WO2018216777A1 - Method for producing fluorine-containing ether compounds and fluorine-containing ether compounds - Google Patents

Method for producing fluorine-containing ether compounds and fluorine-containing ether compounds Download PDF

Info

Publication number
WO2018216777A1
WO2018216777A1 PCT/JP2018/020030 JP2018020030W WO2018216777A1 WO 2018216777 A1 WO2018216777 A1 WO 2018216777A1 JP 2018020030 W JP2018020030 W JP 2018020030W WO 2018216777 A1 WO2018216777 A1 WO 2018216777A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
compound represented
group
formula
following formula
Prior art date
Application number
PCT/JP2018/020030
Other languages
French (fr)
Japanese (ja)
Inventor
星野 泰輝
清貴 高尾
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2019520313A priority Critical patent/JP6705557B2/en
Priority to CN202310014193.5A priority patent/CN116041689A/en
Priority to CN201880033220.0A priority patent/CN110650991B/en
Publication of WO2018216777A1 publication Critical patent/WO2018216777A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/13Saturated ethers containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/13Saturated ethers containing hydroxy or O-metal groups
    • C07C43/137Saturated ethers containing hydroxy or O-metal groups containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/307Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/63Halogen-containing esters of saturated acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/323Polymers modified by chemical after-treatment with inorganic compounds containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/323Polymers modified by chemical after-treatment with inorganic compounds containing halogens
    • C08G65/3233Molecular halogen
    • C08G65/3236Fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/3311Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterized by the type of post-polymerisation functionalisation
    • C08G2650/04End-capping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for producing a fluorinated ether compound and a fluorinated ether compound.
  • Patent Document 1 As a fluorine-containing ether compound capable of forming a surface layer excellent in friction resistance and fingerprint stain removability on the surface of a substrate, a fluorine-containing ether compound having a hydrolyzable silyl group introduced at one end has been proposed (Patent Document) 1). As an intermediate of a fluorine-containing ether compound having a hydrolyzable silyl group introduced at one end, a fluorine-containing ether compound having a hydroxyl group, a carbonyl group-containing group (such as a carboxylic acid halide group or an ester group) at one end is useful. is there. A fluorine-containing ether compound having a hydroxyl group at one end is produced, for example, as follows (Patent Document 1).
  • a compound represented by the following formula (1b) is fluorinated with fluorine gas, a compound represented by the following formula (1a), a compound represented by the following formula (1b), and a compound represented by the following formula (1c)
  • a mixture consisting of CF 3 (OC 2 F 4 ) p (OCF 2 ) q OCF 2 C (O) OH (1a) HO (O) CCF 2 (OC 2 F 4) p (OCF 2) q OCF 2 C (O) OH ⁇ (1b) CF 3 (OC 2 F 4 ) p (OCF 2 ) q OCF 3 (1c)
  • the mixture is purified using an ion exchange resin to increase the proportion of the compound represented by formula (1a).
  • the mixture after purification is reduced with hydrogen using a reducing agent to obtain a mixture containing a compound represented by the following formula (2a) at a high concentration.
  • [2] A compound represented by the formula (1) in the reaction of the compound represented by the formula (1) and the R 1 OH by recovering the unreacted compound represented by the formula (1).
  • the manufacturing method of [1], which is reused as [3] The compound represented by the formula (3) is recovered, hydrolyzed to obtain the compound represented by the formula (1), and the compound represented by the formula (1) and the R 1 OH.
  • a method for producing a fluorinated ether compound characterized in that a compound represented by the following formula (4) is obtained by fluorinating a compound represented by the following formula (2) with a fluorine gas.
  • a compound represented by the following formula (4) is obtained by fluorinating a compound represented by the following formula (2) with a fluorine gas.
  • R f1 and R f2 are each independently a perfluoroalkylene group
  • m is an integer from 2 to 200;
  • (R f1 O) m may be composed of two or more types of R f1 O, R 1 is a monovalent organic group, R f3 is a monovalent perfluoro organic group.
  • a method for producing a fluorinated ether compound wherein a compound represented by the following formula (14) is obtained by fluorinating a compound represented by the following formula (12) with a fluorine gas.
  • a fluorinated ether compound wherein a compound represented by the following formula (14) is obtained by fluorinating a compound represented by the following formula (12) with a fluorine gas.
  • R f1 and R f2 are each independently a perfluoroalkylene group
  • m is each independently an integer
  • a process for producing a fluorinated ether compound wherein the compound represented by the following formula (5) is obtained by transesterifying the compound represented by the following formula (14) with R 2 OH.
  • R f1 and R f2 are each independently a perfluoroalkylene group
  • m is each independently an integer of 2 to 200
  • (R f1 O) m may be composed of two or more types of R f1 O
  • R 2 is a monovalent organic group.
  • R f1 and R f2 are each independently a perfluoroalkylene group
  • m is each independently an integer of 2 to 200
  • (R f1 O) m may be composed of two or more types of R f1 O.
  • M is preferably an integer of 5 to 150, particularly preferably an integer of 10 to 100.
  • m is not less than the lower limit of the above range, the water and oil repellency of the surface layer comprising the finally obtained surface treatment agent is excellent. If m is less than or equal to the upper limit of the above range, the surface layer has excellent friction resistance. That is, if the number average molecular weight of the surface treatment agent is too large, the number of hydrolyzable silyl groups present per unit molecular weight decreases, and the friction resistance of the surface layer decreases.
  • each R f1 O is not limited and may be arranged randomly, alternately, or in blocks.
  • the two or more R f1 O is present, that there are two or more R f1 O having different numbers of carbon atoms, and, whether or side chain type of side chains may be the same number of carbon atoms (the side chain refers to R f1 O is present the number and number of carbon atoms in the side chain, etc.) two or more different of.
  • the structure represented by ⁇ (CF 2 O) x1 (CF 2 CF 2 O) x2 ⁇ is x1 ( CF 2 O) and x2 amino and (CF 2 CF 2 O) represents that it is randomly arranged.
  • the structure represented by (CF 2 CF 2 O—CF 2 CF 2 CF 2 CF 2 O) x 3 has x 3 (CF 2 CF 2 O) and x 3 (CF 2 CF 2 CF 2 CF 2). O) are alternately arranged.
  • Examples of the group having 1 to 4 other (R f1 O) at one or both ends thereof include (CF 2 CF 2 O) 2 ⁇ (CF 2 O) m1 (CF 2 CF 2 O) m 2-2. ⁇ , (CF 2 CF 2 O—CF 2 CF 2 CF 2 CF 2 O) m5-1 (CF 2 CF 2 O), and the like.
  • (R f1 O) m is particularly preferably a group having ⁇ (CF 2 O) m1 (CF 2 CF 2 O) m2 ⁇ .
  • m1 is an integer of 1 or more
  • m2 is an integer of 1 or more
  • m1 + m2 is an integer of 2 to 200
  • the bonding order of m1 CF 2 O and m2 CF 2 CF 2 O is limited Not.
  • m3 and m4 are each an integer of 2 to 200
  • m5 is an integer of 1 to 100.
  • the compound (2) is useful as an intermediate of a fluorine-containing ether compound that is suitably used for a surface treatment agent.
  • a compound (1) is reacted with R 1 OH to obtain a mixture containing the compound (1), the compound (2) and the compound (3). It is.
  • R 1 examples include a monovalent hydrocarbon group that may have a substituent.
  • the monovalent hydrocarbon group include an alkyl group, an aryl group, and a cycloalkyl group.
  • R 1 preferably has 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • R 1 is simultaneously fluorinated when the carboxyl group reacts with the fluorine gas, but it is desirable that no reaction occurs except that the hydrogen atom is replaced with a fluorine atom. From this point, R 1 may contain an etheric oxygen atom, and is preferably a monovalent hydrocarbon group in which a part of the hydrogen atoms may be substituted with fluorine atoms.
  • Examples of a method for recovering each compound from the mixture include known purification methods (such as column chromatography using silica gel or an ion exchange resin).
  • the recovered compound (2) is used for the production of the next compound (4).
  • the recovered compound (1) is preferably reused as the compound (1) in the reaction between the compound (1) and R 1 OH.
  • the recovered compound (3) is preferably hydrolyzed to obtain compound (1), which is preferably reused as compound (1) in the reaction between compound (1) and R 1 OH. Since compound (1) and compound (3) can be reused as raw materials, compound (1) and compound (3) are not wasted. Therefore, the compound (2), further the compound (4), the compound (5) and the compound (6) can be produced with high yield.
  • the compound (5) is useful as an intermediate of a fluorinated ether compound suitably used for a surface treatment agent.
  • the third aspect of the method for producing a fluorinated ether compound of the present invention is a method for obtaining a compound (5) by transesterification between the compound (4) and R 2 OH.
  • (R f1 O) m and R f2 are described in Compound (1)
  • R f1 O) is the same as m and R f2, which is the preferred form as well.
  • R 2 is a monovalent organic group.
  • R 2 includes a monovalent hydrocarbon group which may have a substituent.
  • the monovalent hydrocarbon group include an alkyl group, an aryl group, and a cycloalkyl group.
  • R 1 preferably has 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • R 2 an alkyl group is preferable, and as R 2 OH, a boiling point is not high, and an alkyl group having 1 to 10 carbon atoms is particularly preferable because R 2 OH can be easily removed in a later step.
  • reaction conditions for the compound (4) and R 2 OH are not particularly limited as long as they are ordinary transesterification reaction conditions.
  • the compound (6) is useful as an intermediate of a fluorine-containing ether compound that is suitably used for a surface treatment agent.
  • compound (6) may be obtained by hydrogen reduction of compound (5) using a reducing agent.
  • R f1 O m and R f2 are described in Compound (1)
  • R f1 O) is the same as m and R f2, which is the preferred form as well.
  • Examples of the reducing agent include sodium borohydride, lithium aluminum hydride, borane (monoborane, diborane, etc.), hydrogen gas in the presence of a metal catalyst (palladium catalyst, platinum catalyst, etc.), and the like.
  • the compound (12) is useful as an intermediate of a fluorinated ether compound suitably used for a surface treatment agent.
  • compound (1) is reacted with compound (6) to obtain a mixture containing compound (1), compound (12) and compound (13). Is the method.
  • (R f1 O) m of the compound of (1) (R f1 O) m and the compound (6) may be the same or may be different. From the point that a uniform compound is obtained as the compound (5) obtained from the compound (14) described later and the compound (6) obtained from the compound (5), (R f1 O) m of the compound (1) and the compound ( 6) (R f1 O) m is preferably the same.
  • reaction conditions for the compound (1) and the compound (6) are not particularly limited as long as they are ordinary esterification reaction conditions.
  • Examples of a method for recovering each compound from the mixture include known purification methods (such as column chromatography using silica gel or an ion exchange resin).
  • the recovered compound (12) is used for the production of the next compound (14).
  • the recovered compound (1) is preferably reused as the compound (1) in the reaction between the compound (1) and the compound (6).
  • the recovered compound (13) is hydrolyzed to obtain compound (1) and compound (6), which are re-generated as compound (1) and compound (6) in the reaction of compound (1) and compound (6). It is preferable to use it.
  • the compound (12), further the compound (14), the compound (5) and the compound (6) can be produced with high yield.
  • the compound (14) is useful as an intermediate of a fluorine-containing ether compound that is suitably used for a surface treatment agent.
  • a fifth aspect of the method for producing a fluorinated ether compound of the present invention is a method for obtaining a compound (14) by fluorinating the compound (12) with a fluorine gas.
  • reaction conditions for the compound (14) and R 2 OH are not particularly limited as long as they are ordinary transesterification reaction conditions.
  • compound (6) may be obtained by hydrogen reduction of compound (5) obtained from compound (14) in the same manner as described above.
  • R f1 O m and R f2 are described in Compound (1)
  • R f1 O is the same as m and R f2, which is the preferred form as well.
  • Part of the obtained compound (6) is preferably reused as an alcohol to be reacted with the starting compound (1).
  • R 1 OH other than compound (6) is used as the alcohol to be reacted with compound (1)
  • R f3 OH produced by transesterification of compound (4) and R 2 OH when producing compound (5) is wasted.
  • compound (6) is used as the alcohol to be reacted with compound (1)
  • 2 mol of compound (5) is produced from 1 mol of compound (14) when producing compound (5).
  • the alcohol used (compound (6)) is not wasted.
  • X is an etheric oxygen atom or —NH—
  • Q 2 is a single bond, an alkylene group, or an etheric oxygen atom or a carbon atom between carbon atoms of an alkylene group having 2 or more carbon atoms.
  • a group having —NH—, r is 0 or 1 (provided that 0 when Q 2 is a single bond)
  • Q 3 is an alkylene group or an alkylene group having 2 or more carbon atoms.
  • a group having an etheric oxygen atom, —NH— or a divalent organopolysiloxane residue between carbon-carbon atoms, and two [—Q 3 —SiR 3 n L 3-n ] are the same, May be different.
  • Q 6 is an alkylene group or a group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon-carbon atoms of an alkylene group having 2 or more carbon atoms
  • Q 7 is
  • An alkylene group, or a group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon-carbon atoms of an alkylene group having 2 or more carbon atoms, and three [—Q 7 —SiR 3 n L 3 -N ] may be the same or different.
  • Examples of the fluorine-containing ether compound that can be produced using the compound (5) as a raw material and that are suitably used for the surface treatment agent include the compound (25), the compound (26), the compound (27), and the compound (28). It is done.
  • Q 10 is an alkylene group or a group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon-carbon atoms of an alkylene group having 2 or more carbon atoms, and u is 0 or 1 (However, when Q 9 is a single bond, it is 0.), v is 0 or 1, and three [— (O) v -Q 10 -SiR 3 n L 3-n ] are They may be the same or different.
  • Q 11 represents an alkylene group, a group having an etheric oxygen atom or a silphenylene skeleton between carbon-carbon atoms of an alkylene group having 2 or more carbon atoms, or a carbon atom of an alkylene group having 2 or more carbon atoms—
  • Q 12 is a group having a divalent organopolysiloxane residue or a dialkylsilylene group at the terminal between carbon atoms or on the side bonded to O, and Q 12 is an alkylene group or a carbon-carbon atom of an alkylene group having 2 or more carbon atoms
  • a group having an etheric oxygen atom or a silphenylene skeleton in between, two Q 12 may be the same or different, and three —SiR 3 n L 3-n may be the same May be different.
  • Q 1 is preferably an alkylene group having 1 to 10 carbon atoms, or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms, or an alkylene group having 1 to 7 carbon atoms, or A group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 7 carbon atoms is particularly preferred.
  • —CH 2 CH 2 CH 2 — or —CH 2 CH 2 OCH 2 CH 2 CH 2 — (wherein the right side is bonded to Si) is preferable.
  • Q 4 is preferably a single bond, an alkylene group having 1 to 10 carbon atoms, or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms.
  • a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group of 7 or an alkylene group of 2 to 7 carbon atoms is particularly preferred.
  • Q 5 is preferably an alkylene group having 1 to 10 carbon atoms, or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms, or an alkylene group having 1 to 7 carbon atoms, or A group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 1 to 7 carbon atoms is particularly preferred.
  • (O) t -Q 5 is preferably —CH 2 CH 2 CH 2 —, —CH 2 OCH 2 CH 2 CH 2 — or —CH 2 OCH 2 in terms of ease of production of the compound (23). CH 2 CH 2 CH 2 CH 2 — (where the right side is bonded to Si) is preferred.
  • Q 6 is preferably an alkylene group having 1 to 10 carbon atoms or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms, a single bond, an alkylene having 1 to 7 carbon atoms And a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 7 carbon atoms is particularly preferred.
  • Q 6 is —CH 2 CH 2 CH 2 — or —CH 2 CH 2 OCH 2 CH 2 CH 2 — (where the right side is bonded to Si from the viewpoint of ease of production of the compound (24)) .) Is preferred.
  • Q 7 is preferably an alkylene group having 1 to 10 carbon atoms, or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms, or an alkylene group having 1 to 7 carbon atoms, or A group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 7 carbon atoms is particularly preferred.
  • Q 7 is —CH 2 CH 2 CH 2 — or —CH 2 CH 2 OCH 2 CH 2 CH 2 — (wherein the right side is SiR 3 n L from the viewpoint of ease of production of the compound (24)) 3-n is preferred).
  • the silphenylene skeleton in Q 11 is a group represented by —Si (R a ) 2 PhSi (R a ) 2 — (where Ph is a phenylene group and R a is a monovalent organic group). is there.
  • R a is preferably an alkyl group having 1 to 10 carbon atoms, and particularly preferably a methyl group.
  • the dialkylsilylene group in Q 11 is a group represented by —Si (R b ) 2 — (wherein R b is an alkyl group).
  • R b is preferably an alkyl group having 1 to 10 carbon atoms, and particularly preferably a methyl group.
  • Q 11 is an alkylene group having 1 to 10 carbon atoms, a group having an etheric oxygen atom or a silphenylene skeleton between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms, or an alkylene group having 2 to 10 carbon atoms.
  • a group having a divalent organopolysiloxane residue or a dialkylsilylene group at the terminal between carbon and carbon atoms or at the side bonded to O is preferred.
  • Q 11 represents —CH 2 CH 2 CH 2 —, —Si (CH 3 ) 2 CH 2 CH 2 CH 2 —, —Si (CH 3 ) 2 from the viewpoint of ease of production of the compound (27).
  • OSi (CH 3 ) 2 CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH 2 Si (CH 3 ) 2 PhSi (CH 3 ) 2 CH 2 CH 2 — are preferred (where the right side is bonded to Si. ).
  • Q 12 is preferably an alkylene group having 1 to 10 carbon atoms or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms.
  • Q 13 is preferably an alkylene group having 1 to 10 carbon atoms or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms.
  • R 5 and R 6 are preferably a hydrogen atom.
  • R 5 or R 6 is an alkyl group, the number of carbon atoms is preferably 1 to 4.
  • L examples include an alkoxy group, a halogen atom, an acyl group, and an isocyanate group (—NCO).
  • alkoxy group an alkoxy group having 1 to 4 carbon atoms is preferable.
  • halogen atom a chlorine atom is preferable.
  • L is preferably an alkoxy group or a halogen atom from the viewpoint of ease of production of the surface treatment agent.
  • L is preferably an alkoxy group having 1 to 4 carbon atoms from the viewpoint of less outgassing at the time of coating and excellent storage stability of the surface treatment agent, and ethoxy when long-term storage stability of the surface treatment agent is required.
  • a group is particularly preferred, and a methoxy group is particularly preferred when the reaction time after coating is short.
  • R 3 is a hydrogen atom or a monovalent hydrocarbon group.
  • the monovalent hydrocarbon group include an alkyl group, a cycloalkyl group, an alkenyl group, and an aryl group.
  • R 3 is preferably a monovalent hydrocarbon group, particularly preferably a monovalent saturated hydrocarbon group.
  • the number of carbon atoms is preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 6, particularly preferably 1 to 3, and most preferably 1 to 2. When the carbon number of R 3 is within this range, the compound (5) can be easily produced.
  • N is preferably 0 or 1, particularly preferably 0.
  • Specific examples of the compound (21) include compounds represented by the following formula.
  • Example 1 A 200 mL three-necked flask was charged with 11.8 g of ethanol and 100.0 g of compound (1-1) (manufactured by Solvay Solexis, FOMBLIN (registered trademark) ZDIAC4000), and stirred at 50 ° C. for 4 hours. The reaction mixture was concentrated with an evaporator to obtain 100.4 g of a crude product. The crude product was separated by development on silica gel column chromatography. Compound (3-1) was eluted using CF 3 CH 2 OCF 2 CF 2 H (Asahi Glass Co., Ltd., AE-3000) as a developing solvent.
  • compound (1-1) manufactured by Solvay Solexis, FOMBLIN (registered trademark) ZDIAC4000
  • the average value of the structure of the terminal group and the number of structural units (x1, x2) was determined from the integrated values of 1 H-NMR and 19 F-NMR. 24.1 g (yield: 24.1%) of compound (1-1), 48.4 g (yield: 48.1%) of compound (2-1), and 25. of compound (3-1). 9 g (yield: 25.6%) was obtained.
  • Example 1-3 In a round bottom flask made of tetrafluoroethylene-perfluoro (alkoxy vinyl ether) copolymer (PFA), 39.0 g of the compound (4-1) obtained in Example 1-2 and 50 g of AE-3000 were placed. The mixture was stirred while being cooled in an ice bath, and 3.2 g of methanol was slowly dropped from the dropping funnel under a nitrogen atmosphere. The mixture was stirred for 12 hours while bubbling with nitrogen. The reaction mixture was concentrated by an evaporator to obtain 37.7 g (yield 99.4%) of compound (5-1).
  • F—CF 2 O — ⁇ (CF 2 O) x1 (CF 2 CF 2 O) x2 ⁇ —CF 2 —C (O) OCH 3 (5-1)
  • Example 1-4 In a 200 mL three-necked eggplant flask, 1.80 g of sodium borohydride was dissolved in 10 g of ethanol and 20 g of AE-3000, and cooled in an ice bath, the compound (5- A solution prepared by mixing 37.0 g of 1) with 37.0 g of AE-3000 was slowly added dropwise. The ice bath was removed and stirring was continued while slowly warming to room temperature. After stirring at room temperature for 12 hours, an aqueous hydrochloric acid solution was added dropwise until the liquid became acidic. The organic phase was collected, washed once with water and once with saturated brine, and the organic phase was recovered.
  • Example 2 In a 100 mL eggplant flask, 25.0 g of the compound (3-1) obtained in Example 1-1 and 2.0 g of a 48% aqueous sodium hydroxide solution were added and stirred at 80 ° C. for 2 hours. This was transferred to a separatory funnel, 30 mL of diluted hydrochloric acid was added, and the mixture was extracted 5 times with 30 mL of AE-3000. The collected solution was concentrated by an evaporator to obtain 22.6 g (yield 97.1%) of compound (1-1).
  • Compound 2 was prepared in the same manner as in Example 1 except that 22.6 g of compound (1-1) regenerated from compound (3-1) was used and the amount of each raw material was changed according to the amount of compound (1-1). (6-1) was obtained.
  • the compound (3-1) can be reused as the compound (1-1), and it can be said that there is almost no waste of the fluorine-containing ether compound by reusing the compound (3-1).
  • Example 3 (Example 3-1) In a 100 mL three-necked flask, 20.0 g of the compound (1-1) and 20.0 g of the compound (6-1) obtained in Example 1-4 were placed, heated to 80 ° C. and stirred. By-produced water was distilled off under reduced pressure, and it was confirmed by NMR analysis that compound (6-1) had disappeared. The obtained crude product was purified in the same manner as in Example 1-1, and 5.2 g (yield: 25.8%) of compound (1-1) and 19.1 g (yield) of compound (12-1) were obtained. Rate: 48.0%), and 14.5 g (yield: 24.2%) of compound (13-1).
  • Example 3-3 Except that Compound (4-1) was changed to 18.5 g of Compound (14-1) and the amount of each raw material was changed according to the amount of Compound (14-1), it was the same as Example 1-3. 18.2 g (yield 96%) of compound (5-1) was obtained.
  • F—CF 2 O — ⁇ (CF 2 O) x1 (CF 2 CF 2 O) x2 ⁇ —CF 2 —C (O) OCH 3 (5-1)
  • Example 4 In a 50 mL eggplant flask, 14.0 g of the compound (13-1) obtained in Example 3-1 and 1.0 g of 48% aqueous sodium hydroxide solution were added and stirred at 80 ° C. for 2 hours. This was transferred to a separatory funnel, 20 mL of diluted hydrochloric acid was added, and the mixture was extracted 5 times with 20 mL of AE-3000. The collected solution was concentrated with an evaporator, and the resulting crude liquid was purified by silica gel column chromatography to obtain 4.4 g (yield: 93.3%) of compound (1-1) and compound (6-1). 9.2 g (yield 197%) was obtained.
  • the compound (13-1) can be reused as the compound (1-1) and the compound (6-1). By reusing the compound (13-1), almost no waste of fluorine-containing ether compound is produced. I can say no.
  • Example 5 (Production Example of Surface Treatment Agent Using Compound (5-1))
  • a surface treatment agent was produced according to the method described in Example 1-6 of WO2013 / 121984. From NMR, it was confirmed that 99% of the compound (5-1) was converted to the compound (25-1).
  • the fluorine-containing ether compound obtained by the production method of the present invention can be used for various applications that require lubrication and water / oil repellency.
  • display input devices such as touch panels; surface protective coats made of transparent glass or transparent plastic parts, antifouling coats for kitchens; water and water repellent and antifouling coats for electronic devices, heat exchangers, batteries, etc.
  • Antifouling coating coating on a member that requires liquid repellency while conducting; water-repellent / waterproof / sliding coat of heat exchanger; surface sieve such as vibrating screen or inside cylinder, etc.
  • More specific examples of use include a front protective plate of a display, an antireflection plate, a polarizing plate, an antiglare plate, or an antireflection coating on the surface thereof, a touch panel of a device such as a mobile phone or a portable information terminal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Abstract

Provided is a method for producing fluorine-containing ether compositions with which can be produced, in good yields, fluorine-containing ether compounds that are suitably used for surface treatment agents and which are useful as intermediates for fluorine-containing ether compounds. The method for producing fluorine-containing ether compounds according to the present invention involves carrying out the reaction of R1OH with a compound represented by formula (1) to obtain the compound represented by formula (1), a compound represented by formula (2), and a compound represented by formula (3). (1): HO(O)C-Rf2O-(Rf1O)m-Rf2-C(O)OH (2): HO(O)C-Rf2O-(Rf1O)m-Rf2-C(O)OR1 (3): R1O(O)C-Rf2O-(Rf1O)m-Rf2-C(O)OR1 Rf1 and Rf2 are each independently a perfluoroalkylene group; m is an integer from 2 to 200; (Rf1O)m may comprise two or more species of Rf1O; and R1 is a monovalent organic group.

Description

含フッ素エーテル化合物の製造方法および含フッ素エーテル化合物Method for producing fluorine-containing ether compound and fluorine-containing ether compound
 本発明は、含フッ素エーテル化合物の製造方法および含フッ素エーテル化合物に関する。 The present invention relates to a method for producing a fluorinated ether compound and a fluorinated ether compound.
 ポリ(オキシペルフルオロアルキレン)鎖を有する含フッ素エーテル化合物は、高い潤滑性、撥水撥油性等を示す表面層を基材の表面に形成できるため、表面処理剤に好適に用いられる。含フッ素エーテル化合物を含む表面処理剤は、表面層が指で繰り返し摩擦されても撥水撥油性が低下しにくい性能(耐摩擦性)および拭き取りによって表面層に付着した指紋を容易に除去できる性能(指紋汚れ除去性)が長期間維持されることが求められる用途、たとえば、タッチパネルの、指で触れる面を構成する部材の表面処理剤として用いられる。 A fluorine-containing ether compound having a poly (oxyperfluoroalkylene) chain can be suitably used as a surface treatment agent because a surface layer exhibiting high lubricity, water / oil repellency, and the like can be formed on the surface of the substrate. Surface treatment agent containing a fluorinated ether compound has a performance that prevents water and oil repellency from decreasing even when the surface layer is repeatedly rubbed with a finger (rubbing resistance) and a capability to easily remove fingerprints attached to the surface layer by wiping. It is used as a surface treatment agent for a member that constitutes a surface touched by a finger of a touch panel, for example, in applications where (fingerprint stain removability) is required to be maintained for a long period of time.
 耐摩擦性および指紋汚れ除去性に優れる表面層を基材の表面に形成できる含フッ素エーテル化合物としては、片末端に加水分解性シリル基を導入した含フッ素エーテル化合物が提案されている(特許文献1)。片末端に加水分解性シリル基を導入した含フッ素エーテル化合物の中間体としては、片末端に水酸基、カルボニル基含有基(カルボン酸ハライド基、エステル基等)等を有する含フッ素エーテル化合物が有用である。片末端に水酸基を有する含フッ素エーテル化合物は、たとえば、以下のようにして製造される(特許文献1)。 As a fluorine-containing ether compound capable of forming a surface layer excellent in friction resistance and fingerprint stain removability on the surface of a substrate, a fluorine-containing ether compound having a hydrolyzable silyl group introduced at one end has been proposed (Patent Document) 1). As an intermediate of a fluorine-containing ether compound having a hydrolyzable silyl group introduced at one end, a fluorine-containing ether compound having a hydroxyl group, a carbonyl group-containing group (such as a carboxylic acid halide group or an ester group) at one end is useful. is there. A fluorine-containing ether compound having a hydroxyl group at one end is produced, for example, as follows (Patent Document 1).
 下式(1b)で表される化合物をフッ素ガスによってフッ素化して、下式(1a)で表される化合物、下式(1b)で表される化合物および下式(1c)で表される化合物からなる混合物を得る。
 CF(OC(OCFOCFC(O)OH ・・・(1a)
 HO(O)CCF(OC(OCFOCFC(O)OH ・・・(1b)
 CF(OC(OCFOCF ・・・(1c)
 pおよびqは、たとえばp/q=0.9、p+q≒45である。
A compound represented by the following formula (1b) is fluorinated with fluorine gas, a compound represented by the following formula (1a), a compound represented by the following formula (1b), and a compound represented by the following formula (1c) A mixture consisting of
CF 3 (OC 2 F 4 ) p (OCF 2 ) q OCF 2 C (O) OH (1a)
HO (O) CCF 2 (OC 2 F 4) p (OCF 2) q OCF 2 C (O) OH ··· (1b)
CF 3 (OC 2 F 4 ) p (OCF 2 ) q OCF 3 (1c)
For example, p and q are p / q = 0.9 and p + q≈45.
 混合物をイオン交換樹脂を用いて精製して、式(1a)で表される化合物の割合を高める。精製後の混合物を、還元剤を用いて水素還元することによって、下式(2a)で表される化合物を高濃度で含む混合物を得る。
 CF(OC(OCFOCFCHOH ・・・(2a)
The mixture is purified using an ion exchange resin to increase the proportion of the compound represented by formula (1a). The mixture after purification is reduced with hydrogen using a reducing agent to obtain a mixture containing a compound represented by the following formula (2a) at a high concentration.
CF 3 (OC 2 F 4 ) p (OCF 2 ) q OCF 2 CH 2 OH (2a)
 また、式(1a)で表される化合物、式(1b)で表される化合物および式(1c)で表される化合物からなる混合物を、超臨界状態または亜臨界状態の二酸化炭素を移動相としたシリカゲルクロマトグラフィによって精製して、式(1a)で表される化合物を高濃度で含む混合物を得る方法も提案されている(特許文献2)。 In addition, a mixture of the compound represented by the formula (1a), the compound represented by the formula (1b), and the compound represented by the formula (1c) is mixed with supercritical or subcritical carbon dioxide as a mobile phase. There is also proposed a method of obtaining a mixture containing the compound represented by the formula (1a) at a high concentration by purification by silica gel chromatography (Patent Document 2).
特開2012-072272号公報JP 2012-072272 A 特開2015-164906号公報JP 2015-164906 A
 しかし、特許文献1に記載された、式(1b)で表される化合物をフッ素ガスによってフッ素化する方法では、式(1c)で表される化合物が必ず生成する。式(1c)で表される化合物は基材と相互作用または化学結合する官能基を持たないため、表面処理剤には適さない。また、式(1c)で表される化合物は、安定な化合物であり、末端のみを分解して原料である式(1b)で表される化合物として再利用することができない。そのため、特許文献1に記載の方法では、表面処理剤に好適に用いられる含フッ素エーテル化合物の中間体として有用な式(1a)で表される化合物、さらには式(2a)で表される化合物を収率よく得ることができない。 However, in the method described in Patent Document 1 in which the compound represented by the formula (1b) is fluorinated with fluorine gas, the compound represented by the formula (1c) is necessarily generated. Since the compound represented by the formula (1c) does not have a functional group that interacts or chemically bonds with the base material, it is not suitable as a surface treatment agent. Further, the compound represented by the formula (1c) is a stable compound and cannot be reused as a compound represented by the formula (1b) which is a raw material by decomposing only the terminal. Therefore, in the method described in Patent Document 1, a compound represented by the formula (1a) useful as an intermediate of a fluorine-containing ether compound suitably used for a surface treating agent, and further a compound represented by the formula (2a) Cannot be obtained in good yield.
 本発明は、表面処理剤に好適に用いられる含フッ素エーテル化合物の中間体として有用な含フッ素エーテル化合物を収率よく製造できる含フッ素エーテル組成物の製造方法、および表面処理剤に好適に用いられる含フッ素エーテル化合物の中間体として有用な含フッ素エーテル化合物の提供を目的とする。 INDUSTRIAL APPLICABILITY The present invention is suitably used for a method for producing a fluorinated ether composition capable of producing a fluorinated ether compound useful as an intermediate of a fluorinated ether compound suitably used for a surface treatment agent, and a surface treatment agent. The object is to provide a fluorine-containing ether compound useful as an intermediate of the fluorine-containing ether compound.
 本発明は、下記[1]~[15]の構成を有する含フッ素エーテル化合物の製造方法および含フッ素エーテル化合物を提供する。
 [1]下式(1)で表される化合物にROHを反応させて、下式(1)で表される化合物、下式(2)で表される化合物および下式(3)で表される化合物を含む混合物を得ることを特徴とする含フッ素エーテル化合物の製造方法。
 HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OH ・・・(1)
 HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(2)
 RO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(3)
 ただし、
  Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
  mは、2~200の整数であり、
  (Rf1O)は、2種以上のRf1Oからなるものであってもよく、
  Rは、1価の有機基である。
 [2]未反応の前記式(1)で表される化合物を回収して、前記式(1)で表される化合物と前記ROHとの反応における前記式(1)で表される化合物として再利用する、[1]の製造方法。
 [3]前記式(3)で表される化合物を回収し、加水分解して前記式(1)で表される化合物を得て、前記式(1)で表される化合物と前記ROHとの反応における前記式(1)で表される化合物として再利用する、[1]または[2]の製造方法。
The present invention provides a method for producing a fluorinated ether compound having the following constitutions [1] to [15] and a fluorinated ether compound.
[1] A compound represented by the following formula (1) is reacted with R 1 OH to obtain a compound represented by the following formula (1), a compound represented by the following formula (2), and the following formula (3): A method for producing a fluorine-containing ether compound, comprising obtaining a mixture containing the compound represented by the formula:
HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OH (1)
HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OR 1 (2)
R 1 O (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OR 1 (3)
However,
R f1 and R f2 are each independently a perfluoroalkylene group,
m is an integer from 2 to 200;
(R f1 O) m may be composed of two or more types of R f1 O,
R 1 is a monovalent organic group.
[2] A compound represented by the formula (1) in the reaction of the compound represented by the formula (1) and the R 1 OH by recovering the unreacted compound represented by the formula (1). The manufacturing method of [1], which is reused as
[3] The compound represented by the formula (3) is recovered, hydrolyzed to obtain the compound represented by the formula (1), and the compound represented by the formula (1) and the R 1 OH. The production method of [1] or [2], which is reused as the compound represented by the formula (1) in the reaction with.
 [4]下式(2)で表される化合物をフッ素ガスでフッ素化して下式(4)で表される化合物を得ることを特徴とする含フッ素エーテル化合物の製造方法。
 HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(2)
 F-Rf2O-(Rf1O)-Rf2-C(O)ORf3 ・・・(4)
 ただし、
  Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
  mは、2~200の整数であり、
  (Rf1O)は、2種以上のRf1Oからなるものであってもよく、
  Rは、1価の有機基であり、
  Rf3は、Rに由来する1価のペルフルオロ有機基である。
 [5]下式(4)で表される化合物とROHとでエステル交換して下式(5)で表される化合物を得ることを特徴とする含フッ素エーテル化合物の製造方法。
 F-Rf2O-(Rf1O)-Rf2-C(O)ORf3 ・・・(4)
 F-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(5)
 ただし、
  Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
  mは、2~200の整数であり、
  (Rf1O)は、2種以上のRf1Oからなるものであってもよく、
  Rf3は、1価のペルフルオロ有機基であり、
  Rは、1価の有機基である。
[4] A method for producing a fluorinated ether compound, characterized in that a compound represented by the following formula (4) is obtained by fluorinating a compound represented by the following formula (2) with a fluorine gas.
HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OR 1 (2)
F—R f2 O— (R f1 O) m —R f2 —C (O) OR f3 (4)
However,
R f1 and R f2 are each independently a perfluoroalkylene group,
m is an integer from 2 to 200;
(R f1 O) m may be composed of two or more types of R f1 O,
R 1 is a monovalent organic group,
R f3 is a monovalent perfluoro organic group derived from R 1 .
[5] A method for producing a fluorinated ether compound, comprising transesterifying a compound represented by the following formula (4) and R 2 OH to obtain a compound represented by the following formula (5):
F—R f2 O— (R f1 O) m —R f2 —C (O) OR f3 (4)
F—R f2 O— (R f1 O) m —R f2 —C (O) OR 2 (5)
However,
R f1 and R f2 are each independently a perfluoroalkylene group,
m is an integer from 2 to 200;
(R f1 O) m may be composed of two or more types of R f1 O,
R f3 is a monovalent perfluoro organic group,
R 2 is a monovalent organic group.
 [6]下式(5)で表される化合物を、還元剤を用いて水素還元することによって下式(6)で表される化合物を得ることを特徴とする含フッ素エーテル化合物の製造方法。
 F-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(5)
 F-Rf2O-(Rf1O)-Rf2-CHOH ・・・(6)
 ただし、
  Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
  mは、2~200の整数であり、
  (Rf1O)は、2種以上のRf1Oからなるものであってもよく、
  Rは、1価の有機基である。
 [7]下式(2)で表される含フッ素エーテル化合物または下式(4)で表される含フッ素エーテル化合物。
 HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(2)
 F-Rf2O-(Rf1O)-Rf2-C(O)ORf3 ・・・(4)
 ただし、
  Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
  mは、2~200の整数であり、
  (Rf1O)は、2種以上のRf1Oからなるものであってもよく、
  Rは、1価の有機基であり、
  Rf3は、1価のペルフルオロ有機基である。
[6] A method for producing a fluorine-containing ether compound, wherein the compound represented by the following formula (6) is obtained by hydrogen reduction of the compound represented by the following formula (5) using a reducing agent.
F—R f2 O— (R f1 O) m —R f2 —C (O) OR 2 (5)
F—R f2 O— (R f1 O) m —R f2 —CH 2 OH (6)
However,
R f1 and R f2 are each independently a perfluoroalkylene group,
m is an integer from 2 to 200;
(R f1 O) m may be composed of two or more types of R f1 O,
R 2 is a monovalent organic group.
[7] A fluorine-containing ether compound represented by the following formula (2) or a fluorine-containing ether compound represented by the following formula (4).
HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OR 1 (2)
F—R f2 O— (R f1 O) m —R f2 —C (O) OR f3 (4)
However,
R f1 and R f2 are each independently a perfluoroalkylene group,
m is an integer from 2 to 200;
(R f1 O) m may be composed of two or more types of R f1 O,
R 1 is a monovalent organic group,
R f3 is a monovalent perfluoro organic group.
 [8]下式(1)で表される化合物に下式(6)で表される化合物を反応させて、下式(1)で表される化合物、下式(12)で表される化合物および下式(13)で表される化合物を含む混合物を得ることを特徴とする含フッ素エーテル化合物の製造方法。
 HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OH ・・・(1)
 F-Rf2O-(Rf1O)-Rf2-CHOH ・・・(6)
 HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OCH-Rf2-(ORf1-ORf2-F ・・・(12)
 F-Rf2O-(Rf1O)-Rf2-CHO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OCH-Rf2-(ORf1-ORf2-F ・・・(13)
 ただし、
  Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
  mは、それぞれ独立に2~200の整数であり、
  (Rf1O)は、2種以上のRf1Oからなるものであってもよい。
 [9]未反応の前記式(1)で表される化合物を回収して、前記式(1)で表される化合物と前記式(6)で表される化合物との反応における前記式(1)で表される化合物して再利用する、[8]の製造方法。
 [10]前記式(13)で表される化合物を回収し、加水分解して前記式(1)で表される化合物および前記式(6)で表される化合物を得て、前記式(1)で表される化合物と前記式(6)で表される化合物との反応における前記式(1)で表される化合物および前記式(6)で表される化合物として再利用する、[8]または[9]の製造方法。
[8] A compound represented by the following formula (1) and a compound represented by the following formula (12) by reacting the compound represented by the following formula (1) with the compound represented by the following formula (6): And a method for producing a fluorine-containing ether compound, comprising obtaining a mixture comprising a compound represented by the following formula (13):
HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OH (1)
F—R f2 O— (R f1 O) m —R f2 —CH 2 OH (6)
HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OCH 2 —R f2 — (OR f1 ) m —OR f2 —F (12)
F—R f2 O— (R f1 O) m —R f2 —CH 2 O (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OCH 2 —R f2 — (OR f1 ) m- OR f2- F (13)
However,
R f1 and R f2 are each independently a perfluoroalkylene group,
m is each independently an integer of 2 to 200;
(R f1 O) m may be composed of two or more types of R f1 O.
[9] The unreacted compound represented by the formula (1) is recovered and the formula (1) in the reaction between the compound represented by the formula (1) and the compound represented by the formula (6). The production method according to [8], wherein the compound represented by (2) is reused.
[10] The compound represented by the formula (13) is recovered and hydrolyzed to obtain the compound represented by the formula (1) and the compound represented by the formula (6). The compound represented by formula (6) and the compound represented by formula (6) are reused in the reaction of the compound represented by formula (6) and the compound represented by formula (6). [8] Or the manufacturing method of [9].
 [11]下式(12)で表される化合物をフッ素ガスでフッ素化して下式(14)で表される化合物を得ることを特徴とする含フッ素エーテル化合物の製造方法。
 HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OCH-Rf2-(ORf1-ORf2-F ・・・(12)
 F-Rf2O-(Rf1O)-Rf2-C(O)OCF-Rf2-(ORf1-ORf2-F ・・・(14)
 ただし、
  Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
  mは、それぞれ独立に2~200の整数であり、
  (Rf1O)は、2種以上のRf1Oからなるものであってもよい。
 [12]下式(14)で表される化合物とROHとでエステル交換して下式(5)で表される化合物を得ることを特徴とする含フッ素エーテル化合物の製造方法。
 F-Rf2O-(Rf1O)-Rf2-C(O)OCF-Rf2-(ORf1-ORf2-F ・・・(14)
 F-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(5)
 ただし、
  Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
  mは、それぞれ独立に2~200の整数であり、
  (Rf1O)は、2種以上のRf1Oからなるものであってもよく、
  Rは、1価の有機基である。
[11] A method for producing a fluorinated ether compound, wherein a compound represented by the following formula (14) is obtained by fluorinating a compound represented by the following formula (12) with a fluorine gas.
HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OCH 2 —R f2 — (OR f1 ) m —OR f2 —F (12)
F—R f2 O— (R f1 O) m —R f2 —C (O) OCF 2 —R f2 — (OR f1 ) m —OR f2 —F (14)
However,
R f1 and R f2 are each independently a perfluoroalkylene group,
m is each independently an integer of 2 to 200;
(R f1 O) m may be composed of two or more types of R f1 O.
[12] A process for producing a fluorinated ether compound, wherein the compound represented by the following formula (5) is obtained by transesterifying the compound represented by the following formula (14) with R 2 OH.
F—R f2 O— (R f1 O) m —R f2 —C (O) OCF 2 —R f2 — (OR f1 ) m —OR f2 —F (14)
F—R f2 O— (R f1 O) m —R f2 —C (O) OR 2 (5)
However,
R f1 and R f2 are each independently a perfluoroalkylene group,
m is each independently an integer of 2 to 200;
(R f1 O) m may be composed of two or more types of R f1 O,
R 2 is a monovalent organic group.
 [13]前記[12]の製造方法で得られた下式(5)で表される化合物を、還元剤を用いて水素還元することによって下式(6)で表される化合物を得ることを特徴とする含フッ素エーテル化合物の製造方法。
 F-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(5)
 F-Rf2O-(Rf1O)-Rf2-CHOH ・・・(6)
 ただし、
  Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
  mは、それぞれ独立に2~200の整数であり、
  (Rf1O)は、2種以上のRf1Oからなるものであってもよく、
  Rは、1価の有機基である。
 [14]前記[13]の製造方法で得られた前記式(6)で表される化合物を下式(1)で表される化合物に反応させて、下式(1)で表される化合物、下式(12)で表される化合物および下式(13)で表される化合物を含む混合物を得ることを特徴とする含フッ素エーテル化合物製造方法。
 HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OH ・・・(1)
 HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OCH-Rf2-(ORf1-ORf2-F ・・・(12)
 F-Rf2O-(Rf1O)-Rf2-CHO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OCH-Rf2-(ORf1-ORf2-F ・・・(13)
 ただし、
  Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
  mは、それぞれ独立に2~200の整数であり、
  (Rf1O)は、2種以上のRf1Oからなるものであってもよい。
 下式(12)で表される含フッ素エーテル化合物または下式(14)で表される含フッ素エーテル化合物。
 HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OCH-Rf2-(ORf1-ORf2-F ・・・(12)
 F-Rf2O-(Rf1O)-Rf2-C(O)OCF-Rf2-(ORf1-ORf2-F ・・・(14)
 ただし、
  Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
  mは、それぞれ独立に2~200の整数であり、
  (Rf1O)は、2種以上のRf1Oからなるものであってもよい。
[13] Obtaining a compound represented by the following formula (6) by hydrogen reduction of the compound represented by the following formula (5) obtained by the production method of the above [12] using a reducing agent. A method for producing a featured fluorine-containing ether compound.
F—R f2 O— (R f1 O) m —R f2 —C (O) OR 2 (5)
F—R f2 O— (R f1 O) m —R f2 —CH 2 OH (6)
However,
R f1 and R f2 are each independently a perfluoroalkylene group,
m is each independently an integer of 2 to 200;
(R f1 O) m may be composed of two or more types of R f1 O,
R 2 is a monovalent organic group.
[14] A compound represented by the following formula (1) obtained by reacting the compound represented by the above formula (6) obtained by the production method of [13] with a compound represented by the following formula (1): A method for producing a fluorinated ether compound, comprising: obtaining a mixture comprising a compound represented by the following formula (12) and a compound represented by the following formula (13):
HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OH (1)
HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OCH 2 —R f2 — (OR f1 ) m —OR f2 —F (12)
F—R f2 O— (R f1 O) m —R f2 —CH 2 O (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OCH 2 —R f2 — (OR f1 ) m- OR f2- F (13)
However,
R f1 and R f2 are each independently a perfluoroalkylene group,
m is each independently an integer of 2 to 200;
(R f1 O) m may be composed of two or more types of R f1 O.
A fluorine-containing ether compound represented by the following formula (12) or a fluorine-containing ether compound represented by the following formula (14).
HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OCH 2 —R f2 — (OR f1 ) m —OR f2 —F (12)
F—R f2 O— (R f1 O) m —R f2 —C (O) OCF 2 —R f2 — (OR f1 ) m —OR f2 —F (14)
However,
R f1 and R f2 are each independently a perfluoroalkylene group,
m is each independently an integer of 2 to 200;
(R f1 O) m may be composed of two or more types of R f1 O.
 本発明の含フッ素エーテル化合物の製造方法によれば、表面処理剤に好適に用いられる含フッ素エーテル化合物の中間体として有用な含フッ素エーテル化合物を収率よく製造できる。
 本発明の含フッ素エーテル化合物は、表面処理剤に好適に用いられる含フッ素エーテル化合物の中間体として有用である。
According to the method for producing a fluorine-containing ether compound of the present invention, a fluorine-containing ether compound useful as an intermediate of a fluorine-containing ether compound suitably used for a surface treating agent can be produced with high yield.
The fluorinated ether compound of the present invention is useful as an intermediate of a fluorinated ether compound that is suitably used for a surface treatment agent.
 本明細書において、式(1)で表される化合物を化合物(1)と記す。他の式で表される化合物も同様に記す。
 本明細書における以下の用語の意味は、以下の通りである。
 「ペルフルオロ有機基」とは、有機基の炭素原子に結合する水素原子のすべてがフッ素原子に置換された基を意味する。
 オキシペルフルオロアルキレン基の化学式は、その酸素原子をペルフルオロアルキレン基の右側に記載して表すものとする。
 「エーテル性酸素原子」とは、炭素-炭素原子間においてエーテル結合(-O-)を形成する酸素原子を意味する。
 「加水分解性シリル基」とは、加水分解反応することによってシラノール基(Si-OH)を形成し得る基を意味する。たとえば、式(21)~(24)中のSiR 3-nである。
 「表面層」とは、基材の表面に形成される層を意味する。
 含フッ素エーテル化合物の「数平均分子量」は、NMR分析法を用い、下記の方法で算出される。
 H-NMRおよび19F-NMRによって、末端基を基準にしてオキシペルフルオロアルキレン基の数(平均値)を求めることによって算出される。末端基は、たとえば式(21)~(24)中のF-Rf2またはSiR 3-nである。
In the present specification, a compound represented by the formula (1) is referred to as a compound (1). The same applies to compounds represented by other formulas.
The meanings of the following terms in this specification are as follows.
“Perfluoro organic group” means a group in which all of hydrogen atoms bonded to carbon atoms of an organic group are substituted with fluorine atoms.
The chemical formula of the oxyperfluoroalkylene group is expressed by describing the oxygen atom on the right side of the perfluoroalkylene group.
The “etheric oxygen atom” means an oxygen atom that forms an ether bond (—O—) between carbon-carbon atoms.
The “hydrolyzable silyl group” means a group that can form a silanol group (Si—OH) by a hydrolysis reaction. For example, SiR 3 n L 3-n in the formulas (21) to (24).
“Surface layer” means a layer formed on the surface of a substrate.
The “number average molecular weight” of the fluorine-containing ether compound is calculated by the following method using NMR analysis.
It is calculated by determining the number (average value) of oxyperfluoroalkylene groups based on terminal groups by 1 H-NMR and 19 F-NMR. The terminal group is, for example, F—R f2 or SiR 3 n L 3-n in formulas (21) to (24).
[化合物(6)の第1の合成ルート]
 化合物(1)を出発物質とする化合物(6)の合成ルートとしては、下記の第1の合成ルートが挙げられる。
[First Synthesis Route of Compound (6)]
Examples of the synthesis route of the compound (6) starting from the compound (1) include the following first synthesis route.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(化合物(1))
 化合物(1)は、化合物(6)の合成ルートにおいて出発物質となる。
 HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OH ・・・(1)
 ただし、Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、mは、2~200の整数であり、(Rf1O)は、2種以上のRf1Oからなるものであってもよい。
(Compound (1))
Compound (1) is the starting material in the synthetic route of compound (6).
HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OH (1)
However, R f1 and R f2 are each independently a perfluoroalkylene group, m is an integer of 2 to 200, and (R f1 O) m is composed of two or more types of R f1 O. Also good.
 <(Rf1O)
 Rf1の炭素数は、最終的に得られる表面処理剤からなる表面層の耐摩擦性および指紋汚れ除去性にさらに優れる点から、1~6が好ましく、1~4がより好ましく、表面層の潤滑性にさらに優れる点から、1~2が特に好ましい。
 Rf1は直鎖構造でも分岐構造でもかまわないが、表面層の耐摩擦性および潤滑性がさらに優れる点からは、直鎖構造が好ましい。
<(R f1 O) m >
The number of carbon atoms of R f1 is preferably 1 to 6, more preferably 1 to 4, and more preferably 1 to 4, from the viewpoint that the surface layer comprising the finally obtained surface treatment agent is further excellent in friction resistance and fingerprint stain removal. From the viewpoint of further excellent lubricity, 1 to 2 is particularly preferable.
R f1 may be a straight chain structure or a branched structure, but a straight chain structure is preferable from the viewpoint that the friction resistance and lubricity of the surface layer are further improved.
 化合物(1)は、(Rf1O)を有するため、フッ素原子の含有量が多い。そのため、最終的に得られる表面処理剤は、撥水撥油性、耐摩擦性、指紋汚れ除去性に優れる表面層を形成できる。 Since compound (1) has (R f1 O) m , the content of fluorine atoms is large. Therefore, the finally obtained surface treatment agent can form a surface layer excellent in water / oil repellency, friction resistance and fingerprint stain removability.
 mは、5~150の整数が好ましく、10~100の整数が特に好ましい。mが前記範囲の下限値以上であれば、最終的に得られる表面処理剤からなる表面層の撥水撥油性に優れる。mが前記範囲の上限値以下であれば、表面層の耐摩擦性に優れる。すなわち、表面処理剤の数平均分子量が大きすぎると、単位分子量あたりに存在する加水分解性シリル基の数が減少し、表面層の耐摩擦性が低下する。 M is preferably an integer of 5 to 150, particularly preferably an integer of 10 to 100. When m is not less than the lower limit of the above range, the water and oil repellency of the surface layer comprising the finally obtained surface treatment agent is excellent. If m is less than or equal to the upper limit of the above range, the surface layer has excellent friction resistance. That is, if the number average molecular weight of the surface treatment agent is too large, the number of hydrolyzable silyl groups present per unit molecular weight decreases, and the friction resistance of the surface layer decreases.
 (Rf1O)において、2種以上のRf1Oが存在する場合、各Rf1Oの結合順序は限定されず、ランダム、交互、ブロックに配置されてもよい。
 2種以上のRf1Oが存在するとは、炭素数の異なる2種以上のRf1Oが存在すること、および、炭素数が同一であっても側鎖の有無や側鎖の種類(側鎖の数や側鎖の炭素数等)が異なる2種以上のRf1Oが存在することをいう。
 2種以上のRf1Oの配置については、たとえば実施例の含フッ素エーテル化合物の場合、{(CFO)x1(CFCFO)x2}で表される構造は、x1個の(CFO)とx2個の(CFCFO)とがランダムに配置されていることを表す。また、(CFCFO-CFCFCFCFO)x3で表される構造は、x3個の(CFCFO)とx3個の(CFCFCFCFO)とが交互に配置されていることを表す。
In (R f1 O) m , when two or more types of R f1 O are present, the bonding order of each R f1 O is not limited and may be arranged randomly, alternately, or in blocks.
The two or more R f1 O is present, that there are two or more R f1 O having different numbers of carbon atoms, and, whether or side chain type of side chains may be the same number of carbon atoms (the side chain refers to R f1 O is present the number and number of carbon atoms in the side chain, etc.) two or more different of.
Regarding the arrangement of two or more types of R f1 O, for example, in the case of the fluorine-containing ether compound of the example, the structure represented by {(CF 2 O) x1 (CF 2 CF 2 O) x2 } is x1 ( CF 2 O) and x2 amino and (CF 2 CF 2 O) represents that it is randomly arranged. In addition, the structure represented by (CF 2 CF 2 O—CF 2 CF 2 CF 2 CF 2 O) x 3 has x 3 (CF 2 CF 2 O) and x 3 (CF 2 CF 2 CF 2 CF 2). O) are alternately arranged.
 (Rf1O)としては、最終的に得られる表面処理剤からなる表面層の耐摩擦性、指紋汚れ除去性、潤滑性にさらに優れる点から、{(CFO)m1(CFCFO)m2}、(CFCFO)m3、(CFCFCFO)m4、(CFCFO-CFCFCFCFO)m5、およびこれらの一端または両端に他の(Rf1O)を1~4個有する基が好ましい。これらの一端または両端に他の(Rf1O)を1~4個有する基としては、たとえば、(CFCFO){(CFO)m1(CFCFO)m2-2}、(CFCFO-CFCFCFCFO)m5-1(CFCFO)等が挙げられる。(Rf1O)としては、{(CFO)m1(CFCFO)m2}を有する基が特に好ましい。
 ただし、m1は1以上の整数であり、m2は1以上の整数であり、m1+m2は2~200の整数であり、m1個のCFOおよびm2個のCFCFOの結合順序は限定されない。m3およびm4は、それぞれ、2~200の整数であり、m5は、1~100の整数である。
(R f1 O) m is {(CF 2 O) m1 (CF 2 CF) from the viewpoint that the surface layer composed of the finally obtained surface treatment agent is further excellent in friction resistance, fingerprint stain removability, and lubricity. 2 O) m2}, (CF 2 CF 2 O) m3, (CF 2 CF 2 CF 2 O) m4, (CF 2 CF 2 O-CF 2 CF 2 CF 2 CF 2 O) m5, and these one or A group having 1 to 4 other (R f1 O) at both ends is preferred. Examples of the group having 1 to 4 other (R f1 O) at one or both ends thereof include (CF 2 CF 2 O) 2 {(CF 2 O) m1 (CF 2 CF 2 O) m 2-2. }, (CF 2 CF 2 O—CF 2 CF 2 CF 2 CF 2 O) m5-1 (CF 2 CF 2 O), and the like. (R f1 O) m is particularly preferably a group having {(CF 2 O) m1 (CF 2 CF 2 O) m2 }.
However, m1 is an integer of 1 or more, m2 is an integer of 1 or more, m1 + m2 is an integer of 2 to 200, and the bonding order of m1 CF 2 O and m2 CF 2 CF 2 O is limited Not. m3 and m4 are each an integer of 2 to 200, and m5 is an integer of 1 to 100.
 <Rf2基>
 Rf2の炭素数は、最終的に得られる表面処理剤からなる表面層の耐摩擦性および指紋汚れ除去性にさらに優れる点から、1~6が好ましく、1~4がより好ましく、表面層の潤滑性にさらに優れる点から、1~2が特に好ましい。
 Rf2の炭素数は、たとえば、(Rf1O)が、{(CFO)m1(CFCFO)m2}および(CFCFO)m3である場合、1であり、(CFCFCFO)m4である場合、2であり、(CFCFO-CFCFCFCFO)m5である場合、3でかつ直鎖である。また、Rf1が分岐を有するペルフルオロアルキレン基の場合は、Rf2は分岐を有するペルフルオロアルキレン基となることがあり、たとえば、Rf1が(CF(CF)CFO)である場合は、Rf2は、CF(CF)となる。
 Rf2が直鎖であれば、表面層の耐摩擦性および潤滑性に優れる。
<R f2 group>
The number of carbon atoms in R f2 is preferably 1 to 6, more preferably 1 to 4, and more preferably 1 to 4, from the viewpoint that the surface layer comprising the finally obtained surface treatment agent is further excellent in friction resistance and fingerprint stain removal. From the viewpoint of further excellent lubricity, 1 to 2 is particularly preferable.
The number of carbon atoms in R f2 is 1, for example, when (R f1 O) m is {(CF 2 O) m1 (CF 2 CF 2 O) m2 } and (CF 2 CF 2 O) m3 , When (CF 2 CF 2 CF 2 O) m4, it is 2, and when it is (CF 2 CF 2 O—CF 2 CF 2 CF 2 CF 2 O) m5, it is 3 and linear. Further, when R f1 is a branched perfluoroalkylene group, R f2 may be a branched perfluoroalkylene group. For example, when R f1 is (CF (CF 3 ) CF 2 O), R f2 is CF (CF 3 ).
If R f2 is a straight chain, the surface layer is excellent in friction resistance and lubricity.
 化合物(1)の市販品としては、ソルベイソレクシス社製のFOMBLIN(登録商標)ZDIAC4000等が挙げられる。 Examples of commercially available compounds (1) include FOMBLIN (registered trademark) ZDIAC4000 manufactured by Solvay Solexis.
(化合物(2)の製造方法)
 化合物(2)は、表面処理剤に好適に用いられる含フッ素エーテル化合物の中間体として有用である。
 本発明の含フッ素エーテル化合物の製造方法の第1の態様は、化合物(1)にROHを反応させて、化合物(1)、化合物(2)および化合物(3)を含む混合物を得る方法である。
 HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OH ・・・(1)
 HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(2)
 RO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(3)
 ただし、(Rf1O)およびRf2は、化合物(1)で説明した(Rf1O)およびRf2と同じであり、好ましい形態も同様である。Rは、1価の有機基である。
(Method for producing compound (2))
The compound (2) is useful as an intermediate of a fluorine-containing ether compound that is suitably used for a surface treatment agent.
In the first aspect of the method for producing a fluorinated ether compound of the present invention, a compound (1) is reacted with R 1 OH to obtain a mixture containing the compound (1), the compound (2) and the compound (3). It is.
HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OH (1)
HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OR 1 (2)
R 1 O (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OR 1 (3)
However, (R f1 O) m and R f2 are described in Compound (1) (R f1 O) is the same as m and R f2, which is the preferred form as well. R 1 is a monovalent organic group.
 Rとしては、置換基を有してもよい1価の炭化水素基が挙げられる。1価の炭化水素基としては、アルキル基、アリール基、シクロアルキル基等が挙げられる。Rの炭素数は1~20が好ましく、1~10が特に好ましい。
 Rはカルボキシル基がフッ素ガスと反応する際に同時にフッ素化されるが、水素原子がフッ素原子に置換される以外の反応は起こらないことが望ましい。この点から、Rはエーテル性酸素原子を含んでもよく、水素原子の一部がフッ素原子に置換されていてもよい1価の炭化水素基が好ましい。また、フッ素化後のエステル化反応で容易に反応が進行する点から、ROHは1級のアルコールが好ましい。
 Rとしては、アルキル基が好ましく、フッ素化後のエステル化反応で副生するROHに由来する化合物が容易に除去できる(沸点が高くない)点から、炭素数1~10のアルキル基が特に好ましい。
Examples of R 1 include a monovalent hydrocarbon group that may have a substituent. Examples of the monovalent hydrocarbon group include an alkyl group, an aryl group, and a cycloalkyl group. R 1 preferably has 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms.
R 1 is simultaneously fluorinated when the carboxyl group reacts with the fluorine gas, but it is desirable that no reaction occurs except that the hydrogen atom is replaced with a fluorine atom. From this point, R 1 may contain an etheric oxygen atom, and is preferably a monovalent hydrocarbon group in which a part of the hydrogen atoms may be substituted with fluorine atoms. In addition, R 1 OH is preferably a primary alcohol because the reaction proceeds easily in the esterification reaction after fluorination.
R 1 is preferably an alkyl group. From the viewpoint that a compound derived from R 1 OH by-produced in the esterification reaction after fluorination can be easily removed (the boiling point is not high), an alkyl group having 1 to 10 carbon atoms Is particularly preferred.
 化合物(1)とROHとの反応条件は、通常のエステル化の反応条件であればよく、特に制限されない。 The reaction conditions for the compound (1) and R 1 OH are not particularly limited as long as they are ordinary esterification reaction conditions.
 混合物から各化合物を回収する方法としては、公知の精製方法(シリカゲルやイオン交換樹脂によるカラムクロマトグラフィ等)が挙げられる。
 回収された化合物(2)は、次の化合物(4)の製造に用いる。
 回収された化合物(1)は、化合物(1)とROHとの反応における化合物(1)として再利用することが好ましい。
 回収された化合物(3)は、加水分解して化合物(1)を得て、化合物(1)とROHとの反応における化合物(1)として再利用することが好ましい。
 化合物(1)および化合物(3)を原料として再利用できるため、化合物(1)および化合物(3)が無駄にならない。そのため、化合物(2)さらには化合物(4)、化合物(5)および化合物(6)を収率よく製造できる。
Examples of a method for recovering each compound from the mixture include known purification methods (such as column chromatography using silica gel or an ion exchange resin).
The recovered compound (2) is used for the production of the next compound (4).
The recovered compound (1) is preferably reused as the compound (1) in the reaction between the compound (1) and R 1 OH.
The recovered compound (3) is preferably hydrolyzed to obtain compound (1), which is preferably reused as compound (1) in the reaction between compound (1) and R 1 OH.
Since compound (1) and compound (3) can be reused as raw materials, compound (1) and compound (3) are not wasted. Therefore, the compound (2), further the compound (4), the compound (5) and the compound (6) can be produced with high yield.
(化合物(4)の製造方法)
 化合物(4)は、表面処理剤に好適に用いられる含フッ素エーテル化合物の中間体として有用である。
 本発明の含フッ素エーテル化合物の製造方法の第2の態様は、化合物(2)をフッ素ガスでフッ素化して化合物(4)を得る方法である。
 F-Rf2O-(Rf1O)-Rf2-C(O)ORf3 ・・・(4)
 ただし、(Rf1O)およびRf2は、化合物(1)で説明した(Rf1O)およびRf2と同じであり、好ましい形態も同様である。Rf3は、Rに由来する1価のペルフルオロ有機基である。
(Method for producing compound (4))
The compound (4) is useful as an intermediate of a fluorine-containing ether compound that is suitably used for a surface treatment agent.
The second aspect of the method for producing a fluorinated ether compound of the present invention is a method for obtaining a compound (4) by fluorinating the compound (2) with a fluorine gas.
F—R f2 O— (R f1 O) m —R f2 —C (O) OR f3 (4)
However, (R f1 O) m and R f2 are described in Compound (1) (R f1 O) is the same as m and R f2, which is the preferred form as well. R f3 is a monovalent perfluoro organic group derived from R 1 .
 Rf3は化合物(2)のRをフッ素化した基であることから、Rf3としては、Rをフッ素化したものが挙げられ、Rの好ましい形態をフッ素化したものが好ましい。 Since R f3 is a group obtained by fluorinating R 1 of the compound (2), examples of R f3 include those in which R 1 is fluorinated, and those in which a preferred form of R 1 is fluorinated are preferred.
 化合物(2)をフッ素ガスでフッ素化する反応条件は、通常のフッ素化の反応条件であればよく、特に制限されない。 The reaction conditions for fluorinating the compound (2) with fluorine gas are not particularly limited as long as they are ordinary fluorination reaction conditions.
(化合物(5)の製造方法)
 化合物(5)は、表面処理剤に好適に用いられる含フッ素エーテル化合物の中間体として有用である。
 本発明の含フッ素エーテル化合物の製造方法の第3の態様は、化合物(4)とROHとでエステル交換して化合物(5)を得る方法である。
 F-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(5)
 ただし、(Rf1O)およびRf2は、化合物(1)で説明した(Rf1O)およびRf2と同じであり、好ましい形態も同様である。Rは、1価の有機基である。
(Production method of compound (5))
The compound (5) is useful as an intermediate of a fluorinated ether compound suitably used for a surface treatment agent.
The third aspect of the method for producing a fluorinated ether compound of the present invention is a method for obtaining a compound (5) by transesterification between the compound (4) and R 2 OH.
F—R f2 O— (R f1 O) m —R f2 —C (O) OR 2 (5)
However, (R f1 O) m and R f2 are described in Compound (1) (R f1 O) is the same as m and R f2, which is the preferred form as well. R 2 is a monovalent organic group.
 Rとしては、置換基を有してもよい1価の炭化水素基が挙げられる。1価の炭化水素基としては、アルキル基、アリール基、シクロアルキル基等が挙げられる。Rの炭素数は1~20が好ましく、1~10が特に好ましい。
 Rとしては、アルキル基が好ましく、ROHとして沸点が高くなく、後の工程でROHを取り除きやすい点から、炭素数1~10のアルキル基が特に好ましい。
R 2 includes a monovalent hydrocarbon group which may have a substituent. Examples of the monovalent hydrocarbon group include an alkyl group, an aryl group, and a cycloalkyl group. R 1 preferably has 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms.
As R 2 , an alkyl group is preferable, and as R 2 OH, a boiling point is not high, and an alkyl group having 1 to 10 carbon atoms is particularly preferable because R 2 OH can be easily removed in a later step.
 化合物(4)とROHとの反応条件は、通常のエステル交換の反応条件であればよく、特に制限されない。 The reaction conditions for the compound (4) and R 2 OH are not particularly limited as long as they are ordinary transesterification reaction conditions.
(化合物(6)の製造方法)
 化合物(6)は、表面処理剤に好適に用いられる含フッ素エーテル化合物の中間体として有用である。
 本発明の含フッ素エーテル化合物の製造方法においては、化合物(5)を、還元剤を用いて水素還元することによって化合物(6)を得てもよい。
 F-Rf2O-(Rf1O)-Rf2-CHOH ・・・(6)
 ただし、(Rf1O)およびRf2は、化合物(1)で説明した(Rf1O)およびRf2と同じであり、好ましい形態も同様である。
(Production method of compound (6))
The compound (6) is useful as an intermediate of a fluorine-containing ether compound that is suitably used for a surface treatment agent.
In the method for producing a fluorinated ether compound of the present invention, compound (6) may be obtained by hydrogen reduction of compound (5) using a reducing agent.
F—R f2 O— (R f1 O) m —R f2 —CH 2 OH (6)
However, (R f1 O) m and R f2 are described in Compound (1) (R f1 O) is the same as m and R f2, which is the preferred form as well.
 還元剤としては、水素化ホウ素ナトリウム、水素化アルミニウムリチウム、ボラン(モノボラン、ジボラン等)、金属触媒(パラジウム触媒、白金触媒等)の存在下の水素ガス等が挙げられる。 Examples of the reducing agent include sodium borohydride, lithium aluminum hydride, borane (monoborane, diborane, etc.), hydrogen gas in the presence of a metal catalyst (palladium catalyst, platinum catalyst, etc.), and the like.
 化合物(5)と還元剤との反応条件は、通常の水素還元の反応条件であればよく、特に制限されない。 The reaction conditions for the compound (5) and the reducing agent are not particularly limited as long as they are normal hydrogen reduction reaction conditions.
[化合物(6)の第2の合成ルート]
 化合物(1)を出発物質とする化合物(6)の別の合成ルートとしては、下記の第2の合成ルートが挙げられる。
[Second Synthesis Route of Compound (6)]
Another synthetic route for compound (6) starting from compound (1) includes the following second synthetic route.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(化合物(12)の製造方法)
 化合物(12)は、表面処理剤に好適に用いられる含フッ素エーテル化合物の中間体として有用である。
 本発明の含フッ素エーテル化合物の製造方法の第4の態様は、化合物(1)に化合物(6)を反応させて、化合物(1)、化合物(12)および化合物(13)を含む混合物を得る方法である。
 HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OH ・・・(1)
 F-Rf2O-(Rf1O)-Rf2-CHOH ・・・(6)
 HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OCH-Rf2-(ORf1-ORf2-F ・・・(12)
 F-Rf2O-(Rf1O)-Rf2-CHO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OCH-Rf2-(ORf1-ORf2-F ・・・(13)
 ただし、(Rf1O)およびRf2は、化合物(1)で説明した(Rf1O)およびRf2と同じであり、好ましい形態も同様である。
(Method for producing compound (12))
The compound (12) is useful as an intermediate of a fluorinated ether compound suitably used for a surface treatment agent.
In the fourth aspect of the method for producing a fluorinated ether compound of the present invention, compound (1) is reacted with compound (6) to obtain a mixture containing compound (1), compound (12) and compound (13). Is the method.
HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OH (1)
F—R f2 O— (R f1 O) m —R f2 —CH 2 OH (6)
HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OCH 2 —R f2 — (OR f1 ) m —OR f2 —F (12)
F—R f2 O— (R f1 O) m —R f2 —CH 2 O (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OCH 2 —R f2 — (OR f1 ) m- OR f2- F (13)
However, (R f1 O) m and R f2 are described in Compound (1) (R f1 O) is the same as m and R f2, which is the preferred form as well.
 化合物(1)の(Rf1O)と化合物(6)の(Rf1O)とは、同じであってもよく、異なっていてもよい。後述する化合物(14)から得られる化合物(5)および該化合物(5)から得られる化合物(6)として均一な化合物が得られる点から、化合物(1)の(Rf1O)と化合物(6)の(Rf1O)とは、同じであることが好ましい。 And (R f1 O) m of the compound of (1) (R f1 O) m and the compound (6) may be the same or may be different. From the point that a uniform compound is obtained as the compound (5) obtained from the compound (14) described later and the compound (6) obtained from the compound (5), (R f1 O) m of the compound (1) and the compound ( 6) (R f1 O) m is preferably the same.
 化合物(1)と化合物(6)との反応条件は、通常のエステル化の反応条件であればよく、特に制限されない。 The reaction conditions for the compound (1) and the compound (6) are not particularly limited as long as they are ordinary esterification reaction conditions.
 混合物から各化合物を回収する方法としては、公知の精製方法(シリカゲルやイオン交換樹脂によるカラムクロマトグラフィ等)が挙げられる。
 回収された化合物(12)は、次の化合物(14)の製造に用いる。
 回収された化合物(1)は、化合物(1)と化合物(6)との反応における化合物(1)として再利用することが好ましい。
 回収された化合物(13)は、加水分解して化合物(1)および化合物(6)を得て、化合物(1)と化合物(6)との反応における化合物(1)および化合物(6)として再利用することが好ましい。
 化合物(1)および化合物(13)を原料として再利用することによって、化合物(12)さらには化合物(14)、化合物(5)および化合物(6)を収率よく製造できる。
Examples of a method for recovering each compound from the mixture include known purification methods (such as column chromatography using silica gel or an ion exchange resin).
The recovered compound (12) is used for the production of the next compound (14).
The recovered compound (1) is preferably reused as the compound (1) in the reaction between the compound (1) and the compound (6).
The recovered compound (13) is hydrolyzed to obtain compound (1) and compound (6), which are re-generated as compound (1) and compound (6) in the reaction of compound (1) and compound (6). It is preferable to use it.
By reusing the compound (1) and the compound (13) as raw materials, the compound (12), further the compound (14), the compound (5) and the compound (6) can be produced with high yield.
(化合物(14)の製造方法)
 化合物(14)は、表面処理剤に好適に用いられる含フッ素エーテル化合物の中間体として有用である。
 本発明の含フッ素エーテル化合物の製造方法の第5の態様は、化合物(12)をフッ素ガスでフッ素化して化合物(14)を得る方法である。
 F-Rf2O-(Rf1O)-Rf2-C(O)OCF-Rf2-(ORf1-ORf2-F ・・・(14)
 ただし、(Rf1O)およびRf2は、化合物(1)で説明した(Rf1O)およびRf2と同じであり、好ましい形態も同様である。
(Production method of compound (14))
The compound (14) is useful as an intermediate of a fluorine-containing ether compound that is suitably used for a surface treatment agent.
A fifth aspect of the method for producing a fluorinated ether compound of the present invention is a method for obtaining a compound (14) by fluorinating the compound (12) with a fluorine gas.
F—R f2 O— (R f1 O) m —R f2 —C (O) OCF 2 —R f2 — (OR f1 ) m —OR f2 —F (14)
However, (R f1 O) m and R f2 are described in Compound (1) (R f1 O) is the same as m and R f2, which is the preferred form as well.
 化合物(12)をフッ素ガスでフッ素化する反応条件は、通常のフッ素化の反応条件であればよく、特に制限されない。 The reaction conditions for fluorinating the compound (12) with fluorine gas are not particularly limited as long as they are ordinary fluorination reaction conditions.
(化合物(5)の製造方法)
 化合物(5)は、表面処理剤に好適に用いられる含フッ素エーテル化合物の中間体として有用である。
 本発明の含フッ素エーテル化合物の製造方法の第6の態様は、化合物(14)にROHを反応させて化合物(5)を得る方法である。
 F-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(5)
 ただし、(Rf1O)およびRf2は、化合物(1)で説明した(Rf1O)およびRf2と同じであり、好ましい形態も同様である。Rも、上述したROHにおけるRと同様であり、好ましい形態も同様である。
(Production method of compound (5))
The compound (5) is useful as an intermediate of a fluorinated ether compound suitably used for a surface treatment agent.
The sixth aspect of the method for producing a fluorinated ether compound of the present invention is a method for obtaining compound (5) by reacting compound (14) with R 2 OH.
F—R f2 O— (R f1 O) m —R f2 —C (O) OR 2 (5)
However, (R f1 O) m and R f2 are described in Compound (1) (R f1 O) is the same as m and R f2, which is the preferred form as well. R 2 is also the same as R 2 in R 2 OH as described above, the preferred form as well.
 化合物(14)とROHとの反応機構を下式に示す。1モルの化合物(14)に2モルのROHが反応して、2モルの化合物(5)が生成する。 The reaction mechanism of compound (14) and R 2 OH is shown in the following formula. 2 mol of R 2 OH reacts with 1 mol of compound (14) to produce 2 mol of compound (5).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 化合物(14)とROHとの反応条件は、通常のエステル交換の反応条件であればよく、特に制限されない。 The reaction conditions for the compound (14) and R 2 OH are not particularly limited as long as they are ordinary transesterification reaction conditions.
(化合物(6)の製造方法)
 本発明の含フッ素エーテル化合物の製造方法においては、化合物(14)から得られた化合物(5)を、上述した方法と同様にして水素還元することによって化合物(6)を得てもよい。
 F-Rf2O-(Rf1O)-Rf2-CHOH ・・・(6)
 ただし、(Rf1O)およびRf2は、化合物(1)で説明した(Rf1O)およびRf2と同じであり、好ましい形態も同様である。
(Production method of compound (6))
In the method for producing a fluorinated ether compound of the present invention, compound (6) may be obtained by hydrogen reduction of compound (5) obtained from compound (14) in the same manner as described above.
F—R f2 O— (R f1 O) m —R f2 —CH 2 OH (6)
However, (R f1 O) m and R f2 are described in Compound (1) (R f1 O) is the same as m and R f2, which is the preferred form as well.
 得られた化合物(6)の一部は、出発物質である化合物(1)に反応させるアルコールとして再利用することが好ましい。
 化合物(1)に反応させるアルコールとして化合物(6)以外のROHを用いた場合、化合物(5)を製造する際に化合物(4)とROHとのエステル交換によって生成するRf3OH(ROHに由来するアルコール)が無駄になる。一方、化合物(1)に反応させるアルコールとして化合物(6)を用いた場合、化合物(5)を製造する際に1モルの化合物(14)から2モルの化合物(5)が生成し、最初に用いたアルコール(化合物(6))が無駄にならない。
Part of the obtained compound (6) is preferably reused as an alcohol to be reacted with the starting compound (1).
When R 1 OH other than compound (6) is used as the alcohol to be reacted with compound (1), R f3 OH produced by transesterification of compound (4) and R 2 OH when producing compound (5) (Alcohol derived from R 1 OH) is wasted. On the other hand, when compound (6) is used as the alcohol to be reacted with compound (1), 2 mol of compound (5) is produced from 1 mol of compound (14) when producing compound (5). The alcohol used (compound (6)) is not wasted.
[表面処理剤]
 化合物(6)を原料として製造可能な、表面処理剤に好適に用いられる含フッ素エーテル化合物としては、たとえば、化合物(21)、化合物(22)、化合物(23)、化合物(24)等が挙げられる。
[Surface treatment agent]
Examples of the fluorine-containing ether compound that can be produced using the compound (6) as a raw material and are suitably used for the surface treatment agent include the compound (21), the compound (22), the compound (23), and the compound (24). It is done.
 F-Rf2O-(Rf1O)-Rf2-CHO-Q-SiR 3-n ・・・(21)
 F-Rf2O-(Rf1O)-Rf2-CH-(X)-Q-N[-Q-SiR 3-n ・・・(22)
 F-Rf2O-(Rf1O)-Rf2-CHO-Q-(O)-C[-(O)-Q-SiR 3-n ・・・(23)
 F-Rf2O-(Rf1O)-Rf2-CHO-Q-Si[-Q-SiR 3-n ・・・(24)
F-R f2 O- (R f1 O) m -R f2 -CH 2 O-Q 1 -SiR 3 n L 3-n ··· (21)
F—R f2 O— (R f1 O) m —R f2 —CH 2 — (X) r —Q 2 —N [—Q 3 —SiR 3 n L 3-n ] 2 (22)
F-R f2 O- (R f1 O) m -R f2 -CH 2 O-Q 4 - (O) s -C [- (O) t -Q 5 -SiR 3 n L 3-n] 3 ··・ (23)
F—R f2 O— (R f1 O) m —R f2 —CH 2 O—Q 6 —Si [—Q 7 —SiR 3 n L 3-n ] 3 (24)
 ただし、(Rf1O)およびRf2は、化合物(1)で説明した(Rf1O)およびRf2と同じであり、好ましい形態も同様である。Rは、水素原子または1価の炭化水素基であり、Lは、加水分解性基であり、nは、0~2の整数である。
 式(21)において、Qは、アルキレン基、または炭素数2以上のアルキレン基の炭素-炭素原子間にエーテル性酸素原子もしくは2価のオルガノポリシロキサン残基を有する基である。
 式(22)において、Xは、エーテル性酸素原子または-NH-であり、Qは、単結合、アルキレン基、または炭素数2以上のアルキレン基の炭素-炭素原子間にエーテル性酸素原子もしくは-NH-を有する基であり、rは、0または1(ただし、Qが単結合の場合は0である。)であり、Qは、アルキレン基、または炭素数2以上のアルキレン基の炭素-炭素原子間にエーテル性酸素原子、-NH-もしくは2価のオルガノポリシロキサン残基を有する基であり、2つの[-Q-SiR 3-n]は、同一であっても異なっていてもよい。
 式(23)において、Qは、単結合、アルキレン基、または炭素数2以上のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基であり、Qは、アルキレン基、または炭素数2以上のアルキレン基の炭素-炭素原子間にエーテル性酸素原子もしくは2価のオルガノポリシロキサン残基を有する基であり、sは、0または1(ただし、Qが単結合の場合は0である。)であり、tは、0または1であり、3つの[-(O)-Q-SiR 3-n]は、同一であっても異なっていてもよい。
 式(24)において、Qは、アルキレン基、または炭素数2以上のアルキレン基の炭素-炭素原子間にエーテル性酸素原子もしくは2価のオルガノポリシロキサン残基を有する基であり、Qは、アルキレン基、または炭素数2以上のアルキレン基の炭素-炭素原子間にエーテル性酸素原子もしくは2価のオルガノポリシロキサン残基を有する基であり、3つの[-Q-SiR 3-n]は、同一であっても異なっていてもよい。
However, (R f1 O) m and R f2 are described in Compound (1) (R f1 O) is the same as m and R f2, which is the preferred form as well. R 3 is a hydrogen atom or a monovalent hydrocarbon group, L is a hydrolyzable group, and n is an integer of 0-2.
In the formula (21), Q 1 is an alkylene group or a group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon-carbon atoms of an alkylene group having 2 or more carbon atoms.
In the formula (22), X is an etheric oxygen atom or —NH—, and Q 2 is a single bond, an alkylene group, or an etheric oxygen atom or a carbon atom between carbon atoms of an alkylene group having 2 or more carbon atoms. A group having —NH—, r is 0 or 1 (provided that 0 when Q 2 is a single bond), and Q 3 is an alkylene group or an alkylene group having 2 or more carbon atoms. A group having an etheric oxygen atom, —NH— or a divalent organopolysiloxane residue between carbon-carbon atoms, and two [—Q 3 —SiR 3 n L 3-n ] are the same, May be different.
In Formula (23), Q 4 is a single bond, an alkylene group, or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 or more carbon atoms, and Q 5 is an alkylene group or carbon A group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon-carbon atoms of an alkylene group of 2 or more, and s is 0 or 1 (provided that 0 when Q 4 is a single bond). And t is 0 or 1, and the three [— (O) t —Q 5 —SiR 3 n L 3-n ] may be the same or different.
In the formula (24), Q 6 is an alkylene group or a group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon-carbon atoms of an alkylene group having 2 or more carbon atoms, and Q 7 is , An alkylene group, or a group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon-carbon atoms of an alkylene group having 2 or more carbon atoms, and three [—Q 7 —SiR 3 n L 3 -N ] may be the same or different.
 化合物(5)を原料として製造可能な、表面処理剤に好適に用いられる含フッ素エーテル化合物としては、たとえば、化合物(25)、化合物(26)、化合物(27)、化合物(28)等が挙げられる。 Examples of the fluorine-containing ether compound that can be produced using the compound (5) as a raw material and that are suitably used for the surface treatment agent include the compound (25), the compound (26), the compound (27), and the compound (28). It is done.
 F-Rf2O-(Rf1O)-Rf2-C(O)N(R)-Q-SiR 3-n ・・・(25)
 F-Rf2O-(Rf1O)-Rf2-C(O)N(R)-Q-(O)-C[-(O)-Q10-SiR 3-n ・・・(26)
 F-Rf2O-(Rf1O)-Rf2-C[-O-Q11-SiR 3-n][-Q12-SiR 3-n ・・・(27)
 F-Rf2O-(Rf1O)-Rf2-C(OH)[-Q13-SiR 3-n ・・・(28)
F—R f2 O— (R f1 O) m —R f2 —C (O) N (R 5 ) —Q 8 —SiR 3 n L 3-n (25)
F—R f2 O— (R f1 O) m —R f2 —C (O) N (R 6 ) —Q 9 — (O) u —C [— (O) v —Q 10 —SiR 3 n L 3 −n ] 3 (26)
F—R f2 O— (R f1 O) m —R f2 —C [—OQ 11 —SiR 3 n L 3-n ] [— Q 12 —SiR 3 n L 3-n ] 2. 27)
F—R f2 O— (R f1 O) m —R f2 —C (OH) [—Q 13 —SiR 3 n L 3-n ] 2 (28)
 ただし、(Rf1O)およびRf2は、化合物(1)で説明した(Rf1O)およびRf2と同じであり、好ましい形態も同様である。R、Lおよびnは、化合物(21)等で説明したR、Lおよびnと同じである。
 式(25)において、Rは、水素原子またはアルキル基であり、Qは、アルキレン基、または炭素数2以上のアルキレン基の炭素-炭素原子間にエーテル性酸素原子もしくは2価のオルガノポリシロキサン残基を有する基である。
 式(26)において、Rは、水素原子またはアルキル基であり、Qは、単結合、アルキレン基、または炭素数2以上のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基であり、Q10は、アルキレン基、または炭素数2以上のアルキレン基の炭素-炭素原子間にエーテル性酸素原子もしくは2価のオルガノポリシロキサン残基を有する基であり、uは、0または1(ただし、Qが単結合の場合は0である。)であり、vは、0または1であり、3つの[-(O)-Q10-SiR 3-n]は、同一であっても異なっていてもよい。
 式(27)において、Q11は、アルキレン基、炭素数2以上のアルキレン基の炭素-炭素原子間にエーテル性酸素原子もしくはシルフェニレン骨格を有する基、または炭素数2以上のアルキレン基の炭素-炭素原子間もしくはOと結合する側の末端に2価のオルガノポリシロキサン残基もしくはジアルキルシリレン基を有する基であり、Q12は、アルキレン基、または炭素数2以上のアルキレン基の炭素-炭素原子間にエーテル性酸素原子もしくはシルフェニレン骨格を有する基であり、2つのQ12は、同一であっても異なっていてもよく、3つの-SiR 3-nは、同一であっても異なっていてもよい。
 式(28)において、Q13は、アルキレン基、または炭素数2以上のアルキレン基の炭素-炭素原子間にエーテル性酸素原子もしくは2価のオルガノポリシロキサン残基を有する基であり、2つの[-Q13-SiR3-n]は、同一の基でなくてもよい。
However, (R f1 O) m and R f2 are described in Compound (1) (R f1 O) is the same as m and R f2, which is the preferred form as well. R 3 , L and n are the same as R 3 , L and n described in the compound (21) and the like.
In the formula (25), R 5 is a hydrogen atom or an alkyl group, and Q 8 is an alkylene group or an etheric oxygen atom or a divalent organopolyoxy group between carbon-carbon atoms of an alkylene group having 2 or more carbon atoms. A group having a siloxane residue.
In the formula (26), R 6 represents a hydrogen atom or an alkyl group, and Q 9 represents a single bond, an alkylene group, or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 or more carbon atoms. Q 10 is an alkylene group or a group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon-carbon atoms of an alkylene group having 2 or more carbon atoms, and u is 0 or 1 (However, when Q 9 is a single bond, it is 0.), v is 0 or 1, and three [— (O) v -Q 10 -SiR 3 n L 3-n ] are They may be the same or different.
In Formula (27), Q 11 represents an alkylene group, a group having an etheric oxygen atom or a silphenylene skeleton between carbon-carbon atoms of an alkylene group having 2 or more carbon atoms, or a carbon atom of an alkylene group having 2 or more carbon atoms— Q 12 is a group having a divalent organopolysiloxane residue or a dialkylsilylene group at the terminal between carbon atoms or on the side bonded to O, and Q 12 is an alkylene group or a carbon-carbon atom of an alkylene group having 2 or more carbon atoms A group having an etheric oxygen atom or a silphenylene skeleton in between, two Q 12 may be the same or different, and three —SiR 3 n L 3-n may be the same May be different.
In the formula (28), Q 13 is an alkylene group or a group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon-carbon atoms of an alkylene group having 2 or more carbon atoms, -Q 13 -SiR n L 3-n ] may not be the same group.
(F-Rf2基)
 末端にF-Rf2を有するため、表面処理剤の一方の末端がCF-となり、他方の末端が加水分解性シリル基となる。該構造の表面処理剤によれば、低表面エネルギーの表面層を形成できるため、該表面層は潤滑性および耐摩擦性に優れる。一方、両末端に加水分解性シリル基を有する従来の含フッ素エーテル化合物では、表面層の潤滑性および耐摩擦性が不充分である。
(F—R f2 group)
Since the terminal has F—R f2 , one end of the surface treatment agent becomes CF 3 — and the other end becomes a hydrolyzable silyl group. According to the surface treatment agent having this structure, a surface layer having a low surface energy can be formed, so that the surface layer is excellent in lubricity and friction resistance. On the other hand, conventional fluorine-containing ether compounds having hydrolyzable silyl groups at both ends have insufficient surface layer lubricity and friction resistance.
(Q基~Q13基)
 Qとしては、炭素数1~10のアルキレン基、または炭素数2~10のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基が好ましく、炭素数1~7のアルキレン基、または炭素数2~7のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基が特に好ましい。化合物(21)の製造のしやすさの点からは、-CHCHCH-または-CHCHOCHCHCH-(ただし、右側がSiに結合する。)が好ましい。
(Q 1 group-Q 13 group)
Q 1 is preferably an alkylene group having 1 to 10 carbon atoms, or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms, or an alkylene group having 1 to 7 carbon atoms, or A group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 7 carbon atoms is particularly preferred. From the viewpoint of ease of production of the compound (21), —CH 2 CH 2 CH 2 — or —CH 2 CH 2 OCH 2 CH 2 CH 2 — (wherein the right side is bonded to Si) is preferable.
 Qとしては、単結合、炭素数1~10のアルキレン基、または炭素数2~10のアルキレン基の炭素-炭素原子間にエーテル性酸素原子もしくは-NH-を有する基が好ましく、単結合、炭素数1~7のアルキレン基、または炭素数2~7のアルキレン基の炭素-炭素原子間にエーテル性酸素原子もしくは-NH-を有する基が特に好ましい。(X)としては、化合物(22)の製造のしやすさの点からは、単結合、-OCHCH-または-NHCHCH-(ただし、右側がNに結合する。)が好ましい。 Q 2 is preferably a single bond, an alkylene group having 1 to 10 carbon atoms, or a group having an etheric oxygen atom or —NH— between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms, Particularly preferred is an alkylene group having 1 to 7 carbon atoms or a group having an etheric oxygen atom or —NH— between the carbon-carbon atoms of the alkylene group having 2 to 7 carbon atoms. (X) r Q 2 is a single bond, —OCH 2 CH 2 — or —NHCH 2 CH 2 — (wherein the right side is bonded to N from the viewpoint of easy production of the compound (22)). ) Is preferred.
 Qとしては、炭素数1~10のアルキレン基、または炭素数2~10のアルキレン基の炭素-炭素原子間にエーテル性酸素原子もしくは-NH-を有する基が好ましく、炭素数1~7のアルキレン基、または炭素数2~7のアルキレン基の炭素-炭素原子間にエーテル性酸素原子もしくは-NH-を有する基が特に好ましい。化合物(22)の製造のしやすさの点からは、-CHCHCH-または-CHCHOCHCHCH-(ただし、右側がSiに結合する。)が好ましい。 Q 3 is preferably an alkylene group having 1 to 10 carbon atoms, or a group having an etheric oxygen atom or —NH— between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms, and having 1 to 7 carbon atoms. An alkylene group or a group having an etheric oxygen atom or —NH— between carbon-carbon atoms of an alkylene group having 2 to 7 carbon atoms is particularly preferred. From the viewpoint of ease of production of the compound (22), —CH 2 CH 2 CH 2 — or —CH 2 CH 2 OCH 2 CH 2 CH 2 — (where the right side is bonded to Si) is preferred.
 Qとしては、単結合、炭素数1~10のアルキレン基、または炭素数2~10のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基が好ましく、単結合、炭素数1~7のアルキレン基、または炭素数2~7のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基が特に好ましい。Q-(O)としては、化合物(23)の製造のしやすさの点からは、単結合、-CH-、-CHCHO-または-CHCHOCH-(ただし、右側がCに結合する。)が好ましい。 Q 4 is preferably a single bond, an alkylene group having 1 to 10 carbon atoms, or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms. A group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group of 7 or an alkylene group of 2 to 7 carbon atoms is particularly preferred. Q 4 - The (O) s, in terms of ease of preparation of the compound (23), a single bond, -CH 2 -, - CH 2 CH 2 O- or -CH 2 CH 2 OCH 2 - ( However, the right side is bonded to C.).
 Qとしては、炭素数1~10のアルキレン基、または炭素数2~10のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基が好ましく、炭素数1~7のアルキレン基、または炭素数1~7のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基が特に好ましい。(O)-Qとしては、化合物(23)の製造のしやすさの点からは、-CHCHCH-、-CHOCHCHCH-または-CHOCHCHCHCHCH-(ただし、右側がSiに結合する。)が好ましい。 Q 5 is preferably an alkylene group having 1 to 10 carbon atoms, or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms, or an alkylene group having 1 to 7 carbon atoms, or A group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 1 to 7 carbon atoms is particularly preferred. (O) t -Q 5 is preferably —CH 2 CH 2 CH 2 —, —CH 2 OCH 2 CH 2 CH 2 — or —CH 2 OCH 2 in terms of ease of production of the compound (23). CH 2 CH 2 CH 2 CH 2 — (where the right side is bonded to Si) is preferred.
 Qとしては、炭素数1~10のアルキレン基、または炭素数2~10のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基が好ましく、単結合、炭素数1~7のアルキレン基、または炭素数2~7のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基が特に好ましい。Qとしては、化合物(24)の製造のしやすさの点からは、-CHCHCH-または-CHCHOCHCHCH-(ただし、右側がSiに結合する。)が好ましい。 Q 6 is preferably an alkylene group having 1 to 10 carbon atoms or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms, a single bond, an alkylene having 1 to 7 carbon atoms And a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 7 carbon atoms is particularly preferred. Q 6 is —CH 2 CH 2 CH 2 — or —CH 2 CH 2 OCH 2 CH 2 CH 2 — (where the right side is bonded to Si from the viewpoint of ease of production of the compound (24)) .) Is preferred.
 Qとしては、炭素数1~10のアルキレン基、または炭素数2~10のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基が好ましく、炭素数1~7のアルキレン基、または炭素数2~7のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基が特に好ましい。Qとしては、化合物(24)の製造のしやすさの点からは、-CHCHCH-または-CHCHOCHCHCH-(ただし、右側がSiR 3-nに結合する。)が好ましい。 Q 7 is preferably an alkylene group having 1 to 10 carbon atoms, or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms, or an alkylene group having 1 to 7 carbon atoms, or A group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 7 carbon atoms is particularly preferred. Q 7 is —CH 2 CH 2 CH 2 — or —CH 2 CH 2 OCH 2 CH 2 CH 2 — (wherein the right side is SiR 3 n L from the viewpoint of ease of production of the compound (24)) 3-n is preferred).
 Qとしては、炭素数1~10のアルキレン基、または炭素数2~10のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基が好ましい。Qとしては、化合物(25)の製造のしやすさの点からは、炭素数2~6のアルキレン基が好ましい。 Q 8 is preferably an alkylene group having 1 to 10 carbon atoms or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms. Q 8 is preferably an alkylene group having 2 to 6 carbon atoms from the viewpoint of easy production of the compound (25).
 Qとしては、単結合、炭素数1~10のアルキレン基、または炭素数2~10のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基が好ましい。Qとしては、化合物(26)の製造のしやすさの点からは、単結合、-CH-、-CHCH-が好ましい。 Q 9 is preferably a single bond, an alkylene group having 1 to 10 carbon atoms, or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms. Q 9 is preferably a single bond, —CH 2 — or —CH 2 CH 2 — from the viewpoint of easy production of the compound (26).
 Q10としては、炭素数1~10のアルキレン基、または炭素数2~10のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基が好ましい。Q10としては、化合物(26)の製造のしやすさの点からは、-CHCH-、-CHCHCH-、-CHOCHCHCH-、-CHOCHCHCHCHCH-が好ましい。 Q 10 is preferably an alkylene group having 1 to 10 carbon atoms or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms. The Q 10, from the viewpoint of ease of preparation of the compound (26), -CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 OCH 2 CH 2 CH 2 -, - CH 2 OCH 2 CH 2 CH 2 CH 2 CH 2 — is preferred.
 Q11におけるシルフェニレン骨格は、-Si(RPhSi(R-(ただし、Phはフェニレン基であり、Rは1価の有機基である。)で表される基である。Rは、炭素数1~10のアルキル基が好ましく、メチル基が特に好ましい。
 Q11におけるジアルキルシリレン基は、-Si(R-(ただし、Rはアルキル基である。)で表される基である。Rは、炭素数1~10のアルキル基が好ましく、メチル基が特に好ましい。
 Q11としては、炭素数1~10のアルキレン基、炭素数2~10のアルキレン基の炭素-炭素原子間にエーテル性酸素原子もしくはシルフェニレン骨格を有する基、または炭素数2~10のアルキレン基の炭素-炭素原子間もしくはOと結合する側の末端に2価のオルガノポリシロキサン残基もしくはジアルキルシリレン基を有する基が好ましい。Q11としては、化合物(27)の製造のしやすさの点から、-CHCHCH-、-Si(CHCHCHCH-、-Si(CHOSi(CHCHCHCH-、-CHCHCHSi(CHPhSi(CHCHCH-が好ましい(ただし、右側がSiに結合する。)。
The silphenylene skeleton in Q 11 is a group represented by —Si (R a ) 2 PhSi (R a ) 2 — (where Ph is a phenylene group and R a is a monovalent organic group). is there. R a is preferably an alkyl group having 1 to 10 carbon atoms, and particularly preferably a methyl group.
The dialkylsilylene group in Q 11 is a group represented by —Si (R b ) 2 — (wherein R b is an alkyl group). R b is preferably an alkyl group having 1 to 10 carbon atoms, and particularly preferably a methyl group.
Q 11 is an alkylene group having 1 to 10 carbon atoms, a group having an etheric oxygen atom or a silphenylene skeleton between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms, or an alkylene group having 2 to 10 carbon atoms. A group having a divalent organopolysiloxane residue or a dialkylsilylene group at the terminal between carbon and carbon atoms or at the side bonded to O is preferred. Q 11 represents —CH 2 CH 2 CH 2 —, —Si (CH 3 ) 2 CH 2 CH 2 CH 2 —, —Si (CH 3 ) 2 from the viewpoint of ease of production of the compound (27). OSi (CH 3 ) 2 CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH 2 Si (CH 3 ) 2 PhSi (CH 3 ) 2 CH 2 CH 2 — are preferred (where the right side is bonded to Si. ).
 Q12としては、炭素数1~10のアルキレン基、または炭素数2~10のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基が好ましい。Q12としては、化合物(27)の製造のしやすさの点からは、-CHCH-、-CHCHCH-、-CHOCHCHCH-、-CHOCHCHCHCHCH-が好ましい(ただし、右側がSiに結合する。)。 Q 12 is preferably an alkylene group having 1 to 10 carbon atoms or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms. The Q 12, from the viewpoint of ease of preparation of the compound (27), -CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 OCH 2 CH 2 CH 2 -, - CH 2 OCH 2 CH 2 CH 2 CH 2 CH 2 — is preferred (however, the right side is bonded to Si).
 Q13としては、炭素数1~10のアルキレン基、または炭素数2~10のアルキレン基の炭素-炭素原子間にエーテル性酸素原子を有する基が好ましい。Q13としては、化合物(28)の製造のしやすさの点からは、-CHCH-、-CHCHCH-、-CHOCHCHCH-、-CHOCHCHCHCHCH-が好ましい(ただし、右側がSiに結合する。)。 Q 13 is preferably an alkylene group having 1 to 10 carbon atoms or a group having an etheric oxygen atom between carbon-carbon atoms of an alkylene group having 2 to 10 carbon atoms. The Q 13, from the viewpoint of ease of preparation of the compound (28), -CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 OCH 2 CH 2 CH 2 -, - CH 2 OCH 2 CH 2 CH 2 CH 2 CH 2 — is preferred (however, the right side is bonded to Si).
(R基~R基)
 RおよびRとしては、水素原子が好ましい。RまたはRがアルキル基の場合、炭素数は1~4が好ましい。
(R 5 groups ~ R 6 groups)
R 5 and R 6 are preferably a hydrogen atom. When R 5 or R 6 is an alkyl group, the number of carbon atoms is preferably 1 to 4.
(SiR 3-n基)
 SiR 3-nは、加水分解性シリル基である。
 表面処理剤は、末端に加水分解性シリル基を有する。該構造の表面処理剤は基材と強固に化学結合するため、表面層は耐摩擦性に優れる。
 また、表面処理剤は、一方の末端のみに加水分解性シリル基を有する。該構造の表面処理剤は凝集しにくいため、表面層は外観に優れる。
(SiR 3 n L 3-n group)
SiR 3 n L 3-n is a hydrolyzable silyl group.
The surface treatment agent has a hydrolyzable silyl group at the terminal. Since the surface treatment agent having this structure is strongly chemically bonded to the base material, the surface layer is excellent in friction resistance.
The surface treatment agent has a hydrolyzable silyl group only at one end. Since the surface treatment agent having such a structure hardly aggregates, the surface layer is excellent in appearance.
 Lは、加水分解性基である。加水分解性基は、加水分解反応によって水酸基となる基である。すなわち、表面処理剤の末端のSi-Lは、加水分解反応によってシラノール基(Si-OH)となる。シラノール基は、さらに分子間で反応してSi-O-Si結合を形成する。また、シラノール基は、基材の表面の水酸基(基材-OH)と脱水縮合反応して、化学結合(基材-O-Si)を形成する。 L is a hydrolyzable group. The hydrolyzable group is a group that becomes a hydroxyl group by a hydrolysis reaction. That is, Si—L at the end of the surface treatment agent becomes a silanol group (Si—OH) by hydrolysis reaction. The silanol group further reacts between molecules to form a Si—O—Si bond. Further, the silanol group undergoes a dehydration condensation reaction with a hydroxyl group (base material-OH) on the surface of the base material to form a chemical bond (base material-O-Si).
 Lとしては、アルコキシ基、ハロゲン原子、アシル基、イソシアナート基(-NCO)等が挙げられる。アルコキシ基としては、炭素数1~4のアルコキシ基が好ましい。ハロゲン原子としては、塩素原子が好ましい。
 Lとしては、表面処理剤の製造のしやすさの点から、アルコキシ基またはハロゲン原子が好ましい。Lとしては、塗布時のアウトガスが少なく、表面処理剤の保存安定性に優れる点から、炭素数1~4のアルコキシ基が好ましく、表面処理剤の長期の保存安定性が必要な場合にはエトキシ基が特に好ましく、塗布後の反応時間を短時間とする場合にはメトキシ基が特に好ましい。
Examples of L include an alkoxy group, a halogen atom, an acyl group, and an isocyanate group (—NCO). As the alkoxy group, an alkoxy group having 1 to 4 carbon atoms is preferable. As the halogen atom, a chlorine atom is preferable.
L is preferably an alkoxy group or a halogen atom from the viewpoint of ease of production of the surface treatment agent. L is preferably an alkoxy group having 1 to 4 carbon atoms from the viewpoint of less outgassing at the time of coating and excellent storage stability of the surface treatment agent, and ethoxy when long-term storage stability of the surface treatment agent is required. A group is particularly preferred, and a methoxy group is particularly preferred when the reaction time after coating is short.
 Rは、水素原子または1価の炭化水素基である。1価の炭化水素基としては、アルキル基、シクロアルキル基、アルケニル基、アリール基等が挙げられる。
 Rとしては、1価の炭化水素基が好ましく、1価の飽和炭化水素基が特に好ましい。
 Rが1価の炭化水素基の場合の炭素数は、1~20が好ましく、1~10がより好ましく、1~6がさらに好ましく、1~3が特に好ましく、1~2が最も好ましい。Rの炭素数がこの範囲であると、化合物(5)の製造がしやすい。
R 3 is a hydrogen atom or a monovalent hydrocarbon group. Examples of the monovalent hydrocarbon group include an alkyl group, a cycloalkyl group, an alkenyl group, and an aryl group.
R 3 is preferably a monovalent hydrocarbon group, particularly preferably a monovalent saturated hydrocarbon group.
When R 3 is a monovalent hydrocarbon group, the number of carbon atoms is preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 6, particularly preferably 1 to 3, and most preferably 1 to 2. When the carbon number of R 3 is within this range, the compound (5) can be easily produced.
 nは、0または1が好ましく、0が特に好ましい。1つの加水分解性シリル基にLが複数存在することによって、基材との密着性がより強固になる。 N is preferably 0 or 1, particularly preferably 0. By the presence of a plurality of L in one hydrolyzable silyl group, the adhesion to the substrate becomes stronger.
 SiR 3-nとしては、Si(OCH、SiCH(OCH、Si(OCHCH、SiCl、Si(O(O)CCH、Si(NCO)が好ましい。工業的な製造における取扱いやすさの点から、Si(OCHが特に好ましい。
 化合物(22)~(24)、(26)~(28)中の複数のSiR 3-nは、表面処理剤の製造のしやすさの点から、同一の基であることが好ましい。
SiR 3 n L 3-n includes Si (OCH 3 ) 3 , SiCH 3 (OCH 3 ) 2 , Si (OCH 2 CH 3 ) 3 , SiCl 3 , Si (O (O) CCH 3 ) 3 , Si ( NCO) 3 is preferred. From the viewpoint of ease of handling in industrial production, Si (OCH 3 ) 3 is particularly preferable.
The plurality of SiR 3 n L 3-n in the compounds (22) to (24) and (26) to (28) are preferably the same group from the viewpoint of ease of production of the surface treatment agent. .
(表面処理剤の具体例)
 化合物(21)の具体例としては、たとえば、下式の化合物が挙げられる。
(Specific examples of surface treatment agents)
Specific examples of the compound (21) include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 化合物(22)の具体例としては、たとえば、下式の化合物が挙げられる。 Specific examples of the compound (22) include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 化合物(23)の具体例としては、たとえば、下式の化合物が挙げられる。 Specific examples of the compound (23) include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 化合物(24)の具体例としては、たとえば、下式の化合物が挙げられる。 Specific examples of the compound (24) include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 化合物(25)の具体例としては、たとえば、下式の化合物が挙げられる。 Specific examples of the compound (25) include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 化合物(26)の具体例としては、たとえば、下式の化合物が挙げられる。 Specific examples of the compound (26) include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 化合物(27)の具体例としては、たとえば、下式の化合物が挙げられる。 Specific examples of the compound (27) include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 化合物(28)の具体例としては、たとえば、下式の化合物が挙げられる。 Specific examples of the compound (28) include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 ただし、PFPEはポリフルオロポリエーテル鎖、すなわちF-Rf2O-(Rf1O)-Rf2-である。PFPEの好ましい形態は、上述した好ましい(Rf1O)およびRf2を組み合わせたものとなる。 However, PFPE is a polyfluoropolyether chain, that is, F—R f2 O— (R f1 O) m —R f2 —. A preferred form of PFPE is a combination of the preferred (R f1 O) m and R f2 described above.
(表面処理剤の製造方法)
 化合物(21)は、特許文献1、特許文献2、国際公開第2013/121984号等に記載の公知の方法で製造できる。
 化合物(22)は、国際公開第2017/038832号に記載の公知の方法で製造できる。
 化合物(23)は、国際公開第2017/038830号に記載の公知の方法で製造できる。
 化合物(24)は、特開2016-037541号公報、国際公開第2016/121211号等に記載の公知の方法で製造できる。
 化合物(25)は、国際公開第2013/121984号に記載の公知の方法で製造できる。
 化合物(26)は、国際公開第2017/038830号に記載の公知の方法で製造できる。
 化合物(27)は、特開2016-204656号公報に記載の公知の方法で製造できる。
 化合物(28)は、特開2016-037541号公報に記載の公知の方法で製造できる。
(Method for producing surface treatment agent)
Compound (21) can be produced by a known method described in Patent Document 1, Patent Document 2, International Publication No. 2013/121984, and the like.
Compound (22) can be produced by a known method described in International Publication No. 2017/038832.
Compound (23) can be produced by a known method described in International Publication No. 2017/038830.
Compound (24) can be produced by a known method described in JP-A-2016-037541 and International Publication No. 2016/1212111.
Compound (25) can be produced by a known method described in International Publication No. 2013/121984.
Compound (26) can be produced by a known method described in International Publication No. 2017/038830.
Compound (27) can be produced by a known method described in JP-A-2016-204656.
Compound (28) can be produced by a known method described in JP-A-2016-037541.
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
 以下、「%」は特に断りのない限り「質量%」である。
 例1~4は実施例であり、例5~6は製造例である。
Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
Hereinafter, “%” is “% by mass” unless otherwise specified.
Examples 1 to 4 are examples, and examples 5 to 6 are production examples.
[例1]
(例1-1)
 200mLの3つ口フラスコに、エタノールの11.8g、化合物(1-1)(ソルベイソレクシス社製、FOMBLIN(登録商標)ZDIAC4000)の100.0gを入れ、50℃で4時間撹拌した。反応混合物をエバポレータで濃縮し、粗生成物の100.4gを得た。粗生成物をシリカゲルカラムクロマトグラフィに展開して分取した。展開溶媒としてCFCHOCFCFH(旭硝子社製、AE-3000)を用いて化合物(3-1)を溶出させた。展開溶媒としてAE-3000/アセトン=7/3(質量比)を用いて化合物(2-1)を溶出させた。展開溶媒としてAE-3000/2,2,2-トリフルオロエタノール=2/8(質量比)を用いて化合物(1-1)を溶出させた。得られた各成分について、末端基の構造および構成単位の単位数(x1、x2)の平均値をH-NMRおよび19F-NMRの積分値から求めた。化合物(1-1)の24.1g(収率:24.1%)、化合物(2-1)の48.4g(収率:48.1%)、および化合物(3-1)の25.9g(収率:25.6%)を得た。
 HO(O)C-CFO-{(CFO)x1(CFCFO)x2}-CF-C(O)OH ・・・(1-1)
 HO(O)C-CFO-{(CFO)x1(CFCFO)x2}-CF-C(O)OCHCH ・・・(2-1)
 CHCHO(O)C-CFO-{(CFO)x1(CFCFO)x2}-CF-C(O)OCHCH ・・・(3-1)
[Example 1]
(Example 1-1)
A 200 mL three-necked flask was charged with 11.8 g of ethanol and 100.0 g of compound (1-1) (manufactured by Solvay Solexis, FOMBLIN (registered trademark) ZDIAC4000), and stirred at 50 ° C. for 4 hours. The reaction mixture was concentrated with an evaporator to obtain 100.4 g of a crude product. The crude product was separated by development on silica gel column chromatography. Compound (3-1) was eluted using CF 3 CH 2 OCF 2 CF 2 H (Asahi Glass Co., Ltd., AE-3000) as a developing solvent. Compound (2-1) was eluted using AE-3000 / acetone = 7/3 (mass ratio) as a developing solvent. Compound (1-1) was eluted using AE-3000 / 2,2,2,2-trifluoroethanol = 2/8 (mass ratio) as a developing solvent. For each component obtained, the average value of the structure of the terminal group and the number of structural units (x1, x2) was determined from the integrated values of 1 H-NMR and 19 F-NMR. 24.1 g (yield: 24.1%) of compound (1-1), 48.4 g (yield: 48.1%) of compound (2-1), and 25. of compound (3-1). 9 g (yield: 25.6%) was obtained.
HO (O) C—CF 2 O — {(CF 2 O) x1 (CF 2 CF 2 O) x2 } —CF 2 —C (O) OH (1-1)
HO (O) C—CF 2 O — {(CF 2 O) x1 (CF 2 CF 2 O) x2 } —CF 2 —C (O) OCH 2 CH 3 (2-1)
CH 3 CH 2 O (O) C—CF 2 O — {(CF 2 O) x1 (CF 2 CF 2 O) x2 } —CF 2 —C (O) OCH 2 CH 3 (3-1)
 化合物(1-1)のNMRスペクトル;
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.1~-55.4(38F)、-77.8(2F)、-79.8(2F)、-89.2~-90.8(84F)
 単位数x1の平均値:19、単位数x2の平均値:21、化合物(1-1)の数平均分子量:3,900。
NMR spectrum of compound (1-1);
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −52.1 to −55.4 (38F), −77.8 (2F), −79.8 ( 2F), -89.2 to -90.8 (84F)
Average value of unit number x1: 19; average value of unit number x2: 21; number average molecular weight of compound (1-1): 3,900.
 化合物(2-1)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:テトラメチルシラン(TMS)) δ(ppm):4.3(2H)、1.3(3H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.2~-55.5(38F)、-77.8(1F)、-78.3(1F)、-79.9(2F)、-89.3~-90.9(84F)。
 単位数x1の平均値:19、単位数x2の平均値:21、化合物(2-1)の数平均分子量:3,920。
NMR spectrum of compound (2-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: tetramethylsilane (TMS)) δ (ppm): 4.3 (2H), 1.3 (3H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −52.2 to −55.5 (38F), −77.8 (1F), −78.3 ( 1F), -79.9 (2F), -89.3 to -90.9 (84F).
Average value of unit number x1: 19; average value of unit number x2: 21; number average molecular weight of compound (2-1): 3,920.
 化合物(3-1)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):4.3(4H)、1.3(6H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.2~-55.5(38F)、-78.3(2F)、-80.0(2F)、-89.3~-90.9(84F)。
 単位数x1の平均値:19、単位数x2の平均値:21、化合物(3-1)の数平均分子量:3,940。
NMR spectrum of compound (3-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 4.3 (4H), 1.3 (6H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −52.2 to −55.5 (38F), −78.3 (2F), −80.0 ( 2F), -89.3 to -90.9 (84F).
Average value of unit number x1: 19; average value of unit number x2: 21; number average molecular weight of compound (3-1): 3,940.
(例1-2)
 500mLのニッケル製オートクレーブのガス出口に、20℃に保持した冷却器、NaFペレット充填層および0℃に保持した冷却器を直列に設置した。0℃に保持した冷却器から凝集した液をオートクレーブに戻す液体返送ラインを設置した。
 オートクレーブにClCFCFClCFOCFCFCl(CFE-419)の350gを入れ、25℃に保持しながら撹拌した。オートクレーブに窒素ガスを25℃で1時間吹き込んだ後、20%フッ素ガスを、25℃、流速1.0L/時間で1時間吹き込んだ。20%フッ素ガスを同じ流速で吹き込みながら、オートクレーブに、例1-1で得た化合物(2-1)の40.0gをCFE-419の120gに溶解した溶液を、4時間かけて注入した。20%フッ素ガスを同じ流速で吹き込みながら、オートクレーブの内圧を0.15MPa(ゲージ圧)まで加圧した。オートクレーブ内に、CFE-419中に0.05g/mLのベンゼンを含むベンゼン溶液の6mLを、25℃から40℃にまで加熱しながら注入し、オートクレーブのベンゼン溶液注入口を閉めた。15分間撹拌した後、再びベンゼン溶液の6mLを、40℃を保持しながら注入し、注入口を閉めた。同様の操作をさらに3回繰り返した。ベンゼンの注入総量は1.5gであった。20%フッ素ガスを同じ流速で吹き込みながら、1時間撹拌を続けた。オートクレーブ内の圧力を大気圧にして、窒素ガスを1時間吹き込んだ。オートクレーブの内容物をエバポレータで濃縮し、化合物(4-1)の39.8g(収率97.9%)を得た。
 F-CFO-{(CFO)x1(CFCFO)x2}-CF-C(O)OCFCF ・・・(4-1)
(Example 1-2)
At the gas outlet of a 500 mL nickel autoclave, a cooler maintained at 20 ° C., a NaF pellet packed bed, and a cooler maintained at 0 ° C. were installed in series. A liquid return line for returning the liquid aggregated from the cooler maintained at 0 ° C. to the autoclave was installed.
350 g of ClCF 2 CFClCF 2 OCF 2 CF 2 Cl (CFE-419) was placed in the autoclave and stirred while maintaining at 25 ° C. After nitrogen gas was blown into the autoclave at 25 ° C. for 1 hour, 20% fluorine gas was blown in at 25 ° C. and a flow rate of 1.0 L / hour for 1 hour. While blowing 20% fluorine gas at the same flow rate, a solution of 40.0 g of the compound (2-1) obtained in Example 1-1 in 120 g of CFE-419 was injected into the autoclave over 4 hours. While blowing 20% fluorine gas at the same flow rate, the internal pressure of the autoclave was increased to 0.15 MPa (gauge pressure). 6 mL of a benzene solution containing 0.05 g / mL benzene in CFE-419 was injected into the autoclave while heating from 25 ° C. to 40 ° C., and the benzene solution inlet of the autoclave was closed. After stirring for 15 minutes, 6 mL of the benzene solution was again injected while maintaining 40 ° C., and the injection port was closed. The same operation was repeated three more times. The total amount of benzene injected was 1.5 g. Stirring was continued for 1 hour while blowing 20% fluorine gas at the same flow rate. The pressure in the autoclave was set to atmospheric pressure, and nitrogen gas was blown for 1 hour. The content of the autoclave was concentrated with an evaporator to obtain 39.8 g (yield 97.9%) of compound (4-1).
F—CF 2 O — {(CF 2 O) x1 (CF 2 CF 2 O) x2 } —CF 2 —C (O) OCF 2 CF 3 (4-1)
 化合物(4-1)のNMRスペクトル;
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.3~-55.6(38F)、-56.3~-58.3(3F)、-77.8(1F)、-78.3(1F)、-87.5(3F)、-89.0~-90.9(86F)。
 単位数x1の平均値:19、単位数x2の平均値:21、化合物(4-1)の数平均分子量:3,980。
NMR spectrum of compound (4-1);
19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): −52.3 to −55.6 (38F), −56.3 to −58.3 (3F), -77.8 (1F), -78.3 (1F), -87.5 (3F), -89.0 to -90.9 (86F).
Average value of unit number x1: 19; average value of unit number x2: 21; number average molecular weight of compound (4-1): 3,980.
(例1-3)
 テトラフルオロエチレン-ペルフルオロ(アルコキシビニルエーテル)共重合体(PFA)製丸底フラスコに、例1-2で得た化合物(4-1)の39.0gおよびAE-3000の50gを入れた。氷浴で冷却しながら撹拌し、窒素雰囲気下、メタノールの3.2gを滴下漏斗からゆっくり滴下した。窒素でバブリングしながら12時間撹拌した。反応混合物をエバポレータで濃縮し、化合物(5-1)の37.7g(収率99.4%)を得た。
 F-CFO-{(CFO)x1(CFCFO)x2}-CF-C(O)OCH ・・・(5-1)
(Example 1-3)
In a round bottom flask made of tetrafluoroethylene-perfluoro (alkoxy vinyl ether) copolymer (PFA), 39.0 g of the compound (4-1) obtained in Example 1-2 and 50 g of AE-3000 were placed. The mixture was stirred while being cooled in an ice bath, and 3.2 g of methanol was slowly dropped from the dropping funnel under a nitrogen atmosphere. The mixture was stirred for 12 hours while bubbling with nitrogen. The reaction mixture was concentrated by an evaporator to obtain 37.7 g (yield 99.4%) of compound (5-1).
F—CF 2 O — {(CF 2 O) x1 (CF 2 CF 2 O) x2 } —CF 2 —C (O) OCH 3 (5-1)
 化合物(5-1)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):3.9(3H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.3~-55.6(38F)、-56.3~-58.3(3F)、-78.2(1F)、-79.9(1F)、-89.0~-90.9(84F)。
 単位数x1の平均値:19、単位数x2の平均値:21、化合物(5-1)の数平均分子量:3,880。
NMR spectrum of compound (5-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 3.9 (3H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): −52.3 to −55.6 (38F), −56.3 to −58.3 (3F), -78.2 (1F), -79.9 (1F), -89.0 to -90.9 (84F).
Average value of unit number x1: 19; average value of unit number x2: 21; number average molecular weight of compound (5-1): 3,880.
(例1-4)
 200mLの3つ口ナスフラスコ内に、水素化ホウ素ナトリウムの1.80gをエタノールの10gおよびAE-3000の20gに溶解させ、氷浴で冷却しながら、例1-3で得た化合物(5-1)の37.0gをAE-3000の37.0gと混合した溶液をゆっくり滴下した。氷浴を取り外し、室温までゆっくり昇温しながら撹拌を続けた。室温で12時間撹拌後、液性が酸性になるまで塩酸水溶液を滴下した。有機相を採取し、水で1回、飽和食塩水で1回洗浄し、有機相を回収した。回収した有機相をエバポレータで濃縮し、化合物(6-1)の36.5g(収率98.2%)を得た。
 F-CFO-{(CFO)x1(CFCFO)x2}-CF-CHOH ・・・(6-1)
(Example 1-4)
In a 200 mL three-necked eggplant flask, 1.80 g of sodium borohydride was dissolved in 10 g of ethanol and 20 g of AE-3000, and cooled in an ice bath, the compound (5- A solution prepared by mixing 37.0 g of 1) with 37.0 g of AE-3000 was slowly added dropwise. The ice bath was removed and stirring was continued while slowly warming to room temperature. After stirring at room temperature for 12 hours, an aqueous hydrochloric acid solution was added dropwise until the liquid became acidic. The organic phase was collected, washed once with water and once with saturated brine, and the organic phase was recovered. The collected organic phase was concentrated by an evaporator to obtain 36.5 g (yield 98.2%) of compound (6-1).
F—CF 2 O — {(CF 2 O) x1 (CF 2 CF 2 O) x2 } —CF 2 —CH 2 OH (6-1)
 化合物(6-1)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):3.9(2H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.3~-55.6(38F)、-56.3~-58.3(3F)、-80.7(1F)、-82.8(1F)、-89.0~-90.9(84F)。
 単位数x1の平均値:19、単位数x2の平均値:21、化合物(6-1)の数平均分子量:3,900。
NMR spectrum of compound (6-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 3.9 (2H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): −52.3 to −55.6 (38F), −56.3 to −58.3 (3F), -80.7 (1F), -82.8 (1F), -89.0 to -90.9 (84F).
Average value of unit number x1: 19; average value of unit number x2: 21; number average molecular weight of compound (6-1): 3,900.
[例2]
 100mLのナスフラスコに、例1-1で得た化合物(3-1)の25.0gおよび48%水酸化ナトリウム水溶液の2.0gを入れ、80℃で2時間撹拌した。これを分液ロートに移し、希塩酸の30mLを加え、AE-3000の30mLで5回抽出した。回収した溶液をエバポレータで濃縮し、化合物(1-1)の22.6g(収率97.1%)を得た。
[Example 2]
In a 100 mL eggplant flask, 25.0 g of the compound (3-1) obtained in Example 1-1 and 2.0 g of a 48% aqueous sodium hydroxide solution were added and stirred at 80 ° C. for 2 hours. This was transferred to a separatory funnel, 30 mL of diluted hydrochloric acid was added, and the mixture was extracted 5 times with 30 mL of AE-3000. The collected solution was concentrated by an evaporator to obtain 22.6 g (yield 97.1%) of compound (1-1).
 化合物(3-1)から再生した化合物(1-1)の22.6gを用い、各原料の量を化合物(1-1)の量に合わせて変更した以外は、例1と同様にして化合物(6-1)を得た。
 化合物(3-1)は化合物(1-1)として再利用が可能であり、化合物(3-1)を再利用することによって、含フッ素エーテル化合物の廃棄物はほとんどないといえる。
Compound 2 was prepared in the same manner as in Example 1 except that 22.6 g of compound (1-1) regenerated from compound (3-1) was used and the amount of each raw material was changed according to the amount of compound (1-1). (6-1) was obtained.
The compound (3-1) can be reused as the compound (1-1), and it can be said that there is almost no waste of the fluorine-containing ether compound by reusing the compound (3-1).
[例3]
(例3-1)
 100mLの3つ口フラスコに、化合物(1-1)の20.0gおよび例1-4で得た化合物(6-1)の20.0gを入れ、80℃に昇温して撹拌した。減圧下に副生した水を留去し、NMR分析で化合物(6-1)が消失したことを確認した。得られた粗生成物を例1-1と同様にして精製し、化合物(1-1)の5.2g(収率:25.8%)、化合物(12-1)の19.1g(収率:48.0%)、および化合物(13-1)の14.5g(収率:24.2%)を得た。
 HO(O)C-CF-O{(CFO)x1(CFCFO)x2}-CF-C(O)OH ・・・(1-1)
 HO(O)C-CF-O{(CFO)x1(CFCFO)x2}-CF-C(O)OCH-CF-{(OCFCFx2(OCFx1}-OCF-F ・・・(12-1)
 F-CFO-{(CFO)x1(CFCFO)x2}-CF-CHO(O)C-CFO-{(CFO)x1(CFCFO)x2}-CF-C(O)OCH-CF-{(OCFCFx2(OCFx1}-OCF-F ・・・(13-1)
[Example 3]
(Example 3-1)
In a 100 mL three-necked flask, 20.0 g of the compound (1-1) and 20.0 g of the compound (6-1) obtained in Example 1-4 were placed, heated to 80 ° C. and stirred. By-produced water was distilled off under reduced pressure, and it was confirmed by NMR analysis that compound (6-1) had disappeared. The obtained crude product was purified in the same manner as in Example 1-1, and 5.2 g (yield: 25.8%) of compound (1-1) and 19.1 g (yield) of compound (12-1) were obtained. Rate: 48.0%), and 14.5 g (yield: 24.2%) of compound (13-1).
HO (O) C—CF 2 —O {(CF 2 O) x1 (CF 2 CF 2 O) x2 } —CF 2 —C (O) OH (1-1)
HO (O) C—CF 2 —O {(CF 2 O) x1 (CF 2 CF 2 O) x2 } —CF 2 —C (O) OCH 2 —CF 2 — {(OCF 2 CF 2 ) x2 (OCF 2 ) x1 } -OCF 2 -F (12-1)
F—CF 2 O — {(CF 2 O) x1 (CF 2 CF 2 O) x2 } —CF 2 —CH 2 O (O) C—CF 2 O — {(CF 2 O) x1 (CF 2 CF 2 O) x2 } —CF 2 —C (O) OCH 2 —CF 2 — {(OCF 2 CF 2 ) x2 (OCF 2 ) x1 } —OCF 2 —F (13-1)
 化合物(1-1)のNMRスペクトル;
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.1~-55.4(38F)、-77.8(2F)、-79.8(2F)、-89.2~-90.8(84F)。
 単位数x1の平均値:19、単位数x2の平均値:21、化合物(1-1)の数平均分子量:3,900。
NMR spectrum of compound (1-1);
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −52.1 to −55.4 (38F), −77.8 (2F), −79.8 ( 2F), -89.2 to -90.8 (84F).
Average value of unit number x1: 19; average value of unit number x2: 21; number average molecular weight of compound (1-1): 3,900.
 化合物(12-1)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):4.8(2H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.2~-55.5(76F)、-56.3~-58.3(3F)、-77.0~-80.3(6F)、-89.3~-90.9(168F)。
 単位数x1の平均値:19、単位数x2の平均値:21、化合物(12-1)の数平均分子量:7,730。
NMR spectrum of compound (12-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 4.8 (2H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −52.2 to −55.5 (76F), −56.3 to −58.3 (3F), -77.0 to -80.3 (6F), -89.3 to -90.9 (168F).
Average value of unit number x1: 19; average value of unit number x2: 21; number average molecular weight of compound (12-1): 7,730.
 化合物(13-1)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):4.8(4H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.2~-55.5(114F)、-56.3~-58.3(6F)、-77.5~-80.3(8F)、-89.3~-90.9(252F)。
 単位数x1の平均値:19、単位数x2の平均値:21、化合物(13-1)の数平均分子量:11,570。
NMR spectrum of compound (13-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 4.8 (4H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): −52.2 to −55.5 (114 F), −56.3 to −58.3 (6 F), -77.5 to -80.3 (8F), -89.3 to -90.9 (252F).
Average value of unit number x1: 19; average value of unit number x2: 21; number average molecular weight of compound (13-1): 11,570.
(例3-2)
 化合物(2-1)を化合物(12-1)の19.0gに変更し、各原料の量を化合物(12-1)の量に合わせて変更した以外は、例1-2と同様にして化合物(14-1)の18.8g(収率98.8%)を得た。
 F-CFO-{(CFO)x1(CFCFO)x2}-CF-C(O)OCF-CF-{(OCFCFx2(OCFx1}-OCF-F ・・・(14-1)
(Example 3-2)
Except that Compound (2-1) was changed to 19.0 g of Compound (12-1) and the amount of each raw material was changed according to the amount of Compound (12-1), it was the same as Example 1-2. 18.8 g (yield 98.8%) of compound (14-1) was obtained.
F—CF 2 O — {(CF 2 O) x1 (CF 2 CF 2 O) x2 } —CF 2 —C (O) OCF 2 —CF 2 — {(OCF 2 CF 2 ) x2 (OCF 2 ) x1 } -OCF 2 -F (14-1)
 化合物(14-1)のNMRスペクトル;
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.3~-55.6(76F)、-56.3~-58.3(6F)、-77.8(1F)、-78.3(1F)、-89.0~-90.9(172F)。
 単位数x1の平均値:19、単位数x2の平均値:21、化合物(14-1)の数平均分子量:7,740。
NMR spectrum of compound (14-1);
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −52.3 to −55.6 (76F), −56.3 to −58.3 (6F), -77.8 (1F), -78.3 (1F), -89.0 to -90.9 (172F).
Average value of unit number x1: 19; average value of unit number x2: 21; number average molecular weight of compound (14-1): 7,740.
(例3-3)
 化合物(4-1)を化合物(14-1)の18.5gに変更し、各原料の量を化合物(14-1)の量に合わせて変更した以外は、例1-3と同様にして化合物(5-1)の18.2g(収率96%)を得た。
 F-CFO-{(CFO)x1(CFCFO)x2}-CF-C(O)OCH ・・・(5-1)
(Example 3-3)
Except that Compound (4-1) was changed to 18.5 g of Compound (14-1) and the amount of each raw material was changed according to the amount of Compound (14-1), it was the same as Example 1-3. 18.2 g (yield 96%) of compound (5-1) was obtained.
F—CF 2 O — {(CF 2 O) x1 (CF 2 CF 2 O) x2 } —CF 2 —C (O) OCH 3 (5-1)
 化合物(5-1)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):3.9(3H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.3~-55.6(38F)、-56.3~-58.3(3F)、-78.2(1F)、-79.9(1F)、-89.0~-90.9(84F)。
 単位数x1の平均値:19、単位数x2の平均値:21、化合物(5-1)の数平均分子量:3,880。
 化合物(5-1)は例1で得られる化合物(5-1)と同一であり、例1-4と同様にして化合物(6-1)に誘導できる。
NMR spectrum of compound (5-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 3.9 (3H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): −52.3 to −55.6 (38F), −56.3 to −58.3 (3F), -78.2 (1F), -79.9 (1F), -89.0 to -90.9 (84F).
Average value of unit number x1: 19; average value of unit number x2: 21; number average molecular weight of compound (5-1): 3,880.
Compound (5-1) is the same as compound (5-1) obtained in Example 1, and can be derived into compound (6-1) in the same manner as in Example 1-4.
[例4] 
 50mLのナスフラスコに、例3-1で得た化合物(13-1)の14.0gおよび48%水酸化ナトリウム水溶液の1.0gを入れ、80℃で2時間撹拌した。これを分液ロートに移し、希塩酸の20mLを加え、AE-3000の20mLで5回抽出した。回収した溶液をエバポレータで濃縮し、得られた粗液をシリカゲルカラムクロマトグラフィにより精製することで、化合物(1-1)の4.4g(収率93.3%)、化合物(6-1)の9.2g(収率197%)を得た。
 化合物(13-1)は化合物(1-1)および化合物(6-1)として再利用が可能であり、化合物(13-1)を再利用することによって、含フッ素エーテル化合物の廃棄物はほとんどないといえる。
[Example 4]
In a 50 mL eggplant flask, 14.0 g of the compound (13-1) obtained in Example 3-1 and 1.0 g of 48% aqueous sodium hydroxide solution were added and stirred at 80 ° C. for 2 hours. This was transferred to a separatory funnel, 20 mL of diluted hydrochloric acid was added, and the mixture was extracted 5 times with 20 mL of AE-3000. The collected solution was concentrated with an evaporator, and the resulting crude liquid was purified by silica gel column chromatography to obtain 4.4 g (yield: 93.3%) of compound (1-1) and compound (6-1). 9.2 g (yield 197%) was obtained.
The compound (13-1) can be reused as the compound (1-1) and the compound (6-1). By reusing the compound (13-1), almost no waste of fluorine-containing ether compound is produced. I can say no.
[例5]
(化合物(5-1)を用いた表面処理剤の製造例)
 国際公開第2013/121984号の例1-6に記載の方法にしたがい表面処理剤を製造した。NMRから化合物(5-1)の99%が化合物(25-1)に変換していることを確認した。
 F-CFO-{(CFO)x1(CFCFO)x2}-CF-C(O)NH-CHCHCH-Si(OCH ・・・(25-1)
[Example 5]
(Production Example of Surface Treatment Agent Using Compound (5-1))
A surface treatment agent was produced according to the method described in Example 1-6 of WO2013 / 121984. From NMR, it was confirmed that 99% of the compound (5-1) was converted to the compound (25-1).
F—CF 2 O — {(CF 2 O) x1 (CF 2 CF 2 O) x2 } —CF 2 —C (O) NH—CH 2 CH 2 CH 2 —Si (OCH 3 ) 3 (25) -1)
 化合物(25-1)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):0.6(2H)、1.6(2H)、2.8(1H)、3.2(2H)、3.5(9H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.3~-55.6(38F)、-56.3~-58.3(3F)、-81.3(1F)、-84.1(1F)、-89.0~-90.9(84F)。
 単位数x1の平均値:19、単位数x2の平均値:21、化合物(25-1)の数平均分子量:4,050。
NMR spectrum of compound (25-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 0.6 (2H), 1.6 (2H), 2.8 (1H), 3.2 (2H) 3.5 (9H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): −52.3 to −55.6 (38F), −56.3 to −58.3 (3F), -81.3 (1F), -84.1 (1F), -89.0 to -90.9 (84F).
Average value of unit number x1: 19; average value of unit number x2: 21; number average molecular weight of compound (25-1): 4,050.
[例6]
(化合物(6-1)を用いた表面処理剤の製造例)
 国際公開第2017/038830号の例4に記載の方法に従い、化合物(23-1)を得た。
 F-CFO-{(CFO)x1(CFCFO)x2}-CF-CHO-CH-C[-CHCHCH-Si(OCH ・・・(23-1)
[Example 6]
(Production Example of Surface Treatment Agent Using Compound (6-1))
Compound (23-1) was obtained according to the method described in Example 4 of International Publication No. 2017/038830.
F—CF 2 O — {(CF 2 O) x1 (CF 2 CF 2 O) x2 } —CF 2 —CH 2 O—CH 2 —C [—CH 2 CH 2 CH 2 —Si (OCH 3 ) 3 ] 3 ... (23-1)
 化合物(23-1)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):0.7(6H)、1.7(6H)、3.4~3.8(37H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.3~-55.6(38F)、-56.3~-58.3(3F)、-77.3(1F)、-79.3(1F)、-89.0~-90.9(84F)。
 単位数x1の平均値:19、単位数x2の平均値:21、化合物(23-1)の数平均分子量:4,370。
NMR spectrum of compound (23-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 0.7 (6H), 1.7 (6H), 3.4 to 3.8 (37H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): −52.3 to −55.6 (38F), −56.3 to −58.3 (3F), -77.3 (1F), -79.3 (1F), -89.0 to -90.9 (84F).
Average value of unit number x1: 19; average value of unit number x2: 21; number average molecular weight of compound (23-1): 4,370.
 本発明の製造方法で得られた含フッ素エーテル化合物は、潤滑性や撥水撥油性の付与が求められている各種の用途に用いることができる。たとえばタッチパネル等の表示入力装置;透明なガラス製または透明なプラスチック製部材の表面保護コート、キッチン用防汚コート;電子機器、熱交換器、電池等の撥水防湿コートや防汚コート、トイレタリー用防汚コート;導通しながら撥液が必要な部材へのコート;熱交換機の撥水・防水・滑水コート;振動ふるいやシリンダ内部等の表面低摩擦コート等に用いることができる。より具体的な使用例としては、ディスプレイの前面保護板、反射防止板、偏光板、アンチグレア板、あるいはそれらの表面に反射防止膜処理を施したもの、携帯電話、携帯情報端末等の機器のタッチパネルシートやタッチパネルディスプレイ等人の指あるいは手のひらで画面上の操作を行う表示入力装置を有する各種機器、トイレ、風呂、洗面所、キッチン等の水周りの装飾建材、配線板用防水コーティング熱交換機の撥水・防水コート、太陽電池の撥水コート、プリント配線板の防水・撥水コート、電子機器筐体や電子部品用の防水・撥水コート、送電線の絶縁性向上コート、各種フィルタの防水・撥水コート、電波吸収材や吸音材の防水性コート、風呂、厨房機器、トイレタリー用防汚コート、熱交換機の撥水・防水・滑水コート、振動ふるいやシリンダ内部等の表面低摩擦コート、機械部品、真空機器部品、ベアリング部品、自動車部品、工具等の表面保護コート等が挙げられる。
 なお、2017年05月26日に出願された日本特許出願2017-104614号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The fluorine-containing ether compound obtained by the production method of the present invention can be used for various applications that require lubrication and water / oil repellency. For example, display input devices such as touch panels; surface protective coats made of transparent glass or transparent plastic parts, antifouling coats for kitchens; water and water repellent and antifouling coats for electronic devices, heat exchangers, batteries, etc. Antifouling coating; coating on a member that requires liquid repellency while conducting; water-repellent / waterproof / sliding coat of heat exchanger; surface sieve such as vibrating screen or inside cylinder, etc. More specific examples of use include a front protective plate of a display, an antireflection plate, a polarizing plate, an antiglare plate, or an antireflection coating on the surface thereof, a touch panel of a device such as a mobile phone or a portable information terminal. Various devices with display input devices that operate on the screen with human fingers or palms such as sheets and touch panel displays, decorative building materials around water such as toilets, baths, washrooms, and kitchens, waterproof coating heat exchangers for wiring boards Water / water-proof coating, water-repellent coating for solar cells, waterproof / water-repellent coating for printed wiring boards, waterproof / water-repellent coating for electronic equipment casings and electronic parts, insulation improvement coating for power transmission lines, various filters Water repellent coat, waterproof coat of radio wave absorber and sound absorbing material, bath, kitchen equipment, antifouling coat for toiletries, water repellent / waterproof / slidable coat of heat exchanger, vibration Low surface friction coating Rui and the cylinder interior and the like, mechanical parts, vacuum equipment parts, bearing parts, automobile parts, surface protection coating such as a tool and the like.
The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2017-104614 filed on May 26, 2017 are incorporated herein as the disclosure of the specification of the present invention. It is.

Claims (15)

  1.  下式(1)で表される化合物にROHを反応させて、下式(1)で表される化合物、下式(2)で表される化合物および下式(3)で表される化合物を含む混合物を得ることを特徴とする含フッ素エーテル化合物の製造方法。
     HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OH ・・・(1)
     HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(2)
     RO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(3)
     ただし、
      Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
      mは、2~200の整数であり、
      (Rf1O)は、2種以上のRf1Oからなるものであってもよく、
      Rは、1価の有機基である。
    The compound represented by the following formula (1) is reacted with R 1 OH to represent the compound represented by the following formula (1), the compound represented by the following formula (2), and the following formula (3). A method for producing a fluorine-containing ether compound, comprising obtaining a mixture containing a compound.
    HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OH (1)
    HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OR 1 (2)
    R 1 O (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OR 1 (3)
    However,
    R f1 and R f2 are each independently a perfluoroalkylene group,
    m is an integer from 2 to 200;
    (R f1 O) m may be composed of two or more types of R f1 O,
    R 1 is a monovalent organic group.
  2.  未反応の前記式(1)で表される化合物を回収して、前記式(1)で表される化合物と前記ROHとの反応における前記式(1)で表される化合物として再利用する、請求項1に記載の製造方法。 The unreacted compound represented by the formula (1) is recovered and reused as the compound represented by the formula (1) in the reaction of the compound represented by the formula (1) and the R 1 OH. The manufacturing method according to claim 1.
  3.  前記式(3)で表される化合物を回収し、加水分解して前記式(1)で表される化合物を得て、前記式(1)で表される化合物と前記ROHとの反応における前記式(1)で表される化合物として再利用する、請求項1または2に記載の製造方法。 The compound represented by the formula (3) is recovered, hydrolyzed to obtain the compound represented by the formula (1), and the reaction between the compound represented by the formula (1) and the R 1 OH. The production method according to claim 1 or 2, wherein the compound is reused as a compound represented by the formula (1).
  4.  下式(2)で表される化合物をフッ素ガスでフッ素化して下式(4)で表される化合物を得ることを特徴とする含フッ素エーテル化合物の製造方法。
     HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(2)
     F-Rf2O-(Rf1O)-Rf2-C(O)ORf3 ・・・(4)
     ただし、
      Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
      mは、2~200の整数であり、
      (Rf1O)は、2種以上のRf1Oからなるものであってもよく、
      Rは、1価の有機基であり、
      Rf3は、Rに由来する1価のペルフルオロ有機基である。
    A method for producing a fluorinated ether compound, comprising fluorinating a compound represented by the following formula (2) with a fluorine gas to obtain a compound represented by the following formula (4):
    HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OR 1 (2)
    F—R f2 O— (R f1 O) m —R f2 —C (O) OR f3 (4)
    However,
    R f1 and R f2 are each independently a perfluoroalkylene group,
    m is an integer from 2 to 200;
    (R f1 O) m may be composed of two or more types of R f1 O,
    R 1 is a monovalent organic group,
    R f3 is a monovalent perfluoro organic group derived from R 1 .
  5.  下式(4)で表される化合物とROHとでエステル交換して下式(5)で表される化合物を得ることを特徴とする含フッ素エーテル化合物の製造方法。
     F-Rf2O-(Rf1O)-Rf2-C(O)ORf3 ・・・(4)
     F-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(5)
     ただし、
      Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
      mは、2~200の整数であり、
      (Rf1O)は、2種以上のRf1Oからなるものであってもよく、
      Rf3は、1価のペルフルオロ有機基であり、
      Rは、1価の有機基である。
    A method for producing a fluorinated ether compound, comprising transesterifying a compound represented by the following formula (4) and R 2 OH to obtain a compound represented by the following formula (5):
    F—R f2 O— (R f1 O) m —R f2 —C (O) OR f3 (4)
    F—R f2 O— (R f1 O) m —R f2 —C (O) OR 2 (5)
    However,
    R f1 and R f2 are each independently a perfluoroalkylene group,
    m is an integer from 2 to 200;
    (R f1 O) m may be composed of two or more types of R f1 O,
    R f3 is a monovalent perfluoro organic group,
    R 2 is a monovalent organic group.
  6.  下式(5)で表される化合物を、還元剤を用いて水素還元することによって下式(6)で表される化合物を得ることを特徴とする含フッ素エーテル化合物の製造方法。
     F-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(5)
     F-Rf2O-(Rf1O)-Rf2-CHOH ・・・(6)
     ただし、
      Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
      mは、2~200の整数であり、
      (Rf1O)は、2種以上のRf1Oからなるものであってもよく、
      Rは、1価の有機基である。
    A method for producing a fluorinated ether compound, wherein a compound represented by the following formula (6) is obtained by hydrogen reduction of a compound represented by the following formula (5) using a reducing agent.
    F—R f2 O— (R f1 O) m —R f2 —C (O) OR 2 (5)
    F—R f2 O— (R f1 O) m —R f2 —CH 2 OH (6)
    However,
    R f1 and R f2 are each independently a perfluoroalkylene group,
    m is an integer from 2 to 200;
    (R f1 O) m may be composed of two or more types of R f1 O,
    R 2 is a monovalent organic group.
  7.  下式(2)で表される含フッ素エーテル化合物または下式(4)で表される含フッ素エーテル化合物。
     HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(2)
     F-Rf2O-(Rf1O)-Rf2-C(O)ORf3 ・・・(4)
     ただし、
      Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
      mは、2~200の整数であり、
      (Rf1O)は、2種以上のRf1Oからなるものであってもよく、
      Rは、1価の有機基であり、
      Rf3は、1価のペルフルオロ有機基である。
    A fluorine-containing ether compound represented by the following formula (2) or a fluorine-containing ether compound represented by the following formula (4).
    HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OR 1 (2)
    F—R f2 O— (R f1 O) m —R f2 —C (O) OR f3 (4)
    However,
    R f1 and R f2 are each independently a perfluoroalkylene group,
    m is an integer from 2 to 200;
    (R f1 O) m may be composed of two or more types of R f1 O,
    R 1 is a monovalent organic group,
    R f3 is a monovalent perfluoro organic group.
  8.  下式(1)で表される化合物に下式(6)で表される化合物を反応させて、下式(1)で表される化合物、下式(12)で表される化合物および下式(13)で表される化合物を含む混合物を得ることを特徴とする含フッ素エーテル化合物の製造方法。
     HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OH ・・・(1)
     F-Rf2O-(Rf1O)-Rf2-CHOH ・・・(6)
     HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OCH-Rf2-(ORf1-ORf2-F ・・・(12)
     F-Rf2O-(Rf1O)-Rf2-CHO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OCH-Rf2-(ORf1-ORf2-F ・・・(13)
     ただし、
      Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
      mは、それぞれ独立に2~200の整数であり、
      (Rf1O)は、2種以上のRf1Oからなるものであってもよい。
    A compound represented by the following formula (6) is reacted with a compound represented by the following formula (1) to give a compound represented by the following formula (1), a compound represented by the following formula (12), and the following formula: A method for producing a fluorine-containing ether compound, comprising obtaining a mixture containing the compound represented by (13).
    HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OH (1)
    F—R f2 O— (R f1 O) m —R f2 —CH 2 OH (6)
    HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OCH 2 —R f2 — (OR f1 ) m —OR f2 —F (12)
    F—R f2 O— (R f1 O) m —R f2 —CH 2 O (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OCH 2 —R f2 — (OR f1 ) m- OR f2- F (13)
    However,
    R f1 and R f2 are each independently a perfluoroalkylene group,
    m is each independently an integer of 2 to 200;
    (R f1 O) m may be composed of two or more types of R f1 O.
  9.  未反応の前記式(1)で表される化合物を回収して、前記式(1)で表される化合物と前記式(6)で表される化合物との反応における前記式(1)で表される化合物して再利用する、請求項8に記載の製造方法。 The unreacted compound represented by the formula (1) is recovered and represented by the formula (1) in the reaction between the compound represented by the formula (1) and the compound represented by the formula (6). The production method according to claim 8, wherein the compound is reused as a compound.
  10.  前記式(13)で表される化合物を回収し、加水分解して前記式(1)で表される化合物および前記式(6)で表される化合物を得て、前記式(1)で表される化合物と前記式(6)で表される化合物との反応における前記式(1)で表される化合物および前記式(6)で表される化合物として再利用する、請求項8または9に記載の製造方法。 The compound represented by the formula (13) is recovered and hydrolyzed to obtain the compound represented by the formula (1) and the compound represented by the formula (6), and represented by the formula (1). The compound represented by the formula (1) and the compound represented by the formula (6) in the reaction of the compound represented by the formula (6) and the compound represented by the formula (6) are reused. The manufacturing method as described.
  11.  下式(12)で表される化合物をフッ素ガスでフッ素化して下式(14)で表される化合物を得ることを特徴とする含フッ素エーテル化合物の製造方法。
     HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OCH-Rf2-(ORf1-ORf2-F ・・・(12)
     F-Rf2O-(Rf1O)-Rf2-C(O)OCF-Rf2-(ORf1-ORf2-F ・・・(14)
     ただし、
      Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
      mは、それぞれ独立に2~200の整数であり、
      (Rf1O)は、2種以上のRf1Oからなるものであってもよい。
    A method for producing a fluorinated ether compound, comprising fluorinating a compound represented by the following formula (12) with a fluorine gas to obtain a compound represented by the following formula (14):
    HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OCH 2 —R f2 — (OR f1 ) m —OR f2 —F (12)
    F—R f2 O— (R f1 O) m —R f2 —C (O) OCF 2 —R f2 — (OR f1 ) m —OR f2 —F (14)
    However,
    R f1 and R f2 are each independently a perfluoroalkylene group,
    m is each independently an integer of 2 to 200;
    (R f1 O) m may be composed of two or more types of R f1 O.
  12.  下式(14)で表される化合物とROHとでエステル交換して下式(5)で表される化合物を得ることを特徴とする含フッ素エーテル化合物の製造方法。
     F-Rf2O-(Rf1O)-Rf2-C(O)OCF-Rf2-(ORf1-ORf2-F ・・・(14)
     F-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(5)
     ただし、
      Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
      mは、それぞれ独立に2~200の整数であり、
      (Rf1O)は、2種以上のRf1Oからなるものであってもよく、
      Rは、1価の有機基である。
    A method for producing a fluorinated ether compound, comprising transesterifying a compound represented by the following formula (14) and R 2 OH to obtain a compound represented by the following formula (5):
    F—R f2 O— (R f1 O) m —R f2 —C (O) OCF 2 —R f2 — (OR f1 ) m —OR f2 —F (14)
    F—R f2 O— (R f1 O) m —R f2 —C (O) OR 2 (5)
    However,
    R f1 and R f2 are each independently a perfluoroalkylene group,
    m is each independently an integer of 2 to 200;
    (R f1 O) m may be composed of two or more types of R f1 O,
    R 2 is a monovalent organic group.
  13.  請求項12に記載の製造方法で得られた下式(5)で表される化合物を、還元剤を用いて水素還元することによって下式(6)で表される化合物を得ることを特徴とする含フッ素エーテル化合物の製造方法。
     F-Rf2O-(Rf1O)-Rf2-C(O)OR ・・・(5)
     F-Rf2O-(Rf1O)-Rf2-CHOH ・・・(6)
     ただし、
      Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
      mは、それぞれ独立に2~200の整数であり、
      (Rf1O)は、2種以上のRf1Oからなるものであってもよく、
      Rは、1価の有機基である。
    A compound represented by the following formula (6) is obtained by subjecting the compound represented by the following formula (5) obtained by the production method according to claim 12 to hydrogen reduction using a reducing agent. A method for producing a fluorine-containing ether compound.
    F—R f2 O— (R f1 O) m —R f2 —C (O) OR 2 (5)
    F—R f2 O— (R f1 O) m —R f2 —CH 2 OH (6)
    However,
    R f1 and R f2 are each independently a perfluoroalkylene group,
    m is each independently an integer of 2 to 200;
    (R f1 O) m may be composed of two or more types of R f1 O,
    R 2 is a monovalent organic group.
  14.  請求項13に記載の製造方法で得られた前記式(6)で表される化合物を下式(1)で表される化合物に反応させて、下式(1)で表される化合物、下式(12)で表される化合物および下式(13)で表される化合物を含む混合物を得ることを特徴とする含フッ素エーテル化合物製造方法。
     HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OH ・・・(1)
     HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OCH-Rf2-(ORf1-ORf2-F ・・・(12)
     F-Rf2O-(Rf1O)-Rf2-CHO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OCH-Rf2-(ORf1-ORf2-F ・・・(13)
     ただし、
      Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
      mは、それぞれ独立に2~200の整数であり、
      (Rf1O)は、2種以上のRf1Oからなるものであってもよい。
    A compound represented by the following formula (1) obtained by reacting the compound represented by the formula (6) obtained by the production method according to claim 13 with a compound represented by the following formula (1): A method for producing a fluorinated ether compound, comprising obtaining a mixture comprising a compound represented by the formula (12) and a compound represented by the following formula (13):
    HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OH (1)
    HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OCH 2 —R f2 — (OR f1 ) m —OR f2 —F (12)
    F—R f2 O— (R f1 O) m —R f2 —CH 2 O (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OCH 2 —R f2 — (OR f1 ) m- OR f2- F (13)
    However,
    R f1 and R f2 are each independently a perfluoroalkylene group,
    m is each independently an integer of 2 to 200;
    (R f1 O) m may be composed of two or more types of R f1 O.
  15.  下式(12)で表される含フッ素エーテル化合物または下式(14)で表される含フッ素エーテル化合物。
     HO(O)C-Rf2O-(Rf1O)-Rf2-C(O)OCH-Rf2-(ORf1-ORf2-F ・・・(12)
     F-Rf2O-(Rf1O)-Rf2-C(O)OCF-Rf2-(ORf1-ORf2-F ・・・(14)
     ただし、
      Rf1およびRf2は、それぞれ独立にペルフルオロアルキレン基であり、
      mは、それぞれ独立に2~200の整数であり、
      (Rf1O)は、2種以上のRf1Oからなるものであってもよい。
    A fluorine-containing ether compound represented by the following formula (12) or a fluorine-containing ether compound represented by the following formula (14).
    HO (O) C—R f2 O— (R f1 O) m —R f2 —C (O) OCH 2 —R f2 — (OR f1 ) m —OR f2 —F (12)
    F—R f2 O— (R f1 O) m —R f2 —C (O) OCF 2 —R f2 — (OR f1 ) m —OR f2 —F (14)
    However,
    R f1 and R f2 are each independently a perfluoroalkylene group,
    m is each independently an integer of 2 to 200;
    (R f1 O) m may be composed of two or more types of R f1 O.
PCT/JP2018/020030 2017-05-26 2018-05-24 Method for producing fluorine-containing ether compounds and fluorine-containing ether compounds WO2018216777A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019520313A JP6705557B2 (en) 2017-05-26 2018-05-24 Method for producing fluorinated ether compound and fluorinated ether compound
CN202310014193.5A CN116041689A (en) 2017-05-26 2018-05-24 Method for producing fluorine-containing ether compound, and fluorine-containing ether compound
CN201880033220.0A CN110650991B (en) 2017-05-26 2018-05-24 Method for producing fluorine-containing ether compound, and fluorine-containing ether compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-104614 2017-05-26
JP2017104614 2017-05-26

Publications (1)

Publication Number Publication Date
WO2018216777A1 true WO2018216777A1 (en) 2018-11-29

Family

ID=64396540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020030 WO2018216777A1 (en) 2017-05-26 2018-05-24 Method for producing fluorine-containing ether compounds and fluorine-containing ether compounds

Country Status (3)

Country Link
JP (2) JP6705557B2 (en)
CN (2) CN110650991B (en)
WO (1) WO2018216777A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024111491A1 (en) * 2022-11-21 2024-05-30 Agc株式会社 Production method for fluorine-containing compound and fluorine-containing compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847978A (en) * 1968-07-01 1974-11-12 Montedison Spa Perfluorinated linear polyethers having reactive terminal groups at both ends of the chain and process for the preparation thereof
US5132455A (en) * 1982-03-31 1992-07-21 Exfluor Research Corporation Method for synthesizing perfluorinated ether compounds via polyesters

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3319926B2 (en) * 1995-11-16 2002-09-03 株式会社日立製作所 Fluorine-containing compound, surface modifier, and magnetic disk drive using the same
WO2013121985A1 (en) * 2012-02-17 2013-08-22 旭硝子株式会社 Fluorine-containing ether compound, fluorine-containing ether composition and coating fluid, and substrate having surface-treated layer and method for producing said substrate
WO2015029839A1 (en) * 2013-08-26 2015-03-05 旭硝子株式会社 Method for producing fluorinated compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847978A (en) * 1968-07-01 1974-11-12 Montedison Spa Perfluorinated linear polyethers having reactive terminal groups at both ends of the chain and process for the preparation thereof
US5132455A (en) * 1982-03-31 1992-07-21 Exfluor Research Corporation Method for synthesizing perfluorinated ether compounds via polyesters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G. CAPORICCIO ET AL.: "Some physicochemical properties of perfluoropolyether surfactants", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 98, no. 1, 1984, pages 202 - 209, XP055563320 *

Also Published As

Publication number Publication date
JP2020117733A (en) 2020-08-06
CN110650991A (en) 2020-01-03
CN110650991B (en) 2023-01-17
JPWO2018216777A1 (en) 2020-01-09
JP6705557B2 (en) 2020-06-03
CN116041689A (en) 2023-05-02

Similar Documents

Publication Publication Date Title
CN111662445B (en) Fluorine-containing ether compound and method for producing same
JP7063335B2 (en) Fluorine-containing ether compound, fluorine-containing ether composition, coating liquid, article and its manufacturing method
CN109071797B (en) Fluorine-containing ether compound, coating liquid, article, and novel compound
CN111051383B (en) Fluorine-containing ether compound, composition, and article
JP6127438B2 (en) Fluorinated ether composition, substrate having surface layer formed from the composition, and method for producing the same
WO2014163004A1 (en) Fluorine-containing ether compound, fluorine-containing ether composition, and coating solution, as well as substrate having surface layer, and method for manufacturing same
WO2015087902A1 (en) Fluorine-containing ether composition, method for producing same, coating liquid, base material having surface treatment layer, and method for producing same
WO2018216630A1 (en) Fluorine-containing ether compound, fluorine-containing ether composition, coating liquid, article and method for producing same
WO2020166488A1 (en) Composition and article
JP7180593B2 (en) Method for producing fluorine-containing ether compound and fluorine-containing ether compound
JP2019044179A (en) Compound, composition, surface treatment agent, article and manufacturing method of compound
WO2019039083A1 (en) Fluorine-containing compound, composition, coating solution, and method for producing fluorine-containing compound
WO2018216777A1 (en) Method for producing fluorine-containing ether compounds and fluorine-containing ether compounds
JP2020172664A (en) Method for producing fluorine-containing ether compound
WO2018221520A1 (en) Fluorinated ether composition for vapor deposition, and article with vapor-deposited film and production method therefor
WO2021235319A1 (en) Fluorine-containing ether compound, fluorine-containing ether composition, coating solution, high oxygen solubility liquid, and article
WO2022059623A1 (en) Composition, substrate with surface layer, method for producing substrate with surface layer, compound, and method for producing compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019520313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806378

Country of ref document: EP

Kind code of ref document: A1