WO2018216808A1 - Gas sensor control device - Google Patents

Gas sensor control device Download PDF

Info

Publication number
WO2018216808A1
WO2018216808A1 PCT/JP2018/020205 JP2018020205W WO2018216808A1 WO 2018216808 A1 WO2018216808 A1 WO 2018216808A1 JP 2018020205 W JP2018020205 W JP 2018020205W WO 2018216808 A1 WO2018216808 A1 WO 2018216808A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
output
sensor
sensor cell
monitor
Prior art date
Application number
PCT/JP2018/020205
Other languages
French (fr)
Japanese (ja)
Inventor
忠勝 小薮
勇樹 村山
竜三 加山
明里 長谷川
裕明 世登
学 吉留
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018002725.2T priority Critical patent/DE112018002725T5/en
Publication of WO2018216808A1 publication Critical patent/WO2018216808A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/281Interface circuits between sensors and control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/281Interface circuits between sensors and control unit
    • F02D2041/285Interface circuits between sensors and control unit the sensor having a signal processing unit external to the engine control unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • This disclosure relates to a gas sensor control device.
  • NOx sensors that detect NOx (nitrogen oxide) concentration are known as gas sensors that detect the concentration of a specific gas component in a gas to be detected such as exhaust gas from an internal combustion engine.
  • the NOx sensor has a three-cell structure composed of a pump cell, a monitor cell, and a sensor cell as described in Patent Document 1, for example, and the pump cell discharges or pumps out oxygen in the exhaust gas introduced into the gas chamber.
  • the monitor cell detects the residual oxygen concentration in the gas chamber after passing through the pump cell, and the sensor cell detects the NOx concentration from the gas after passing through the pump cell.
  • Patent Document 1 forcibly switches the applied voltage to the pump cell, and determines the deterioration of the NOx sensor based on the change amount of the sensor cell output at this time. A method for diagnosing is disclosed.
  • the above-described conventional deterioration diagnosis method intentionally changes the residual oxygen concentration in the gas chamber by switching the pump cell applied voltage, and performs sensor cell deterioration diagnosis based on the transient response of the sensor cell accompanying the change in the residual oxygen concentration.
  • the residual oxygen concentration in the gas chamber is not properly adjusted after the pump cell applied voltage is switched, it is considered that the change in the sensor cell output is affected. In this case, there is a concern that the accuracy of deterioration diagnosis of the sensor cell is lowered.
  • the present disclosure has been made in view of the above problems, and a main purpose thereof is to provide a gas sensor control device that can appropriately determine the deterioration state of a sensor cell.
  • a control device that is applied to a gas sensor having a monitor cell that detects an oxygen concentration and performs control related to the gas sensor,
  • a voltage switching unit that switches an applied voltage of the pump cell;
  • a deterioration determination unit that determines a deterioration state of the sensor cell based on the output of the sensor cell and the output of the monitor cell acquired by the acquisition unit; Is provided.
  • the sensor cell when performing deterioration determination of a sensor cell based on the output responsiveness of the sensor cell, the sensor cell implemented based on the output change of the sensor cell according to the residual oxygen concentration in the gas chamber after switching the pump cell applied voltage.
  • the deterioration judgment will be adversely affected.
  • the sensor cell output and the monitor cell output are acquired, and the deterioration state of the sensor cell is determined based on the sensor cell output and the monitor cell output. .
  • FIG. 1 is a diagram showing a system configuration of an engine exhaust system.
  • FIG. 2 is a cross-sectional view showing the configuration of the NOx sensor
  • FIG. 3 is a cross-sectional view showing a III-III cross section of FIG.
  • FIG. 4 is a diagram for explaining changes in the transient characteristics of the sensor cell output accompanying the deterioration of the NOx sensor.
  • FIG. 5 is a diagram showing a start point and an end point used for calculation of the slope parameter.
  • FIG. 6 is a functional block diagram of the SCU and ECU.
  • FIG. 7 is a flowchart showing a processing procedure for sensor cell deterioration determination.
  • FIG. 1 is a diagram showing a system configuration of an engine exhaust system.
  • FIG. 2 is a cross-sectional view showing the configuration of the NOx sensor
  • FIG. 3 is a cross-sectional view showing a III-III cross section of FIG.
  • FIG. 4 is a diagram for explaining changes in the transient characteristics of the sensor cell
  • FIG. 8 is a diagram showing the relationship between the change amount of the pump cell current and the monitor cell current convergence value.
  • FIG. 9 is a diagram showing the relationship between the monitor cell current convergence value and the initial slope.
  • FIG. 10 is a diagram showing the relationship between the reaction rate ratio, the sensor cell current convergence value, and the deterioration rate.
  • FIG. 11 is a flowchart showing a processing procedure for sensor cell deterioration determination in the second embodiment.
  • FIG. 12 is a diagram showing the relationship between the change amount of the pump cell current and the initial slope,
  • FIG. 13 is a flowchart illustrating a processing procedure for sensor cell deterioration determination in the third embodiment.
  • FIG. 14 is a diagram showing the relationship between the monitor cell current and the sensor cell current,
  • FIG. 15 is a flowchart showing a processing procedure for sensor cell deterioration determination in the fourth embodiment.
  • FIG. 16 is a cross-sectional view showing the configuration of another NOx sensor.
  • This embodiment embodies a gas sensor control device that performs control related to a NOx sensor in a system in which exhaust gas discharged from an on-board diesel engine is detected gas and the NOx concentration in the exhaust gas is detected by a NOx sensor. It is said.
  • parts that are the same or equivalent to each other are given the same reference numerals in the drawings, and the description of the same reference numerals is used.
  • an exhaust gas purification system that purifies exhaust gas is provided on the exhaust side of an engine 10 that is a diesel engine.
  • an exhaust pipe 11 that forms an exhaust passage is connected to the engine 10
  • an oxidation catalytic converter 12 and a selective catalytic reduction converter (hereinafter referred to as SCR) are connected to the exhaust pipe 11 in order from the engine 10 side. 13) (referred to as a catalytic converter).
  • the oxidation catalyst converter 12 includes a diesel oxidation catalyst 14 and a DPF (Diesel Particulate Filter) 15.
  • the SCR catalytic converter 13 has an SCR catalyst 16 as a selective reduction type catalyst.
  • a urea water addition valve 17 for adding and supplying urea water (urea aqueous solution) as a reducing agent into the exhaust pipe 11 is provided between the oxidation catalytic converter 12 and the SCR catalytic converter 13 in the exhaust pipe 11. ing.
  • the diesel oxidation catalyst 14 is mainly composed of a ceramic carrier, an oxide mixture containing aluminum oxide, cerium dioxide and zirconium dioxide as components, and a noble metal catalyst such as platinum, palladium and rhodium.
  • the diesel oxidation catalyst 14 oxidizes and purifies hydrocarbons, carbon monoxide, nitrogen oxides and the like contained in the exhaust gas. Further, the diesel oxidation catalyst 14 raises the exhaust temperature by heat generated during the catalytic reaction.
  • the DPF 15 is formed of a honeycomb structure, and is configured by supporting a platinum group catalyst such as platinum or palladium on a porous ceramic.
  • the DPF 15 collects particulate matter contained in the exhaust gas by depositing it on the partition walls of the honeycomb structure.
  • the deposited particulate matter is oxidized and purified by combustion. For this combustion, a temperature increase in the diesel oxidation catalyst 14 or a decrease in the combustion temperature of the particulate matter due to the additive is used.
  • the SCR catalytic converter 13 is a device for reducing NOx to nitrogen and water as a post-treatment device for the oxidation catalytic converter 12, and the SCR catalyst 16 carries a noble metal such as Pt on the surface of a base material such as zeolite or alumina.
  • the catalyst used is used.
  • the SCR catalyst 16 reduces and purifies NOx by adding urea as a reducing agent when the catalyst temperature is in the activation temperature range.
  • the exhaust pipe 11 there is a limit as a gas sensor on the upstream side of the oxidation catalytic converter 12, between the oxidation catalytic converter 12 and the SCR catalytic converter 13, upstream of the urea water addition valve 17, and downstream of the SCR catalytic converter 13.
  • Current-type NOx sensors 21, 22, and 23 are provided, respectively.
  • the NOx sensors 21 to 23 detect the NOx concentration in the exhaust gas at the respective detection positions.
  • the position and number of NOx sensors in the engine exhaust system may be arbitrary.
  • SCUs 31 to 33 are connected to the NOx sensors 21 to 23, and the detection signals of the NOx sensors 21 to 23 are appropriately output to the SCUs 31 to 33 for each sensor.
  • the SCUs 31 to 33 are electronic control devices including a CPU and a microcomputer having various memories and peripheral circuits thereof, and oxygen (O2) in exhaust gas based on detection signals (limit current signals) of the NOx sensors 21 to 23. The concentration and the NOx concentration as the concentration of the specific gas component are calculated.
  • the SCUs 31 to 33 are connected to a communication line 34 such as a CAN bus, and are connected to various ECUs (for example, an engine ECU 35) via the communication line 34. That is, the SCUs 31 to 33 and the engine ECU 35 can exchange information with each other using the communication line 34. For example, information on oxygen concentration and NOx concentration in exhaust gas is transmitted from the SCUs 31 to 33 to the engine ECU 35.
  • the engine ECU 35 is an electronic control device including a CPU, a microcomputer having various memories, and its peripheral circuits, and controls the engine 10 and various devices in the exhaust system.
  • the engine ECU 35 performs fuel injection control and the like based on, for example, the accelerator opening and the engine speed.
  • the engine ECU 35 performs urea water addition control by the urea water addition valve 17 based on the NOx concentration detected by each of the NOx sensors 21 to 23.
  • the engine ECU 35 calculates the urea water addition amount based on the NOx concentration detected by the NOx sensors 21 and 22 on the upstream side of the SCR catalytic converter 13, and the SCR catalytic converter 13.
  • the urea water addition amount is feedback-corrected so that the NOx concentration detected by the downstream NOx sensor 23 becomes as small as possible. Based on the urea water addition amount, the driving of the urea water addition valve 17 is controlled.
  • FIG. 2 and 3 are views showing the internal structure of the sensor element 40 constituting the NOx sensor 21.
  • FIG. 1 the left-right direction of a figure is a longitudinal direction of the sensor element 40, and the left side of a figure is an element front end side.
  • the sensor element 40 has a so-called three-cell structure including a pump cell 41, a sensor cell 42 and a monitor cell 43.
  • the monitor cell 43 has a function of discharging oxygen in the gas, like the pump cell 41, and may be referred to as an auxiliary pump cell or a second pump cell.
  • the sensor element 40 includes a first main body 51 and a second main body 52 made of an insulator such as alumina, a solid electrolyte body 53 disposed between the main bodies 51 and 52, a diffusion resistor 54, and a pump cell.
  • An electrode 55, a sensor cell electrode 56, a monitor cell electrode 57, a common electrode 58, and a heater 59 are provided.
  • a gas chamber 61 that is a concentration meter side chamber is formed between the first main body 51 and the solid electrolyte body 53, and an atmospheric chamber 62 that is a reference gas chamber is formed between the second main body 52 and the solid electrolyte body 53. Is formed.
  • the pump cell 41 adjusts the oxygen concentration in the exhaust gas introduced into the gas chamber 61, and is formed by the pump cell electrode 55, the common electrode 58, and a part of the solid electrolyte body 53.
  • the sensor cell 42 detects the concentration (NOx concentration) of a predetermined gas component in the gas chamber 61 based on an oxygen ion current flowing between the sensor cell electrode 56 and the common electrode 58.
  • the sensor cell electrode 56 and the common electrode 58 And a part of the solid electrolyte body 53.
  • the monitor cell 43 detects the residual oxygen concentration in the gas chamber 61 on the basis of the oxygen ion current flowing between the monitor cell electrode 57 and the common electrode 58, and one of the monitor cell electrode 57, the common electrode 58, and the solid electrolyte body 53. Part.
  • the solid electrolyte body 53 is a plate-like member and is made of an oxygen ion conductive solid electrolyte material such as zirconia oxide.
  • the first main body 51 and the second main body 52 are arranged on both sides of the solid electrolyte body 53.
  • the first main body 51 has a stepped shape on the solid electrolyte body 53 side, and a recess formed by the step is a gas chamber 61.
  • One side surface of the concave portion of the first main body 51 is open, and the diffusion resistor 54 is disposed on the open side surface.
  • the diffusion resistor 54 is made of a porous material or a material in which pores are formed. The speed of the exhaust gas introduced into the gas chamber 61 is regulated by the action of the diffusion resistor 54.
  • the second main body portion 52 has a stepped shape on the solid electrolyte body 53 side, and a concave portion formed by the step is an atmospheric chamber 62.
  • One side of the atmospheric chamber 62 is open. The gas introduced into the atmospheric chamber 62 from the solid electrolyte body 53 side is released to the atmosphere.
  • a pump cell electrode 55 On the surface facing the gas chamber 61 of the solid electrolyte body 53, a pump cell electrode 55, a sensor cell electrode 56, and a monitor cell electrode 57 on the cathode side are provided.
  • the pump cell electrode 55 is disposed on the inlet side of the gas chamber 61 close to the diffusion resistor 54, that is, on the upstream side in the gas chamber 61, and the sensor cell electrode 56 and the monitor cell electrode 57 have a diffusion resistance across the pump cell electrode 55. It is disposed on the opposite side of the body 54, that is, on the downstream side in the gas chamber 61.
  • the pump cell electrode 55 has a larger surface area than the sensor cell electrode 56 and the monitor cell electrode 57.
  • the sensor cell electrode 56 and the monitor cell electrode 57 are arranged side by side at positions close to each other and equivalent to the exhaust flow direction.
  • the pump cell electrode 55 and the monitor cell electrode 57 are electrodes made of a noble metal such as Au—Pt that is inactive to NOx (electrodes that are difficult to decompose NOx), whereas the sensor cell electrode 56 is platinum Pt and rhodium that are active to NOx. It is an electrode made of a noble metal such as Rh.
  • a common electrode 58 on the anode side is provided on the surface of the solid electrolyte body 53 facing the atmospheric chamber 62 at a position corresponding to each of the electrodes 55 to 57 on the cathode side.
  • a voltage applied to the pump cell 41 is a pump cell applied voltage Vp
  • a current output when the pump cell 41 is in a voltage applied state is a pump cell current Ip.
  • the monitor cell 43 detects the oxygen concentration remaining in the gas chamber 61 in a state where oxygen is exhausted by the pump cell 41. At this time, the monitor cell 43 outputs a current signal generated with voltage application or an electromotive force signal corresponding to the residual oxygen concentration in the gas chamber 61 as a residual oxygen concentration detection signal. The output of the monitor cell 43 is acquired by the SCUs 31 to 33 as the monitor cell current Im or the monitor cell electromotive force Vm.
  • the sensor cell 42 reduces and decomposes NOx in the exhaust gas according to voltage application in a state where oxygen is exhausted by the pump cell 41, and outputs a current signal corresponding to the NOx concentration and the residual oxygen concentration in the gas chamber 61.
  • the output of the sensor cell 42 is acquired as the sensor cell current Is in the SCUs 31 to 33.
  • the NOx concentration in the exhaust gas is calculated from the sensor cell current Is.
  • FIG. 4 schematically shows time transitions of (a) pump cell applied voltage Vp, (b) pump cell current Ip, (c) sensor cell current Is, and (d) monitor cell current Im.
  • Vp pump cell applied voltage
  • Ip pump cell current
  • Is sensor cell current Is
  • monitor cell current Im monitor cell current Im
  • the pump cell applied voltage Vp is switched from Vp0 to Vp1 step by step as the first voltage switching (Vp0> Vp1).
  • Vp0> Vp1 the pump cell current Ip is changed to a decreasing side, and the residual oxygen concentration in the gas chamber 61 is increased.
  • the pump cell current Ip changes from Ip0 with tailing and converges to Ip1.
  • the sensor cell current Is and the monitor cell current Im increase to a steady value through a transient response.
  • the transient response characteristics of the sensor cell current Is corresponding to the reduction of the pump cell applied voltage Vp are the characteristics when the NOx sensor is manufactured (initial characteristics), the characteristics when the NOx sensor is deteriorated (characteristics after deterioration), and These are shown in two types.
  • the solid line indicates the initial characteristics, and the alternate long and short dash line indicates the deterioration characteristics.
  • FIG. 4C shows that when the exhaust gas supplied to the sensor cell 42 has the same oxygen concentration, there is a difference between the initial characteristic and the deterioration characteristic of the sensor cell current Is. In this case, firstly, there is a tendency that the steady value of the deterioration characteristic is lower than the steady value of the initial characteristic.
  • the rise of the characteristics at the time of deterioration tends to be slower than that of the initial characteristics.
  • the slope A11 of the deterioration characteristic becomes gentler than the slope A10 of the initial characteristic.
  • the period Ta is a period between the start point P1 and the end point P2 during the transient response accompanying switching of the pump cell application voltage Vp.
  • the pump cell applied voltage Vp is switched from Vp1 to Vp2 stepwise (Vp1 ⁇ Vp2).
  • Vp1 ⁇ Vp2 the pump cell current Ip is increased and the residual oxygen concentration in the gas chamber 61 is reduced.
  • the sensor cell current Is and the monitor cell current Im decrease and change to steady values, respectively, according to the reduction in the residual oxygen concentration.
  • the start point P1 and the end point P2 are timings included in a predetermined period after the pump cell applied voltage Vp is switched and before the sensor cell current Is is stabilized. As the start point P1 and the end point P2, The timing to be set will be described below.
  • the start point P1 is, for example, one of the following three points. (1) Timing when the tailing lowest point PL of the pump cell current Ip generated according to the switching of the pump cell applied voltage Vp (point P11 in FIG. 5) (2) Timing at which the sensor cell output fluctuation amount generated according to the switching of the pump cell applied voltage Vp reaches the predetermined value L1 (point P12 in FIG. 5) (3) Timing at which the predetermined time E1 elapses after the pump cell applied voltage Vp is switched (point P13 in FIG. 5) As shown in FIG. 5, the end point P2 is, for example, one of the following two points.
  • the predetermined value L1 is obtained when the change amount of the sensor cell current Is when the switching of the pump cell applied voltage Vp (switching from Vp0 to Vp1) is performed in the initial state of the NOx sensors 21 to 23 as 100%.
  • the predetermined value L2 is a value larger than the predetermined value L1, and is also a value obtained by adding a predetermined percentage (for example, any one of 50 to 95%) from the current value before voltage switching.
  • the start point P1 Is preferably set to (1) above, and the end point P2 is preferably set to (4) above.
  • the residual oxygen concentration in the gas chamber 61 changes with the switching of the pump cell applied voltage Vp, and the deterioration of the sensor cell 42 is based on the transient response of the sensor cell 42 accompanying the change in the residual oxygen concentration.
  • the determination is performed, there is a concern that the deterioration determination may be adversely affected depending on the residual oxygen concentration in the gas chamber 61 after the pump cell applied voltage Vp is switched.
  • the detection accuracy of the sensor cell current Is which is a parameter for determining deterioration, is increased. There is concern about the decline.
  • the deterioration state of the sensor cell 42 is determined based on the sensor cell current Is and the monitor cell current Im. In this way, the deterioration in accuracy of the deterioration determination of the sensor cell 42 is suppressed.
  • FIG. 6 is a functional block diagram for explaining the functions of the SCUs 31 to 33.
  • Each of the SCUs 31 to 33 is acquired by a voltage switching unit M11 that switches the pump cell applied voltage Vp, an acquisition unit M12 that acquires the sensor cell current Is and the monitor cell current Im when the pump cell applied voltage Vp is switched, and an acquisition unit M12.
  • a deterioration determination unit M13 for determining a deterioration state of the sensor cell 42 based on the sensor cell current Is and the monitor cell current Im.
  • the voltage switching unit M11 performs the first voltage switching (voltage switching from Vp0 to Vp1 in FIG. 4) for switching the pump cell applied voltage Vp to the side where the oxygen concentration in the gas chamber 61 is increased, and after the first voltage switching, Second voltage switching (voltage switching from Vp1 to Vp2 in FIG. 4) for switching the pump cell applied voltage Vp to the side of reducing the oxygen concentration in the gas chamber 61 is performed. That is, the voltage switching unit M11 performs a series of voltage switching cycles in which the pump cell applied voltage Vp is decreased and then increased.
  • the pump cell application voltage Vp is switched in a step shape, but the voltage change waveform may be other than the step waveform. However, since the deterioration determination is performed by comparison with the initial characteristics, it is preferable to make the voltage change waveform the same as when measuring the initial characteristics.
  • the acquisition unit M12 acquires the sensor cell current Is as the sensor cell current convergence value Isx on the condition that the change in the monitor cell current Im has converged after the switching of the pump cell applied voltage Vp by the voltage switching unit M11, and the change in the monitor cell current Im
  • the gradient of the transient change of the sensor cell current Is before is converged is acquired as a gradient parameter. Also, the monitor cell current convergence value Imx is acquired.
  • the deterioration determination unit M13 determines the deterioration state of the sensor cell 42 based on the sensor cell current convergence value Isx acquired by the acquisition unit M12 and the inclination of the sensor cell current Is.
  • the deterioration rate C of the sensor cell 42 is calculated based on the sensor cell current convergence value Isx and the slope of the sensor cell current Is.
  • the sensor cell current convergence value Isx is the sensor cell current Is acquired after the change in the monitor cell current Im converges after the pump cell applied voltage Vp is switched from Vp0 to Vp1.
  • the slope of the sensor cell current Is is a value calculated from the current change amount ⁇ Is per unit time ⁇ t during the transient change of the sensor cell current Is accompanying the switching of the pump cell applied voltage Vp.
  • the deterioration determination unit M13 determines the deterioration state of the sensor cell 42 based on the sensor cell current Is and the monitor cell current Im when the voltage switching unit M11 switches the pump cell applied voltage Vp.
  • the deterioration determination unit M13 uses the correlation data that defines the relationship between at least one of the pump cell current Ip and the monitor cell current Im before and after the voltage switching, and determines whether or not the monitor cell current Im has a normal value.
  • An output determination unit is provided, and when the monitor cell output determination unit determines that the monitor cell current Im is not a normal value, the deterioration determination of the sensor cell 42 is invalidated.
  • the correlation data defines, for example, the relationship between the change amount ⁇ Ip of the pump cell current Ip before and after the first voltage switching and the monitor cell current convergence value Imx.
  • the correlation data includes the relationship between the pump cell current Ip0 before the first voltage switching and the monitor cell current convergence value Imx, and the pump cell current Ip1 and the monitor cell current convergence value after the first voltage switching.
  • the relationship with Immxm may be determined. In any case, a relationship according to the residual oxygen concentration in the gas chamber 61 is preferably determined.
  • the sensor cell 42 detects the sensor cell current Is at the nA order level during normal NOx concentration detection, while the residual oxygen concentration increases at the ⁇ A order level when the pump cell applied voltage Vp is switched for deterioration determination.
  • the sensor cell current Is is detected.
  • the current processing range of the A / D conversion in the SCUs 31 to 33 may be switched between the NOx concentration detection and the deterioration determination in order to increase the current detection resolution. At the time of deterioration determination, the current processing range may be expanded compared to when NOx concentration is detected.
  • the engine ECU 35 has an abnormality determination unit M21 that determines abnormality due to emission deterioration based on the deterioration determination results of the SCUs 31 to 33.
  • the abnormality determination unit M21 determines an abnormality in engine emission based on the deterioration rate C of the sensor cell 42 calculated by the deterioration determination unit M13 of each of the SCUs 31 to 33.
  • the emission abnormality is determined by comprehensively considering outputs of the NOx sensors 21 to 23, various sensor information from other sensors, engine operating conditions, and the like. Also good.
  • Both the deterioration determination and the emission abnormality determination regarding the NOx sensors 21 to 23 may be performed by the SCUs 31 to 33, or both may be performed by the engine ECU 35. Since it is desirable that the emission abnormality determination is performed using elements other than the degree of deterioration of the NOx sensors 21 to 23, it is preferable that the emission abnormality determination is performed by the engine ECU 35.
  • the processing shown in FIG. 7 is arithmetic processing for realizing the functions of the SCUs 31 to 33 shown in FIG. 6, and is executed in each of the SCUs 31 to 33, for example, at predetermined intervals.
  • step S10 it is determined whether or not an execution condition for deterioration determination is satisfied.
  • the implementation condition includes, for example, receiving an permission signal from the engine ECU 35 to permit the execution of the deterioration determination.
  • the engine ECU 35 transmits a permission signal when the gas environment in the exhaust pipe 11 is in a predetermined environment that is stable. Specifically, the engine ECU 35 is in a state where the engine 10 is in a predetermined operation state and the amount of exhaust is relatively stable, in the case of fuel cut, immediately after the ignition switch is turned off (immediately after the IG is turned off), Alternatively, the permission signal is transmitted when the engine ECU 35 is being activated by the soak timer. In particular, it is desirable that the condition is immediately after the IG is turned off.
  • step S11 it is determined whether or not the first voltage switching, that is, switching of the pump cell applied voltage Vp to the side where the residual oxygen concentration in the gas chamber 61 is increased is performed.
  • each of the SCUs 31 to 33 determines that the fluctuation amount per unit time is in a stable state with respect to the oxygen concentration and NOx concentration in the exhaust gas, and is determined to be in the stable state.
  • the execution of the first voltage switching is permitted. Specifically, it is determined whether or not the fluctuation amount per unit time of the pump cell current Ip is equal to or less than a predetermined value before the first voltage switching, and the fluctuation amount per unit time of the sensor cell current Is is equal to or less than the predetermined value. It is determined whether or not there is. And if these are all in a stable state, step S11 is affirmed and it progresses to subsequent step S12. However, it is also possible to omit the density stability determination process.
  • each of the SCUs 31 to 33 may determine that either one of the oxygen concentration and the NOx concentration in the exhaust gas is in a stable state in which the fluctuation amount per unit time is a predetermined value or less. In this case, if the oxygen concentration in the exhaust gas is in a stable state, or if the NOx concentration in the exhaust gas is in a stable state, execution of the first voltage switching is permitted.
  • the exhaust pipe 11 is provided with an A / F sensor, it may be determined that the oxygen concentration in the exhaust gas is in a stable state based on the detection value of the A / F sensor.
  • the first voltage switching may be permitted on condition that the oxygen concentration in the exhaust gas is in a predetermined concentration range or the NOx concentration is in a predetermined concentration range. In this case, instead of determining that the oxygen concentration or NOx concentration in the exhaust gas is stable, or together with the determination, it is preferable to determine whether the oxygen concentration or NOx concentration is within a predetermined concentration range.
  • step S11 in addition to the above, the execution of the first voltage switching is permitted on the condition that there is no failure history (diagnostic information) related to the engine exhaust system and that the power supply voltage (battery voltage) is equal to or higher than a predetermined value. Good. If the power supply voltage is less than the predetermined value, the sensor heater is not sufficiently energized, and the NOx sensors 21 to 23 cannot be maintained in an appropriate active state, which may cause a deterioration in accuracy of deterioration determination.
  • step S12 the pump cell current that is the pump cell output before the pump cell applied voltage Vp is switched to Vp1 (before the first voltage switching), that is, the pump cell applied voltage Vp is Vp0. Ip0 is detected.
  • step S13 the pump cell applied voltage Vp is switched from Vp0 to Vp1. In the time chart of FIG. 4, this process is performed at time t1.
  • step S14 the sensor cell current Is1 at the start point P1 and the sensor cell current Is2 at the end point P2 in the first voltage switching are detected.
  • step S15 a pump cell current Ip1, which is a pump cell output after switching the pump cell applied voltage Vp to Vp1, is detected.
  • the pump cell current Ip1 is detected at a timing when a predetermined time has elapsed from the voltage switching (time t1), that is, at a timing when the pump cell current Ip is stabilized.
  • the detection order of each sensor cell current Is1, Is2 and pump cell current Ip1 may be arbitrary.
  • step S16 the sensor cell current Is and the monitor cell current Im when the change in the monitor cell current Im converges after the switching of the pump cell applied voltage Vp are obtained as the sensor cell current convergence value Isx and the monitor cell current convergence value Imx, respectively.
  • the sensor cell current convergence value Isx, the monitor cell current convergence value Imx To get.
  • the sensor cell current convergence value Isx and the monitor cell current convergence value Imx are acquired at time t11.
  • step S17 it is determined whether or not the monitor cell current Im is a normal value using correlation data that defines the relationship between the pump cell current Ip and the monitor cell current Im.
  • the monitor cell current convergence value Imx is calculated. Then, it is determined whether or not it conforms to the relationship of FIG.
  • the reference value of the monitor cell current convergence value Imx is determined as Imsd according to the change amount ⁇ Ip of the pump cell current Ip, and a predetermined allowable range RA is determined according to the reference value Imsd. It has been. Then, it is determined whether or not the monitor cell current convergence value Imx is within an allowable range RA determined according to the pump cell current change amount ⁇ Ip. If the monitor cell current convergence value Imx is within the allowable range RA, the monitor cell current Im is a normal value. If it is outside the range RA, it is assumed that the monitor cell current Im is not a normal value.
  • step S17a it is determined that the monitor cell 43 is abnormal, and then this process ends. That is, when the monitor cell current Im is not a normal value, the current deterioration determination of the sensor cell 42 is invalidated.
  • ⁇ Is1 Is2 ⁇ Is1
  • A11 ⁇ Is1 / ⁇ t1
  • the gradient B11 is calculated by normalizing the gradient A11.
  • the normalized slope B11 is calculated.
  • B11 A11 / ⁇ Ip1 (2)
  • an initial slope B10 of the sensor cell current Is is set as a determination reference value serving as a reference for determining deterioration of the sensor cell 42.
  • the initial slope B10 represents the initial characteristics of the sensor cell 42, and is set using, for example, the relationship shown in FIG. In FIG. 9, the larger the monitor cell current convergence value Imx, the larger the initial slope B10 is set.
  • step S21 the deterioration rate C (%) of the sensor cell 42 is calculated based on the gradients B10 and B11 and the sensor cell current convergence value Isx.
  • the ratio (B11 / B10) between the gradient B11 and the initial gradient B10 is calculated as the reaction rate ratio, and the sensor cell is used based on the reaction rate ratio B11 / B10 and the sensor cell current convergence value Isx using the relationship of FIG. 42 is calculated.
  • the reaction rate ratio B11 / B10 is obtained as the ratio of the reaction rate with respect to the oxygen supplied to the sensor cell 42.
  • FIG. 10 defines a relationship in which the deterioration rate C increases as the reaction rate ratio B11 / B10 decreases, that is, as the difference between the deterioration characteristics of the sensor cell 42 and the initial characteristics increases. Further, FIG. 10 defines a relationship in which the deterioration rate C decreases as the sensor cell current convergence value Isx decreases. It is considered that the smaller the sensor cell current convergence value Isx is, the smaller the change width of the residual oxygen concentration in the gas chamber 61 due to the switching of the pump cell applied voltage Vp is, and the more the transient response of the sensor cell current Is is.
  • a relationship is set such that the deterioration rate C decreases as the sensor cell current convergence value Isx decreases. Yes.
  • a large deterioration rate C means that the degree of deterioration of the sensor cell 42 is large.
  • step S22 the deterioration rate C of the sensor cell 42 is transmitted to the engine ECU 35.
  • step S23 it is determined whether or not the second voltage switching, that is, the switching of the pump cell applied voltage Vp to the side of reducing the residual oxygen concentration in the gas chamber 61 is performed.
  • the process proceeds to step S24, and the pump cell applied voltage Vp is switched from Vp1 to Vp2. In the time chart of FIG. 4, this process is performed at time t2.
  • Vp2 Vp0.
  • the SCUs 31 to 33 correct the sensor cell current Is by the deterioration rate C for each of the NOx sensors 21 to 23 when the NOx concentration is detected by the NOx sensors 21 to 23.
  • the NOx concentration is calculated based on the corrected sensor cell current Is.
  • the sensor cell current Is is corrected so as to return the current sensor cell characteristics to the initial characteristics.
  • the deterioration determination of the sensor cell 42 is performed based on the output responsiveness of the sensor cell 42, the sensor cell current is determined according to the residual oxygen concentration in the gas chamber 61 after the pump cell applied voltage Vp is switched. There is a concern that the deterioration determination of the sensor cell 42 performed based on the change of Is may be adversely affected.
  • the pump cell applied voltage Vp is switched, the sensor cell current Is and the monitor cell current Im are acquired, and the deterioration state of the sensor cell 42 is determined based on the sensor cell current Is and the monitor cell current Im. Determined. In this case, it is possible to determine the deterioration of the sensor cell 42 after properly grasping the residual oxygen concentration in the gas chamber 61 from the monitor cell current Im. As a result, the deterioration state of the sensor cell 42 can be properly determined.
  • the steady state value of the degradation characteristic (sensor cell current convergence value Isx) is reduced from the steady state value of the initial characteristic, and the rise of the degradation characteristic (inclination of the sensor cell current Is) is the initial characteristic.
  • the deterioration determination of the sensor cell 42 can be appropriately performed while taking into account both of being slower than the above.
  • a determination reference value (initial inclination B10 in the present embodiment) that is a reference for deterioration determination of the sensor cell 42 is set.
  • the deterioration rate C can be calculated by comparing the slope B11 of the current characteristic used for the deterioration determination of the sensor cell 42 and the initial inclination B10 under the same conditions, and the calculation accuracy of the deterioration rate C, that is, the deterioration determination accuracy is improved. be able to.
  • the current value that can be taken as the monitor cell current Im can be estimated based on the pump cell current Ip before and after the voltage switching.
  • the correlation data defining the relationship between the pump cell current Ip and the monitor cell current convergence value Imx before and after the voltage switching is used to determine whether or not the monitor cell current convergence value Imx is a normal value.
  • the monitor cell current convergence value Imx is not a normal value, the deterioration determination of the sensor cell 42 is invalidated. Thereby, the fall of the degradation determination precision of the sensor cell 42 resulting from abnormality of the monitor cell 43 can be suppressed.
  • the deterioration state of the sensor cell 42 is determined based on the sensor cell current convergence value Isx and the slope of the sensor cell current Is. However, this is changed, and the sensor cell current convergence value Isx and the slope of the sensor cell current Is are changed. Among them, the deterioration state of the sensor cell 42 may be determined using only the sensor cell current convergence value Isx or using only the slope of the sensor cell current Is.
  • an initial convergence value Isx0 which is the sensor cell current convergence value Isx in the sensor cell initial characteristics, is set based on the monitor cell current convergence value Imx, and the sensor cell current convergence value Isx in the current characteristics and the initial value
  • the deterioration rate C may be calculated from the ratio with the convergence value Isx0. Also in this configuration, it is possible to appropriately determine the deterioration of the sensor cell 42 while taking into account the residual oxygen concentration in the gas chamber 61.
  • the deterioration determination unit M13 In the second embodiment, as described with reference to FIG. 6, the deterioration determination unit M13 generates correlation data that defines the relationship between the monitor cell current Im and at least one of the pump cell currents Ip ( ⁇ Ip, Ip0, Ip1) before and after voltage switching. A monitor cell output determination unit is used for determining whether or not the monitor cell current Im has a normal value in this relationship. Then, when it is determined that the monitor cell current Im is a normal value, the deterioration determination unit M13 sets a determination reference value (initial slope B10) for sensor cell deterioration based on the monitor cell current convergence value Imx, and The deterioration state of the sensor cell 42 is determined using the determination reference value.
  • a determination reference value initial slope B10
  • the deterioration determination unit M13 sets a determination reference value (initial slope B10) based on at least one of the pump cell currents Ip before and after voltage switching. At the same time, the deterioration state of the sensor cell 42 is determined using the determination reference value. That is, when the monitor cell current Im is not a normal value, the deterioration determination is performed using the pump cell current Ip instead of the monitor cell current Im.
  • the SCUs 31 to 33 perform the deterioration determination process of FIG. 11 instead of the deterioration determination process of FIG. FIG. 11 is obtained by changing a part of FIG. 7, and the same step numbers are assigned to the same processes as those in FIG.
  • the sensor cell current convergence value Isx and the monitor cell current convergence value Imx are acquired in step S16.
  • the gradient A11 at the time of the transient change of the sensor cell current Is is calculated, and in step S19, the gradient B11 is calculated by normalizing the gradient A11.
  • the monitor cell current Im is a normal value using correlation data (FIG. 8) that defines the relationship between the change amount ⁇ Ip of the pump cell current Ip and the monitor cell current convergence value Imx. Since this process is the same as step S17 of FIG. 7 described above, details are omitted.
  • step S32 the initial gradient B10 of the sensor cell current Is is set based on the monitor cell current convergence value Imx. Since this process is the same as step S20 of FIG. 7 described above, details are omitted.
  • step S33 it is determined that the monitor cell 43 is abnormal.
  • step S34 an initial slope B10 of the sensor cell current Is is set based on at least one of the pump cell currents Ip before and after the voltage switching.
  • the initial inclination B10 is set using, for example, the relationship shown in FIG. In FIG. 12, the larger the change amount ⁇ Ip of the pump cell current Ip, the larger the initial slope B10 is set.
  • the initial slope B10 may be set based on the pump cell current Ip0 or Ip1, and any setting may be made according to the residual oxygen concentration in the gas chamber 61.
  • step S21 the deterioration rate C of the sensor cell 42 is calculated based on the gradients B10 and B11 and the sensor cell current convergence value Isx, and in the subsequent step S22, the deterioration rate C is transmitted.
  • the monitor cell current Im is a normal value with reference to the relationship between the pump cell current Ip and the monitor cell current Im before and after voltage switching. If the monitor cell current Im is normal, the initial slope B10 of the sensor cell current Is is set based on the monitor cell current convergence value Imx. If the monitor cell current Im is not normal, the sensor cell current Is is determined based on the pump cell current Ip. The initial inclination B10 is set. Thereby, the fall of the degradation determination precision of the sensor cell 42 resulting from abnormality of the monitor cell 43 can be suppressed.
  • the deterioration determination unit M13 uses correlation data that defines the relationship between the monitor cell current Im and the sensor cell current Is when the pump cell applied voltage Vp is switched, and uses the actual voltage.
  • a correlation determination unit is provided for determining whether the relationship between the monitor cell current Im and the sensor cell current Is at the time of switching matches the correlation data. Then, the deterioration determination unit M13 invalidates the deterioration determination of the sensor cell 42 when the correlation determination unit determines that the actual relationship does not match the correlation data.
  • the SCUs 31 to 33 perform the deterioration determination process of FIG. 13 instead of the deterioration determination process of FIG.
  • FIG. 13 is a modification of part of FIG. 7, and the same steps as those in FIG. 7 are given the same step numbers.
  • step S41 correlation data that defines the relationship between the monitor cell current Im and the sensor cell current Is is used to determine whether or not the actual relationship between the monitor cell current Im and the sensor cell current Is matches the correlation data.
  • the correlation data is predetermined as shown in FIG. 14, for example.
  • step S41 it is determined whether or not the relationship between the monitor cell current convergence value Imx and the sensor cell current convergence value Isx conforms to the relationship shown in FIG. judge.
  • the reference value of the sensor cell current Is is determined as Issd according to the monitor cell current Im, and a predetermined allowable range RB is determined according to the reference value Issd. Then, it is determined whether or not the sensor cell current convergence value Isx with respect to the monitor cell current convergence value Imx is within the allowable range RB. If the sensor cell current convergence value Isx is within the allowable range RB, the correlation is normal. Suppose the relationship is not normal. If the correlation is normal, the process proceeds to the subsequent step S18. If the correlation is not normal, the process proceeds to step S42. In step S42, it is determined that the monitor cell 43 is abnormal, and then this process ends. That is, when the correlation is not normal, the current deterioration determination of the sensor cell 42 is invalidated. The processing after step S18 is as described above.
  • the correlation data between the monitor cell current Im and the sensor cell current Is at the time of voltage switching is referred to, and when the relationship between the monitor cell current Im and the sensor cell current Is does not match the correlation data, the sensor cell 42 It was set as the structure which invalidates the deterioration determination. Thereby, the fall of the degradation determination precision of the sensor cell 42 resulting from abnormality of the monitor cell 43 can be suppressed.
  • the deterioration determination unit M13 instead of including a monitor cell output determination unit and a correlation determination unit, the deterioration determination unit M13 includes a first output difference ⁇ IX1 that is a difference between the sensor cell current Is and the monitor cell current Im before the pump cell application voltage Vp is switched. And an output difference calculation unit that calculates a second output difference ⁇ IX2 that is a difference between the sensor cell current Is and the monitor cell current Im after switching. Then, the deterioration determination unit M13 determines the deterioration state of the sensor cell 42 based on the comparison between the first output difference ⁇ IX1 and the second output difference ⁇ IX2 calculated by the output difference calculation unit.
  • the SCUs 31 to 33 perform the deterioration determination process of FIG. 15 instead of the deterioration determination process of FIG. FIG. 15 is obtained by changing a part of FIG. 7, and the same steps as those in FIG. 7 are denoted by the same step numbers.
  • step S51 the difference between the sensor cell current Is and the monitor cell current Im when the pump cell applied voltage Vp is Vp0 is calculated as the first output difference ⁇ IX1, and the sensor cell current when the pump cell applied voltage Vp is switched to Vp1.
  • a difference between Is and the monitor cell current Im is calculated as a second output difference ⁇ IX2.
  • the first output difference ⁇ IX1 is calculated from the current values (Is, Im) detected in the state where Vp0 is applied
  • the second output difference ⁇ IX2 is calculated from the current convergence values (Isx, Imx) detected in the state where Vp1 is applied.
  • step S52 it is determined whether or not the first output difference ⁇ IX1 and the second output difference ⁇ IX2 match. Specifically, it is determined whether or not the difference between the first output difference ⁇ IX1 and the second output difference ⁇ IX2 is less than a predetermined value. If ⁇ IX1 and ⁇ IX2 match, the process proceeds to the subsequent step S18. If ⁇ IX1 and ⁇ IX2 do not match, the process proceeds to step S53. In step S53, it is determined that the monitor cell 43 is abnormal, and then this process ends. That is, when ⁇ IX1 and ⁇ IX2 do not match, the current deterioration determination of the sensor cell 42 is invalidated. The processing after step S18 is as described above.
  • the sensor cell current Is and the monitor cell current Im change with the change in the residual oxygen concentration in the gas chamber 61, respectively.
  • the first output difference ⁇ IX1 before the voltage switching and the second output difference ⁇ IX2 after the voltage switching substantially coincide with each other.
  • the configuration Thereby, the fall of the degradation determination precision of the sensor cell 42 resulting from abnormality of the monitor cell 43 can be suppressed.
  • the pump cell applied voltage Vp When the deterioration of the sensor cell 42 is determined, when the pump cell applied voltage Vp is switched to the side where the oxygen concentration in the gas chamber 61 is increased (when the first voltage switching is performed), the pump cell applied voltage Vp is zero, that is, no voltage is applied. It is good also as a structure switched to a state. Alternatively, the pump cell application voltage Vp may be switched to a negative voltage. In any case, as the applied voltage is switched, the oxygen concentration in the gas chamber 61 is increased, and deterioration determination can be performed by the transient response of the sensor cell 42 at that time.
  • the slope of the transient change is calculated based on the current change amount ⁇ Is with respect to the unit time ⁇ t during the transient period of the sensor cell current Is.
  • the current change amount ⁇ Is within a predetermined time may be used as the slope parameter.
  • a time width required for generating a predetermined current change amount may be used as the inclination parameter.
  • the inclination of the sensor cell current Is or a value correlated therewith may be calculated as the inclination parameter.
  • the gradient A11 of the sensor cell current Is is normalized to calculate the gradient B11, and the deterioration rate C is calculated using the gradient B11.
  • this may be changed.
  • the deterioration rate C may be calculated using the slope A11.
  • the deterioration rate C (%) which is the ratio between the current characteristic and the initial characteristic of the sensor cell 42, is calculated as the determination of the deterioration state of the sensor cell 42.
  • the present invention is not limited to this.
  • a difference from the initial value is calculated for the slope of the sensor cell current Is as a deterioration determination parameter of the sensor cell 42, a value correlated therewith, and the current change amount ⁇ Is after convergence of the sensor cell current Is, and the sensor cell is calculated based on the difference.
  • ascertains the degradation degree of 42 may be sufficient. Further, it may be a comparison with a predetermined standard value instead of the comparison with the initial value.
  • the degree of deterioration may be determined based on an index “100 ⁇ deterioration rate C”.
  • the initial characteristic is represented by 100%, and is represented by a smaller value as the deterioration progresses.
  • any deterioration state based on a change in characteristics of the sensor cell 42, that is, a degree of deterioration may be used.
  • the sensor element 40 has the single solid electrolyte body 53 and the single gas chamber 61, but this may be changed.
  • the sensor element 40 has a plurality of solid electrolyte bodies 53 and a plurality of gas chambers 61, and the pump cell 41 and the sensor cell 42 are different solid electrolyte bodies 53 and face the other gas chambers 61.
  • the sensor element 40 shown in FIG. 16 has two solid electrolyte bodies 53a and 53b arranged opposite to each other, and gas chambers 61a and 61b provided between the solid electrolyte bodies 53a and 53b.
  • the gas chamber 61a communicates with the exhaust introduction port 53c
  • the gas chamber 61b communicates with the gas chamber 61a via the throttle portion 71.
  • the pump cell 41 has a pair of electrodes 72 and 73, and one of the electrodes 72 is provided so as to be exposed in the gas chamber 61a.
  • the sensor cell 42 has an electrode 74 and a common electrode 76 that are arranged to face each other, and the monitor cell 43 has an electrode 75 and a common electrode 76 that are arranged to face each other.
  • the sensor cell 42 and the monitor cell 43 are provided adjacent to each other.
  • one electrode 74, 75 is provided so as to be exposed in the gas chamber 61b.
  • the specific gas component to be detected may be other than NOx.
  • it may be a gas sensor that detects HC or CO in the exhaust.
  • oxygen in exhaust gas is discharged by the pump cell, and HC and CO are decomposed from the gas after oxygen discharge by the sensor cell to detect the HC concentration and CO concentration.
  • concentration of ammonia in the gas to be detected may be detected.
  • the gas sensor may use a gas other than exhaust as a gas to be detected, or may be used for applications other than automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The gas sensor according to the present invention has: a pump cell that adjusts, by applying a voltage, the concentration of oxygen in a gas to be subjected to detection, said gas having been introduced into a gas chamber; a sensor cell that detects the concentration of a specified gas component in the gas chamber after adjusting the oxygen concentration using the pump cell; and a monitor cell that detects the residual oxygen concentration in the gas chamber. Each of SCUs 31-33 is provided with: a voltage switch unit (M11) that switches a pump cell application voltage; an acquisition unit (M12) that acquires a sensor cell output and a monitor cell output in the cases of switching the pump cell application voltage by means of the voltage switch unit; and a deterioration determining unit (M13) that determines the deterioration state of the sensor cell on the basis of the sensor cell output and the monitor cell output, which have been acquired by the acquisition unit.

Description

ガスセンサ制御装置Gas sensor control device 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年5月26日に出願された日本出願番号2017-104901号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2017-104901 filed on May 26, 2017, the contents of which are incorporated herein by reference.
 本開示は、ガスセンサ制御装置に関するものである。 This disclosure relates to a gas sensor control device.
 内燃機関の排気などの被検出ガス中の特定ガス成分の濃度を検出するガスセンサとして、NOx(窒素酸化物)濃度を検出するNOxセンサが知られている。NOxセンサは、例えば特許文献1に記載されるように、ポンプセル、モニタセル及びセンサセルからなる3セル構造を有しており、ポンプセルは、ガス室内に導入された排気中の酸素の排出又は汲み出しを行い、モニタセルは、ポンプセル通過後のガス室内の残留酸素濃度を検出し、センサセルは、ポンプセルを通過した後のガスからNOx濃度を検出する。 2. Description of the Related Art NOx sensors that detect NOx (nitrogen oxide) concentration are known as gas sensors that detect the concentration of a specific gas component in a gas to be detected such as exhaust gas from an internal combustion engine. The NOx sensor has a three-cell structure composed of a pump cell, a monitor cell, and a sensor cell as described in Patent Document 1, for example, and the pump cell discharges or pumps out oxygen in the exhaust gas introduced into the gas chamber. The monitor cell detects the residual oxygen concentration in the gas chamber after passing through the pump cell, and the sensor cell detects the NOx concentration from the gas after passing through the pump cell.
 NOxセンサが劣化すると正確なNOx濃度が検出できなくなり、その結果、NOxセンサが自動車の排気系に設置される場合には排気エミッションが悪化するなどの不具合が生じるおそれがある。そこで従来、NOxセンサの劣化診断手法が提案されており、例えば特許文献1には、ポンプセルへの印加電圧を強制的に切り替えて、このときのセンサセル出力の変化量に基づいてNOxセンサの劣化を診断する手法が開示されている。 When the NOx sensor deteriorates, it becomes impossible to detect an accurate NOx concentration. As a result, when the NOx sensor is installed in an exhaust system of an automobile, there is a possibility that problems such as deterioration of exhaust emission may occur. Therefore, a NOx sensor deterioration diagnosis method has been proposed. For example, Patent Document 1 forcibly switches the applied voltage to the pump cell, and determines the deterioration of the NOx sensor based on the change amount of the sensor cell output at this time. A method for diagnosing is disclosed.
特開2009-175013号公報JP 2009-175013 A
 ところで、上記従来の劣化診断手法は、ポンプセル印加電圧の切り替えによりガス室内の残留酸素濃度を意図的に変化させ、その残留酸素濃度の変化に伴うセンサセルの過渡応答に基づきセンサセルの劣化診断を実施するものであるが、ポンプセル印加電圧の切り替え後において、ガス室内の残留酸素濃度が適正に調整された状態でないと、センサセル出力の変化に影響が及ぶことが考えられる。この場合、センサセルの劣化診断の精度が低下することが懸念される。 By the way, the above-described conventional deterioration diagnosis method intentionally changes the residual oxygen concentration in the gas chamber by switching the pump cell applied voltage, and performs sensor cell deterioration diagnosis based on the transient response of the sensor cell accompanying the change in the residual oxygen concentration. However, if the residual oxygen concentration in the gas chamber is not properly adjusted after the pump cell applied voltage is switched, it is considered that the change in the sensor cell output is affected. In this case, there is a concern that the accuracy of deterioration diagnosis of the sensor cell is lowered.
 本開示は、上記課題に鑑みてなされたものであり、その主たる目的は、センサセルの劣化状態を適正に判定することができるガスセンサ制御装置を提供することにある。 The present disclosure has been made in view of the above problems, and a main purpose thereof is to provide a gas sensor control device that can appropriately determine the deterioration state of a sensor cell.
 上記課題を解決するために、本手段は、
 ガス室内に導入された被検出ガス中の酸素濃度を電圧印加により調整するポンプセルと、前記ポンプセルによる酸素濃度の調整後に前記ガス室内の特定ガス成分の濃度を検出するセンサセルと、前記ガス室内の残留酸素濃度を検出するモニタセルとを有するガスセンサに適用され、前記ガスセンサに関する制御を実施する制御装置であって、
 前記ポンプセルの印加電圧を切り替える電圧切替部と、
 前記電圧切替部により前記印加電圧が切り替えられる場合に、前記センサセルの出力と前記モニタセルの出力とを取得する取得部と、
 前記取得部により取得された前記センサセルの出力と前記モニタセルの出力とに基づいて、前記センサセルの劣化状態を判定する劣化判定部と、
を備える。
In order to solve the above problems, this means
A pump cell that adjusts the oxygen concentration in the gas to be detected introduced into the gas chamber by applying a voltage, a sensor cell that detects the concentration of a specific gas component in the gas chamber after the oxygen concentration is adjusted by the pump cell, and a residual in the gas chamber A control device that is applied to a gas sensor having a monitor cell that detects an oxygen concentration and performs control related to the gas sensor,
A voltage switching unit that switches an applied voltage of the pump cell;
An acquisition unit for acquiring the output of the sensor cell and the output of the monitor cell when the applied voltage is switched by the voltage switching unit;
A deterioration determination unit that determines a deterioration state of the sensor cell based on the output of the sensor cell and the output of the monitor cell acquired by the acquisition unit;
Is provided.
 ガスセンサにおいて、センサセルの出力応答性に基づいてセンサセルの劣化判定を実施する場合には、ポンプセル印加電圧の切り替え後におけるガス室内の残留酸素濃度に応じて、センサセルの出力変化に基づき実施されるセンサセルの劣化判定に悪影響が及ぶことが懸念される。この点、上記構成によれば、電圧切替部により印加電圧が切り替えられる場合に、センサセル出力とモニタセル出力とが取得され、そのセンサセル出力とモニタセル出力とに基づいて、センサセルの劣化状態が判定される。この場合、ガス室内の残留酸素濃度を、モニタセル出力により適正に把握した上で、センサセルの劣化判定を実施できる。その結果、センサセルの劣化状態を適正に判定することができる。 In a gas sensor, when performing deterioration determination of a sensor cell based on the output responsiveness of the sensor cell, the sensor cell implemented based on the output change of the sensor cell according to the residual oxygen concentration in the gas chamber after switching the pump cell applied voltage. There is a concern that the deterioration judgment will be adversely affected. In this regard, according to the above configuration, when the applied voltage is switched by the voltage switching unit, the sensor cell output and the monitor cell output are acquired, and the deterioration state of the sensor cell is determined based on the sensor cell output and the monitor cell output. . In this case, it is possible to determine the deterioration of the sensor cell after properly grasping the residual oxygen concentration in the gas chamber from the monitor cell output. As a result, it is possible to appropriately determine the deterioration state of the sensor cell.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、エンジン排気系のシステム構成を示す図であり、 図2は、NOxセンサの構成を示す断面図であり、 図3は、図2のIII-III断面を示す断面図であり、 図4は、NOxセンサの劣化に伴うセンサセル出力の過渡特性の変化を説明するための図であり、 図5は、傾きパラメータの算出に用いる始点及び終点を示す図であり、 図6は、SCU及びECUの機能ブロック図であり、 図7は、センサセルの劣化判定の処理手順を示すフローチャートであり、 図8は、ポンプセル電流の変化量とモニタセル電流収束値との関係を示す図であり、 図9は、モニタセル電流収束値と初期傾きとの関係を示す図であり、 図10は、反応速度比とセンサセル電流収束値と劣化率との関係を示す図であり、 図11は、第2実施形態においてセンサセルの劣化判定の処理手順を示すフローチャートであり、 図12は、ポンプセル電流の変化量と初期傾きとの関係を示す図であり、 図13は、第3実施形態においてセンサセルの劣化判定の処理手順を示すフローチャートであり、 図14は、モニタセル電流とセンサセル電流との関係を示す図であり、 図15は、第4実施形態においてセンサセルの劣化判定の処理手順を示すフローチャートであり、 図16は、他のNOxセンサの構成を示す断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram showing a system configuration of an engine exhaust system. FIG. 2 is a cross-sectional view showing the configuration of the NOx sensor, FIG. 3 is a cross-sectional view showing a III-III cross section of FIG. FIG. 4 is a diagram for explaining changes in the transient characteristics of the sensor cell output accompanying the deterioration of the NOx sensor. FIG. 5 is a diagram showing a start point and an end point used for calculation of the slope parameter. FIG. 6 is a functional block diagram of the SCU and ECU. FIG. 7 is a flowchart showing a processing procedure for sensor cell deterioration determination. FIG. 8 is a diagram showing the relationship between the change amount of the pump cell current and the monitor cell current convergence value. FIG. 9 is a diagram showing the relationship between the monitor cell current convergence value and the initial slope. FIG. 10 is a diagram showing the relationship between the reaction rate ratio, the sensor cell current convergence value, and the deterioration rate. FIG. 11 is a flowchart showing a processing procedure for sensor cell deterioration determination in the second embodiment. FIG. 12 is a diagram showing the relationship between the change amount of the pump cell current and the initial slope, FIG. 13 is a flowchart illustrating a processing procedure for sensor cell deterioration determination in the third embodiment. FIG. 14 is a diagram showing the relationship between the monitor cell current and the sensor cell current, FIG. 15 is a flowchart showing a processing procedure for sensor cell deterioration determination in the fourth embodiment. FIG. 16 is a cross-sectional view showing the configuration of another NOx sensor.
 以下、実施形態を図面に基づいて説明する。本実施形態では、車載のディーゼルエンジンから排出される排気を被検出ガスとし、その排気中のNOx濃度をNOxセンサにより検出するシステムにおいて、NOxセンサに関する制御を実施するガスセンサ制御装置を具体化するものとしている。なお、以下の各実施形態相互において、互いに同一又は均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。 Hereinafter, embodiments will be described with reference to the drawings. This embodiment embodies a gas sensor control device that performs control related to a NOx sensor in a system in which exhaust gas discharged from an on-board diesel engine is detected gas and the NOx concentration in the exhaust gas is detected by a NOx sensor. It is said. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings, and the description of the same reference numerals is used.
 (第1実施形態)
 図1に示すように、ディーゼルエンジンであるエンジン10の排気側には、排気を浄化する排気浄化システムが設けられている。排気浄化システムの構成として、エンジン10には排気通路を形成する排気管11が接続されており、その排気管11には、エンジン10側から順に酸化触媒コンバータ12と選択還元触媒コンバータ(以下、SCR触媒コンバータという)13とが設けられている。酸化触媒コンバータ12は、ディーゼル酸化触媒14と、DPF(Diesel Particulate Filter)15とを有している。SCR触媒コンバータ13は、選択還元型の触媒としてSCR触媒16を有している。また、排気管11において酸化触媒コンバータ12とSCR触媒コンバータ13との間には、還元剤としての尿素水(尿素水溶液)を排気管11内に添加供給するための尿素水添加弁17が設けられている。
(First embodiment)
As shown in FIG. 1, an exhaust gas purification system that purifies exhaust gas is provided on the exhaust side of an engine 10 that is a diesel engine. As an exhaust purification system configuration, an exhaust pipe 11 that forms an exhaust passage is connected to the engine 10, and an oxidation catalytic converter 12 and a selective catalytic reduction converter (hereinafter referred to as SCR) are connected to the exhaust pipe 11 in order from the engine 10 side. 13) (referred to as a catalytic converter). The oxidation catalyst converter 12 includes a diesel oxidation catalyst 14 and a DPF (Diesel Particulate Filter) 15. The SCR catalytic converter 13 has an SCR catalyst 16 as a selective reduction type catalyst. Further, a urea water addition valve 17 for adding and supplying urea water (urea aqueous solution) as a reducing agent into the exhaust pipe 11 is provided between the oxidation catalytic converter 12 and the SCR catalytic converter 13 in the exhaust pipe 11. ing.
 酸化触媒コンバータ12において、ディーゼル酸化触媒14は、主としてセラミック製の担体と、酸化アルミニウム、二酸化セリウム及び二酸化ジルコニウムを成分とする酸化物混合物、並びに白金、パラジウム、ロジウムといった貴金属触媒で構成されている。ディーゼル酸化触媒14は、排気に含まれる炭化水素、一酸化炭素、窒素酸化物などを酸化させ浄化する。また、ディーゼル酸化触媒14は、触媒反応の際に発生する熱により排気温度を上昇させる。 In the oxidation catalyst converter 12, the diesel oxidation catalyst 14 is mainly composed of a ceramic carrier, an oxide mixture containing aluminum oxide, cerium dioxide and zirconium dioxide as components, and a noble metal catalyst such as platinum, palladium and rhodium. The diesel oxidation catalyst 14 oxidizes and purifies hydrocarbons, carbon monoxide, nitrogen oxides and the like contained in the exhaust gas. Further, the diesel oxidation catalyst 14 raises the exhaust temperature by heat generated during the catalytic reaction.
 DPF15は、ハニカム構造体により形成され、多孔質セラミックに白金やパラジウムなどの白金族触媒が担持されることで構成されている。DPF15は、排気中に含まれる粒子状物質をハニカム構造体の隔壁に堆積させることで捕集する。堆積した粒子状物質は、燃焼によって酸化され浄化される。この燃焼には、ディーゼル酸化触媒14における温度上昇や、添加剤による粒子状物質の燃焼温度低下が利用される。 The DPF 15 is formed of a honeycomb structure, and is configured by supporting a platinum group catalyst such as platinum or palladium on a porous ceramic. The DPF 15 collects particulate matter contained in the exhaust gas by depositing it on the partition walls of the honeycomb structure. The deposited particulate matter is oxidized and purified by combustion. For this combustion, a temperature increase in the diesel oxidation catalyst 14 or a decrease in the combustion temperature of the particulate matter due to the additive is used.
 SCR触媒コンバータ13は、酸化触媒コンバータ12の後処理装置としてNOxを窒素と水に還元する装置であって、SCR触媒16としては、例えばゼオライト又はアルミナなどの基材表面にPtなどの貴金属を担持した触媒が用いられる。SCR触媒16は、触媒温度が活性温度域にある場合に、還元剤としての尿素が添加されることによりNOxを還元浄化する。 The SCR catalytic converter 13 is a device for reducing NOx to nitrogen and water as a post-treatment device for the oxidation catalytic converter 12, and the SCR catalyst 16 carries a noble metal such as Pt on the surface of a base material such as zeolite or alumina. The catalyst used is used. The SCR catalyst 16 reduces and purifies NOx by adding urea as a reducing agent when the catalyst temperature is in the activation temperature range.
 排気管11において、酸化触媒コンバータ12の上流側、酸化触媒コンバータ12とSCR触媒コンバータ13との間であって尿素水添加弁17の上流側、SCR触媒コンバータ13の下流側には、ガスセンサとして限界電流式のNOxセンサ21,22,23がそれぞれ設けられている。NOxセンサ21~23は、それぞれの検出位置において排気中のNOx濃度を検出する。なお、エンジン排気系におけるNOxセンサの位置及び個数は任意でよい。 In the exhaust pipe 11, there is a limit as a gas sensor on the upstream side of the oxidation catalytic converter 12, between the oxidation catalytic converter 12 and the SCR catalytic converter 13, upstream of the urea water addition valve 17, and downstream of the SCR catalytic converter 13. Current- type NOx sensors 21, 22, and 23 are provided, respectively. The NOx sensors 21 to 23 detect the NOx concentration in the exhaust gas at the respective detection positions. The position and number of NOx sensors in the engine exhaust system may be arbitrary.
 NOxセンサ21~23には、それぞれSCU(Sensor Control Unit)31,32,33が接続されており、NOxセンサ21~23の検出信号は、センサごとにSCU31~33に適宜出力される。SCU31~33は、CPUや各種メモリを有するマイコンとその周辺回路とを具備する電子制御装置であり、NOxセンサ21~23の検出信号(限界電流信号)に基づいて、排気中の酸素(O2)濃度や特定ガス成分の濃度としてのNOx濃度等を算出する。 SCUs (Sensor Control Units) 31, 32, and 33 are connected to the NOx sensors 21 to 23, and the detection signals of the NOx sensors 21 to 23 are appropriately output to the SCUs 31 to 33 for each sensor. The SCUs 31 to 33 are electronic control devices including a CPU and a microcomputer having various memories and peripheral circuits thereof, and oxygen (O2) in exhaust gas based on detection signals (limit current signals) of the NOx sensors 21 to 23. The concentration and the NOx concentration as the concentration of the specific gas component are calculated.
 SCU31~33は、CANバス等の通信線34に接続され、その通信線34を介して各種ECU(例えばエンジンECU35)に接続されている。つまり、SCU31~33とエンジンECU35とは通信線34を用いて相互に情報の授受が可能となっている。SCU31~33からエンジンECU35に対しては、例えば排気中の酸素濃度やNOx濃度の情報が送信される。エンジンECU35は、CPUや各種メモリを有するマイコンとその周辺回路とを具備する電子制御装置であり、エンジン10や排気系の各種装置を制御する。エンジンECU35は、例えばアクセル開度やエンジン回転速度に基づいて燃料噴射制御等を実施する。 The SCUs 31 to 33 are connected to a communication line 34 such as a CAN bus, and are connected to various ECUs (for example, an engine ECU 35) via the communication line 34. That is, the SCUs 31 to 33 and the engine ECU 35 can exchange information with each other using the communication line 34. For example, information on oxygen concentration and NOx concentration in exhaust gas is transmitted from the SCUs 31 to 33 to the engine ECU 35. The engine ECU 35 is an electronic control device including a CPU, a microcomputer having various memories, and its peripheral circuits, and controls the engine 10 and various devices in the exhaust system. The engine ECU 35 performs fuel injection control and the like based on, for example, the accelerator opening and the engine speed.
 また、エンジンECU35は、各NOxセンサ21~23により検出されるNOx濃度に基づいて、尿素水添加弁17による尿素水添加の制御を実施する。その尿素水添加の制御を略述すると、エンジンECU35は、SCR触媒コンバータ13の上流側のNOxセンサ21,22により検出されるNOx濃度に基づいて尿素水添加量を算出するとともに、SCR触媒コンバータ13の下流側のNOxセンサ23により検出されるNOx濃度が極力小さい値となるように尿素水添加量をフィードバック補正する。そして、その尿素水添加量に基づいて、尿素水添加弁17の駆動を制御する。 Further, the engine ECU 35 performs urea water addition control by the urea water addition valve 17 based on the NOx concentration detected by each of the NOx sensors 21 to 23. Briefly describing the control of the urea water addition, the engine ECU 35 calculates the urea water addition amount based on the NOx concentration detected by the NOx sensors 21 and 22 on the upstream side of the SCR catalytic converter 13, and the SCR catalytic converter 13. The urea water addition amount is feedback-corrected so that the NOx concentration detected by the downstream NOx sensor 23 becomes as small as possible. Based on the urea water addition amount, the driving of the urea water addition valve 17 is controlled.
 次に、NOxセンサ21~23の構成について説明する。各NOxセンサ21~23はいずれも同じ構成を有しており、ここではNOxセンサ21についてその構成を説明する。図2及び図3は、NOxセンサ21を構成するセンサ素子40の内部構造を示す図である。なお、図の左右方向がセンサ素子40の長手方向であり、図の左側が素子先端側である。センサ素子40は、ポンプセル41、センサセル42及びモニタセル43からなる、いわゆる3セル構造を有している。なお、モニタセル43は、ポンプセル41同様、ガス中の酸素排出の機能を具備しており、補助ポンプセル又は第2ポンプセルと称される場合もある。 Next, the configuration of the NOx sensors 21 to 23 will be described. Each of the NOx sensors 21 to 23 has the same configuration, and the configuration of the NOx sensor 21 will be described here. 2 and 3 are views showing the internal structure of the sensor element 40 constituting the NOx sensor 21. FIG. In addition, the left-right direction of a figure is a longitudinal direction of the sensor element 40, and the left side of a figure is an element front end side. The sensor element 40 has a so-called three-cell structure including a pump cell 41, a sensor cell 42 and a monitor cell 43. The monitor cell 43 has a function of discharging oxygen in the gas, like the pump cell 41, and may be referred to as an auxiliary pump cell or a second pump cell.
 センサ素子40は、アルミナ等の絶縁体よりなる第1本体部51及び第2本体部52と、それら本体部51,52の間に配置される固体電解質体53と、拡散抵抗体54と、ポンプセル電極55と、センサセル電極56と、モニタセル電極57と、共通電極58と、ヒータ59とを備えている。第1本体部51と固体電解質体53との間に、濃度計側室であるガス室61が形成され、第2本体部52と固体電解質体53との間に、基準ガス室である大気室62が形成されている。 The sensor element 40 includes a first main body 51 and a second main body 52 made of an insulator such as alumina, a solid electrolyte body 53 disposed between the main bodies 51 and 52, a diffusion resistor 54, and a pump cell. An electrode 55, a sensor cell electrode 56, a monitor cell electrode 57, a common electrode 58, and a heater 59 are provided. A gas chamber 61 that is a concentration meter side chamber is formed between the first main body 51 and the solid electrolyte body 53, and an atmospheric chamber 62 that is a reference gas chamber is formed between the second main body 52 and the solid electrolyte body 53. Is formed.
 ポンプセル41は、ガス室61内に導入された排気中の酸素濃度を調整するものであり、ポンプセル電極55と共通電極58と固体電解質体53の一部とにより形成されている。センサセル42は、センサセル電極56と共通電極58との間に流れる酸素イオン電流に基づいてガス室61における所定のガス成分の濃度(NOx濃度)を検出するものであり、センサセル電極56と共通電極58と固体電解質体53の一部とにより形成されている。モニタセル43は、モニタセル電極57と共通電極58との間に流れる酸素イオン電流に基づいてガス室61における残留酸素濃度を検出するものであり、モニタセル電極57と共通電極58と固体電解質体53の一部とにより形成されている。 The pump cell 41 adjusts the oxygen concentration in the exhaust gas introduced into the gas chamber 61, and is formed by the pump cell electrode 55, the common electrode 58, and a part of the solid electrolyte body 53. The sensor cell 42 detects the concentration (NOx concentration) of a predetermined gas component in the gas chamber 61 based on an oxygen ion current flowing between the sensor cell electrode 56 and the common electrode 58. The sensor cell electrode 56 and the common electrode 58 And a part of the solid electrolyte body 53. The monitor cell 43 detects the residual oxygen concentration in the gas chamber 61 on the basis of the oxygen ion current flowing between the monitor cell electrode 57 and the common electrode 58, and one of the monitor cell electrode 57, the common electrode 58, and the solid electrolyte body 53. Part.
 固体電解質体53は板状の部材であって、酸化ジルコニア等の酸素イオン伝導性固体電解質材料によって構成されている。第1本体部51と第2本体部52とは、固体電解質体53を挟んでその両側に配置されている。第1本体部51は、固体電解質体53の側が段差状となっており、その段差により形成された凹部がガス室61となっている。第1本体部51の凹部の一側面は開放されており、その開放された一側面に拡散抵抗体54が配置されている。拡散抵抗体54は、多孔質材料又は細孔が形成された材料よりなる。拡散抵抗体54の作用により、ガス室61に導入される排気の速度が律せされる。 The solid electrolyte body 53 is a plate-like member and is made of an oxygen ion conductive solid electrolyte material such as zirconia oxide. The first main body 51 and the second main body 52 are arranged on both sides of the solid electrolyte body 53. The first main body 51 has a stepped shape on the solid electrolyte body 53 side, and a recess formed by the step is a gas chamber 61. One side surface of the concave portion of the first main body 51 is open, and the diffusion resistor 54 is disposed on the open side surface. The diffusion resistor 54 is made of a porous material or a material in which pores are formed. The speed of the exhaust gas introduced into the gas chamber 61 is regulated by the action of the diffusion resistor 54.
 第2本体部52も同様に、固体電解質体53の側が段差状となっており、その段差により形成された凹部が大気室62なっている。大気室62の一側面は開放されている。固体電解質体53側から大気室62内に導入される気体は大気に放出される。 Similarly, the second main body portion 52 has a stepped shape on the solid electrolyte body 53 side, and a concave portion formed by the step is an atmospheric chamber 62. One side of the atmospheric chamber 62 is open. The gas introduced into the atmospheric chamber 62 from the solid electrolyte body 53 side is released to the atmosphere.
 固体電解質体53においてガス室61に臨む面には、陰極側のポンプセル電極55とセンサセル電極56とモニタセル電極57とが設けられている。この場合、ポンプセル電極55は、拡散抵抗体54に近いガス室61の入口側、すなわちガス室61内の上流側に配置され、センサセル電極56及びモニタセル電極57は、ポンプセル電極55を挟んで拡散抵抗体54の反対側、すなわちガス室61内の下流側に配置されている。ポンプセル電極55は、センサセル電極56及びモニタセル電極57に比べて大きい表面積を有する。センサセル電極56及びモニタセル電極57は、互いに近接した位置であって、排気の流れ方向に対して同等となる位置に並べて配置されている。ポンプセル電極55とモニタセル電極57とは、NOxに不活性なAu-Pt等の貴金属からなる電極(NOxを分解し難い電極)であるのに対し、センサセル電極56はNOxに活性な白金Pt、ロジウムRh等の貴金属からなる電極である。 On the surface facing the gas chamber 61 of the solid electrolyte body 53, a pump cell electrode 55, a sensor cell electrode 56, and a monitor cell electrode 57 on the cathode side are provided. In this case, the pump cell electrode 55 is disposed on the inlet side of the gas chamber 61 close to the diffusion resistor 54, that is, on the upstream side in the gas chamber 61, and the sensor cell electrode 56 and the monitor cell electrode 57 have a diffusion resistance across the pump cell electrode 55. It is disposed on the opposite side of the body 54, that is, on the downstream side in the gas chamber 61. The pump cell electrode 55 has a larger surface area than the sensor cell electrode 56 and the monitor cell electrode 57. The sensor cell electrode 56 and the monitor cell electrode 57 are arranged side by side at positions close to each other and equivalent to the exhaust flow direction. The pump cell electrode 55 and the monitor cell electrode 57 are electrodes made of a noble metal such as Au—Pt that is inactive to NOx (electrodes that are difficult to decompose NOx), whereas the sensor cell electrode 56 is platinum Pt and rhodium that are active to NOx. It is an electrode made of a noble metal such as Rh.
 また、固体電解質体53において大気室62に臨む面には、陰極側の各電極55~57に対応する位置に、陽極側となる共通電極58が設けられている。 A common electrode 58 on the anode side is provided on the surface of the solid electrolyte body 53 facing the atmospheric chamber 62 at a position corresponding to each of the electrodes 55 to 57 on the cathode side.
 ポンプセル電極55と共通電極58との間に電圧が印加されると、ガス室61内の排気中に含まれる酸素が陰極側のポンプセル電極55にてイオン化される。そして、酸素イオンが陽極側の共通電極58に向けて固体電解質体53内を移動し、共通電極58において電荷が放出されることで酸素となり、大気室62に排出される。これにより、ガス室61内が所定の低酸素状態に保持される。 When a voltage is applied between the pump cell electrode 55 and the common electrode 58, oxygen contained in the exhaust gas in the gas chamber 61 is ionized at the pump cell electrode 55 on the cathode side. Then, oxygen ions move in the solid electrolyte body 53 toward the common electrode 58 on the anode side, and electric charges are released from the common electrode 58 to become oxygen, which is discharged into the atmospheric chamber 62. Thereby, the inside of the gas chamber 61 is maintained in a predetermined low oxygen state.
 ポンプセル41の印加電圧(すなわちポンプセル電極55と共通電極58との間の印加電圧)が高いほど、ポンプセル41によって排気中から排出される酸素の量が多くなる。逆にポンプセル41の印加電圧が低いほど、ポンプセル41によって排気から排出される酸素の量が少なくなる。したがって、ポンプセル41の印加電圧を増減することで、後段のセンサセル42及びモニタセル43に流れる排気中の残留酸素の量を増減させることができる。本実施形態では、ポンプセル41に印加される電圧をポンプセル印加電圧Vpとし、ポンプセル41の電圧印加状態で出力される電流をポンプセル電流Ipとする。 The higher the applied voltage of the pump cell 41 (that is, the applied voltage between the pump cell electrode 55 and the common electrode 58), the greater the amount of oxygen discharged from the exhaust gas by the pump cell 41. Conversely, the lower the applied voltage of the pump cell 41, the smaller the amount of oxygen discharged from the exhaust by the pump cell 41. Therefore, by increasing or decreasing the applied voltage of the pump cell 41, the amount of residual oxygen in the exhaust gas flowing through the sensor cell 42 and the monitor cell 43 in the subsequent stage can be increased or decreased. In the present embodiment, a voltage applied to the pump cell 41 is a pump cell applied voltage Vp, and a current output when the pump cell 41 is in a voltage applied state is a pump cell current Ip.
 モニタセル43は、ポンプセル41により酸素が排出された状態でガス室61内に残留する酸素濃度を検出する。このとき、モニタセル43は、残留酸素濃度の検出信号として、電圧印加に伴い生じる電流信号、又はガス室61内の残留酸素濃度に応じた起電力信号を出力する。モニタセル43の出力は、SCU31~33においてモニタセル電流Im、又はモニタセル起電力Vmとして取得される。 The monitor cell 43 detects the oxygen concentration remaining in the gas chamber 61 in a state where oxygen is exhausted by the pump cell 41. At this time, the monitor cell 43 outputs a current signal generated with voltage application or an electromotive force signal corresponding to the residual oxygen concentration in the gas chamber 61 as a residual oxygen concentration detection signal. The output of the monitor cell 43 is acquired by the SCUs 31 to 33 as the monitor cell current Im or the monitor cell electromotive force Vm.
 センサセル42は、ポンプセル41により酸素が排出された状態で、電圧印加に伴い排気中のNOxを還元分解し、ガス室61内のNOx濃度及び残留酸素濃度に応じた電流信号を出力する。センサセル42の出力は、SCU31~33においてセンサセル電流Isとして取得される。SCU31~33では、センサセル電流Isにより、排気中のNOx濃度が算出される。 The sensor cell 42 reduces and decomposes NOx in the exhaust gas according to voltage application in a state where oxygen is exhausted by the pump cell 41, and outputs a current signal corresponding to the NOx concentration and the residual oxygen concentration in the gas chamber 61. The output of the sensor cell 42 is acquired as the sensor cell current Is in the SCUs 31 to 33. In the SCUs 31 to 33, the NOx concentration in the exhaust gas is calculated from the sensor cell current Is.
 ところで、センサセル42では、経年劣化等の影響によって、排気中の被検出ガスの濃度が同一であっても、その出力であるセンサセル電流Isの過渡応答性が変化する傾向がある。この傾向について図4を参照して説明する。図4には、(a)ポンプセル印加電圧Vp、(b)ポンプセル電流Ip、(c)センサセル電流Is、(d)モニタセル電流Imの時間推移が模式的に示されている。ここでは、ガス室61内の残留酸素濃度を増やす側にポンプセル印加電圧Vpを切り替える第1電圧切替と、その第1電圧切替の実施後において、ガス室61内の残留酸素濃度を減らす側にポンプセル印加電圧Vpを切り替える第2電圧切替とを実施する場合について説明する。 By the way, in the sensor cell 42, even if the concentration of the gas to be detected in the exhaust gas is the same due to the influence of aging deterioration or the like, the transient response of the sensor cell current Is as the output tends to change. This tendency will be described with reference to FIG. FIG. 4 schematically shows time transitions of (a) pump cell applied voltage Vp, (b) pump cell current Ip, (c) sensor cell current Is, and (d) monitor cell current Im. Here, the first voltage switching for switching the pump cell applied voltage Vp to the side for increasing the residual oxygen concentration in the gas chamber 61 and the pump cell for reducing the residual oxygen concentration in the gas chamber 61 after the first voltage switching is performed. A case where the second voltage switching for switching the applied voltage Vp is performed will be described.
 図4において、時刻t1では、第1電圧切替として、ポンプセル印加電圧VpがVp0からVp1にステップ状に切り替えられている(Vp0>Vp1)。これにより、ポンプセル電流Ipが減少する側に変化し、ガス室61内の残留酸素濃度が増大される。このとき、ポンプセル電流Ipは、Ip0からテーリングを伴って変化し、Ip1に収束する。センサセル42及びモニタセル43では、残留酸素濃度の増大に応じて、センサセル電流Is、モニタセル電流Imが過渡応答を経て定常値まで増大する。 In FIG. 4, at time t1, the pump cell applied voltage Vp is switched from Vp0 to Vp1 step by step as the first voltage switching (Vp0> Vp1). As a result, the pump cell current Ip is changed to a decreasing side, and the residual oxygen concentration in the gas chamber 61 is increased. At this time, the pump cell current Ip changes from Ip0 with tailing and converges to Ip1. In the sensor cell 42 and the monitor cell 43, as the residual oxygen concentration increases, the sensor cell current Is and the monitor cell current Im increase to a steady value through a transient response.
 図4(c)には、ポンプセル印加電圧Vpの低減に応じたセンサセル電流Isの過渡応答特性が、NOxセンサ製造時の特性(初期特性)と、NOxセンサ劣化時の特性(劣化後特性)との2種類で示されている。実線が初期特性を示し、一点鎖線が劣化時特性を示す。図4(c)には、センサセル42に供給される排気が同一の酸素濃度である場合において、センサセル電流Isの初期特性と劣化時特性とに差異が生じることが示されている。この場合、第一に、劣化時特性の定常値が初期特性の定常値より低減する傾向がある。第二に、劣化時特性の立ち上がりが初期特性のものより遅くなる傾向がある。例えば過渡変化中の期間Taでの間の特性の傾きをみると、劣化時特性の傾きA11は、初期特性の傾きA10より緩くなる。なお、期間Taは、ポンプセル印加電圧Vpの切り替えに伴う過渡応答中において始点P1と終点P2との間の期間である。これらの傾向は、センサセル42の劣化が進むほど顕著になる。 In FIG. 4C, the transient response characteristics of the sensor cell current Is corresponding to the reduction of the pump cell applied voltage Vp are the characteristics when the NOx sensor is manufactured (initial characteristics), the characteristics when the NOx sensor is deteriorated (characteristics after deterioration), and These are shown in two types. The solid line indicates the initial characteristics, and the alternate long and short dash line indicates the deterioration characteristics. FIG. 4C shows that when the exhaust gas supplied to the sensor cell 42 has the same oxygen concentration, there is a difference between the initial characteristic and the deterioration characteristic of the sensor cell current Is. In this case, firstly, there is a tendency that the steady value of the deterioration characteristic is lower than the steady value of the initial characteristic. Second, the rise of the characteristics at the time of deterioration tends to be slower than that of the initial characteristics. For example, when looking at the slope of the characteristic during the period Ta during the transient change, the slope A11 of the deterioration characteristic becomes gentler than the slope A10 of the initial characteristic. The period Ta is a period between the start point P1 and the end point P2 during the transient response accompanying switching of the pump cell application voltage Vp. These tendencies become more prominent as the sensor cell 42 deteriorates.
 また、図4において、時刻t2では、第2電圧切替として、ポンプセル印加電圧VpがVp1からVp2にステップ状に切り替えられている(Vp1<Vp2)。これにより、ポンプセル電流Ipが増加する側に変化し、ガス室61内の残留酸素濃度が低減される。また、センサセル電流Is及びモニタセル電流Imは、残留酸素濃度の低減に応じて、それぞれ定常値まで減少変化する。 In FIG. 4, at time t2, as the second voltage switching, the pump cell applied voltage Vp is switched from Vp1 to Vp2 stepwise (Vp1 <Vp2). As a result, the pump cell current Ip is increased and the residual oxygen concentration in the gas chamber 61 is reduced. In addition, the sensor cell current Is and the monitor cell current Im decrease and change to steady values, respectively, according to the reduction in the residual oxygen concentration.
 第1電圧切替の実施時において、始点P1及び終点P2は、ポンプセル印加電圧Vpの切り替え後、かつ、センサセル電流Isが安定する前の所定期間内に含まれるタイミングであり、始点P1及び終点P2として設定されるタイミングを以下に説明する。 When the first voltage switching is performed, the start point P1 and the end point P2 are timings included in a predetermined period after the pump cell applied voltage Vp is switched and before the sensor cell current Is is stabilized. As the start point P1 and the end point P2, The timing to be set will be described below.
 図5に示すように、始点P1は、例えば以下の3点のいずれかである。
(1)ポンプセル印加電圧Vpの切り替えに応じて生じるポンプセル電流Ipのテーリング最下点PLとなるタイミング(図5中の点P11)
(2)ポンプセル印加電圧Vpの切り替えに応じて生じるセンサセル出力変動量が所定値L1に到達するタイミング(図5中の点P12)
(3)ポンプセル印加電圧Vpの切り替え後に所定時間E1が経過するタイミング(図5中の点P13)
 また、図5に示すように、終点P2は、例えば以下の2点のいずれかである。
(4)ポンプセル印加電圧Vpの切り替えの後に所定時間E2が経過するタイミング(図5中の点P21)
(5)ポンプセル印加電圧Vpの切り替えに応じて生じるセンサセル出力変動量が所定値L2に到達するタイミング(図5中の点P22)
 所定値L1は、NOxセンサ21~23の初期状態で今回と同様のポンプセル印加電圧Vpの切り替え(Vp0→Vp1の切り替え)を行った際のセンサセル電流Isの電流変化量を100%とした場合に、電圧切り替え前の電流値から所定パーセンテージ(例えば5~30%のいずれか)を上乗せした値である。また、所定値L2は、所定値L1よりも大きい値であり、同じく電圧切り替え前の電流値から所定パーセンテージ(例えば50~95%のいずれか)を上乗せした値である。
As shown in FIG. 5, the start point P1 is, for example, one of the following three points.
(1) Timing when the tailing lowest point PL of the pump cell current Ip generated according to the switching of the pump cell applied voltage Vp (point P11 in FIG. 5)
(2) Timing at which the sensor cell output fluctuation amount generated according to the switching of the pump cell applied voltage Vp reaches the predetermined value L1 (point P12 in FIG. 5)
(3) Timing at which the predetermined time E1 elapses after the pump cell applied voltage Vp is switched (point P13 in FIG. 5)
As shown in FIG. 5, the end point P2 is, for example, one of the following two points.
(4) Timing at which the predetermined time E2 elapses after the pump cell applied voltage Vp is switched (point P21 in FIG. 5)
(5) Timing at which the sensor cell output fluctuation amount generated in response to switching of the pump cell applied voltage Vp reaches the predetermined value L2 (point P22 in FIG. 5)
The predetermined value L1 is obtained when the change amount of the sensor cell current Is when the switching of the pump cell applied voltage Vp (switching from Vp0 to Vp1) is performed in the initial state of the NOx sensors 21 to 23 as 100%. A value obtained by adding a predetermined percentage (for example, any one of 5 to 30%) to the current value before voltage switching. The predetermined value L2 is a value larger than the predetermined value L1, and is also a value obtained by adding a predetermined percentage (for example, any one of 50 to 95%) from the current value before voltage switching.
 なお、劣化判定を早期に実施することを考慮すると、始点P1及び終点P2は共に可能な限り早いタイミングで設定するのが好ましく、上記の具体例(1)~(5)のなかでは、始点P1を上記(1)に設定し、終点P2を上記(4)に設定するのが好ましい。 In consideration of performing the deterioration determination at an early stage, it is preferable to set both the start point P1 and the end point P2 at the earliest possible timing. In the above specific examples (1) to (5), the start point P1 Is preferably set to (1) above, and the end point P2 is preferably set to (4) above.
 ここで、センサセル42の劣化判定時には、ポンプセル印加電圧Vpの切り替えに伴いガス室61内の残留酸素濃度が変化し、その残留酸素濃度の変化に伴うセンサセル42の過渡応答に基づいてセンサセル42の劣化判定が実施されるが、ポンプセル印加電圧Vpの切り替え後におけるガス室61内の残留酸素濃度に応じて、劣化判定に悪影響が及ぶことが懸念される。例えば、図4において、ポンプセル印加電圧Vpの切り替え後(時刻t1後)において、ガス室61内の残留酸素濃度が想定よりも大きいと、劣化判定のためのパラメータであるセンサセル電流Isの検出精度が低下することが懸念される。 Here, when determining the deterioration of the sensor cell 42, the residual oxygen concentration in the gas chamber 61 changes with the switching of the pump cell applied voltage Vp, and the deterioration of the sensor cell 42 is based on the transient response of the sensor cell 42 accompanying the change in the residual oxygen concentration. Although the determination is performed, there is a concern that the deterioration determination may be adversely affected depending on the residual oxygen concentration in the gas chamber 61 after the pump cell applied voltage Vp is switched. For example, in FIG. 4, when the residual oxygen concentration in the gas chamber 61 is higher than expected after the pump cell applied voltage Vp is switched (after time t1), the detection accuracy of the sensor cell current Is, which is a parameter for determining deterioration, is increased. There is concern about the decline.
 そこで本実施形態では、ポンプセル印加電圧Vpが切り替えられる場合に、センサセル電流Isとモニタセル電流Imとを取得するとともに、そのセンサセル電流Isとモニタセル電流Imとに基づいて、センサセル42の劣化状態を判定することとし、これによりセンサセル42の劣化判定の精度低下を抑制することとしている。 Therefore, in the present embodiment, when the pump cell applied voltage Vp is switched, the sensor cell current Is and the monitor cell current Im are acquired, and the deterioration state of the sensor cell 42 is determined based on the sensor cell current Is and the monitor cell current Im. In this way, the deterioration in accuracy of the deterioration determination of the sensor cell 42 is suppressed.
 図6は、各SCU31~33の機能を説明するための機能ブロック図である。各SCU31~33は、ポンプセル印加電圧Vpを切り替える電圧切替部M11と、ポンプセル印加電圧Vpが切り替えられる場合に、センサセル電流Isとモニタセル電流Imとを取得する取得部M12と、取得部M12により取得されたセンサセル電流Isとモニタセル電流Imとに基づいて、センサセル42の劣化状態を判定する劣化判定部M13と、を備えている。 FIG. 6 is a functional block diagram for explaining the functions of the SCUs 31 to 33. Each of the SCUs 31 to 33 is acquired by a voltage switching unit M11 that switches the pump cell applied voltage Vp, an acquisition unit M12 that acquires the sensor cell current Is and the monitor cell current Im when the pump cell applied voltage Vp is switched, and an acquisition unit M12. A deterioration determination unit M13 for determining a deterioration state of the sensor cell 42 based on the sensor cell current Is and the monitor cell current Im.
 電圧切替部M11は、ガス室61内の酸素濃度を増やす側にポンプセル印加電圧Vpを切り替える第1電圧切替(図4のVp0→Vp1の電圧切替)と、その第1電圧切替の実施後において、ガス室61内の酸素濃度を減らす側にポンプセル印加電圧Vpを切り替える第2電圧切替(図4のVp1→Vp2の電圧切替)とを実施する。つまり、電圧切替部M11は、ポンプセル印加電圧Vpを低下させ、その後増加させるといった一連の電圧切替サイクルを実施する。なお、本実施形態では、ポンプセル印加電圧Vpをステップ状に切り替えるようにしているが、電圧変化波形はステップ波形以外であってもよい。ただし、初期特性との比較により劣化判定が行われるため、初期特性の計測時と電圧変化波形を同じにすることが好ましい。 The voltage switching unit M11 performs the first voltage switching (voltage switching from Vp0 to Vp1 in FIG. 4) for switching the pump cell applied voltage Vp to the side where the oxygen concentration in the gas chamber 61 is increased, and after the first voltage switching, Second voltage switching (voltage switching from Vp1 to Vp2 in FIG. 4) for switching the pump cell applied voltage Vp to the side of reducing the oxygen concentration in the gas chamber 61 is performed. That is, the voltage switching unit M11 performs a series of voltage switching cycles in which the pump cell applied voltage Vp is decreased and then increased. In the present embodiment, the pump cell application voltage Vp is switched in a step shape, but the voltage change waveform may be other than the step waveform. However, since the deterioration determination is performed by comparison with the initial characteristics, it is preferable to make the voltage change waveform the same as when measuring the initial characteristics.
 取得部M12は、電圧切替部M11によるポンプセル印加電圧Vpの切り替え後においてモニタセル電流Imの変化が収束したことを条件に、センサセル電流Isをセンサセル電流収束値Isxとして取得するとともに、モニタセル電流Imの変化が収束する前におけるセンサセル電流Isの過渡変化の傾きを傾きパラメータとして取得する。また、モニタセル電流収束値Imxを取得する。 The acquisition unit M12 acquires the sensor cell current Is as the sensor cell current convergence value Isx on the condition that the change in the monitor cell current Im has converged after the switching of the pump cell applied voltage Vp by the voltage switching unit M11, and the change in the monitor cell current Im The gradient of the transient change of the sensor cell current Is before is converged is acquired as a gradient parameter. Also, the monitor cell current convergence value Imx is acquired.
 劣化判定部M13は、取得部M12により取得されたセンサセル電流収束値Isxとセンサセル電流Isの傾きとに基づいて、センサセル42の劣化状態を判定する。本実施形態では、劣化判定処理として、センサセル電流収束値Isxとセンサセル電流Isの傾きとに基づいて、センサセル42の劣化率Cを算出する。ここで、センサセル電流収束値Isxは、ポンプセル印加電圧VpをVp0からVp1に切り替えた後において、モニタセル電流Imの変化が収束した後に取得されるセンサセル電流Isである。また、センサセル電流Isの傾きは、ポンプセル印加電圧Vpの切り替えに伴うセンサセル電流Isの過渡変化中において単位時間Δtに対する電流変化量ΔIsにより算出される値である。 The deterioration determination unit M13 determines the deterioration state of the sensor cell 42 based on the sensor cell current convergence value Isx acquired by the acquisition unit M12 and the inclination of the sensor cell current Is. In the present embodiment, as the deterioration determination process, the deterioration rate C of the sensor cell 42 is calculated based on the sensor cell current convergence value Isx and the slope of the sensor cell current Is. Here, the sensor cell current convergence value Isx is the sensor cell current Is acquired after the change in the monitor cell current Im converges after the pump cell applied voltage Vp is switched from Vp0 to Vp1. The slope of the sensor cell current Is is a value calculated from the current change amount ΔIs per unit time Δt during the transient change of the sensor cell current Is accompanying the switching of the pump cell applied voltage Vp.
 要するに、劣化判定部M13では、電圧切替部M11によりポンプセル印加電圧Vpが切り替えられる場合に、センサセル電流Isとモニタセル電流Imとに基づいて、センサセル42の劣化状態が判定される。 In short, the deterioration determination unit M13 determines the deterioration state of the sensor cell 42 based on the sensor cell current Is and the monitor cell current Im when the voltage switching unit M11 switches the pump cell applied voltage Vp.
 また、劣化判定部M13は、電圧切り替え前後の少なくともいずれかのポンプセル電流Ipとモニタセル電流Imとの関係を定めた相関データを用い、モニタセル電流Imが正常値になっているか否かを判定するモニタセル出力判定部を備えており、そのモニタセル出力判定部によりモニタセル電流Imが正常値になっていないと判定された場合に、センサセル42の劣化判定を無効とする。相関データは、例えば第1電圧切替の実施前後のポンプセル電流Ipの変化量ΔIpとモニタセル電流収束値Imxとの関係を定めたものである。これ以外に、相関データは、第1電圧切替の実施前のポンプセル電流Ip0とモニタセル電流収束値Imxとの関係を定めたものや、第1電圧切替の実施後のポンプセル電流Ip1とモニタセル電流収束値Imxmとの関係を定めたものであってもよい。いずれにしろガス室61内の残留酸素濃度に応じた関係が定められているとよい。 Further, the deterioration determination unit M13 uses the correlation data that defines the relationship between at least one of the pump cell current Ip and the monitor cell current Im before and after the voltage switching, and determines whether or not the monitor cell current Im has a normal value. An output determination unit is provided, and when the monitor cell output determination unit determines that the monitor cell current Im is not a normal value, the deterioration determination of the sensor cell 42 is invalidated. The correlation data defines, for example, the relationship between the change amount ΔIp of the pump cell current Ip before and after the first voltage switching and the monitor cell current convergence value Imx. In addition to this, the correlation data includes the relationship between the pump cell current Ip0 before the first voltage switching and the monitor cell current convergence value Imx, and the pump cell current Ip1 and the monitor cell current convergence value after the first voltage switching. The relationship with Immxm may be determined. In any case, a relationship according to the residual oxygen concentration in the gas chamber 61 is preferably determined.
 ちなみに、センサセル42は、通常のNOx濃度検出時においてnAオーダレベルでセンサセル電流Isを検出する一方、劣化判定のためのポンプセル印加電圧Vpの切替時には、残留酸素濃度が増加することでμAオーダレベルでセンサセル電流Isを検出する。この場合、いずれにおいても電流検出の分解能を高めるべく、NOx濃度検出時と劣化判定時とでSCU31~33におけるA/D変換の電流処理範囲が切り替えられるとよい。劣化判定時には、NOx濃度検出時に比べて電流処理範囲が拡張されるとよい。 Incidentally, the sensor cell 42 detects the sensor cell current Is at the nA order level during normal NOx concentration detection, while the residual oxygen concentration increases at the μA order level when the pump cell applied voltage Vp is switched for deterioration determination. The sensor cell current Is is detected. In this case, in any case, the current processing range of the A / D conversion in the SCUs 31 to 33 may be switched between the NOx concentration detection and the deterioration determination in order to increase the current detection resolution. At the time of deterioration determination, the current processing range may be expanded compared to when NOx concentration is detected.
 また、エンジンECU35は、各SCU31~33の劣化判定結果に基づいてエミッション悪化による異常を判定する異常判定部M21を有している。異常判定部M21は、各SCU31~33の劣化判定部M13にて算出されたセンサセル42の劣化率Cに基づいて、エンジンエミッションの異常を判定する。なお、センサセル42の劣化率Cに加えて、NOxセンサ21~23の出力、他のセンサ類からの各種センサ情報、エンジン運転状態等を総合的に考慮してエミッション異常を判定する構成であってもよい。 Further, the engine ECU 35 has an abnormality determination unit M21 that determines abnormality due to emission deterioration based on the deterioration determination results of the SCUs 31 to 33. The abnormality determination unit M21 determines an abnormality in engine emission based on the deterioration rate C of the sensor cell 42 calculated by the deterioration determination unit M13 of each of the SCUs 31 to 33. In addition, in addition to the deterioration rate C of the sensor cell 42, the emission abnormality is determined by comprehensively considering outputs of the NOx sensors 21 to 23, various sensor information from other sensors, engine operating conditions, and the like. Also good.
 NOxセンサ21~23に関する劣化判定とエミッション異常判定は、その両方がSCU31~33により実施されてもよく、又はその両方がエンジンECU35により実施されてもよい。なお、エミッション異常判定は、NOxセンサ21~23の劣化度合い以外の要素を用いて実施されるのが望ましいため、エンジンECU35により実施されるのが好ましい。 Both the deterioration determination and the emission abnormality determination regarding the NOx sensors 21 to 23 may be performed by the SCUs 31 to 33, or both may be performed by the engine ECU 35. Since it is desirable that the emission abnormality determination is performed using elements other than the degree of deterioration of the NOx sensors 21 to 23, it is preferable that the emission abnormality determination is performed by the engine ECU 35.
 次に、図7のフローチャートを参照してセンサセル42の劣化判定の処理手順を説明する。図7に示す処理は、図6に記載したSCU31~33の各機能を実現するための演算処理であり、各SCU31~33において例えば所定周期ごとに実施される。 Next, the processing procedure for determining the deterioration of the sensor cell 42 will be described with reference to the flowchart of FIG. The processing shown in FIG. 7 is arithmetic processing for realizing the functions of the SCUs 31 to 33 shown in FIG. 6, and is executed in each of the SCUs 31 to 33, for example, at predetermined intervals.
 ステップS10では、劣化判定の実施条件が成立しているか否かを判定する。本実施条件としては、例えば、劣化判定の実施を許可する旨の許可信号をエンジンECU35から受信していることが含まれる。エンジンECU35は、排気管11内におけるガス環境が安定している所定環境下である場合に許可信号を送信する。具体的には、エンジンECU35は、エンジン10が所定運転状態にあり排気の量が比較的安定している場合、フューエルカット中である場合、イグニションスイッチのオフ直後(IGオフ直後)である場合、又はソークタイマによるエンジンECU35の起動中である場合に、許可信号を送信する。特にIGオフ直後であることを実施条件とするのが望ましい。IGオフ直後においては、エンジン停止により排気の流れが無くなるため、ガス環境が安定した状態での劣化判定が可能となるからである。劣化判定の実施条件が成立していれば、後続のステップS11に進み、実施条件が成立していなければ、本処理を終了する。 In step S10, it is determined whether or not an execution condition for deterioration determination is satisfied. The implementation condition includes, for example, receiving an permission signal from the engine ECU 35 to permit the execution of the deterioration determination. The engine ECU 35 transmits a permission signal when the gas environment in the exhaust pipe 11 is in a predetermined environment that is stable. Specifically, the engine ECU 35 is in a state where the engine 10 is in a predetermined operation state and the amount of exhaust is relatively stable, in the case of fuel cut, immediately after the ignition switch is turned off (immediately after the IG is turned off), Alternatively, the permission signal is transmitted when the engine ECU 35 is being activated by the soak timer. In particular, it is desirable that the condition is immediately after the IG is turned off. This is because immediately after the IG is turned off, the exhaust flow disappears when the engine is stopped, so that it is possible to determine the deterioration in a stable gas environment. If the execution condition for the deterioration determination is satisfied, the process proceeds to the subsequent step S11. If the execution condition is not satisfied, the present process is terminated.
 ステップS11では、第1電圧切替、すなわちガス室61内の残留酸素濃度を増やす側へのポンプセル印加電圧Vpの切り替えを実施するか否かを判定する。このとき、各SCU31~33は、排気中の酸素濃度及びNOx濃度について単位時間当たりの変動量が所定以下である安定状態になっていることを判定し、安定状態になっていると判定されたことを条件に、第1電圧切替の実施を許可する。具体的には、第1電圧切替の実施前においてポンプセル電流Ipの単位時間当たりの変動量が所定以下であるか否かを判定するとともに、センサセル電流Isの単位時間当たりの変動量が所定以下であるか否かを判定する。そして、これらがいずれも安定状態であれば、ステップS11を肯定して後続のステップS12に進む。ただし、濃度安定の判定処理を省略することも可能である。 In step S11, it is determined whether or not the first voltage switching, that is, switching of the pump cell applied voltage Vp to the side where the residual oxygen concentration in the gas chamber 61 is increased is performed. At this time, each of the SCUs 31 to 33 determines that the fluctuation amount per unit time is in a stable state with respect to the oxygen concentration and NOx concentration in the exhaust gas, and is determined to be in the stable state. On the condition, the execution of the first voltage switching is permitted. Specifically, it is determined whether or not the fluctuation amount per unit time of the pump cell current Ip is equal to or less than a predetermined value before the first voltage switching, and the fluctuation amount per unit time of the sensor cell current Is is equal to or less than the predetermined value. It is determined whether or not there is. And if these are all in a stable state, step S11 is affirmed and it progresses to subsequent step S12. However, it is also possible to omit the density stability determination process.
 なお、各SCU31~33は、排気中の酸素濃度及びNOx濃度のいずれか一方について単位時間当たりの変動量が所定以下である安定状態になっていることを判定してもよい。この場合、排気中の酸素濃度が安定状態になっていれば、又は排気中のNOx濃度が安定状態になっていれば、第1電圧切替の実施を許可する。排気管11にA/Fセンサが設けられている場合には、A/Fセンサの検出値に基づいて、排気中の酸素濃度が安定状態になっていることを判定してもよい。 Note that each of the SCUs 31 to 33 may determine that either one of the oxygen concentration and the NOx concentration in the exhaust gas is in a stable state in which the fluctuation amount per unit time is a predetermined value or less. In this case, if the oxygen concentration in the exhaust gas is in a stable state, or if the NOx concentration in the exhaust gas is in a stable state, execution of the first voltage switching is permitted. When the exhaust pipe 11 is provided with an A / F sensor, it may be determined that the oxygen concentration in the exhaust gas is in a stable state based on the detection value of the A / F sensor.
 また、排気中の酸素濃度が所定の濃度範囲に入っていることや、NOx濃度が所定の濃度範囲に入っていることを条件に、第1電圧切替の実施を許可するようにしてもよい。この場合、排気中の酸素濃度やNOx濃度が安定していることの判定に代えて、又は当該判定と共に、酸素濃度やNOx濃度が所定の濃度範囲に入っていることの判定を実施するとよい。 Also, the first voltage switching may be permitted on condition that the oxygen concentration in the exhaust gas is in a predetermined concentration range or the NOx concentration is in a predetermined concentration range. In this case, instead of determining that the oxygen concentration or NOx concentration in the exhaust gas is stable, or together with the determination, it is preferable to determine whether the oxygen concentration or NOx concentration is within a predetermined concentration range.
 ステップS11では、上記に加え、エンジン排気系に関する故障履歴(ダイアグ情報)が無いこと、電源電圧(バッテリ電圧)が所定値以上であることを条件に、第1電圧切替の実施を許可してもよい。なお、電源電圧が所定未満になっているとセンサヒータへの通電が不十分になり、NOxセンサ21~23を適正な活性状態に維持できなくなり、劣化判定の精度低下が懸念される。 In step S11, in addition to the above, the execution of the first voltage switching is permitted on the condition that there is no failure history (diagnostic information) related to the engine exhaust system and that the power supply voltage (battery voltage) is equal to or higher than a predetermined value. Good. If the power supply voltage is less than the predetermined value, the sensor heater is not sufficiently energized, and the NOx sensors 21 to 23 cannot be maintained in an appropriate active state, which may cause a deterioration in accuracy of deterioration determination.
 第1電圧切替を実施する場合、ステップS12では、ポンプセル印加電圧VpをVp1に切り替える前(第1電圧切替の実施前)、すなわちポンプセル印加電圧VpがVp0である状態でのポンプセル出力であるポンプセル電流Ip0を検出する。 When the first voltage switching is performed, in step S12, the pump cell current that is the pump cell output before the pump cell applied voltage Vp is switched to Vp1 (before the first voltage switching), that is, the pump cell applied voltage Vp is Vp0. Ip0 is detected.
 その後、ステップS13では、ポンプセル印加電圧VpをVp0からVp1に切り替える。図4のタイムチャートでは時刻t1においてこの処理が行われる。その後、ステップS14では、第1電圧切替における始点P1でのセンサセル電流Is1と、終点P2でのセンサセル電流Is2とを検出する。ステップS15では、ポンプセル印加電圧VpをVp1に切り替えた後のポンプセル出力であるポンプセル電流Ip1を検出する。ポンプセル電流Ip1は、電圧切り替え(時刻t1)から所定時間が経過したタイミング、すなわちポンプセル電流Ipが安定したタイミングで検出される。なお、各センサセル電流Is1,Is2、ポンプセル電流Ip1の検出順序は任意でよい。 Thereafter, in step S13, the pump cell applied voltage Vp is switched from Vp0 to Vp1. In the time chart of FIG. 4, this process is performed at time t1. Thereafter, in step S14, the sensor cell current Is1 at the start point P1 and the sensor cell current Is2 at the end point P2 in the first voltage switching are detected. In step S15, a pump cell current Ip1, which is a pump cell output after switching the pump cell applied voltage Vp to Vp1, is detected. The pump cell current Ip1 is detected at a timing when a predetermined time has elapsed from the voltage switching (time t1), that is, at a timing when the pump cell current Ip is stabilized. The detection order of each sensor cell current Is1, Is2 and pump cell current Ip1 may be arbitrary.
 その後、ステップS16では、ポンプセル印加電圧Vpの切り替え後においてモニタセル電流Imの変化が収束した時のセンサセル電流Is、モニタセル電流Imを、それぞれセンサセル電流収束値Isx、モニタセル電流収束値Imxとして取得する。このとき、モニタセル電流Imの単位時間当たりの変化量が所定値未満になったことに基づいて、モニタセル電流Imの変化が収束したとみなし、その収束後にセンサセル電流収束値Isx、モニタセル電流収束値Imxを取得する。図4のタイムチャートでは、時刻t11でセンサセル電流収束値Isx、モニタセル電流収束値Imxが取得される。 Thereafter, in step S16, the sensor cell current Is and the monitor cell current Im when the change in the monitor cell current Im converges after the switching of the pump cell applied voltage Vp are obtained as the sensor cell current convergence value Isx and the monitor cell current convergence value Imx, respectively. At this time, based on the fact that the amount of change per unit time of the monitor cell current Im becomes less than a predetermined value, it is considered that the change of the monitor cell current Im has converged, and after the convergence, the sensor cell current convergence value Isx, the monitor cell current convergence value Imx To get. In the time chart of FIG. 4, the sensor cell current convergence value Isx and the monitor cell current convergence value Imx are acquired at time t11.
 ステップS17では、ポンプセル電流Ipとモニタセル電流Imとの関係を定めた相関データを用い、モニタセル電流Imが正常値になっているか否かを判定する。その相関データは、例えば図8のようにポンプセル電流Ipの変化量ΔIp(=Ip0-Ip1)とモニタセル電流収束値Imxとの関係として予め定められており、ステップS17では、モニタセル電流収束値Imxが、図8の関係に則したものになっているか否かを判定する。 In step S17, it is determined whether or not the monitor cell current Im is a normal value using correlation data that defines the relationship between the pump cell current Ip and the monitor cell current Im. The correlation data is determined in advance as a relationship between the change amount ΔIp (= Ip0−Ip1) of the pump cell current Ip and the monitor cell current convergence value Imx as shown in FIG. 8, for example. In step S17, the monitor cell current convergence value Imx is calculated. Then, it is determined whether or not it conforms to the relationship of FIG.
 より具体的には、図8では、ポンプセル電流Ipの変化量ΔIpに応じて、モニタセル電流収束値Imxの基準値がImsdとして定められるとともに、その基準値Imsdに応じて所定の許容範囲RAが定められている。そして、モニタセル電流収束値Imxが、ポンプセル電流変化量ΔIpに応じて定められる許容範囲RA内にあるか否かを判定し、許容範囲RA内であればモニタセル電流Imが正常値であるとし、許容範囲RA外であればモニタセル電流Imが正常値でないとする。モニタセル電流Imが正常値である場合、後続のステップS18に進み、モニタセル電流Imが正常値でない場合、ステップS17aに進む。ステップS17aでは、モニタセル43が異常である旨を判定し、その後本処理を終了する。つまり、モニタセル電流Imが正常値でない場合には、今回のセンサセル42の劣化判定が無効とされる。 More specifically, in FIG. 8, the reference value of the monitor cell current convergence value Imx is determined as Imsd according to the change amount ΔIp of the pump cell current Ip, and a predetermined allowable range RA is determined according to the reference value Imsd. It has been. Then, it is determined whether or not the monitor cell current convergence value Imx is within an allowable range RA determined according to the pump cell current change amount ΔIp. If the monitor cell current convergence value Imx is within the allowable range RA, the monitor cell current Im is a normal value. If it is outside the range RA, it is assumed that the monitor cell current Im is not a normal value. When the monitor cell current Im is a normal value, the process proceeds to the subsequent step S18, and when the monitor cell current Im is not a normal value, the process proceeds to step S17a. In step S17a, it is determined that the monitor cell 43 is abnormal, and then this process ends. That is, when the monitor cell current Im is not a normal value, the current deterioration determination of the sensor cell 42 is invalidated.
 ステップS18では、例えば下記の(1)式を用い、始点P1及び終点P2のセンサセル電流Is1,Is2の差である電流変化量ΔIs1(=Is2-Is1)と、始点P1から終点P2までの時間差Δt1とに基づいて、センサセル電流Isの過渡変化時の傾きA11を算出する。
A11=ΔIs1/Δt1   …(1)
なお、図4に示す初期特性での傾きA10も、上記(1)式を用いて算出される。
In step S18, for example, using the following equation (1), a current change amount ΔIs1 (= Is2−Is1) that is a difference between the sensor cell currents Is1 and Is2 at the start point P1 and the end point P2, and a time difference Δt1 from the start point P1 to the end point P2 Based on the above, the slope A11 at the time of the transient change of the sensor cell current Is is calculated.
A11 = ΔIs1 / Δt1 (1)
Note that the slope A10 in the initial characteristics shown in FIG. 4 is also calculated using the above equation (1).
 ステップS19では、傾きA11を正規化することで傾きB11を算出する。この場合、下記(2)式を用い、センサセル電流Isの過渡変化時の傾きA11と、ポンプセル印加電圧Vpの切り替えに伴うポンプセル電流Ipの変化量ΔIp1(=Ip0-Ip1)とに基づいて、正規化した傾きB11を算出する。
B11=A11/ΔIp1   …(2)
 その後、ステップS20では、モニタセル電流収束値Imxに基づいて、センサセル42の劣化判定の基準となる判定基準値として、センサセル電流Isの初期傾きB10を設定する。初期傾きB10は、センサセル42の初期特性を表すものであり、例えば図9の関係を用いて設定される。図9では、モニタセル電流収束値Imxが大きいほど、初期傾きB10として大きい値が設定される。
In step S19, the gradient B11 is calculated by normalizing the gradient A11. In this case, the following equation (2) is used to calculate the normality based on the slope A11 when the sensor cell current Is changes transiently and the amount of change ΔIp1 (= Ip0−Ip1) of the pump cell current Ip accompanying the switching of the pump cell applied voltage Vp. The normalized slope B11 is calculated.
B11 = A11 / ΔIp1 (2)
Thereafter, in step S20, based on the monitor cell current convergence value Imx, an initial slope B10 of the sensor cell current Is is set as a determination reference value serving as a reference for determining deterioration of the sensor cell 42. The initial slope B10 represents the initial characteristics of the sensor cell 42, and is set using, for example, the relationship shown in FIG. In FIG. 9, the larger the monitor cell current convergence value Imx, the larger the initial slope B10 is set.
 その後、ステップS21では、傾きB10,B11とセンサセル電流収束値Isxとに基づいて、センサセル42の劣化率C(%)を算出する。このとき、傾きB11と初期傾きB10との比(B11/B10)を反応速度比として算出するとともに、例えば図10の関係を用い、反応速度比B11/B10とセンサセル電流収束値Isxに基づいてセンサセル42の劣化率Cを算出する。反応速度比B11/B10は、センサセル42に供給された酸素に対する反応速度の比率として求められる。 Thereafter, in step S21, the deterioration rate C (%) of the sensor cell 42 is calculated based on the gradients B10 and B11 and the sensor cell current convergence value Isx. At this time, the ratio (B11 / B10) between the gradient B11 and the initial gradient B10 is calculated as the reaction rate ratio, and the sensor cell is used based on the reaction rate ratio B11 / B10 and the sensor cell current convergence value Isx using the relationship of FIG. 42 is calculated. The reaction rate ratio B11 / B10 is obtained as the ratio of the reaction rate with respect to the oxygen supplied to the sensor cell 42.
 図10には、反応速度比B11/B10が小さいほど、すなわちセンサセル42の劣化時特性と初期特性との差異が大きいほど、劣化率Cが大きくなる関係が定められている。また、図10には、センサセル電流収束値Isxが小さいほど、劣化率Cが小さくなる関係が定められている。センサセル電流収束値Isxが小さいほど、ポンプセル印加電圧Vpの切り替えに伴うガス室61内の残留酸素濃度の変化幅が小さくなり、センサセル電流Isの過渡応答が緩やかになると考えられる。ゆえに、センサセル電流収束値Isxが小さい場合において劣化度合いが過剰に大きいと誤判定されるのを抑制すべく、センサセル電流収束値Isxが小さいほど、劣化率Cが小さくなるような関係が定められている。劣化率Cが大きいことは、センサセル42の劣化度合いが大きいことを意味する。 FIG. 10 defines a relationship in which the deterioration rate C increases as the reaction rate ratio B11 / B10 decreases, that is, as the difference between the deterioration characteristics of the sensor cell 42 and the initial characteristics increases. Further, FIG. 10 defines a relationship in which the deterioration rate C decreases as the sensor cell current convergence value Isx decreases. It is considered that the smaller the sensor cell current convergence value Isx is, the smaller the change width of the residual oxygen concentration in the gas chamber 61 due to the switching of the pump cell applied voltage Vp is, and the more the transient response of the sensor cell current Is is. Therefore, in order to suppress erroneous determination that the degree of deterioration is excessively large when the sensor cell current convergence value Isx is small, a relationship is set such that the deterioration rate C decreases as the sensor cell current convergence value Isx decreases. Yes. A large deterioration rate C means that the degree of deterioration of the sensor cell 42 is large.
 その後、ステップS22では、センサセル42の劣化率CをエンジンECU35に対して送信する。 Thereafter, in step S22, the deterioration rate C of the sensor cell 42 is transmitted to the engine ECU 35.
 また、ステップS23では、第2電圧切替、すなわちガス室61内の残留酸素濃度を減らす側へのポンプセル印加電圧Vpの切り替えを実施するか否かを判定する。第2電圧切替を実施する場合、ステップS24に進み、ポンプセル印加電圧VpをVp1からVp2に切り替える。図4のタイムチャートでは時刻t2においてこの処理が行われる。本実施形態では、Vp2=Vp0である。ポンプセル印加電圧VpがVp2(Vp0)に切り替えられることにより、一連の劣化判定が終了される。 In step S23, it is determined whether or not the second voltage switching, that is, the switching of the pump cell applied voltage Vp to the side of reducing the residual oxygen concentration in the gas chamber 61 is performed. When the second voltage switching is performed, the process proceeds to step S24, and the pump cell applied voltage Vp is switched from Vp1 to Vp2. In the time chart of FIG. 4, this process is performed at time t2. In this embodiment, Vp2 = Vp0. By switching the pump cell applied voltage Vp to Vp2 (Vp0), a series of deterioration determinations is completed.
 センサセル42の劣化率Cが算出された後には、SCU31~33は、NOxセンサ21~23によるNOx濃度の検出時において、NOxセンサ21~23ごとに劣化率Cによりセンサセル電流Isを補正し、その補正後のセンサセル電流Isに基づいてNOx濃度を算出する。この場合、現状のセンサセル特性を初期特性に戻すようにしてセンサセル電流Isの補正が実施される。 After the deterioration rate C of the sensor cell 42 is calculated, the SCUs 31 to 33 correct the sensor cell current Is by the deterioration rate C for each of the NOx sensors 21 to 23 when the NOx concentration is detected by the NOx sensors 21 to 23. The NOx concentration is calculated based on the corrected sensor cell current Is. In this case, the sensor cell current Is is corrected so as to return the current sensor cell characteristics to the initial characteristics.
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。 According to the embodiment described above in detail, the following excellent effects can be obtained.
 NOxセンサ21~23において、センサセル42の出力応答性に基づいてセンサセル42の劣化判定を実施する場合には、ポンプセル印加電圧Vpの切り替え後におけるガス室61内の残留酸素濃度に応じて、センサセル電流Isの変化に基づき実施されるセンサセル42の劣化判定に悪影響が及ぶことが懸念される。この点、上記構成によれば、ポンプセル印加電圧Vpが切り替えられる場合に、センサセル電流Isとモニタセル電流Imとが取得され、そのセンサセル電流Isとモニタセル電流Imとに基づいて、センサセル42の劣化状態が判定される。この場合、ガス室61内の残留酸素濃度を、モニタセル電流Imにより適正に把握した上で、センサセル42の劣化判定を実施できる。その結果、センサセル42の劣化状態を適正に判定することができる。 In the NOx sensors 21 to 23, when the deterioration determination of the sensor cell 42 is performed based on the output responsiveness of the sensor cell 42, the sensor cell current is determined according to the residual oxygen concentration in the gas chamber 61 after the pump cell applied voltage Vp is switched. There is a concern that the deterioration determination of the sensor cell 42 performed based on the change of Is may be adversely affected. In this regard, according to the above configuration, when the pump cell applied voltage Vp is switched, the sensor cell current Is and the monitor cell current Im are acquired, and the deterioration state of the sensor cell 42 is determined based on the sensor cell current Is and the monitor cell current Im. Determined. In this case, it is possible to determine the deterioration of the sensor cell 42 after properly grasping the residual oxygen concentration in the gas chamber 61 from the monitor cell current Im. As a result, the deterioration state of the sensor cell 42 can be properly determined.
 ポンプセル印加電圧Vpの切り替え後においてモニタセル電流Imの変化が収束した時のセンサセル電流Isを、センサセル電流収束値Isxとして取得するとともに、モニタセル電流Imの変化が収束する前のセンサセル電流Isの変化の傾きを傾きパラメータとして取得し、それらセンサセル電流収束値Isxとセンサセル電流Isの傾きとに基づいて、センサセル42の劣化状態を判定するようにした。これにより、センサセル42の劣化進行に伴い、劣化時特性の定常値(センサセル電流収束値Isx)が初期特性の定常値より低減すること、劣化時特性の立ち上がり(センサセル電流Isの傾き)が初期特性のものより遅くなることの両方を加味しつつ、センサセル42の劣化判定を適正に実施することができる。 The sensor cell current Is when the change in the monitor cell current Im converges after the switching of the pump cell applied voltage Vp is acquired as the sensor cell current convergence value Isx, and the inclination of the change in the sensor cell current Is before the change in the monitor cell current Im converges Is obtained as an inclination parameter, and the deterioration state of the sensor cell 42 is determined based on the sensor cell current convergence value Isx and the inclination of the sensor cell current Is. As a result, as the deterioration of the sensor cell 42 progresses, the steady state value of the degradation characteristic (sensor cell current convergence value Isx) is reduced from the steady state value of the initial characteristic, and the rise of the degradation characteristic (inclination of the sensor cell current Is) is the initial characteristic. The deterioration determination of the sensor cell 42 can be appropriately performed while taking into account both of being slower than the above.
 モニタセル電流収束値Imxに基づいて、センサセル42の劣化判定の基準となる判定基準値(本実施形態では初期傾きB10)を設定する構成とした。これにより、センサセル42の劣化判定に用いる現特性の傾きB11と初期傾きB10とを同じ条件で比較して劣化率Cを算出することができ、劣化率Cの算出精度、すなわち劣化判定精度を高めることができる。 Based on the monitor cell current convergence value Imx, a determination reference value (initial inclination B10 in the present embodiment) that is a reference for deterioration determination of the sensor cell 42 is set. Thereby, the deterioration rate C can be calculated by comparing the slope B11 of the current characteristic used for the deterioration determination of the sensor cell 42 and the initial inclination B10 under the same conditions, and the calculation accuracy of the deterioration rate C, that is, the deterioration determination accuracy is improved. be able to.
 ポンプセル41への電圧印加によりガス室61内の残留酸素濃度が調整される場合、電圧切り替えの前後におけるポンプセル電流Ipに基づいて、モニタセル電流Imとして取り得る電流値の推測が可能である。この点に着目し、電圧切り替え前後におけるポンプセル電流Ipとモニタセル電流収束値Imxとの関係を定めた相関データを用い、その関係においてモニタセル電流収束値Imxが正常値になっているか否かを判定し、モニタセル電流収束値Imxが正常値になっていないと判定された場合に、センサセル42の劣化判定を無効とする構成とした。これにより、モニタセル43の異常に起因するセンサセル42の劣化判定精度の低下を抑制できる。 When the residual oxygen concentration in the gas chamber 61 is adjusted by applying a voltage to the pump cell 41, the current value that can be taken as the monitor cell current Im can be estimated based on the pump cell current Ip before and after the voltage switching. Paying attention to this point, the correlation data defining the relationship between the pump cell current Ip and the monitor cell current convergence value Imx before and after the voltage switching is used to determine whether or not the monitor cell current convergence value Imx is a normal value. When it is determined that the monitor cell current convergence value Imx is not a normal value, the deterioration determination of the sensor cell 42 is invalidated. Thereby, the fall of the degradation determination precision of the sensor cell 42 resulting from abnormality of the monitor cell 43 can be suppressed.
 上記実施形態では、センサセル電流収束値Isxとセンサセル電流Isの傾きとに基づいて、センサセル42の劣化状態を判定する構成としたが、これを変更し、センサセル電流収束値Isxとセンサセル電流Isの傾きとのうち、センサセル電流収束値Isxのみを用いて、又はセンサセル電流Isの傾きのみを用いて、センサセル42の劣化状態を判定する構成としてもよい。センサセル電流収束値Isxのみを用いる場合、センサセル初期特性でのセンサセル電流収束値Isxである初期収束値Isx0を、モニタセル電流収束値Imxに基づいて設定し、現特性でのセンサセル電流収束値Isxと初期収束値Isx0との比により劣化率Cを算出するとよい。本構成においても、ガス室61内の残留酸素濃度を加味しつつ、センサセル42の劣化判定を適正に実施できる。 In the above embodiment, the deterioration state of the sensor cell 42 is determined based on the sensor cell current convergence value Isx and the slope of the sensor cell current Is. However, this is changed, and the sensor cell current convergence value Isx and the slope of the sensor cell current Is are changed. Among them, the deterioration state of the sensor cell 42 may be determined using only the sensor cell current convergence value Isx or using only the slope of the sensor cell current Is. When only the sensor cell current convergence value Isx is used, an initial convergence value Isx0, which is the sensor cell current convergence value Isx in the sensor cell initial characteristics, is set based on the monitor cell current convergence value Imx, and the sensor cell current convergence value Isx in the current characteristics and the initial value The deterioration rate C may be calculated from the ratio with the convergence value Isx0. Also in this configuration, it is possible to appropriately determine the deterioration of the sensor cell 42 while taking into account the residual oxygen concentration in the gas chamber 61.
 以下に、他の実施形態を、第1実施形態との相違点を中心に説明する。 Hereinafter, other embodiments will be described focusing on differences from the first embodiment.
 (第2実施形態)
 第2実施形態では、劣化判定部M13は、図6で説明したとおり、電圧切り替え前後の少なくともいずれかのポンプセル電流Ip(ΔIpやIp0、Ip1)とモニタセル電流Imとの関係を定めた相関データを用い、その関係においてモニタセル電流Imが正常値になっているか否かを判定するモニタセル出力判定部を備えている。そして、劣化判定部M13は、モニタセル電流Imが正常値になっていると判定された場合に、モニタセル電流収束値Imxに基づいてセンサセル劣化の判定基準値(初期傾きB10)を設定するとともに、その判定基準値を用いてセンサセル42の劣化状態を判定する。また、劣化判定部M13は、モニタセル電流Imが正常値になっていないと判定された場合に、電圧切り替え前後の少なくともいずれかのポンプセル電流Ipに基づいて判定基準値(初期傾きB10)を設定するとともに、その判定基準値を用いてセンサセル42の劣化状態を判定する。つまり、モニタセル電流Imが正常値でない場合には、モニタセル電流Imに代えて、ポンプセル電流Ipを用いて劣化判定を実施する。
(Second Embodiment)
In the second embodiment, as described with reference to FIG. 6, the deterioration determination unit M13 generates correlation data that defines the relationship between the monitor cell current Im and at least one of the pump cell currents Ip (ΔIp, Ip0, Ip1) before and after voltage switching. A monitor cell output determination unit is used for determining whether or not the monitor cell current Im has a normal value in this relationship. Then, when it is determined that the monitor cell current Im is a normal value, the deterioration determination unit M13 sets a determination reference value (initial slope B10) for sensor cell deterioration based on the monitor cell current convergence value Imx, and The deterioration state of the sensor cell 42 is determined using the determination reference value. Further, when it is determined that the monitor cell current Im is not a normal value, the deterioration determination unit M13 sets a determination reference value (initial slope B10) based on at least one of the pump cell currents Ip before and after voltage switching. At the same time, the deterioration state of the sensor cell 42 is determined using the determination reference value. That is, when the monitor cell current Im is not a normal value, the deterioration determination is performed using the pump cell current Ip instead of the monitor cell current Im.
 本実施形態では、SCU31~33は、上述の図7の劣化判定処理に代えて、図11の劣化判定処理を実施する。図11は、図7の一部を変更したものであり、図7と同じ処理については同じステップ番号を付している。 In the present embodiment, the SCUs 31 to 33 perform the deterioration determination process of FIG. 11 instead of the deterioration determination process of FIG. FIG. 11 is obtained by changing a part of FIG. 7, and the same step numbers are assigned to the same processes as those in FIG.
 図11では、ステップS16で、センサセル電流収束値Isxとモニタセル電流収束値Imxとを取得する。また、続くステップS18では、センサセル電流Isの過渡変化時の傾きA11を算出し、ステップS19では、傾きA11を正規化することで傾きB11を算出する。その後、ステップS31では、ポンプセル電流Ipの変化量ΔIpとモニタセル電流収束値Imxとの関係を定めた相関データ(図8)を用い、モニタセル電流Imが正常値になっているか否かを判定する。この処理は、既述した図7のステップS17と同じであるため、詳細は割愛する。 In FIG. 11, the sensor cell current convergence value Isx and the monitor cell current convergence value Imx are acquired in step S16. In the subsequent step S18, the gradient A11 at the time of the transient change of the sensor cell current Is is calculated, and in step S19, the gradient B11 is calculated by normalizing the gradient A11. Thereafter, in step S31, it is determined whether or not the monitor cell current Im is a normal value using correlation data (FIG. 8) that defines the relationship between the change amount ΔIp of the pump cell current Ip and the monitor cell current convergence value Imx. Since this process is the same as step S17 of FIG. 7 described above, details are omitted.
 そして、モニタセル電流Imが正常値であれば、ステップS32に進む。ステップS32では、モニタセル電流収束値Imxに基づいて、センサセル電流Isの初期傾きB10を設定する。この処理は、既述した図7のステップS20と同じであるため、詳細は割愛する。 If the monitor cell current Im is a normal value, the process proceeds to step S32. In step S32, the initial gradient B10 of the sensor cell current Is is set based on the monitor cell current convergence value Imx. Since this process is the same as step S20 of FIG. 7 described above, details are omitted.
 また、モニタセル電流Imが異常値であれば、ステップS33に進む。ステップS33では、モニタセル43が異常である旨を判定する。その後、ステップS34では、電圧切り替え前後の少なくともいずれかのポンプセル電流Ipに基づいて、センサセル電流Isの初期傾きB10を設定する。初期傾きB10は、例えば図12の関係を用いて設定される。図12では、ポンプセル電流Ipの変化量ΔIpが大きいほど、初期傾きB10として大きい値が設定される。その他、ポンプセル電流Ip0又はIp1に基づいて初期傾きB10が設定されてもよく、いずれにしろガス室61内の残留酸素濃度に応じた設定が行われればよい。 If the monitor cell current Im is an abnormal value, the process proceeds to step S33. In step S33, it is determined that the monitor cell 43 is abnormal. Thereafter, in step S34, an initial slope B10 of the sensor cell current Is is set based on at least one of the pump cell currents Ip before and after the voltage switching. The initial inclination B10 is set using, for example, the relationship shown in FIG. In FIG. 12, the larger the change amount ΔIp of the pump cell current Ip, the larger the initial slope B10 is set. In addition, the initial slope B10 may be set based on the pump cell current Ip0 or Ip1, and any setting may be made according to the residual oxygen concentration in the gas chamber 61.
 その後、ステップS21では、傾きB10,B11とセンサセル電流収束値Isxとに基づいて、センサセル42の劣化率Cを算出し、続くステップS22では、劣化率Cを送信する。 Thereafter, in step S21, the deterioration rate C of the sensor cell 42 is calculated based on the gradients B10 and B11 and the sensor cell current convergence value Isx, and in the subsequent step S22, the deterioration rate C is transmitted.
 上述した本実施形態では、電圧切り替え前後におけるポンプセル電流Ipとモニタセル電流Imとの関係を参照して、モニタセル電流Imが正常値であるか否かを判定した。そして、モニタセル電流Imが正常であれば、モニタセル電流収束値Imxに基づいて、センサセル電流Isの初期傾きB10を設定し、モニタセル電流Imが正常でなければ、ポンプセル電流Ipに基づいて、センサセル電流Isの初期傾きB10を設定する構成とした。これにより、モニタセル43の異常に起因するセンサセル42の劣化判定精度の低下を抑制できる。 In the present embodiment described above, it is determined whether or not the monitor cell current Im is a normal value with reference to the relationship between the pump cell current Ip and the monitor cell current Im before and after voltage switching. If the monitor cell current Im is normal, the initial slope B10 of the sensor cell current Is is set based on the monitor cell current convergence value Imx. If the monitor cell current Im is not normal, the sensor cell current Is is determined based on the pump cell current Ip. The initial inclination B10 is set. Thereby, the fall of the degradation determination precision of the sensor cell 42 resulting from abnormality of the monitor cell 43 can be suppressed.
 (第3実施形態)
 第3実施形態では、劣化判定部M13は、モニタセル出力判定部を備える代わりに、ポンプセル印加電圧Vpの切り替え時におけるモニタセル電流Imとセンサセル電流Isとの関係を定めた相関データを用い、実際の電圧切り替え時におけるモニタセル電流Imとセンサセル電流Isとの関係が相関データに一致するか否かを判定する相関判定部を備える。そして、劣化判定部M13は、相関判定部により実際の関係が相関データに一致しないと判定された場合に、センサセル42の劣化判定を無効とする。
(Third embodiment)
In the third embodiment, instead of including the monitor cell output determination unit, the deterioration determination unit M13 uses correlation data that defines the relationship between the monitor cell current Im and the sensor cell current Is when the pump cell applied voltage Vp is switched, and uses the actual voltage. A correlation determination unit is provided for determining whether the relationship between the monitor cell current Im and the sensor cell current Is at the time of switching matches the correlation data. Then, the deterioration determination unit M13 invalidates the deterioration determination of the sensor cell 42 when the correlation determination unit determines that the actual relationship does not match the correlation data.
 本実施形態では、SCU31~33は、上述の図7の劣化判定処理に代えて、図13の劣化判定処理を実施する。図13は、図7の一部を変更したものであり、図7と同じ処理については同じステップ番号を付している。 In this embodiment, the SCUs 31 to 33 perform the deterioration determination process of FIG. 13 instead of the deterioration determination process of FIG. FIG. 13 is a modification of part of FIG. 7, and the same steps as those in FIG. 7 are given the same step numbers.
 図13では、ステップS16でセンサセル電流収束値Isxを取得した後において、ステップS41に進む。ステップS41では、モニタセル電流Imとセンサセル電流Isとの関係を定めた相関データを用い、実際のモニタセル電流Imとセンサセル電流Isとの関係が相関データに一致するか否かを判定する。その相関データは例えば図14のように予め定められており、ステップS41では、モニタセル電流収束値Imxとセンサセル電流収束値Isxとの関係が、図14の関係に則したものであるか否かを判定する。 In FIG. 13, after obtaining the sensor cell current convergence value Isx in step S16, the process proceeds to step S41. In step S41, correlation data that defines the relationship between the monitor cell current Im and the sensor cell current Is is used to determine whether or not the actual relationship between the monitor cell current Im and the sensor cell current Is matches the correlation data. The correlation data is predetermined as shown in FIG. 14, for example. In step S41, it is determined whether or not the relationship between the monitor cell current convergence value Imx and the sensor cell current convergence value Isx conforms to the relationship shown in FIG. judge.
 より具体的には、図14では、モニタセル電流Imに応じて、センサセル電流Isの基準値がIssdとして定められるとともに、その基準値Issdに応じて所定の許容範囲RBが定められている。そして、モニタセル電流収束値Imxに対するセンサセル電流収束値Isxが許容範囲RB内にあるか否かを判定し、許容範囲RB内であれば相関関係が正常であるとし、許容範囲RB外であれば相関関係が正常でないとする。相関関係が正常である場合、後続のステップS18に進み、相関関係が正常でない場合、ステップS42に進む。ステップS42では、モニタセル43が異常である旨を判定し、その後本処理を終了する。つまり、相関関係が正常でない場合には、今回のセンサセル42の劣化判定が無効とされる。ステップS18以降の処理は既述のとおりである。 More specifically, in FIG. 14, the reference value of the sensor cell current Is is determined as Issd according to the monitor cell current Im, and a predetermined allowable range RB is determined according to the reference value Issd. Then, it is determined whether or not the sensor cell current convergence value Isx with respect to the monitor cell current convergence value Imx is within the allowable range RB. If the sensor cell current convergence value Isx is within the allowable range RB, the correlation is normal. Suppose the relationship is not normal. If the correlation is normal, the process proceeds to the subsequent step S18. If the correlation is not normal, the process proceeds to step S42. In step S42, it is determined that the monitor cell 43 is abnormal, and then this process ends. That is, when the correlation is not normal, the current deterioration determination of the sensor cell 42 is invalidated. The processing after step S18 is as described above.
 NOxセンサ21~23においてセンサセル42及びモニタセル43が正常である場合には、電圧切り替え時においてモニタセル電流Imとセンサセル電流Isとには所定の相関がある。これを利用し、本実施形態では、電圧切り替え時におけるモニタセル電流Imとセンサセル電流Isとの相関データを参照し、モニタセル電流Imとセンサセル電流Isとの関係が相関データに一致しない場合に、センサセル42の劣化判定を無効とする構成とした。これにより、モニタセル43の異常に起因するセンサセル42の劣化判定精度の低下を抑制できる。 When the sensor cell 42 and the monitor cell 43 are normal in the NOx sensors 21 to 23, there is a predetermined correlation between the monitor cell current Im and the sensor cell current Is at the time of voltage switching. By utilizing this, in the present embodiment, the correlation data between the monitor cell current Im and the sensor cell current Is at the time of voltage switching is referred to, and when the relationship between the monitor cell current Im and the sensor cell current Is does not match the correlation data, the sensor cell 42 It was set as the structure which invalidates the deterioration determination. Thereby, the fall of the degradation determination precision of the sensor cell 42 resulting from abnormality of the monitor cell 43 can be suppressed.
 (第4実施形態)
 第4実施形態では、劣化判定部M13は、モニタセル出力判定部や相関判定部を備える代わりに、ポンプセル印加電圧Vpの切り替え前においてセンサセル電流Isとモニタセル電流Imとの差である第1出力差ΔIX1を算出するとともに、切り替え後においてセンサセル電流Isとモニタセル電流Imとの差である第2出力差ΔIX2を算出する出力差算出部を備える。そして、劣化判定部M13は、出力差算出部により算出された第1出力差ΔIX1と第2出力差ΔIX2との比較に基づいて、センサセル42の劣化状態を判定する。
(Fourth embodiment)
In the fourth embodiment, instead of including a monitor cell output determination unit and a correlation determination unit, the deterioration determination unit M13 includes a first output difference ΔIX1 that is a difference between the sensor cell current Is and the monitor cell current Im before the pump cell application voltage Vp is switched. And an output difference calculation unit that calculates a second output difference ΔIX2 that is a difference between the sensor cell current Is and the monitor cell current Im after switching. Then, the deterioration determination unit M13 determines the deterioration state of the sensor cell 42 based on the comparison between the first output difference ΔIX1 and the second output difference ΔIX2 calculated by the output difference calculation unit.
 本実施形態では、SCU31~33は、上述の図7の劣化判定処理に代えて、図15の劣化判定処理を実施する。図15は、図7の一部を変更したものであり、図7と同じ処理については同じステップ番号を付している。 In this embodiment, the SCUs 31 to 33 perform the deterioration determination process of FIG. 15 instead of the deterioration determination process of FIG. FIG. 15 is obtained by changing a part of FIG. 7, and the same steps as those in FIG. 7 are denoted by the same step numbers.
 図15では、ステップS16でセンサセル電流収束値Isxを取得した後において、ステップS51に進む。ステップS51では、ポンプセル印加電圧VpがVp0である状態でのセンサセル電流Isとモニタセル電流Imとの差を第1出力差ΔIX1として算出するとともに、ポンプセル印加電圧VpをVp1に切り替えた状態でのセンサセル電流Isとモニタセル電流Imとの差を第2出力差ΔIX2として算出する。なお、第1出力差ΔIX1は、Vp0印加状態で検出した電流値(Is,Im)により算出され、第2出力差ΔIX2は、Vp1印加状態で検出した電流収束値(Isx,Imx)により算出される。 In FIG. 15, after obtaining the sensor cell current convergence value Isx in step S16, the process proceeds to step S51. In step S51, the difference between the sensor cell current Is and the monitor cell current Im when the pump cell applied voltage Vp is Vp0 is calculated as the first output difference ΔIX1, and the sensor cell current when the pump cell applied voltage Vp is switched to Vp1. A difference between Is and the monitor cell current Im is calculated as a second output difference ΔIX2. The first output difference ΔIX1 is calculated from the current values (Is, Im) detected in the state where Vp0 is applied, and the second output difference ΔIX2 is calculated from the current convergence values (Isx, Imx) detected in the state where Vp1 is applied. The
 その後、ステップS52では、第1出力差ΔIX1と第2出力差ΔIX2とが一致するか否かを判定する。具体的には、第1出力差ΔIX1と第2出力差ΔIX2との差が所定未満であるか否かを判定する。そして、ΔIX1,ΔIX2が一致する場合、後続のステップS18に進み、ΔIX1,ΔIX2が一致しない場合、ステップS53に進む。ステップS53では、モニタセル43が異常である旨を判定し、その後本処理を終了する。つまり、ΔIX1,ΔIX2が一致しない場合には、今回のセンサセル42の劣化判定が無効とされる。ステップS18以降の処理は既述のとおりである。 Thereafter, in step S52, it is determined whether or not the first output difference ΔIX1 and the second output difference ΔIX2 match. Specifically, it is determined whether or not the difference between the first output difference ΔIX1 and the second output difference ΔIX2 is less than a predetermined value. If ΔIX1 and ΔIX2 match, the process proceeds to the subsequent step S18. If ΔIX1 and ΔIX2 do not match, the process proceeds to step S53. In step S53, it is determined that the monitor cell 43 is abnormal, and then this process ends. That is, when ΔIX1 and ΔIX2 do not match, the current deterioration determination of the sensor cell 42 is invalidated. The processing after step S18 is as described above.
 NOxセンサ21~23においてポンプセル印加電圧Vpが切り替えられる場合、センサセル42及びモニタセル43では、それぞれガス室61内の残留酸素濃度の変化に伴いセンサセル電流Is、モニタセル電流Imがそれぞれ変化する。この場合、センサセル42及びモニタセル43が正常であれば、電圧切り替え前における第1出力差ΔIX1と、電圧切り替え後における第2出力差ΔIX2とは概ね一致する。これを利用し、本実施形態では、第1出力差ΔIX1と第2出力差ΔIX2とが一致するか否かを判定し、一致しないと判定された場合に、センサセル42の劣化判定を無効とする構成とした。これにより、モニタセル43の異常に起因するセンサセル42の劣化判定精度の低下を抑制できる。 When the pump cell applied voltage Vp is switched in the NOx sensors 21 to 23, in the sensor cell 42 and the monitor cell 43, the sensor cell current Is and the monitor cell current Im change with the change in the residual oxygen concentration in the gas chamber 61, respectively. In this case, if the sensor cell 42 and the monitor cell 43 are normal, the first output difference ΔIX1 before the voltage switching and the second output difference ΔIX2 after the voltage switching substantially coincide with each other. Using this, in the present embodiment, it is determined whether or not the first output difference ΔIX1 and the second output difference ΔIX2 match, and if it is determined that they do not match, the deterioration determination of the sensor cell 42 is invalidated. The configuration. Thereby, the fall of the degradation determination precision of the sensor cell 42 resulting from abnormality of the monitor cell 43 can be suppressed.
 (他の実施形態)
 上記実施形態を例えば次のように変更してもよい。
(Other embodiments)
You may change the said embodiment as follows, for example.
 ・センサセル42の劣化判定に際し、ポンプセル印加電圧Vpをガス室61内の酸素濃度を増やす側に切り替える場合(第1電圧切替を実施する場合)に、ポンプセル印加電圧Vpをゼロ、すなわち電圧印加をしない状態に切り替える構成としてもよい。又は、ポンプセル印加電圧Vpを負電圧に切り替える構成としてもよい。いずれにしても、印加電圧の切り替えに伴い、ガス室61内の酸素濃度が増やされ、その際のセンサセル42の過渡応答により劣化判定を実施できる。 When the deterioration of the sensor cell 42 is determined, when the pump cell applied voltage Vp is switched to the side where the oxygen concentration in the gas chamber 61 is increased (when the first voltage switching is performed), the pump cell applied voltage Vp is zero, that is, no voltage is applied. It is good also as a structure switched to a state. Alternatively, the pump cell application voltage Vp may be switched to a negative voltage. In any case, as the applied voltage is switched, the oxygen concentration in the gas chamber 61 is increased, and deterioration determination can be performed by the transient response of the sensor cell 42 at that time.
 ・上記実施形態では、センサセル電流Isの「傾きパラメータ」として、センサセル電流Isの過渡期間において単位時間Δtに対する電流変化量ΔIsにより、過渡変化の傾きを算出する構成としたが、これに代えて、所定時間内における電流変化量ΔIsを傾きパラメータとして用いてもよい。又は、所定の電流変化量が生じるのに要する時間幅を傾きパラメータとして用いてもよい。要は、傾きパラメータとして、センサセル電流Isの傾き、又はそれに相関する値が算出されるとよい。 In the above embodiment, as the “slope parameter” of the sensor cell current Is, the slope of the transient change is calculated based on the current change amount ΔIs with respect to the unit time Δt during the transient period of the sensor cell current Is. The current change amount ΔIs within a predetermined time may be used as the slope parameter. Alternatively, a time width required for generating a predetermined current change amount may be used as the inclination parameter. In short, the inclination of the sensor cell current Is or a value correlated therewith may be calculated as the inclination parameter.
 ・上記実施形態では、センサセル電流Isの傾きA11を正規化して傾きB11を算出し、その傾きB11を用いて劣化率Cを算出する構成としたが、これを変更してもよい。例えば、傾きA11を用いて劣化率Cを算出する構成であってもよい。 In the above embodiment, the gradient A11 of the sensor cell current Is is normalized to calculate the gradient B11, and the deterioration rate C is calculated using the gradient B11. However, this may be changed. For example, the deterioration rate C may be calculated using the slope A11.
 ・上記実施形態では、センサセル42の劣化状態の判定として、センサセル42の現在特性と初期特性との比である劣化率C(%)を算出する構成としたが、これに限定されない。例えば、センサセル42の劣化判定パラメータとしてのセンサセル電流Isの傾きや、それに相関する値、センサセル電流Isの収束後の電流変化量ΔIsについて、初期値からの差を算出し、その差に基づいてセンサセル42の劣化度合いを把握する構成でもよい。また、初期値との比較でなく、予め定めた標準値との比較であってもよい。「100-劣化率C」となる指標により劣化度合いを判定する構成であってもよい。この場合、当該指標では、初期特性が100%で表され、劣化が進むほど小さい値で表される。いずれにしろ、センサセル42の特性変化に基づく劣化状態、すなわち劣化度合いが判定できるものであればよい。 In the above embodiment, the deterioration rate C (%), which is the ratio between the current characteristic and the initial characteristic of the sensor cell 42, is calculated as the determination of the deterioration state of the sensor cell 42. However, the present invention is not limited to this. For example, a difference from the initial value is calculated for the slope of the sensor cell current Is as a deterioration determination parameter of the sensor cell 42, a value correlated therewith, and the current change amount ΔIs after convergence of the sensor cell current Is, and the sensor cell is calculated based on the difference. The structure which grasps | ascertains the degradation degree of 42 may be sufficient. Further, it may be a comparison with a predetermined standard value instead of the comparison with the initial value. The degree of deterioration may be determined based on an index “100−deterioration rate C”. In this case, in this index, the initial characteristic is represented by 100%, and is represented by a smaller value as the deterioration progresses. In any case, any deterioration state based on a change in characteristics of the sensor cell 42, that is, a degree of deterioration may be used.
 ・上記実施形態では、センサ素子40が単一の固体電解質体53と単一のガス室61とを有する構成としたが、これを変更してもよい。例えば、センサ素子40が、複数の固体電解質体53と複数のガス室61とを有し、ポンプセル41及びセンサセル42が、それぞれ別の固体電解質体53であって、かつ別のガス室61に面するように設けられる構成であってもよい。このような構成の一例を図16に示す。 In the above embodiment, the sensor element 40 has the single solid electrolyte body 53 and the single gas chamber 61, but this may be changed. For example, the sensor element 40 has a plurality of solid electrolyte bodies 53 and a plurality of gas chambers 61, and the pump cell 41 and the sensor cell 42 are different solid electrolyte bodies 53 and face the other gas chambers 61. The structure provided so that it may be sufficient. An example of such a configuration is shown in FIG.
 図16に示すセンサ素子40は、対向配置される2枚の固体電解質体53a,53bと、それら固体電解質体53a,53bの間に設けられるガス室61a,61bとを有している。ガス室61aは排気導入口53cに通じ、ガス室61bは絞り部71を介してガス室61aに連通されている。ポンプセル41は、一対の電極72,73を有し、そのうち一方の電極72がガス室61a内に露出するよう設けられている。センサセル42は、対向配置される電極74と共通電極76とを有し、モニタセル43は、対向配置される電極75と共通電極76とを有している。センサセル42とモニタセル43とは隣接して設けられている。それらの各セルにおいて一方の電極74,75はガス室61b内に露出するよう設けられている。このように、ポンプセル41及びセンサセル42がそれぞれ別のガス室61a,61bに設けられる構成においても、上記実施形態の劣化判定などの各機能を好適に実施することができる。 The sensor element 40 shown in FIG. 16 has two solid electrolyte bodies 53a and 53b arranged opposite to each other, and gas chambers 61a and 61b provided between the solid electrolyte bodies 53a and 53b. The gas chamber 61a communicates with the exhaust introduction port 53c, and the gas chamber 61b communicates with the gas chamber 61a via the throttle portion 71. The pump cell 41 has a pair of electrodes 72 and 73, and one of the electrodes 72 is provided so as to be exposed in the gas chamber 61a. The sensor cell 42 has an electrode 74 and a common electrode 76 that are arranged to face each other, and the monitor cell 43 has an electrode 75 and a common electrode 76 that are arranged to face each other. The sensor cell 42 and the monitor cell 43 are provided adjacent to each other. In each of these cells, one electrode 74, 75 is provided so as to be exposed in the gas chamber 61b. Thus, even in the configuration in which the pump cell 41 and the sensor cell 42 are provided in separate gas chambers 61a and 61b, each function such as the deterioration determination of the above-described embodiment can be suitably performed.
 ・検出対象の特定ガス成分がNOx以外であってもよい。例えば、排気中のHCやCOを検出対象とするガスセンサであってもよい。この場合、ポンプセルにて排気中の酸素を排出し、センサセルにて酸素排出後のガスからHCやCOを分解してHC濃度やCO濃度を検出するものであるとよい。その他、被検出ガス中のアンモニアの濃度を検出するものであってもよい。 · The specific gas component to be detected may be other than NOx. For example, it may be a gas sensor that detects HC or CO in the exhaust. In this case, it is preferable that oxygen in exhaust gas is discharged by the pump cell, and HC and CO are decomposed from the gas after oxygen discharge by the sensor cell to detect the HC concentration and CO concentration. In addition, the concentration of ammonia in the gas to be detected may be detected.
 ・内燃機関の吸気通路に設けられるガスセンサや、ディーゼルエンジン以外にガソリンエンジンなど、他の形式のエンジンに用いられるガスセンサを対象とするガスセンサ制御装置としても具体化できる。そのガスセンサは、排気以外のガスを被検出ガスとしてもよく、また、自動車以外の用途で用いられるものであってもよい。 ∙ It can also be embodied as a gas sensor control device for a gas sensor provided in an intake passage of an internal combustion engine or a gas sensor used for other types of engines such as a gasoline engine in addition to a diesel engine. The gas sensor may use a gas other than exhaust as a gas to be detected, or may be used for applications other than automobiles.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (8)

  1.  ガス室(61)内に導入された被検出ガス中の酸素濃度を電圧印加により調整するポンプセル(41)と、前記ポンプセルによる酸素濃度の調整後に前記ガス室内の特定ガス成分の濃度を検出するセンサセル(42)と、前記ガス室内の残留酸素濃度を検出するモニタセル(43)とを有するガスセンサ(21~23)に適用され、前記ガスセンサに関する制御を実施する制御装置(31~33,35)であって、
     前記ポンプセルの印加電圧(Vp)を切り替える電圧切替部と、
     前記電圧切替部により前記印加電圧が切り替えられる場合に、前記センサセルの出力(Is)と前記モニタセルの出力(Im)とを取得する取得部と、
     前記取得部により取得された前記センサセルの出力と前記モニタセルの出力とに基づいて、前記センサセルの劣化状態を判定する劣化判定部と、
    を備えるガスセンサ制御装置。
    A pump cell (41) for adjusting the oxygen concentration in the gas to be detected introduced into the gas chamber (61) by applying a voltage, and a sensor cell for detecting the concentration of a specific gas component in the gas chamber after the oxygen concentration is adjusted by the pump cell. (42) and a control device (31-33, 35) which is applied to a gas sensor (21-23) having a monitor cell (43) for detecting the residual oxygen concentration in the gas chamber and performs control relating to the gas sensor. And
    A voltage switching unit that switches an applied voltage (Vp) of the pump cell;
    An acquisition unit for acquiring the output (Is) of the sensor cell and the output (Im) of the monitor cell when the applied voltage is switched by the voltage switching unit;
    A deterioration determination unit that determines a deterioration state of the sensor cell based on the output of the sensor cell and the output of the monitor cell acquired by the acquisition unit;
    A gas sensor control device comprising:
  2.  前記取得部は、前記電圧切替部による前記印加電圧の切り替え後において前記モニタセルの出力変化が収束したことを条件に、前記センサセルの出力をセンサセル出力収束値として取得し、
     前記劣化判定部は、前記取得部により取得された前記センサセル出力収束値に基づいて、前記センサセルの劣化状態を判定する請求項1に記載のガスセンサ制御装置。
    The acquisition unit acquires the output of the sensor cell as a sensor cell output convergence value on condition that the output change of the monitor cell has converged after the switching of the applied voltage by the voltage switching unit,
    The gas sensor control device according to claim 1, wherein the deterioration determination unit determines a deterioration state of the sensor cell based on the sensor cell output convergence value acquired by the acquisition unit.
  3.  前記取得部は、前記電圧切替部による前記印加電圧の切り替え後において前記センサセル出力収束値を取得するとともに、前記モニタセルの出力変化が収束する前の前記センサセルの出力変化の傾きを傾きパラメータとして取得し、
     前記劣化判定部は、前記取得部により取得された前記センサセル出力収束値と前記傾きパラメータとに基づいて、前記センサセルの劣化状態を判定する請求項2に記載のガスセンサ制御装置。
    The acquisition unit acquires the sensor cell output convergence value after the applied voltage is switched by the voltage switching unit, and acquires the slope of the output change of the sensor cell before the output change of the monitor cell converges as an inclination parameter. ,
    The gas sensor control device according to claim 2, wherein the deterioration determination unit determines a deterioration state of the sensor cell based on the sensor cell output convergence value acquired by the acquisition unit and the inclination parameter.
  4.  前記取得部は、前記電圧切替部による前記印加電圧の切り替え後において前記モニタセルの出力変化が収束した後にモニタセル出力収束値を取得し、
     前記劣化判定部は、前記モニタセル出力収束値に基づいて、前記センサセルの劣化判定の基準となる判定基準値を設定し、その判定基準値を用いて前記センサセルの劣化状態を判定する請求項1乃至3のいずれか1項に記載のガスセンサ制御装置。
    The acquisition unit acquires a monitor cell output convergence value after the output change of the monitor cell converges after the switching of the applied voltage by the voltage switching unit,
    The deterioration determination unit sets a determination reference value serving as a reference for deterioration determination of the sensor cell based on the monitor cell output convergence value, and determines the deterioration state of the sensor cell using the determination reference value. 4. The gas sensor control device according to any one of 3 above.
  5.  前記劣化判定部は、
     前記電圧切替部による電圧切り替え前後の少なくともいずれかの前記ポンプセルの出力と前記モニタセルの出力との関係を定めた相関データを用い、前記モニタセルの出力が正常値になっているか否かを判定するモニタセル出力判定部を備え、
     前記モニタセル出力判定部により前記モニタセルの出力が正常値になっていないと判定された場合に、前記センサセルの劣化判定を無効とする請求項1乃至4のいずれか1項に記載のガスセンサ制御装置。
    The deterioration determination unit
    A monitor cell that determines whether or not the output of the monitor cell is a normal value using correlation data that defines the relationship between the output of the pump cell and the output of the monitor cell before and after voltage switching by the voltage switching unit It has an output judgment unit,
    The gas sensor control device according to any one of claims 1 to 4, wherein when the monitor cell output determination unit determines that the output of the monitor cell is not a normal value, the deterioration determination of the sensor cell is invalidated.
  6.  前記取得部は、前記電圧切替部による前記印加電圧の切り替え後において前記モニタセルの出力変化が収束した後にモニタセル出力収束値を取得し、
     前記劣化判定部は、
     前記電圧切替部による電圧切り替え前後の少なくともいずれかの前記ポンプセルの出力と前記モニタセルの出力との関係を定めた相関データを用い、前記モニタセルの出力が正常値になっているか否かを判定するモニタセル出力判定部を備え、
     前記モニタセル出力判定部により前記モニタセルの出力が正常値になっていると判定された場合に、前記モニタセル出力収束値に基づいて、前記センサセルの劣化判定の基準となる判定基準値を設定するとともに、その判定基準値を用いて前記センサセルの劣化状態を判定する一方、
     前記モニタセル出力判定部により前記モニタセルの出力が正常値になっていないと判定された場合に、前記電圧切り替え前後の少なくともいずれかの前記ポンプセルの出力に基づいて、前記判定基準値を設定するとともに、その判定基準値を用いて前記センサセルの劣化状態を判定する請求項1乃至3のいずれか1項に記載のガスセンサ制御装置。
    The acquisition unit acquires a monitor cell output convergence value after the output change of the monitor cell converges after the switching of the applied voltage by the voltage switching unit,
    The deterioration determination unit
    A monitor cell that determines whether or not the output of the monitor cell is a normal value using correlation data that defines the relationship between the output of the pump cell and the output of the monitor cell before and after voltage switching by the voltage switching unit It has an output judgment unit,
    When the monitor cell output determination unit determines that the output of the monitor cell is a normal value, based on the monitor cell output convergence value, sets a determination reference value serving as a reference for deterioration determination of the sensor cell, While determining the deterioration state of the sensor cell using the determination reference value,
    When the monitor cell output determining unit determines that the output of the monitor cell is not a normal value, based on the output of at least one of the pump cells before and after the voltage switching, and setting the determination reference value, The gas sensor control device according to any one of claims 1 to 3, wherein a deterioration state of the sensor cell is determined using the determination reference value.
  7.  前記劣化判定部は、
     前記電圧切替部による電圧切り替え時における前記モニタセルの出力と前記センサセルの出力との関係を定めた相関データを用い、実際の電圧切り替え時における前記モニタセルの出力と前記センサセルの出力との関係が前記相関データに一致するか否かを判定する相関判定部を備え、
     前記相関判定部により前記実際の関係が前記相関データに一致しないと判定された場合に、前記センサセルの劣化判定を無効とする請求項1乃至4のいずれか1項に記載のガスセンサ制御装置。
    The deterioration determination unit
    Using correlation data that defines the relationship between the output of the monitor cell and the output of the sensor cell at the time of voltage switching by the voltage switching unit, the relationship between the output of the monitor cell and the output of the sensor cell at the time of actual voltage switching is the correlation A correlation determination unit that determines whether or not the data matches,
    The gas sensor control device according to claim 1, wherein when the correlation determination unit determines that the actual relationship does not match the correlation data, the deterioration determination of the sensor cell is invalidated.
  8.  前記劣化判定部は、
     前記電圧切替部による電圧切り替え前において前記センサセルの出力と前記モニタセルの出力との差である第1出力差を算出するとともに、電圧切り替え後において前記センサセルの出力と前記モニタセルの出力との差である第2出力差を算出する出力差算出部を備え、
     前記出力差算出部により算出された前記第1出力差と前記第2出力差との比較に基づいて、前記センサセルの劣化状態を判定する請求項1乃至4のいずれか1項に記載のガスセンサ制御装置。
    The deterioration determination unit
    A first output difference that is a difference between the output of the sensor cell and the output of the monitor cell before voltage switching by the voltage switching unit, and a difference between the output of the sensor cell and the output of the monitor cell after voltage switching. An output difference calculation unit for calculating a second output difference;
    The gas sensor control according to any one of claims 1 to 4, wherein a deterioration state of the sensor cell is determined based on a comparison between the first output difference and the second output difference calculated by the output difference calculation unit. apparatus.
PCT/JP2018/020205 2017-05-26 2018-05-25 Gas sensor control device WO2018216808A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018002725.2T DE112018002725T5 (en) 2017-05-26 2018-05-25 GAS SENSOR CONTROL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-104901 2017-05-26
JP2017104901A JP6708168B2 (en) 2017-05-26 2017-05-26 Gas sensor controller

Publications (1)

Publication Number Publication Date
WO2018216808A1 true WO2018216808A1 (en) 2018-11-29

Family

ID=64396641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020205 WO2018216808A1 (en) 2017-05-26 2018-05-25 Gas sensor control device

Country Status (3)

Country Link
JP (1) JP6708168B2 (en)
DE (1) DE112018002725T5 (en)
WO (1) WO2018216808A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7234977B2 (en) * 2020-02-27 2023-03-08 株式会社デンソー Control device
JP2023070336A (en) * 2021-11-09 2023-05-19 株式会社デンソー Controller

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254939A (en) * 2001-12-27 2003-09-10 Nippon Soken Inc Gas concentration detection device
JP2004333374A (en) * 2003-05-09 2004-11-25 Nippon Soken Inc Abnormality detecting apparatus of gas concentration sensor
JP2007147386A (en) * 2005-11-25 2007-06-14 Ngk Spark Plug Co Ltd Device and method for determining sensor element deterioration
JP2007147383A (en) * 2005-11-25 2007-06-14 Ngk Spark Plug Co Ltd Device and method for determining degradation of sensor element
JP2009175013A (en) * 2008-01-24 2009-08-06 Toyota Motor Corp Degradation diagnosing apparatus of nox sensor
JP2015059926A (en) * 2013-09-20 2015-03-30 株式会社デンソー Gas sensor controller
JP2015105843A (en) * 2013-11-29 2015-06-08 株式会社デンソー Gas sensor control device
WO2016013229A1 (en) * 2014-07-25 2016-01-28 株式会社デンソー Gas concentration detection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254939A (en) * 2001-12-27 2003-09-10 Nippon Soken Inc Gas concentration detection device
JP2004333374A (en) * 2003-05-09 2004-11-25 Nippon Soken Inc Abnormality detecting apparatus of gas concentration sensor
JP2007147386A (en) * 2005-11-25 2007-06-14 Ngk Spark Plug Co Ltd Device and method for determining sensor element deterioration
JP2007147383A (en) * 2005-11-25 2007-06-14 Ngk Spark Plug Co Ltd Device and method for determining degradation of sensor element
JP2009175013A (en) * 2008-01-24 2009-08-06 Toyota Motor Corp Degradation diagnosing apparatus of nox sensor
JP2015059926A (en) * 2013-09-20 2015-03-30 株式会社デンソー Gas sensor controller
JP2015105843A (en) * 2013-11-29 2015-06-08 株式会社デンソー Gas sensor control device
WO2016013229A1 (en) * 2014-07-25 2016-01-28 株式会社デンソー Gas concentration detection device

Also Published As

Publication number Publication date
JP6708168B2 (en) 2020-06-10
JP2018200229A (en) 2018-12-20
DE112018002725T5 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
US10634643B2 (en) Gas sensor control device
US11249043B2 (en) Control device for gas sensor
WO2017222003A1 (en) Exhaust gas purification system and exhaust gas purification method
US11428663B2 (en) Gas sensor control device
WO2016013229A1 (en) Gas concentration detection device
JP6149641B2 (en) Gas sensor control device
JP6965578B2 (en) Gas sensor controller
WO2018216808A1 (en) Gas sensor control device
JP6344262B2 (en) Exhaust sensor
WO2018221528A1 (en) Gas sensor control device
JP6819538B2 (en) Gas sensor controller
WO2016121380A1 (en) Internal-combustion engine control device
JP2015105843A (en) Gas sensor control device
US11092099B2 (en) Control apparatus
JP2020134297A (en) Gas sensor control device
US20200224575A1 (en) Control apparatus
WO2017110553A1 (en) Internal-combustion engine gas concentration detecting device
JP2020180990A (en) Gas sensor controller
US20190219537A1 (en) Control device
WO2019235212A1 (en) Control device
JP2018059941A (en) Gas sensor control device
JP2006162325A (en) Exhaust gas component-concentration detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806379

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18806379

Country of ref document: EP

Kind code of ref document: A1