheric electric field sensor the insulating sealing case houses the MEMS electric field sensitive chip, a preamplifier circuit, and a driving demodulation circuit which are sequentially stacked.
  • a MEMS ground atmospheric electric field sensor at least one of the main casing and the rear cover includes a seal groove and/or a potting tank for sealingly connecting the main casing and the rear cover.
  • a MEMS ground atmospheric electric field sensor is provided with a desiccant in the insulating sealed box.
  • a MEMS ground atmospheric electric field sensor is provided, wherein the upper portion of the solid support cavity and the lower portion of the solid support cavity are made of a metal material or a surface plated metal layer of an insulating material.
  • a MEMS ground atmospheric electric field sensor is characterized in that the main casing and the back cover are made of a metal material or an insulating material surface-plated metal layer.
  • a MEMS ground atmospheric electric field sensor is provided with a fixing device for fixing the MEMS electric field measuring module.
  • the arc-top rainproof enclosure can sense the electric field at the top and the periphery, increasing the electric field sensing area and improving the sensitivity of the sensor.
  • the use of the metal cavity wall structure improves the antistatic and electromagnetic interference performance of the sensor, and also reduces the influence of dust in the air on the electric field measurement.
  • the sealed structure design avoids the influence of ambient humidity on the MEMS electric field sensitive chip package, and improves the accuracy and long-term stability of the electric field detection.
  • FIG. 1 is a schematic structural view of a MEMS ground atmospheric electric field sensor according to an embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view of the arc top detecting structure of FIG. 1.
  • FIG. 3 is a schematic cross-sectional view of the cavity structure of FIG. 1.
  • FIG. 4 is a schematic structural view of a MEMS electric field measuring module according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a MEMS electric field measuring module according to still another embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a MEMS ground atmospheric electric field sensor according to an embodiment of the present invention.
  • the MEMS ground atmospheric electric field sensor includes an arc top detecting structure 1 and a MEMS electric field measuring module 3.
  • 2 is a schematic cross-sectional view of the arc top detecting structure of FIG. 1.
  • the arc top detecting structure 1 may be cylindrical, elliptical, cuboid, square or other regular or irregular polygonal shape.
  • the conductive arc top rainproof casing 11, the conductive connecting column 12, the fixed cavity upper portion 13 and the fixed cavity lower portion 14, the top of the conductive arc top rainproof casing 11 is curved, and the bottom is provided with a groove toward the top.
  • the conductive connecting post 12 is disposed at the top of the groove, and is electrically connected to the arc-shaped rainproof enclosure 11 .
  • the upper portion 13 of the fixed cavity is a top closed, bottom open cylinder disposed in the groove.
  • the connecting post 12 extends through the top of the upper portion 13 of the solid supporting cavity and is electrically insulated from the upper portion 13 of the solid supporting cavity.
  • the lower portion 14 of the solid supporting cavity closes the bottom opening of the upper portion 13 of the solid supporting cavity for forming a solid supporting cavity
  • the MEMS electric field measuring module may be disposed in the solid supporting cavity for detecting an external electric field through the conductive connecting post 12 and the conductive arc top rainproof enclosure 11.
  • the arc-leading rain-proof casing 11, the conductive connecting column 12, the upper portion 13 of the arc-fixing cavity, and the lower portion 14 of the arc-fixing cavity are all electrically conductive, and may be metal or inner surface or outer surface of the insulating material. Or metal plating on the inner and outer surfaces.
  • the arc-proof top rainproof enclosure 11 is electrically connected to the conductive connecting post 12, and is an isolated conductor.
  • the conductive connecting pillar 12 and the upper portion 13 of the solid supporting cavity are electrically isolated by an insulating isolation structure, and the insulating isolation structural material may be an inorganic insulating material or an organic insulating material. Material or mixed insulation. Between the connecting post 12 and the upper portion 13 of the solid supporting cavity, the upper portion 13 of the solid supporting cavity and the lower portion 14 of the solid supporting cavity may be fixed by screws, or other fixing means such as welding, bonding, or the like may be used.
  • the MEMS ground atmospheric electric field sensor may further include a cavity structure 2, and the MEMS electric field measurement module 3 is disposed in the cavity structure 2 through the conductive connection pillar 12 And the conductive arc top rainproof enclosure 11 detects the external electric field.
  • 3 is a schematic cross-sectional view of the cavity structure of FIG. 1.
  • the cavity structure 2 mainly includes a main casing 21 and a back cover 22.
  • the cavity structure 2 may have a cylindrical shape, an elliptical cylinder shape, or a rectangular parallelepiped shape. Shape, cube shape or other regular or irregular polygonal shape.
  • the main casing 21 is a cylindrical body with a top closed and a bottom open, and a first opening 211 is disposed at the top.
  • the first opening 211 may be located at the top center position 211 or at a non-central position for the cavity structure 2 Introducing a wire electrically connected to the conductive connecting post, at this time closing the bottom opening of the upper portion 13 of the solid supporting cavity and the second opening 141 is also disposed at the top of the lower portion 14 of the fixing cavity, at a central position or a non-central position, and the conductive connecting column
  • the electrically connected wires pass through the second opening 141 and the first opening 211 in sequence.
  • the rear cover is for closing the bottom opening of the main casing 21.
  • the cavity structure 2 can be designed with a sealing groove 24 and/or a potting tank 25 for respectively placing a sealing ring and a filling sealant, and the sealing groove 24 and/or the potting tank 25 can be provided in the main casing 21 and the rear cover 22 At least one of them is used for sealingly connecting the main casing 21 and the rear cover 22, and of course, the sealing groove 24 or the potting tank 25 may not be designed, directly at the contact portion of the main cavity 21 and the rear cover 22 of the sealing cavity.
  • the seal ring material can be fluoro rubber, silicone rubber, nitrile rubber, etc.
  • the sealant can be glass glue, silicone rubber, AB glue, epoxy glue and so on.
  • the sealing chamber main casing 21 and the rear cover 22 can also be fixed by screws.
  • the arc-top detecting structure 1 and the cavity structure 2 are fixed by screws.
  • the lower portion 14 of the fixing cavity can be provided with a screw passing through the hole 142, and the arc-top detecting structure 1 and the cavity structure 2 can also adopt other fixing methods. Such as welding, bonding, etc.
  • a fixing post 23 is also disposed in the cavity structure 2 for fixedly supporting the MEMS electric field measuring module 3 located in the cavity structure 2.
  • the fixing post 23 is fixed to the back cover 22, and the main body of the cavity 21.
  • the back cover 22 and the fixing post 23 are both electrically conductive, and may be made of a metal material, or may be an inner surface or an outer surface of the insulating material or an inner and outer surface plated metal.
  • the MEMS electric field measuring module 3 disposed in the solid supporting cavity or the cavity structure 2 mainly includes a MEMS electric field sensitive chip 31,
  • the preamplifier circuit 32 and the driving demodulation circuit 33 may be in the shape of a circle, an ellipse, a rectangle, a square or a polygon, and the MEMS electric field measuring module 3 may be installed in the fixed cavity or the cavity structure 2, Multiple can be installed.
  • the shield electrode in the MEMS electric field sensitive chip 31 periodically modulates the sensing electrode to generate an induced current
  • the MEMS electric field sensitive chip 31 is provided with an insulating material on the base, and the top is a metal cover;
  • the preamplifier circuit 32 converts the electric field current signal into The voltage signal is driven to generate a two-way differential signal required for the MEMS electric field sensitive chip 31 to operate normally, and the voltage signal output from the preamplifier circuit 32 is used to solve the electric field information.
  • the MEMS electric field sensitive chip 31, the preamplifier circuit 32 and the driving demodulation circuit 33 are stacked and fixed on the fixed post 23 of the cavity structure 2, and in other embodiments may be horizontally arranged or vertically side by side. Arrangement, etc.
  • the metal cover plate on the top of the package of the MEMS electric field sensitive chip 31 is electrically connected to the conductive connecting post 12 of the arc top detecting structure 1 through a wire, and finally electrically connected to the arc top rainproof casing 11 , and the wire can be a common wire and a shield. Wire, high frequency RF line, semi-steel semi-flexible RF line, etc.
  • the working principle of the MEMS ground atmospheric electric field sensor is as follows: due to the electrical connection between the sensor arc top rainproof casing 11 and the metal cover of the MEMS electric field sensitive chip 31 chip, when there is a DC electric field E outside, The sensor arc top rainproof enclosure 11 and the metal cover plate generate an induced charge and are linearly related to the DC electric field E. The induced charge of the metal cover plate generates an electric field E g , and E g is linearly related to the DC electric field E, and the MEMS electric field sensitive chip 31 is measured. The electric field E g realizes indirect measurement of the magnitude of the external DC electric field E.
  • the MEMS electric field measuring module 3 when the MEMS electric field measuring module 3 is disposed in the cavity structure 2, the power supply cable and the signal transmission cable are led out through the third opening 222 of the back cover 22 of the sealing cavity structure, and the third opening is provided.
  • 222 can be a central aperture or a non-central aperture.
  • the sealant is spin-coated to achieve an overall seal of the cavity structure 2.
  • the solid supporting cavity formed by the upper portion 13 of the solid supporting cavity and the lower portion 14 of the solid supporting cavity also needs to be sealed, and can be touched by both
  • the sealant is spin-coated, or the sealant can be directly filled in the solid support cavity.
  • the sealant can be glass glue, silicone rubber, AB glue, epoxy glue, etc., at this time, due to the conductive connection column 12 and the MEMS electric field sensitive chip 31 chip
  • the metal cover plate is close to the distance, and the electric charge can be induced on the corresponding conductive connecting post 12 on the metal cover plate.
  • the conductive connecting post 12 and the metal cover plate of the MEMS electric field sensitive chip 31 chip can be electrically connected or not.
  • FIG. 5 is a schematic structural diagram of a MEMS electric field measuring module according to still another embodiment of the present invention.
  • the MEMS electric field measuring module 3 further includes an insulating sealed box as compared with the embodiment shown in FIG. 4 . 34.
  • the stacked MEMS electric field sensitive chip 31 and the preamplifier circuit 32 are first placed in an insulating sealing box 34.
  • the top of the sealed box body 341 has a metal sensing board 342.
  • the metal sensing board 342 is fixedly connected to the sealed box body 341, and is insulated.
  • the shape of the sealing box 34 may be a cylindrical shape, an elliptical cylindrical shape, a rectangular parallelepiped shape, a square shape or other regular or irregular polygonal shape, etc., and the sealed casing 341 may be made of an inorganic insulating material, an organic insulating material or a mixed insulating material;
  • the insulating sealing box 34 and the driving demodulation circuit 33 are arranged in a stack, and the signal connecting lines of the driving demodulating circuit 33 and the preamplifying circuit 32 are passed through the signal output interface of the edge sealing box 34, and then the sealing output is applied to the signal output port.
  • the sealing, driving demodulation circuit 33 may also be disposed in the insulating sealed case 34 together with the electric field sensitive chip 31 and the preamplifying circuit 32. Different from the electrical connection scheme of the metal cover plate of the MEMS electric field sensitive chip 31 and the arc top rainproof enclosure 11 in FIG. 4, the solution only needs to electrically connect the metal sensing plate 342 and the arc top rainproof casing 11 through wires.
  • the wires may be ordinary wires, shield wires, high frequency RF wires, semi-steel semi-flexible RF wires, and the like.
  • the working principle of the MEMS ground atmospheric electric field sensor is as follows: since the sensor arc top rainproof casing 11 is electrically connected to the metal sensing plate 342 above the sealed casing 341, and the metal sensing plate 342 and the chip MEMS electric field are sensitive.
  • a capacitor structure is formed between the metal cover plates of the chip, and when a DC electric field E exists in the outside, the metal cover plate will also generate an induced charge, and the induced electric charge generates an electric field E d , E d linearly related to the DC electric field E, and the MEMS electric field
  • the sensitive chip 31 indirectly measures the magnitude of the external DC electric field E by measuring the electric field E d .
  • the solid supporting cavity or the cavity structure 2 accommodating the MEMS electric field measuring module 3 can be unsealed.
  • a desiccant or other kind of hygroscopic material may be placed inside the sealed cavity structure 2, inside the insulating sealing box 34 or inside the sealed solid supporting cavity to ensure a sealed environment.
  • the dry, protective MEMS electric field measurement module components are not corroded, ensuring their performance.
  • the MEMS ground atmospheric electric field sensor can also be fixed on the metal bracket for atmospheric electric field measurement, for example, by mounting holes 223 at the bottom of the cavity structure 2, and the metal bracket is electrically connected to the cavity structure 2,
  • the metal bracket can be grounded to prevent the cavity structure 2 from collecting too much charge.
  • the metal bracket may also be ungrounded.
  • the bracket may also be other material brackets, such as wood, plastic, etc., and in other embodiments, the bracket may be used instead of being mounted directly on some devices or placed on the ground for electric field measurement.
  • the MEMS ground atmospheric electric field sensor in the embodiment of the invention can be applied to lightning warning, industrial static measurement, grid DC electric field measurement and related electrostatic field measuring device in addition to measuring atmospheric electric field.

Landscapes

  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Micromachines (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种MEMS地面大气电场传感器,包括:弧顶探测结构(1)以及MEMS电场测量模块(3),弧顶探测结构(1)包括:导电弧顶防雨外壳(11),顶部为弧形,底部设置有朝向顶部的凹槽,导电连接柱(12),设置在凹槽顶部,与弧顶防雨外壳(11)电连接;固支腔体上部(13),为顶部封闭、底部开口的筒体,设置在凹槽内,导电连接柱(12)贯穿固支腔体上部(13)顶部,且与固支腔体上部(13)电性绝缘;以及固支腔体下部(14),封闭固支腔体上部(13)的底部开口,用于形成固支腔体,MEMS电场测量模块(3)设置在固支腔体内,用于通过导电连接柱(12)及导电弧顶防雨外壳(11)来探测外界电场。

Description

MEMS地面大气电场传感器 技术领域
本发明涉及传感器技术领域,具体涉及一种MEMS地面大气电场传感器。
背景技术
雷电灾害是联合国公布的十大自然灾害之一,据不完全统计,我国每年因雷击造成的人员伤亡达上千人,财产损失巨大。雷电也是直接影响航天发射成败的重要天气因素,在航天器发射规范中,已经将大气电场强度列为航天器能否发射的主要条件之一。雷击可对电网造成严重的危害,包括线路跳闸、输变电设备故障、线路非计划停运等,都直接影响了电网的安全稳定运行和供电用电的安全可靠性。石油化工行业除采用大量对雷电非常敏感的电气电子设备及辅助设施外,生产过程中物料及成品储运很大部分都具有易燃易爆特点,是雷电灾害事故多发的敏感行业之一。采用静电场传感器对大气电场强度大小、极性等变化进行监测和分析,对可能造成雷击危险的大气电场变化加以识别,在灾害来临之前进行预警,对防雷减灾具有非常重要的意义,也是未来气象部门进行雷电等灾害性天气预报的发展趋势。然而,国内外已商业化的静电场传感器基本上采用传统的机械加工技术,存在易磨损的机械部件,在体积、功耗及其它性能等方面也有一些问题,无法广泛应用。
发明内容
鉴于上述技术问题,为了克服上述现有技术的不足,本发明提出了一种MEMS地面大气电场传感器。
根据本发明的一个方面,提供了一种MEMS地面大气电场传感器,包括:弧顶探测结构,包括:导电弧顶防雨外壳,顶部为弧形,底部设置有朝向顶部的凹槽,导电连接柱,设置在所述凹槽顶部,与所述弧顶防雨外壳电连接;固支腔体上部,为顶部封闭、底部开口的筒体,设置在所述凹槽内,所述连接柱贯穿固支腔体上部顶部,且与所述固支腔体上部电性绝缘;以及固支腔体下部,封闭固支腔体上部的底部开口,用于形成固支 腔体,以及MEMS电场测量模块,设置在所述固支腔体内,用于通过所述导电连接柱及导电弧顶防雨外壳来探测外界电场。
根据本发明一种实施例的MEMS地面大气电场传感器,还包括:腔体结构,设置在所述弧顶探测结构下方,包括:主壳,为顶部封闭、底部开口的筒体,顶部设置第一开孔;以及后盖,所述后盖用于封闭主壳的底部开口,所述MEMS电场测量模块设置在所述腔体结构内。
根据本发明一种实施例的MEMS地面大气电场传感器,所述MEMS电场测量模块包括:MEMS电场敏感芯片,探测外界电场产生感应电流;前置放大电路,将电流信号转换为电压信号;以及驱动解调电路,为所述MEMS电场敏感芯片提供工作信号,并对所述电压信号进行电场信息解算,所述MEMS电场敏感芯片的封装顶部为金属盖板。
根据本发明一种实施例的MEMS地面大气电场传感器,所述金属盖板与所述导电连接柱通过导线电连接。
根据本发明一种实施例的MEMS地面大气电场传感器,所述固支腔体下部设有第二开孔,所述第一开孔和第二开孔用于所述导线穿过。
根据本发明一种实施例的MEMS地面大气电场传感器,所述MEMS电场测量模块还包括:绝缘密封盒,用于容置顺序堆叠设置的所述MEMS电场敏感芯片、前置放大电路,以及金属感应板,设置在绝缘密封盒靠近所述MEMS电场敏感芯片的金属盖板的盒壁外侧。
根据本发明一种实施例的MEMS地面大气电场传感器,所述金属感应板与所述导电连接柱通过导线电连接。
根据本发明一种实施例的MEMS地面大气电场传感器,所述绝缘密封盒容置顺序堆叠设置的所述MEMS电场敏感芯片、前置放大电路及驱动解调电路。
根据本发明一种实施例的MEMS地面大气电场传感器,所述主壳和后盖中的至少一个包括密封槽和/或灌胶槽,用于使得所述主壳和后盖密封连接。
根据本发明一种实施例的MEMS地面大气电场传感器,所述绝缘密封盒内设有干燥剂。
根据本发明一种实施例的MEMS地面大气电场传感器,所述固支腔 体上部和固支腔体下部为金属材料或绝缘材质表面电镀金属层制成。
根据本发明一种实施例的MEMS地面大气电场传感器,所述主壳和后盖为金属材料或绝缘材质表面电镀金属层制成。
根据本发明一种实施例的MEMS地面大气电场传感器,所述腔体结构内设置固定装置,用于固定所述MEMS电场测量模块。
从上述技术方案可以看出,本发明具有以下有益效果:
采用低功耗的MEMS电场敏感芯片技术,无马达易磨损的机械部件,降低了功耗,易批量生产,并提高了产品的可靠性。
采用弧顶防雨外壳,其顶部和四周都可以感应电场,增大了电场感应面积,提高了传感器的灵敏度。
采用金属腔壁结构,提高了传感器抗静电及电磁干扰性能,也降低了空气中灰尘对电场测量的影响。
采用密封结构设计,避免了环境湿度对MEMS电场敏感芯片封装的影响,提高了电场探测的准确度和长期稳定性。
附图说明
图1为本发明一实施例的一种MEMS地面大气电场传感器的结构示意图。
图2为图1中弧顶探测结构的剖面示意图。
图3为图1中腔体结构的剖面示意图。
图4为本发明一实施例中的MEMS电场测量模块的结构示意图。
图5为本发明再一实施例中的MEMS电场测量模块的结构示意图。
具体实施方式
本发明某些实施例于后方将参照所附附图做更全面性地描述,其中一些但并非全部的实施例将被示出。实际上,本发明的各种实施例可以许多不同形式实现,而不应被解释为限于此处所阐述的实施例;相对地,提供这些实施例使得本发明满足适用的法律要求。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明一实施例提供一种MEMS地面大气电场传感器,可以具有金 属密封结构,图1为本发明一实施例的一种MEMS地面大气电场传感器的结构示意图。如图1所示,MEMS地面大气电场传感器包括弧顶探测结构1和MEMS电场测量模块3。图2为图1中弧顶探测结构的剖面示意图,如图2所示,弧顶探测结构1形状可以为圆柱形、椭圆柱形、长方体形、正方体形或其他规则或不规则的多边体形等,包括导电弧顶防雨外壳11、导电连接柱12、固支腔体上部13以及固支腔体下部14,导电弧顶防雨外壳11顶部为弧形,底部设置有朝向顶部的凹槽,导电连接柱12设置在所述凹槽顶部,与所述弧顶防雨外壳11电连接,固支腔体上部13为顶部封闭、底部开口的筒体,设置在所述凹槽内,所述连接柱12贯穿固支腔体上部13顶部,且与所述固支腔体上部13电性绝缘,固支腔体下部14封闭固支腔体上部13的底部开口,用于形成固支腔体,MEMS电场测量模块可以设置在所述固支腔体内,用于通过所述导电连接柱12及导电弧顶防雨外壳11来探测外界电场。导电弧顶防雨外壳11、导电连接柱12、弧顶固支腔体上部13、弧顶固支腔体下部14均具有导电性,可以为金属材质,也可以是绝缘材质内表面或外表面或内外表面电镀金属。导电弧顶防雨外壳11与导电连接柱12电连接,为孤立导体,导电连接柱12与固支腔体上部13通过绝缘隔离结构实现电隔离,绝缘隔离结构材料可以为无机绝缘材料、有机绝缘材料或混合绝缘材料。连接柱12与固支腔体上部13之间,固支腔体上部13与固支腔体下部14之间可以通过螺丝固定,也可以采用其他固定方式,如焊接、粘接等。
在另一实施例中,如图1所示,MEMS地面大气电场传感器还可以包括腔体结构2,所述MEMS电场测量模块3设置在所述腔体结构2内,通过所述导电连接柱12及导电弧顶防雨外壳11来探测外界电场。图3为图1中腔体结构的剖面示意图,如图3所示,所述腔体结构2主要包括主壳21、后盖22,腔体结构2形状可以为圆柱形、椭圆柱形、长方体形、正方体形或其他规则或不规则的多边体形等。其中主壳21为顶部封闭、底部开口的筒体,顶部设置第一开孔211,该第一开孔211可以位于顶部中心位置211,也可以在非中心位置,用于向腔体结构2中引入与导电连接柱电连接的导线,此时封闭固支腔体上部13的底部开口并且固支腔体下部14顶部同样设置第二开孔141,位于中心位置或非中心位置,与导电连接 柱电连接的导线依次穿过第二开孔141和第一开孔211。后盖用于封闭主壳21的底部开口。腔体结构2可以设计有密封槽24和/或灌胶槽25,分别用于放置密封圈和灌装密封胶,密封槽24和/或灌胶槽25可以设置在主壳21和后盖22中的至少一个上,用于使得所述主壳21和后盖22密封连接,当然也可以不设计密封槽24或灌胶槽25,直接在密封腔体主壳21与后盖22的接触部位涂胶密封或者在腔体结构2内部罐装密封胶,密封圈材质可以为氟橡胶、硅橡胶、丁晴胶等,密封胶可以为玻璃胶、硅橡胶、AB胶、环氧胶等。密封腔体主壳21与后盖22之间还可以通过螺丝固定。另外弧顶探测结构1与腔体结构2之间通过螺丝固定,此时固支腔体下部14可以设置螺丝穿过孔142,弧顶探测结构1与腔体结构2也可以采用其他固定方式,如焊接、粘接等。
腔体结构2内还可以设置固定柱23,用于固定支撑位于腔体结构2内的MEMS电场测量模块3,在一实施例中,固定柱23固接于后盖22,腔体的主壳21、后盖22与固定柱23均具有导电性,可以为金属材质,也可以是绝缘材质内表面或外表面或内外表面电镀金属。
图4为本发明一实施例中的MEMS电场测量模块的结构示意图,如图4所示,设置于固支腔体或腔体结构2内的MEMS电场测量模块3主要包括MEMS电场敏感芯片31、前置放大电路32以及驱动解调电路33,其形状可以为圆形、椭圆形、长方形、正方形或多边形等,MEMS电场测量模块3在固支腔体或腔体结构2内可以安装一个,也可以安装多个。所述MEMS电场敏感芯片31中的屏蔽电极周期性振动调制感应电极产生感应电流,MEMS电场敏感芯片31封装基座为绝缘材料,顶部为金属盖板;前置放大电路32实现电场电流信号转换为电压信号;驱动解调电路33产生MEMS电场敏感芯片31正常工作所需的双路差分信号并对前置放大电路32输出的电压信号实现电场信息的解算。在一实施例中,MEMS电场敏感芯片31、前置放大电路32与驱动解调电路33堆叠布置,固定在腔体结构2的固定柱23上,在其他实施例中也可以水平布置或垂直并排布置等。所述MEMS电场敏感芯片31封装顶部的金属盖板通过导线与弧顶探测结构1的导电连接柱12电连接,最终实现与弧顶防雨外壳11电连接,所述导线可以为普通导线、屏蔽导线、高频射频线、半钢半柔射频线等。 采用该种MEMS电场测量模块,MEMS地面大气电场传感器的工作原理如下:由于传感器弧顶防雨外壳11与MEMS电场敏感芯片31芯片的金属盖板之间电连接,当外界存在直流电场E时,传感器弧顶防雨外壳11与金属盖板产生感应电荷并与直流电场E线性相关,金属盖板的感应电荷产生电场E g,则E g与直流电场E线性相关,MEMS电场敏感芯片31通过测量电场E g实现间接测量外界直流电场E的大小。
结合图2所示,MEMS电场测量模块3设置在腔体结构2中时,其供电线缆和信号传输线缆通过封腔体结构后盖22设置的第三开孔222引出,第三开孔222可以是中心孔,也可是非中心孔。采用上述结构的MEMS电场测量模块3时,用于容置MEMS电场测量模块3的腔体结构2采用前述的密封圈或密封胶进行密封,并且后盖22的第三开孔222穿过线缆后需要旋涂密封胶实现腔体密封,与导电连接柱12电连接的导线穿过密封腔体主壳21顶部的第一开孔211和固支腔体下部14的第二开孔141后需要旋涂密封胶实现腔体结构2整体密封。
在一实施例中,上述的MEMS电场测量模块3设置在固支腔体内时,固支腔体上部13与固支腔体下部14构成的固支腔体同样需要密封设置,可以在两者触处旋涂密封胶,或者在固支腔体内直接罐装密封胶,密封胶可以为玻璃胶、硅橡胶、AB胶、环氧胶等,此时由于导电连接柱12与MEMS电场敏感芯片31芯片的金属盖板距离较近,可以在金属盖板上相应导电连接柱12感应出电荷,导电连接柱12与MEMS电场敏感芯片31芯片的金属盖板可以电连接,也可以不电连接。
图5为本发明再一实施例中的MEMS电场测量模块的结构示意图,具体为:如图5所示,与图4所示的实施例相比,MEMS电场测量模块3还包括一绝缘密封盒34,堆叠布置的MEMS电场敏感芯片31与前置放大电路32先放入一个绝缘密封盒34内,密封盒体341顶部有一金属感应板342,金属感应板342与密封盒体341固定连接,绝缘密封盒34的形状可以为圆柱形、椭圆柱形、长方体形、正方体形或其他规则或不规则的多边体形等,密封盒体341可以为无机绝缘材料、有机绝缘材料或混合绝缘材料制成;绝缘密封盒34与驱动解调电路33堆叠布置,驱动解调电路33与前置放大电路32的信号连接线穿出缘密封盒34的信号输出接口后对该 信号输出口旋涂密封胶来实现密封,驱动解调电路33也可以与电场敏感芯片31与前置放大电路32一起布置在绝缘密封盒34内。不同于图4中的MEMS电场敏感芯片31金属盖板与弧顶防雨外壳11电连接方案,该方案只需要金属感应板342与弧顶防雨外壳11通过导线电连接即可。所述导线可以为普通导线、屏蔽导线、高频射频线、半钢半柔射频线等。
采用该种MEMS电场测量模块,MEMS地面大气电场传感器的工作原理如下:由于传感器弧顶防雨外壳11与密封盒体341上方的金属感应板342电连接,而金属感应板342与芯片MEMS电场敏感芯片的金属盖板之间又形成了电容结构,那么当外界存在直流电场E时,金属盖板也将产生感应电荷,该感应电荷产生电场E d,E d与直流电场E线性相关,MEMS电场敏感芯片31通过测量电场E d实现间接测量外界直流电场E的大小。
采用该种MEMS电场测量模块3,容置该MEMS电场测量模块3的固支腔体或腔体结构2可以不密封。
在一实施例中的MEMS地面大气电场传感器中,所述密封的腔体结构2内部、绝缘密封盒34内部或密封的固支腔体内部可以放置干燥剂或其它种类的吸湿材料来保证密封环境的干燥,保护MEMS电场测量模块的组件不被腐蚀,保障其工作性能。
在一实施例中,MEMS地面大气电场传感器还可以固定在金属支架上进行大气电场测量,例如通过腔体结构2底部的安装孔223安装在金属支架上,金属支架与腔体结构2电连接,金属支架可以接地,避免腔体结构2集聚过多电荷。金属支架还可以不接地,支架也可以是其它材质支架,比如木头、塑料等,在其他实施例中也可以不采用支架,直接安装在某些装置上或放置在地面上进行电场测量。
本发明实施例中的MEMS地面大气电场传感器除了测量大气电场外,还可应用于雷电预警、工业静电测量、电网直流电场测量以及相关静电场测量装置中。
应注意,附图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本发明实施例的内容。
实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本发明的保护范围。并且上述实 施例可基于设计及可靠度的考虑,彼此混合搭配使用或与其他实施例混合搭配使用,即不同实施例中的技术特征可以自由组合形成更多的实施例。
需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种MEMS地面大气电场传感器,其特征在于,包括:
    弧顶探测结构(1),包括:
    导电弧顶防雨外壳(11),顶部为弧形,底部设置有朝向顶部的凹槽,
    导电连接柱(12),设置在所述凹槽顶部,与所述弧顶防雨外壳(11)电连接;
    固支腔体上部(13),为顶部封闭、底部开口的筒体,设置在所述凹槽内,所述连接柱(12)贯穿固支腔体上部(13)顶部,且与所述固支腔体上部(13)电性绝缘;以及
    固支腔体下部(14),封闭固支腔体上部(13)的底部开口,用于形成固支腔体,以及
    MEMS电场测量模块(3),设置在所述固支腔体内,用于通过所述导电连接柱(12)及导电弧顶防雨外壳(11)来探测外界电场。
  2. 根据权利要求1所述的MEMS地面大气电场传感器,其特征在于,还包括:
    腔体结构(2),设置在所述弧顶探测结构(1)下方,包括:
    主壳(21),为顶部封闭、底部开口的筒体,顶部设置第一开孔(211);以及
    后盖(22),所述后盖用于封闭主壳(21)的底部开口,
    其中,所述MEMS电场测量模块(3)设置在所述腔体结构(2)内。
  3. 根据权利要求1或2所述的MEMS地面大气电场传感器,其特征在于,所述MEMS电场测量模块(3)包括:
    MEMS电场敏感芯片(31),探测外界电场产生感应电流;
    前置放大电路(32),将电流信号转换为电压信号;以及
    驱动解调电路(33),为所述MEMS电场敏感芯片(31)提供工作信号,并对所述电压信号进行电场信息解算,
    其中,所述MEMS电场敏感芯片(31)的封装顶部为金属盖板。
  4. 根据权利要求3所述的MEMS地面大气电场传感器,其特征在于: 所述金属盖板与所述导电连接柱(12)通过导线电连接。
  5. 根据权利要求4所述的MEMS地面大气电场传感器,其特征在于:所述固支腔体下部(14)设有第二开孔(141),所述第一开孔(211)和第二开孔(141)用于所述导线穿过。
  6. 根据权利要求3所述的MEMS地面大气电场传感器,其特征在于,所述MEMS电场测量模块(3)还包括:
    绝缘密封盒(34),用于容置顺序堆叠设置的所述MEMS电场敏感芯片(31)、前置放大电路(32),以及
    金属感应板(342),设置在绝缘密封盒(34)靠近所述MEMS电场敏感芯片(31)的金属盖板的盒壁外侧。
  7. 根据权利要求6所述的MEMS地面大气电场传感器,其特征在于:所述金属感应板(342)与所述导电连接柱(12)通过导线电连接。
  8. 根据权利要求6所述的MEMS地面大气电场传感器,其特征在于:所述绝缘密封盒容置顺序堆叠设置的所述MEMS电场敏感芯片(31)、前置放大电路(32)及驱动解调电路(33)。
  9. 根据权利要求2所述的MEMS地面大气电场传感器,其特征在于,所述主壳(21)和后盖(22)中的至少一个包括密封槽(24)和/或灌胶槽(25),用于使得所述主壳(21)和后盖(22)密封连接。
  10. 根据权利要求6所述的MEMS地面大气电场传感器,其特征在于,所述绝缘密封盒(34)内设有干燥剂。
  11. 根据权利要求1所述的MEMS地面大气电场传感器,其特征在于,所述固支腔体上部(13)和固支腔体下部(14)为金属材料或绝缘材质表面电镀金属层制成。
  12. 根据权利要求2所述的MEMS地面大气电场传感器,其特征在于,所述主壳(21)和后盖(22)为金属材料或绝缘材质表面电镀金属层制成。
  13. 根据权利要求2所述的MEMS地面大气电场传感器,其特征在于,所述腔体结构(2)内设置固定装置,用于固定所述MEMS电场测量模块(3)。
PCT/CN2018/077780 2017-05-31 2018-03-01 Mems地面大气电场传感器 WO2018219002A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18714420.9A EP3441776B1 (en) 2017-05-31 2018-03-01 Mems ground atmospheric electric field sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710401997 2017-05-31
CN201710401997.5 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018219002A1 true WO2018219002A1 (zh) 2018-12-06

Family

ID=60132715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077780 WO2018219002A1 (zh) 2017-05-31 2018-03-01 Mems地面大气电场传感器

Country Status (4)

Country Link
US (1) US10718802B2 (zh)
EP (1) EP3441776B1 (zh)
CN (1) CN107300642B (zh)
WO (1) WO2018219002A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116247603A (zh) * 2023-02-17 2023-06-09 国网江西省电力有限公司南昌供电分公司 一种高安全性支柱式避雷器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107300642B (zh) * 2017-05-31 2023-11-07 北京中科飞龙传感技术有限责任公司 Mems地面大气电场传感器
CN113933913B (zh) * 2020-06-29 2024-07-26 中国石油天然气集团有限公司 油罐雷电预警装置
CN114184853B (zh) * 2021-12-14 2024-08-20 中国电力科学研究院有限公司 一种工频电场测量装置
CN115290993B (zh) * 2022-10-10 2023-01-13 中国科学院空天信息创新研究院 一种球形电极全向静电场检测装置
CN118169480A (zh) * 2024-03-29 2024-06-11 北京中科飞龙传感技术有限责任公司 Mems大气电场传感器及其组装方法
CN118549716B (zh) * 2024-07-30 2024-10-11 云南师范大学 一种电子式大气电场测量设备及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925726A (en) * 1974-05-08 1975-12-09 Us Navy Electric field sensor
US20100156429A1 (en) * 2008-12-19 2010-06-24 Illinois Tool Works Inc. Mems electrometer that measures amount of repulsion of adjacent beams from each other for static field detection
CN103983863A (zh) * 2014-05-30 2014-08-13 唐凯 一种微型化雷电预警装置
CN105954602A (zh) * 2016-05-23 2016-09-21 厦门大恒科技有限公司 一种大气电场信号跟随式测试仪及其测试方法
CN106124870A (zh) * 2016-06-12 2016-11-16 中国科学院电子学研究所 电极型电场传感器封装元件及其用途
CN206038938U (zh) * 2016-08-12 2017-03-22 南京大桥机器有限公司 一种mems电场探空仪系统
CN106707038A (zh) * 2017-02-17 2017-05-24 北京中自控创新科技发展有限公司 一种本地及远程探测相结合的一体式雷电预警组合探头及其探测方法
CN107300642A (zh) * 2017-05-31 2017-10-27 北京中科飞龙传感技术有限责任公司 Mems地面大气电场传感器
CN206906494U (zh) * 2017-05-31 2018-01-19 北京中科飞龙传感技术有限责任公司 Mems地面大气电场传感器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919636A (en) * 1974-04-29 1975-11-11 Us Navy Electrical field change meter
US3916305A (en) * 1974-05-20 1975-10-28 Us Navy Atmospheric electrical current detector
FR2476849A1 (fr) * 1980-02-22 1981-08-28 Onera (Off Nat Aerospatiale) Appareil pour la mesure d'un champ electrique
CN102937671A (zh) * 2012-10-24 2013-02-20 中国人民解放军理工大学气象学院 一种雷电及地面电场监测一体装置
CN103633036B (zh) * 2013-08-07 2017-03-08 中国科学院电子学研究所 基于高阻材料的电场传感器封装元件
US9880120B2 (en) * 2014-07-22 2018-01-30 The United States Of America As Represented By The Secretary Of The Army Electric field sensor
CN204479659U (zh) * 2015-03-17 2015-07-15 江苏省无线电科学研究所有限公司 低功耗一体式大气电场传感器
CN106597065A (zh) * 2016-12-10 2017-04-26 国网浙江省电力公司金华供电公司 Mems非接触式高压直流验电器
CN106672890B (zh) * 2016-12-13 2018-12-04 北京中科飞龙传感技术有限责任公司 一种灵敏度增强型电场传感器的封装盖板及封装方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925726A (en) * 1974-05-08 1975-12-09 Us Navy Electric field sensor
US20100156429A1 (en) * 2008-12-19 2010-06-24 Illinois Tool Works Inc. Mems electrometer that measures amount of repulsion of adjacent beams from each other for static field detection
CN103983863A (zh) * 2014-05-30 2014-08-13 唐凯 一种微型化雷电预警装置
CN105954602A (zh) * 2016-05-23 2016-09-21 厦门大恒科技有限公司 一种大气电场信号跟随式测试仪及其测试方法
CN106124870A (zh) * 2016-06-12 2016-11-16 中国科学院电子学研究所 电极型电场传感器封装元件及其用途
CN206038938U (zh) * 2016-08-12 2017-03-22 南京大桥机器有限公司 一种mems电场探空仪系统
CN106707038A (zh) * 2017-02-17 2017-05-24 北京中自控创新科技发展有限公司 一种本地及远程探测相结合的一体式雷电预警组合探头及其探测方法
CN107300642A (zh) * 2017-05-31 2017-10-27 北京中科飞龙传感技术有限责任公司 Mems地面大气电场传感器
CN206906494U (zh) * 2017-05-31 2018-01-19 北京中科飞龙传感技术有限责任公司 Mems地面大气电场传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, PENGFEI ET AL.: "A Novel MEMS Chip-based Ground Atmospheric Electric Field Sensor", JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, vol. 38, no. 6, 30 June 2016 (2016-06-30), pages 1536 - 1540, XP009511495, ISSN: 1009-5896 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116247603A (zh) * 2023-02-17 2023-06-09 国网江西省电力有限公司南昌供电分公司 一种高安全性支柱式避雷器
CN116247603B (zh) * 2023-02-17 2024-03-19 国网江西省电力有限公司南昌供电分公司 一种高安全性支柱式避雷器

Also Published As

Publication number Publication date
US20190094283A1 (en) 2019-03-28
US10718802B2 (en) 2020-07-21
EP3441776B1 (en) 2022-07-27
EP3441776A1 (en) 2019-02-13
CN107300642B (zh) 2023-11-07
CN107300642A (zh) 2017-10-27
EP3441776A4 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
WO2018219002A1 (zh) Mems地面大气电场传感器
CN107228989B (zh) 一种绝缘密封结构的mems电场传感器
CN107015072B (zh) 一种基于电场传感器的密封型非接触式手持静电仪
CN107219027B (zh) 一种陶瓷电容压力传感器的封装结构
CN210639115U (zh) 一种防爆露点仪
CN205484666U (zh) 一种内置式超声波局放传感器
CN208953519U (zh) 一种新型茶叶品质检测收集装置
CN108931692A (zh) 球载式mems探空电场传感器及其标定方法
CN206906494U (zh) Mems地面大气电场传感器
CN207249002U (zh) 球载式mems探空电场传感器及其集成系统
CN204177837U (zh) 一种新型全密封电磁屏蔽阻抗盒
CN102841256B (zh) 一种太阳能光伏组件的绝缘测试装置及方法
CN102606877A (zh) 一种液化天然气气瓶的液面测量装置
CN204556594U (zh) 微量水分变送器
CN102636105A (zh) 三向应变测量装置
CN206891621U (zh) 一种陶瓷电容压力传感器的封装结构
CN103217633A (zh) 一种用于高压开关柜局部放电检测的传感器
CN203241506U (zh) 一种用于高压开关柜局部放电检测的传感器
CN206671055U (zh) 一种纸板环压强度测试装置
CN203908630U (zh) 核子料位计探测器
WO2021120583A1 (zh) 一种真型密封圈的老化试验系统
CN207148228U (zh) 一种绝缘密封结构的mems电场传感器
CN204925011U (zh) 一种电池包湿度的测量装置
CN207280672U (zh) 一种埋入式安装超薄尺寸压力传感器
CN209399139U (zh) 一种地下管用检测机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018714420

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18714420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE