WO2018218474A1 - 一种提高电池板电极拉力的二次印刷工艺方法及网版 - Google Patents

一种提高电池板电极拉力的二次印刷工艺方法及网版 Download PDF

Info

Publication number
WO2018218474A1
WO2018218474A1 PCT/CN2017/086512 CN2017086512W WO2018218474A1 WO 2018218474 A1 WO2018218474 A1 WO 2018218474A1 CN 2017086512 W CN2017086512 W CN 2017086512W WO 2018218474 A1 WO2018218474 A1 WO 2018218474A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
electrode
sub
pattern
printing
Prior art date
Application number
PCT/CN2017/086512
Other languages
English (en)
French (fr)
Inventor
谢耀辉
张冠纶
吴俊旻
常青
Original Assignee
通威太阳能(合肥)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(合肥)有限公司 filed Critical 通威太阳能(合肥)有限公司
Priority to PCT/CN2017/086512 priority Critical patent/WO2018218474A1/zh
Priority to CN201780001103.1A priority patent/CN107636845A/zh
Priority to US15/779,854 priority patent/US10763378B2/en
Publication of WO2018218474A1 publication Critical patent/WO2018218474A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/14Details
    • B41F15/34Screens, Frames; Holders therefor
    • B41F15/36Screens, Frames; Holders therefor flat
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the field of solar cells, and particularly relates to a secondary printing process method and a screen for improving the electrode pulling force of a battery board.
  • solar power generation is an emerging renewable energy source.
  • Solar wafers are an indispensable component of solar cell arrays.
  • Screen printing technology is an electrode fabrication process commonly used in industrialized crystalline silicon solar cell manufacturing processes, and secondary printing processes. It is a relatively advanced production technology, in which the front electrode production process is: one printing front electrode, drying; secondary printing front electrode, drying, sintering is completed.
  • the secondary printing is to overlap the secondary gate line on the secondary gate line of one printing, thereby thickening the gate line, eliminating the broken gate, reducing the effect of the series resistance, and effectively improving the battery efficiency.
  • the existing solar cell screen secondary printing is to print the front sub-gate line (DP1) for the first time, and then the main gate and the sub-gate line (DP2) for the second time.
  • This causes the main grid to be printed only once. If the height is insufficient, the risk of unsatisfactory tensile force of the positive electrode will be caused. If the formula of the silver paste is modified to high tensile strength and high corrosive properties, although the pulling force can be increased, the efficiency will also decrease. If the screen parameters are adjusted, the height of the main grid can be increased to ensure the positive electrode pulling force, but the silver paste consumption is increased, and the production cost is increased.
  • the technical problem to be solved by the present invention is that the prior art mainly focuses on the secondary printing of the solar cell screen, and the main grid is printed only once. If the height is insufficient, the risk of the positive electrode pulling force is unqualified, and then the electrode pulling force of the panel is proposed. Secondary printing process and screen.
  • a secondary printing screen for improving the electrode tension of a panel characterized in that it comprises a first screen and a second screen, the first screen pattern Included in the equally spaced distribution of the sub-gate lines, a plurality of bottom electrodes are disposed at a position of the main gate intersecting the sub-gate lines, the first screen pattern further includes at least two alignment points; and the second screen pattern includes equal-distribution pairs a gate line, a main gate line intersecting the sub-gate line, a pair of corresponding points corresponding to the first screen pattern matching point, the sub-gate line corresponding to the first screen and having a same pitch.
  • sub-gate line of the first screen pattern penetrates the main gate or is disconnected at the main gate.
  • the bottom electrodes are equally spaced and uniformly distributed at the main gate position. Further, the length of the bottom electrode parallel to the sub-gate line is equal to the width of the main gate.
  • the shape of the underlying electrode is any one or a combination of a rectangle, a zigzag or a square.
  • the pair of sites are disposed around the main grid position, the pair of points disposed on the first screen pattern is a solid pair of points, and the pair of points disposed on the second screen pattern is a hollow pair Site.
  • the hollow pair sites and the solid pair sites are circular.
  • the diameter of the hollow pair of sites is the same as the diameter of the solid pair of sites, preferably, the diameter of the pair of sites is preferably 1/2 of the diameter of the main gate, and more preferably, the diameter of the pair of sites is 0.2. Between mm-1.5mm. .
  • the pair of sites are four and are evenly distributed around the main grid position.
  • the invention relates to a process for improving the secondary printing of the electrode of the panel, characterized in that, in the first step, the first screen printing is used, and the electrode paste is printed on the battery sheet through the first screen to perform the printing. Printing of the gate line, the bottom electrode and the opposite site, the bottom electrode is several and respectively located at the main gate position; in step two, the second screen printing is used, and the second screen is formed on the cell and the cell Aligning the sites, the electrode paste prints the front electrode pattern onto the cell through the second screen to perform further printing of the main gate line and the second grid line, the first screen and the second screen are claims A secondary printing screen of any of 1-7.
  • the electrode paste of the first screen printing is selected from a slurry which can penetrate the film and has good ohmic contact with the silicon substrate, and is specifically a mixture of silver powder, glass powder and organic carrier, and is preferred.
  • the mass fraction of the silver powder is 80-90%.
  • a solar cell front electrode is characterized in that the front electrode comprises a main gate pattern and a sub-gate line pattern, and the height of the main gate pattern is high and low undulating.
  • the secondary printing screen of the present invention for improving the tensile force of the electrode of the panel, by setting the underlying electrode at the position of the main gate on the first screen pattern without greatly adjusting the screen parameters,
  • the first gate is printed at the same time as the bottom gate electrode, and the height of the second printed main grid is raised, which improves the solderability of the positive electrode, and the positive electrode pull value can be increased by 0.2- 0.3N/mm, the utilization rate of the electrode slurry is improved, and the battery conversion efficiency is improved to a certain extent, which is of great significance in the solar cell and has the promotion and use value.
  • the secondary printing screen of the present invention for increasing the tensile force of the electrode of the panel, the sub-gate line of the first screen pattern is broken through the main grid or at the main grid. If the sub-gate line does not penetrate the main gate, the accuracy of the screen making is high, and the electrode is saved.
  • the advantage of the slurry; the sub-gate line runs through the main grid and requires less precision in the screen making, which is convenient for screen making.
  • the alignment point set on the first screen pattern is a solid alignment point, and the alignment position on the second screen pattern is set.
  • the point is a hollow pair of points for precise alignment.
  • a process for secondary printing for improving the tensile force of a panel electrode of the present invention by printing a sub-gate line and an underlying electrode at a position of a main gate at the time of the first printing, and printing the sub-gate line at the time of the second printing Main grid line.
  • the height of the second printing main grid is raised, the welding performance of the positive electrode is improved, and the positive electrode pulling force value can be increased by 0.2-0.3N.
  • the front electrode of the solar cell of the present invention has a positive electrode tensile value and an improved battery conversion efficiency.
  • FIG. 1 is a schematic diagram of a first screen of the present invention
  • FIG. 2 is a partially enlarged schematic view of a pattern of a first screen of the present invention
  • FIG. 3 is a partially enlarged schematic view of a first screen version A of the present invention.
  • FIG. 4 is a schematic diagram of a second screen of the present invention.
  • Figure 5 is a partially enlarged schematic view showing a second screen pattern of the present invention.
  • FIG. 6 is a schematic view of the first screen bottom electrode of Embodiment 2;
  • FIG. 7 is a schematic view of a bottom electrode of a first screen of Embodiment 3.
  • Figure 8 is a list of battery pull test data.
  • 1-solid pair sites 2-bottom electrodes; 3-sub-gate lines; 4-main gate lines; 5-hollow pairs.
  • a secondary printing screen for improving the electrode tension of the panel includes a first screen and a second screen.
  • the first screen pattern includes equally spaced distributions.
  • a sub-gate line 3 a plurality of bottom electrodes 2 are disposed at a position of the main gate intersecting the sub-gate lines 3, and the first screen pattern further includes at least two alignment points;
  • the second screen pattern includes a sub-gate line 3 having a pitch distribution, a main gate line 5 intersecting the sub-gate line 3, a pair of sites corresponding to the first screen pattern matching point, the sub-gate line 3 corresponding to the first screen and spaced Consistent.
  • the sub-gate line 3 of the first screen pattern penetrates the main gate, and as a modification, the sub-gate line 3 of the first screen pattern may also be disconnected at the main gate.
  • FIG. 3 is a partially enlarged schematic view showing the position A of FIG. 1 , wherein the two bottom electrodes 2 are equally spaced and uniformly distributed at the main gate position.
  • the shape of the bottom electrode 2 is a rectangle.
  • the shape of the bottom electrode 2 may be any one of zigzag or square, or a combination of any of a rectangle, a zigzag and a square. .
  • the pair of sites are disposed around the main grid position
  • the pair of sites disposed on the first screen pattern is a solid pair of sites 1
  • the pair of dots disposed on the second screen pattern is hollow
  • the hollow pair site 5 and the solid pair site 1 are circular
  • the diameter of the hollow pair site 5 is the same as the diameter of the solid pair site 1, specifically, the diameter of the site is preferably The diameter is 1/2 of the width of the main grid, and more preferably, the diameter of the pair of points is between 0.2 mm and 1.5 mm.
  • the pair of sites is four, uniformly distributed around the main grid position.
  • a secondary printing screen for improving the tensile force of a panel electrode comprising a first screen and a second screen, the first screen pattern comprising a sub-gate line equally spaced, distributed at a position of the main grid intersecting the sub-gate line Providing a plurality of bottom electrodes, the first screen pattern further comprising at least two alignment points; the second screen pattern comprising equally spaced sub-gate lines, a main gate line intersecting the sub-gate lines, and the first screen pattern pair A matching point corresponding to the site, the sub-gate line corresponding to the first screen and having the same pitch.
  • the first grid pattern has 106 sub-gate lines, and the equal spacing is parallel, and the sub-gate lines penetrate the main grid; as shown in FIG. 6, the bottom electrode 2 has a rectangular shape with a length of 0.7 mm and a width of 0.2 mm. , evenly distributed at the main grid position, the spacing is 0.74mm. In this embodiment, four solid alignment points are disposed around the main grid position on the first screen pattern.
  • the second screen pattern has 106 sub-gate lines, which are distributed in parallel with the same spacing as the first screen, and 5 main gate lines are perpendicular to the sub-gate lines, and the width of the main grid lines is 0.7 mm.
  • Four hollow alignment sites are arranged around the main grid position, and the hollow alignment sites are in one-to-one correspondence with the solid alignment points of the first screen.
  • a secondary printing screen for improving the tensile force of a panel electrode comprising a first screen and a second screen, the first screen pattern comprising a sub-gate line equally spaced, distributed at a position of the main grid intersecting the sub-gate line Providing a plurality of bottom electrodes, the first screen pattern further comprising at least two alignment points; the second screen pattern comprising equally spaced sub-gate lines, a main gate line intersecting the sub-gate lines, and the first screen pattern pair A matching point corresponding to the site, the sub-gate line corresponding to the first screen and having the same pitch.
  • the first grid pattern has 106 sub-gate lines, the equidistant spacing is parallel, and the sub-gate lines penetrate the main grid; as shown in FIG. 7, the bottom electrode 2 has a zigzag shape with a length of 0.7 mm and is evenly distributed. At the main grid position, the pitch is 0.5 mm. In this embodiment, four solid alignment points are disposed around the main grid position on the first screen pattern.
  • the second screen pattern has 106 sub-gate lines, which are the same as the first screen, and the five main gate lines are perpendicular to the sub-gate lines, and the width of the main grid line is 0.7 mm.
  • Four hollow alignment sites are arranged around the main grid position, and the hollow alignment sites are in one-to-one correspondence with the solid alignment points of the first screen.
  • the electrode paste prints the front electrode pattern on the battery sheet through the first screen, and performs printing of the sub-gate line, the bottom electrode and the four solid opposite sites.
  • the second screen printing is used, and after the HD camera captures four solid alignment points, the battery piece is automatically adjusted to a suitable position, and the second screen is hollowed out. The sites are precisely aligned, and then the electrode paste prints the front electrode pattern onto the cell through the second screen to perform further printing of the main gate lines and the sub-gate lines.
  • a secondary printing process for improving the electrode tension of a panel, using the secondary printing screen of Embodiment 3, comprising the first step, using the first screen printing, and the electrode paste is passed through the first screen to form the front electrode pattern Printing onto the battery chip, printing the sub-gate line, the bottom electrode and the four solid opposite sites, the bottom electrode is several and respectively located at the main gate position; in step two, the second screen printing is used, the high-definition camera After capturing four solid alignment points, the battery piece is automatically adjusted to a proper position to achieve precise alignment with the second screen hollow alignment point, and then the electrode paste is printed on the front electrode pattern through the second screen. On-chip, further printing of the main gate line and the sub-gate line is performed.
  • the solar cell front electrode comprises a silicon substrate, and the size of the silicon substrate is 156.75 mm*156.75 mm, and the main gate line is 5, and the main grid is prepared by the secondary printing method of the method for improving the tensile force of the electrode of the panel.
  • the line width is 0.7 mm, and the sub-gate line is 106; the main gate pattern of the main gate line is high and low, wherein the width of the sub-gate line is 0.2 mm long and the pitch is 0.74 mm.
  • the solar cell front electrode comprises a silicon substrate, and the size of the silicon substrate is 156.75 mm*156.75 mm, and the main gate line is 5, and the main gate is prepared by the secondary printing method of the method for improving the tensile force of the electrode of the panel.
  • the line width is 0.7 mm, and the sub-gate line is 106; the main gate pattern of the main gate line is high and low, wherein the width of the sub-gate line is the same as the saw-tooth shape, and the pitch is 0.5 mm.
  • Mechanical damage layer and surface texturing The mechanical damage layer on the surface of the silicon wafer was removed with a NaOH solution having a concentration of 30-50 g/L, and the silicon wafer was etched with NaOH having a concentration of 15-20 g/L. The surface is formed with rugged suede, and then washed with 70-85 g/L HCL to remove metal ions on the surface, and finally washed with ionized water and dried.
  • n-type layer is formed on the surface of the P-type silicon wafer by a high-temperature diffusion method of the liquid crystal of phosphorus oxychloride.
  • the diffusion temperature is 830 ° C
  • the time is 300 min minutes
  • the square resistance is controlled at 86-92 ⁇ .
  • the silicon nitride is deposited by PECVD on the front surface of the silicon wafer to a thickness of 75-96 nm and a refractive index of 2.0-2.3.
  • the batteries to the front electrodes were used for the batteries of Examples 6 and 7, and the batteries without the bottom electrode of the control group were tested by soldering the solder ribbon to the main grid of the battery sheet and performing the soldered battery sheets. 180 degree peeling tensile test, 200 data points were collected for each set of data, and then averaged.
  • the test data is as shown in FIG. 8.
  • the first screen is provided with a rectangular bottom electrode at the main grid position and the pulling force of the battery is 2.438 N/mm.
  • the first screen is provided with a sawtooth bottom electrode at the main grid position.
  • the tensile force was 2.486 N/mm, and the tension of the battery prepared by the control group when the first screen had no underlying electrode was 2.194 N/mm, and the tensile force was increased by 0.244 N/mm and 0.292 N/mm, respectively.
  • the bottom gate electrode is printed for the first time while the bottom electrode is printed on the main gate, and the height of the second printing main grid is raised.
  • the welding performance of the positive electrode is improved, and the tensile value of the positive electrode can be increased by 0.2-0.3 N/mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种提高电池板电极拉力的二次印刷网版,包括第一网版和第二网版,第一网版图形包括等间距分布的副栅线(3),与副栅线(3)相交的主栅位置处分布设置若干底层电极(2),第一网版图形还包括至少2个对位点;第二网版图形包括等间距分布的副栅线(3),与副栅线相交的主栅线(5),与第一网版图形对位点相对应的对位点,所述副栅线(3)与第一网版对应且间距一致。采用该网版印刷时,第一次印刷副栅线(3)的同时在主栅处印刷底层电极(2),垫高了第二次印刷主栅的高度,改善了正电极的焊接性能,正电极拉力值提高、电极浆料利用率提高,电池转换效率得到一定程度提高。

Description

一种提高电池板电极拉力的二次印刷工艺方法及网版 技术领域
本发明属于太阳能电池领域,具体涉及一提高电池板电极拉力的二次印刷工艺方法及网版。
背景技术
目前,太阳能发电是一种新兴的可再生能源,太阳能硅片是太阳能电池组不可缺少的组件,丝网印刷技术是产业化晶体硅太阳能电池制造工艺中普遍使用的电极制作工艺,二次印刷工艺是较为先进的生产技术,其中正面电极生产过程依次是:一次印刷正面电极、烘干;二次印刷正面电极、烘干、烧结完成。其中二次印刷是在一次印刷的副栅线上重叠再一次副栅线,起到加厚栅线,消除断栅,减小串联电阻的作用,可以有效提高电池效率。
然而,现有的太阳能电池丝网二次印刷是第一次印刷正面副栅线(DP1),随后第二次印刷主栅及副栅线(DP2)。这样造成主栅只印刷一次,高度不足则会造成正电极拉力不合格风险,若银浆配方修改为高拉力高腐蚀性特性,虽能提升拉力但效率亦会下降。若调整网版参数可以提高主栅高度以保证正电极拉力,但会增加银浆耗量,增加生产成本。
如何在太阳能电池丝网二次印刷方面,不使生产成本大量增加,且电池效率不会下降的情况下,提高正电极拉力,是亟待解决的一项重要问题,对太阳能电池发展而言具有重要意义。
发明内容
本发明所要解决的技术问题在于现有技术的主要针对太阳能电池丝网二次印刷,主栅只印刷一次,高度不足则会造成正电极拉力不合格风险,进而提出一种提高电池板电极拉力的二次印刷工艺方法及网版。
为了解决上述技术问题,本发明通过下述技术方案得以解决:一种提高电池板电极拉力的二次印刷网版,其特征在于,包括第一网版和第二网版,第一网版图形包括等间距分布的副栅线,与副栅线相交的主栅位置处分布设置若干底层电极,第一网版图形还包括至少2个对位点;第二网版图形包括等间距分布的副栅线,与副栅线相交的主栅线,与第一网版图形对位点相对应的对位点,所述副栅线与第一网版对应且间距一致。
进一步地,所述第一网版图形的副栅线贯穿主栅或在主栅处断开。
作为优选,所述底层电极等间距、均匀分布于主栅位置处。更进一步地,所述底层电极与副栅线平行的长度等于主栅的宽度。
作为优选,所述底层电极的形状为长方形、锯齿状或正方形的任意一种或几种的组合。
作为优选,所述对位点设置于主栅位置四周,所述第一网版图形上设置的对位点为实心对位点,所述第二网版图形上设置的对位点为空心对位点。
更优选地,所述空心对位点和实心对位点为圆形。
具体地,所述空心对位点的直径与实心对位点的直径相同,优选地,对位点的直径优选直径为主栅宽度的1/2,更优选地,对位点的直径为0.2mm-1.5mm之间。。
作为优选,所述对位点为4个,均匀分布于主栅位置四周。
一种提高电池板电极拉力的二次印刷的工艺方法,其特征在于,包括步骤一,使用第一网版印刷,电极浆料透过第一网版将正面电极图形印刷到电池片上,进行副栅线、底层电极和对位点的印刷,所述底层电极为若干个且分别于主栅位置处;步骤二,再使用第二网版印刷,第二网版对位点与电池片上形成的对位点对准,电极浆料透过第二网版将正面电极图形印刷到电池片上,进行主栅线和副栅线的进一步印刷,所述第一网版和第二网版为权利要求1-7任意一项的二次印刷网版。
具体地,所述第一次网版印刷的电极浆料,选用可以穿透减翻膜,与硅基底欧姆接触性能较好的浆料,具体为银粉、玻璃粉和有机载体的混合物,作为优选,所述银粉的质量分数为80-90%。
一种太阳能电池正面电极,其特征在于,采用上述工艺方法制备而得,正面电极包括主栅图形和副栅线图形,所述主栅图形的高度呈为高低起伏状。
与现有技术相比,本发明的有益效果:
(1)本发明的提高电池板电极拉力的二次印刷网版,在不大幅调整网版参数的情况下,通过在第一网版图形上的主栅位置处设置底层电极,使得在采用该网版印刷时,第一次印刷副栅线的同时在主栅处印刷底层电极,垫高了第二次印刷主栅的高度,改善了正电极的焊接性能,正电极拉力值可提高0.2-0.3N/mm,电极浆料利用率提高,电池转换效率得到一定程度提高,在太阳能电池方面具有重要意义,具有推广使用价值。通过在第一网版图形上设置对位点,并在第二网版图形上设置与之对应的对位点,便于第二次印刷时与第一次印刷位置吻合,提高电极良率。
(2)本发明的提高电池板电极拉力的二次印刷网版,第一网版图形的副栅线贯穿主栅或在主栅处断开。如果副栅线不贯穿主栅的情况下对网版制作的精度要求较高,具有省电极 浆料的优点;副栅线贯穿主栅要求网版制作的精度要低些,便于网版制作。
(3)本发明的提高电池板电极拉力的二次印刷网版,作为优选,第一网版图形上设置的对位点为实心对位点,所述第二网版图形上设置的对位点为空心对位点,便于精准对位。
(4)本发明的提高电池板电极拉力的二次印刷的工艺方法,通过在第一次印刷时印刷副栅线和位于主栅位置的底层电极,并在第二印刷时印刷副栅线和主栅线。第一次印刷时,垫高了第二次印刷主栅的高度,改善了正电极的焊接性能,正电极拉力值可提高0.2-0.3N。
(5)本发明太阳能电池正面电极,正电极拉力值提高,电池转换效率提高。
附图说明
图1为本发明第一网版图形示意图;
图2为本发明第一网版图形对位点局部放大示意图;
图3为本发明第一网版图形A局部放大示意图;
图4为本发明第二网版图形示意图;
图5为本发明第二网版图形局部放大示意图;
图6为实施例2的第一网版底层电极示意图
图7为实施例3的第一网版底层电极示意图;
图8为电池片拉力测试数据列表。
其中,1-实心对位点;2-底层电极;3-副栅线;4-主栅线;5-空心对位点。
具体实施方式
为了使本发明的技术方案更加清楚明了,以下结合附图及实施例对本发明进行进一步详细说明。
实施例1
如图1至图5所示,一种提高电池板电极拉力的二次印刷网版,包括第一网版和第二网版,如图1所示,第一网版图形包括等间距分布的副栅线3,与副栅线3相交的主栅位置处分布设置若干底层电极2,第一网版图形还包括至少2个对位点;如图4所示,第二网版图形包括等间距分布的副栅线3,与副栅线3相交的主栅线5,与第一网版图形对位点相对应的对位点,所述副栅线3与第一网版对应且间距一致。
具体地,在本实施例中,所述第一网版图形的副栅线3贯穿主栅,作为变形,第一网版图形的副栅线3还可以在主栅处断开。
作为优选,所述底层电极2等间距、均匀分布于主栅位置处,所述底层电极与副栅线平行的长度等于主栅的宽度。图3为图1的A位置的局部放大示意图显示,所述底层电极2两个为一组等间距、均匀分布于主栅位置处。
所述底层电极2的形状为长方形,作为变形,所述所述底层电极2的形状还可以为锯齿状或正方形的任意一种,或长方形、锯齿状、正方形三者中的任意几种的组合。
具体地,所述对位点设置于主栅位置四周,所述第一网版图形上设置的对位点为实心对位点1,所述第二网版图形上设置的对位点为空心对位点5,所述空心对位点5和实心对位点1为圆形,所述空心对位点5的直径与实心对位点1的直径相同,具体地,对位点的直径优选直径为主栅宽度的1/2,更优选地,对位点的直径为0.2mm-1.5mm之间。
优选地,所述对位点为4个,均匀分布于主栅位置四周。
实施例2
一种提高电池板电极拉力的二次印刷网版,包括第一网版和第二网版,第一网版图形包括等间距分布的副栅线,与副栅线相交的主栅位置处分布设置若干底层电极,第一网版图形还包括至少2个对位点;第二网版图形包括等间距分布的副栅线,与副栅线相交的主栅线,与第一网版图形对位点相对应的对位点,所述副栅线与第一网版对应且间距一致。
具体地,第一网版图形的副栅线为106根,等间距平行分布,副栅线贯穿主栅;如图6所示,底层电极2的形状为长方形,长为0.7mm,宽0.2mm,均匀分布于主栅位置处,间距为0.74mm。本实施例中,第一网版图形上在主栅位置四周设置4个实心对位点。
第二网版图形的副栅线为106根,与第一网版相同等间距平行分布,5根主栅线垂直于副栅线分布,主栅线的宽度为0.7mm。主栅位置四周设置4个空心对位点,该空心对位点与第一网版的实心对位点一一对应。
实施例3
一种提高电池板电极拉力的二次印刷网版,包括第一网版和第二网版,第一网版图形包括等间距分布的副栅线,与副栅线相交的主栅位置处分布设置若干底层电极,第一网版图形还包括至少2个对位点;第二网版图形包括等间距分布的副栅线,与副栅线相交的主栅线,与第一网版图形对位点相对应的对位点,所述副栅线与第一网版对应且间距一致。
具体地,第一网版图形的副栅线为106根,等间距平行分布,副栅线贯穿主栅;如图7所示,底层电极2的形状为锯齿状,长为0.7mm,均匀分布于主栅位置处,间距为0.5mm。本实施例中,第一网版图形上在主栅位置四周设置4个实心对位点。
第二网版图形的副栅线为106根,与第一网版相同,5根主栅线垂直于副栅线分布,主栅线的宽度为0.7mm。主栅位置四周设置4个空心对位点,该空心对位点与第一网版的实心对位点一一对应。
实施例4
一种提高电池板电极拉力的二次印刷的工艺方法,采用实施例2的二次印刷网版,包 括步骤一,使用第一网版印刷,电极浆料透过第一网版将正面电极图形印刷到电池片上,进行副栅线、底层电极和4个实心对位点的印刷,所述底层电极为若干个且分别于主栅位置处;步骤二,再使用第二网版印刷,高清摄像机捕捉到4个实心的对位点后,自动调整电池片到合适位置,与第二网版空心对位点实现精确对准,然后电极浆料透过第二网版将正面电极图形印刷到电池片上,进行主栅线和副栅线的进一步印刷。
实施例5
一种提高电池板电极拉力的二次印刷的工艺方法,采用实施例3的二次印刷网版,包括步骤一,使用第一网版印刷,电极浆料透过第一网版将正面电极图形印刷到电池片上,进行副栅线、底层电极和4个实心对位点的印刷,所述底层电极为若干个且分别于主栅位置处;步骤二,再使用第二网版印刷,高清摄像机捕捉到4个实心的对位点后,自动调整电池片到合适位置,与第二网版空心对位点实现精确对准,然后电极浆料透过第二网版将正面电极图形印刷到电池片上,进行主栅线和副栅线的进一步印刷。
实施例6
由实施例4的提高电池板电极拉力的二次印刷的工艺方法制备而得,太阳能电池正面电极,包括硅基底,硅基底的尺寸采用156.75mm*156.75mm,主栅线为5根,主栅线宽度为0.7mm,副栅线为106根;主栅线上高低起伏的主栅图形,其中与副栅线高度相同处为的宽度为0.2mm长条状,间距为0.74mm。
实施例7
由实施例5的提高电池板电极拉力的二次印刷的工艺方法制备而得,太阳能电池正面电极,包括硅基底,硅基底的尺寸采用156.75mm*156.75mm,主栅线为5根,主栅线宽度为0.7mm,副栅线为106根;主栅线上高低起伏的主栅图形,其中与副栅线高度相同处为的宽度为锯齿状,间距为0.5mm。
实施例8
电池片的制作与测试
1.去机械损伤层及表面制绒:用浓度为30-50g/L的NaOH溶液去除硅片表面机械损伤层,用浓度为15-20g/L的NaOH对硅片进行腐蚀。使其表面形成凹凸不平的绒面,然后用70-85g/LHCL清洗,去除表面的金属离子,最后用离子水清洗,烘干。
2.通过三氯氧磷液态源高温扩散法,在P型硅片表面形成一n型层。扩散温度830℃,时间300min分钟,方阻控制在86-92Ω。
3.刻蚀硅片边缘的n型硅及表面的磷硅玻璃,使用HNO3、HF的混合溶液,去除边缘及背面的PN结。所述HNO3浓度为340-390g/L,HF浓度为40-50g/L,刻蚀温度为5-9℃, 刻蚀量控制在1.3-1.6g,用浓度为5%的KOH溶液洗去硅片表面多孔硅,并中和前面的酸。用5%的HF去除表面的PSG(磷硅玻璃)。
4.在硅片正表面用PECVD沉积氮化硅,厚度为75-96nm,折射率为2.0-2.3。
5.背面电极印刷,烘干。
6.背场印刷,烘干。
7.正面电极二次印刷
分别采用实施例4和实施例5的二次印刷工艺方法印刷。
8.烘干、烧结,分别得到正面电极为实施例5和实施例6的的电池。
9.测试
将到正面电极为实施例6和实施例7的的电池、以及对照组无底层电极的电池进行测试,测试方法为,将焊带焊接在电池片的主栅上,对焊接后的电池片进行180度剥离拉力测试,每组数据采集200个数据点,然后取均值。测试数据如图8所示,第一网版在主栅位置处设置长方形底层电极制备的电池的拉力为2.438N/mm,第一网版在主栅位置处设置锯齿状底层电极制备的电池的拉力为2.486N/mm,而第一网版无底层电极时时的对照组制备的电池拉力为2.194N/mm,拉力值分别提高0.244N/mm、0.292N/mm。
由此可见,使得在采用第一网版主栅处设置底层电极的网版印刷时,第一次印刷副栅线的同时在主栅印刷底层电极,垫高了第二次印刷主栅的高度,改善了正电极的焊接性能,正电极拉力值可提高0.2-0.3N/mm。
以上列举的仅为本发明的具体实施例,显然,本发明不限于以上的实施例。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。

Claims (10)

  1. 一种提高电池板电极拉力的二次印刷网版,其特征在于,包括第一网版和第二网版,第一网版图形包括等间距分布的副栅线,与副栅线相交的主栅位置处分布设置若干底层电极,第一网版图形还包括至少2个对位点;第二网版图形包括等间距分布的副栅线,与副栅线相交的主栅线,与第一网版图形对位点相对应的对位点,所述副栅线与第一网版对应且间距一致。
  2. 根据权利要求1所述的提高电池板电极拉力的二次印刷网版,其特征在于,所述第一网版图形的副栅线贯穿主栅或在主栅处断开。
  3. 根据权利要求1所述的提高电池板电极拉力的二次印刷网版,其特征在于,所述底层电极等间距、均匀分布于主栅位置处,所述底层电极与副栅线平行的长度等于主栅的宽度。
  4. 根据权利要求1或3所述的提高电池板电极拉力的二次印刷网版,其特征在于,所述底层电极的形状为长方形、锯齿状或正方形的任意一种或几种的组合。
  5. 根据权利要求1或2所述的提高电池板电极拉力的二次印刷网版,其特征在于,所述对位点设置于主栅位置四周,所述第一网版图形上设置的对位点为实心对位点,所述第二网版图形上设置的对位点为空心对位点。
  6. 根据权利要求5所述的提高电池板电极拉力的二次印刷网版,其特征在于,所述空心对位点和实心对位点为圆形,所述空心对位点的直径与实心对位点的直径相同。
  7. 根据权利要求6所述的提高电池板电极拉力的二次印刷网版,其特征在于,所述对位点为4个,均匀分布于主栅位置四周。
  8. 一种提高电池板电极拉力的二次印刷的工艺方法,其特征在于,包括步骤一,使用第一网版印刷,电极浆料透过第一网版将正面电极图形印刷到电池片上,进行副栅线、底层电极和对位点的印刷,所述底层电极为若干个且分布于主栅位置处;步骤二,再使用第二网版印刷,第二网版对位点与电池片上形成的对位点对准,电极浆料透过第二网版将正面电极图形印刷到电池片上,进行主栅线和副栅线的进一步印刷,所述第一网版和第二网版为权利要求1-7任意一项的二次印刷网版。
  9. 一种提高电池板电极拉力的二次印刷的工艺方法,其特征在于,所述第一次网版印刷的电极浆料为银粉、玻璃粉和有机载体的混合物。
  10. 一种太阳能电池正面电极,其特征在于,采用权利要求8-9任意一项工艺方法制备而得,正面电极包括主栅图形和副栅线图形,所述主栅图形的高度呈高低起伏状。
PCT/CN2017/086512 2017-05-31 2017-05-31 一种提高电池板电极拉力的二次印刷工艺方法及网版 WO2018218474A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/086512 WO2018218474A1 (zh) 2017-05-31 2017-05-31 一种提高电池板电极拉力的二次印刷工艺方法及网版
CN201780001103.1A CN107636845A (zh) 2017-05-31 2017-05-31 一种提高电池板电极拉力的二次印刷工艺方法及网版
US15/779,854 US10763378B2 (en) 2017-05-31 2017-05-31 Double printing method and screen stencil for improving the tensile force of the electrode of solar panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/086512 WO2018218474A1 (zh) 2017-05-31 2017-05-31 一种提高电池板电极拉力的二次印刷工艺方法及网版

Publications (1)

Publication Number Publication Date
WO2018218474A1 true WO2018218474A1 (zh) 2018-12-06

Family

ID=61108008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086512 WO2018218474A1 (zh) 2017-05-31 2017-05-31 一种提高电池板电极拉力的二次印刷工艺方法及网版

Country Status (3)

Country Link
US (1) US10763378B2 (zh)
CN (1) CN107636845A (zh)
WO (1) WO2018218474A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109203744A (zh) * 2018-08-07 2019-01-15 天津英利新能源有限公司 一种黑硅电池的印刷烧结方法以及检测标准
CN110459616A (zh) * 2018-10-17 2019-11-15 协鑫集成科技股份有限公司 硅衬底、太阳能电池片及其形成方法、印刷网版
CN109616530B (zh) * 2018-11-14 2020-07-31 晶澳(扬州)太阳能科技有限公司 一种形成太阳能电池的电极的工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110308601A1 (en) * 2010-06-21 2011-12-22 Sungjin Kim Solar cell
CN102582229A (zh) * 2012-02-21 2012-07-18 常熟市方塔涂料化工有限公司 一种太阳能电池电极的配套网板及其印刷方法
CN104247049A (zh) * 2012-04-18 2014-12-24 赫劳斯贵金属北美康舍霍肯有限责任公司 印刷太阳能电池触点的方法
CN205130593U (zh) * 2015-10-22 2016-04-06 镇江大全太阳能有限公司 一种晶体硅太阳能电池分步印刷工艺用网版
CN205631674U (zh) * 2016-01-08 2016-10-12 上海艾力克新能源有限公司 一种晶硅太阳电池二次印刷正面电极套印网版图形结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011003287A1 (de) * 2011-01-27 2012-08-02 Christian Koenen Gmbh Druckschablone zum Aufbringen eines Druckmusters auf ein Substrat und Verfahren zum Herstellen einer Druckschablone
DE102011001999A1 (de) * 2011-04-12 2012-10-18 Schott Solar Ag Solarzelle
CN204315585U (zh) 2015-01-05 2015-05-06 无锡德鑫太阳能电力有限公司 一种具有防断栅电极结构的太阳能电池片
CN205130621U (zh) * 2015-11-24 2016-04-06 苏州阿特斯阳光电力科技有限公司 一种副栅网版

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110308601A1 (en) * 2010-06-21 2011-12-22 Sungjin Kim Solar cell
CN102582229A (zh) * 2012-02-21 2012-07-18 常熟市方塔涂料化工有限公司 一种太阳能电池电极的配套网板及其印刷方法
CN104247049A (zh) * 2012-04-18 2014-12-24 赫劳斯贵金属北美康舍霍肯有限责任公司 印刷太阳能电池触点的方法
CN205130593U (zh) * 2015-10-22 2016-04-06 镇江大全太阳能有限公司 一种晶体硅太阳能电池分步印刷工艺用网版
CN205631674U (zh) * 2016-01-08 2016-10-12 上海艾力克新能源有限公司 一种晶硅太阳电池二次印刷正面电极套印网版图形结构

Also Published As

Publication number Publication date
US20190363203A1 (en) 2019-11-28
US10763378B2 (en) 2020-09-01
CN107636845A (zh) 2018-01-26

Similar Documents

Publication Publication Date Title
RU2571167C2 (ru) Солнечный элемент и модуль солнечного элемента
CN101777606B (zh) 一种晶体硅太阳电池选择性扩散工艺
CN110265497B (zh) 一种选择性发射极的n型晶体硅太阳电池及其制备方法
CN107799616B (zh) 一种叉指背接触太阳能电池片及其制作方法
CN101533874A (zh) 一种选择性发射极晶体硅太阳电池的制备方法
CN109841693A (zh) 一种钝化接触结构及太阳能电池
CN101447531A (zh) 一种太阳能电池正面电极的制备方法
WO2018218474A1 (zh) 一种提高电池板电极拉力的二次印刷工艺方法及网版
CN105576083A (zh) 一种基于apcvd技术的n型双面太阳能电池及其制备方法
TWI536597B (zh) A low cost, suitable for mass production of back contact with the battery production methods
CN102185030B (zh) 基于n型硅片的背接触式hit太阳能电池制备方法
JPWO2011024264A1 (ja) 太陽電池セルおよびその製造方法
WO2024092989A1 (zh) 半导体衬底及其处理方法、太阳能电池及其制备方法
CN113421946A (zh) 太阳能电池返工工艺
CN102983214B (zh) 一种选择性发射极晶体硅太阳电池的制备方法
JP5830143B1 (ja) 太陽電池セルの製造方法
CN103560168A (zh) Perc太阳能电池的制备工艺
CN105702757B (zh) 一种晶体硅太阳能电池透明导电组合体及其制备方法
CN109713064B (zh) 一种选择性发射极、其制备方法和使用它的太阳能电池及其应用
JP6559244B2 (ja) 太陽電池の製造方法および太陽電池
CN102969371B (zh) 双面太阳能电池的构造及其制作方法
CN110190155A (zh) 一种高效钝化接触晶体硅太阳能电池及其制备方法
CN104009114B (zh) 准单晶硅太阳能电池片的制造方法
CN111009588A (zh) 一种perc电池及其制备方法
KR101193021B1 (ko) 도트형 전극을 갖는 저가 양산의 고효율 태양전지 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911488

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17911488

Country of ref document: EP

Kind code of ref document: A1