WO2018221528A1 - Gas sensor control device - Google Patents
Gas sensor control device Download PDFInfo
- Publication number
- WO2018221528A1 WO2018221528A1 PCT/JP2018/020595 JP2018020595W WO2018221528A1 WO 2018221528 A1 WO2018221528 A1 WO 2018221528A1 JP 2018020595 W JP2018020595 W JP 2018020595W WO 2018221528 A1 WO2018221528 A1 WO 2018221528A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- sensor
- monitor cell
- monitor
- deterioration
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/417—Systems using cells, i.e. more than one cell and probes with solid electrolytes
- G01N27/419—Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/021—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/022—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting CO or CO2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/023—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting HC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/026—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/04—Methods of control or diagnosing
- F01N2900/0416—Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/14—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
- F01N2900/1402—Exhaust gas composition
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/407—Cells and probes with solid electrolytes for investigating or analysing gases
- G01N27/4073—Composition or fabrication of the solid electrolyte
- G01N27/4074—Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- This disclosure relates to a gas sensor control device.
- a NOx sensor that detects NOx (nitrogen oxide) concentration is known as a gas sensor that detects the concentration of a specific gas component in a gas to be detected such as exhaust gas from an internal combustion engine.
- the NOx sensor has a three-cell structure composed of a pump cell, a monitor cell, and a sensor cell as described in Patent Document 1, for example, and the pump cell discharges or pumps out oxygen in the exhaust gas introduced into the gas chamber.
- the monitor cell detects the residual oxygen concentration in the gas chamber after passing through the pump cell, and the sensor cell detects the NOx concentration from the gas after passing through the pump cell.
- Patent Document 1 forcibly switches the applied voltage to the pump cell, and determines the deterioration of the NOx sensor based on the change amount of the sensor cell output at this time. A method for diagnosing is disclosed.
- the concentration of the specific gas component is calculated by subtracting the monitor cell output from the sensor cell output.
- the concentration of the specific gas component is calculated based on the difference between the sensor cell output and the monitor cell output, there is a concern that the accuracy of detecting the concentration of the specific gas component may decrease with the deterioration of the monitor cell. In this respect, there is still room for improvement in the existing technology.
- This indication is made in view of the above-mentioned subject, and the main purpose is to provide the gas sensor control device which can judge the deterioration state of a monitor cell appropriately in the gas sensor which has a pump cell, a sensor cell, and a monitor cell. is there.
- a control device that is applied to a gas sensor having a monitor cell that detects an oxygen concentration and performs control related to the gas sensor,
- a pump cell control unit for adjusting the residual oxygen concentration by the pump cell in order to control the output of the monitor cell to a target value;
- an acquisition unit that acquires the output of the sensor cell;
- a deterioration determination unit that determines a deterioration state of the monitor cell based on the output of the sensor cell acquired by the acquisition unit; Is provided.
- the residual oxygen concentration in the gas chamber is adjusted by the pump cell.
- the concentration of the specific gas component is detected by the sensor cell, and the residual oxygen concentration is detected by the monitor cell.
- the concentration of the specific gas component is calculated from the difference between the sensor cell output and the monitor cell output, the detection accuracy of the residual oxygen concentration decreases with the deterioration of the monitor cell, which affects the detection of the concentration of the specific gas component. It is thought that it reaches. Therefore, it is considered important to grasp the deterioration state of the monitor cell.
- the residual oxygen concentration is adjusted by the pump cell so as to control the output of the monitor cell to the target value, and the output of the sensor cell is acquired in a state where the residual oxygen concentration is adjusted.
- the deterioration state of the monitor cell is determined. If the monitor cell has deteriorated, the residual oxygen concentration in the gas chamber becomes too large or too small in a state where the monitor cell output is controlled to the target value, and the sensor cell output fluctuates due to the influence. The state can be determined. As a result, it is possible to appropriately determine the deterioration state of the monitor cell in the gas sensor having the pump cell, the sensor cell, and the monitor cell.
- FIG. 1 is a diagram showing a system configuration of an engine exhaust system.
- FIG. 2 is a cross-sectional view showing the configuration of the NOx sensor
- FIG. 3 is a cross-sectional view showing a III-III cross section of FIG.
- FIG. 4 is a functional block diagram of the SCU and ECU.
- 5A is a diagram showing electromotive force characteristics of a monitor cell
- FIG. 5B is a diagram showing electromotive force characteristics in a deteriorated state
- FIG. 5C is an enlarged view of an X portion of FIG. 5B.
- FIG. 6 is a time chart showing changes in sensor cell current accompanying the start of electromotive force feedback control.
- FIG. 7 is a flowchart showing a processing procedure for sensor deterioration determination in the case of performing electromotive force feedback control.
- FIG. 8A is a diagram showing a relationship between the output ratio and the deterioration rate of the monitor cell, and
- FIG. 8B is a diagram showing a relationship between the output ratio and the deterioration rate of the sensor cell.
- FIG. 9 is a diagram showing current characteristics of the monitor cell
- FIG. 10 is a time chart showing changes in sensor cell current accompanying the start of current feedback control.
- FIG. 11 is a flowchart showing a processing procedure for sensor deterioration determination when current feedback control is performed.
- FIG. 11 is a flowchart showing a processing procedure for sensor deterioration determination when current feedback control is performed.
- FIG. 12 is a diagram showing a relationship between electromotive force feedback control and current feedback control, and monitor cell deterioration and sensor cell deterioration.
- FIG. 13 is a flowchart showing a processing procedure for sensor deterioration determination in the case of performing electromotive force feedback control and current feedback control.
- FIG. 14 is a diagram for explaining changes in the transient characteristics of the sensor cell output accompanying the deterioration of the sensor cell.
- FIG. 15 is a flowchart showing the deterioration determination process in the second embodiment.
- FIG. 16 is a cross-sectional view showing the configuration of another NOx sensor.
- This embodiment embodies a gas sensor control device that performs control related to a NOx sensor in a system in which exhaust gas discharged from an on-board diesel engine is detected gas and the NOx concentration in the exhaust gas is detected by a NOx sensor. It is said.
- parts that are the same or equivalent to each other are given the same reference numerals in the drawings, and the description of the same reference numerals is used.
- an exhaust gas purification system that purifies exhaust gas is provided on the exhaust side of an engine 10 that is a diesel engine.
- an exhaust pipe 11 that forms an exhaust passage is connected to the engine 10
- an oxidation catalytic converter 12 and a selective catalytic reduction converter (hereinafter referred to as SCR) are connected to the exhaust pipe 11 in order from the engine 10 side. 13) (referred to as a catalytic converter).
- the oxidation catalyst converter 12 includes a diesel oxidation catalyst 14 and a DPF (Diesel Particulate Filter) 15.
- the SCR catalytic converter 13 has an SCR catalyst 16 as a selective reduction type catalyst.
- a urea water addition valve 17 for adding and supplying urea water (urea aqueous solution) as a reducing agent into the exhaust pipe 11 is provided between the oxidation catalytic converter 12 and the SCR catalytic converter 13 in the exhaust pipe 11. ing.
- the diesel oxidation catalyst 14 is mainly composed of a ceramic carrier, an oxide mixture containing aluminum oxide, cerium dioxide and zirconium dioxide as components, and a noble metal catalyst such as platinum, palladium and rhodium.
- the diesel oxidation catalyst 14 oxidizes and purifies hydrocarbons, carbon monoxide, nitrogen oxides and the like contained in the exhaust gas. Further, the diesel oxidation catalyst 14 raises the exhaust temperature by heat generated during the catalytic reaction.
- the DPF 15 is formed of a honeycomb structure, and is configured by supporting a platinum group catalyst such as platinum or palladium on a porous ceramic.
- the DPF 15 collects particulate matter contained in the exhaust gas by depositing it on the partition walls of the honeycomb structure.
- the deposited particulate matter is oxidized and purified by combustion. For this combustion, a temperature increase in the diesel oxidation catalyst 14 or a decrease in the combustion temperature of the particulate matter due to the additive is used.
- the SCR catalytic converter 13 is a device for reducing NOx to nitrogen and water as a post-treatment device for the oxidation catalytic converter 12, and the SCR catalyst 16 carries a noble metal such as Pt on the surface of a base material such as zeolite or alumina.
- the catalyst used is used.
- the SCR catalyst 16 reduces and purifies NOx by adding urea as a reducing agent when the catalyst temperature is in the activation temperature range.
- the exhaust pipe 11 there is a limit as a gas sensor on the upstream side of the oxidation catalytic converter 12, between the oxidation catalytic converter 12 and the SCR catalytic converter 13, upstream of the urea water addition valve 17, and downstream of the SCR catalytic converter 13.
- Current-type NOx sensors 21, 22, and 23 are provided, respectively.
- the NOx sensors 21 to 23 detect the NOx concentration in the exhaust gas at the respective detection positions.
- the position and number of NOx sensors in the engine exhaust system may be arbitrary.
- SCUs 31 to 33 are connected to the NOx sensors 21 to 23, and the detection signals of the NOx sensors 21 to 23 are appropriately output to the SCUs 31 to 33 for each sensor.
- the SCUs 31 to 33 are electronic control devices including a CPU and a microcomputer having various memories and peripheral circuits thereof, and oxygen (O2) in exhaust gas based on detection signals (limit current signals) of the NOx sensors 21 to 23. The concentration and the NOx concentration as the concentration of the specific gas component are calculated.
- the SCUs 31 to 33 are connected to a communication line 34 such as a CAN bus, and are connected to various ECUs (for example, an engine ECU 35) via the communication line 34. That is, the SCUs 31 to 33 and the engine ECU 35 can exchange information with each other using the communication line 34. For example, information on oxygen concentration and NOx concentration in exhaust gas is transmitted from the SCUs 31 to 33 to the engine ECU 35.
- the engine ECU 35 is an electronic control device including a CPU, a microcomputer having various memories, and its peripheral circuits, and controls the engine 10 and various devices in the exhaust system.
- the engine ECU 35 performs fuel injection control and the like based on, for example, the accelerator opening and the engine speed.
- the engine ECU 35 performs urea water addition control by the urea water addition valve 17 based on the NOx concentration detected by each of the NOx sensors 21 to 23.
- the engine ECU 35 calculates the urea water addition amount based on the NOx concentration detected by the NOx sensors 21 and 22 on the upstream side of the SCR catalytic converter 13, and the SCR catalytic converter 13.
- the urea water addition amount is feedback-corrected so that the NOx concentration detected by the downstream NOx sensor 23 becomes as small as possible. Based on the urea water addition amount, the driving of the urea water addition valve 17 is controlled.
- FIG. 2 and 3 are views showing the internal structure of the sensor element 40 constituting the NOx sensor 21.
- FIG. 1 the left-right direction of a figure is a longitudinal direction of the sensor element 40, and the left side of a figure is an element front end side.
- the sensor element 40 has a so-called three-cell structure including a pump cell 41, a sensor cell 42 and a monitor cell 43.
- the monitor cell 43 has a function of discharging oxygen in the gas, like the pump cell 41, and may be referred to as an auxiliary pump cell or a second pump cell.
- the sensor element 40 includes a first main body 51 and a second main body 52 made of an insulator such as alumina, a solid electrolyte body 53 disposed between the main bodies 51 and 52, a diffusion resistor 54, and a pump cell.
- An electrode 55, a sensor cell electrode 56, a monitor cell electrode 57, a common electrode 58, and a heater 59 are provided.
- a gas chamber 61 that is a concentration meter side chamber is formed between the first main body 51 and the solid electrolyte body 53, and an atmospheric chamber 62 that is a reference gas chamber is formed between the second main body 52 and the solid electrolyte body 53. Is formed.
- the pump cell 41 adjusts the oxygen concentration in the exhaust gas introduced into the gas chamber 61, and is formed by the pump cell electrode 55, the common electrode 58, and a part of the solid electrolyte body 53.
- the sensor cell 42 detects the concentration (NOx concentration) of a predetermined gas component in the gas chamber 61 based on an oxygen ion current flowing between the sensor cell electrode 56 and the common electrode 58.
- the sensor cell electrode 56 and the common electrode 58 And a part of the solid electrolyte body 53.
- the monitor cell 43 detects the residual oxygen concentration in the gas chamber 61 on the basis of the oxygen ion current flowing between the monitor cell electrode 57 and the common electrode 58, and one of the monitor cell electrode 57, the common electrode 58, and the solid electrolyte body 53. Part.
- the solid electrolyte body 53 is a plate-like member and is made of an oxygen ion conductive solid electrolyte material such as zirconia oxide.
- the first main body 51 and the second main body 52 are arranged on both sides of the solid electrolyte body 53.
- the first main body 51 has a stepped shape on the solid electrolyte body 53 side, and a recess formed by the step is a gas chamber 61.
- One side surface of the concave portion of the first main body 51 is open, and the diffusion resistor 54 is disposed on the open side surface.
- the diffusion resistor 54 is made of a porous material or a material in which pores are formed. The speed of the exhaust gas introduced into the gas chamber 61 is regulated by the action of the diffusion resistor 54.
- the second main body portion 52 has a stepped shape on the solid electrolyte body 53 side, and a concave portion formed by the step is an atmospheric chamber 62.
- One side of the atmospheric chamber 62 is open. The gas introduced into the atmospheric chamber 62 from the solid electrolyte body 53 side is released to the atmosphere.
- a pump cell electrode 55 On the surface facing the gas chamber 61 of the solid electrolyte body 53, a pump cell electrode 55, a sensor cell electrode 56, and a monitor cell electrode 57 on the cathode side are provided.
- the pump cell electrode 55 is disposed on the inlet side of the gas chamber 61 close to the diffusion resistor 54, that is, on the upstream side in the gas chamber 61, and the sensor cell electrode 56 and the monitor cell electrode 57 have a diffusion resistance across the pump cell electrode 55. It is disposed on the opposite side of the body 54, that is, on the downstream side in the gas chamber 61.
- the pump cell electrode 55 has a larger surface area than the sensor cell electrode 56 and the monitor cell electrode 57.
- the sensor cell electrode 56 and the monitor cell electrode 57 are arranged side by side at positions close to each other and equivalent to the exhaust flow direction.
- the pump cell electrode 55 and the monitor cell electrode 57 are electrodes made of a noble metal such as Au—Pt that is inactive to NOx (electrodes that are difficult to decompose NOx), whereas the sensor cell electrode 56 is platinum Pt and rhodium that are active to NOx. It is an electrode made of a noble metal such as Rh.
- a common electrode 58 on the anode side is provided on the surface of the solid electrolyte body 53 facing the atmospheric chamber 62 at a position corresponding to each of the electrodes 55 to 57 on the cathode side.
- a voltage applied to the pump cell 41 is a pump cell applied voltage Vp
- a current output when the pump cell 41 is in a voltage applied state is a pump cell current Ip.
- the monitor cell 43 detects the oxygen concentration remaining in the gas chamber 61 in a state where oxygen is exhausted by the pump cell 41. At this time, the monitor cell 43 outputs a current signal generated with voltage application or an electromotive force signal corresponding to the residual oxygen concentration in the gas chamber 61 as a residual oxygen concentration detection signal. The output of the monitor cell 43 is acquired by the SCUs 31 to 33 as the monitor cell current Im or the monitor cell electromotive force Vm.
- the sensor cell 42 reduces and decomposes NOx in the exhaust gas according to voltage application in a state where oxygen is exhausted by the pump cell 41, and outputs a current signal corresponding to the NOx concentration and the residual oxygen concentration in the gas chamber 61.
- the output of the sensor cell 42 is acquired as the sensor cell current Is in the SCUs 31 to 33.
- the NOx concentration in the exhaust gas is calculated from the sensor cell current Is.
- the NOx concentration in the exhaust gas is calculated by subtracting the monitor cell current Im from the sensor cell current Is.
- the monitor cell 43 deteriorates, the accuracy of the monitor cell current Im decreases, and there is a concern that the NOx concentration detection may be affected. Therefore, in this embodiment, the deterioration determination is performed with the monitor cell 43 as a determination target.
- Each of the SCUs 31 to 33 provided for each of the NOx sensors 21 to 23 has the same function.
- FIG. 4 is a functional block diagram for explaining the functions of the SCUs 31 to 33 and the engine ECU 35.
- the SCUs 31 to 33 adjust the residual oxygen concentration in the gas chamber 61 by the pump cell 41 and the residual oxygen concentration by the pump cell control unit M11 in order to control the monitor cell outputs (Vm, Im) to the target values.
- an acquisition unit M12 that acquires the sensor cell output (Is) and a deterioration determination unit M13 that determines the deterioration state of the monitor cell 43 based on the sensor cell output acquired by the acquisition unit M12 are provided. Yes.
- the NOx sensors 21 to 23 generate the monitor cell electromotive force Vm corresponding to the residual oxygen concentration in the gas chamber 61 as the monitor cell output, and the voltage applied to the monitor cell 43 in the gas chamber 61 It is possible to generate a monitor cell current Im corresponding to the residual oxygen concentration.
- the monitor cell electromotive force Vm, the monitor cell current Im, the sensor cell current Is, the pump cell current Ip, and the like are appropriately detected.
- the deterioration determination unit M13 performs the deterioration determination of the NOx sensors 21 to 23 with the monitor cell 43 or the monitor cell 43 and the sensor cell 42 as determination targets.
- the pump cell control unit M11 causes the pump cell 41 to adjust the residual oxygen concentration by performing electromotive force feedback control (VmF / B control) for controlling the monitor cell electromotive force Vm to the target value Vmtg.
- VmF / B control electromotive force feedback control
- the pump cell control unit M11 sets the pump cell applied voltage Vp based on the deviation between the actual monitor cell electromotive force Vm and the target value Vmtg, and performs voltage application at the pump cell applied voltage Vp.
- the pump cell control unit M11 causes the pump cell 41 to adjust the residual oxygen concentration by performing current feedback control (ImF / B control) for controlling the monitor cell current Im to the target value Imtg.
- the pump cell control unit M11 sets the pump cell application voltage Vp based on the deviation between the actual monitor cell current Im and the target value Imtg, and performs voltage application to the pump cell 41 with the pump cell application voltage Vp.
- the residual oxygen concentration is appropriately adjusted in the pump cell 41 by controlling the pump cell applied voltage Vp.
- the electromotive force feedback control corresponds to “electromotive force control”
- the current feedback control corresponds to “monitor cell current control”.
- the acquisition unit M12 acquires the sensor cell current Is that changes in response by the electromotive force feedback control as the sensor cell output in a state where the residual oxygen concentration is adjusted by the electromotive force feedback control. In addition, as the sensor cell output in a state where the residual oxygen concentration is adjusted by the current feedback control, the sensor cell current Is that changes in response by the current feedback control is acquired.
- the degradation determination unit M13 determines degradation of the monitor cell 43 and the sensor cell 42 using at least one of the sensor cell current Is acquired when the electromotive force feedback control is performed and the sensor cell current Is acquired when the current feedback control is performed. To implement. For example, the deterioration determination unit M13 calculates the deterioration rate Cm of the monitor cell 43 based on the response change amount ⁇ Is of the sensor cell current Is, while calculating the deterioration rate Cs of the sensor cell 42 based on the response change amount ⁇ Is of the sensor cell current Is. To do.
- the engine ECU 35 has an abnormality determination unit M21 that determines abnormality due to emission deterioration based on the deterioration determination results of the SCUs 31 to 33.
- the abnormality determination unit M21 determines an abnormality in engine emission based on the deterioration rate Cm of the monitor cell 43 and the deterioration rate Cs of the sensor cell 42 calculated by the deterioration determination unit M13 of each of the SCUs 31 to 33.
- the emission abnormality is determined by comprehensively considering the outputs of the NOx sensors 21 to 23, various sensor information from other sensors, the engine operating state, and the like. May be.
- Both the deterioration determination and the emission abnormality determination regarding the NOx sensors 21 to 23 may be performed by the SCUs 31 to 33, or both may be performed by the engine ECU 35. Since it is desirable that the emission abnormality determination is performed using elements other than the degree of deterioration of the NOx sensors 21 to 23, it is preferable that the emission abnormality determination is performed by the engine ECU 35.
- the SCUs 31 to 33 perform electromotive force feedback control so that the monitor cell electromotive force Vm generated according to the residual oxygen concentration in the gas chamber 61 matches the target value Vmtg.
- the target value Vmtg is within a sudden change region where the monitor cell electromotive force Vm changes suddenly in the electromotive force characteristics of the monitor cell 43, and the oxygen concentration is larger than 0 (ie, excess air).
- the rate may be determined as monitor cell electromotive force Vm.
- the residual oxygen concentration is controlled to 1000 ppm, for example (A1 in the figure).
- the electromotive force characteristic changes as the sensitivity decreases, as shown by the solid line in FIG.
- the initial characteristic before deterioration is indicated by a one-dot chain line
- the characteristic after deterioration is indicated by a solid line.
- the monitor cell electromotive force Vm is small. Therefore, the actual residual oxygen concentration in the gas chamber 61 deviates from the target oxygen concentration under the state where the electromotive force feedback control is performed. Specifically, as shown in FIG. 5C in which the portion X in FIG. 5B is enlarged, the residual oxygen concentration decreases from A1 to A2 when the electromotive force feedback control is performed.
- the SCUs 31 to 33 determine the deterioration of the monitor cell 43 by utilizing the change in the responsiveness of the sensor cell current Is according to the change in the residual oxygen concentration accompanying the deterioration of the monitor cell 43 during the electromotive force feedback control. To implement. The outline will be described with reference to the time chart of FIG.
- electromotive force feedback control is started at time t1.
- the residual oxygen concentration in the gas chamber 61 is extremely low before time t1, and oxygen supply to the monitor cell 43 and the sensor cell 42 is started with the start of the electromotive force feedback control. That is, in the electromotive force feedback control, the oxygen concentration is adjusted so that the residual oxygen concentration increases.
- the sensor cell current Is changes transiently as indicated by the alternate long and short dash line, whereas when the deterioration of the monitor cell 43 occurs, the residual oxygen concentration becomes lower than expected. As a result, the sensor cell current Is changes transiently as indicated by a solid line.
- the response change amount ⁇ Is1 of the sensor cell current Is decreases with respect to the initial value of the response change amount of the sensor cell current Is calculated in advance under the same conditions as the current electromotive force feedback control (hereinafter referred to as the initial change amount ⁇ Isini1). Due to the difference in the change in the sensor cell current Is, the deterioration of the monitor cell 43 can be determined.
- FIG. 7 is a flowchart showing a processing procedure for determining the deterioration of the NOx sensors 21 to 23 when the electromotive force feedback control (VmF / B control) is performed.
- the processing shown in FIG. 7 is arithmetic processing for realizing the functions of the SCUs 31 to 33 shown in FIG. 4, and is executed in each of the SCUs 31 to 33, for example, at predetermined intervals.
- step S11 it is determined whether or not an execution condition for deterioration determination is satisfied.
- the implementation condition includes, for example, receiving an permission signal from the engine ECU 35 to permit the execution of the deterioration determination.
- the engine ECU 35 transmits a permission signal when the gas environment in the exhaust pipe 11 is in a predetermined environment that is stable. Specifically, the engine ECU 35 is in a state where the engine 10 is in a predetermined operation state and the amount of exhaust is relatively stable, in the case of fuel cut, immediately after the ignition switch is turned off (immediately after the IG is turned off), Alternatively, the permission signal is transmitted when the engine ECU 35 is being activated by the soak timer. In particular, it is desirable that the condition is immediately after the IG is turned off.
- step S12 electromotive force feedback control is performed.
- the target value Vmtg of the monitor cell electromotive force Vm is set, and the pump cell applied voltage Vp is feedback-controlled based on the deviation between the target value Vmtg and the actual monitor cell electromotive force Vm.
- the monitor cell electromotive force Vm is controlled to the target value Vmtg, and the residual oxygen concentration in the gas chamber 61 is adjusted to an oxygen concentration corresponding to the target value Vmtg.
- a response change amount ⁇ Is1 of the sensor cell current Is is calculated after the start of the electromotive force feedback control.
- the response change amount ⁇ Is1 is calculated from the difference from the sensor cell current Is before the start.
- step S14 using the following equation (1), the output ratio ⁇ 1 is calculated from the response change amount ⁇ Is1 and the initial change amount ⁇ Isini1 of the sensor cell current Is calculated this time.
- the output ratio ⁇ 1 is calculated as a ratio of the response change amount ⁇ Is1 to the initial change amount ⁇ Isini1.
- the initial change amount ⁇ Isini1 is stored in advance in the memories in the SCUs 31 to 33.
- ⁇ 1 ⁇ Is1 / ⁇ Isini1 (1)
- step S15 it is determined whether or not the output ratio ⁇ 1 is smaller than a predetermined value TH1. Note that 0 ⁇ TH1 ⁇ 1. And if step S15 is YES, it will consider that the monitor cell 43 has deteriorated and will progress to step S16.
- step S15 is to determine whether or not the output ratio ⁇ 1 calculated this time has occurred due to deterioration of the monitor cell 43. That is, comparing the case where the response change amount ⁇ Is1 of the sensor cell current Is decreases with the deterioration of the monitor cell 43 and the case where the response change amount ⁇ Is1 of the sensor cell current Is decreases with the deterioration of the sensor cell 42, the former is more responsive. There is a tendency that the degree of decrease of the change amount ⁇ Is1 increases ( ⁇ Is1 tends to be a small value). This is because when the monitor cell 43 is deteriorated, a current drop occurs due to a shift in the residual oxygen concentration. From this difference, it is possible to specify that the cause of deterioration is the monitor cell 43.
- step S16 for example, the deterioration rate Cm of the monitor cell 43 is calculated based on the output ratio ⁇ 1 using the relationship L1 in FIG. According to the relationship L1, the deterioration rate Cm is calculated as a larger value as the output ratio ⁇ 1 is smaller than 1, that is, as the difference from the initial characteristic is larger.
- a large deterioration rate Cm means that the degree of deterioration of the monitor cell 43 is large.
- the step S15 can be omitted.
- the monitor cell 43 has the current characteristics shown in FIG. 9 as the relationship between the oxygen concentration and the monitor cell current Im.
- the SCUs 31 to 33 perform current feedback control so that the monitor cell current Im generated according to the residual oxygen concentration in the gas chamber 61 matches the target value Immtg.
- the initial characteristics before deterioration are indicated by a one-dot chain line, and the characteristics after deterioration are indicated by solid lines.
- the reaction sensitivity to oxygen is reduced as the characteristics change. Therefore, the actual residual oxygen concentration in the gas chamber 61 deviates from the target oxygen concentration under the state where the current feedback control is performed. Specifically, as shown in FIG. 9, the residual oxygen concentration increases from A3 to A4 when the current feedback control is performed.
- the SCUs 31 to 33 determine the deterioration of the monitor cell 43 using the change in the response of the sensor cell current Is accordingly. To implement. The outline will be described with reference to the time chart of FIG.
- current feedback control is started at time t2.
- the residual oxygen concentration in the gas chamber 61 is extremely low, and oxygen supply to the monitor cell 43 and the sensor cell 42 is started with the start of the current feedback control. That is, in the current feedback control, the oxygen concentration is adjusted so that the residual oxygen concentration increases.
- the sensor cell current Is changes transiently as indicated by the alternate long and short dash line, whereas when the deterioration of the monitor cell 43 occurs, the residual oxygen concentration becomes higher than expected. As a result, the sensor cell current Is changes transiently as indicated by a solid line.
- the response change amount ⁇ Is2 of the sensor cell current Is increases with respect to the initial value of the response change amount of the sensor cell current Is calculated in advance under the same conditions as the current feedback control (hereinafter referred to as the initial change amount ⁇ Isini2). Due to the difference in the change in the sensor cell current Is, the deterioration of the monitor cell 43 can be determined.
- FIG. 11 is a flowchart showing a processing procedure for determining the deterioration of the NOx sensors 21 to 23 when the current feedback control (ImF / B control) is performed.
- the process shown in FIG. 11 is an arithmetic process for realizing each function of the SCUs 31 to 33 shown in FIG. 4, and is executed in each SCU 31 to 33, for example, at predetermined intervals.
- step S21 it is determined whether or not an execution condition for deterioration determination is satisfied. However, since this process is the same as step S11 of FIG. 7, detailed description thereof is omitted. If the execution condition for the deterioration determination is satisfied, the process proceeds to the subsequent step S22. If the execution condition is not satisfied, the present process is terminated.
- step S22 current feedback control is performed.
- the target value Imtg of the monitor cell current Im is set, and the pump cell applied voltage Vp is feedback-controlled based on the deviation between the target value Imtg and the actual monitor cell current Im.
- the monitor cell current Im is controlled to the target value Imtg, and the residual oxygen concentration in the gas chamber 61 is adjusted to an oxygen concentration corresponding to the target value Immtg.
- step S23 the response change amount ⁇ Is2 of the sensor cell current Is is calculated after the start of the current feedback control.
- the response change amount ⁇ Is2 is calculated based on the difference from the previous sensor cell current Is.
- step S25 it is determined whether or not the difference ⁇ 1 is smaller than the negative predetermined value TH2.
- step S26 it is determined whether or not the difference ⁇ 1 is larger than the positive predetermined value TH3.
- the initial change amount ⁇ Isini2 is stored in advance in the memories in the SCUs 31 to 33. TH2 ⁇ 0 and TH3> 0.
- the processing of steps S24 to S26 is to determine whether the difference ⁇ 1 between the response change amount ⁇ Is2 calculated this time and the initial change amount ⁇ Isini2 is caused by the deterioration of the monitor cell 43 or the sensor cell 42. .
- the processing of steps S24 to S26 is to determine whether the difference ⁇ 1 between the response change amount ⁇ Is2 calculated this time and the initial change amount ⁇ Isini2 is caused by the deterioration of the monitor cell 43 or the sensor cell 42. .
- the residual oxygen concentration is shifted to a larger side (see FIG. 9), but the sensor cell 42, not the monitor cell 43, is deteriorated. In this state, the residual oxygen concentration is adjusted to an appropriate value.
- the response change amount ⁇ Is2 of the sensor cell current Is is larger than the initial change amount ⁇ Isini2
- the response change amount ⁇ Is2 of the sensor cell current Is becomes smaller than the initial change amount ⁇ Isini2. Therefore, it is possible to determine whether the deterioration of the monitor cell 43 or the deterioration of the sensor cell 42 occurs depending on whether the response change amount ⁇ Is2 of the sensor cell current Is increases or decreases with respect to the initial change amount ⁇ Isini2. It has become.
- step S25 is YES
- the monitor cell 43 is regarded as degraded and the process proceeds to step S27.
- step S26 is YES, the sensor cell 42 is regarded as degraded and the process proceeds to step S28.
- step S27 the deterioration determination of the monitor cell 43 is performed based on the response change amount ⁇ Is2 of the sensor cell current Is.
- the output ratio ⁇ 2 is calculated from the response change amount ⁇ Is2 and the initial change amount ⁇ Isini2 of the sensor cell current Is calculated this time.
- ⁇ 2 ⁇ Is2 / ⁇ Isini2 (2)
- the deterioration rate Cm of the monitor cell 43 is calculated based on the output ratio ⁇ 2.
- the deterioration rate Cm is calculated as a larger value as the output ratio ⁇ 2 is larger than 1, that is, as the difference from the initial characteristic is larger.
- step S28 the deterioration of the sensor cell 42 is determined based on the response change amount ⁇ Is2 of the sensor cell current Is.
- the output ratio ⁇ 3 is calculated from the response change amount ⁇ Is2 and the initial change amount ⁇ Isini2 of the sensor cell current Is calculated this time.
- ⁇ 3 ⁇ Is2 / ⁇ Isini2 (3)
- the deterioration rate Cs of the sensor cell 42 is calculated based on the output ratio ⁇ 3 using the relationship L3 in FIG. 8B. According to the relationship L3, the deterioration rate Cs is calculated as a larger value as the output ratio ⁇ 3 is smaller than 1, that is, as the difference from the initial characteristic is larger.
- the output ratio ⁇ 2 is calculated prior to steps S27 and S28, and whether the output ratio ⁇ 2 is greater than a predetermined value TH4 or the output ratio ⁇ 2
- the output ratio ⁇ 2 is smaller than the predetermined value TH5, it is determined that the sensor cell 42 is deteriorated. Then, based on each determination result, it progresses to Step S27 and Step S28.
- Degradation determination process when the SCUs 31 to 33 perform electromotive force feedback control (VmF / B control) (FIG. 7) and deterioration determination process when current feedback control (ImF / B control) is performed (FIG. 11) The structure which implements only any one of these may be sufficient.
- each of these determination processes may be performed at different execution opportunities. For example, one of the determination processes may be performed for each drive cycle, one determination process may be performed immediately after the current IG is turned off, and the other determination process may be performed immediately after the next IG is turned off.
- FIG. 12 shows the relationship between the response change of the sensor cell current Is when the monitor cell deteriorates and the response change of the sensor cell current Is when the sensor cell deteriorates when the electromotive force feedback control and the current feedback control are executed. Are shown together.
- the initial characteristics are indicated by a one-dot chain line, and the deteriorated characteristics are indicated by a solid line.
- the response change amount ⁇ Is1 of the sensor cell current Is decreases when the electromotive force feedback control is performed, and the response change amount ⁇ Is2 of the sensor cell current Is increases when the current feedback control is performed.
- the response change amount ⁇ Is1 of the sensor cell current Is decreases when the electromotive force feedback control is performed, and the response change amount ⁇ Is2 of the sensor cell current Is decreases when the current feedback control is performed.
- the SCUs 31 to 33 have a response change amount ⁇ Is1 when the electromotive force feedback control is performed smaller than the initial change amount ⁇ Isini1 that is the first reference value, and the current Based on the fact that the response change amount ⁇ Is2 when the feedback control is performed becomes larger than the initial change amount ⁇ Isini2 that is the second reference value, it is determined that the monitor cell 43 is deteriorated. Further, the response change amount ⁇ Is1 when the electromotive force feedback control is performed is smaller than the initial change amount ⁇ Isini1, and the response change amount ⁇ Is2 when the current feedback control is performed is smaller than the initial change amount ⁇ Isini2. Based on the above, it is determined that the sensor cell 42 has deteriorated.
- FIG. 13 is a flowchart showing a processing procedure for determining the deterioration of the NOx sensors 21 to 23 when performing electromotive force feedback control (VmF / B control) and current feedback control (ImF / B control).
- the process shown in FIG. 13 is an arithmetic process for realizing each function of the SCUs 31 to 33 shown in FIG. 4, and is executed in each SCU 31 to 33, for example, at predetermined intervals.
- the processing in FIG. 13 is performed instead of the processing in FIG. 7 and FIG.
- step S31 it is determined whether or not an execution condition for deterioration determination is satisfied. However, since this process is the same as step S11 of FIG. 7, detailed description thereof is omitted. If the execution condition for the deterioration determination is satisfied, the process proceeds to the subsequent step S32. If the execution condition is not satisfied, the present process is terminated.
- steps S32 and S33 electromotive force feedback control is performed, and the response change amount ⁇ Is1 of the sensor cell current Is is calculated (same as steps S12 and S13 described above).
- steps S34 and S35 current feedback control is performed, and the response change amount ⁇ Is2 of the sensor cell current Is is calculated (same as steps S22 and S23 described above).
- step S36 it is determined whether or not the response change amount ⁇ Is1 has decreased with respect to the initial change amount ⁇ Isini1, and in step S37, whether or not the response change amount ⁇ Is2 has increased with respect to the initial change amount ⁇ Isini2. Determine. And when both step S36 and S37 are YES, it progresses to step S38 and the deterioration determination of the monitor cell 43 is implemented. Moreover, when step S36 is YES and step S37 is NO, it progresses to step S39 and the deterioration determination of the sensor cell 42 is implemented.
- the calculation process of the response change amount ⁇ Is1 in steps S32 and S33 and the calculation process of the response change amount ⁇ Is2 in steps S34 and S35 can be performed discontinuously, that is, at different execution opportunities.
- the processing may be performed for each drive cycle, the response change amount ⁇ Is1 may be calculated immediately after the current IG is turned off, and the response change amount ⁇ Is2 may be calculated immediately after the next IG is turned off. Then, when the response change amounts ⁇ Is1 and ⁇ Is2 are calculated, the deterioration determination of either the monitor cell 43 or the sensor cell 42 is performed.
- the monitor cell 43 in order to control the monitor cell output (Vm, Im) to the target value, the residual oxygen concentration is adjusted by the pump cell 41, and based on the sensor cell output acquired in the state where the residual oxygen concentration is adjusted, the monitor cell 43 deterioration states were determined.
- the monitor cell 43 if the monitor cell 43 is deteriorated, the residual oxygen concentration in the gas chamber 61 becomes excessive or low in a state where the monitor cell output is controlled to the target value, and the sensor cell output fluctuates due to the influence thereof.
- the deterioration state of the monitor cell 43 can be determined using As a result, the deterioration state of the monitor cell 43 can be properly determined in the NOx sensors 21 to 23 having the pump cell 41, the sensor cell 42, and the monitor cell 43.
- the monitor cell output (Vm, Im) is controlled to the target value
- the residual oxygen concentration in the gas chamber 61 is kept constant, so that the deterioration determination of the monitor cell 43 can be performed under a condition where the oxygen concentration is constant. For this reason, it is possible to increase the degradation determination accuracy.
- the electromotive force feedback control for adjusting the monitor cell electromotive force Vm to the target value is performed to adjust the residual oxygen concentration by the pump cell 41 (FIG. 7).
- the actual residual oxygen concentration in the gas chamber 61 is the target oxygen in the state where the electromotive force feedback control is performed due to the change in the electromotive force characteristic due to the sensitivity decrease. Deviation from concentration.
- the response change amount ⁇ Is1 of the sensor cell current Is deviates from a predetermined reference value (initial change amount ⁇ Isini1), it can be appropriately determined that the monitor cell 43 has deteriorated.
- the residual oxygen concentration is shifted to a smaller side by performing the electromotive force feedback control.
- the response change amount ⁇ Is1 of the sensor cell current Is becomes smaller than a predetermined reference value (initial change amount ⁇ Isini1). Based on this, the deterioration state of the monitor cell 43 is appropriately set. Can be determined.
- the response change amount ⁇ Is1 of the sensor cell current Is According to the deviation of the residual oxygen concentration.
- the response change amount ⁇ Is1 of the sensor cell current Is similarly decreases.
- the former is more responsive.
- the monitor cell 43 has deteriorated among the monitor cell 43 and the sensor cell 42 based on being smaller than the value, that is, the degree of decrease in the response change amount ⁇ Is1 with respect to the initial change amount ⁇ Isini1 is large. Can do.
- the residual oxygen concentration is shifted to the side by increasing the current feedback control.
- the response change amount ⁇ Is2 of the sensor cell current Is becomes larger than a predetermined reference value (initial change amount ⁇ Isini2). Based on this, the deterioration state of the monitor cell 43 is appropriately set. Can be determined.
- the residual oxygen concentration is adjusted to an appropriate value if the monitor cell 43 is in a normal state rather than a deteriorated state.
- the response change amount ⁇ Is2 of the sensor cell current Is is smaller than a predetermined reference value (initial change amount ⁇ Isini2) due to a decrease in response due to the deterioration. . Therefore, the deterioration state of the sensor cell 42 can be appropriately determined based on the decrease in the response change amount ⁇ Is.
- the electromotive force feedback control of the monitor cell 43 is performed to calculate the response change amount ⁇ Is1 of the sensor cell current Is at that time, while the current feedback control is performed to calculate the response change amount ⁇ Is2 of the sensor cell current Is at that time.
- the monitor cell 43 and the sensor cell 42 are subjected to deterioration determination (FIG. 13).
- the deterioration of the NOx sensors 21 to 23 is mainly caused by the deterioration of the monitor cell 43 or the deterioration of the sensor cell 42. Since the mode of the response change of the sensor cell current Is changes depending on whether or not the sensor cell 43 or the sensor cell 42 is deteriorated, it can be suitably determined.
- the characteristic change of the sensor cell current Is when the electromotive force feedback control and the current feedback control are performed differs between the state in which the monitor cell 43 is deteriorated and the state in which the sensor cell 42 is deteriorated as shown in FIG. Therefore, it is distinguished whether the deterioration of the NOx sensors 21 to 23 is the deterioration of the monitor cell 43 or the sensor cell 42. As a result, the NOx sensors 21 to 23 can appropriately determine the deterioration state of the monitor cell 43 and the deterioration state of the sensor cell 42, respectively.
- Vm is set as a target value, and the oxygen concentration is adjusted by the pump cell 41 based on the target value.
- the NOx sensors 21 to 23 have a one-chamber structure in which each electrode (cathode) of the pump cell 41, the sensor cell 42, and the monitor cell 43 is provided in the same gas chamber 61.
- the gas atmosphere of the monitor cell 43 and the sensor cell 42 can be switched at an early stage by adjusting the oxygen concentration of the pump cell applied voltage Vp, so that deterioration can be determined in a shorter time compared to a configuration having a plurality of chambers. .
- the slope of the sensor cell current Is during a transient change instead of the response change amount ⁇ Is of the sensor cell current Is as a parameter for determining deterioration.
- the SCUs 31 to 33 have a function of switching the pump cell applied voltage Vp to a predetermined value and determining the deterioration state of the sensor cell 42 based on a change in the sensor cell current Is accompanying the voltage switching.
- the SCUs 31 to 33 (degradation determination unit M13) determine the deterioration state of the monitor cell 43 based on the response change amount ⁇ Is of the sensor cell current Is in the state where the electromotive force feedback control is performed and the deterioration determination result of the sensor cell 42. judge.
- the deterioration determination of the sensor cell 42 performed by switching the pump cell applied voltage Vp will be briefly described with reference to FIG.
- the pump cell applied voltage Vp is switched from Vp0 to Vp1 stepwise (Vp0> Vp1).
- the pump cell current Ip is changed to a decreasing side, and the residual oxygen concentration in the gas chamber 61 is increased.
- the sensor cell current Is increases to a steady value (convergence value) through a transient response as the residual oxygen concentration increases.
- the SCUs 31 to 33 perform the deterioration determination of the sensor cell 42.
- FIG. 15 is a flowchart showing the deterioration determination process in the present embodiment. This process is performed by the SCUs 31 to 33, for example, at a predetermined cycle.
- step S31 it is determined whether or not an execution condition for deterioration determination is satisfied. However, since this process is the same as step S11 of FIG. 7, detailed description thereof is omitted. If the execution condition for the deterioration determination is satisfied, the process proceeds to the subsequent step S42. If the execution condition is not satisfied, the present process is terminated.
- step S42 the pump cell applied voltage Vp is switched from Vp0 to Vp1.
- Vp1 is a predetermined value.
- step S43 an output change amount of the sensor cell current Is after voltage switching is calculated.
- the response change amount ⁇ Is3 (see FIG. 14) is calculated from the sensor cell current Is after the current change converges.
- the output change amount of the sensor cell current Is it is also possible to calculate the slope at the time of the transient change of the sensor cell current Is.
- step S44 the response change amount ⁇ Is3 is compared with the initial value of the response change amount of the sensor cell current Is calculated in advance under the same conditions as the current voltage switching (hereinafter, referred to as the initial change amount ⁇ Isini3). Deterioration judgment is performed.
- the deterioration determination may be performed by calculating the output ratio ( ⁇ Is3 / ⁇ Isini3) based on the ratio between the response change amount ⁇ Is3 and the initial change amount ⁇ Isini3 and calculating the deterioration rate based on the output ratio.
- steps S45 and S46 electromotive force feedback control is performed to calculate the response change amount ⁇ Is1 of the sensor cell current Is (same as steps S12 and S13 described above).
- step S47 the deterioration of the monitor cell 43 is determined.
- the deterioration rate Cm of the monitor cell 43 is calculated based on the response change amount ⁇ Is1 and the initial change amount ⁇ Isini1 of the sensor cell current Is while taking into consideration the determination result in step S44 (the deterioration state of the sensor cell 42).
- the deterioration rate Cm of the monitor cell 43 is calculated on the condition that no deterioration has occurred in the sensor cell 42 (the deterioration rate of the sensor cell 42 is less than a predetermined value). In this case, if the sensor cell 42 is in a deteriorated state, the deterioration determination of the monitor cell 43 is not performed.
- the deterioration rate Cm of the monitor cell 43 is corrected based on the deterioration rate (degradation degree) of the sensor cell 42.
- the response change amount ⁇ Is of the sensor cell current Is tends to decrease both when the monitor cell 43 is deteriorated and when the sensor cell 42 is deteriorated.
- the deterioration rate Cm of the monitor cell 43 is corrected to the decreasing side. That is, the correction is made to reduce the degree of deterioration.
- step S45 and S46 current feedback control can be performed instead of the electromotive force feedback control, and the response change amount ⁇ Is2 of the sensor cell current Is can be calculated (same as the above-described steps S22 and S23).
- step S47 the deterioration rate Cm of the monitor cell 43 is calculated based on the response change amount ⁇ Is2 and the initial change amount ⁇ Isini2 of the sensor cell current Is while taking the determination result in step S44 (deterioration state of the sensor cell 42) into account. calculate.
- the specific contents are the same as described above.
- the deterioration of the monitor cell 43 is determined based on the deterioration rate of the sensor cell 42.
- the rate Cm may be corrected to the increasing side. That is, the correction is made so that the degree of deterioration becomes larger.
- the sensor cell current Is changes with a change in the residual oxygen concentration due to the voltage switching, and the deterioration state of the sensor cell 42 can be determined based on the change in the sensor cell current Is.
- the deterioration state of the monitor cell 43 is determined based on the sensor cell current Is acquired with the execution of the electromotive force feedback control while taking into account the deterioration determination result of the sensor cell 42.
- the transient change of the sensor cell current Is depends on the deterioration state of both the monitor cell 43 and the sensor cell 42, but it is possible to appropriately determine the deterioration state of the monitor cell 43 by performing the deterioration determination individually. Become.
- the initial value calculated in advance under the same conditions is used as the reference value used when performing the deterioration determination of the monitor cell 43 or the deterioration determination of the sensor cell 42, but the degree of deterioration over time can be grasped. Any other value may be used.
- a predetermined value other than the initial value a predetermined value determined according to the number of years of use, or the like can be used.
- the sensor element 40 has a single solid electrolyte body 53 and a single gas chamber 61 (one-chamber structure), but this may be changed.
- the sensor element 40 has a plurality of solid electrolyte bodies 53 and a plurality of gas chambers 61, and the pump cell 41 and the sensor cell 42 are different solid electrolyte bodies 53 and face the other gas chambers 61.
- the structure provided so that it may be sufficient. An example of such a configuration is shown in FIG.
- the sensor element 40 shown in FIG. 16 has two solid electrolyte bodies 53a and 53b arranged opposite to each other, and gas chambers 61a and 61b provided between the solid electrolyte bodies 53a and 53b.
- the gas chamber 61a communicates with the exhaust introduction port 53c
- the gas chamber 61b communicates with the gas chamber 61a via the throttle portion 71.
- the pump cell 41 has a pair of electrodes 72 and 73, and one of the electrodes 72 is provided so as to be exposed in the gas chamber 61a.
- the sensor cell 42 has an electrode 74 and a common electrode 76 that are arranged to face each other, and the monitor cell 43 has an electrode 75 and a common electrode 76 that are arranged to face each other.
- the sensor cell 42 and the monitor cell 43 are provided adjacent to each other.
- one electrode 74, 75 is provided so as to be exposed in the gas chamber 61b.
- the specific gas component to be detected may be other than NOx.
- it may be a gas sensor that detects HC or CO in the exhaust.
- oxygen in exhaust gas is discharged by the pump cell, and HC and CO are decomposed from the gas after oxygen discharge by the sensor cell to detect the HC concentration and CO concentration.
- concentration of ammonia in the gas to be detected may be detected.
- the gas sensor may use a gas other than exhaust as a gas to be detected, or may be used for applications other than automobiles.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Electrochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
A gas sensor comprises: a pump cell which, by means of the application of a voltage, adjusts the oxygen concentration in a gas being detected that has been introduced into a gas chamber; a sensor cell which detects the concentration of a specific gas component in the gas chamber after the oxygen concentration has been adjusted by the pump cell; and a monitor cell which detects the residual oxygen concentration in the gas chamber. Each SCU 31-33 is provided with: a pump cell control unit (M11) which causes the pump cell to adjust the residual oxygen concentration in such a way as to control the output from the monitor cell to a target value; an acquiring unit (M12) which acquires an output from the sensor cell, in a state in which the residual oxygen concentration has been adjusted by the pump cell control unit; and a degradation determining unit (M13) which determines the state of degradation of the monitor cell on the basis of the output from the sensor cell, acquired by the acquiring unit.
Description
本出願は、2017年5月30日に出願された日本出願番号2017-107026号に基づくもので、ここにその記載内容を援用する。
This application is based on Japanese Patent Application No. 2017-107026 filed on May 30, 2017, the contents of which are incorporated herein by reference.
本開示は、ガスセンサ制御装置に関するものである。
This disclosure relates to a gas sensor control device.
内燃機関の排気などの被検出ガス中の特定ガス成分の濃度を検出するガスセンサとして、NOx(窒素酸化物)濃度を検出するNOxセンサが知られている。NOxセンサは、例えば特許文献1に記載されるように、ポンプセル、モニタセル及びセンサセルからなる3セル構造を有しており、ポンプセルは、ガス室内に導入された排気中の酸素の排出又は汲み出しを行い、モニタセルは、ポンプセル通過後のガス室内の残留酸素濃度を検出し、センサセルは、ポンプセルを通過した後のガスからNOx濃度を検出する。
2. Description of the Related Art A NOx sensor that detects NOx (nitrogen oxide) concentration is known as a gas sensor that detects the concentration of a specific gas component in a gas to be detected such as exhaust gas from an internal combustion engine. The NOx sensor has a three-cell structure composed of a pump cell, a monitor cell, and a sensor cell as described in Patent Document 1, for example, and the pump cell discharges or pumps out oxygen in the exhaust gas introduced into the gas chamber. The monitor cell detects the residual oxygen concentration in the gas chamber after passing through the pump cell, and the sensor cell detects the NOx concentration from the gas after passing through the pump cell.
NOxセンサが劣化すると正確なNOx濃度が検出できなくなり、その結果、NOxセンサが自動車の排気系に設置される場合には排気エミッションが悪化するなどの不具合が生じるおそれがある。そこで従来、NOxセンサの劣化診断手法が提案されており、例えば特許文献1には、ポンプセルへの印加電圧を強制的に切り替えて、このときのセンサセル出力の変化量に基づいてNOxセンサの劣化を診断する手法が開示されている。
When the NOx sensor deteriorates, it becomes impossible to detect an accurate NOx concentration. As a result, when the NOx sensor is installed in an exhaust system of an automobile, there is a possibility that problems such as deterioration of exhaust emission may occur. Therefore, a NOx sensor deterioration diagnosis method has been proposed. For example, Patent Document 1 forcibly switches the applied voltage to the pump cell, and determines the deterioration of the NOx sensor based on the change amount of the sensor cell output at this time. A method for diagnosing is disclosed.
ところで、ポンプセルとセンサセルとモニタセルとを有するガスセンサでは、特定ガス成分の濃度が、センサセル出力からモニタセル出力が減算されることで算出される。ここで、モニタセルが劣化すると、モニタセルによる残留酸素濃度の検出精度が低下するため、特定ガス成分の濃度検出に影響が及ぶことが懸念される。つまり、センサセル出力とモニタセル出力との差により特定ガス成分の濃度が算出される構成では、モニタセルの劣化に伴い特定ガス成分の濃度検出の精度低下が懸念される。この点において既存技術には未だ改善の余地があると考えられる。
Incidentally, in a gas sensor having a pump cell, a sensor cell, and a monitor cell, the concentration of the specific gas component is calculated by subtracting the monitor cell output from the sensor cell output. Here, when the monitor cell is deteriorated, the detection accuracy of the residual oxygen concentration by the monitor cell is lowered, and there is a concern that the detection of the concentration of the specific gas component may be affected. That is, in the configuration in which the concentration of the specific gas component is calculated based on the difference between the sensor cell output and the monitor cell output, there is a concern that the accuracy of detecting the concentration of the specific gas component may decrease with the deterioration of the monitor cell. In this respect, there is still room for improvement in the existing technology.
本開示は、上記課題に鑑みてなされたものであり、その主たる目的は、ポンプセル、センサセル、及びモニタセルを有するガスセンサにおいてモニタセルの劣化状態を適正に判定することができるガスセンサ制御装置を提供することにある。
This indication is made in view of the above-mentioned subject, and the main purpose is to provide the gas sensor control device which can judge the deterioration state of a monitor cell appropriately in the gas sensor which has a pump cell, a sensor cell, and a monitor cell. is there.
上記課題を解決するために、本手段は、
ガス室内に導入された被検出ガス中の酸素濃度を電圧印加により調整するポンプセルと、前記ポンプセルによる酸素濃度の調整後に前記ガス室内の特定ガス成分の濃度を検出するセンサセルと、前記ガス室内の残留酸素濃度を検出するモニタセルとを有するガスセンサに適用され、前記ガスセンサに関する制御を実施する制御装置であって、
前記モニタセルの出力を目標値に制御すべく、前記ポンプセルにより前記残留酸素濃度の調整を行わせるポンプセル制御部と、
前記ポンプセル制御部により前記残留酸素濃度が調整された状態において、前記センサセルの出力を取得する取得部と、
前記取得部により取得された前記センサセルの出力に基づいて、前記モニタセルの劣化状態を判定する劣化判定部と、
を備える。 In order to solve the above problems, this means
A pump cell that adjusts the oxygen concentration in the gas to be detected introduced into the gas chamber by applying a voltage, a sensor cell that detects the concentration of a specific gas component in the gas chamber after the oxygen concentration is adjusted by the pump cell, and a residual in the gas chamber A control device that is applied to a gas sensor having a monitor cell that detects an oxygen concentration and performs control related to the gas sensor,
A pump cell control unit for adjusting the residual oxygen concentration by the pump cell in order to control the output of the monitor cell to a target value;
In a state where the residual oxygen concentration is adjusted by the pump cell control unit, an acquisition unit that acquires the output of the sensor cell;
A deterioration determination unit that determines a deterioration state of the monitor cell based on the output of the sensor cell acquired by the acquisition unit;
Is provided.
ガス室内に導入された被検出ガス中の酸素濃度を電圧印加により調整するポンプセルと、前記ポンプセルによる酸素濃度の調整後に前記ガス室内の特定ガス成分の濃度を検出するセンサセルと、前記ガス室内の残留酸素濃度を検出するモニタセルとを有するガスセンサに適用され、前記ガスセンサに関する制御を実施する制御装置であって、
前記モニタセルの出力を目標値に制御すべく、前記ポンプセルにより前記残留酸素濃度の調整を行わせるポンプセル制御部と、
前記ポンプセル制御部により前記残留酸素濃度が調整された状態において、前記センサセルの出力を取得する取得部と、
前記取得部により取得された前記センサセルの出力に基づいて、前記モニタセルの劣化状態を判定する劣化判定部と、
を備える。 In order to solve the above problems, this means
A pump cell that adjusts the oxygen concentration in the gas to be detected introduced into the gas chamber by applying a voltage, a sensor cell that detects the concentration of a specific gas component in the gas chamber after the oxygen concentration is adjusted by the pump cell, and a residual in the gas chamber A control device that is applied to a gas sensor having a monitor cell that detects an oxygen concentration and performs control related to the gas sensor,
A pump cell control unit for adjusting the residual oxygen concentration by the pump cell in order to control the output of the monitor cell to a target value;
In a state where the residual oxygen concentration is adjusted by the pump cell control unit, an acquisition unit that acquires the output of the sensor cell;
A deterioration determination unit that determines a deterioration state of the monitor cell based on the output of the sensor cell acquired by the acquisition unit;
Is provided.
ポンプセルとセンサセルとモニタセルとを有するガスセンサでは、ガス室内の残留酸素濃度がポンプセルにより調整され、その調整後において、センサセルにより特定ガス成分の濃度が検出され、モニタセルにより残留酸素濃度が検出される。ここで、特定ガス成分の濃度が、センサセル出力とモニタセル出力との差により算出されることからすると、モニタセルの劣化に伴い残留酸素濃度の検出精度が低下するため、特定ガス成分の濃度検出に影響が及ぶと考えられる。そのため、モニタセルの劣化状態を把握することが重要であると考えられる。
In a gas sensor having a pump cell, a sensor cell, and a monitor cell, the residual oxygen concentration in the gas chamber is adjusted by the pump cell. After the adjustment, the concentration of the specific gas component is detected by the sensor cell, and the residual oxygen concentration is detected by the monitor cell. Here, if the concentration of the specific gas component is calculated from the difference between the sensor cell output and the monitor cell output, the detection accuracy of the residual oxygen concentration decreases with the deterioration of the monitor cell, which affects the detection of the concentration of the specific gas component. It is thought that it reaches. Therefore, it is considered important to grasp the deterioration state of the monitor cell.
この点、上記構成では、モニタセルの出力を目標値に制御すべく、ポンプセルにより残留酸素濃度の調整が行われ、残留酸素濃度が調整された状態において、センサセルの出力が取得される。そして、そのセンサセルの出力に基づいて、モニタセルの劣化状態が判定される。仮にモニタセルが劣化していると、モニタセル出力を目標値に制御した状態においてガス室内の残留酸素濃度が過大又は過小となり、その影響によってセンサセル出力が変動するため、そのセンサセル出力を用いてモニタセルの劣化状態の判定が可能となる。その結果、ポンプセル、センサセル、及びモニタセルを有するガスセンサにおいてモニタセルの劣化状態を適正に判定することができる。
In this regard, in the above configuration, the residual oxygen concentration is adjusted by the pump cell so as to control the output of the monitor cell to the target value, and the output of the sensor cell is acquired in a state where the residual oxygen concentration is adjusted. Based on the output of the sensor cell, the deterioration state of the monitor cell is determined. If the monitor cell has deteriorated, the residual oxygen concentration in the gas chamber becomes too large or too small in a state where the monitor cell output is controlled to the target value, and the sensor cell output fluctuates due to the influence. The state can be determined. As a result, it is possible to appropriately determine the deterioration state of the monitor cell in the gas sensor having the pump cell, the sensor cell, and the monitor cell.
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、エンジン排気系のシステム構成を示す図であり、
図2は、NOxセンサの構成を示す断面図であり、
図3は、図2のIII-III断面を示す断面図であり、
図4は、SCU及びECUの機能ブロック図であり、
図5は、(a)はモニタセルの起電力特性を示す図、(b)は劣化状態での起電力特性を示す図、(c)は(b)のX部分を拡大して示す図であり、
図6は、起電力フィードバック制御の開始に伴うセンサセル電流の変化を示すタイムチャートであり、
図7は、起電力フィードバック制御を実施する場合におけるセンサ劣化判定の処理手順を示すフローチャートであり、
図8は、(a)は、出力比とモニタセルの劣化率との関係を示す図、(b)は、出力比とセンサセルの劣化率との関係を示す図であり、
図9は、モニタセルの電流特性を示す図であり、
図10は、電流フィードバック制御の開始に伴うセンサセル電流の変化を示すタイムチャートであり、
図11は、電流フィードバック制御を実施する場合におけるセンサ劣化判定の処理手順を示すフローチャートであり、
図12は、起電力フィードバック制御及び電流フィードバック制御と、モニタセル劣化時及びセンサセル劣化時との関係を示す図であり、
図13は、起電力フィードバック制御及び電流フィードバック制御を実施する場合におけるセンサ劣化判定の処理手順を示すフローチャートであり、
図14は、センサセルの劣化に伴うセンサセル出力の過渡特性の変化を説明するための図であり、
図15は、第2実施形態における劣化判定処理を示すフローチャートであり、
図16は、他のNOxセンサの構成を示す断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram showing a system configuration of an engine exhaust system. FIG. 2 is a cross-sectional view showing the configuration of the NOx sensor, FIG. 3 is a cross-sectional view showing a III-III cross section of FIG. FIG. 4 is a functional block diagram of the SCU and ECU. 5A is a diagram showing electromotive force characteristics of a monitor cell, FIG. 5B is a diagram showing electromotive force characteristics in a deteriorated state, and FIG. 5C is an enlarged view of an X portion of FIG. 5B. , FIG. 6 is a time chart showing changes in sensor cell current accompanying the start of electromotive force feedback control. FIG. 7 is a flowchart showing a processing procedure for sensor deterioration determination in the case of performing electromotive force feedback control. FIG. 8A is a diagram showing a relationship between the output ratio and the deterioration rate of the monitor cell, and FIG. 8B is a diagram showing a relationship between the output ratio and the deterioration rate of the sensor cell. FIG. 9 is a diagram showing current characteristics of the monitor cell, FIG. 10 is a time chart showing changes in sensor cell current accompanying the start of current feedback control. FIG. 11 is a flowchart showing a processing procedure for sensor deterioration determination when current feedback control is performed. FIG. 12 is a diagram showing a relationship between electromotive force feedback control and current feedback control, and monitor cell deterioration and sensor cell deterioration. FIG. 13 is a flowchart showing a processing procedure for sensor deterioration determination in the case of performing electromotive force feedback control and current feedback control. FIG. 14 is a diagram for explaining changes in the transient characteristics of the sensor cell output accompanying the deterioration of the sensor cell. FIG. 15 is a flowchart showing the deterioration determination process in the second embodiment. FIG. 16 is a cross-sectional view showing the configuration of another NOx sensor.
以下、実施形態を図面に基づいて説明する。本実施形態では、車載のディーゼルエンジンから排出される排気を被検出ガスとし、その排気中のNOx濃度をNOxセンサにより検出するシステムにおいて、NOxセンサに関する制御を実施するガスセンサ制御装置を具体化するものとしている。なお、以下の各実施形態相互において、互いに同一又は均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
Hereinafter, embodiments will be described with reference to the drawings. This embodiment embodies a gas sensor control device that performs control related to a NOx sensor in a system in which exhaust gas discharged from an on-board diesel engine is detected gas and the NOx concentration in the exhaust gas is detected by a NOx sensor. It is said. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings, and the description of the same reference numerals is used.
(第1実施形態)
図1に示すように、ディーゼルエンジンであるエンジン10の排気側には、排気を浄化する排気浄化システムが設けられている。排気浄化システムの構成として、エンジン10には排気通路を形成する排気管11が接続されており、その排気管11には、エンジン10側から順に酸化触媒コンバータ12と選択還元触媒コンバータ(以下、SCR触媒コンバータという)13とが設けられている。酸化触媒コンバータ12は、ディーゼル酸化触媒14と、DPF(Diesel Particulate Filter)15とを有している。SCR触媒コンバータ13は、選択還元型の触媒としてSCR触媒16を有している。また、排気管11において酸化触媒コンバータ12とSCR触媒コンバータ13との間には、還元剤としての尿素水(尿素水溶液)を排気管11内に添加供給するための尿素水添加弁17が設けられている。 (First embodiment)
As shown in FIG. 1, an exhaust gas purification system that purifies exhaust gas is provided on the exhaust side of anengine 10 that is a diesel engine. As an exhaust purification system configuration, an exhaust pipe 11 that forms an exhaust passage is connected to the engine 10, and an oxidation catalytic converter 12 and a selective catalytic reduction converter (hereinafter referred to as SCR) are connected to the exhaust pipe 11 in order from the engine 10 side. 13) (referred to as a catalytic converter). The oxidation catalyst converter 12 includes a diesel oxidation catalyst 14 and a DPF (Diesel Particulate Filter) 15. The SCR catalytic converter 13 has an SCR catalyst 16 as a selective reduction type catalyst. Further, a urea water addition valve 17 for adding and supplying urea water (urea aqueous solution) as a reducing agent into the exhaust pipe 11 is provided between the oxidation catalytic converter 12 and the SCR catalytic converter 13 in the exhaust pipe 11. ing.
図1に示すように、ディーゼルエンジンであるエンジン10の排気側には、排気を浄化する排気浄化システムが設けられている。排気浄化システムの構成として、エンジン10には排気通路を形成する排気管11が接続されており、その排気管11には、エンジン10側から順に酸化触媒コンバータ12と選択還元触媒コンバータ(以下、SCR触媒コンバータという)13とが設けられている。酸化触媒コンバータ12は、ディーゼル酸化触媒14と、DPF(Diesel Particulate Filter)15とを有している。SCR触媒コンバータ13は、選択還元型の触媒としてSCR触媒16を有している。また、排気管11において酸化触媒コンバータ12とSCR触媒コンバータ13との間には、還元剤としての尿素水(尿素水溶液)を排気管11内に添加供給するための尿素水添加弁17が設けられている。 (First embodiment)
As shown in FIG. 1, an exhaust gas purification system that purifies exhaust gas is provided on the exhaust side of an
酸化触媒コンバータ12において、ディーゼル酸化触媒14は、主としてセラミック製の担体と、酸化アルミニウム、二酸化セリウム及び二酸化ジルコニウムを成分とする酸化物混合物、並びに白金、パラジウム、ロジウムといった貴金属触媒で構成されている。ディーゼル酸化触媒14は、排気に含まれる炭化水素、一酸化炭素、窒素酸化物などを酸化させ浄化する。また、ディーゼル酸化触媒14は、触媒反応の際に発生する熱により排気温度を上昇させる。
In the oxidation catalyst converter 12, the diesel oxidation catalyst 14 is mainly composed of a ceramic carrier, an oxide mixture containing aluminum oxide, cerium dioxide and zirconium dioxide as components, and a noble metal catalyst such as platinum, palladium and rhodium. The diesel oxidation catalyst 14 oxidizes and purifies hydrocarbons, carbon monoxide, nitrogen oxides and the like contained in the exhaust gas. Further, the diesel oxidation catalyst 14 raises the exhaust temperature by heat generated during the catalytic reaction.
DPF15は、ハニカム構造体により形成され、多孔質セラミックに白金やパラジウムなどの白金族触媒が担持されることで構成されている。DPF15は、排気中に含まれる粒子状物質をハニカム構造体の隔壁に堆積させることで捕集する。堆積した粒子状物質は、燃焼によって酸化され浄化される。この燃焼には、ディーゼル酸化触媒14における温度上昇や、添加剤による粒子状物質の燃焼温度低下が利用される。
The DPF 15 is formed of a honeycomb structure, and is configured by supporting a platinum group catalyst such as platinum or palladium on a porous ceramic. The DPF 15 collects particulate matter contained in the exhaust gas by depositing it on the partition walls of the honeycomb structure. The deposited particulate matter is oxidized and purified by combustion. For this combustion, a temperature increase in the diesel oxidation catalyst 14 or a decrease in the combustion temperature of the particulate matter due to the additive is used.
SCR触媒コンバータ13は、酸化触媒コンバータ12の後処理装置としてNOxを窒素と水に還元する装置であって、SCR触媒16としては、例えばゼオライト又はアルミナなどの基材表面にPtなどの貴金属を担持した触媒が用いられる。SCR触媒16は、触媒温度が活性温度域にある場合に、還元剤としての尿素が添加されることによりNOxを還元浄化する。
The SCR catalytic converter 13 is a device for reducing NOx to nitrogen and water as a post-treatment device for the oxidation catalytic converter 12, and the SCR catalyst 16 carries a noble metal such as Pt on the surface of a base material such as zeolite or alumina. The catalyst used is used. The SCR catalyst 16 reduces and purifies NOx by adding urea as a reducing agent when the catalyst temperature is in the activation temperature range.
排気管11において、酸化触媒コンバータ12の上流側、酸化触媒コンバータ12とSCR触媒コンバータ13との間であって尿素水添加弁17の上流側、SCR触媒コンバータ13の下流側には、ガスセンサとして限界電流式のNOxセンサ21,22,23がそれぞれ設けられている。NOxセンサ21~23は、それぞれの検出位置において排気中のNOx濃度を検出する。なお、エンジン排気系におけるNOxセンサの位置及び個数は任意でよい。
In the exhaust pipe 11, there is a limit as a gas sensor on the upstream side of the oxidation catalytic converter 12, between the oxidation catalytic converter 12 and the SCR catalytic converter 13, upstream of the urea water addition valve 17, and downstream of the SCR catalytic converter 13. Current- type NOx sensors 21, 22, and 23 are provided, respectively. The NOx sensors 21 to 23 detect the NOx concentration in the exhaust gas at the respective detection positions. The position and number of NOx sensors in the engine exhaust system may be arbitrary.
NOxセンサ21~23には、それぞれSCU(Sensor Control Unit)31,32,33が接続されており、NOxセンサ21~23の検出信号は、センサごとにSCU31~33に適宜出力される。SCU31~33は、CPUや各種メモリを有するマイコンとその周辺回路とを具備する電子制御装置であり、NOxセンサ21~23の検出信号(限界電流信号)に基づいて、排気中の酸素(O2)濃度や特定ガス成分の濃度としてのNOx濃度等を算出する。
SCUs (Sensor Control Units) 31, 32, and 33 are connected to the NOx sensors 21 to 23, and the detection signals of the NOx sensors 21 to 23 are appropriately output to the SCUs 31 to 33 for each sensor. The SCUs 31 to 33 are electronic control devices including a CPU and a microcomputer having various memories and peripheral circuits thereof, and oxygen (O2) in exhaust gas based on detection signals (limit current signals) of the NOx sensors 21 to 23. The concentration and the NOx concentration as the concentration of the specific gas component are calculated.
SCU31~33は、CANバス等の通信線34に接続され、その通信線34を介して各種ECU(例えばエンジンECU35)に接続されている。つまり、SCU31~33とエンジンECU35とは通信線34を用いて相互に情報の授受が可能となっている。SCU31~33からエンジンECU35に対しては、例えば排気中の酸素濃度やNOx濃度の情報が送信される。エンジンECU35は、CPUや各種メモリを有するマイコンとその周辺回路とを具備する電子制御装置であり、エンジン10や排気系の各種装置を制御する。エンジンECU35は、例えばアクセル開度やエンジン回転速度に基づいて燃料噴射制御等を実施する。
The SCUs 31 to 33 are connected to a communication line 34 such as a CAN bus, and are connected to various ECUs (for example, an engine ECU 35) via the communication line 34. That is, the SCUs 31 to 33 and the engine ECU 35 can exchange information with each other using the communication line 34. For example, information on oxygen concentration and NOx concentration in exhaust gas is transmitted from the SCUs 31 to 33 to the engine ECU 35. The engine ECU 35 is an electronic control device including a CPU, a microcomputer having various memories, and its peripheral circuits, and controls the engine 10 and various devices in the exhaust system. The engine ECU 35 performs fuel injection control and the like based on, for example, the accelerator opening and the engine speed.
また、エンジンECU35は、各NOxセンサ21~23により検出されるNOx濃度に基づいて、尿素水添加弁17による尿素水添加の制御を実施する。その尿素水添加の制御を略述すると、エンジンECU35は、SCR触媒コンバータ13の上流側のNOxセンサ21,22により検出されるNOx濃度に基づいて尿素水添加量を算出するとともに、SCR触媒コンバータ13の下流側のNOxセンサ23により検出されるNOx濃度が極力小さい値となるように尿素水添加量をフィードバック補正する。そして、その尿素水添加量に基づいて、尿素水添加弁17の駆動を制御する。
Further, the engine ECU 35 performs urea water addition control by the urea water addition valve 17 based on the NOx concentration detected by each of the NOx sensors 21 to 23. Briefly describing the control of the urea water addition, the engine ECU 35 calculates the urea water addition amount based on the NOx concentration detected by the NOx sensors 21 and 22 on the upstream side of the SCR catalytic converter 13, and the SCR catalytic converter 13. The urea water addition amount is feedback-corrected so that the NOx concentration detected by the downstream NOx sensor 23 becomes as small as possible. Based on the urea water addition amount, the driving of the urea water addition valve 17 is controlled.
次に、NOxセンサ21~23の構成について説明する。各NOxセンサ21~23はいずれも同じ構成を有しており、ここではNOxセンサ21についてその構成を説明する。図2及び図3は、NOxセンサ21を構成するセンサ素子40の内部構造を示す図である。なお、図の左右方向がセンサ素子40の長手方向であり、図の左側が素子先端側である。センサ素子40は、ポンプセル41、センサセル42及びモニタセル43からなる、いわゆる3セル構造を有している。なお、モニタセル43は、ポンプセル41同様、ガス中の酸素排出の機能を具備しており、補助ポンプセル又は第2ポンプセルと称される場合もある。
Next, the configuration of the NOx sensors 21 to 23 will be described. Each of the NOx sensors 21 to 23 has the same configuration, and the configuration of the NOx sensor 21 will be described here. 2 and 3 are views showing the internal structure of the sensor element 40 constituting the NOx sensor 21. FIG. In addition, the left-right direction of a figure is a longitudinal direction of the sensor element 40, and the left side of a figure is an element front end side. The sensor element 40 has a so-called three-cell structure including a pump cell 41, a sensor cell 42 and a monitor cell 43. The monitor cell 43 has a function of discharging oxygen in the gas, like the pump cell 41, and may be referred to as an auxiliary pump cell or a second pump cell.
センサ素子40は、アルミナ等の絶縁体よりなる第1本体部51及び第2本体部52と、それら本体部51,52の間に配置される固体電解質体53と、拡散抵抗体54と、ポンプセル電極55と、センサセル電極56と、モニタセル電極57と、共通電極58と、ヒータ59とを備えている。第1本体部51と固体電解質体53との間に、濃度計側室であるガス室61が形成され、第2本体部52と固体電解質体53との間に、基準ガス室である大気室62が形成されている。
The sensor element 40 includes a first main body 51 and a second main body 52 made of an insulator such as alumina, a solid electrolyte body 53 disposed between the main bodies 51 and 52, a diffusion resistor 54, and a pump cell. An electrode 55, a sensor cell electrode 56, a monitor cell electrode 57, a common electrode 58, and a heater 59 are provided. A gas chamber 61 that is a concentration meter side chamber is formed between the first main body 51 and the solid electrolyte body 53, and an atmospheric chamber 62 that is a reference gas chamber is formed between the second main body 52 and the solid electrolyte body 53. Is formed.
ポンプセル41は、ガス室61内に導入された排気中の酸素濃度を調整するものであり、ポンプセル電極55と共通電極58と固体電解質体53の一部とにより形成されている。センサセル42は、センサセル電極56と共通電極58との間に流れる酸素イオン電流に基づいてガス室61における所定のガス成分の濃度(NOx濃度)を検出するものであり、センサセル電極56と共通電極58と固体電解質体53の一部とにより形成されている。モニタセル43は、モニタセル電極57と共通電極58との間に流れる酸素イオン電流に基づいてガス室61における残留酸素濃度を検出するものであり、モニタセル電極57と共通電極58と固体電解質体53の一部とにより形成されている。
The pump cell 41 adjusts the oxygen concentration in the exhaust gas introduced into the gas chamber 61, and is formed by the pump cell electrode 55, the common electrode 58, and a part of the solid electrolyte body 53. The sensor cell 42 detects the concentration (NOx concentration) of a predetermined gas component in the gas chamber 61 based on an oxygen ion current flowing between the sensor cell electrode 56 and the common electrode 58. The sensor cell electrode 56 and the common electrode 58 And a part of the solid electrolyte body 53. The monitor cell 43 detects the residual oxygen concentration in the gas chamber 61 on the basis of the oxygen ion current flowing between the monitor cell electrode 57 and the common electrode 58, and one of the monitor cell electrode 57, the common electrode 58, and the solid electrolyte body 53. Part.
固体電解質体53は板状の部材であって、酸化ジルコニア等の酸素イオン伝導性固体電解質材料によって構成されている。第1本体部51と第2本体部52とは、固体電解質体53を挟んでその両側に配置されている。第1本体部51は、固体電解質体53の側が段差状となっており、その段差により形成された凹部がガス室61となっている。第1本体部51の凹部の一側面は開放されており、その開放された一側面に拡散抵抗体54が配置されている。拡散抵抗体54は、多孔質材料又は細孔が形成された材料よりなる。拡散抵抗体54の作用により、ガス室61に導入される排気の速度が律せされる。
The solid electrolyte body 53 is a plate-like member and is made of an oxygen ion conductive solid electrolyte material such as zirconia oxide. The first main body 51 and the second main body 52 are arranged on both sides of the solid electrolyte body 53. The first main body 51 has a stepped shape on the solid electrolyte body 53 side, and a recess formed by the step is a gas chamber 61. One side surface of the concave portion of the first main body 51 is open, and the diffusion resistor 54 is disposed on the open side surface. The diffusion resistor 54 is made of a porous material or a material in which pores are formed. The speed of the exhaust gas introduced into the gas chamber 61 is regulated by the action of the diffusion resistor 54.
第2本体部52も同様に、固体電解質体53の側が段差状となっており、その段差により形成された凹部が大気室62なっている。大気室62の一側面は開放されている。固体電解質体53側から大気室62内に導入される気体は大気に放出される。
Similarly, the second main body portion 52 has a stepped shape on the solid electrolyte body 53 side, and a concave portion formed by the step is an atmospheric chamber 62. One side of the atmospheric chamber 62 is open. The gas introduced into the atmospheric chamber 62 from the solid electrolyte body 53 side is released to the atmosphere.
固体電解質体53においてガス室61に臨む面には、陰極側のポンプセル電極55とセンサセル電極56とモニタセル電極57とが設けられている。この場合、ポンプセル電極55は、拡散抵抗体54に近いガス室61の入口側、すなわちガス室61内の上流側に配置され、センサセル電極56及びモニタセル電極57は、ポンプセル電極55を挟んで拡散抵抗体54の反対側、すなわちガス室61内の下流側に配置されている。ポンプセル電極55は、センサセル電極56及びモニタセル電極57に比べて大きい表面積を有する。センサセル電極56及びモニタセル電極57は、互いに近接した位置であって、排気の流れ方向に対して同等となる位置に並べて配置されている。ポンプセル電極55とモニタセル電極57とは、NOxに不活性なAu-Pt等の貴金属からなる電極(NOxを分解し難い電極)であるのに対し、センサセル電極56はNOxに活性な白金Pt、ロジウムRh等の貴金属からなる電極である。
On the surface facing the gas chamber 61 of the solid electrolyte body 53, a pump cell electrode 55, a sensor cell electrode 56, and a monitor cell electrode 57 on the cathode side are provided. In this case, the pump cell electrode 55 is disposed on the inlet side of the gas chamber 61 close to the diffusion resistor 54, that is, on the upstream side in the gas chamber 61, and the sensor cell electrode 56 and the monitor cell electrode 57 have a diffusion resistance across the pump cell electrode 55. It is disposed on the opposite side of the body 54, that is, on the downstream side in the gas chamber 61. The pump cell electrode 55 has a larger surface area than the sensor cell electrode 56 and the monitor cell electrode 57. The sensor cell electrode 56 and the monitor cell electrode 57 are arranged side by side at positions close to each other and equivalent to the exhaust flow direction. The pump cell electrode 55 and the monitor cell electrode 57 are electrodes made of a noble metal such as Au—Pt that is inactive to NOx (electrodes that are difficult to decompose NOx), whereas the sensor cell electrode 56 is platinum Pt and rhodium that are active to NOx. It is an electrode made of a noble metal such as Rh.
また、固体電解質体53において大気室62に臨む面には、陰極側の各電極55~57に対応する位置に、陽極側となる共通電極58が設けられている。
A common electrode 58 on the anode side is provided on the surface of the solid electrolyte body 53 facing the atmospheric chamber 62 at a position corresponding to each of the electrodes 55 to 57 on the cathode side.
ポンプセル電極55と共通電極58との間に電圧が印加されると、ガス室61内の排気中に含まれる酸素が陰極側のポンプセル電極55にてイオン化される。そして、酸素イオンが陽極側の共通電極58に向けて固体電解質体53内を移動し、共通電極58において電荷が放出されることで酸素となり、大気室62に排出される。これにより、ガス室61内が所定の低酸素状態に保持される。
When a voltage is applied between the pump cell electrode 55 and the common electrode 58, oxygen contained in the exhaust gas in the gas chamber 61 is ionized at the pump cell electrode 55 on the cathode side. Then, oxygen ions move in the solid electrolyte body 53 toward the common electrode 58 on the anode side, and electric charges are released from the common electrode 58 to become oxygen, which is discharged into the atmospheric chamber 62. Thereby, the inside of the gas chamber 61 is maintained in a predetermined low oxygen state.
ポンプセル41の印加電圧(すなわちポンプセル電極55と共通電極58との間の印加電圧)が高いほど、ポンプセル41によって排気中から排出される酸素の量が多くなる。逆にポンプセル41の印加電圧が低いほど、ポンプセル41によって排気から排出される酸素の量が少なくなる。したがって、ポンプセル41の印加電圧を増減することで、後段のセンサセル42及びモニタセル43に流れる排気中の残留酸素の量を増減させることができる。本実施形態では、ポンプセル41に印加される電圧をポンプセル印加電圧Vpとし、ポンプセル41の電圧印加状態で出力される電流をポンプセル電流Ipとする。
The higher the applied voltage of the pump cell 41 (that is, the applied voltage between the pump cell electrode 55 and the common electrode 58), the greater the amount of oxygen discharged from the exhaust gas by the pump cell 41. Conversely, the lower the applied voltage of the pump cell 41, the smaller the amount of oxygen discharged from the exhaust by the pump cell 41. Therefore, by increasing or decreasing the applied voltage of the pump cell 41, the amount of residual oxygen in the exhaust gas flowing through the sensor cell 42 and the monitor cell 43 in the subsequent stage can be increased or decreased. In the present embodiment, a voltage applied to the pump cell 41 is a pump cell applied voltage Vp, and a current output when the pump cell 41 is in a voltage applied state is a pump cell current Ip.
モニタセル43は、ポンプセル41により酸素が排出された状態でガス室61内に残留する酸素濃度を検出する。このとき、モニタセル43は、残留酸素濃度の検出信号として、電圧印加に伴い生じる電流信号、又はガス室61内の残留酸素濃度に応じた起電力信号を出力する。モニタセル43の出力は、SCU31~33においてモニタセル電流Im、又はモニタセル起電力Vmとして取得される。
The monitor cell 43 detects the oxygen concentration remaining in the gas chamber 61 in a state where oxygen is exhausted by the pump cell 41. At this time, the monitor cell 43 outputs a current signal generated with voltage application or an electromotive force signal corresponding to the residual oxygen concentration in the gas chamber 61 as a residual oxygen concentration detection signal. The output of the monitor cell 43 is acquired by the SCUs 31 to 33 as the monitor cell current Im or the monitor cell electromotive force Vm.
センサセル42は、ポンプセル41により酸素が排出された状態で、電圧印加に伴い排気中のNOxを還元分解し、ガス室61内のNOx濃度及び残留酸素濃度に応じた電流信号を出力する。センサセル42の出力は、SCU31~33においてセンサセル電流Isとして取得される。SCU31~33では、センサセル電流Isにより、排気中のNOx濃度が算出される。
The sensor cell 42 reduces and decomposes NOx in the exhaust gas according to voltage application in a state where oxygen is exhausted by the pump cell 41, and outputs a current signal corresponding to the NOx concentration and the residual oxygen concentration in the gas chamber 61. The output of the sensor cell 42 is acquired as the sensor cell current Is in the SCUs 31 to 33. In the SCUs 31 to 33, the NOx concentration in the exhaust gas is calculated from the sensor cell current Is.
ところで、ポンプセル41とセンサセル42とモニタセル43とを有するNOxセンサ21~23によるNOx濃度の検出では、センサセル電流Isからモニタセル電流Imが減算されることで排気中のNOx濃度が算出される。かかる場合において、モニタセル43が劣化すると、モニタセル電流Imの精度が低下するため、NOx濃度検出に影響が及ぶことが懸念される。そこで本実施形態では、モニタセル43を判定対象として、劣化判定を実施することとしている。なお、NOxセンサ21~23ごとに設けられる各SCU31~33はいずれも同様の機能を有している。
Incidentally, in the detection of the NOx concentration by the NOx sensors 21 to 23 having the pump cell 41, the sensor cell 42 and the monitor cell 43, the NOx concentration in the exhaust gas is calculated by subtracting the monitor cell current Im from the sensor cell current Is. In such a case, if the monitor cell 43 deteriorates, the accuracy of the monitor cell current Im decreases, and there is a concern that the NOx concentration detection may be affected. Therefore, in this embodiment, the deterioration determination is performed with the monitor cell 43 as a determination target. Each of the SCUs 31 to 33 provided for each of the NOx sensors 21 to 23 has the same function.
図4は、SCU31~33及びエンジンECU35の機能を説明するための機能ブロック図である。SCU31~33は、モニタセル出力(Vm,Im)を目標値に制御すべく、ポンプセル41によりガス室61内の残留酸素濃度の調整を行わせるポンプセル制御部M11と、ポンプセル制御部M11により残留酸素濃度が調整された状態において、センサセル出力(Is)を取得する取得部M12と、取得部M12により取得されたセンサセル出力に基づいて、モニタセル43の劣化状態を判定する劣化判定部M13と、を備えている。なお本実施形態において、NOxセンサ21~23は、モニタセル出力として、ガス室61内の残留酸素濃度に応じたモニタセル起電力Vmを生じさせることと、モニタセル43に電圧印加した状態でガス室61内の残留酸素濃度に応じたモニタセル電流Imを生じさせることとを可能としている。SCU31~33では、モニタセル起電力Vmやモニタセル電流Im、センサセル電流Is、ポンプセル電流Ip等が適宜検出される。そして、劣化判定部M13は、モニタセル43、又はモニタセル43及びセンサセル42を判定対象として、NOxセンサ21~23の劣化判定を実施する。
FIG. 4 is a functional block diagram for explaining the functions of the SCUs 31 to 33 and the engine ECU 35. The SCUs 31 to 33 adjust the residual oxygen concentration in the gas chamber 61 by the pump cell 41 and the residual oxygen concentration by the pump cell control unit M11 in order to control the monitor cell outputs (Vm, Im) to the target values. In a state in which is adjusted, an acquisition unit M12 that acquires the sensor cell output (Is) and a deterioration determination unit M13 that determines the deterioration state of the monitor cell 43 based on the sensor cell output acquired by the acquisition unit M12 are provided. Yes. In this embodiment, the NOx sensors 21 to 23 generate the monitor cell electromotive force Vm corresponding to the residual oxygen concentration in the gas chamber 61 as the monitor cell output, and the voltage applied to the monitor cell 43 in the gas chamber 61 It is possible to generate a monitor cell current Im corresponding to the residual oxygen concentration. In the SCUs 31 to 33, the monitor cell electromotive force Vm, the monitor cell current Im, the sensor cell current Is, the pump cell current Ip, and the like are appropriately detected. Then, the deterioration determination unit M13 performs the deterioration determination of the NOx sensors 21 to 23 with the monitor cell 43 or the monitor cell 43 and the sensor cell 42 as determination targets.
ポンプセル制御部M11は、モニタセル起電力Vmを目標値Vmtgに制御する起電力フィードバック制御(VmF/B制御)を実施することで、ポンプセル41により残留酸素濃度の調整を行わせる。このとき、ポンプセル制御部M11は、実際のモニタセル起電力Vmと目標値Vmtgとの偏差に基づいてポンプセル印加電圧Vpを設定し、そのポンプセル印加電圧Vpにて電圧印加を実施する。
The pump cell control unit M11 causes the pump cell 41 to adjust the residual oxygen concentration by performing electromotive force feedback control (VmF / B control) for controlling the monitor cell electromotive force Vm to the target value Vmtg. At this time, the pump cell control unit M11 sets the pump cell applied voltage Vp based on the deviation between the actual monitor cell electromotive force Vm and the target value Vmtg, and performs voltage application at the pump cell applied voltage Vp.
また、ポンプセル制御部M11は、モニタセル電流Imを目標値Imtgに制御する電流フィードバック制御(ImF/B制御)を実施することで、ポンプセル41により残留酸素濃度の調整を行わせる。このとき、ポンプセル制御部M11は、実際のモニタセル電流Imと目標値Imtgとの偏差に基づいてポンプセル印加電圧Vpを設定し、そのポンプセル印加電圧Vpにてポンプセル41への電圧印加を実施する。こうしたポンプセル印加電圧Vpの制御によって、ポンプセル41において残留酸素濃度の調整が適宜行われる。なお、起電力フィードバック制御が「起電力制御」に相当し、電流フィードバック制御が「モニタセル電流制御」に相当する。
Moreover, the pump cell control unit M11 causes the pump cell 41 to adjust the residual oxygen concentration by performing current feedback control (ImF / B control) for controlling the monitor cell current Im to the target value Imtg. At this time, the pump cell control unit M11 sets the pump cell application voltage Vp based on the deviation between the actual monitor cell current Im and the target value Imtg, and performs voltage application to the pump cell 41 with the pump cell application voltage Vp. The residual oxygen concentration is appropriately adjusted in the pump cell 41 by controlling the pump cell applied voltage Vp. The electromotive force feedback control corresponds to “electromotive force control”, and the current feedback control corresponds to “monitor cell current control”.
取得部M12は、起電力フィードバック制御により残留酸素濃度が調整された状態におけるセンサセル出力として、その起電力フィードバック制御により応答変化するセンサセル電流Isを取得する。また、電流フィードバック制御により残留酸素濃度が調整された状態におけるセンサセル出力として、その電流フィードバック制御により応答変化するセンサセル電流Isを取得する。
The acquisition unit M12 acquires the sensor cell current Is that changes in response by the electromotive force feedback control as the sensor cell output in a state where the residual oxygen concentration is adjusted by the electromotive force feedback control. In addition, as the sensor cell output in a state where the residual oxygen concentration is adjusted by the current feedback control, the sensor cell current Is that changes in response by the current feedback control is acquired.
劣化判定部M13は、起電力フィードバック制御の実施時に取得されたセンサセル電流Isと、電流フィードバック制御の実施時に取得されたセンサセル電流Isとの少なくともいずれかを用いて、モニタセル43やセンサセル42について劣化判定を実施する。劣化判定部M13は、例えば、センサセル電流Isの応答変化量ΔIsに基づいてモニタセル43の劣化率Cmを算出する一方で、センサセル電流Isの応答変化量ΔIsに基づいてセンサセル42の劣化率Csを算出する。
The degradation determination unit M13 determines degradation of the monitor cell 43 and the sensor cell 42 using at least one of the sensor cell current Is acquired when the electromotive force feedback control is performed and the sensor cell current Is acquired when the current feedback control is performed. To implement. For example, the deterioration determination unit M13 calculates the deterioration rate Cm of the monitor cell 43 based on the response change amount ΔIs of the sensor cell current Is, while calculating the deterioration rate Cs of the sensor cell 42 based on the response change amount ΔIs of the sensor cell current Is. To do.
また、エンジンECU35は、各SCU31~33の劣化判定結果に基づいてエミッション悪化による異常を判定する異常判定部M21を有している。異常判定部M21は、各SCU31~33の劣化判定部M13にて算出されたモニタセル43の劣化率Cmやセンサセル42の劣化率Csに基づいて、エンジンエミッションの異常を判定する。なお、これらの劣化率Cm,Csに加えて、NOxセンサ21~23の出力、他のセンサ類からの各種センサ情報、エンジン運転状態等を総合的に考慮してエミッション異常を判定する構成であってもよい。
Further, the engine ECU 35 has an abnormality determination unit M21 that determines abnormality due to emission deterioration based on the deterioration determination results of the SCUs 31 to 33. The abnormality determination unit M21 determines an abnormality in engine emission based on the deterioration rate Cm of the monitor cell 43 and the deterioration rate Cs of the sensor cell 42 calculated by the deterioration determination unit M13 of each of the SCUs 31 to 33. In addition to the deterioration rates Cm and Cs, the emission abnormality is determined by comprehensively considering the outputs of the NOx sensors 21 to 23, various sensor information from other sensors, the engine operating state, and the like. May be.
NOxセンサ21~23に関する劣化判定とエミッション異常判定は、その両方がSCU31~33により実施されてもよく、又はその両方がエンジンECU35により実施されてもよい。なお、エミッション異常判定は、NOxセンサ21~23の劣化度合い以外の要素を用いて実施されるのが望ましいため、エンジンECU35により実施されるのが好ましい。
Both the deterioration determination and the emission abnormality determination regarding the NOx sensors 21 to 23 may be performed by the SCUs 31 to 33, or both may be performed by the engine ECU 35. Since it is desirable that the emission abnormality determination is performed using elements other than the degree of deterioration of the NOx sensors 21 to 23, it is preferable that the emission abnormality determination is performed by the engine ECU 35.
次に、起電力フィードバック制御と電流フィードバック制御とを説明するとともに、これら各フィードバック制御と共に実施されるモニタセル43やセンサセル42の劣化判定について説明する。
Next, the electromotive force feedback control and the current feedback control will be described, and the deterioration determination of the monitor cell 43 and the sensor cell 42 performed together with each feedback control will be described.
まず、モニタセル43の起電力フィードバック制御について説明する。モニタセル43は、酸素濃度(空気過剰率)に応じたモニタセル起電力Vmを生じさせる起電力特性(いわゆるZ特性)を有している。より詳しくは、モニタセル43は、図5(a)に示すように、酸素濃度>0の領域でモニタセル起電力Vmが略ゼロとなり、酸素濃度<0の領域でモニタセル起電力Vmが所定値(例えば約0.9V)となり、酸素濃度=0付近の領域でモニタセル起電力Vmが急変する起電力特性を有している。なお、酸素濃度に代えて空気過剰率で言えば、空気過剰率>1の領域でモニタセル起電力Vmが略ゼロとなり、空気過剰率<1の領域でモニタセル起電力Vmが所定値(例えば約0.9V)となり、空気過剰率=1付近の領域でモニタセル起電力Vmが急変する起電力特性を有している。
First, the electromotive force feedback control of the monitor cell 43 will be described. The monitor cell 43 has an electromotive force characteristic (so-called Z characteristic) that generates a monitor cell electromotive force Vm corresponding to the oxygen concentration (excess air ratio). More specifically, as shown in FIG. 5A, the monitor cell 43 has a monitor cell electromotive force Vm substantially zero in a region where the oxygen concentration> 0, and a monitor cell electromotive force Vm in a region where the oxygen concentration <0. It has an electromotive force characteristic in which the monitor cell electromotive force Vm changes suddenly in the region where the oxygen concentration = 0. In terms of the excess air ratio instead of the oxygen concentration, the monitor cell electromotive force Vm is substantially zero in the region where the excess air ratio> 1, and the monitor cell electromotive force Vm is a predetermined value (for example, about 0 in the region where the excess air ratio <1). .9V), and the monitor cell electromotive force Vm has an electromotive force characteristic that changes suddenly in a region near the excess air ratio = 1.
SCU31~33は、ガス室61内の残留酸素濃度に応じて生じるモニタセル起電力Vmが、目標値Vmtgに一致するよう起電力フィードバック制御を実施する。このとき、図5(a)に示すように、目標値Vmtgは、モニタセル43の起電力特性においてモニタセル起電力Vmが急変する急変域内であって、かつ酸素濃度が0よりも大きい(すなわち空気過剰率が1よりも大きい)モニタセル起電力Vmとして定められるとよい。起電力フィードバック制御が実施されることにより、残留酸素濃度が例えば1000ppmに制御される(図のA1)。
The SCUs 31 to 33 perform electromotive force feedback control so that the monitor cell electromotive force Vm generated according to the residual oxygen concentration in the gas chamber 61 matches the target value Vmtg. At this time, as shown in FIG. 5A, the target value Vmtg is within a sudden change region where the monitor cell electromotive force Vm changes suddenly in the electromotive force characteristics of the monitor cell 43, and the oxygen concentration is larger than 0 (ie, excess air). The rate may be determined as monitor cell electromotive force Vm. By performing the electromotive force feedback control, the residual oxygen concentration is controlled to 1000 ppm, for example (A1 in the figure).
ここで、仮にモニタセル43が劣化していると、図5(b)に実線で示すように、感度低下に伴い起電力特性が変化する。図5(b)では、劣化前の初期特性を一点鎖線で示し、劣化後特性を実線で示しており、劣化後特性では、特性変化に伴い酸素濃度<0の領域(空気過剰率<1の領域)においてモニタセル起電力Vmが小さくなっている。そのため、起電力フィードバック制御が実施された状態下において、ガス室61内の実際の残留酸素濃度が狙いの酸素濃度からずれる。詳細には、図5(b)のX部分を拡大した図5(c)に示すように、起電力フィードバック制御の実施時において、残留酸素濃度がA1からA2に減少する。
Here, if the monitor cell 43 is deteriorated, the electromotive force characteristic changes as the sensitivity decreases, as shown by the solid line in FIG. In FIG. 5 (b), the initial characteristic before deterioration is indicated by a one-dot chain line, and the characteristic after deterioration is indicated by a solid line. In the characteristic after deterioration, a region where the oxygen concentration is <0 (the excess air ratio <1) in accordance with the characteristic change. In the region, the monitor cell electromotive force Vm is small. Therefore, the actual residual oxygen concentration in the gas chamber 61 deviates from the target oxygen concentration under the state where the electromotive force feedback control is performed. Specifically, as shown in FIG. 5C in which the portion X in FIG. 5B is enlarged, the residual oxygen concentration decreases from A1 to A2 when the electromotive force feedback control is performed.
SCU31~33は、起電力フィードバック制御の実施時においてモニタセル43の劣化に伴い残留酸素濃度がずれる場合に、それに応じてセンサセル電流Isの応答性が変化することを利用して、モニタセル43の劣化判定を実施する。その概要を図6のタイムチャートにより説明する。
The SCUs 31 to 33 determine the deterioration of the monitor cell 43 by utilizing the change in the responsiveness of the sensor cell current Is according to the change in the residual oxygen concentration accompanying the deterioration of the monitor cell 43 during the electromotive force feedback control. To implement. The outline will be described with reference to the time chart of FIG.
図6では、時刻t1で起電力フィードバック制御が開始される。このとき、時刻t1以前は、ガス室61内の残留酸素濃度が極低濃度となっており、起電力フィードバック制御の開始に伴いモニタセル43及びセンサセル42に対する酸素供給が開始される。つまり、起電力フィードバック制御では、残留酸素濃度が増える側に酸素濃度の調整が行われる。この場合、モニタセル43の劣化が生じていない初期状態では、一点鎖線のようにセンサセル電流Isが過渡変化するのに対し、モニタセル43の劣化が生じていると、残留酸素濃度が想定以下になるのに伴い、実線のようにセンサセル電流Isが過渡変化する。つまり、センサセル電流Isの応答変化量ΔIs1が、今回の起電力フィードバック制御と同じ条件で予め算出したセンサセル電流Isの応答変化量の初期値(以下、初期変化量ΔIsini1という)に対して減少する。こうしたセンサセル電流Isの変化の差異により、モニタセル43の劣化判定が可能となっている。
In FIG. 6, electromotive force feedback control is started at time t1. At this time, the residual oxygen concentration in the gas chamber 61 is extremely low before time t1, and oxygen supply to the monitor cell 43 and the sensor cell 42 is started with the start of the electromotive force feedback control. That is, in the electromotive force feedback control, the oxygen concentration is adjusted so that the residual oxygen concentration increases. In this case, in the initial state where the deterioration of the monitor cell 43 has not occurred, the sensor cell current Is changes transiently as indicated by the alternate long and short dash line, whereas when the deterioration of the monitor cell 43 occurs, the residual oxygen concentration becomes lower than expected. As a result, the sensor cell current Is changes transiently as indicated by a solid line. That is, the response change amount ΔIs1 of the sensor cell current Is decreases with respect to the initial value of the response change amount of the sensor cell current Is calculated in advance under the same conditions as the current electromotive force feedback control (hereinafter referred to as the initial change amount ΔIsini1). Due to the difference in the change in the sensor cell current Is, the deterioration of the monitor cell 43 can be determined.
図7は、起電力フィードバック制御(VmF/B制御)を実施する場合におけるNOxセンサ21~23の劣化判定の処理手順を示すフローチャートである。図7に示す処理は、図4に記載したSCU31~33の各機能を実現するための演算処理であり、各SCU31~33において例えば所定周期ごとに実施される。
FIG. 7 is a flowchart showing a processing procedure for determining the deterioration of the NOx sensors 21 to 23 when the electromotive force feedback control (VmF / B control) is performed. The processing shown in FIG. 7 is arithmetic processing for realizing the functions of the SCUs 31 to 33 shown in FIG. 4, and is executed in each of the SCUs 31 to 33, for example, at predetermined intervals.
ステップS11では、劣化判定の実施条件が成立しているか否かを判定する。本実施条件としては、例えば、劣化判定の実施を許可する旨の許可信号をエンジンECU35から受信していることが含まれる。エンジンECU35は、排気管11内におけるガス環境が安定している所定環境下である場合に許可信号を送信する。具体的には、エンジンECU35は、エンジン10が所定運転状態にあり排気の量が比較的安定している場合、フューエルカット中である場合、イグニションスイッチのオフ直後(IGオフ直後)である場合、又はソークタイマによるエンジンECU35の起動中である場合に、許可信号を送信する。特にIGオフ直後であることを実施条件とするのが望ましい。IGオフ直後においては、エンジン停止により排気の流れが無くなるため、ガス環境が安定した状態での劣化判定が可能となるからである。劣化判定の実施条件が成立していれば、後続のステップS12に進み、実施条件が成立していなければ、本処理を終了する。
In step S11, it is determined whether or not an execution condition for deterioration determination is satisfied. The implementation condition includes, for example, receiving an permission signal from the engine ECU 35 to permit the execution of the deterioration determination. The engine ECU 35 transmits a permission signal when the gas environment in the exhaust pipe 11 is in a predetermined environment that is stable. Specifically, the engine ECU 35 is in a state where the engine 10 is in a predetermined operation state and the amount of exhaust is relatively stable, in the case of fuel cut, immediately after the ignition switch is turned off (immediately after the IG is turned off), Alternatively, the permission signal is transmitted when the engine ECU 35 is being activated by the soak timer. In particular, it is desirable that the condition is immediately after the IG is turned off. This is because immediately after the IG is turned off, the exhaust flow disappears when the engine is stopped, so that it is possible to determine the deterioration in a stable gas environment. If the execution condition for the deterioration determination is satisfied, the process proceeds to the subsequent step S12. If the execution condition is not satisfied, the present process is terminated.
ステップS12では、起電力フィードバック制御を実施する。このとき、モニタセル起電力Vmの目標値Vmtgを設定するとともに、その目標値Vmtgと実際のモニタセル起電力Vmとの偏差に基づいて、ポンプセル印加電圧Vpをフィードバック制御する。これにより、モニタセル起電力Vmが目標値Vmtgに制御され、ガス室61内の残留酸素濃度が目標値Vmtgに相当する酸素濃度に調整される。
In step S12, electromotive force feedback control is performed. At this time, the target value Vmtg of the monitor cell electromotive force Vm is set, and the pump cell applied voltage Vp is feedback-controlled based on the deviation between the target value Vmtg and the actual monitor cell electromotive force Vm. Thereby, the monitor cell electromotive force Vm is controlled to the target value Vmtg, and the residual oxygen concentration in the gas chamber 61 is adjusted to an oxygen concentration corresponding to the target value Vmtg.
その後、ステップS13では、起電力フィードバック制御の開始後においてセンサセル電流Isの応答変化量ΔIs1を算出する。このとき、センサセル電流Isの単位時間当たりの変化量が所定値未満になったことに基づいて、センサセル電流Isの変化が収束したとみなし、その収束後におけるセンサセル電流Isと、起電力フィードバック制御の開始前のセンサセル電流Isとの差により応答変化量ΔIs1を算出する。
Thereafter, in step S13, a response change amount ΔIs1 of the sensor cell current Is is calculated after the start of the electromotive force feedback control. At this time, based on the fact that the amount of change per unit time of the sensor cell current Is is less than a predetermined value, it is considered that the change in the sensor cell current Is has converged, and the sensor cell current Is after the convergence and the electromotive force feedback control The response change amount ΔIs1 is calculated from the difference from the sensor cell current Is before the start.
ステップS14では、下記の(1)式を用い、今回算出したセンサセル電流Isの応答変化量ΔIs1と初期変化量ΔIsini1とにより出力比β1を算出する。出力比β1は、応答変化量ΔIs1の初期変化量ΔIsini1に対する比として算出される。なお、初期変化量ΔIsini1は、SCU31~33内のメモリに予め記憶されている。
β1=ΔIs1/ΔIsini1 …(1)
続くステップS15では、出力比β1が所定値TH1よりも小さいか否かを判定する。なお、0<TH1<1である。そして、ステップS15がYESであれば、モニタセル43が劣化しているとみなしてステップS16に進む。 In step S14, using the following equation (1), the output ratio β1 is calculated from the response change amount ΔIs1 and the initial change amount ΔIsini1 of the sensor cell current Is calculated this time. The output ratio β1 is calculated as a ratio of the response change amount ΔIs1 to the initial change amount ΔIsini1. The initial change amount ΔIsini1 is stored in advance in the memories in theSCUs 31 to 33.
β1 = ΔIs1 / ΔIsini1 (1)
In a succeeding step S15, it is determined whether or not the output ratio β1 is smaller than a predetermined value TH1. Note that 0 <TH1 <1. And if step S15 is YES, it will consider that themonitor cell 43 has deteriorated and will progress to step S16.
β1=ΔIs1/ΔIsini1 …(1)
続くステップS15では、出力比β1が所定値TH1よりも小さいか否かを判定する。なお、0<TH1<1である。そして、ステップS15がYESであれば、モニタセル43が劣化しているとみなしてステップS16に進む。 In step S14, using the following equation (1), the output ratio β1 is calculated from the response change amount ΔIs1 and the initial change amount ΔIsini1 of the sensor cell current Is calculated this time. The output ratio β1 is calculated as a ratio of the response change amount ΔIs1 to the initial change amount ΔIsini1. The initial change amount ΔIsini1 is stored in advance in the memories in the
β1 = ΔIs1 / ΔIsini1 (1)
In a succeeding step S15, it is determined whether or not the output ratio β1 is smaller than a predetermined value TH1. Note that 0 <TH1 <1. And if step S15 is YES, it will consider that the
ステップS15の処理は、今回算出した出力比β1が、モニタセル43の劣化に起因して生じたか否かを判定するものである。つまり、モニタセル43の劣化に伴いセンサセル電流Isの応答変化量ΔIs1が減少する場合と、センサセル42の劣化に伴いセンサセル電流Isの応答変化量ΔIs1が減少する場合とを比較すると、前者の方が応答変化量ΔIs1の減少の程度が大きくなる傾向(ΔIs1が小さい値になる傾向)がある。これは、モニタセル43の劣化時には残留酸素濃度のずれに起因した電流低下が生じるからである。この違いにより、劣化原因がモニタセル43であることを特定可能である。
The processing of step S15 is to determine whether or not the output ratio β1 calculated this time has occurred due to deterioration of the monitor cell 43. That is, comparing the case where the response change amount ΔIs1 of the sensor cell current Is decreases with the deterioration of the monitor cell 43 and the case where the response change amount ΔIs1 of the sensor cell current Is decreases with the deterioration of the sensor cell 42, the former is more responsive. There is a tendency that the degree of decrease of the change amount ΔIs1 increases (ΔIs1 tends to be a small value). This is because when the monitor cell 43 is deteriorated, a current drop occurs due to a shift in the residual oxygen concentration. From this difference, it is possible to specify that the cause of deterioration is the monitor cell 43.
ステップS16では、例えば図8(a)の関係L1を用い、出力比β1に基づいてモニタセル43の劣化率Cmを算出する。関係L1によれば、出力比β1が1に対して小さいほど、すなわち初期特性との差異が大きいほど、劣化率Cmが大きい値として算出される。劣化率Cmが大きいことは、モニタセル43の劣化度合いが大きいことを意味する。なお、図7において、ステップS15を省略して実施することも可能である。
In step S16, for example, the deterioration rate Cm of the monitor cell 43 is calculated based on the output ratio β1 using the relationship L1 in FIG. According to the relationship L1, the deterioration rate Cm is calculated as a larger value as the output ratio β1 is smaller than 1, that is, as the difference from the initial characteristic is larger. A large deterioration rate Cm means that the degree of deterioration of the monitor cell 43 is large. In FIG. 7, the step S15 can be omitted.
次に、モニタセル43の電流フィードバック制御について説明する。モニタセル43は、酸素濃度とモニタセル電流Imとの関係として図9に示す電流特性を有している。SCU31~33は、ガス室61内の残留酸素濃度に応じて生じるモニタセル電流Imが、目標値Imtgに一致するよう電流フィードバック制御を実施する。
Next, the current feedback control of the monitor cell 43 will be described. The monitor cell 43 has the current characteristics shown in FIG. 9 as the relationship between the oxygen concentration and the monitor cell current Im. The SCUs 31 to 33 perform current feedback control so that the monitor cell current Im generated according to the residual oxygen concentration in the gas chamber 61 matches the target value Immtg.
図9では、劣化前の初期特性を一点鎖線で示し、劣化後特性を実線で示しており、劣化後特性では、特性変化に伴い酸素に対する反応感度が低下している。そのため、電流フィードバック制御が実施された状態下において、ガス室61内の実際の残留酸素濃度が狙いの酸素濃度からずれる。詳細には、図9に示すように、電流フィードバック制御の実施時において、残留酸素濃度がA3からA4に増加する。
In FIG. 9, the initial characteristics before deterioration are indicated by a one-dot chain line, and the characteristics after deterioration are indicated by solid lines. In the characteristics after deterioration, the reaction sensitivity to oxygen is reduced as the characteristics change. Therefore, the actual residual oxygen concentration in the gas chamber 61 deviates from the target oxygen concentration under the state where the current feedback control is performed. Specifically, as shown in FIG. 9, the residual oxygen concentration increases from A3 to A4 when the current feedback control is performed.
SCU31~33は、電流フィードバック制御の実施時においてモニタセル43の劣化に伴い残留酸素濃度が変化する場合に、それに応じてセンサセル電流Isの応答性が変化することを利用して、モニタセル43の劣化判定を実施する。その概要を図10のタイムチャートにより説明する。
When the residual oxygen concentration changes with the deterioration of the monitor cell 43 during the current feedback control, the SCUs 31 to 33 determine the deterioration of the monitor cell 43 using the change in the response of the sensor cell current Is accordingly. To implement. The outline will be described with reference to the time chart of FIG.
図10では、時刻t2で電流フィードバック制御が開始される。このとき、時刻t2以前は、ガス室61内の残留酸素濃度が極低濃度となっており、電流フィードバック制御の開始に伴いモニタセル43及びセンサセル42に対する酸素供給が開始される。つまり、電流フィードバック制御では、残留酸素濃度が増える側に酸素濃度の調整が行われる。この場合、モニタセル43の劣化が生じていない初期状態では、一点鎖線のようにセンサセル電流Isが過渡変化するのに対し、モニタセル43の劣化が生じていると、残留酸素濃度が想定以上になるのに伴い、実線のようにセンサセル電流Isが過渡変化する。つまり、センサセル電流Isの応答変化量ΔIs2が、今回の電流フィードバック制御と同じ条件で予め算出したセンサセル電流Isの応答変化量の初期値(以下、初期変化量ΔIsini2という)に対して増加する。こうしたセンサセル電流Isの変化の差異により、モニタセル43の劣化判定が可能となっている。
In FIG. 10, current feedback control is started at time t2. At this time, before time t2, the residual oxygen concentration in the gas chamber 61 is extremely low, and oxygen supply to the monitor cell 43 and the sensor cell 42 is started with the start of the current feedback control. That is, in the current feedback control, the oxygen concentration is adjusted so that the residual oxygen concentration increases. In this case, in the initial state where the deterioration of the monitor cell 43 has not occurred, the sensor cell current Is changes transiently as indicated by the alternate long and short dash line, whereas when the deterioration of the monitor cell 43 occurs, the residual oxygen concentration becomes higher than expected. As a result, the sensor cell current Is changes transiently as indicated by a solid line. That is, the response change amount ΔIs2 of the sensor cell current Is increases with respect to the initial value of the response change amount of the sensor cell current Is calculated in advance under the same conditions as the current feedback control (hereinafter referred to as the initial change amount ΔIsini2). Due to the difference in the change in the sensor cell current Is, the deterioration of the monitor cell 43 can be determined.
図11は、電流フィードバック制御(ImF/B制御)を実施する場合におけるNOxセンサ21~23の劣化判定の処理手順を示すフローチャートである。図11に示す処理は、図4に記載したSCU31~33の各機能を実現するための演算処理であり、各SCU31~33において例えば所定周期ごとに実施される。
FIG. 11 is a flowchart showing a processing procedure for determining the deterioration of the NOx sensors 21 to 23 when the current feedback control (ImF / B control) is performed. The process shown in FIG. 11 is an arithmetic process for realizing each function of the SCUs 31 to 33 shown in FIG. 4, and is executed in each SCU 31 to 33, for example, at predetermined intervals.
ステップS21では、劣化判定の実施条件が成立しているか否かを判定する。ただし本処理は、図7のステップS11と同じであるため、詳細な説明は省略する。劣化判定の実施条件が成立していれば、後続のステップS22に進み、実施条件が成立していなければ、本処理を終了する。
In step S21, it is determined whether or not an execution condition for deterioration determination is satisfied. However, since this process is the same as step S11 of FIG. 7, detailed description thereof is omitted. If the execution condition for the deterioration determination is satisfied, the process proceeds to the subsequent step S22. If the execution condition is not satisfied, the present process is terminated.
ステップS22では、電流フィードバック制御を実施する。このとき、モニタセル電流Imの目標値Imtgを設定するとともに、その目標値Imtgと実際のモニタセル電流Imとの偏差に基づいて、ポンプセル印加電圧Vpをフィードバック制御する。これにより、モニタセル電流Imが目標値Imtgに制御され、ガス室61内の残留酸素濃度が目標値Imtgに相当する酸素濃度に調整される。
In step S22, current feedback control is performed. At this time, the target value Imtg of the monitor cell current Im is set, and the pump cell applied voltage Vp is feedback-controlled based on the deviation between the target value Imtg and the actual monitor cell current Im. As a result, the monitor cell current Im is controlled to the target value Imtg, and the residual oxygen concentration in the gas chamber 61 is adjusted to an oxygen concentration corresponding to the target value Immtg.
その後、ステップS23では、電流フィードバック制御の開始後においてセンサセル電流Isの応答変化量ΔIs2を算出する。このとき、センサセル電流Isの単位時間当たりの変化量が所定値未満になったことに基づいて、センサセル電流Isの変化が収束したとみなし、その収束後におけるセンサセル電流Isと、電流フィードバック制御の開始前のセンサセル電流Isとの差により応答変化量ΔIs2を算出する。
Thereafter, in step S23, the response change amount ΔIs2 of the sensor cell current Is is calculated after the start of the current feedback control. At this time, based on the fact that the amount of change per unit time of the sensor cell current Is is less than a predetermined value, it is considered that the change in the sensor cell current Is has converged, and the sensor cell current Is after the convergence and the start of current feedback control. The response change amount ΔIs2 is calculated based on the difference from the previous sensor cell current Is.
その後、ステップS24では、ステップS23で算出した応答変化量ΔIs2と、初期変化量ΔIsini2との差をα1として算出する(α1=ΔIsini2-ΔIs2)。そして、ステップS25では、その差α1が負の所定値TH2よりも小さいか否かを判定し、ステップS26では、差α1が正の所定値TH3よりも大きいか否かを判定する。なお、初期変化量ΔIsini2は、SCU31~33内のメモリに予め記憶されている。TH2<0であり、TH3>0である。
Thereafter, in step S24, the difference between the response change amount ΔIs2 calculated in step S23 and the initial change amount ΔIsini2 is calculated as α1 (α1 = ΔIsini2−ΔIs2). In step S25, it is determined whether or not the difference α1 is smaller than the negative predetermined value TH2. In step S26, it is determined whether or not the difference α1 is larger than the positive predetermined value TH3. Note that the initial change amount ΔIsini2 is stored in advance in the memories in the SCUs 31 to 33. TH2 <0 and TH3> 0.
ステップS24~S26の処理は、今回算出した応答変化量ΔIs2と初期変化量ΔIsini2との差α1が、モニタセル43の劣化とセンサセル42の劣化とのいずれに起因して生じたかを判定するものである。つまり、電流フィードバック制御が実施される場合において、モニタセル43が劣化している状態では、残留酸素濃度が大きくなる側にずれるのに対し(図9参照)、モニタセル43ではなくセンサセル42が劣化している状態では、残留酸素濃度が適正値に調整される。かかる場合、モニタセル43の劣化時には、残留酸素濃度が想定以上となることに起因して、センサセル電流Isの応答変化量ΔIs2が初期変化量ΔIsini2よりも大きくなるのに対し、センサセル42の劣化時には、センサセル42の応答性低下に起因して、センサセル電流Isの応答変化量ΔIs2が初期変化量ΔIsini2よりも小さくなる。そのため、初期変化量ΔIsini2に対して、センサセル電流Isの応答変化量ΔIs2が増えているか、減っているかに応じて、モニタセル43の劣化とセンサセル42の劣化とのいずれが生じているかの判定が可能となっている。
The processing of steps S24 to S26 is to determine whether the difference α1 between the response change amount ΔIs2 calculated this time and the initial change amount ΔIsini2 is caused by the deterioration of the monitor cell 43 or the sensor cell 42. . In other words, when the current feedback control is performed, in the state where the monitor cell 43 is deteriorated, the residual oxygen concentration is shifted to a larger side (see FIG. 9), but the sensor cell 42, not the monitor cell 43, is deteriorated. In this state, the residual oxygen concentration is adjusted to an appropriate value. In this case, when the monitor cell 43 is deteriorated, the residual oxygen concentration becomes higher than expected, so that the response change amount ΔIs2 of the sensor cell current Is is larger than the initial change amount ΔIsini2, whereas when the sensor cell 42 is deteriorated, Due to the decrease in response of the sensor cell 42, the response change amount ΔIs2 of the sensor cell current Is becomes smaller than the initial change amount ΔIsini2. Therefore, it is possible to determine whether the deterioration of the monitor cell 43 or the deterioration of the sensor cell 42 occurs depending on whether the response change amount ΔIs2 of the sensor cell current Is increases or decreases with respect to the initial change amount ΔIsini2. It has become.
そして、ステップS25がYESであれば、モニタセル43が劣化しているとみなしてステップS27に進み、ステップS26がYESであれば、センサセル42が劣化しているとみなしてステップS28に進む。
If step S25 is YES, the monitor cell 43 is regarded as degraded and the process proceeds to step S27. If step S26 is YES, the sensor cell 42 is regarded as degraded and the process proceeds to step S28.
ステップS27では、センサセル電流Isの応答変化量ΔIs2に基づいて、モニタセル43の劣化判定を実施する。このとき、下記の(2)式を用い、今回算出したセンサセル電流Isの応答変化量ΔIs2と初期変化量ΔIsini2とにより出力比β2を算出する。
β2=ΔIs2/ΔIsini2 …(2)
そして、例えば図8(a)の関係L2を用い、出力比β2に基づいてモニタセル43の劣化率Cmを算出する。関係L2によれば、出力比β2が1に対して大きいほど、すなわち初期特性との差異が大きいほど、劣化率Cmが大きい値として算出される。 In step S27, the deterioration determination of themonitor cell 43 is performed based on the response change amount ΔIs2 of the sensor cell current Is. At this time, using the following equation (2), the output ratio β2 is calculated from the response change amount ΔIs2 and the initial change amount ΔIsini2 of the sensor cell current Is calculated this time.
β2 = ΔIs2 / ΔIsini2 (2)
Then, for example, using the relationship L2 in FIG. 8A, the deterioration rate Cm of themonitor cell 43 is calculated based on the output ratio β2. According to the relationship L2, the deterioration rate Cm is calculated as a larger value as the output ratio β2 is larger than 1, that is, as the difference from the initial characteristic is larger.
β2=ΔIs2/ΔIsini2 …(2)
そして、例えば図8(a)の関係L2を用い、出力比β2に基づいてモニタセル43の劣化率Cmを算出する。関係L2によれば、出力比β2が1に対して大きいほど、すなわち初期特性との差異が大きいほど、劣化率Cmが大きい値として算出される。 In step S27, the deterioration determination of the
β2 = ΔIs2 / ΔIsini2 (2)
Then, for example, using the relationship L2 in FIG. 8A, the deterioration rate Cm of the
また、ステップS28では、センサセル電流Isの応答変化量ΔIs2に基づいて、センサセル42の劣化判定を実施する。このとき、下記の(3)式を用い、今回算出したセンサセル電流Isの応答変化量ΔIs2と初期変化量ΔIsini2とにより出力比β3を算出する。
β3=ΔIs2/ΔIsini2 …(3)
そして、例えば図8(b)の関係L3を用い、出力比β3に基づいてセンサセル42の劣化率Csを算出する。関係L3によれば、出力比β3が1に対して小さいほど、すなわち初期特性との差異が大きいほど、劣化率Csが大きい値として算出される。 In step S28, the deterioration of thesensor cell 42 is determined based on the response change amount ΔIs2 of the sensor cell current Is. At this time, using the following equation (3), the output ratio β3 is calculated from the response change amount ΔIs2 and the initial change amount ΔIsini2 of the sensor cell current Is calculated this time.
β3 = ΔIs2 / ΔIsini2 (3)
For example, the deterioration rate Cs of thesensor cell 42 is calculated based on the output ratio β3 using the relationship L3 in FIG. 8B. According to the relationship L3, the deterioration rate Cs is calculated as a larger value as the output ratio β3 is smaller than 1, that is, as the difference from the initial characteristic is larger.
β3=ΔIs2/ΔIsini2 …(3)
そして、例えば図8(b)の関係L3を用い、出力比β3に基づいてセンサセル42の劣化率Csを算出する。関係L3によれば、出力比β3が1に対して小さいほど、すなわち初期特性との差異が大きいほど、劣化率Csが大きい値として算出される。 In step S28, the deterioration of the
β3 = ΔIs2 / ΔIsini2 (3)
For example, the deterioration rate Cs of the
なお、図11において、ステップS24~S26に代わり、ステップS27とステップS28に先立って、上記の出力比β2を演算し、当該出力比β2が所定値TH4よりも大きいか、また、当該出力比β2が、所定値TH5よりも小さいかを判定することにより、モニタセル43の劣化かセンサセル42の劣化かを判定してもよい。すなわち、出力比β2が所定値TH4よりも大きい場合にはモニタセル43の劣化と判定し、出力比β2が所定値TH5よりも小さい場合には、センサセル42の劣化と判定する。その後、それぞれの判定結果に基づいて、ステップS27、ステップS28に進む。なお、所定値TH4>1、所定値TH5<1である。
In FIG. 11, instead of steps S24 to S26, the output ratio β2 is calculated prior to steps S27 and S28, and whether the output ratio β2 is greater than a predetermined value TH4 or the output ratio β2 However, it may be determined whether the monitor cell 43 is deteriorated or the sensor cell 42 is deteriorated by determining whether it is smaller than the predetermined value TH5. That is, when the output ratio β2 is larger than the predetermined value TH4, it is determined that the monitor cell 43 is deteriorated. When the output ratio β2 is smaller than the predetermined value TH5, it is determined that the sensor cell 42 is deteriorated. Then, based on each determination result, it progresses to Step S27 and Step S28. The predetermined value TH4> 1 and the predetermined value TH5 <1.
また、ステップS24~S26,S28を省略して実施することも可能である。この場合、図11では、NOxセンサ21~23の劣化判定として、モニタセル43についてのみ劣化判定が実施される。
It is also possible to omit steps S24 to S26 and S28. In this case, in FIG. 11, as the deterioration determination of the NOx sensors 21 to 23, the deterioration determination is performed only for the monitor cell 43.
SCU31~33が、起電力フィードバック制御(VmF/B制御)を実施する場合における劣化判定処理(図7)と、電流フィードバック制御(ImF/B制御)を実施する場合における劣化判定処理(図11)とのうちいずれか一方のみを実施する構成であってもよい。また、これらの各判定処理を、各々異なる実施機会に実施してもよい。例えば、ドライブサイクルごとにいずれかの判定処理を実施することとし、今回のIGオフ直後に一方の判定処理を実施し、次回のIGオフ直後に他方の判定処理を実施するようにしてもよい。
Degradation determination process when the SCUs 31 to 33 perform electromotive force feedback control (VmF / B control) (FIG. 7) and deterioration determination process when current feedback control (ImF / B control) is performed (FIG. 11) The structure which implements only any one of these may be sufficient. In addition, each of these determination processes may be performed at different execution opportunities. For example, one of the determination processes may be performed for each drive cycle, one determination process may be performed immediately after the current IG is turned off, and the other determination process may be performed immediately after the next IG is turned off.
次に、起電力フィードバック制御(VmF/B制御)と電流フィードバック制御(ImF/B制御)とを共に実施し、これら各フィードバック制御の実施状態で得られた劣化情報に基づいて、モニタセル43やセンサセル42の劣化判定を実施する事例について説明する。
Next, both the electromotive force feedback control (VmF / B control) and the current feedback control (ImF / B control) are performed, and based on the deterioration information obtained in the implementation state of each feedback control, the monitor cell 43 and the sensor cell An example of performing the deterioration determination of 42 will be described.
図12には、起電力フィードバック制御が実施される場合及び電流フィードバック制御が実施される場合について、モニタセル劣化時のセンサセル電流Isの応答変化、及びセンサセル劣化時のセンサセル電流Isの応答変化との関係がまとめて示されている。なお、図12では、初期特性を一点鎖線で示し、劣化後特性を実線で示している。
FIG. 12 shows the relationship between the response change of the sensor cell current Is when the monitor cell deteriorates and the response change of the sensor cell current Is when the sensor cell deteriorates when the electromotive force feedback control and the current feedback control are executed. Are shown together. In FIG. 12, the initial characteristics are indicated by a one-dot chain line, and the deteriorated characteristics are indicated by a solid line.
ここで、モニタセル43の劣化時とセンサセル42の劣化時とにおいてはそれぞれ以下の傾向がある。
(1)モニタセル43の劣化が進行すると、起電力フィードバック制御の実施時においてセンサセル電流Isの応答変化量ΔIs1が減少するとともに、電流フィードバック制御の実施時においてセンサセル電流Isの応答変化量ΔIs2が増加する。
(2)センサセル42が劣化が進行すると、起電力フィードバック制御の実施時においてセンサセル電流Isの応答変化量ΔIs1が減少するとともに、電流フィードバック制御の実施時においてセンサセル電流Isの応答変化量ΔIs2が減少する。 Here, there are the following tendencies when themonitor cell 43 is deteriorated and when the sensor cell 42 is deteriorated.
(1) When the deterioration of themonitor cell 43 proceeds, the response change amount ΔIs1 of the sensor cell current Is decreases when the electromotive force feedback control is performed, and the response change amount ΔIs2 of the sensor cell current Is increases when the current feedback control is performed. .
(2) When deterioration of thesensor cell 42 proceeds, the response change amount ΔIs1 of the sensor cell current Is decreases when the electromotive force feedback control is performed, and the response change amount ΔIs2 of the sensor cell current Is decreases when the current feedback control is performed. .
(1)モニタセル43の劣化が進行すると、起電力フィードバック制御の実施時においてセンサセル電流Isの応答変化量ΔIs1が減少するとともに、電流フィードバック制御の実施時においてセンサセル電流Isの応答変化量ΔIs2が増加する。
(2)センサセル42が劣化が進行すると、起電力フィードバック制御の実施時においてセンサセル電流Isの応答変化量ΔIs1が減少するとともに、電流フィードバック制御の実施時においてセンサセル電流Isの応答変化量ΔIs2が減少する。 Here, there are the following tendencies when the
(1) When the deterioration of the
(2) When deterioration of the
これらの傾向を鑑み、SCU31~33(劣化判定部M13)は、起電力フィードバック制御を実施する場合における応答変化量ΔIs1が、第1基準値である初期変化量ΔIsini1に対して小さくなり、かつ電流フィードバック制御を実施する場合における応答変化量ΔIs2が、第2基準値である初期変化量ΔIsini2に対して大きくなることに基づいて、モニタセル43が劣化であると判定する。また、起電力フィードバック制御を実施する場合における応答変化量ΔIs1が初期変化量ΔIsini1に対して小さくなり、かつ電流フィードバック制御を実施する場合における応答変化量ΔIs2が初期変化量ΔIsini2に対して小さくなることに基づいて、センサセル42が劣化していると判定する。
In view of these tendencies, the SCUs 31 to 33 (degradation determination unit M13) have a response change amount ΔIs1 when the electromotive force feedback control is performed smaller than the initial change amount ΔIsini1 that is the first reference value, and the current Based on the fact that the response change amount ΔIs2 when the feedback control is performed becomes larger than the initial change amount ΔIsini2 that is the second reference value, it is determined that the monitor cell 43 is deteriorated. Further, the response change amount ΔIs1 when the electromotive force feedback control is performed is smaller than the initial change amount ΔIsini1, and the response change amount ΔIs2 when the current feedback control is performed is smaller than the initial change amount ΔIsini2. Based on the above, it is determined that the sensor cell 42 has deteriorated.
図13は、起電力フィードバック制御(VmF/B制御)及び電流フィードバック制御(ImF/B制御)を実施する場合におけるNOxセンサ21~23の劣化判定の処理手順を示すフローチャートである。図13に示す処理は、図4に記載したSCU31~33の各機能を実現するための演算処理であり、各SCU31~33において例えば所定周期ごとに実施される。図13の処理は、図7や図11の処理に代えて実施される。
FIG. 13 is a flowchart showing a processing procedure for determining the deterioration of the NOx sensors 21 to 23 when performing electromotive force feedback control (VmF / B control) and current feedback control (ImF / B control). The process shown in FIG. 13 is an arithmetic process for realizing each function of the SCUs 31 to 33 shown in FIG. 4, and is executed in each SCU 31 to 33, for example, at predetermined intervals. The processing in FIG. 13 is performed instead of the processing in FIG. 7 and FIG.
ステップS31では、劣化判定の実施条件が成立しているか否かを判定する。ただし本処理は、図7のステップS11と同じであるため、詳細な説明は省略する。劣化判定の実施条件が成立していれば、後続のステップS32に進み、実施条件が成立していなければ、本処理を終了する。
In step S31, it is determined whether or not an execution condition for deterioration determination is satisfied. However, since this process is the same as step S11 of FIG. 7, detailed description thereof is omitted. If the execution condition for the deterioration determination is satisfied, the process proceeds to the subsequent step S32. If the execution condition is not satisfied, the present process is terminated.
ステップS32,S33では、起電力フィードバック制御を実施し、センサセル電流Isの応答変化量ΔIs1を算出する(既述のステップS12,S13と同じ)。また、ステップS34,S35では、電流フィードバック制御を実施し、センサセル電流Isの応答変化量ΔIs2を算出する(既述のステップS22,S23と同じ)。
In steps S32 and S33, electromotive force feedback control is performed, and the response change amount ΔIs1 of the sensor cell current Is is calculated (same as steps S12 and S13 described above). In steps S34 and S35, current feedback control is performed, and the response change amount ΔIs2 of the sensor cell current Is is calculated (same as steps S22 and S23 described above).
その後、ステップS36では、応答変化量ΔIs1が、初期変化量ΔIsini1に対して減少したか否かを判定し、ステップS37では、応答変化量ΔIs2が、初期変化量ΔIsini2に対して増加したか否かを判定する。そして、ステップS36,S37が共にYESの場合、ステップS38に進み、モニタセル43の劣化判定を実施する。また、ステップS36がYES、かつステップS37がNOの場合、ステップS39に進み、センサセル42の劣化判定を実施する。
Thereafter, in step S36, it is determined whether or not the response change amount ΔIs1 has decreased with respect to the initial change amount ΔIsini1, and in step S37, whether or not the response change amount ΔIs2 has increased with respect to the initial change amount ΔIsini2. Determine. And when both step S36 and S37 are YES, it progresses to step S38 and the deterioration determination of the monitor cell 43 is implemented. Moreover, when step S36 is YES and step S37 is NO, it progresses to step S39 and the deterioration determination of the sensor cell 42 is implemented.
なお、ステップS32,S33における応答変化量ΔIs1の算出処理と、ステップS34,S35における応答変化量ΔIs2の算出処理とを、非連続に、すなわち別の実施機会に実施することも可能である。例えば、ドライブサイクルごとに実施することとし、今回のIGオフ直後に応答変化量ΔIs1の算出処理を実施し、次回のIGオフ直後に応答変化量ΔIs2の算出処理を実施するようにしてもよい。そして、応答変化量ΔIs1,ΔIs2が算出された時点で、モニタセル43及びセンサセル42のいずれかの劣化判定を実施する。
It should be noted that the calculation process of the response change amount ΔIs1 in steps S32 and S33 and the calculation process of the response change amount ΔIs2 in steps S34 and S35 can be performed discontinuously, that is, at different execution opportunities. For example, the processing may be performed for each drive cycle, the response change amount ΔIs1 may be calculated immediately after the current IG is turned off, and the response change amount ΔIs2 may be calculated immediately after the next IG is turned off. Then, when the response change amounts ΔIs1 and ΔIs2 are calculated, the deterioration determination of either the monitor cell 43 or the sensor cell 42 is performed.
以上詳述した本実施形態によれば、以下の優れた効果が得られる。
According to the embodiment described above in detail, the following excellent effects can be obtained.
上記構成では、モニタセル出力(Vm,Im)を目標値に制御すべく、ポンプセル41により残留酸素濃度の調整を行わせ、残留酸素濃度が調整された状態で取得されたセンサセル出力に基づいて、モニタセル43の劣化状態を判定するようにした。ここで、仮にモニタセル43が劣化していると、モニタセル出力を目標値に制御した状態においてガス室61内の残留酸素濃度が過大又は過小となり、その影響によってセンサセル出力が変動するため、そのセンサセル出力を用いてモニタセル43の劣化状態の判定が可能となる。その結果、ポンプセル41、センサセル42、及びモニタセル43を有するNOxセンサ21~23においてモニタセル43の劣化状態を適正に判定することができる。
In the above configuration, in order to control the monitor cell output (Vm, Im) to the target value, the residual oxygen concentration is adjusted by the pump cell 41, and based on the sensor cell output acquired in the state where the residual oxygen concentration is adjusted, the monitor cell 43 deterioration states were determined. Here, if the monitor cell 43 is deteriorated, the residual oxygen concentration in the gas chamber 61 becomes excessive or low in a state where the monitor cell output is controlled to the target value, and the sensor cell output fluctuates due to the influence thereof. The deterioration state of the monitor cell 43 can be determined using As a result, the deterioration state of the monitor cell 43 can be properly determined in the NOx sensors 21 to 23 having the pump cell 41, the sensor cell 42, and the monitor cell 43.
また、モニタセル出力(Vm,Im)を目標値に制御する構成では、ガス室61内の残留酸素濃度が一定に保たれるため、酸素濃度一定の条件下でモニタセル43の劣化判定を実施できる。そのため、劣化判定精度を高めることが可能となっている。
Further, in the configuration in which the monitor cell output (Vm, Im) is controlled to the target value, the residual oxygen concentration in the gas chamber 61 is kept constant, so that the deterioration determination of the monitor cell 43 can be performed under a condition where the oxygen concentration is constant. For this reason, it is possible to increase the degradation determination accuracy.
モニタセル起電力Vmを目標値に一致させる起電力フィードバック制御を実施して、ポンプセル41による残留酸素濃度を調整する構成とした(図7)。この場合、仮にモニタセル43が劣化していると、感度低下に伴う起電力特性の変化により、起電力フィードバック制御が実施された状態下において、ガス室61内の実際の残留酸素濃度が狙いの酸素濃度からずれる。これにより、センサセル電流Isの応答変化量ΔIs1が、予め定めた基準値(初期変化量ΔIsini1)から外れるため、モニタセル43が劣化していると適正に判定できる。
The electromotive force feedback control for adjusting the monitor cell electromotive force Vm to the target value is performed to adjust the residual oxygen concentration by the pump cell 41 (FIG. 7). In this case, if the monitor cell 43 is deteriorated, the actual residual oxygen concentration in the gas chamber 61 is the target oxygen in the state where the electromotive force feedback control is performed due to the change in the electromotive force characteristic due to the sensitivity decrease. Deviation from concentration. Thereby, since the response change amount ΔIs1 of the sensor cell current Is deviates from a predetermined reference value (initial change amount ΔIsini1), it can be appropriately determined that the monitor cell 43 has deteriorated.
モニタセル43が劣化している状態では、起電力フィードバック制御が実施されることにより、残留酸素濃度が小さくなる側にずれる。この場合、その残留酸素濃度のずれに伴い、センサセル電流Isの応答変化量ΔIs1が予め定めた基準値(初期変化量ΔIsini1)よりも小さくなることから、それに基づいて、モニタセル43の劣化状態を適正に判定することができる。
In a state where the monitor cell 43 is deteriorated, the residual oxygen concentration is shifted to a smaller side by performing the electromotive force feedback control. In this case, as the residual oxygen concentration shifts, the response change amount ΔIs1 of the sensor cell current Is becomes smaller than a predetermined reference value (initial change amount ΔIsini1). Based on this, the deterioration state of the monitor cell 43 is appropriately set. Can be determined.
起電力フィードバック制御が実施される場合において、そのモニタセル43の劣化に起因して残留酸素濃度が小さくなる側にずれる場合には、その残留酸素濃度のずれに応じてセンサセル電流Isの応答変化量ΔIs1が小さくなるが、仮にモニタセル43が劣化しておらず、かつセンサセル42が劣化している状況であっても、同様にセンサセル電流Isの応答変化量ΔIs1が小さくなる。ただし、モニタセル43の劣化に伴いセンサセル電流Isの応答変化量ΔIs1が小さくなる場合と、センサセル42の劣化に伴いセンサセル電流Isの応答変化量ΔIs1が小さくなる場合とを比べると、前者の方が応答変化量ΔIs1の減少の程度が大きくなる傾向がある。これは、モニタセル43の劣化時には残留酸素濃度のずれに起因した電流低下が生じるからである。したがって、センサセル電流Isの応答変化量ΔIs1と初期変化量ΔIsini1との比の大きさに基づいて、モニタセル43の劣化を特定することが可能となり、応答変化量ΔIs1の初期変化量ΔIsini1に対する比が所定値よりも小さいこと、すなわち初期変化量ΔIsini1に対する応答変化量ΔIs1の低下の度合いが大きいことに基づいて、モニタセル43とセンサセル42とのうちモニタセル43に劣化が生じていることを適正に判定することができる。
When the electromotive force feedback control is performed, if the residual oxygen concentration shifts to a smaller side due to the deterioration of the monitor cell 43, the response change amount ΔIs1 of the sensor cell current Is according to the deviation of the residual oxygen concentration. However, even if the monitor cell 43 has not deteriorated and the sensor cell 42 has deteriorated, the response change amount ΔIs1 of the sensor cell current Is similarly decreases. However, comparing the case where the response change amount ΔIs1 of the sensor cell current Is decreases with the deterioration of the monitor cell 43 and the case where the response change amount ΔIs1 of the sensor cell current Is decreases with the deterioration of the sensor cell 42, the former is more responsive. There is a tendency that the degree of decrease in the change amount ΔIs1 increases. This is because when the monitor cell 43 is deteriorated, a current drop occurs due to a shift in the residual oxygen concentration. Therefore, it is possible to identify the deterioration of the monitor cell 43 based on the magnitude of the ratio between the response change amount ΔIs1 and the initial change amount ΔIsini1 of the sensor cell current Is, and the ratio of the response change amount ΔIs1 to the initial change amount ΔIsini1 is predetermined. It is appropriately determined that the monitor cell 43 has deteriorated among the monitor cell 43 and the sensor cell 42 based on being smaller than the value, that is, the degree of decrease in the response change amount ΔIs1 with respect to the initial change amount ΔIsini1 is large. Can do.
また、モニタセル電流Imを目標値に一致させる電流フィードバック制御を実施して、ポンプセル41による残留酸素濃度を調整する構成とした(図11)。この場合、仮にモニタセルが劣化していると、感度低下に伴うモニタセル電流特性の変化により、電流フィードバック制御が実施された状態下において、ガス室61内の実際の残留酸素濃度が狙いの酸素濃度からずれる。これにより、センサセル電流Isの応答変化量ΔIs2が、予め定めた基準値(例えば初期変化量ΔIsini2)から外れるため、モニタセル43が劣化していると適正に判定できる。
Further, current feedback control is performed so that the monitor cell current Im matches the target value, and the residual oxygen concentration by the pump cell 41 is adjusted (FIG. 11). In this case, if the monitor cell is deteriorated, the actual residual oxygen concentration in the gas chamber 61 is changed from the target oxygen concentration in the state where the current feedback control is performed due to the change in the monitor cell current characteristic due to the sensitivity reduction. Shift. Thereby, since the response change amount ΔIs2 of the sensor cell current Is deviates from a predetermined reference value (for example, the initial change amount ΔIsini2), it can be appropriately determined that the monitor cell 43 is deteriorated.
モニタセル43が劣化している状態では、電流フィードバック制御が実施されることにより、残留酸素濃度が大きくなる側にずれる。この場合、その残留酸素濃度のずれに伴い、センサセル電流Isの応答変化量ΔIs2が予め定めた基準値(初期変化量ΔIsini2)よりも大きくなることから、それに基づいて、モニタセル43の劣化状態を適正に判定することができる。
In the state where the monitor cell 43 is deteriorated, the residual oxygen concentration is shifted to the side by increasing the current feedback control. In this case, as the residual oxygen concentration shifts, the response change amount ΔIs2 of the sensor cell current Is becomes larger than a predetermined reference value (initial change amount ΔIsini2). Based on this, the deterioration state of the monitor cell 43 is appropriately set. Can be determined.
電流フィードバック制御が実施される場合において、モニタセル43が劣化状態でなく正常状態であると、残留酸素濃度が適正値に調整される。そしてかかる場合において、センサセル42が劣化していると、劣化に伴う応答性低下に起因して、センサセル電流Isの応答変化量ΔIs2が、予め定めた基準値(初期変化量ΔIsini2)よりも小さくなる。そのため、応答変化量ΔIsが小さくなることに基づいて、センサセル42の劣化状態を適正に判定することができる。
When the current feedback control is performed, the residual oxygen concentration is adjusted to an appropriate value if the monitor cell 43 is in a normal state rather than a deteriorated state. In such a case, if the sensor cell 42 is deteriorated, the response change amount ΔIs2 of the sensor cell current Is is smaller than a predetermined reference value (initial change amount ΔIsini2) due to a decrease in response due to the deterioration. . Therefore, the deterioration state of the sensor cell 42 can be appropriately determined based on the decrease in the response change amount ΔIs.
モニタセル43の起電力フィードバック制御を実施して、その際のセンサセル電流Isの応答変化量ΔIs1を算出する一方、電流フィードバック制御を実施して、その際のセンサセル電流Isの応答変化量ΔIs2を算出し、それら応答変化量ΔIs1,ΔIs2に基づいて、モニタセル43及びセンサセル42について劣化判定を実施する構成とした(図13)。起電力フィードバック制御を伴う劣化判定と、電流フィードバック制御を伴う劣化判定とでは、NOxセンサ21~23の劣化が主にモニタセル43の劣化に起因するものか、主にセンサセル42の劣化に起因するものかに応じて、センサセル電流Isの応答変化の態様が変わるため、モニタセル43及びセンサセル42のいずれで劣化が生じているかを好適に判定できる。
The electromotive force feedback control of the monitor cell 43 is performed to calculate the response change amount ΔIs1 of the sensor cell current Is at that time, while the current feedback control is performed to calculate the response change amount ΔIs2 of the sensor cell current Is at that time. Based on the response change amounts ΔIs1 and ΔIs2, the monitor cell 43 and the sensor cell 42 are subjected to deterioration determination (FIG. 13). In the deterioration determination with electromotive force feedback control and the deterioration determination with current feedback control, the deterioration of the NOx sensors 21 to 23 is mainly caused by the deterioration of the monitor cell 43 or the deterioration of the sensor cell 42. Since the mode of the response change of the sensor cell current Is changes depending on whether or not the sensor cell 43 or the sensor cell 42 is deteriorated, it can be suitably determined.
モニタセル43が劣化している状態とセンサセル42が劣化している状態とでは、起電力フィードバック制御及び電流フィードバック制御を実施した場合におけるセンサセル電流Isの特性変化が図12のように相違することに着目し、NOxセンサ21~23の劣化がモニタセル43の劣化であるかセンサセル42の劣化であるかを区別するようにした。これにより、NOxセンサ21~23においてモニタセル43の劣化状態とセンサセル42の劣化状態とをそれぞれ適正に判定することができる。
Note that the characteristic change of the sensor cell current Is when the electromotive force feedback control and the current feedback control are performed differs between the state in which the monitor cell 43 is deteriorated and the state in which the sensor cell 42 is deteriorated as shown in FIG. Therefore, it is distinguished whether the deterioration of the NOx sensors 21 to 23 is the deterioration of the monitor cell 43 or the sensor cell 42. As a result, the NOx sensors 21 to 23 can appropriately determine the deterioration state of the monitor cell 43 and the deterioration state of the sensor cell 42, respectively.
起電力フィードバック制御の実施時において、モニタセル43の起電力特性においてモニタセル起電力Vmが急変する急変域内であって、かつ酸素濃度が0よりも大きい(空気過剰率が1よりも大きい)モニタセル起電力Vmを目標値とし、その目標値に基づいてポンプセル41による酸素濃度調整を行わせる構成とした。これにより、モニタセルの劣化状態下において、その劣化状態に応じて残留酸素濃度のずれが生じやすくなり、ひいてはモニタセルの劣化状態を精度良く判定できるようになる。
When the electromotive force feedback control is performed, the monitor cell electromotive force within the sudden change region where the monitor cell electromotive force Vm suddenly changes in the electromotive force characteristics of the monitor cell 43 and the oxygen concentration is greater than 0 (the excess air ratio is greater than 1). Vm is set as a target value, and the oxygen concentration is adjusted by the pump cell 41 based on the target value. As a result, in the deterioration state of the monitor cell, a shift in the residual oxygen concentration is likely to occur according to the deterioration state, so that the deterioration state of the monitor cell can be accurately determined.
NOxセンサ21~23は、ポンプセル41、センサセル42、及びモニタセル43の各電極(陰極)が同一のガス室61内に設けられた1チャンバ構造を有している。この構成では、ポンプセル印加電圧Vpの酸素濃度調整によってモニタセル43やセンサセル42のガス雰囲気が早期に切り替えられるため、複数のチャンバを有する構成に比べて、短時間での劣化判定を実施することができる。
The NOx sensors 21 to 23 have a one-chamber structure in which each electrode (cathode) of the pump cell 41, the sensor cell 42, and the monitor cell 43 is provided in the same gas chamber 61. In this configuration, the gas atmosphere of the monitor cell 43 and the sensor cell 42 can be switched at an early stage by adjusting the oxygen concentration of the pump cell applied voltage Vp, so that deterioration can be determined in a shorter time compared to a configuration having a plurality of chambers. .
なお、上記第1実施形態において、劣化判定のパラメータとして、センサセル電流Isの応答変化量ΔIsに代えて、センサセル電流Isの過渡変化時の傾きを用いることも可能である。
In the first embodiment, it is also possible to use the slope of the sensor cell current Is during a transient change instead of the response change amount ΔIs of the sensor cell current Is as a parameter for determining deterioration.
(第2実施形態)
以下に、第2実施形態を、第1実施形態との相違点を中心に説明する。第2実施形態では、SCU31~33が、ポンプセル印加電圧Vpを所定値に切り替え、その電圧切り替えに伴うセンサセル電流Isの変化に基づいて、センサセル42の劣化状態を判定する機能を有している。また、SCU31~33(劣化判定部M13)は、起電力フィードバック制御を実施した状態でのセンサセル電流Isの応答変化量ΔIsと、センサセル42の劣化判定結果とに基づいて、モニタセル43の劣化状態を判定する。 (Second Embodiment)
In the following, the second embodiment will be described with a focus on differences from the first embodiment. In the second embodiment, theSCUs 31 to 33 have a function of switching the pump cell applied voltage Vp to a predetermined value and determining the deterioration state of the sensor cell 42 based on a change in the sensor cell current Is accompanying the voltage switching. The SCUs 31 to 33 (degradation determination unit M13) determine the deterioration state of the monitor cell 43 based on the response change amount ΔIs of the sensor cell current Is in the state where the electromotive force feedback control is performed and the deterioration determination result of the sensor cell 42. judge.
以下に、第2実施形態を、第1実施形態との相違点を中心に説明する。第2実施形態では、SCU31~33が、ポンプセル印加電圧Vpを所定値に切り替え、その電圧切り替えに伴うセンサセル電流Isの変化に基づいて、センサセル42の劣化状態を判定する機能を有している。また、SCU31~33(劣化判定部M13)は、起電力フィードバック制御を実施した状態でのセンサセル電流Isの応答変化量ΔIsと、センサセル42の劣化判定結果とに基づいて、モニタセル43の劣化状態を判定する。 (Second Embodiment)
In the following, the second embodiment will be described with a focus on differences from the first embodiment. In the second embodiment, the
ここで、ポンプセル印加電圧Vpの切り替えにより実施されるセンサセル42の劣化判定について図14を用いて簡単に説明する。図14では、時刻t3で、ポンプセル印加電圧VpがVp0からVp1にステップ状に切り替えられる(Vp0>Vp1)。それに伴いポンプセル電流Ipが減少する側に変化し、ガス室61内の残留酸素濃度が増大される。そして、センサセル42では、残留酸素濃度の増大に応じて、センサセル電流Isが過渡応答を経て定常値(収束値)まで増大する。この場合、センサセル42が劣化していない初期状態と劣化後の状態とを比較すると、劣化後においては、応答性低下に伴い、定常値が初期特性の定常値より低減するとともに、立ち上がりが初期特性のものより遅くなる。これらに基づいて、SCU31~33は、センサセル42の劣化判定を実施する。
Here, the deterioration determination of the sensor cell 42 performed by switching the pump cell applied voltage Vp will be briefly described with reference to FIG. In FIG. 14, at time t3, the pump cell applied voltage Vp is switched from Vp0 to Vp1 stepwise (Vp0> Vp1). Along with this, the pump cell current Ip is changed to a decreasing side, and the residual oxygen concentration in the gas chamber 61 is increased. In the sensor cell 42, the sensor cell current Is increases to a steady value (convergence value) through a transient response as the residual oxygen concentration increases. In this case, when the initial state in which the sensor cell 42 is not deteriorated is compared with the state after deterioration, the steady state value decreases from the steady state value of the initial characteristic and the rise is increased after the deterioration. Slower than the ones. Based on these, the SCUs 31 to 33 perform the deterioration determination of the sensor cell 42.
図15は、本実施形態における劣化判定処理を示すフローチャートであり、本処理は、SCU31~33により例えば所定周期で実施される。
FIG. 15 is a flowchart showing the deterioration determination process in the present embodiment. This process is performed by the SCUs 31 to 33, for example, at a predetermined cycle.
ステップS31では、劣化判定の実施条件が成立しているか否かを判定する。ただし本処理は、図7のステップS11と同じであるため、詳細な説明は省略する。劣化判定の実施条件が成立していれば、後続のステップS42に進み、実施条件が成立していなければ、本処理を終了する。
In step S31, it is determined whether or not an execution condition for deterioration determination is satisfied. However, since this process is the same as step S11 of FIG. 7, detailed description thereof is omitted. If the execution condition for the deterioration determination is satisfied, the process proceeds to the subsequent step S42. If the execution condition is not satisfied, the present process is terminated.
ステップS42では、ポンプセル印加電圧VpをVp0からVp1に切り替える。Vp1は予め定められた所定値である。その後、ステップS43では、電圧切り替え後におけるセンサセル電流Isの出力変化量を算出する。ここでは、例えば電流変化が収束した後のセンサセル電流Isにより応答変化量ΔIs3(図14参照)を算出する。なお、これに代えて、センサセル電流Isの出力変化量として、センサセル電流Isの過渡変化時の傾きを算出することも可能である。
In step S42, the pump cell applied voltage Vp is switched from Vp0 to Vp1. Vp1 is a predetermined value. Thereafter, in step S43, an output change amount of the sensor cell current Is after voltage switching is calculated. Here, for example, the response change amount ΔIs3 (see FIG. 14) is calculated from the sensor cell current Is after the current change converges. Instead of this, as the output change amount of the sensor cell current Is, it is also possible to calculate the slope at the time of the transient change of the sensor cell current Is.
その後、ステップS44では、応答変化量ΔIs3を、今回の電圧切り替えと同じ条件で予め算出したセンサセル電流Isの応答変化量の初期値(以下、初期変化量ΔIsini3という)と比較することで、センサセル42の劣化判定を実施する。この場合、応答変化量ΔIs3と初期変化量ΔIsini3との比により出力比(ΔIs3/ΔIsini3)を算出し、その出力比により劣化率を算出することで、劣化判定を実施するとよい。
Thereafter, in step S44, the response change amount ΔIs3 is compared with the initial value of the response change amount of the sensor cell current Is calculated in advance under the same conditions as the current voltage switching (hereinafter, referred to as the initial change amount ΔIsini3). Deterioration judgment is performed. In this case, the deterioration determination may be performed by calculating the output ratio (ΔIs3 / ΔIsini3) based on the ratio between the response change amount ΔIs3 and the initial change amount ΔIsini3 and calculating the deterioration rate based on the output ratio.
また、ステップS45,S46では、起電力フィードバック制御を実施し、センサセル電流Isの応答変化量ΔIs1を算出する(既述のステップS12,S13と同じ)。
In steps S45 and S46, electromotive force feedback control is performed to calculate the response change amount ΔIs1 of the sensor cell current Is (same as steps S12 and S13 described above).
その後、ステップS47では、モニタセル43の劣化判定を実施する。このとき、ステップS44での判定結果(センサセル42の劣化状態)を加味しつつ、センサセル電流Isの応答変化量ΔIs1と初期変化量ΔIsini1とに基づいて、モニタセル43の劣化率Cmを算出する。例えば、センサセル42において劣化が生じていないこと(センサセル42の劣化率が所定値未満であること)を条件に、モニタセル43の劣化率Cmを算出する。この場合、センサセル42が劣化状態になっていれば、モニタセル43の劣化判定を実施しない。
Thereafter, in step S47, the deterioration of the monitor cell 43 is determined. At this time, the deterioration rate Cm of the monitor cell 43 is calculated based on the response change amount ΔIs1 and the initial change amount ΔIsini1 of the sensor cell current Is while taking into consideration the determination result in step S44 (the deterioration state of the sensor cell 42). For example, the deterioration rate Cm of the monitor cell 43 is calculated on the condition that no deterioration has occurred in the sensor cell 42 (the deterioration rate of the sensor cell 42 is less than a predetermined value). In this case, if the sensor cell 42 is in a deteriorated state, the deterioration determination of the monitor cell 43 is not performed.
又は、センサセル42の劣化率(劣化度合い)に基づいて、モニタセル43の劣化率Cmを補正する。例えば、起電力フィードバック制御を実施する場合には、モニタセル43の劣化時及びセンサセル42の劣化時のいずれにおいてもセンサセル電流Isの応答変化量ΔIsが減少する傾向にあるため、センサセル42の劣化率に基づいて、モニタセル43の劣化率Cmを減少側に補正する。つまり、劣化度合いが小さくなる側に補正する。
Alternatively, the deterioration rate Cm of the monitor cell 43 is corrected based on the deterioration rate (degradation degree) of the sensor cell 42. For example, when performing electromotive force feedback control, the response change amount ΔIs of the sensor cell current Is tends to decrease both when the monitor cell 43 is deteriorated and when the sensor cell 42 is deteriorated. Based on this, the deterioration rate Cm of the monitor cell 43 is corrected to the decreasing side. That is, the correction is made to reduce the degree of deterioration.
なお、ステップS45,S46において、起電力フィードバック制御に代えて電流フィードバック制御を実施し、センサセル電流Isの応答変化量ΔIs2を算出することも可能である(既述のステップS22,S23と同じ)。この場合、ステップS47では、ステップS44での判定結果(センサセル42の劣化状態)を加味しつつ、センサセル電流Isの応答変化量ΔIs2と初期変化量ΔIsini2とに基づいて、モニタセル43の劣化率Cmを算出する。具体的内容は上記と同様である。ただし、電流フィードバック制御を実施する場合には、モニタセル43の劣化時とセンサセル42の劣化時とで応答変化量ΔIsの増減が逆になるため、センサセル42の劣化率に基づいて、モニタセル43の劣化率Cmを増加側に補正するとよい。つまり、劣化度合いが大きくなる側に補正する。
In steps S45 and S46, current feedback control can be performed instead of the electromotive force feedback control, and the response change amount ΔIs2 of the sensor cell current Is can be calculated (same as the above-described steps S22 and S23). In this case, in step S47, the deterioration rate Cm of the monitor cell 43 is calculated based on the response change amount ΔIs2 and the initial change amount ΔIsini2 of the sensor cell current Is while taking the determination result in step S44 (deterioration state of the sensor cell 42) into account. calculate. The specific contents are the same as described above. However, when the current feedback control is performed, since the increase / decrease in the response change amount ΔIs is reversed between the deterioration of the monitor cell 43 and the deterioration of the sensor cell 42, the deterioration of the monitor cell 43 is determined based on the deterioration rate of the sensor cell 42. The rate Cm may be corrected to the increasing side. That is, the correction is made so that the degree of deterioration becomes larger.
ポンプセル印加電圧Vpを意図的に切り替える場合には、その電圧切り替えによる残留酸素濃度の変化に伴いセンサセル電流Isが変化し、そのセンサセル電流Isの変化に基づいてセンサセル42の劣化状態を判定できる。かかる構成において、そのセンサセル42の劣化判定結果を加味しつつ、起電力フィードバック制御の実施に伴い取得されたセンサセル電流Isに基づいて、モニタセル43の劣化状態を判定するようにした。この場合、センサセル電流Isの過渡変化は、モニタセル43及びセンサセル42の両方の劣化状態に依存するが、個別に劣化判定を実施することで、モニタセル43の劣化状態を適正に判定することが可能となる。
When the pump cell applied voltage Vp is intentionally switched, the sensor cell current Is changes with a change in the residual oxygen concentration due to the voltage switching, and the deterioration state of the sensor cell 42 can be determined based on the change in the sensor cell current Is. In such a configuration, the deterioration state of the monitor cell 43 is determined based on the sensor cell current Is acquired with the execution of the electromotive force feedback control while taking into account the deterioration determination result of the sensor cell 42. In this case, the transient change of the sensor cell current Is depends on the deterioration state of both the monitor cell 43 and the sensor cell 42, but it is possible to appropriately determine the deterioration state of the monitor cell 43 by performing the deterioration determination individually. Become.
(他の実施形態)
上記実施形態を例えば次のように変更してもよい。 (Other embodiments)
You may change the said embodiment as follows, for example.
上記実施形態を例えば次のように変更してもよい。 (Other embodiments)
You may change the said embodiment as follows, for example.
・図7や図11、図13、図15にて説明した劣化判定(劣化率の算出)を複数回繰り返し実施し、その上で、複数回の実施結果を平均することで、最終的な劣化判定を実施する構成としてもよい。これにより、判定精度を高めることができる。
・ Deterioration determination (calculation of deterioration rate) described in FIG. 7, FIG. 11, FIG. 13, and FIG. It is good also as a structure which implements determination. Thereby, the determination accuracy can be increased.
・上記実施形態では、モニタセル43の劣化判定やセンサセル42の劣化判定を実施する際に用いる基準値として、同じ条件で予め算出した初期値を用いる構成としたが、経年的な劣化度合いが把握できるものであれば、他の値であってもよい。例えば、初期値以外の既定値や、使用年数に応じて定められた所定値等を用いることが可能である。
In the above embodiment, the initial value calculated in advance under the same conditions is used as the reference value used when performing the deterioration determination of the monitor cell 43 or the deterioration determination of the sensor cell 42, but the degree of deterioration over time can be grasped. Any other value may be used. For example, a predetermined value other than the initial value, a predetermined value determined according to the number of years of use, or the like can be used.
・上記実施形態では、センサ素子40が単一の固体電解質体53と単一のガス室61とを有する構成(1チャンバ構造)としたが、これを変更してもよい。例えば、センサ素子40が、複数の固体電解質体53と複数のガス室61とを有し、ポンプセル41及びセンサセル42が、それぞれ別の固体電解質体53であって、かつ別のガス室61に面するように設けられる構成であってもよい。このような構成の一例を図16に示す。
In the above embodiment, the sensor element 40 has a single solid electrolyte body 53 and a single gas chamber 61 (one-chamber structure), but this may be changed. For example, the sensor element 40 has a plurality of solid electrolyte bodies 53 and a plurality of gas chambers 61, and the pump cell 41 and the sensor cell 42 are different solid electrolyte bodies 53 and face the other gas chambers 61. The structure provided so that it may be sufficient. An example of such a configuration is shown in FIG.
図16に示すセンサ素子40は、対向配置される2枚の固体電解質体53a,53bと、それら固体電解質体53a,53bの間に設けられるガス室61a,61bとを有している。ガス室61aは排気導入口53cに通じ、ガス室61bは絞り部71を介してガス室61aに連通されている。ポンプセル41は、一対の電極72,73を有し、そのうち一方の電極72がガス室61a内に露出するよう設けられている。センサセル42は、対向配置される電極74と共通電極76とを有し、モニタセル43は、対向配置される電極75と共通電極76とを有している。センサセル42とモニタセル43とは隣接して設けられている。それらの各セルにおいて一方の電極74,75はガス室61b内に露出するよう設けられている。このように、ポンプセル41及びセンサセル42がそれぞれ別のガス室61a,61bに設けられる構成においても、上記実施形態の劣化判定などの各機能を好適に実施することができる。
The sensor element 40 shown in FIG. 16 has two solid electrolyte bodies 53a and 53b arranged opposite to each other, and gas chambers 61a and 61b provided between the solid electrolyte bodies 53a and 53b. The gas chamber 61a communicates with the exhaust introduction port 53c, and the gas chamber 61b communicates with the gas chamber 61a via the throttle portion 71. The pump cell 41 has a pair of electrodes 72 and 73, and one of the electrodes 72 is provided so as to be exposed in the gas chamber 61a. The sensor cell 42 has an electrode 74 and a common electrode 76 that are arranged to face each other, and the monitor cell 43 has an electrode 75 and a common electrode 76 that are arranged to face each other. The sensor cell 42 and the monitor cell 43 are provided adjacent to each other. In each of these cells, one electrode 74, 75 is provided so as to be exposed in the gas chamber 61b. Thus, even in the configuration in which the pump cell 41 and the sensor cell 42 are provided in separate gas chambers 61a and 61b, each function such as the deterioration determination of the above-described embodiment can be suitably performed.
・検出対象の特定ガス成分がNOx以外であってもよい。例えば、排気中のHCやCOを検出対象とするガスセンサであってもよい。この場合、ポンプセルにて排気中の酸素を排出し、センサセルにて酸素排出後のガスからHCやCOを分解してHC濃度やCO濃度を検出するものであるとよい。その他、被検出ガス中のアンモニアの濃度を検出するものであってもよい。
· The specific gas component to be detected may be other than NOx. For example, it may be a gas sensor that detects HC or CO in the exhaust. In this case, it is preferable that oxygen in exhaust gas is discharged by the pump cell, and HC and CO are decomposed from the gas after oxygen discharge by the sensor cell to detect the HC concentration and CO concentration. In addition, the concentration of ammonia in the gas to be detected may be detected.
・内燃機関の吸気通路に設けられるガスセンサや、ディーゼルエンジン以外にガソリンエンジンなど、他の形式のエンジンに用いられるガスセンサを対象とするガスセンサ制御装置としても具体化できる。そのガスセンサは、排気以外のガスを被検出ガスとしてもよく、また、自動車以外の用途で用いられるものであってもよい。
∙ It can also be embodied as a gas sensor control device for a gas sensor provided in an intake passage of an internal combustion engine or a gas sensor used for other types of engines such as a gasoline engine in addition to a diesel engine. The gas sensor may use a gas other than exhaust as a gas to be detected, or may be used for applications other than automobiles.
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
Claims (10)
- ガス室(61)内に導入された被検出ガス中の酸素濃度を電圧印加により調整するポンプセル(41)と、前記ポンプセルによる酸素濃度の調整後に前記ガス室内の特定ガス成分の濃度を検出するセンサセル(42)と、前記ガス室内の残留酸素濃度を検出するモニタセル(43)とを有するガスセンサ(21~23)に適用され、前記ガスセンサに関する制御を実施する制御装置(31~33,35)であって、
前記モニタセルの出力(Vm,Im)を目標値に制御すべく、前記ポンプセルにより前記残留酸素濃度の調整を行わせるポンプセル制御部と、
前記ポンプセル制御部により前記残留酸素濃度が調整された状態において、前記センサセルの出力(Is)を取得する取得部と、
前記取得部により取得された前記センサセルの出力に基づいて、前記モニタセルの劣化状態を判定する劣化判定部と、
を備えるガスセンサ制御装置。 A pump cell (41) for adjusting the oxygen concentration in the gas to be detected introduced into the gas chamber (61) by applying a voltage, and a sensor cell for detecting the concentration of a specific gas component in the gas chamber after the oxygen concentration is adjusted by the pump cell. (42) and a control device (31-33, 35) which is applied to a gas sensor (21-23) having a monitor cell (43) for detecting the residual oxygen concentration in the gas chamber and performs control relating to the gas sensor. And
A pump cell controller for adjusting the residual oxygen concentration by the pump cell in order to control the output (Vm, Im) of the monitor cell to a target value;
An acquisition unit for acquiring the output (Is) of the sensor cell in a state where the residual oxygen concentration is adjusted by the pump cell control unit;
A deterioration determination unit that determines a deterioration state of the monitor cell based on the output of the sensor cell acquired by the acquisition unit;
A gas sensor control device comprising: - 前記ガスセンサは、前記モニタセルの出力として、前記ガス室内の残留酸素濃度に応じたモニタセル起電力(Vm)を生じさせるものであり、
前記ポンプセル制御部は、前記モニタセル起電力を目標値に制御する起電力制御を実施することで、前記ポンプセルにより前記残留酸素濃度の調整を行わせ、
前記劣化判定部は、前記起電力制御の実施により生じた前記センサセルの出力変化量(ΔIs1)に基づいて、前記モニタセルの劣化状態を判定する請求項1に記載のガスセンサ制御装置。 The gas sensor generates a monitor cell electromotive force (Vm) corresponding to a residual oxygen concentration in the gas chamber as an output of the monitor cell,
The pump cell control unit performs adjustment of the residual oxygen concentration by the pump cell by performing electromotive force control for controlling the monitor cell electromotive force to a target value.
The gas sensor control device according to claim 1, wherein the deterioration determination unit determines a deterioration state of the monitor cell based on an output change amount (ΔIs1) of the sensor cell generated by the execution of the electromotive force control. - 前記劣化判定部は、前記センサセルの出力変化量の劣化前の初期状態における前記出力変化量に対する比が所定値よりも小さいことに基づいて、前記モニタセルの劣化状態を判定する請求項2に記載のガスセンサ制御装置。 3. The deterioration determination unit according to claim 2, wherein the deterioration determination unit determines the deterioration state of the monitor cell based on a ratio of the output change amount of the sensor cell to the output change amount in an initial state before deterioration being smaller than a predetermined value. Gas sensor control device.
- 前記ガスセンサは、前記モニタセルの出力として、前記モニタセルに電圧印加した状態で前記ガス室内の残留酸素濃度に応じたモニタセル電流(Im)を生じさせるものであり、
前記ポンプセル制御部は、前記モニタセル電流を目標値に制御するモニタセル電流制御を実施することで、前記ポンプセルにより前記残留酸素濃度の調整を行わせ、
前記劣化判定部は、前記モニタセル電流制御の実施により生じた前記センサセルの出力変化量(ΔIs2)に基づいて、前記モニタセルの劣化状態を判定する請求項1に記載のガスセンサ制御装置。 The gas sensor generates, as an output of the monitor cell, a monitor cell current (Im) corresponding to a residual oxygen concentration in the gas chamber in a state where a voltage is applied to the monitor cell.
The pump cell control unit performs adjustment of the residual oxygen concentration by the pump cell by performing monitor cell current control for controlling the monitor cell current to a target value,
2. The gas sensor control device according to claim 1, wherein the deterioration determination unit determines a deterioration state of the monitor cell based on an output change amount (ΔIs2) of the sensor cell caused by the execution of the monitor cell current control. - 前記劣化判定部は、前記センサセルの出力変化量が、予め定めた基準値に対して大きくなることに基づいて、前記モニタセルの劣化状態を判定する請求項4に記載のガスセンサ制御装置。 The gas sensor control device according to claim 4, wherein the deterioration determination unit determines a deterioration state of the monitor cell based on an output change amount of the sensor cell being larger than a predetermined reference value.
- 前記劣化判定部は、前記センサセルの出力変化量が、予め定めた基準値に対して小さくなることに基づいて、前記センサセルの劣化状態を判定する請求項4又は5に記載のガスセンサ制御装置。 The gas sensor control device according to claim 4 or 5, wherein the deterioration determination unit determines a deterioration state of the sensor cell based on an output change amount of the sensor cell being smaller than a predetermined reference value.
- 前記ポンプセルの印加電圧(Vp)を所定値に切り替え、その電圧切り替えに伴う前記センサセルの出力変化に基づいて、前記センサセルの劣化状態を判定するガスセンサ制御装置であって、
前記劣化判定部は、前記取得部により取得された前記センサセルの出力と、前記センサセルの劣化判定結果とに基づいて、前記モニタセルの劣化状態を判定する請求項1乃至5のいずれか1項に記載のガスセンサ制御装置。 A gas sensor control device that switches an applied voltage (Vp) of the pump cell to a predetermined value and determines a deterioration state of the sensor cell based on an output change of the sensor cell accompanying the voltage switching,
The said deterioration determination part determines the deterioration state of the said monitor cell based on the output of the said sensor cell acquired by the said acquisition part, and the deterioration determination result of the said sensor cell. Gas sensor control device. - 前記ガスセンサは、前記モニタセルの出力として、前記ガス室内の残留酸素濃度に応じたモニタセル起電力(Vm)を生じさせることと、前記モニタセルに電圧印加した状態で前記ガス室内の残留酸素濃度に応じたモニタセル電流(Im)を生じさせることとを可能とするものであり、
前記ポンプセル制御部は、前記モニタセル起電力を目標値に制御する起電力制御を実施することで、前記ポンプセルにより前記残留酸素濃度の調整を行わせる一方、前記モニタセル電流を目標値に制御するモニタセル電流制御を実施することで、前記ポンプセルにより前記残留酸素濃度の調整を行わせ、
前記劣化判定部は、前記起電力制御の実施により生じた前記センサセルの出力変化量(ΔIs1)と、前記モニタセル電流制御の実施により生じた前記センサセルの出力変化量(ΔIs2)とに基づいて、前記モニタセル及び前記センサセルについて劣化判定を実施する請求項1に記載のガスセンサ制御装置。 The gas sensor generates, as an output of the monitor cell, a monitor cell electromotive force (Vm) corresponding to the residual oxygen concentration in the gas chamber, and according to the residual oxygen concentration in the gas chamber in a state where a voltage is applied to the monitor cell. It is possible to generate a monitor cell current (Im),
The pump cell control unit performs the electromotive force control for controlling the monitor cell electromotive force to a target value, thereby allowing the pump cell to adjust the residual oxygen concentration, while controlling the monitor cell current to the target value. By performing the control, the residual oxygen concentration is adjusted by the pump cell,
The deterioration determination unit, based on the output change amount (ΔIs1) of the sensor cell caused by the execution of the electromotive force control and the output change amount (ΔIs2) of the sensor cell caused by the execution of the monitor cell current control, The gas sensor control device according to claim 1, wherein the deterioration determination is performed on the monitor cell and the sensor cell. - 前記劣化判定部は、
前記センサセルの出力変化量が、前記起電力制御を実施する場合において予め定めた第1基準値(ΔIsini1)に対して小さくなり、かつ前記モニタセル電流制御を実施する場合において予め定めた第2基準値(ΔIsini2)に対して大きくなることに基づいて、前記モニタセルの劣化状態を判定し、
前記センサセルの出力変化量が、前記起電力制御を実施する場合において前記第1基準値(ΔIsini1)に対して小さくなり、かつ前記モニタセル電流制御を実施する場合において前記第2基準値(ΔIsini2)に対して大きくなることに基づいて、前記センサセルの劣化状態を判定する請求項8に記載のガスセンサ制御装置。 The deterioration determination unit
The output change amount of the sensor cell is smaller than a predetermined first reference value (ΔIsini1) when the electromotive force control is performed, and a predetermined second reference value when the monitor cell current control is performed. Determining a degradation state of the monitor cell based on becoming larger than (ΔIsini2);
The output change amount of the sensor cell becomes smaller than the first reference value (ΔIsini1) when the electromotive force control is performed, and becomes the second reference value (ΔIsini2) when the monitor cell current control is performed. The gas sensor control device according to claim 8, wherein a deterioration state of the sensor cell is determined based on an increase in size. - 前記ガスセンサは、前記モニタセルの起電力特性として、空気過剰率>1の領域でモニタセル起電力が略ゼロとなり、空気過剰率<1の領域でモニタセル起電力が所定値となり、空気過剰率=1付近の領域でモニタセル起電力が急変する特性を有しており、
前記ポンプセル制御部は、前記起電力制御の実施時において、前記モニタセルの起電力特性において前記モニタセル起電力が急変する急変域内であって、かつ空気過剰率が1よりも大きいモニタセル起電力を前記目標値とし、その目標値に基づいて前記ポンプセルによる酸素濃度調整を行わせる請求項2,3,8,9のいずれか1項に記載のガスセンサ制御装置。 The gas sensor has an electromotive force characteristic of the monitor cell in which the monitor cell electromotive force is substantially zero in a region where the excess air ratio> 1, the monitor cell electromotive force becomes a predetermined value in the region where the excess air ratio <1, and the excess air ratio = 1. The monitor cell electromotive force has a characteristic that changes suddenly in the area of
When the electromotive force control is performed, the pump cell control unit sets a monitor cell electromotive force within a sudden change region where the monitor cell electromotive force suddenly changes in the electromotive force characteristics of the monitor cell and an excess air ratio is greater than 1. The gas sensor control device according to any one of claims 2, 3, 8, and 9, wherein an oxygen concentration is adjusted by the pump cell based on the target value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112018002768.6T DE112018002768T5 (en) | 2017-05-30 | 2018-05-29 | GAS SENSOR CONTROL DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-107026 | 2017-05-30 | ||
JP2017107026A JP6638700B2 (en) | 2017-05-30 | 2017-05-30 | Gas sensor control device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018221528A1 true WO2018221528A1 (en) | 2018-12-06 |
Family
ID=64454800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/020595 WO2018221528A1 (en) | 2017-05-30 | 2018-05-29 | Gas sensor control device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6638700B2 (en) |
DE (1) | DE112018002768T5 (en) |
WO (1) | WO2018221528A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019086396A (en) | 2017-11-07 | 2019-06-06 | 株式会社デンソー | Control device |
JP2023070336A (en) * | 2021-11-09 | 2023-05-19 | 株式会社デンソー | Controller |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003254939A (en) * | 2001-12-27 | 2003-09-10 | Nippon Soken Inc | Gas concentration detection device |
JP2004333374A (en) * | 2003-05-09 | 2004-11-25 | Nippon Soken Inc | Abnormality detecting apparatus of gas concentration sensor |
JP2007147386A (en) * | 2005-11-25 | 2007-06-14 | Ngk Spark Plug Co Ltd | Device and method for determining sensor element deterioration |
JP2007147383A (en) * | 2005-11-25 | 2007-06-14 | Ngk Spark Plug Co Ltd | Device and method for determining degradation of sensor element |
JP2009175013A (en) * | 2008-01-24 | 2009-08-06 | Toyota Motor Corp | Degradation diagnosing apparatus of nox sensor |
JP2015059926A (en) * | 2013-09-20 | 2015-03-30 | 株式会社デンソー | Gas sensor controller |
JP2015105843A (en) * | 2013-11-29 | 2015-06-08 | 株式会社デンソー | Gas sensor control device |
WO2016013229A1 (en) * | 2014-07-25 | 2016-01-28 | 株式会社デンソー | Gas concentration detection device |
-
2017
- 2017-05-30 JP JP2017107026A patent/JP6638700B2/en active Active
-
2018
- 2018-05-29 DE DE112018002768.6T patent/DE112018002768T5/en not_active Withdrawn
- 2018-05-29 WO PCT/JP2018/020595 patent/WO2018221528A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003254939A (en) * | 2001-12-27 | 2003-09-10 | Nippon Soken Inc | Gas concentration detection device |
JP2004333374A (en) * | 2003-05-09 | 2004-11-25 | Nippon Soken Inc | Abnormality detecting apparatus of gas concentration sensor |
JP2007147386A (en) * | 2005-11-25 | 2007-06-14 | Ngk Spark Plug Co Ltd | Device and method for determining sensor element deterioration |
JP2007147383A (en) * | 2005-11-25 | 2007-06-14 | Ngk Spark Plug Co Ltd | Device and method for determining degradation of sensor element |
JP2009175013A (en) * | 2008-01-24 | 2009-08-06 | Toyota Motor Corp | Degradation diagnosing apparatus of nox sensor |
JP2015059926A (en) * | 2013-09-20 | 2015-03-30 | 株式会社デンソー | Gas sensor controller |
JP2015105843A (en) * | 2013-11-29 | 2015-06-08 | 株式会社デンソー | Gas sensor control device |
WO2016013229A1 (en) * | 2014-07-25 | 2016-01-28 | 株式会社デンソー | Gas concentration detection device |
Also Published As
Publication number | Publication date |
---|---|
JP6638700B2 (en) | 2020-01-29 |
DE112018002768T5 (en) | 2020-02-20 |
JP2018204985A (en) | 2018-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11249043B2 (en) | Control device for gas sensor | |
WO2016013229A1 (en) | Gas concentration detection device | |
US11428663B2 (en) | Gas sensor control device | |
JP2009175013A (en) | Degradation diagnosing apparatus of nox sensor | |
US11054388B2 (en) | Gas sensor control device | |
WO2018221528A1 (en) | Gas sensor control device | |
WO2016121380A1 (en) | Internal-combustion engine control device | |
JP6344262B2 (en) | Exhaust sensor | |
JP6255948B2 (en) | Gas sensor control device | |
US11174807B2 (en) | Operation control method of vehicle engine and vehicle system | |
WO2018216808A1 (en) | Gas sensor control device | |
JP2009175014A (en) | Nox sensor and its deterioration diagnosing apparatus | |
JP6819538B2 (en) | Gas sensor controller | |
JP2017067717A (en) | Gas sensor control device, reference point learning method and reference point diagnosing method | |
US11092099B2 (en) | Control apparatus | |
JP6984696B2 (en) | Gas sensor control device | |
US11035283B2 (en) | Control apparatus | |
US20190219537A1 (en) | Control device | |
WO2017110553A1 (en) | Internal-combustion engine gas concentration detecting device | |
JP2018059941A (en) | Gas sensor control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18809572 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18809572 Country of ref document: EP Kind code of ref document: A1 |