WO2024111491A1 - Production method for fluorine-containing compound and fluorine-containing compound - Google Patents

Production method for fluorine-containing compound and fluorine-containing compound Download PDF

Info

Publication number
WO2024111491A1
WO2024111491A1 PCT/JP2023/041156 JP2023041156W WO2024111491A1 WO 2024111491 A1 WO2024111491 A1 WO 2024111491A1 JP 2023041156 W JP2023041156 W JP 2023041156W WO 2024111491 A1 WO2024111491 A1 WO 2024111491A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
group
atom
atoms
compound
Prior art date
Application number
PCT/JP2023/041156
Other languages
French (fr)
Japanese (ja)
Inventor
貴史 川上
知広 林
貴行 酒井
元志 青山
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2024111491A1 publication Critical patent/WO2024111491A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B39/00Halogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/287Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/708Ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment

Definitions

  • This disclosure relates to a method for producing a fluorine-containing compound and the fluorine-containing compound.
  • Patent Document 1 discloses a method for fluorinating an organic compound having a fluorinatable atom by supplying fluorine gas to a liquid phase containing the organic compound and an organic solvent.
  • fluorine-containing compounds many of the fully fluorinated compounds in which all fluorinatable atoms are replaced with fluorine atoms have high heat resistance and are useful, for example, as heat transfer media.
  • a completely fluorinated fluorine-containing compound is to be produced by fluorinating a compound having a fluorinatable atom, it is generally necessary to make the fluorination reaction conditions severe, such as by lengthening the fluorination time, increasing the reaction temperature, increasing the reaction pressure, or, in the case of fluorination with fluorine gas, increasing the amount of fluorine gas.
  • the objective of one embodiment of the present invention is to provide a method for producing a fluorine-containing compound that can produce the target fluorine-containing compound in high yield, and to provide the fluorine-containing compound.
  • the present disclosure includes the following aspects.
  • a method for producing a fluorine-containing compound comprising fluorinating an organic compound having at least one fluorinatable atom in a liquid containing the organic compound, thereby obtaining a fluorinated product having an average number of the fluorinatable atoms per molecule of 0.01 or more.
  • ⁇ 3> The method for producing a fluorine-containing compound according to ⁇ 1> or ⁇ 2>, wherein the organic compound has a hydrogen atom as the fluorinatable atom.
  • ⁇ 4> The method for producing a fluorine-containing compound according to any one of ⁇ 1> to ⁇ 3>, wherein the organic compound is fluorinated by introducing a gas containing fluorine gas into the liquid.
  • ⁇ 5> The method for producing a fluorine-containing compound according to any one of ⁇ 1> to ⁇ 4>, wherein the liquid is retained in a reactor in which the fluorination is carried out for 200 hours or less.
  • ⁇ 6> The method for producing a fluorine-containing compound according to any one of ⁇ 1> to ⁇ 5>, wherein the liquid further contains a solvent.
  • ⁇ 7> The method for producing a fluorine-containing compound according to ⁇ 6>, wherein the mass of the solvent is 10 times or less the mass of the organic compound.
  • ⁇ 8> The method for producing a fluorinated compound according to any one of ⁇ 1> to ⁇ 7>, wherein the fluorination temperature is 5 to 50° C.
  • ⁇ 9> The method for producing a fluorine-containing compound according to any one of ⁇ 1> to ⁇ 8>, wherein the organic compound has a number average molecular weight of 800 to 28,000.
  • ⁇ 10> A fluorine-containing compound having an average number of hydrogen atoms per molecule of 0.01 to 5 and a number average molecular weight of 1,000 to 30,000.
  • ⁇ 11> The fluorine-containing compound according to ⁇ 10>, which contains a fluoropolyether chain.
  • the present disclosure provides a method for producing a fluorine-containing compound and a fluorine-containing compound that can produce the desired fluorine-containing compound in high yield.
  • a numerical range indicated using “to” means a range that includes the numerical values before and after “to” as the minimum and maximum values, respectively.
  • the upper or lower limit value described in a certain numerical range may be replaced with the upper or lower limit value of another numerical range described in the present disclosure.
  • the upper or lower limit value described in a certain numerical range may be replaced with a value shown in the examples.
  • combinations of two or more preferred aspects are more preferred aspects.
  • the amount of each component means the total amount of multiple substances, unless otherwise specified.
  • the compound represented by the formula (X) may be referred to as compound (X).
  • an organic compound having at least one fluorinable atom is fluorinated in a liquid containing the organic compound, thereby obtaining a fluorinated compound having an average number of the fluorinable atoms per molecule of 0.01 or more.
  • an organic compound having at least one fluorinable atom is also referred to as a "raw material compound,” and the average number of the fluorinable atoms per molecule is also referred to as the "remaining number of atoms.”
  • the target fluorine-containing compound can be obtained in high yield. Specifically, by making the target substance into a fluorinated substance having 0.01 or more residual atoms, the target substance can be easily obtained even under mild reaction conditions for fluorination, and therefore by making the reaction conditions mild, side reactions are suppressed and the yield of the target fluorine-containing compound is increased.
  • the viscosity of the liquid after fluorination can be kept low, so that even when removing impurities by filtration, for example, the filtrate is less likely to remain in a filtration device or the like, and the yield of the target fluorine-containing compound is increased.
  • the number of remaining atoms is the average number of "fluorinable atoms" that the fluorine-containing compound of interest has in one molecule.
  • the fluorine-containing compound obtained by fluorinating the raw material compound is a mixture in which 3 molecules have one fluorinable atom remaining and 7 molecules have all fluorinable atoms replaced with fluorine atoms in 10 molecules
  • the number of remaining atoms of the fluorine-containing compound is 0.3.
  • the 3 molecules with one fluorinable atom remaining may be fluorinable atoms remaining at different positions among the fluorinable atoms of the raw material compound, or may be fluorinable atoms remaining at the same position.
  • the fluorine-containing compound having a remaining atom number of 0.3 is not limited to the above-mentioned form, and may be a mixture in which, for example, among 10 molecules, there is one molecule having two remaining fluorinable atoms, one molecule having one remaining fluorinable atom, and seven molecules in which all fluorinable atoms have been replaced with fluorine atoms.
  • a fluorine-containing compound having a remaining number of atoms of 0.01 or more may be a mixture of molecules having different numbers of remaining fluorinable atoms.
  • a fluorine-containing compound having a remaining number of atoms of 0.01 or more and less than 1 is a mixture of molecules having one or more remaining fluorinable atoms and molecules in which all fluorinable atoms have been replaced with fluorine atoms.
  • the fluorine-containing compound has two or more types of fluorinable atoms, the number of remaining atoms is the total average number of the two or more types of fluorinable atoms.
  • the number of remaining atoms is calculated as follows. Specifically, for example, when the fluorinable atom is a hydrogen atom, the number of remaining atoms can be determined from the hydrogen atom peak area obtained from 1 H-NMR, and the number of remaining atoms can be determined from the ratio of the peak area of fluorine atoms bonded to a carbon atom to which a fluorinable atom is bonded, obtained from 19 F-NMR, to the peak area of fluorine atoms bonded to a carbon atom to which no fluorinable atom is bonded, obtained from 19 F-NMR.
  • the number of remaining atoms is preferably 0.01 or more and 5 or less.
  • a fluorine-containing compound having 5 or less remaining atoms has high heat resistance and is useful, for example, as a heat transfer medium, even if it is not a fully fluorinated compound, that is, a fluorine-containing compound having 0 remaining atoms.
  • the number of residual atoms is more preferably 0.01 to 4, further preferably 0.01 to 1, and particularly preferably 0.01 to 0.5.
  • Examples of the atom that can be fluorinated include a hydrogen atom, a bromine atom, an iodine atom, and a chlorine atom, with a hydrogen atom being preferred.
  • the average number of "hydrogen atoms" that the target fluorine-containing compound has in one molecule is preferably 0.01 or more, more preferably 0.01 to 5, even more preferably 0.01 to 4, particularly preferably 0.01 to 1, and extremely preferably 0.01 to 0.5.
  • the average number of hydrogen atoms that the target fluorine-containing compound has in one molecule is also referred to as the "residual H number.”
  • the number of remaining atoms and the number of remaining H can be controlled, for example, by adjusting the reaction conditions in the fluorination of the raw material compound.
  • the reaction conditions include the fluorination time, reaction temperature, reaction pressure, etc.
  • the amount and concentration of fluorine gas introduced into the liquid can also be included as reaction conditions.
  • the number of remaining atoms and the number of remaining H atoms may be controlled by adjusting the number of fluorinable atoms and hydrogen atoms per molecule in the raw material compound.
  • Examples of methods for fluorinating a raw material compound in a liquid include the ECF method, the cobalt fluorination method, and a method of reacting with fluorine.
  • the method of reacting with fluorine which can advantageously advance the fluorination of the raw material compound, is preferred.
  • a gas containing fluorine gas is introduced into a liquid containing the raw material compound.
  • a method of introducing a gas containing fluorine gas into a liquid containing a raw material compound will be described below, but the present invention is not limited to this.
  • the gas introduced into the liquid should contain at least fluorine gas.
  • the gas may consist of fluorine gas or may contain a gas other than fluorine gas.
  • gases other than fluorine gas include inert gases such as nitrogen gas, helium gas, neon gas, and argon gas, with nitrogen gas or helium gas being preferred, and nitrogen gas being preferred from the viewpoint of keeping costs low.
  • the content of fluorine gas in the entire gas is preferably 10% by volume or more, more preferably 15% by volume or more, even more preferably 20% by volume or more, and particularly preferably 25% by volume or more, from the viewpoint of easily controlling the number of remaining atoms of the target substance. Furthermore, the content of fluorine gas in the entire gas is preferably 60% by volume or less, more preferably 50% by volume or less, and even more preferably 40% by volume or less, from the viewpoint of easily controlling the number of remaining atoms of the target substance. From the above viewpoint, the content of fluorine gas in the entire gas is preferably 10 to 60% by volume, more preferably 15 to 50% by volume, even more preferably 20 to 40% by volume, and particularly preferably 25 to 40% by volume.
  • the temperature for fluorinating the raw material compound is, for example, in the range of ⁇ 60° C. or more and the boiling point of the raw material compound or less, and may be in the range of ⁇ 50 to 100° C. or may be in the range of ⁇ 20 to 50° C.
  • the temperature for fluorinating the raw material compound is preferably 5 to 50° C., more preferably 5 to 40° C., and even more preferably 10 to 30° C., from the viewpoint of setting the number of remaining atoms of the target product in the above range.
  • the pressure in the fluorination of the raw material compound is, for example, 0 to 2 MPa.
  • the fluorination of the raw material compound may be carried out in a batch manner or in a continuous manner.
  • the time for which a liquid containing the raw material compound and into which fluorine gas has been introduced remains in a reactor in which the raw material compound is fluorinated is, from the viewpoint of keeping the number of remaining atoms of the target product within the above-mentioned range, preferably 200 hours or less, more preferably 190 hours or less, and even more preferably 170 hours or less.
  • the time for which the liquid remains in the reactor is also referred to as the "residence time".
  • the residence time is preferably 0.3 hours or more, more preferably 0.6 hours or more, even more preferably 1.0 hour or more, particularly preferably 50 hours or more, extremely preferably 70 hours or more, and most preferably 100 hours or more.
  • the residence time is preferably 0.3 to 200 hours, more preferably 0.6 to 200 hours, even more preferably 1.0 to 200 hours, particularly preferably 50 to 200 hours, extremely preferably 70 to 200 hours, and most preferably 100 to 200 hours.
  • the residence time is calculated from the flow rate of the liquid and the volume of the reactor when the fluorination of the raw material compound is carried out in a continuous manner.
  • the residence time may be adjusted by the flow rate of the liquid and the length of the reactor in the flow direction when the fluorination of the raw material compound is carried out in a continuous manner.
  • the liquid contains at least a raw material compound that is an organic compound having at least one fluorinatable atom, and may further contain a solvent, other additives, and the like, as necessary.
  • the raw material compound is not particularly limited as long as it is an organic compound having at least one fluorinable atom.
  • the raw material compound may have only one fluorinable atom, or may have two or more fluorinable atoms.
  • the number of fluorinable atoms contained in one molecule of the raw material compound is, for example, 1 to 200, preferably 5 to 100, and more preferably 10 to 50.
  • the average number of "fluorinable atoms" contained in one molecule of the raw material compound is, for example, 1 to 200, preferably 5 to 100, and more preferably 10 to 50.
  • the fluorinable atom examples include a hydrogen atom, a bromine atom, an iodine atom, a chlorine atom, etc., and among these, a hydrogen atom is preferable.
  • the raw material compound preferably has a hydrogen atom as a fluorinable atom.
  • the number of hydrogen atoms contained in one molecule of the raw material compound is, for example, 1 to 200, preferably 5 to 100, and more preferably 10 to 50. In other words, the average number of hydrogen atoms contained in one molecule of the raw material compound is, for example, 1 to 200, preferably 5 to 100, and more preferably 10 to 50.
  • the number average molecular weight of the raw material compound is, for example, 800 to 100,000. From the viewpoint of easily controlling the number of residual atoms and of suppressing side reactions to obtain a high yield, it is preferably 800 to 28,000, more preferably 800 to 20,000, even more preferably 800 to 10,000, particularly preferably 1,000 to 10,000, extremely preferably 1,000 to 8,000, and most preferably 2,000 to 6,000.
  • the number average molecular weight of the raw material compound is a value calculated from the molecular structure identified by 1 H-NMR and 19 F-NMR.
  • the raw material compound is preferably a compound having a divalent or higher functional group containing at least one of an oxygen atom and a sulfur atom.
  • a divalent or higher functional group containing at least one of an oxygen atom and a sulfur atom is also referred to as a "specific functional group.”
  • the specific functional group is a divalent or higher functional group containing at least one of an oxygen atom and a sulfur atom, preferably a divalent functional group containing at least one of an oxygen atom and a sulfur atom, and more preferably a divalent functional group containing an oxygen atom.
  • Examples of the specific functional group include an ester bond, an ether bond, an amide bond, a thioether bond, a thioester bond, a sulfonyl group, etc.
  • Examples of the specific functional group include a carbonyl group other than an ester bond and an amide bond.
  • the raw material compound is preferably a compound having, as a specific functional group, at least one selected from the group consisting of an ester bond, an ether bond, an amide bond, a thioether bond, a thioester bond, and a sulfonyl group, more preferably a compound having at least one of an ester bond and an ether bond, further preferably a compound having an ester bond, and particularly preferably a compound having both an ester bond and an ether bond.
  • the raw material compound may be a compound having an ester bond as a specific functional group, and a fluorinable atom bonded to the carbon atom bonded to the carbonyl group of the ester bond.
  • the raw material compound may also be a compound having an ester bond and an ether bond as specific functional groups, and a fluorinable atom bonded to the carbon atom bonded to the carbonyl group of the ester bond.
  • Examples of the raw material compound include a compound represented by the following formula (1) and a compound represented by the following formula (2).
  • R A1 -O-(C O)-R B1 ...
  • R A1 , R B1 , R B2 , and R B3 each independently represent a monovalent saturated hydrocarbon group, a halogeno monovalent saturated hydrocarbon group, a heteroatom-containing monovalent saturated hydrocarbon group, or a halogeno (heteroatom-containing monovalent saturated hydrocarbon) group;
  • R A2 is a divalent saturated hydrocarbon group, a halogeno divalent saturated hydrocarbon group, a heteroatom-containing divalent saturated hydrocarbon group, or a halogeno (heteroatom-containing divalent saturated hydrocarbon) group.
  • a "monovalent saturated hydrocarbon group” may be any of a linear alkyl group, a branched alkyl group, and a cycloalkyl group.
  • a “divalent saturated hydrocarbon group” may be any of a linear alkylene group, a branched alkylene group, and a cycloalkylene group.
  • the linear alkyl group, the branched alkyl group, the linear alkylene group, and the branched alkylene group may contain an alicyclic structure.
  • halogeno means that one or more hydrogen atoms present in the group are replaced with at least one halogen atom selected from a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Hydrogen atoms may or may not be present in the group.
  • halogeno monovalent saturated hydrocarbon group refers to a group in which one or more hydrogen atoms present in a monovalent saturated hydrocarbon group have been replaced by a halogen atom.
  • halogeno divalent saturated hydrocarbon group refers to a group in which one or more hydrogen atoms present in a divalent saturated hydrocarbon group have been replaced by a halogen atom.
  • heteroatom means an atom other than a carbon atom or a hydrogen atom, and examples include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • a heteroatom-containing monovalent saturated hydrocarbon group refers to a group in which a divalent heteroatom or a divalent group containing a heteroatom is contained in a monovalent saturated hydrocarbon group.
  • a “heteroatom-containing divalent saturated hydrocarbon group” refers to a group in which a divalent heteroatom or a divalent group containing a heteroatom is contained in a divalent saturated hydrocarbon group.
  • divalent heteroatoms include -O- and -S-.
  • halogeno (heteroatom-containing monovalent saturated hydrocarbon) group refers to a group in which one or more hydrogen atoms in the heteroatom-containing monovalent saturated hydrocarbon group have been replaced with a halogen atom.
  • halogeno (heteroatom-containing divalent saturated hydrocarbon) group refers to a group in which one or more hydrogen atoms in the heteroatom-containing divalent saturated hydrocarbon group have been replaced with a halogen atom.
  • R A1 and R B1 contains a hydrogen atom.
  • at least one selected from the group consisting of R A2 , R B2 , and R B3 contains a hydrogen atom.
  • R A1 represents a monovalent saturated hydrocarbon group, a halogeno monovalent saturated hydrocarbon group, a heteroatom-containing monovalent saturated hydrocarbon group, or a halogeno (heteroatom-containing monovalent saturated hydrocarbon) group.
  • Examples of the monovalent saturated hydrocarbon group represented by R A1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a 2-ethylhexyl group, and a cyclohexyl group.
  • the halogeno monovalent saturated hydrocarbon group represented by R A1 is preferably a halogenoalkyl group.
  • the halogen atom contained in the halogeno monovalent saturated hydrocarbon group is preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a fluorine atom.
  • the heteroatom-containing monovalent saturated hydrocarbon group represented by R A1 is preferably a monovalent saturated hydrocarbon group containing an ethereal oxygen atom (that is, --O--), and more preferably an alkyl group containing an ethereal oxygen atom.
  • the halogeno (heteroatom-containing monovalent saturated hydrocarbon) group represented by R A1 is preferably a halogeno (heteroatom-containing alkyl group).
  • the halogen atom contained in the halogeno (heteroatom-containing monovalent saturated hydrocarbon) group is preferably a fluorine atom, a chlorine atom, or a bromine atom.
  • the halogeno (heteroatom-containing monovalent saturated hydrocarbon) group is preferably a halogeno monovalent saturated hydrocarbon group containing an ethereal oxygen atom, and more preferably a halogenoalkyl group containing an ethereal oxygen atom.
  • the carbon number of R A1 is preferably 1 to 200, and more preferably 3 to 100, from the viewpoint of excellent solubility in a solvent described later.
  • R A1 is preferably represented by the following formula (A1):
  • R A1 preferably further has an ether bond, and more preferably includes at least one selected from the group consisting of a polyether chain and a fluoropolyether chain.
  • R 11 is an alkyl group which may have a fluorine atom
  • R 12 is each independently an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom
  • R 13 is an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom
  • m1 is an integer from 0 to 500.
  • examples of R 11 include an alkyl group and a fluoroalkyl group.
  • the carbon number of R 11 is preferably 1 to 100, more preferably 1 to 50, even more preferably 1 to 10, and particularly preferably 1 to 6, from the viewpoint of excellent solubility in a solvent described later.
  • the alkyl group represented by R 11 may be a linear alkyl group, a branched alkyl group, or an alkyl group having a ring structure.
  • the fluoroalkyl group represented by R 11 may be a straight-chain fluoroalkyl group, a branched-chain fluoroalkyl group, or a fluoroalkyl group having a ring structure.
  • R 11 is preferably an alkyl group, more preferably a linear alkyl group, and even more preferably a linear alkyl group having 1 to 6 carbon atoms.
  • -(R 12 O) m1 - is preferably represented by the following formula (A2). -[(R f1 O) k1 (R f2 O) k2 (R f3 O) k3 (R f4 O) k4 (R f5 O) k5 (R f6 O) k6 ]- ...
  • R f1 is a fluoroalkylene group having 1 carbon atom
  • R f2 is a fluoroalkylene group having 2 carbon atoms
  • R f3 is a fluoroalkylene group having 3 carbon atoms
  • R f4 is a fluoroalkylene group having 4 carbon atoms
  • R f5 is a fluoroalkylene group having 5 carbon atoms
  • R f6 is a fluoroalkylene group having 6 carbon atoms.
  • k1, k2, k3, k4, k5, and k6 each independently represent an integer of 0 or 1 or more
  • k1+k2+k3+k4+k5+k6 is an integer of 0 to 500.
  • k1+k2+k3+k4+k5+k6 is preferably an integer from 1 to 500, more preferably an integer from 1 to 300, even more preferably an integer from 5 to 200, and particularly preferably an integer from 10 to 150.
  • the bonding order of (R f1 O) to (R f6 O) in formula (A2) is arbitrary.
  • k1 to k6 in formula (A2) respectively represent the number of (R f1 O) to (R f6 O), and do not represent the arrangement.
  • (R f5 O) k5 represents that the number of (R f5 O) is k5, and does not represent a block arrangement structure of (R f5 O) k5 .
  • the order of (R f1 O) to (R f6 O) does not represent the bonding order of each unit.
  • the fluoroalkylene group may be a linear fluoroalkylene group, a branched fluoroalkylene group, or a fluoroalkylene group having a ring structure.
  • R f1 include --CF 2 -- and --CHF--.
  • R f2 examples include -CF 2 CF 2 -, -CF 2 CHF-, -CHFCF 2 -, -CHFCHF-, -CH 2 CF 2 -, and -CH 2 CHF-.
  • R f3 include -CF 2 CF 2 CF 2 -, -CF 2 CHFCF 2 -, -CF 2 CH 2 CF 2 -, -CHFCF 2 CF 2 -, -CHFCHFCF 2 -, -CHFCHFCHF-, -CHFCH 2 CF 2 -, -CH 2 CF 2 CF 2 -, -CH 2 CHFCF 2 -, -CH 2 CH 2 CF 2 -, -CH 2 CF 2 CHF-, -CH 2 CHFCHF-, -CH 2 CH 2 CHF- , -CF (CF 3 )-CF 2 -, -CF(CHF 2 )-CF 2 -, -CF(CH 2 F)-CF 2 -, -CF( CH3 ) -CF2- , -CF(CF3)-CHF-, -CF( CHF2 )-CHF-, -CF( CH2F )-CHF- , -CF(CF3)
  • R f4 include -CF 2 CF 2 CF 2 - , -CF 2 CF 2 CHF-, -CF 2 CF 2 CF 2 CH 2 - , -CF 2 CHFCF 2 CF 2 -, -CHFCHFCF 2 CF 2 -, -CH 2 CHFCF 2 CF 2 -, -CF 2 CH 2 CF 2 CF 2 -, -CHFCH 2 CF 2 CF 2 -, -CH 2 CH 2 CF 2 CF 2 -, -CHFCF 2 CHFCF 2 -, -CH 2 CF 2 CHFCF 2 -, -CF 2 CHFCFCF 2 - , and -CF 2 CHFCFCF 2 -, -CHFCHFCHFCF 2 -, -CH 2 CHFCHFCF 2 -, -CF 2 CH 2 CHFCF 2 -, -CHFCH 2 CHFCF 2 -, -CH 2 CH 2 CHFCF 2 -, -CH 2 CHFC
  • R f5 examples include -CF 2 CF 2 CF 2 CF 2 CF 2 -, -CHFCF 2 CF 2 CF 2 -, -CH 2 CHFCF 2 CF 2 CF 2 -, -CF 2 CHFCF 2 CF 2 CF 2 -, -CHFCHFCF 2 CF 2 CF 2 -, -CF 2 CH 2 CF 2 CF 2 -, -CHFCH 2 CF 2 CF 2 CF 2 -, -CH 2 CH 2 CF 2 CF 2 CF 2 -, -CF 2 CF 2 CHFCF 2 CF 2 -, -CHFCF 2 CHFCF 2 Examples include -CF 2 -, -CH 2 CF 2 CHFCF 2 CF 2 -, -CH 2 CF 2 CF 2 CF 2 CH 2 -, and -cycloC 5 F 8 -.
  • R f6 include -CF 2 CF 2 CF 2 CF 2 CF 2 -, -CF 2 CF 2 CHFCHFCF 2 CF 2 -, -CHFCF 2 CF 2 CF 2 CF 2 CF 2 -, -CHFCHFCHFCHFCHFCHF-, -CHFCF 2 CF 2 CF 2 CH 2 - , -CH 2 CF 2 CF 2 CF 2 CH 2 - , and -cycloC 6 F 10 -.
  • -cycloC 4 F 6 - means a perfluorocyclobutanediyl group, a specific example of which is a perfluorocyclobutane-1,2-diyl group
  • -cycloC 5 F 8 - means a perfluorocyclopentanediyl group, a specific example of which is a perfluorocyclopentane-1,3-diyl group
  • -cycloC 6 F 10 - means a perfluorocyclohexanediyl group, a specific example of which is a perfluorocyclohexane-1,4-diyl group.
  • —(R 12 O) m1 — preferably contains at least one selected from the group consisting of structures represented by the following formulas (F1) to (F3), and more preferably contains a structure represented by formula (F2). -(R f1 O) k1 -(R f2 O) k2 - ... (F1) -(R f2 O) k2 -(R f4 O) k4 - ... (F2) -(R f3 O) k3 - ... (F3)
  • the symbols in formulas (F1) to (F3) are the same as those in formula (A2) above.
  • the bonding order of (R f1 O) and (R f2 O), and (R f2 O) and (R f4 O) are each arbitrary.
  • (R f1 O) and (R f2 O) may be arranged alternately, (R f1 O) and (R f2 O) may be arranged in blocks, or may be arranged randomly.
  • k1 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
  • k2 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
  • k2 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
  • k4 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
  • k3 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
  • examples of R 13 include the same as R f1 to R f6 above.
  • R 13 is preferably a fluoroalkylene group having 1 to 4 carbon atoms.
  • R A1 include the following structures. * represents a bonding site with --O--, n1 represents an integer of 0 to 60, and n2 represents an integer of 0 to 500. n1 is, for example, 13, and n2 is, for example, 7.
  • R B1 is a monovalent saturated hydrocarbon group, a halogeno monovalent saturated hydrocarbon group, a heteroatom-containing monovalent saturated hydrocarbon group, or a halogeno (heteroatom-containing monovalent saturated hydrocarbon) group.
  • Examples of the monovalent saturated hydrocarbon group represented by R B1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a 2-ethylhexyl group, and a cyclohexyl group.
  • the halogeno monovalent saturated hydrocarbon group represented by R B1 is preferably a halogenoalkyl group.
  • the halogen atom contained in the halogeno monovalent saturated hydrocarbon group is preferably a fluorine atom, a chlorine atom, or a bromine atom.
  • the heteroatom-containing monovalent saturated hydrocarbon group represented by R is preferably a monovalent saturated hydrocarbon group containing an ethereal oxygen atom (i.e., -O-), and more preferably an alkyl group containing an ethereal oxygen atom.
  • R preferably further has an ether bond.
  • the halogeno (heteroatom-containing monovalent saturated hydrocarbon) group represented by R B1 is preferably a halogeno (heteroatom-containing alkyl group).
  • the halogen atom contained in the halogeno (heteroatom-containing monovalent saturated hydrocarbon) group is preferably a fluorine atom, a chlorine atom, or a bromine atom.
  • the halogeno (heteroatom-containing monovalent saturated hydrocarbon) group is preferably a halogeno monovalent saturated hydrocarbon group containing an ethereal oxygen atom, and more preferably a halogenoalkyl group containing an ethereal oxygen atom.
  • the carbon number of R B1 is preferably 1 to 100, more preferably 2 to 50, and even more preferably 3 to 20, from the viewpoint of excellent solubility in a solvent described later.
  • R B1 preferably contains at least one fluorine atom and preferably does not contain a hydrogen atom.
  • R B1 is preferably represented by the following formula (B1). R21O- ( R22O ) m2 - R23 -... (B1)
  • R 21 is an alkyl group which may have a fluorine atom
  • R 22 is each independently an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom
  • R 23 is an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom
  • m2 is an integer of 0 to 20.
  • examples of R 21 include an alkyl group and a fluoroalkyl group.
  • the carbon number of R 21 is preferably 1 to 50, more preferably 1 to 10, and even more preferably 1 to 6, from the viewpoint of excellent solubility in a solvent described later.
  • the alkyl group represented by R21 may be a linear alkyl group, a branched alkyl group, or an alkyl group having a ring structure.
  • the fluoroalkyl group represented by R 21 may be a straight-chain fluoroalkyl group, a branched-chain fluoroalkyl group, or a fluoroalkyl group having a ring structure.
  • R 21 is preferably a fluoroalkyl group, more preferably a linear fluoroalkyl group, still more preferably a linear fluoroalkyl group having 1 to 6 carbon atoms, and particularly preferably a linear perfluoroalkyl group having 1 to 6 carbon atoms.
  • m2 is preferably 0 to 15, more preferably 0 to 10, even more preferably 0 to 4, and particularly preferably 0 to 2.
  • examples of R 23 include the same as R f1 to R f6 above.
  • R 23 is preferably a fluoroalkylene group having 1 to 3 carbon atoms, and more preferably a perfluoroalkylene group having 1 to 3 carbon atoms.
  • R A2 is a divalent saturated hydrocarbon group, a halogeno divalent saturated hydrocarbon group, a heteroatom-containing divalent saturated hydrocarbon group, or a halogeno (heteroatom-containing divalent saturated hydrocarbon) group.
  • Examples of the divalent saturated hydrocarbon group, halogeno divalent saturated hydrocarbon group, heteroatom-containing divalent saturated hydrocarbon group, or halogeno (heteroatom-containing divalent saturated hydrocarbon) group represented by R include groups in which one hydrogen atom or one halogen atom has been removed from the monovalent saturated hydrocarbon group, halogeno monovalent saturated hydrocarbon group, heteroatom-containing monovalent saturated hydrocarbon group, or halogeno (heteroatom-containing monovalent saturated hydrocarbon) group represented by R in formula ( 1).
  • the carbon number of R A2 is preferably 1 to 200, and more preferably 3 to 100, from the viewpoint of excellent solubility in a solvent described later.
  • R A2 is preferably represented by the following formula (A5):
  • R A2 preferably further has an ether bond, and more preferably includes at least one selected from the group consisting of a polyether chain and a fluoropolyether chain.
  • R 31 and R 33 each independently represent an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom
  • R 32 each independently represent an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom
  • m5 is an integer of 0 to 500.
  • R 31 and R 33 each independently have the same meaning as R 13 in formula (A1).
  • examples of -(R 32 O) m5 - include the same as -(R 12 O) m1 - in formula (A1).
  • R A2 include the following structures: * represents a bonding site with —O—, and n2 represents an integer of 0 to 500.
  • R B2 and R B3 each independently represent a monovalent saturated hydrocarbon group, a halogeno monovalent saturated hydrocarbon group, a heteroatom-containing monovalent saturated hydrocarbon group, or a halogeno (heteroatom-containing monovalent saturated hydrocarbon) group.
  • Examples of the monovalent saturated hydrocarbon group, halogeno monovalent saturated hydrocarbon group, heteroatom-containing monovalent saturated hydrocarbon group, or halogeno (heteroatom-containing monovalent saturated hydrocarbon) group represented by R or R include groups similar to the monovalent saturated hydrocarbon group, halogeno monovalent saturated hydrocarbon group, heteroatom-containing monovalent saturated hydrocarbon group, or halogeno (heteroatom-containing monovalent saturated hydrocarbon) group represented by R in formula (1).
  • An example of a raw material compound is the following compound (T1).
  • the content of the raw material compound contained in the liquid is preferably 10 to 100% by mass, more preferably 10 to 70% by mass, even more preferably 15 to 70% by mass, and particularly preferably 20 to 50% by mass, based on the total mass of the liquid.
  • the liquid may contain a solvent as necessary.
  • the solvent is not particularly limited as long as it can dissolve the raw material compound.
  • the solvent preferably contains at least one selected from the group consisting of a chlorine-containing solvent and a fluorine-containing solvent other than a chlorine-containing solvent, and more preferably contains a chlorine-containing solvent.
  • the chlorine-containing solvent is a solvent that contains chlorine atoms.
  • the chlorine-containing solvent preferably contains fluorine atoms in addition to chlorine atoms.
  • chlorine-containing solvents examples include CClF 2 CClFCF 2 OCF 2 CClF 2 (CFE-419), CH 2 ClCHClCH 2 OCF 2 CHFCl (HCFE-473), CF 2 ClCFClCHFOCF 2 CF 2 Cl (HCFE-428a, b), CFHClCFClCF 2 OCF 2 CF 2 Cl (HCFE-428c, d), CF 2 ClCHClCF 2 OCF 2 CF 2 Cl (HCFE-428e), 1,2,3,4-tetrachloroperfluorobutane (R-113), CF 2 Cl-CFCl-CFCl-O-CF 2 -CF 2 Cl (CFE-418), CClHFCClFCHFOCF 2 CClF 2 (HCFE-437a, b), CClF 2 CClHCHFOCF 2 CClF 2 (HCFE-437c), CClHFCClFCH 2 OCF 2 CClF 2 (HCFE-446a), CF
  • fluorine-containing solvents other than chlorine-containing solvents include perfluoroalkanes (FC-72, etc.), perfluoroethers (FC-75, FC-77, etc.), perfluoropolyethers (trade names: Krytox, Fomblin, Galden, Demnum, etc.), inert fluids (trade name: Fluorinert), and perfluorocarboxylic acid fluorides.
  • the boiling point of the solvent is preferably from 10 to 500°C, more preferably from 30 to 250°C, and even more preferably from 50 to 150°C, from the viewpoint of improving the yield of the fluorine-containing compound.
  • the solvent preferably has 4 or more carbon atoms, more preferably 4 to 1,000, even more preferably 4 to 500, particularly preferably 4 to 100, and most preferably 4 to 50, from the viewpoint of improving the yield of the fluorine-containing compound.
  • the molecular weight of the solvent is preferably 200 or more, more preferably 200 to 50,000, even more preferably 200 to 25,000, particularly preferably 200 to 10,000, and most preferably 200 to 1,000.
  • the molecular weight When the molecular weight has a distribution, the molecular weight represents the mass average molecular weight (Mw). Mw is measured in terms of polystyrene by gel permeation chromatography (GPC) measurement using tetrahydrofuran (THF) as an eluent.
  • GPC gel permeation chromatography
  • the liquid contains a solvent, and the mass of the solvent is preferably 10 times or less, more preferably 5 times or less, and even more preferably 3 times or less, the mass of the raw material compound.
  • the viscosity of the liquid after fluorination can be kept low, so the amount of solvent can be reduced, and even when impurities are removed by filtration, filtrate is less likely to remain in the filtration device, etc., and the yield of the target fluorine-containing compound is increased.
  • the liquid may contain other additives as necessary, such as an auxiliary agent that promotes the fluorination of the raw material compound.
  • the auxiliary include a C-H bond-containing compound and a carbon-carbon double bond-containing compound other than the raw material compound.
  • the C-H bond-containing compound include benzene and toluene.
  • the carbon-carbon double bond-containing compound include hexafluoropropylene and hexafluorobutadiene.
  • the auxiliary is preferably an aromatic hydrocarbon such as benzene or toluene.
  • the target fluorine-containing compound since the number of remaining atoms of the target fluorine-containing compound is 0.01 or more, the target fluorine-containing compound can be obtained in high yield by direct fluorination with fluorine gas in the liquid even if the liquid does not contain an auxiliary. Therefore, the liquid does not need to contain the above-mentioned auxiliary.
  • the fluorine-containing compound obtained by fluorinating a raw material compound is a compound in which at least one fluorinatable atom of the raw material compound is replaced with a fluorine atom and the number of remaining atoms is 0.01 or more.
  • a fluorine-containing compound having 0.01 or more residual atoms may be a mixture of molecules having different numbers of fluorinable atoms.
  • a fluorine-containing compound having 0.01 or more and less than 1 residual atom is a mixture of molecules having one or more fluorinable atoms and molecules having no fluorinable atoms.
  • the plurality of molecules may have the fluorinable atoms at different positions or at the same position.
  • the fluorine-containing compound obtained by fluorinating the raw material compound represented by the following formula (1-1) may be a mixture of molecules represented by the following formulas (2-1) to (2-4).
  • m5 and m6 represent integers from 0 to 13.
  • the fluorine-containing compound is preferably a compound in which the average number of hydrogen atoms among fluorinable atoms per molecule is 0.01 to 5 and the number average molecular weight is 1,000 to 30,000.
  • the average number of hydrogen atoms per molecule in the fluorine-containing compound is more preferably from 0.01 to 4, further preferably from 0.01 to 1, and particularly preferably from 0.01 to 0.5.
  • the number average molecular weight of the fluorine-containing compound is, for example, 800 to 101,000, and from the viewpoint of excellent solubility in a solvent, it is preferably 800 to 29,000, more preferably 800 to 21,000, even more preferably 800 to 11,000, particularly preferably 1,000 to 11,000, extremely preferably 1,000 to 9,000, and most preferably 2,000 to 7,000.
  • the number average molecular weight of the fluorine-containing compound is the number average value of the molecular weight of each molecule calculated from the molecular structure specified by 1 H-NMR and 19 F-NMR.
  • the fluorine-containing compound is preferably a compound having a specific functional group which is a divalent or higher functional group containing at least one of an oxygen atom and a sulfur atom.
  • the details and preferred form of the specific functional group are the same as those of the specific functional group in the above-mentioned starting compound.
  • the fluorine-containing compound is preferably a mixture of molecules having different numbers of hydrogen atoms among compounds represented by formula (6) below.
  • the fluorine-containing compound is preferably a mixture of molecules having different numbers of hydrogen atoms among compounds represented by formula (7) below.
  • R AF1 , R BF1 , R AF2 , R BF2 , and R BF3 are groups corresponding to R A1 , R B1 , R A2 , R B2 , and R B3 , respectively; when R A1 , R B1 , R A2 , R B2 and R B3 are each independently a group not containing a hydrogen atom, R AF1 , R BF1 , R AF2 , R BF2 and R BF3 are the same group as R A1 , R B1 , R A2 , R B2 and R B3 ; When R A1 , R B1 , R A2 , R B2 , and R B3 are each independently a group containing a hydrogen atom, R AF1 , R BF1 , R AF2 , R BF2 , and R BF3 are groups in which at least a portion of the hydrogen atoms present in R A1
  • the fluorine-containing compound may be a mixture of a molecule having no hydrogen atoms and a molecule having one or more hydrogen atoms, among the compounds represented by formula (6) or the compounds represented by formula (7). That is, the compound represented by formula (6) may be a mixture of a molecule in which all hydrogen atoms in at least one of R A1 and R B1 are replaced with fluorine atoms and a molecule in which only a portion of hydrogen atoms in at least one of R A1 and R B1 are replaced with fluorine atoms.
  • the compound represented by formula (7) may be a mixture of a molecule in which all hydrogen atoms in at least one of R A2 , R B2 , and R B3 are replaced with fluorine atoms and a molecule in which only a portion of hydrogen atoms in at least one of R A2 , R B2 , and R B3 are replaced with fluorine atoms.
  • R AF1 is a group corresponding to R A1 .
  • R contains a hydrogen atom
  • R is the same group as R or a group in which at least a part of the hydrogen atoms in R is substituted with a fluorine atom.
  • R does not contain a hydrogen atom
  • R is the same group as R.
  • R AF1 is preferably represented by the following formula (A3).
  • A3 R14O- ( R15O ) m3 - R16- ... (A3)
  • R 14 is a fluoroalkyl group
  • each R 15 is independently a fluoroalkylene group having 1 to 6 carbon atoms
  • R 16 is a fluoroalkylene group having 1 to 6 carbon atoms
  • m3 is an integer of 0 to 500.
  • R 14 corresponds to R 11 in formula (A1).
  • R 14 is the same group as R 11 or a group in which at least a part of the hydrogen atoms contained in R 11 is substituted with a fluorine atom.
  • R 14 is the same as R 11 .
  • -(R 15 O) m3 - corresponds to -(R 12 O) m1 - in formula (A1).
  • R 15 is the same group as R 12 or a group in which at least a part of the hydrogen atoms contained in R 12 are substituted with fluorine atoms.
  • R 15 is the same as R 12 .
  • —(R 15 O) m3 — is preferably represented by the following formula (A4). -[(R ff1 O) k7 (R ff2 O) k8 (R ff3 O) k9 (R ff4 O) k10 (R ff5 O) k11 (R ff6 O) k12 ]- ...
  • R ff1 is a fluoroalkylene group having 1 carbon atom
  • R ff2 is a fluoroalkylene group having 2 carbon atoms
  • R ff3 is a fluoroalkylene group having 3 carbon atoms
  • R ff4 is a fluoroalkylene group having 4 carbon atoms
  • R ff5 is a fluoroalkylene group having 5 carbon atoms
  • R ff6 is a fluoroalkylene group having 6 carbon atoms.
  • k7, k8, k9, k10, k11, and k12 each independently represent an integer of 0 or 1 or more, and k7+k8+k9+k10+k11+k12 is an integer of 0 to 500.
  • R ff1 to R ff6 correspond to R f1 to R f6 in formula (A2).
  • R ff1 when R f1 contains a hydrogen atom, R ff1 is the same group as R f1 or a group in which at least a part of the hydrogen atoms contained in R f1 are substituted with fluorine atoms.
  • R ff1 does not contain a hydrogen atom, R ff1 is the same as R f1 .
  • R ff2 to R ff6 The same applies to R ff2 to R ff6 .
  • k7+k8+k9+k10+k11+k12 is preferably an integer from 1 to 500, more preferably an integer from 1 to 300, even more preferably an integer from 5 to 200, and particularly preferably an integer from 10 to 150.
  • —(R 15 O) m3 — preferably contains at least one selected from the group consisting of structures represented by the following formulae (G1) to (G3), and more preferably contains a structure represented by formula (G2). -(R ff1 O) k7 -(R ff2 O) k8 - ... (G1) -(R ff2 O) k8 -(R ff4 O) k10 - ... (G2) -(R ff3 O) k9 - ... (G3)
  • the symbols in formulas (G1) to (G3) are the same as those in formula (A4) above.
  • the bonding order of ( Rff1O ) and ( Rff2O ), and ( Rff2O ) and ( Rff4O ) are each arbitrary.
  • ( Rff1O ) and ( Rff2O ) may be arranged alternately, ( Rff1O ) and ( Rff2O ) may be arranged in blocks, or may be arranged randomly.
  • k7 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
  • k8 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
  • k8 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
  • k10 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
  • k9 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
  • R 16 corresponds to R 13 in formula (A1).
  • R 16 is the same group as R 13 or a group in which at least a part of the hydrogen atoms contained in R 13 is substituted with a fluorine atom.
  • R 16 is the same as R 13 .
  • R 16 examples include the same as R ff1 to R ff6 above.
  • R 16 is preferably a fluoroalkylene group having 1 to 3 carbon atoms.
  • m3 corresponds to m1 in formula (A1). m3 is the same as m1.
  • R AF1 include the following structures and structures in which some of the fluorine atoms in the following structures have been replaced with hydrogen atoms.
  • * represents a bonding site with -O-
  • n1 represents an integer of 0 to 60
  • n2 represents an integer of 0 to 500.
  • n1 is, for example, 13, and n2 is, for example, 7.
  • R BF1 is a group corresponding to R B1 .
  • R contains a hydrogen atom
  • R is the same group as R or a group in which at least a part of the hydrogen atoms in R is substituted with a fluorine atom.
  • R does not contain a hydrogen atom
  • R is the same group as R.
  • R BF1 is preferably represented by the following formula (B2).
  • R 24 O-(R 25 O) m4 -R 26 - ... (B2)
  • R 24 is a fluoroalkyl group
  • R 25 is each independently a fluoroalkylene group having 1 to 6 carbon atoms
  • R 26 is a fluoroalkylene group having 1 to 6 carbon atoms
  • m4 is an integer of 0 to 20.
  • R 24 corresponds to R 21 in formula (B1).
  • R 24 is the same group as R 21 or a group in which at least a part of the hydrogen atoms contained in R 21 is substituted with a fluorine atom.
  • R 24 is the same as R 21 .
  • -(R 25 O) m4 - corresponds to -(R 22 O) m2 - in formula (B1).
  • R 25 is the same group as R 22 or a group in which at least a part of the hydrogen atoms contained in R 22 are substituted with fluorine atoms.
  • R 25 is the same as R 22 .
  • R 26 corresponds to R 23 in formula (B1).
  • R 26 is the same group as R 23 or a group in which at least a part of the hydrogen atoms contained in R 23 is substituted with a fluorine atom.
  • R 26 is the same as R 23 .
  • m4 corresponds to m2 in formula (B1). m4 is the same as m2.
  • R AF2 is a group corresponding to R A2 .
  • R contains a hydrogen atom
  • R is the same group as R or a group in which at least a part of the hydrogen atoms in R is substituted with a fluorine atom.
  • R does not contain a hydrogen atom, R is the same group as R.
  • R AF2 is preferably represented by the following formula (A6): That is, R AF2 preferably further has an ether bond. -R34O- ( R35O ) m6 - R36- ... (A6)
  • R 34 and R 36 each independently represent a fluoroalkylene group having 1 to 6 carbon atoms
  • R 35 each independently represent a fluoroalkylene group having 1 to 6 carbon atoms
  • m6 is an integer of 0 to 500.
  • R 34 and R 36 correspond to R 31 and R 33 in formula (A5), respectively.
  • R 31 contains a hydrogen atom
  • R 34 is the same group as R 31 or a group in which at least a part of the hydrogen atoms contained in R 31 are substituted with fluorine atoms.
  • R 31 does not contain a hydrogen atom
  • R 34 is the same as R 31.
  • R 33 contains a hydrogen atom
  • R 36 is the same group as R 33 or a group in which at least a part of the hydrogen atoms contained in R 33 are substituted with fluorine atoms.
  • R 33 does not contain a hydrogen atom
  • R 36 is the same as R 34 .
  • -(R 35 O) m6 - corresponds to -(R 32 O) m5 - in formula (A5).
  • R 35 is the same group as R 32 or a group in which at least a part of the hydrogen atoms contained in R 32 are substituted with fluorine atoms.
  • R 35 is the same as R 32 .
  • R 34 and R 36 each independently have the same meaning as R 31 and R 33 in formula (A5).
  • examples of -(R 35 O) m6 - include the same as -(R 32 O) m5 - in formula (A5).
  • R AF2 include the following structures and structures in which some of the fluorine atoms in the following structures have been replaced with hydrogen atoms: * represents a bonding site with —O—, and n2 represents an integer of 0 to 500.
  • R 3 BF2 and R 3 BF3 are groups corresponding to R 3 B2 and R 3 B3 , respectively.
  • R B2 contains a hydrogen atom
  • R BF2 is the same group as R B2 or a group in which at least a part of the hydrogen atoms present in R B2 is substituted with a fluorine atom.
  • R BF2 is the same group as R B2 .
  • R contains a hydrogen atom
  • R is the same group as R or a group in which at least a part of the hydrogen atoms present in R is substituted with a fluorine atom.
  • R does not contain a hydrogen atom
  • R is the same group as R.
  • Examples of the group represented by R 3 BF2 or R 3 BF3 include the same groups as the group represented by R 3 BF1 in formula (6).
  • Examples 1-1 to 1-7, 2-1 to 2-4, and 3-1 to 3-3 are examples, and Examples 1-8 to 1-9 and 2-5 are comparative examples.
  • CFE-419 CClF 2 CClFCF 2 OCF 2 CClF 2
  • Examples 1-1 to 1-9 First, CFE-419 was charged as an initial solvent into a stainless steel reactor in the amount of circulation liquid shown in the table below, and circulated through the circulation line at 300 L/hour. Next, a raw material solution prepared by diluting a raw material compound represented by the following formula (1-1) with a solvent CFE-419 was fed to the circulation line at a flow rate under conditions such that the flow rate of the raw material compound was the raw material flow rate shown in the table below, and the flow rate of the raw material solution was the raw material solution flow rate shown in the table below. Next, fluorine gas diluted to 30% by volume with nitrogen gas was fed into the circulation line at the gas flow rates shown in the table below.
  • a raw material solution prepared by diluting a raw material compound represented by the following formula (1-1) with a solvent CFE-419 was fed to the circulation line at a flow rate under conditions such that the flow rate of the raw material compound was the raw material flow rate shown in the table below, and the flow rate of the raw material solution was the raw material solution
  • the temperature of the circulating liquid in the circulation line was adjusted to 20° C. by a condenser.
  • the circulating fluid was continuously withdrawn so as to maintain the amount of the circulating fluid as shown in the table below.
  • the gas phase of the reactor was cooled to -10°C by a condenser, the condensate was returned to the reactor, and the gas was sent to the detoxification tower.
  • the raw material compound was fluorinated to obtain a fluorinated product of the raw material compound, that is, a fluorine-containing compound.
  • the residence time during fluorination is shown in Table 1.
  • the mass of the solvent CFE-419 was 2.33 times the mass of the raw material compound, and the pressure during fluorination was normal pressure.
  • the number average molecular weight of the raw material compound was 4,236, and the number average molecular weights of the fluorinated products obtained in Examples 1-1 to 1-9 were 4,956 to 5,046.
  • the hydrogen residues and yields of the obtained fluorinated products are shown in Table 1.
  • the obtained fluorinated product was subjected to a heat resistance test as follows.
  • a thermogravimetric/differential thermal analyzer (TG/DTA, Shimadzu Corporation, DTG-60) was used as a heat resistance tester, and the starting temperature was set at 25° C., and the temperature was raised to 500° C. at a rate of 10° C./min.
  • the heat resistance was evaluated according to the following criteria. The results are shown in Table 1.
  • S The temperature at which the weight loss is 50% is 230°C or higher.
  • A The temperature at which the weight loss is 50% is 220°C or higher and lower than 230°C.
  • B The temperature at which the weight loss is 50% is 215°C or higher and lower than 220°C.
  • C The temperature at which the weight loss is 50% is 210°C or higher and lower than 215°C.
  • D The temperature at which the weight loss is 200°C or higher and lower than 210°C.
  • E The temperature at which the weight loss is 50% is lower than 200°C.
  • Examples 2-1 to 2-5 The raw material compounds were fluorinated in the same manner as in Examples 1-1 to 1-9, except that the raw material solution flow rate was 0.100 kg/hour, the raw material flow rate was 0.030 kg/hour, the gas flow rate was 1200 NL/hour, the circulating liquid volume was 3.0 L, the residence time was 166 hours, and the circulating liquid temperature was adjusted to the temperatures shown in the following table, to obtain fluorinated compounds that were fluorinated products of the raw material compounds.
  • the mass of the solvent CFE-419 was 2.33 times the mass of the raw material compound, and the pressure during fluorination was normal pressure.
  • the number average molecular weight of the raw material compound was 4,236, and the number average molecular weights of the fluorinated products obtained in Examples 2-1 to 2-5 were 4,956 to 5,046.
  • the hydrogen residues and yields of the obtained fluorinated products are shown in Table 2.
  • the obtained fluorinated products were subjected to a heat resistance test in the same manner as in Examples 1-1 to 1-9 to evaluate their heat resistance. The results are also shown in Table 2.
  • Examples 3-1 to 3-3 The raw material compounds were fluorinated in the same manner as in Examples 1-1 to 1-9, except that the raw material solution flow rate was 0.100 kg/hour, the raw material flow rate was 0.030 kg/hour, the gas flow rate was 1200 NL/hour, the circulating liquid volume was 3.0 L, the residence time was 166 hours, the circulating liquid temperature was 20° C., and the types of the raw material compounds were changed to those shown in the table below, to obtain fluorinated products of the raw material compounds.
  • the mass of the solvent CFE-419 was 2.33 times the mass of the raw material compound, and the pressure during fluorination was normal pressure.
  • (1-2) means a compound represented by the following formula (1-2)
  • (1-3) means a compound represented by the following formula (1-3)
  • (1-4) means a compound represented by the following formula (1-4)
  • the number of units in the formulas below is an average value.
  • the hydrogen residues and yields of the obtained fluorinated products are shown in Table 3.
  • the number average molecular weights of the raw material compounds and the number average molecular weights of the obtained fluorinated products are also shown in Table 3.
  • the obtained fluorinated products were subjected to a heat resistance test in the same manner as in Examples 1-1 to 1-9 to evaluate their heat resistance. The results are also shown in Table 3.
  • the disclosed method for producing a fluorine-containing compound can produce the target fluorine-containing compound in a higher yield than conventional methods.
  • the obtained fluorine-containing compound can be derived into a fluorine-containing compound having various functional groups (e.g., a hydroxyl group, an ethylenically unsaturated group, an epoxy group, a carboxy group, etc.).
  • the obtained fluorine-containing compound and the derived fluorine-containing compound can be used as a surface treatment agent, an emulsifier, rubber, a surfactant, a solvent, a heat transfer medium, a pharmaceutical, an agricultural chemical, a lubricant, an intermediate thereof, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A production method for a fluorine-containing compound wherein an organic compound having at least one atom that can be fluorinated is fluorinated in a liquid containing said organic compound to obtain a fluorine-containing compound that is a fluorinated substance in which the average number of atoms that can be fluorinated per molecule is at least 0.01.

Description

含フッ素化合物の製造方法及び含フッ素化合物Method for producing fluorine-containing compound and fluorine-containing compound
 本開示は、含フッ素化合物の製造方法及び含フッ素化合物に関する。 This disclosure relates to a method for producing a fluorine-containing compound and the fluorine-containing compound.
 水素原子等のフッ素化可能な原子を有する有機化合物をフッ素化する方法は種々知られており、例えば、フッ素ガスを用いてフッ素化する方法が知られている。
 特許文献1では、フッ素化可能な原子を有する有機化合物及び有機溶媒を含む液相にフッ素ガスを供給して前記有機化合物をフッ素化する方法が開示されている。
There are various known methods for fluorinating an organic compound having a fluorinatable atom such as a hydrogen atom. For example, a method of fluorination using fluorine gas is known.
Patent Document 1 discloses a method for fluorinating an organic compound having a fluorinatable atom by supplying fluorine gas to a liquid phase containing the organic compound and an organic solvent.
国際公開第2000/056694号International Publication No. 2000/056694
 含フッ素化合物の中でも特に、フッ素化可能な原子がすべてフッ素原子に置換された完全フッ素化体は、耐熱性が高いものが多く、例えば熱媒体として有用である。
 完全フッ素化体である含フッ素化合物を目的物として、フッ素化可能な原子を有する化合物のフッ素化により製造する場合、一般的にフッ素化の反応条件を過酷にする必要がある。具体的には、フッ素化の時間を長くする、反応温度を高くする、反応圧力を高くする、フッ素ガスによるフッ素化の場合はフッ素ガスの量を多くする等が挙げられる。
 しかしながら、上記のように、フッ素化の時間を長くする等の過酷な反応条件によりフッ素化を行うと、分解反応等の副反応が起こりやすく、目的物である含フッ素化合物の収率が低くなりやすい。加えて、完全フッ素化体を多く含有する液体は粘度が高くなりやすいため、例えばフッ素化後にろ過による不純物の除去を行う場合、ろ過装置等にろ液が残りやすく、目的物である含フッ素化合物の収率がさらに低くなりやすい。
Among fluorine-containing compounds, many of the fully fluorinated compounds in which all fluorinatable atoms are replaced with fluorine atoms have high heat resistance and are useful, for example, as heat transfer media.
When a completely fluorinated fluorine-containing compound is to be produced by fluorinating a compound having a fluorinatable atom, it is generally necessary to make the fluorination reaction conditions severe, such as by lengthening the fluorination time, increasing the reaction temperature, increasing the reaction pressure, or, in the case of fluorination with fluorine gas, increasing the amount of fluorine gas.
However, as described above, when fluorination is performed under harsh reaction conditions such as prolonging the fluorination time, side reactions such as decomposition reactions are likely to occur, and the yield of the target fluorine-containing compound is likely to be low. In addition, since a liquid containing a large amount of fully fluorinated products is likely to have a high viscosity, for example, when removing impurities by filtration after fluorination, the filtrate is likely to remain in a filtration device, etc., and the yield of the target fluorine-containing compound is likely to be further reduced.
 本発明の一実施形態における課題は、高い収率で目的物である含フッ素化合物が得られる含フッ素化合物の製造方法及び含フッ素化合物を提供することにある。 The objective of one embodiment of the present invention is to provide a method for producing a fluorine-containing compound that can produce the target fluorine-containing compound in high yield, and to provide the fluorine-containing compound.
 本開示には、以下の態様が含まれる。
<1>
 フッ素化可能な原子を少なくとも1つ有する有機化合物を含有する液体中において、前記有機化合物をフッ素化することで、1分子あたりの前記フッ素化可能な原子の平均個数が0.01個以上のフッ素化体である含フッ素化合物を得る、含フッ素化合物の製造方法。
<2>
 1分子あたりの前記フッ素化可能な原子の平均個数が5個以下である、<1>に記載の含フッ素化合物の製造方法。
<3>
 前記有機化合物は、前記フッ素化可能な原子として水素原子を有する、<1>又は<2>に記載の含フッ素化合物の製造方法。
<4>
 前記液体に、フッ素ガスを含有する気体を導入することで前記有機化合物をフッ素化する、<1>~<3>のいずれか1つに記載の含フッ素化合物の製造方法。
<5>
 前記フッ素化が行われる反応器に前記液体が滞留する時間は、200時間以下である、<1>~<4>のいずれか1つに記載の含フッ素化合物の製造方法。
<6>
 前記液体は、さらに溶媒を含有する、<1>~<5>のいずれか1つに記載の含フッ素化合物の製造方法。
<7>
 前記溶媒の質量が前記有機化合物の質量の10倍以下である、<6>に記載の含フッ素化合物の製造方法。
<8>
 前記フッ素化の温度は、5~50℃である、<1>~<7>のいずれか1つに記載の含フッ素化合物の製造方法。
<9>
 前記有機化合物の数平均分子量は、800~28,000である、<1>~<8>のいずれか1つに記載の含フッ素化合物の製造方法。
<10>
 1分子あたりの水素原子の平均個数が0.01~5個であり、数平均分子量が1,000~30,000である、含フッ素化合物。
<11>
 フルオロポリエーテル鎖を含む、<10>に記載の含フッ素化合物。
The present disclosure includes the following aspects.
<1>
A method for producing a fluorine-containing compound, comprising fluorinating an organic compound having at least one fluorinatable atom in a liquid containing the organic compound, thereby obtaining a fluorinated product having an average number of the fluorinatable atoms per molecule of 0.01 or more.
<2>
The method for producing a fluorine-containing compound according to <1>, wherein the average number of the fluorinatable atoms per molecule is 5 or less.
<3>
The method for producing a fluorine-containing compound according to <1> or <2>, wherein the organic compound has a hydrogen atom as the fluorinatable atom.
<4>
The method for producing a fluorine-containing compound according to any one of <1> to <3>, wherein the organic compound is fluorinated by introducing a gas containing fluorine gas into the liquid.
<5>
The method for producing a fluorine-containing compound according to any one of <1> to <4>, wherein the liquid is retained in a reactor in which the fluorination is carried out for 200 hours or less.
<6>
The method for producing a fluorine-containing compound according to any one of <1> to <5>, wherein the liquid further contains a solvent.
<7>
The method for producing a fluorine-containing compound according to <6>, wherein the mass of the solvent is 10 times or less the mass of the organic compound.
<8>
The method for producing a fluorinated compound according to any one of <1> to <7>, wherein the fluorination temperature is 5 to 50° C.
<9>
The method for producing a fluorine-containing compound according to any one of <1> to <8>, wherein the organic compound has a number average molecular weight of 800 to 28,000.
<10>
A fluorine-containing compound having an average number of hydrogen atoms per molecule of 0.01 to 5 and a number average molecular weight of 1,000 to 30,000.
<11>
The fluorine-containing compound according to <10>, which contains a fluoropolyether chain.
 本開示によれば、高い収率で目的物である含フッ素化合物が得られる含フッ素化合物の製造方法及び含フッ素化合物が提供される。 The present disclosure provides a method for producing a fluorine-containing compound and a fluorine-containing compound that can produce the desired fluorine-containing compound in high yield.
 以下、本開示の実施形態を実施するための形態について詳細に説明する。但し、本開示の実施形態は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示の実施形態を制限するものではない。 Below, the form for carrying out the embodiments of the present disclosure will be described in detail. However, the embodiments of the present disclosure are not limited to the following embodiments. In the following embodiments, the components (including element steps, etc.) are not essential unless specifically stated otherwise. The same applies to numerical values and their ranges, and they do not limit the embodiments of the present disclosure.
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、各成分の量は、各成分に該当する物質が複数種存在する場合には、特に断らない限り、複数種の物質の合計量を意味する。
 本開示において、化合物が特定の式(X)で表される場合、当該式(X)で表される化合物を化合物(X)と記すことがある。
In the present disclosure, a numerical range indicated using "to" means a range that includes the numerical values before and after "to" as the minimum and maximum values, respectively.
In the numerical ranges described in the present disclosure, the upper or lower limit value described in a certain numerical range may be replaced with the upper or lower limit value of another numerical range described in the present disclosure. In addition, in the numerical ranges described in the present disclosure, the upper or lower limit value described in a certain numerical range may be replaced with a value shown in the examples.
In the present disclosure, combinations of two or more preferred aspects are more preferred aspects.
In the present disclosure, when there are multiple substances corresponding to each component, the amount of each component means the total amount of multiple substances, unless otherwise specified.
In the present disclosure, when a compound is represented by a specific formula (X), the compound represented by the formula (X) may be referred to as compound (X).
[含フッ素化合物の製造方法]
 本開示の一実施形態に係る含フッ素化合物の製造方法では、フッ素化可能な原子を少なくとも1つ有する有機化合物を含有する液体中において、前記有機化合物をフッ素化することで、1分子あたりの前記フッ素化可能な原子の平均個数が0.01個以上のフッ素化体である含フッ素化合物を得る。
 以下、フッ素化可能な原子を少なくとも1つ有する有機化合物を「原料化合物」ともいい、1分子あたりの前記フッ素化可能な原子の平均個数を「原子残数」ともいう。
[Method of producing fluorine-containing compound]
In a method for producing a fluorinated compound according to an embodiment of the present disclosure, an organic compound having at least one fluorinable atom is fluorinated in a liquid containing the organic compound, thereby obtaining a fluorinated compound having an average number of the fluorinable atoms per molecule of 0.01 or more.
Hereinafter, an organic compound having at least one fluorinable atom is also referred to as a "raw material compound," and the average number of the fluorinable atoms per molecule is also referred to as the "remaining number of atoms."
 上記含フッ素化合物の製造方法では、高い収率で目的物である含フッ素化合物が得られる。
 具体的には、目的物を原子残数0.01個以上のフッ素化体とすることで、フッ素化の反応条件が温和であっても目的物が得られやすいため、反応条件を温和とすることで、副反応が抑制され、目的物である含フッ素化合物の収率が高くなる。加えて、目的物を原子残数0.01個以上のフッ素化体とすることで、フッ素化後の液体の粘度を低く抑えられるため、例えばろ過による不純物の除去を行う場合もろ過装置等にろ液が残りにくく、目的物である含フッ素化合物の収率が高くなる。
In the above-mentioned method for producing a fluorine-containing compound, the target fluorine-containing compound can be obtained in high yield.
Specifically, by making the target substance into a fluorinated substance having 0.01 or more residual atoms, the target substance can be easily obtained even under mild reaction conditions for fluorination, and therefore by making the reaction conditions mild, side reactions are suppressed and the yield of the target fluorine-containing compound is increased. In addition, by making the target substance into a fluorinated substance having 0.01 or more residual atoms, the viscosity of the liquid after fluorination can be kept low, so that even when removing impurities by filtration, for example, the filtrate is less likely to remain in a filtration device or the like, and the yield of the target fluorine-containing compound is increased.
<原子残数>
 上記原子残数は、目的物である含フッ素化合物が1分子中に有する「フッ素化可能な原子」の平均個数である。例えば、原料化合物のフッ素化により得られる含フッ素化合物が、10分子中に、フッ素化可能な原子が1個残った分子が3分子、フッ素化可能な原子がすべてフッ素原子に置換された分子が7分子存在する混合物である場合、前記含フッ素化合物の原子残数は0.3個である。この場合、フッ素化可能な原子が1個残った3分子は、原料化合物が有するフッ素化可能な原子のうち、異なる位置におけるフッ素化可能な原子が残ったものであってもよく、同じ位置におけるフッ素化可能な原子が残ったものであってもよい。
<Number of remaining atoms>
The number of remaining atoms is the average number of "fluorinable atoms" that the fluorine-containing compound of interest has in one molecule.For example, when the fluorine-containing compound obtained by fluorinating the raw material compound is a mixture in which 3 molecules have one fluorinable atom remaining and 7 molecules have all fluorinable atoms replaced with fluorine atoms in 10 molecules, the number of remaining atoms of the fluorine-containing compound is 0.3.In this case, the 3 molecules with one fluorinable atom remaining may be fluorinable atoms remaining at different positions among the fluorinable atoms of the raw material compound, or may be fluorinable atoms remaining at the same position.
 また、上記原子残数が0.3個の含フッ素化合物は、上記形態に限られず、例えば10分子中に、フッ素化可能な原子が2個残った分子が1分子、フッ素化可能な原子が1個残った分子が1分子、フッ素化可能な原子がすべてフッ素原子に置換された分子が7分子存在する混合物であってもよい。
 つまり、原子残数が0.01個以上の含フッ素化合物は、残ったフッ素化可能な原子の個数が異なる分子の混合物であってもよい。特に、原子残数が0.01個以上1個未満である含フッ素化合物は、フッ素化可能な原子が1個以上残った分子と、フッ素化可能な原子がすべてフッ素原子に置換された分子と、の混合物である。
 なお、含フッ素化合物がフッ素化可能な原子を2種以上有する場合、原子残数は、前記2種以上のフッ素化可能な原子の合計の平均個数である。
Furthermore, the fluorine-containing compound having a remaining atom number of 0.3 is not limited to the above-mentioned form, and may be a mixture in which, for example, among 10 molecules, there is one molecule having two remaining fluorinable atoms, one molecule having one remaining fluorinable atom, and seven molecules in which all fluorinable atoms have been replaced with fluorine atoms.
In other words, a fluorine-containing compound having a remaining number of atoms of 0.01 or more may be a mixture of molecules having different numbers of remaining fluorinable atoms. In particular, a fluorine-containing compound having a remaining number of atoms of 0.01 or more and less than 1 is a mixture of molecules having one or more remaining fluorinable atoms and molecules in which all fluorinable atoms have been replaced with fluorine atoms.
When the fluorine-containing compound has two or more types of fluorinable atoms, the number of remaining atoms is the total average number of the two or more types of fluorinable atoms.
 上記原子残数は、以下のようにして求められる。
 具体的には、例えばフッ素化可能な原子が水素原子である場合、H-NMRから得られる水素原子ピーク面積から原子残数が求められる。また、19F-NMRから得られるフッ素化可能な原子が結合する炭素原子に結合したフッ素原子ピーク面積と19F-NMRから得られるフッ素化可能な原子が結合していない炭素原子に結合したフッ素原子ピーク面積との比から原子残数が求められる。
The number of remaining atoms is calculated as follows.
Specifically, for example, when the fluorinable atom is a hydrogen atom, the number of remaining atoms can be determined from the hydrogen atom peak area obtained from 1 H-NMR, and the number of remaining atoms can be determined from the ratio of the peak area of fluorine atoms bonded to a carbon atom to which a fluorinable atom is bonded, obtained from 19 F-NMR, to the peak area of fluorine atoms bonded to a carbon atom to which no fluorinable atom is bonded, obtained from 19 F-NMR.
 原子残数は、0.01個以上であり、かつ、5個以下であることが好ましい。原子残数が5個以下である含フッ素化合物であれば、完全フッ素化体、つまり原子残数が0である含フッ素化合物でなくても、耐熱性が高く、例えば熱媒体として有用である。
 つまり、原料化合物を含有する液体中で原料化合物をフッ素化し、原子残数が0.01~5個のフッ素化体である含フッ素化合物を得ることで、高い収率で、耐熱性の高い含フッ素化合物が得られる。
 原子残数は、高い収率及び高い耐熱性を両立する観点から、0.01~4個がより好ましく、0.01~1個がさらに好ましく、0.01~0.5個が特に好ましい。
The number of remaining atoms is preferably 0.01 or more and 5 or less. A fluorine-containing compound having 5 or less remaining atoms has high heat resistance and is useful, for example, as a heat transfer medium, even if it is not a fully fluorinated compound, that is, a fluorine-containing compound having 0 remaining atoms.
In other words, by fluorinating a raw material compound in a liquid containing the raw material compound to obtain a fluorinated compound having a residual atom number of 0.01 to 5, a fluorinated compound having high heat resistance can be obtained in high yield.
From the viewpoint of achieving both a high yield and high heat resistance, the number of residual atoms is more preferably 0.01 to 4, further preferably 0.01 to 1, and particularly preferably 0.01 to 0.5.
 フッ素化可能な原子としては、水素原子、臭素原子、ヨウ素原子、塩素原子等が挙げられ、その中でも水素原子が好ましい。
 目的物である含フッ素化合物が1分子中に有する「水素原子」の平均個数は、0.01個以上が好ましく、0.01~5個がより好ましく、0.01~4個がさらに好ましく、0.01~1個が特に好ましく、0.01~0.5個が極めて好ましい。以下、目的物である含フッ素化合物が1分子中に有する水素原子の平均個数を「H残数」ともいう。
Examples of the atom that can be fluorinated include a hydrogen atom, a bromine atom, an iodine atom, and a chlorine atom, with a hydrogen atom being preferred.
The average number of "hydrogen atoms" that the target fluorine-containing compound has in one molecule is preferably 0.01 or more, more preferably 0.01 to 5, even more preferably 0.01 to 4, particularly preferably 0.01 to 1, and extremely preferably 0.01 to 0.5. Hereinafter, the average number of hydrogen atoms that the target fluorine-containing compound has in one molecule is also referred to as the "residual H number."
 原子残数及びH残数の制御は、例えば、原料化合物のフッ素化における反応条件の調整により行う方法が挙げられる。反応条件として、具体的には、フッ素化の時間、反応温度、反応圧力等が挙げられる。また、フッ素ガスにより原料化合物のフッ素化を行う場合は、液体に導入するフッ素ガスの量及び濃度等も、反応条件として挙げられる。
 さらに、原料化合物が有するフッ素化可能な原子がフッ素化されずに残ることで、目的物が有するフッ素化可能な原子となるため、原料化合物が有するフッ素可能な原子及び水素原子の1分子あたりの個数の調整により原子残数及びH残数を制御してもよい。
The number of remaining atoms and the number of remaining H can be controlled, for example, by adjusting the reaction conditions in the fluorination of the raw material compound. Specific examples of the reaction conditions include the fluorination time, reaction temperature, reaction pressure, etc. In addition, when the raw material compound is fluorinated with fluorine gas, the amount and concentration of fluorine gas introduced into the liquid can also be included as reaction conditions.
Furthermore, since fluorinable atoms in the raw material compound remain unfluorinated to become fluorinable atoms in the target product, the number of remaining atoms and the number of remaining H atoms may be controlled by adjusting the number of fluorinable atoms and hydrogen atoms per molecule in the raw material compound.
<フッ素化反応>
 液体中において原料化合物をフッ素化する方法としては、例えば、ECF法、コバルトフッ素化法、及びフッ素と反応させる方法が挙げられる。中でも、原料化合物のフッ素化を有利に進行させることが可能な、フッ素を反応させる方法が好ましい。
<Fluorination reaction>
Examples of methods for fluorinating a raw material compound in a liquid include the ECF method, the cobalt fluorination method, and a method of reacting with fluorine. Among these, the method of reacting with fluorine, which can advantageously advance the fluorination of the raw material compound, is preferred.
 液体中において原料化合物とフッ素とを反応させる方法では、例えば、フッ素ガスを含有する気体を、原料化合物を含有する液体中に導入する。
 以下、フッ素化反応の一例として、フッ素ガスを含有する気体を、原料化合物を含有する液体中に導入する方法について説明するが、これに限定されるものではない。
In the method of reacting a raw material compound with fluorine in a liquid, for example, a gas containing fluorine gas is introduced into a liquid containing the raw material compound.
As an example of the fluorination reaction, a method of introducing a gas containing fluorine gas into a liquid containing a raw material compound will be described below, but the present invention is not limited to this.
 液体に導入する気体は、少なくともフッ素ガスを含有していればよい。気体は、フッ素ガスからなるものでもよく、フッ素ガス以外のガスを含有するものでもよい。
 フッ素ガス以外のガスとしては、例えば不活性ガスが挙げられる。不活性ガスとしては、窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス等が挙げられ、窒素ガス又はヘリウムガスが好ましく、コストを低く抑える観点から窒素ガスが好ましい。
The gas introduced into the liquid should contain at least fluorine gas. The gas may consist of fluorine gas or may contain a gas other than fluorine gas.
Examples of gases other than fluorine gas include inert gases such as nitrogen gas, helium gas, neon gas, and argon gas, with nitrogen gas or helium gas being preferred, and nitrogen gas being preferred from the viewpoint of keeping costs low.
 気体全体に対するフッ素ガスの含有率は、目的物の原子残数を制御しやすくする観点から、10体積%以上が好ましく、15体積%以上がより好ましく、20体積%以上がさらに好ましく、25体積%以上が特に好ましい。また、気体全体に対するフッ素ガスの含有率は、目的物の原子残数を制御しやすくする観点から、60体積%以下が好ましく、50体積%以下がより好ましく、40体積%以下がさらに好ましい。前記観点から、気体全体に対するフッ素ガスの含有率は、10~60体積%が好ましく、15~50体積%がより好ましく、20~40体積%がさらに好ましく、25~40体積%が特に好ましい。 The content of fluorine gas in the entire gas is preferably 10% by volume or more, more preferably 15% by volume or more, even more preferably 20% by volume or more, and particularly preferably 25% by volume or more, from the viewpoint of easily controlling the number of remaining atoms of the target substance. Furthermore, the content of fluorine gas in the entire gas is preferably 60% by volume or less, more preferably 50% by volume or less, and even more preferably 40% by volume or less, from the viewpoint of easily controlling the number of remaining atoms of the target substance. From the above viewpoint, the content of fluorine gas in the entire gas is preferably 10 to 60% by volume, more preferably 15 to 50% by volume, even more preferably 20 to 40% by volume, and particularly preferably 25 to 40% by volume.
 原料化合物のフッ素化の温度は、例えば、-60℃以上かつ原料化合物の沸点以下の範囲が挙げられ、-50~100℃の範囲でもよく、-20~50℃の範囲でもよい。原料化合物のフッ素化の温度は、目的物の原子残数を前記範囲とする観点から、5~50℃が好ましく、5~40℃がより好ましく、10~30℃がさらに好ましい。
 原料化合物のフッ素化における圧力としては、例えば、0~2MPaが挙げられる。
 原料化合物のフッ素化は、バッチ方式であってもよく、連続方式であってもよい。
The temperature for fluorinating the raw material compound is, for example, in the range of −60° C. or more and the boiling point of the raw material compound or less, and may be in the range of −50 to 100° C. or may be in the range of −20 to 50° C. The temperature for fluorinating the raw material compound is preferably 5 to 50° C., more preferably 5 to 40° C., and even more preferably 10 to 30° C., from the viewpoint of setting the number of remaining atoms of the target product in the above range.
The pressure in the fluorination of the raw material compound is, for example, 0 to 2 MPa.
The fluorination of the raw material compound may be carried out in a batch manner or in a continuous manner.
 原料化合物のフッ素化が行われる反応器に、原料化合物を含有しフッ素ガスが導入された液体が滞留する時間は、目的物の原子残数を前記範囲とする観点から、200時間以下が好ましく、190時間以下がより好ましく、170時間以下がさらに好ましい。以下、上記反応器に上記液体が滞留する時間を「滞留時間」ともいう。
 滞留時間は、目的物の原子残数を前記範囲とする観点から、0.3時間以上が好ましく、0.6時間以上がより好ましく、1.0時間以上がさらに好ましく、50時間以上が特に好ましく、70時間以上が極めて好ましく、100時間以上が最も好ましい。滞留時間は、0.3~200時間が好ましく、0.6~200時間がより好ましく、1.0~200時間がさらに好ましく、50~200時間が特に好ましく、70~200時間が極めて好ましく、100~200時間が最も好ましい。
 上記滞留時間は、原料化合物のフッ素化を連続方式で行う場合、上記液体の流量及び反応器の容積から算出する。また、滞留時間は、原料化合物のフッ素化を連続方式で行う場合、上記液体の流量及び反応器の流れ方向の長さ等により調整してもよい。
The time for which a liquid containing the raw material compound and into which fluorine gas has been introduced remains in a reactor in which the raw material compound is fluorinated is, from the viewpoint of keeping the number of remaining atoms of the target product within the above-mentioned range, preferably 200 hours or less, more preferably 190 hours or less, and even more preferably 170 hours or less. Hereinafter, the time for which the liquid remains in the reactor is also referred to as the "residence time".
From the viewpoint of keeping the number of remaining atoms of the target product within the above range, the residence time is preferably 0.3 hours or more, more preferably 0.6 hours or more, even more preferably 1.0 hour or more, particularly preferably 50 hours or more, extremely preferably 70 hours or more, and most preferably 100 hours or more. The residence time is preferably 0.3 to 200 hours, more preferably 0.6 to 200 hours, even more preferably 1.0 to 200 hours, particularly preferably 50 to 200 hours, extremely preferably 70 to 200 hours, and most preferably 100 to 200 hours.
The residence time is calculated from the flow rate of the liquid and the volume of the reactor when the fluorination of the raw material compound is carried out in a continuous manner. The residence time may be adjusted by the flow rate of the liquid and the length of the reactor in the flow direction when the fluorination of the raw material compound is carried out in a continuous manner.
<液体>
 液体は、少なくとも、フッ素化可能な原子を少なくとも1つ有する有機化合物である原料化合物を含有し、必要に応じて溶媒、その他添加剤等をさらに含有してもよい。
<Liquid>
The liquid contains at least a raw material compound that is an organic compound having at least one fluorinatable atom, and may further contain a solvent, other additives, and the like, as necessary.
(原料化合物)
 原料化合物は、フッ素化可能な原子を少なくとも1つ有する有機化合物であればよく、特に限定されるものではない。
 原料化合物は、フッ素化可能な原子を1つのみ有してもよく、2つ以上有してもよい。原料化合物の1分子中に含まれるフッ素化可能な原子の数としては、例えば1~200が挙げられ、5~100が好ましく、10~50がより好ましい。つまり、原料化合物が1分子中に有する「フッ素化可能な原子」の平均個数は、1~200個が挙げられ、5~100個が好ましく、10~50個がより好ましい。
(Raw material compound)
The raw material compound is not particularly limited as long as it is an organic compound having at least one fluorinable atom.
The raw material compound may have only one fluorinable atom, or may have two or more fluorinable atoms. The number of fluorinable atoms contained in one molecule of the raw material compound is, for example, 1 to 200, preferably 5 to 100, and more preferably 10 to 50. In other words, the average number of "fluorinable atoms" contained in one molecule of the raw material compound is, for example, 1 to 200, preferably 5 to 100, and more preferably 10 to 50.
 フッ素化可能な原子としては、水素原子、臭素原子、ヨウ素原子、塩素等が挙げられ、その中でも水素原子が好ましい。原料化合物は、フッ素化可能な原子として水素原子を有することが好ましい。
 原料化合物の1分子中に含まれる水素原子の数としては、例えば1~200が挙げられ、5~100が好ましく、10~50がより好ましい。つまり、原料化合物が1分子中に有する水素原子の平均個数は、1~200個が挙げられ、5~100個が好ましく、10~50個がより好ましい。
Examples of the fluorinable atom include a hydrogen atom, a bromine atom, an iodine atom, a chlorine atom, etc., and among these, a hydrogen atom is preferable. The raw material compound preferably has a hydrogen atom as a fluorinable atom.
The number of hydrogen atoms contained in one molecule of the raw material compound is, for example, 1 to 200, preferably 5 to 100, and more preferably 10 to 50. In other words, the average number of hydrogen atoms contained in one molecule of the raw material compound is, for example, 1 to 200, preferably 5 to 100, and more preferably 10 to 50.
 原料化合物の数平均分子量は、例えば800~100,000が挙げられ、原子残数の制御をしやすくする観点及び副反応を抑制して高い収率を得る観点から、800~28,000が好ましく、800~20,000がより好ましく、800~10,000がさらに好ましく、1,000~10,000が特に好ましく、1,000~8,000が極めて好ましく、2,000~6,000が最も好ましい。
 上記原料化合物の数平均分子量は、H-NMR及び19F-NMRによって特定された分子構造から算出される値である。
The number average molecular weight of the raw material compound is, for example, 800 to 100,000. From the viewpoint of easily controlling the number of residual atoms and of suppressing side reactions to obtain a high yield, it is preferably 800 to 28,000, more preferably 800 to 20,000, even more preferably 800 to 10,000, particularly preferably 1,000 to 10,000, extremely preferably 1,000 to 8,000, and most preferably 2,000 to 6,000.
The number average molecular weight of the raw material compound is a value calculated from the molecular structure identified by 1 H-NMR and 19 F-NMR.
 原料化合物は、酸素原子及び硫黄原子の少なくとも一方を含有する2価以上の官能基を有する化合物が好ましい。以下、酸素原子及び硫黄原子の少なくとも一方を含有する2価以上の官能基を「特定官能基」ともいう。 The raw material compound is preferably a compound having a divalent or higher functional group containing at least one of an oxygen atom and a sulfur atom. Hereinafter, a divalent or higher functional group containing at least one of an oxygen atom and a sulfur atom is also referred to as a "specific functional group."
 特定官能基は、酸素原子及び硫黄原子の少なくとも一方を含有する2価以上の官能基であり、酸素原子及び硫黄原子の少なくとも一方を含有する2価の官能基が好ましく、酸素原子を含有する2価の官能基がより好ましい。
 特定官能基としては、エステル結合、エーテル結合、アミド結合、チオエーテル結合、チオエステル結合、スルホニル基等が挙げられる。また、特定官能基としては、エステル結合及びアミド結合以外のカルボニル基が挙げられる。
 原料化合物は、特定官能基として、エステル結合、エーテル結合、アミド結合、チオエーテル結合、チオエステル結合、及びスルホニル基からなる群より選択される少なくとも1つを有する化合物が好ましく、エステル結合及びエーテル結合の少なくとも1つを有する化合物がより好ましく、エステル結合を有する化合物がさらに好ましく、エステル結合及びエーテル結合の両方を有する化合物が特に好ましい。
The specific functional group is a divalent or higher functional group containing at least one of an oxygen atom and a sulfur atom, preferably a divalent functional group containing at least one of an oxygen atom and a sulfur atom, and more preferably a divalent functional group containing an oxygen atom.
Examples of the specific functional group include an ester bond, an ether bond, an amide bond, a thioether bond, a thioester bond, a sulfonyl group, etc. Examples of the specific functional group include a carbonyl group other than an ester bond and an amide bond.
The raw material compound is preferably a compound having, as a specific functional group, at least one selected from the group consisting of an ester bond, an ether bond, an amide bond, a thioether bond, a thioester bond, and a sulfonyl group, more preferably a compound having at least one of an ester bond and an ether bond, further preferably a compound having an ester bond, and particularly preferably a compound having both an ester bond and an ether bond.
 原料化合物は、特定官能基としてエステル結合を有し、かつ、エステル結合のカルボニル基に結合する炭素原子にフッ素化可能な原子が結合した化合物でもよい。また、原料化合物は、特定官能基としてエステル結合及びエーテル結合を有し、かつ、エステル結合のカルボニル基に結合する炭素原子にフッ素化可能な原子が結合した化合物でもよい。 The raw material compound may be a compound having an ester bond as a specific functional group, and a fluorinable atom bonded to the carbon atom bonded to the carbonyl group of the ester bond. The raw material compound may also be a compound having an ester bond and an ether bond as specific functional groups, and a fluorinable atom bonded to the carbon atom bonded to the carbonyl group of the ester bond.
 原料化合物としては、例えば、下記式(1)で表される化合物、下記式(2)で表される化合物等が挙げられる。
 RA1-O-(C=O)-RB1 …(1)
 RB2-(C=O)-O-RA2-O-(C=O)-RB3 …(2)
Examples of the raw material compound include a compound represented by the following formula (1) and a compound represented by the following formula (2).
R A1 -O-(C=O)-R B1 ... (1)
R B2 -(C=O)-O-R A2 -O-(C=O)-R B3 ... (2)
 式(1)及び(2)中、
 RA1、RB1、RB2、及びRB3はそれぞれ独立に、1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基であり、
 RA2は、2価飽和炭化水素基、ハロゲノ2価飽和炭化水素基、ヘテロ原子含有2価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有2価飽和炭化水素)基である。
In formulas (1) and (2),
R A1 , R B1 , R B2 , and R B3 each independently represent a monovalent saturated hydrocarbon group, a halogeno monovalent saturated hydrocarbon group, a heteroatom-containing monovalent saturated hydrocarbon group, or a halogeno (heteroatom-containing monovalent saturated hydrocarbon) group;
R A2 is a divalent saturated hydrocarbon group, a halogeno divalent saturated hydrocarbon group, a heteroatom-containing divalent saturated hydrocarbon group, or a halogeno (heteroatom-containing divalent saturated hydrocarbon) group.
 本開示において、「1価飽和炭化水素基」は、直鎖状アルキル基、分岐鎖状アルキル基、及びシクロアルキル基のいずれであってもよい。「2価飽和炭化水素基」は、直鎖状アルキレン基、分岐鎖状アルキレン基、及びシクロアルキレン基のいずれであってもよい。直鎖状アルキル基、分岐鎖状アルキル基、直鎖状アルキレン基、及び分岐鎖状アルキレン基には、脂環構造が含まれていてもよい。 In the present disclosure, a "monovalent saturated hydrocarbon group" may be any of a linear alkyl group, a branched alkyl group, and a cycloalkyl group. A "divalent saturated hydrocarbon group" may be any of a linear alkylene group, a branched alkylene group, and a cycloalkylene group. The linear alkyl group, the branched alkyl group, the linear alkylene group, and the branched alkylene group may contain an alicyclic structure.
 本開示において、「ハロゲノ」とは、フッ素原子、塩素原子、臭素原子、及びヨウ素原子から選ばれる少なくとも1種のハロゲン原子により、基中に存在する水素原子の1個以上が置換されたことを意味する。基中には、水素原子が存在していてもよく、存在しなくてもよい。 In this disclosure, "halogeno" means that one or more hydrogen atoms present in the group are replaced with at least one halogen atom selected from a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Hydrogen atoms may or may not be present in the group.
 本開示において、「ハロゲノ1価飽和炭化水素基」とは、ハロゲン原子により、1価飽和炭化水素基中に存在する水素原子の1個以上が置換された基を意味する。「ハロゲノ2価飽和炭化水素基」とは、ハロゲン原子により、2価飽和炭化水素基中に存在する水素原子の1個以上が置換された基を意味する。 In this disclosure, a "halogeno monovalent saturated hydrocarbon group" refers to a group in which one or more hydrogen atoms present in a monovalent saturated hydrocarbon group have been replaced by a halogen atom. A "halogeno divalent saturated hydrocarbon group" refers to a group in which one or more hydrogen atoms present in a divalent saturated hydrocarbon group have been replaced by a halogen atom.
 本開示において、「ヘテロ原子」とは、炭素原子及び水素原子以外の原子を意味し、例えば、窒素原子、酸素原子、及び硫黄原子が挙げられる。 In this disclosure, "heteroatom" means an atom other than a carbon atom or a hydrogen atom, and examples include a nitrogen atom, an oxygen atom, and a sulfur atom.
 本開示において、「ヘテロ原子含有1価飽和炭化水素基」とは、1価飽和炭化水素基中に、2価のヘテロ原子、又はヘテロ原子を含む2価の基が含まれている基を意味する。「ヘテロ原子含有2価飽和炭化水素基」とは、2価飽和炭化水素基中に、2価のヘテロ原子、又はヘテロ原子を含む2価の基が含まれている基を意味する。2価のヘテロ原子としては、例えば、-O-及び-S-が挙げられる。また、ヘテロ原子を含む2価の基としては、例えば、-NH-、-C(=O)-、及び-SO-が挙げられる。 In the present disclosure, a "heteroatom-containing monovalent saturated hydrocarbon group" refers to a group in which a divalent heteroatom or a divalent group containing a heteroatom is contained in a monovalent saturated hydrocarbon group. A "heteroatom-containing divalent saturated hydrocarbon group" refers to a group in which a divalent heteroatom or a divalent group containing a heteroatom is contained in a divalent saturated hydrocarbon group. Examples of divalent heteroatoms include -O- and -S-. Examples of divalent groups containing a heteroatom include -NH-, -C(=O)-, and -SO2- .
 本開示において、「ハロゲノ(ヘテロ原子含有1価飽和炭化水素)基」とは、上記ヘテロ原子含有1価飽和炭化水素基中の水素原子の1個以上がハロゲン原子に置換された基を意味する。「ハロゲノ(ヘテロ原子含有2価飽和炭化水素)基」とは、上記ヘテロ原子含有2価飽和炭化水素基中の水素原子の1個以上がハロゲン原子に置換された基を意味する。 In this disclosure, the term "halogeno (heteroatom-containing monovalent saturated hydrocarbon) group" refers to a group in which one or more hydrogen atoms in the heteroatom-containing monovalent saturated hydrocarbon group have been replaced with a halogen atom. The term "halogeno (heteroatom-containing divalent saturated hydrocarbon) group" refers to a group in which one or more hydrogen atoms in the heteroatom-containing divalent saturated hydrocarbon group have been replaced with a halogen atom.
 式(1)において、RA1及びRB1の少なくとも一方が水素原子を含むことが好ましい。また、式(2)において、RA2、RB2、及びRB3からなる群より選択される少なくとも一つが水素原子を含むことが好ましい。 In formula (1), it is preferable that at least one of R A1 and R B1 contains a hydrogen atom. Also, in formula (2), it is preferable that at least one selected from the group consisting of R A2 , R B2 , and R B3 contains a hydrogen atom.
〔RA1
 式(1)中、RA1は、1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基である。
[R A1 ]
In formula (1), R A1 represents a monovalent saturated hydrocarbon group, a halogeno monovalent saturated hydrocarbon group, a heteroatom-containing monovalent saturated hydrocarbon group, or a halogeno (heteroatom-containing monovalent saturated hydrocarbon) group.
 RA1で表される1価飽和炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、及びシクロヘキシル基が挙げられる。 Examples of the monovalent saturated hydrocarbon group represented by R A1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a 2-ethylhexyl group, and a cyclohexyl group.
 RA1で表されるハロゲノ1価飽和炭化水素基としては、ハロゲノアルキル基が好ましい。ハロゲノ1価飽和炭化水素基に含まれるハロゲン原子は、フッ素原子、塩素原子、又は臭素原子が好ましく、フッ素原子がより好ましい。 The halogeno monovalent saturated hydrocarbon group represented by R A1 is preferably a halogenoalkyl group. The halogen atom contained in the halogeno monovalent saturated hydrocarbon group is preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a fluorine atom.
 RA1で表されるヘテロ原子含有1価飽和炭化水素基は、エーテル性酸素原子(すなわち、-O-)を含む1価飽和炭化水素基が好ましく、エーテル性酸素原子を含むアルキル基がより好ましい。 The heteroatom-containing monovalent saturated hydrocarbon group represented by R A1 is preferably a monovalent saturated hydrocarbon group containing an ethereal oxygen atom (that is, --O--), and more preferably an alkyl group containing an ethereal oxygen atom.
 RA1で表されるハロゲノ(ヘテロ原子含有1価飽和炭化水素)基としては、ハロゲノ(ヘテロ原子含有アルキル基)が好ましい。ハロゲノ(ヘテロ原子含有1価飽和炭化水素)基に含まれるハロゲン原子は、フッ素原子、塩素原子、又は臭素原子が好ましい。ハロゲノ(ヘテロ原子含有1価飽和炭化水素)基は、エーテル性酸素原子を含むハロゲノ1価飽和炭化水素基が好ましく、エーテル性酸素原子を含むハロゲノアルキル基がより好ましい。 The halogeno (heteroatom-containing monovalent saturated hydrocarbon) group represented by R A1 is preferably a halogeno (heteroatom-containing alkyl group). The halogen atom contained in the halogeno (heteroatom-containing monovalent saturated hydrocarbon) group is preferably a fluorine atom, a chlorine atom, or a bromine atom. The halogeno (heteroatom-containing monovalent saturated hydrocarbon) group is preferably a halogeno monovalent saturated hydrocarbon group containing an ethereal oxygen atom, and more preferably a halogenoalkyl group containing an ethereal oxygen atom.
 RA1の炭素数は、後述する溶媒への溶解性に優れる点から、1~200が好ましく、3~100がより好ましい。 The carbon number of R A1 is preferably 1 to 200, and more preferably 3 to 100, from the viewpoint of excellent solubility in a solvent described later.
 中でも、液体中への溶解性に優れる観点から、RA1は、下記式(A1)で表されることが好ましい。つまり、RA1は、エーテル結合をさらに有することが好ましく、ポリエーテル鎖及びフルオロポリエーテル鎖からなる群より選択される少なくとも一つを含むことがより好ましい。
 R11O-(R12O)m1-R13- …(A1)
In particular, from the viewpoint of excellent solubility in liquids, R A1 is preferably represented by the following formula (A1): In other words, R A1 preferably further has an ether bond, and more preferably includes at least one selected from the group consisting of a polyether chain and a fluoropolyether chain.
R 11 O-(R 12 O) m1 -R 13 - ... (A1)
 式(A1)中、R11は、フッ素原子を有していてもよいアルキル基であり、R12はそれぞれ独立に、炭素数1~6のフッ素原子を有していてもよいアルキレン基であり、R13は、炭素数1~6のフッ素原子を有していてもよいアルキレン基であり、m1は0~500の整数である。 In formula (A1), R 11 is an alkyl group which may have a fluorine atom, R 12 is each independently an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom, R 13 is an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom, and m1 is an integer from 0 to 500.
 式(A1)中、R11としては、例えば、アルキル基及びフルオロアルキル基が挙げられる。 In formula (A1), examples of R 11 include an alkyl group and a fluoroalkyl group.
 R11の炭素数は、後述する溶媒への溶解性に優れる点から、1~100が好ましく、1~50がより好ましく、1~10がさらに好ましく、1~6が特に好ましい。 The carbon number of R 11 is preferably 1 to 100, more preferably 1 to 50, even more preferably 1 to 10, and particularly preferably 1 to 6, from the viewpoint of excellent solubility in a solvent described later.
 R11で表されるアルキル基は、直鎖状アルキル基であってもよく、分岐鎖状アルキル基であってもよく、環構造を有するアルキル基であってもよい。 The alkyl group represented by R 11 may be a linear alkyl group, a branched alkyl group, or an alkyl group having a ring structure.
 R11で表されるフルオロアルキル基は、直鎖状フルオロアルキル基であってもよく、分岐鎖状フルオロアルキル基であってもよく、環構造を有するフルオロアルキル基であってもよい。 The fluoroalkyl group represented by R 11 may be a straight-chain fluoroalkyl group, a branched-chain fluoroalkyl group, or a fluoroalkyl group having a ring structure.
 中でも、R11は、アルキル基であることが好ましく、直鎖状アルキル基であることがより好ましく、炭素数1~6の直鎖状アルキル基であることがさらに好ましい。 Among these, R 11 is preferably an alkyl group, more preferably a linear alkyl group, and even more preferably a linear alkyl group having 1 to 6 carbon atoms.
 式(A1)中、-(R12O)m1-は、下記式(A2)で表されることが好ましい。
 -[(Rf1O)k1(Rf2O)k2(Rf3O)k3(Rf4O)k4(Rf5O)k5(Rf6O)k6]- …(A2)
 ただし、
 Rf1は、炭素数1のフルオロアルキレン基であり、
 Rf2は、炭素数2のフルオロアルキレン基であり、
 Rf3は、炭素数3のフルオロアルキレン基であり、
 Rf4は、炭素数4のフルオロアルキレン基であり、
 Rf5は、炭素数5のフルオロアルキレン基であり、
 Rf6は、炭素数6のフルオロアルキレン基である。
 k1、k2、k3、k4、k5、及びk6は、それぞれ独立に0又は1以上の整数を表し、k1+k2+k3+k4+k5+k6は0~500の整数である。
In formula (A1), -(R 12 O) m1 - is preferably represented by the following formula (A2).
-[(R f1 O) k1 (R f2 O) k2 (R f3 O) k3 (R f4 O) k4 (R f5 O) k5 (R f6 O) k6 ]- ... (A2)
however,
R f1 is a fluoroalkylene group having 1 carbon atom;
R f2 is a fluoroalkylene group having 2 carbon atoms,
R f3 is a fluoroalkylene group having 3 carbon atoms,
R f4 is a fluoroalkylene group having 4 carbon atoms,
R f5 is a fluoroalkylene group having 5 carbon atoms;
R f6 is a fluoroalkylene group having 6 carbon atoms.
k1, k2, k3, k4, k5, and k6 each independently represent an integer of 0 or 1 or more, and k1+k2+k3+k4+k5+k6 is an integer of 0 to 500.
 液体中への溶解性に優れる観点から、k1+k2+k3+k4+k5+k6は、1~500の整数が好ましく、1~300の整数がより好ましく、5~200の整数がさらに好ましく、10~150の整数が特に好ましい。 From the viewpoint of excellent solubility in liquids, k1+k2+k3+k4+k5+k6 is preferably an integer from 1 to 500, more preferably an integer from 1 to 300, even more preferably an integer from 5 to 200, and particularly preferably an integer from 10 to 150.
 なお、式(A2)における(Rf1O)~(Rf6O)の結合順序は任意である。式(A2)のk1~k6は、それぞれ、(Rf1O)~(Rf6O)の個数を表すものであり、配置を表すものではない。例えば、(Rf5O)k5は、(Rf5O)の数がk5個であることを表し、(Rf5O)k5のブロック配置構造を表すものではない。同様に、(Rf1O)~(Rf6O)の記載順は、それぞれの単位の結合順序を表すものではない。 In addition, the bonding order of (R f1 O) to (R f6 O) in formula (A2) is arbitrary. k1 to k6 in formula (A2) respectively represent the number of (R f1 O) to (R f6 O), and do not represent the arrangement. For example, (R f5 O) k5 represents that the number of (R f5 O) is k5, and does not represent a block arrangement structure of (R f5 O) k5 . Similarly, the order of (R f1 O) to (R f6 O) does not represent the bonding order of each unit.
 Rf3~Rf6において、フルオロアルキレン基は、直鎖状フルオロアルキレン基であってもよく、分岐鎖状フルオロアルキレン基であってもよく、環構造を有するフルオロアルキレン基であってもよい。 In R f3 to R f6 , the fluoroalkylene group may be a linear fluoroalkylene group, a branched fluoroalkylene group, or a fluoroalkylene group having a ring structure.
 Rf1の具体例としては、-CF-及び-CHF-が挙げられる。 Specific examples of R f1 include --CF 2 -- and --CHF--.
 Rf2の具体例としては、-CFCF-、-CFCHF-、-CHFCF-、-CHFCHF-、-CHCF-、及び-CHCHF-が挙げられる。 Specific examples of R f2 include -CF 2 CF 2 -, -CF 2 CHF-, -CHFCF 2 -, -CHFCHF-, -CH 2 CF 2 -, and -CH 2 CHF-.
 Rf3の具体例としては、-CFCFCF-、-CFCHFCF-、-CFCHCF-、-CHFCFCF-、-CHFCHFCF-、-CHFCHFCHF-、-CHFCHCF-、-CHCFCF-、-CHCHFCF-、-CHCHCF-、-CHCFCHF-、-CHCHFCHF-、-CHCHCHF-、-CF(CF)-CF-、-CF(CHF)-CF-、-CF(CHF)-CF-、-CF(CH)-CF-、-CF(CF)-CHF-、-CF(CHF)-CHF-、-CF(CHF)-CHF-、-CF(CH)-CHF-、-CF(CF)-CH-、-CF(CHF)-CH-、-CF(CHF)-CH-、-CF(CH)-CH-、-CH(CF)-CF-、-CH(CHF)-CF-、-CH(CHF)-CF-、-CH(CH)-CF-、-CH(CF)-CHF-、-CH(CHF)-CHF-、-CH(CHF)-CHF-、-CH(CH)-CHF-、-CH(CF)-CH-、-CH(CHF)-CH-、及び-CH(CHF)-CH-が挙げられる。 Specific examples of R f3 include -CF 2 CF 2 CF 2 -, -CF 2 CHFCF 2 -, -CF 2 CH 2 CF 2 -, -CHFCF 2 CF 2 -, -CHFCHFCF 2 -, -CHFCHFCHF-, -CHFCH 2 CF 2 -, -CH 2 CF 2 CF 2 -, -CH 2 CHFCF 2 -, -CH 2 CH 2 CF 2 -, -CH 2 CF 2 CHF-, -CH 2 CHFCHF-, -CH 2 CH 2 CHF- , -CF (CF 3 )-CF 2 -, -CF(CHF 2 )-CF 2 -, -CF(CH 2 F)-CF 2 -, -CF( CH3 ) -CF2- , -CF(CF3)-CHF-, -CF( CHF2 )-CHF-, -CF( CH2F )-CHF- , -CF( CH3 )-CHF-, -CF( CF3 ) -CH2- , -CF(CHF2) -CH2- , -CF( CH2F ) -CH2- , -CF( CH3 ) -CH2- , -CH ( CF3 )-CF2-, -CH( CHF2 )-CF2-, -CH(CH2F) -CF2- , -CH( CH3 ) -CF2- , -CH( CF3 )-CHF-, -CH( CHF2 ) -CHF-, -CH( CH2 Examples of such groups include -CH(CH 3 )-CHF-, -CH(CH 3 )-CHF-, -CH(CF 3 )-CH 2 -, -CH(CHF 2 )-CH 2 -, and -CH(CH 2 F)-CH 2 -.
 Rf4の具体例としては、-CFCFCFCF-、-CFCFCFCHF-、-CFCFCFCH-、-CFCHFCFCF-、-CHFCHFCFCF-、-CHCHFCFCF-、-CFCHCFCF-、-CHFCHCFCF-、-CHCHCFCF-、-CHFCFCHFCF-、-CHCFCHFCF-、-CFCHFCHFCF-、-CHFCHFCHFCF-、-CHCHFCHFCF-、-CFCHCHFCF-、-CHFCHCHFCF-、-CHCHCHFCF-、-CFCHCHCF-、-CHFCHCHCF-、-CHCHCHCF-、-CHFCHCHCHF-、-CHCHCHCHF-、及び-cycloC-が挙げられる。 Specific examples of R f4 include -CF 2 CF 2 CF 2 - , -CF 2 CF 2 CF 2 CHF-, -CF 2 CF 2 CF 2 CH 2 - , -CF 2 CHFCF 2 CF 2 -, -CHFCHFCF 2 CF 2 -, -CH 2 CHFCF 2 CF 2 -, -CF 2 CH 2 CF 2 CF 2 -, -CHFCH 2 CF 2 CF 2 -, -CH 2 CH 2 CF 2 CF 2 -, -CHFCF 2 CHFCF 2 -, -CH 2 CF 2 CHFCF 2 -, -CF 2 CHFCFCF 2 - , and -CF 2 CHFCFCF 2 -, -CHFCHFCHFCF 2 -, -CH 2 CHFCHFCF 2 -, -CF 2 CH 2 CHFCF 2 -, -CHFCH 2 CHFCF 2 -, -CH 2 CH 2 CHFCF 2 -, -CF 2 CH 2 CH 2 CF 2 -, -CHFCH 2 CH 2 CF 2 -, -CH 2 CH 2 CH 2 CF 2 -, -CHFCH 2 CH 2 CHF-, -CH 2 CH 2 CH 2 CHF- , and -cycloC 4 F 6 -.
 Rf5の具体例としては、-CFCFCFCFCF-、-CHFCFCFCFCF-、-CHCHFCFCFCF-、-CFCHFCFCFCF-、-CHFCHFCFCFCF-、-CFCHCFCFCF-、-CHFCHCFCFCF-、-CHCHCFCFCF-、-CFCFCHFCFCF-、-CHFCFCHFCFCF-、-CHCFCHFCFCF-、-CHCFCFCFCH-、及び-cycloC-が挙げられる。 Specific examples of R f5 include -CF 2 CF 2 CF 2 CF 2 CF 2 -, -CHFCF 2 CF 2 CF 2 CF 2 -, -CH 2 CHFCF 2 CF 2 CF 2 -, -CF 2 CHFCF 2 CF 2 CF 2 -, -CHFCHFCF 2 CF 2 CF 2 -, -CF 2 CH 2 CF 2 CF 2 CF 2 -, -CHFCH 2 CF 2 CF 2 CF 2 -, -CH 2 CH 2 CF 2 CF 2 CF 2 -, -CF 2 CF 2 CHFCF 2 CF 2 -, -CHFCF 2 CHFCF 2 Examples include -CF 2 -, -CH 2 CF 2 CHFCF 2 CF 2 -, -CH 2 CF 2 CF 2 CF 2 CH 2 -, and -cycloC 5 F 8 -.
 Rf6の具体例としては、-CFCFCFCFCFCF-、-CFCFCHFCHFCFCF-、-CHFCFCFCFCFCF-、-CHFCHFCHFCHFCHFCHF-、-CHFCFCFCFCFCH-、-CHCFCFCFCFCH-、及び-cycloC10-が挙げられる。
 ここで、-cycloC-は、ペルフルオロシクロブタンジイル基を意味し、その具体例としては、ペルフルオロシクロブタン-1,2-ジイル基が挙げられる。-cycloC-は、ペルフルオロシクロペンタンジイル基を意味し、その具体例としては、ペルフルオロシクロペンタン-1,3-ジイル基が挙げられる。-cycloC10-は、ペルフルオロシクロヘキサンジイル基を意味し、その具体例としては、ペルフルオロシクロヘキサン-1,4-ジイル基が挙げられる。
Specific examples of R f6 include -CF 2 CF 2 CF 2 CF 2 CF 2 -, -CF 2 CF 2 CHFCHFCF 2 CF 2 -, -CHFCF 2 CF 2 CF 2 CF 2 CF 2 -, -CHFCHFCHFCHFCHFCHF-, -CHFCF 2 CF 2 CF 2 CF 2 CH 2 - , -CH 2 CF 2 CF 2 CF 2 CH 2 - , and -cycloC 6 F 10 -.
Here, -cycloC 4 F 6 - means a perfluorocyclobutanediyl group, a specific example of which is a perfluorocyclobutane-1,2-diyl group, -cycloC 5 F 8 - means a perfluorocyclopentanediyl group, a specific example of which is a perfluorocyclopentane-1,3-diyl group, -cycloC 6 F 10 - means a perfluorocyclohexanediyl group, a specific example of which is a perfluorocyclohexane-1,4-diyl group.
 中でも、-(R12O)m1-は、下記式(F1)~(F3)で表される構造からなる群より選択される少なくとも1つを含むことが好ましく、式(F2)で表される構造を含むことがより好ましい。
  -(Rf1O)k1-(Rf2O)k2- …(F1)
  -(Rf2O)k2-(Rf4O)k4- …(F2)
  -(Rf3O)k3- …(F3)
 ただし、式(F1)~式(F3)の各符号は、上記式(A2)と同様である。
Among these, —(R 12 O) m1 — preferably contains at least one selected from the group consisting of structures represented by the following formulas (F1) to (F3), and more preferably contains a structure represented by formula (F2).
-(R f1 O) k1 -(R f2 O) k2 - ... (F1)
-(R f2 O) k2 -(R f4 O) k4 - ... (F2)
-(R f3 O) k3 - ... (F3)
However, the symbols in formulas (F1) to (F3) are the same as those in formula (A2) above.
 式(F1)及び式(F2)において、(Rf1O)と(Rf2O)、(Rf2O)と(Rf4O)の結合順序は各々任意である。例えば(Rf1O)と(Rf2O)が交互に配置されてもよく、(Rf1O)と(Rf2O)が各々ブロックに配置されてもよく、またランダムであってもよい。式(F2)においても同様である。
 式(F1)において、k1は1~30が好ましく、1~20がより好ましい。またk2は1~30が好ましく、1~20がより好ましい。
 式(F2)において、k2は1~30が好ましく、1~20がより好ましい。またk4は1~30が好ましく、1~20がより好ましい。
 式(F3)において、k3は1~30が好ましく、1~20がより好ましい。
In formula (F1) and formula (F2), the bonding order of (R f1 O) and (R f2 O), and (R f2 O) and (R f4 O) are each arbitrary. For example, (R f1 O) and (R f2 O) may be arranged alternately, (R f1 O) and (R f2 O) may be arranged in blocks, or may be arranged randomly. The same applies to formula (F2).
In formula (F1), k1 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20. Also, k2 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
In formula (F2), k2 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20. Also, k4 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
In formula (F3), k3 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
 式(A1)中、R13としては、上記、Rf1~Rf6と同様のものが挙げられる。 In formula (A1), examples of R 13 include the same as R f1 to R f6 above.
 中でも、R13は、炭素数1~4のフルオロアルキレン基が好ましい。 Of these, R 13 is preferably a fluoroalkylene group having 1 to 4 carbon atoms.
 RA1の具体例として、例えば、以下の構造が挙げられる。*は、-O-との結合部位を表し、n1は0~60の整数、n2は0~500の整数を表す。n1としては例えば13が挙げられ、n2としては例えば7が挙げられる。 Specific examples of R A1 include the following structures. * represents a bonding site with --O--, n1 represents an integer of 0 to 60, and n2 represents an integer of 0 to 500. n1 is, for example, 13, and n2 is, for example, 7.
〔RB1
 式(1)中、RB1は、1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基である。
[R B1 ]
In formula (1), R B1 is a monovalent saturated hydrocarbon group, a halogeno monovalent saturated hydrocarbon group, a heteroatom-containing monovalent saturated hydrocarbon group, or a halogeno (heteroatom-containing monovalent saturated hydrocarbon) group.
 RB1で表される1価飽和炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、及びシクロヘキシル基が挙げられる。 Examples of the monovalent saturated hydrocarbon group represented by R B1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a 2-ethylhexyl group, and a cyclohexyl group.
 RB1で表されるハロゲノ1価飽和炭化水素基としては、ハロゲノアルキル基が好ましい。ハロゲノ1価飽和炭化水素基に含まれるハロゲン原子は、フッ素原子、塩素原子、又は臭素原子が好ましい。 The halogeno monovalent saturated hydrocarbon group represented by R B1 is preferably a halogenoalkyl group. The halogen atom contained in the halogeno monovalent saturated hydrocarbon group is preferably a fluorine atom, a chlorine atom, or a bromine atom.
 RB1で表されるヘテロ原子含有1価飽和炭化水素基は、エーテル性酸素原子(すなわち、-O-)を含む1価飽和炭化水素基が好ましく、エーテル性酸素原子を含むアルキル基がより好ましい。つまり、RB1は、エーテル結合をさらに有することが好ましい。 The heteroatom-containing monovalent saturated hydrocarbon group represented by R is preferably a monovalent saturated hydrocarbon group containing an ethereal oxygen atom (i.e., -O-), and more preferably an alkyl group containing an ethereal oxygen atom. In other words, R preferably further has an ether bond.
 RB1で表されるハロゲノ(ヘテロ原子含有1価飽和炭化水素)基としては、ハロゲノ(ヘテロ原子含有アルキル基)が好ましい。ハロゲノ(ヘテロ原子含有1価飽和炭化水素)基に含まれるハロゲン原子は、フッ素原子、塩素原子、又は臭素原子が好ましい。ハロゲノ(ヘテロ原子含有1価飽和炭化水素)基は、エーテル性酸素原子を含むハロゲノ1価飽和炭化水素基が好ましく、エーテル性酸素原子を含むハロゲノアルキル基がより好ましい。 The halogeno (heteroatom-containing monovalent saturated hydrocarbon) group represented by R B1 is preferably a halogeno (heteroatom-containing alkyl group). The halogen atom contained in the halogeno (heteroatom-containing monovalent saturated hydrocarbon) group is preferably a fluorine atom, a chlorine atom, or a bromine atom. The halogeno (heteroatom-containing monovalent saturated hydrocarbon) group is preferably a halogeno monovalent saturated hydrocarbon group containing an ethereal oxygen atom, and more preferably a halogenoalkyl group containing an ethereal oxygen atom.
 RB1の炭素数は、後述する溶媒への溶解性に優れる点から、1~100が好ましく、2~50がより好ましく、3~20がさらに好ましい。 The carbon number of R B1 is preferably 1 to 100, more preferably 2 to 50, and even more preferably 3 to 20, from the viewpoint of excellent solubility in a solvent described later.
 RB1は、後述する溶媒への溶解性に優れる点から、少なくとも1つのフッ素原子を含むことが好ましく、水素原子を含まないことが好ましい。 From the viewpoint of excellent solubility in a solvent described later, R B1 preferably contains at least one fluorine atom and preferably does not contain a hydrogen atom.
 中でも、後述する溶媒への溶解性に優れる観点から、RB1は、下記式(B1)で表されることが好ましい。
 R21O-(R22O)m2-R23- …(B1)
Among these, from the viewpoint of excellent solubility in a solvent described later, R B1 is preferably represented by the following formula (B1).
R21O- ( R22O ) m2 - R23 -... (B1)
 式(B1)中、R21は、フッ素原子を有していてもよいアルキル基であり、R22はそれぞれ独立に、炭素数1~6のフッ素原子を有していてもよいアルキレン基であり、R23は、炭素数1~6のフッ素原子を有していてもよいアルキレン基であり、m2は0~20の整数である。 In formula (B1), R 21 is an alkyl group which may have a fluorine atom, R 22 is each independently an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom, R 23 is an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom, and m2 is an integer of 0 to 20.
 式(B1)中、R21としては、例えば、アルキル基及びフルオロアルキル基が挙げられる。 In formula (B1), examples of R 21 include an alkyl group and a fluoroalkyl group.
 R21の炭素数は、後述する溶媒への溶解性に優れる点から、1~50が好ましく、1~10がより好ましく、1~6がさらに好ましい。 The carbon number of R 21 is preferably 1 to 50, more preferably 1 to 10, and even more preferably 1 to 6, from the viewpoint of excellent solubility in a solvent described later.
 R21で表されるアルキル基は、直鎖状アルキル基であってもよく、分岐鎖状アルキル基であってもよく、環構造を有するアルキル基であってもよい。
 R21で表されるフルオロアルキル基は、直鎖状フルオロアルキル基であってもよく、分岐鎖状フルオロアルキル基であってもよく、環構造を有するフルオロアルキル基であってもよい。
The alkyl group represented by R21 may be a linear alkyl group, a branched alkyl group, or an alkyl group having a ring structure.
The fluoroalkyl group represented by R 21 may be a straight-chain fluoroalkyl group, a branched-chain fluoroalkyl group, or a fluoroalkyl group having a ring structure.
 中でも、R21は、フルオロアルキル基が好ましく、直鎖状フルオロアルキル基がより好ましく、炭素数1~6の直鎖状フルオロアルキル基がさらに好ましく、炭素数1~6の直鎖状ペルフルオロアルキル基が特に好ましい。 Among these, R 21 is preferably a fluoroalkyl group, more preferably a linear fluoroalkyl group, still more preferably a linear fluoroalkyl group having 1 to 6 carbon atoms, and particularly preferably a linear perfluoroalkyl group having 1 to 6 carbon atoms.
 式(B1)中、-(R22O)m2-は、上記式(A2)で表されることが好ましい。 In formula (B1), —(R 22 O) m2 — is preferably represented by the above formula (A2).
 式(B1)中、m2は0~15が好ましく、0~10がより好ましく、0~4がさらに好ましく、0~2が特に好ましい。 In formula (B1), m2 is preferably 0 to 15, more preferably 0 to 10, even more preferably 0 to 4, and particularly preferably 0 to 2.
 式(B1)中、R23としては、上記、Rf1~Rf6と同様のものが挙げられる。 In formula (B1), examples of R 23 include the same as R f1 to R f6 above.
 中でも、R23は、炭素数1~3のフルオロアルキレン基が好ましく、炭素数1~3のペルフルオロアルキレン基がより好ましい。 Among these, R 23 is preferably a fluoroalkylene group having 1 to 3 carbon atoms, and more preferably a perfluoroalkylene group having 1 to 3 carbon atoms.
 RB1の具体例として、例えば、以下の構造が挙げられる。*は、-O-(C=O)-との結合部位を表す。 Specific examples of R B1 include the following structures: * represents the bonding site with -O-(C=O)-.
〔RA2
 式(2)中、RA2は、2価飽和炭化水素基、ハロゲノ2価飽和炭化水素基、ヘテロ原子含有2価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有2価飽和炭化水素)基である。
[R A2 ]
In formula (2), R A2 is a divalent saturated hydrocarbon group, a halogeno divalent saturated hydrocarbon group, a heteroatom-containing divalent saturated hydrocarbon group, or a halogeno (heteroatom-containing divalent saturated hydrocarbon) group.
 RA2で表される2価飽和炭化水素基、ハロゲノ2価飽和炭化水素基、ヘテロ原子含有2価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有2価飽和炭化水素)基としては、式(1)中のRA1で表される1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基から水素原子又はハロゲン原子を1つ除いた基が挙げられる。 Examples of the divalent saturated hydrocarbon group, halogeno divalent saturated hydrocarbon group, heteroatom-containing divalent saturated hydrocarbon group, or halogeno (heteroatom-containing divalent saturated hydrocarbon) group represented by R include groups in which one hydrogen atom or one halogen atom has been removed from the monovalent saturated hydrocarbon group, halogeno monovalent saturated hydrocarbon group, heteroatom-containing monovalent saturated hydrocarbon group, or halogeno (heteroatom-containing monovalent saturated hydrocarbon) group represented by R in formula ( 1).
 RA2の炭素数は、後述する溶媒への溶解性に優れる点から、1~200が好ましく、3~100がより好ましい。 The carbon number of R A2 is preferably 1 to 200, and more preferably 3 to 100, from the viewpoint of excellent solubility in a solvent described later.
 中でも、後述する溶媒への溶解性に優れる観点から、RA2は、下記式(A5)で表されることが好ましい。つまり、RA2は、エーテル結合をさらに有することが好ましく、ポリエーテル鎖及びフルオロポリエーテル鎖からなる群より選択される少なくとも一つを含むことがより好ましい。
 -R31O-(R32O)m5-R33- …(A5)
Among these, from the viewpoint of excellent solubility in a solvent described later, R A2 is preferably represented by the following formula (A5): In other words, R A2 preferably further has an ether bond, and more preferably includes at least one selected from the group consisting of a polyether chain and a fluoropolyether chain.
-R 31 O-(R 32 O) m5 -R 33 - ... (A5)
 式(A5)中、R31及びR33は、それぞれ独立に、炭素数1~6のフッ素原子を有していてもよいアルキレン基であり、R32はそれぞれ独立に、炭素数1~6のフッ素原子を有していてもよいアルキレン基であり、m5は0~500の整数である。 In formula (A5), R 31 and R 33 each independently represent an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom, R 32 each independently represent an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom, and m5 is an integer of 0 to 500.
 式(A5)中、R31及びR33としては、それぞれ独立に、式(A1)中のR13と同様のものが挙げられる。
 式(A5)中、-(R32O)m5-としては、式(A1)中の-(R12O)m1-と同様のものが挙げられる。
In formula (A5), R 31 and R 33 each independently have the same meaning as R 13 in formula (A1).
In formula (A5), examples of -(R 32 O) m5 - include the same as -(R 12 O) m1 - in formula (A1).
 RA2の具体例として、例えば、以下の構造が挙げられる。*は、-O-との結合部位を表し、n2は0~500の整数を表す。 Specific examples of R A2 include the following structures: * represents a bonding site with —O—, and n2 represents an integer of 0 to 500.
〔RB2及びRB3
 式(2)中、RB2及びRB3は、それぞれ独立に、1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基である。
[R B2 and R B3 ]
In formula (2), R B2 and R B3 each independently represent a monovalent saturated hydrocarbon group, a halogeno monovalent saturated hydrocarbon group, a heteroatom-containing monovalent saturated hydrocarbon group, or a halogeno (heteroatom-containing monovalent saturated hydrocarbon) group.
 RB2又はRB3で表される1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基としては、式(1)中のRB1で表される1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基と同様の基が挙げられる。 Examples of the monovalent saturated hydrocarbon group, halogeno monovalent saturated hydrocarbon group, heteroatom-containing monovalent saturated hydrocarbon group, or halogeno (heteroatom-containing monovalent saturated hydrocarbon) group represented by R or R include groups similar to the monovalent saturated hydrocarbon group, halogeno monovalent saturated hydrocarbon group, heteroatom-containing monovalent saturated hydrocarbon group, or halogeno (heteroatom-containing monovalent saturated hydrocarbon) group represented by R in formula (1).
 原料化合物の例としては、下記化合物(T1)等も挙げられる。 An example of a raw material compound is the following compound (T1).
 液体中に含有される原料化合物の含有率は、粘度の観点から、液体全体に対し、10~100質量%が好ましく、10~70質量%がより好ましく、15~70質量%がさらに好ましく、20~50質量%が特に好ましい。 From the viewpoint of viscosity, the content of the raw material compound contained in the liquid is preferably 10 to 100% by mass, more preferably 10 to 70% by mass, even more preferably 15 to 70% by mass, and particularly preferably 20 to 50% by mass, based on the total mass of the liquid.
(溶媒)
 液体は、必要に応じて溶媒を含有してもよい。溶媒は、原料化合物を溶解可能な溶媒であれば特に限定されない。
(solvent)
The liquid may contain a solvent as necessary. The solvent is not particularly limited as long as it can dissolve the raw material compound.
 原料化合物及び原料化合物がフッ素化された含フッ素化合物の溶解性に優れる観点から、溶媒は、含塩素溶媒及び含塩素溶媒以外の含フッ素溶媒からなる群より選択される少なくとも一方を含むことが好ましく、含塩素溶媒を含むことがより好ましい。含塩素溶媒は、塩素原子を含む溶媒である。含塩素溶媒は、塩素原子以外にフッ素原子を含むことが好ましい。 From the viewpoint of excellent solubility of the raw material compound and the fluorine-containing compound obtained by fluorinating the raw material compound, the solvent preferably contains at least one selected from the group consisting of a chlorine-containing solvent and a fluorine-containing solvent other than a chlorine-containing solvent, and more preferably contains a chlorine-containing solvent. The chlorine-containing solvent is a solvent that contains chlorine atoms. The chlorine-containing solvent preferably contains fluorine atoms in addition to chlorine atoms.
 含塩素溶媒としては、例えば、CClFCClFCFOCFCClF(CFE-419)、CHClCHClCHOCFCHFCl(HCFE-473)、CFClCFClCHFOCFCFCl(HCFE-428a,b)、CFHClCFClCFOCFCFCl(HCFE-428c,d)、CFClCHClCFOCFCFCl(HCFE-428e)、1,2,3,4-テトラクロロパーフルオロブタン(R-113)、CFCl-CFCl-CFCl-O-CF-CFCl(CFE-418)、CClHFCClFCHFOCFCClF(HCFE-437a、b)、CClFCClHCHFOCFCClF(HCFE-437c)、CClHFCClFCHOCFCClF(HCFE-446a)、CFClCClCFOCFCFHCl(HCFE-427a,b)、CFHCClFCFOCFCFCl(HCFE-429)等が挙げられる。
 含塩素溶媒以外の含フッ素溶媒としては、ペルフルオロアルカン類(FC-72等)、ペルフルオロエーテル類(FC-75、FC-77等)、ペルフルオロポリエーテル類(商品名:クライトックス、フォンブリン、ガルデン、デムナム等)、不活性流体(商品名:フロリナート)、ペルフルオロカルボン酸フッ化物等が挙げられる。
Examples of chlorine-containing solvents include CClF 2 CClFCF 2 OCF 2 CClF 2 (CFE-419), CH 2 ClCHClCH 2 OCF 2 CHFCl (HCFE-473), CF 2 ClCFClCHFOCF 2 CF 2 Cl (HCFE-428a, b), CFHClCFClCF 2 OCF 2 CF 2 Cl (HCFE-428c, d), CF 2 ClCHClCF 2 OCF 2 CF 2 Cl (HCFE-428e), 1,2,3,4-tetrachloroperfluorobutane (R-113), CF 2 Cl-CFCl-CFCl-O-CF 2 -CF 2 Cl (CFE-418), CClHFCClFCHFOCF 2 CClF 2 (HCFE-437a, b), CClF 2 CClHCHFOCF 2 CClF 2 (HCFE-437c), CClHFCClFCH 2 OCF 2 CClF 2 (HCFE-446a), CF 2 ClCCl 2 CF 2 OCF 2 CFHCl (HCFE-427a, b), CF 2 HCClFCF 2 OCF 2 CF 2 Cl (HCFE-429), and the like.
Examples of fluorine-containing solvents other than chlorine-containing solvents include perfluoroalkanes (FC-72, etc.), perfluoroethers (FC-75, FC-77, etc.), perfluoropolyethers (trade names: Krytox, Fomblin, Galden, Demnum, etc.), inert fluids (trade name: Fluorinert), and perfluorocarboxylic acid fluorides.
 溶媒の沸点は、含フッ素化合物の収率を向上させる観点から、10~500℃が好ましく、30~250℃がより好ましく、50~150℃がさらに好ましい。
 溶媒の炭素数は、含フッ素化合物の収率を向上させる観点から、4以上が好ましく、4~1,000がより好ましく、4~500が更に好ましく、4~100が特に好ましく、4~50が最も好ましい。
 溶媒の分子量は、含フッ素化合物の収率を向上させる観点から、200以上が好ましく、200~50,000がより好ましく、200~25,000が更に好ましく、200~10,000が特に好ましく、200~1,000が最も好ましい。分子量に分布がある場合、分子量は、質量平均分子量(Mw)を表す。Mwはテトラヒドロフラン(THF)を溶離液として用いるゲル浸透クロマトグラフィ(GPC)測定により、ポリスチレン換算として測定される。
The boiling point of the solvent is preferably from 10 to 500°C, more preferably from 30 to 250°C, and even more preferably from 50 to 150°C, from the viewpoint of improving the yield of the fluorine-containing compound.
The solvent preferably has 4 or more carbon atoms, more preferably 4 to 1,000, even more preferably 4 to 500, particularly preferably 4 to 100, and most preferably 4 to 50, from the viewpoint of improving the yield of the fluorine-containing compound.
From the viewpoint of improving the yield of the fluorine-containing compound, the molecular weight of the solvent is preferably 200 or more, more preferably 200 to 50,000, even more preferably 200 to 25,000, particularly preferably 200 to 10,000, and most preferably 200 to 1,000. When the molecular weight has a distribution, the molecular weight represents the mass average molecular weight (Mw). Mw is measured in terms of polystyrene by gel permeation chromatography (GPC) measurement using tetrahydrofuran (THF) as an eluent.
 液体は、溶媒を含有し、かつ、溶媒の質量が原料化合物の質量の10倍以下であることが好ましく、5倍以下であることがより好ましく、3倍以下であることがさらに好ましい。溶媒の質量が原料化合物の質量に対して前記範囲であることにより、使用する溶媒量を少なくし原料溶液量を少なくすることで反応装置を小さくすることができるという利点がある。また、目的物である含フッ素化合物の原子残数が0.01個以上の場合、フッ素化後の液体の粘度を低く抑えられるため、溶媒の量を少なくでき、ろ過による不純物の除去を行う場合もろ過装置等にろ液が残りにくく、目的物である含フッ素化合物の収率が高くなる。 The liquid contains a solvent, and the mass of the solvent is preferably 10 times or less, more preferably 5 times or less, and even more preferably 3 times or less, the mass of the raw material compound. By having the mass of the solvent in the above range relative to the mass of the raw material compound, there is an advantage that the amount of solvent used and the amount of raw material solution can be reduced, thereby making it possible to make the reaction apparatus smaller. Furthermore, when the number of remaining atoms of the target fluorine-containing compound is 0.01 or more, the viscosity of the liquid after fluorination can be kept low, so the amount of solvent can be reduced, and even when impurities are removed by filtration, filtrate is less likely to remain in the filtration device, etc., and the yield of the target fluorine-containing compound is increased.
(その他添加剤)
 液体は、必要に応じてその他添加剤を含有してもよい。その他添加剤としては、例えば、原料化合物のフッ素化を促進する助剤が挙げられる。
 助剤としては、例えば、原料化合物以外のC-H結合含有化合物及び炭素-炭素二重結合含有化合物が挙げられる。C-H結合含有化合物としては、ベンゼン、トルエン等が挙げられる。炭素-炭素二重結合含有化合物としては、ヘキサフルオロプロピレン、ヘキサフルオロブタジエン等が挙げられる。助剤は、その中でも、ベンゼン、トルエン等の芳香族炭化水素が好ましい。
 なお、本実施形態では、目的物である含フッ素化合物の原子残数が0.01個以上であるため、液体が助剤を含有しなくても、液体中におけるフッ素ガスによる直接フッ素化において高い収率で目的物である含フッ素化合物が得られる。そのため、液体は、上記助剤を含有しなくてもよい。
(Other additives)
The liquid may contain other additives as necessary, such as an auxiliary agent that promotes the fluorination of the raw material compound.
Examples of the auxiliary include a C-H bond-containing compound and a carbon-carbon double bond-containing compound other than the raw material compound. Examples of the C-H bond-containing compound include benzene and toluene. Examples of the carbon-carbon double bond-containing compound include hexafluoropropylene and hexafluorobutadiene. Among these, the auxiliary is preferably an aromatic hydrocarbon such as benzene or toluene.
In this embodiment, since the number of remaining atoms of the target fluorine-containing compound is 0.01 or more, the target fluorine-containing compound can be obtained in high yield by direct fluorination with fluorine gas in the liquid even if the liquid does not contain an auxiliary. Therefore, the liquid does not need to contain the above-mentioned auxiliary.
<含フッ素化合物>
 原料化合物のフッ素化により得られる含フッ素化合物は、原料化合物が有するフッ素化可能な原子の少なくとも1つがフッ素原子に置き換わり、かつ、原子残数が0.01個以上の化合物である。
 前記の通り、原子残数が0.01個以上の含フッ素化合物は、フッ素化可能な原子の個数が異なる分子の混合物であってもよい。特に、原子残数が0.01個以上1個未満である含フッ素化合物は、フッ素化可能な原子を1個以上有する分子と、フッ素化可能な原子を有さない分子と、の混合物である。
 また、フッ素化可能な原子を1個以上有する分子を複数有する場合、前記複数の分子は互いに、フッ素化可能な原子を異なる位置に有するものであってもよく、同じ位置に有するものであってもよい。
<Fluorine-containing compounds>
The fluorine-containing compound obtained by fluorinating a raw material compound is a compound in which at least one fluorinatable atom of the raw material compound is replaced with a fluorine atom and the number of remaining atoms is 0.01 or more.
As described above, a fluorine-containing compound having 0.01 or more residual atoms may be a mixture of molecules having different numbers of fluorinable atoms. In particular, a fluorine-containing compound having 0.01 or more and less than 1 residual atom is a mixture of molecules having one or more fluorinable atoms and molecules having no fluorinable atoms.
In addition, when there are a plurality of molecules having one or more fluorinable atoms, the plurality of molecules may have the fluorinable atoms at different positions or at the same position.
 例えば、下記式(1-1)で表される原料化合物をフッ素化して得られる含フッ素化合物は、下記式(2-1)~(2-4)で表される分子の混合物であってもよい。なお、下記式(2-1)及び(2-2)中、m5及びm6は0~13の整数を表す。 For example, the fluorine-containing compound obtained by fluorinating the raw material compound represented by the following formula (1-1) may be a mixture of molecules represented by the following formulas (2-1) to (2-4). In the following formulas (2-1) and (2-2), m5 and m6 represent integers from 0 to 13.
 含フッ素化合物は、フッ素化可能な原子の中でも水素原子における1分子あたりの平均個数が0.01~5個であり、かつ、数平均分子量が1,000~30,000である化合物が好ましい。
 含フッ素化合物における1分子あたりの水素原子の平均個数は、0.01~4個がより好ましく、0.01~1個がさらに好ましく、0.01~0.5個が特に好ましい。
 含フッ素化合物における数平均分子量は、例えば800~101,000が挙げられ、溶媒への溶解性に優れる観点から、800~29,000が好ましく、800~21,000がより好ましく、800~11,000がさらに好ましく、1,000~11,000が特に好ましく、1,000~9,000が極めて好ましく、2,000~7,000が最も好ましい。上記含フッ素化合物における数平均分子量は、H-NMR及び19F-NMRによって特定された分子構造から算出される各分子の分子量の数平均値である。
The fluorine-containing compound is preferably a compound in which the average number of hydrogen atoms among fluorinable atoms per molecule is 0.01 to 5 and the number average molecular weight is 1,000 to 30,000.
The average number of hydrogen atoms per molecule in the fluorine-containing compound is more preferably from 0.01 to 4, further preferably from 0.01 to 1, and particularly preferably from 0.01 to 0.5.
The number average molecular weight of the fluorine-containing compound is, for example, 800 to 101,000, and from the viewpoint of excellent solubility in a solvent, it is preferably 800 to 29,000, more preferably 800 to 21,000, even more preferably 800 to 11,000, particularly preferably 1,000 to 11,000, extremely preferably 1,000 to 9,000, and most preferably 2,000 to 7,000. The number average molecular weight of the fluorine-containing compound is the number average value of the molecular weight of each molecule calculated from the molecular structure specified by 1 H-NMR and 19 F-NMR.
 含フッ素化合物は、酸素原子及び硫黄原子の少なくとも一方を含有する2価以上の官能基である特定官能基を有する化合物が好ましい。
 特定官能基の詳細及び好ましい形態は、前述の原料化合物における特定官能基と同様である。
The fluorine-containing compound is preferably a compound having a specific functional group which is a divalent or higher functional group containing at least one of an oxygen atom and a sulfur atom.
The details and preferred form of the specific functional group are the same as those of the specific functional group in the above-mentioned starting compound.
 原料化合物が前記式(1)で表される化合物である場合、含フッ素化合物は、下記式(6)で表される化合物のうち、水素原子の個数が異なる分子の混合物が好ましい。また、原料化合物が前記式(2)で表される化合物である場合、含フッ素化合物は、下記式(7)で表される化合物のうち、水素原子の個数が異なる分子の混合物が好ましい。
 RAF1-O-(C=O)-RBF1 …(6)
 RBF2-(C=O)-O-RAF2-O-(C=O)-RBF3 …(7)
 式(6)及び(7)中、
 RAF1、RBF1、RAF2、RBF2、及びRBF3は、それぞれ、RA1、RB1、RA2、RB2、及びRB3に対応する基であり、
 RA1、RB1、RA2、RB2、及びRB3がそれぞれ独立に水素原子を含まない基である場合、RAF1、RBF1、RAF2、RBF2、及びRBF3は、RA1、RB1、RA2、RB2、及びRB3と同一の基であり、
 RA1、RB1、RA2、RB2、及びRB3がそれぞれ独立に水素原子を含む基である場合、RAF1、RBF1、RAF2、RBF2、及びRBF3は、RA1、RB1、RA2、RB2、及びRB3に存在する少なくとも一部の水素原子がフッ素原子に置換された基である。
When the raw material compound is a compound represented by formula (1), the fluorine-containing compound is preferably a mixture of molecules having different numbers of hydrogen atoms among compounds represented by formula (6) below. When the raw material compound is a compound represented by formula (2), the fluorine-containing compound is preferably a mixture of molecules having different numbers of hydrogen atoms among compounds represented by formula (7) below.
R AF1 -O-(C=O)-R BF1 ... (6)
R BF2 -(C=O)-OR AF2 -O-(C=O)-R BF3 ... (7)
In formulas (6) and (7),
R AF1 , R BF1 , R AF2 , R BF2 , and R BF3 are groups corresponding to R A1 , R B1 , R A2 , R B2 , and R B3 , respectively;
when R A1 , R B1 , R A2 , R B2 and R B3 are each independently a group not containing a hydrogen atom, R AF1 , R BF1 , R AF2 , R BF2 and R BF3 are the same group as R A1 , R B1 , R A2 , R B2 and R B3 ;
When R A1 , R B1 , R A2 , R B2 , and R B3 are each independently a group containing a hydrogen atom, R AF1 , R BF1 , R AF2 , R BF2 , and R BF3 are groups in which at least a portion of the hydrogen atoms present in R A1 , R B1 , R A2 , R B2 , and R B3 are replaced with fluorine atoms.
 含フッ素化合物は、前記式(6)で表される化合物又は前記式(7)で表される化合物のうち、水素原子を有さない分子と水素原子を1個以上有する分子との混合物であってもよい。
 つまり、式(6)で表される化合物においては、RA1及びRB1の少なくとも一方が有する水素原子すべてがフッ素原子に置換された分子と、RA1及びRB1の少なくとも一方が有する水素原子の一部のみがフッ素原子に置換された分子と、の混合物であってもよい。また、式(7)で表される化合物においては、RA2、RB2、及びRB3の少なくとも一つが有する水素原子すべてがフッ素原子に置換された分子と、RA2、RB2、及びRB3の少なくとも一つが有する水素原子の一部のみがフッ素原子に置換された分子と、の混合物であってもよい。
The fluorine-containing compound may be a mixture of a molecule having no hydrogen atoms and a molecule having one or more hydrogen atoms, among the compounds represented by formula (6) or the compounds represented by formula (7).
That is, the compound represented by formula (6) may be a mixture of a molecule in which all hydrogen atoms in at least one of R A1 and R B1 are replaced with fluorine atoms and a molecule in which only a portion of hydrogen atoms in at least one of R A1 and R B1 are replaced with fluorine atoms. Also, the compound represented by formula (7) may be a mixture of a molecule in which all hydrogen atoms in at least one of R A2 , R B2 , and R B3 are replaced with fluorine atoms and a molecule in which only a portion of hydrogen atoms in at least one of R A2 , R B2 , and R B3 are replaced with fluorine atoms.
〔RAF1
 式(6)中、RAF1はRA1に対応する基である。
 RA1が水素原子を含む場合には、RAF1は、RA1と同一の基又はRA1に存在する少なくとも一部の水素原子がフッ素原子に置換された基である。RA1が水素原子を含まない場合には、RAF1は、RA1と同一の基である。
 溶媒への溶解性に優れる観点から、RAF1は、下記式(A3)で表されることが好ましい。
 R14O-(R15O)m3-R16- …(A3)
[R AF1 ]
In formula (6), R AF1 is a group corresponding to R A1 .
When R contains a hydrogen atom, R is the same group as R or a group in which at least a part of the hydrogen atoms in R is substituted with a fluorine atom. When R does not contain a hydrogen atom, R is the same group as R.
From the viewpoint of excellent solubility in a solvent, R AF1 is preferably represented by the following formula (A3).
R14O- ( R15O ) m3 - R16- ... (A3)
 式(A3)中、R14は、フルオロアルキル基であり、R15はそれぞれ独立に、炭素数1~6のフルオロアルキレン基であり、R16は、炭素数1~6のフルオロアルキレン基であり、m3は0~500の整数である。 In formula (A3), R 14 is a fluoroalkyl group, each R 15 is independently a fluoroalkylene group having 1 to 6 carbon atoms, R 16 is a fluoroalkylene group having 1 to 6 carbon atoms, and m3 is an integer of 0 to 500.
 式(A3)中、R14は、式(A1)中のR11に対応する。R11が水素原子を含む場合、R14は、R11と同一の基又はR11に含まれる少なくとも一部の水素原子がフッ素原子に置換された基である。R11が水素原子を含まない場合、R14は、R11と同じである。 In formula (A3), R 14 corresponds to R 11 in formula (A1). When R 11 contains a hydrogen atom, R 14 is the same group as R 11 or a group in which at least a part of the hydrogen atoms contained in R 11 is substituted with a fluorine atom. When R 11 does not contain a hydrogen atom, R 14 is the same as R 11 .
 式(A3)中、-(R15O)m3-は、式(A1)中の-(R12O)m1-に対応する。R12が水素原子を含む場合、R15は、R12と同一の基又はR12に含まれる少なくとも一部の水素原子がフッ素原子に置換された基である。R12が水素原子を含まない場合、R15は、R12と同じである。 In formula (A3), -(R 15 O) m3 - corresponds to -(R 12 O) m1 - in formula (A1). When R 12 contains a hydrogen atom, R 15 is the same group as R 12 or a group in which at least a part of the hydrogen atoms contained in R 12 are substituted with fluorine atoms. When R 12 does not contain a hydrogen atom, R 15 is the same as R 12 .
 式(A3)中、-(R15O)m3-は、下記式(A4)で表されることが好ましい。
 -[(Rff1O)k7(Rff2O)k8(Rff3O)k9(Rff4O)k10(Rff5O)k11(Rff6O)k12]- …(A4)
 ただし、
 Rff1は、炭素数1のフルオロアルキレン基であり、
 Rff2は、炭素数2のフルオロアルキレン基であり、
 Rff3は、炭素数3のフルオロアルキレン基であり、
 Rff4は、炭素数4のフルオロアルキレン基であり、
 Rff5は、炭素数5のフルオロアルキレン基であり、
 Rff6は、炭素数6のフルオロアルキレン基である。
 k7、k8、k9、k10、k11、及びk12は、それぞれ独立に0又は1以上の整数を表し、k7+k8+k9+k10+k11+k12は0~500の整数である。
In formula (A3), —(R 15 O) m3 — is preferably represented by the following formula (A4).
-[(R ff1 O) k7 (R ff2 O) k8 (R ff3 O) k9 (R ff4 O) k10 (R ff5 O) k11 (R ff6 O) k12 ]- ... (A4)
however,
R ff1 is a fluoroalkylene group having 1 carbon atom;
R ff2 is a fluoroalkylene group having 2 carbon atoms,
R ff3 is a fluoroalkylene group having 3 carbon atoms,
R ff4 is a fluoroalkylene group having 4 carbon atoms,
R ff5 is a fluoroalkylene group having 5 carbon atoms,
R ff6 is a fluoroalkylene group having 6 carbon atoms.
k7, k8, k9, k10, k11, and k12 each independently represent an integer of 0 or 1 or more, and k7+k8+k9+k10+k11+k12 is an integer of 0 to 500.
 式(A4)中、Rff1~Rff6は、式(A2)中のRf1~Rf6に対応する。例えば、Rf1が水素原子を含む場合、Rff1は、Rf1と同一の基又はRf1に含まれる少なくとも一部の水素原子がフッ素原子に置換された基である。Rf1が水素原子を含まない場合、Rff1は、Rf1と同じである。Rff2~Rff6に関しても、Rff1と同様である。 In formula (A4), R ff1 to R ff6 correspond to R f1 to R f6 in formula (A2). For example, when R f1 contains a hydrogen atom, R ff1 is the same group as R f1 or a group in which at least a part of the hydrogen atoms contained in R f1 are substituted with fluorine atoms. When R f1 does not contain a hydrogen atom, R ff1 is the same as R f1 . The same applies to R ff2 to R ff6 .
 溶媒への溶解性に優れる観点から、k7+k8+k9+k10+k11+k12は、1~500の整数が好ましく、1~300の整数がより好ましく、5~200の整数がさらに好ましく、10~150の整数が特に好ましい。 From the viewpoint of excellent solubility in a solvent, k7+k8+k9+k10+k11+k12 is preferably an integer from 1 to 500, more preferably an integer from 1 to 300, even more preferably an integer from 5 to 200, and particularly preferably an integer from 10 to 150.
 中でも、-(R15O)m3-は、下記式(G1)~(G3)で表される構造からなる群より選択される少なくとも1つを含むことが好ましく、式(G2)で表される構造を含むことがより好ましい。
  -(Rff1O)k7-(Rff2O)k8- …(G1)
  -(Rff2O)k8-(Rff4O)k10- …(G2)
  -(Rff3O)k9- …(G3)
 ただし、式(G1)~式(G3)の各符号は、上記式(A4)と同様である。
Among these, —(R 15 O) m3 — preferably contains at least one selected from the group consisting of structures represented by the following formulae (G1) to (G3), and more preferably contains a structure represented by formula (G2).
-(R ff1 O) k7 -(R ff2 O) k8 - ... (G1)
-(R ff2 O) k8 -(R ff4 O) k10 - ... (G2)
-(R ff3 O) k9 - ... (G3)
However, the symbols in formulas (G1) to (G3) are the same as those in formula (A4) above.
 式(G1)及び式(G2)において、(Rff1O)と(Rff2O)、(Rff2O)と(Rff4O)の結合順序は各々任意である。例えば(Rff1O)と(Rff2O)が交互に配置されてもよく、(Rff1O)と(Rff2O)が各々ブロックに配置されてもよく、またランダムであってもよい。式(G2)においても同様である。
 式(G1)において、k7は1~30が好ましく、1~20がより好ましい。またk8は1~30が好ましく、1~20がより好ましい。
 式(G2)において、k8は1~30が好ましく、1~20がより好ましい。またk10は1~30が好ましく、1~20がより好ましい。
 式(G3)において、k9は1~30が好ましく、1~20がより好ましい。
In formula (G1) and formula (G2), the bonding order of ( Rff1O ) and ( Rff2O ), and ( Rff2O ) and ( Rff4O ) are each arbitrary. For example, ( Rff1O ) and ( Rff2O ) may be arranged alternately, ( Rff1O ) and ( Rff2O ) may be arranged in blocks, or may be arranged randomly. The same applies to formula (G2).
In formula (G1), k7 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20. Furthermore, k8 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
In formula (G2), k8 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20. Furthermore, k10 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
In formula (G3), k9 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
 式(A3)中、R16は、式(A1)中のR13に対応する。R13が水素原子を含む場合、R16は、R13と同一の基又はR13に含まれる少なくとも一部の水素原子がフッ素原子に置換された基である。R13が水素原子を含まない場合、R16は、R13と同じである。 In formula (A3), R 16 corresponds to R 13 in formula (A1). When R 13 contains a hydrogen atom, R 16 is the same group as R 13 or a group in which at least a part of the hydrogen atoms contained in R 13 is substituted with a fluorine atom. When R 13 does not contain a hydrogen atom, R 16 is the same as R 13 .
 R16としては、上記、Rff1~Rff6と同様のものが挙げられる。 Examples of R 16 include the same as R ff1 to R ff6 above.
 中でも、R16は、炭素数1~3のフルオロアルキレン基が好ましい。 Among these, R 16 is preferably a fluoroalkylene group having 1 to 3 carbon atoms.
 式(A3)中、m3は、式(A1)中のm1に対応する。m3はm1と同じである。 In formula (A3), m3 corresponds to m1 in formula (A1). m3 is the same as m1.
 RAF1の具体例として、例えば、以下の構造及び下記構造中のフッ素原子の一部が水素原子に置換された構造が挙げられる。*は、-O-との結合部位を表し、n1は0~60の整数、n2は0~500の整数を表す。n1としては例えば13が挙げられ、n2としては例えば7が挙げられる。 Specific examples of R AF1 include the following structures and structures in which some of the fluorine atoms in the following structures have been replaced with hydrogen atoms. * represents a bonding site with -O-, n1 represents an integer of 0 to 60, and n2 represents an integer of 0 to 500. n1 is, for example, 13, and n2 is, for example, 7.
〔RBF1
 式(6)中、RBF1はRB1に対応する基である。
 RB1が水素原子を含む場合には、RBF1は、RB1と同一の基又はRB1に存在する少なくとも一部の水素原子がフッ素原子に置換された基である。RB1が水素原子を含まない場合には、RBF1は、RB1と同一の基である。
 溶媒への溶解性に優れる観点から、RBF1は、下記式(B2)で表されることが好ましい。
 R24O-(R25O)m4-R26- …(B2)
[R BF1 ]
In formula (6), R BF1 is a group corresponding to R B1 .
When R contains a hydrogen atom, R is the same group as R or a group in which at least a part of the hydrogen atoms in R is substituted with a fluorine atom. When R does not contain a hydrogen atom, R is the same group as R.
From the viewpoint of excellent solubility in a solvent, R BF1 is preferably represented by the following formula (B2).
R 24 O-(R 25 O) m4 -R 26 - ... (B2)
 式(B2)中、R24は、フルオロアルキル基であり、R25はそれぞれ独立に、炭素数1~6のフルオロアルキレン基であり、R26は炭素数1~6のフルオロアルキレン基であり、m4は0~20の整数である。 In formula (B2), R 24 is a fluoroalkyl group, R 25 is each independently a fluoroalkylene group having 1 to 6 carbon atoms, R 26 is a fluoroalkylene group having 1 to 6 carbon atoms, and m4 is an integer of 0 to 20.
 式(B2)中、R24は、式(B1)中のR21に対応する。R21が水素原子を含む場合、R24は、R21と同一の基又はR21に含まれる少なくとも一部の水素原子がフッ素原子に置換された基である。R21が水素原子を含まない場合、R24は、R21と同じである。 In formula (B2), R 24 corresponds to R 21 in formula (B1). When R 21 contains a hydrogen atom, R 24 is the same group as R 21 or a group in which at least a part of the hydrogen atoms contained in R 21 is substituted with a fluorine atom. When R 21 does not contain a hydrogen atom, R 24 is the same as R 21 .
 式(B2)中、-(R25O)m4-は、式(B1)中の-(R22O)m2-に対応する。R22が水素原子を含む場合、R25は、R22と同一の基又はR22に含まれる少なくとも一部の水素原子がフッ素原子に置換された基である。R22が水素原子を含まない場合、R25は、R22と同じである。 In formula (B2), -(R 25 O) m4 - corresponds to -(R 22 O) m2 - in formula (B1). When R 22 contains a hydrogen atom, R 25 is the same group as R 22 or a group in which at least a part of the hydrogen atoms contained in R 22 are substituted with fluorine atoms. When R 22 does not contain a hydrogen atom, R 25 is the same as R 22 .
 式(B2)中、-(R25O)m4-は、上記式(A4)で表されることが好ましい。 In formula (B2), —(R 25 O) m4 — is preferably represented by the above formula (A4).
 式(B2)中、R26は、式(B1)中のR23に対応する。R23が水素原子を含む場合、R26は、R23と同一の基又はR23に含まれる少なくとも一部の水素原子がフッ素原子に置換された基である。R23が水素原子を含まない場合、R26は、R23と同じである。 In formula (B2), R 26 corresponds to R 23 in formula (B1). When R 23 contains a hydrogen atom, R 26 is the same group as R 23 or a group in which at least a part of the hydrogen atoms contained in R 23 is substituted with a fluorine atom. When R 23 does not contain a hydrogen atom, R 26 is the same as R 23 .
 式(B2)中、m4は、式(B1)中のm2に対応する。m4はm2と同じである。 In formula (B2), m4 corresponds to m2 in formula (B1). m4 is the same as m2.
 RBF1の具体例として、例えば、以下の構造及び下記構造中のフッ素原子の一部が水素原子に置換された構造が挙げられる。*は、-O-(C=O)-との結合部位を表す。 Specific examples of R BF1 include the following structures and structures in which some of the fluorine atoms in the following structures have been replaced with hydrogen atoms, where * represents a bonding site with -O-(C=O)-.
〔RAF2
 式(7)中、RAF2はRA2に対応する基である。
 RA2が水素原子を含む場合には、RAF2は、RA2と同一の基又はRA2に存在する少なくとも一部の水素原子がフッ素原子に置換された基である。RA2が水素原子を含まない場合には、RAF2は、RA2と同一の基である。
[R AF2 ]
In formula (7), R AF2 is a group corresponding to R A2 .
When R contains a hydrogen atom, R is the same group as R or a group in which at least a part of the hydrogen atoms in R is substituted with a fluorine atom. When R does not contain a hydrogen atom, R is the same group as R.
 溶媒への溶解性に優れる観点から、RAF2は、下記式(A6)で表されることが好ましい。つまり、RAF2は、エーテル結合をさらに有することが好ましい。
 -R34O-(R35O)m6-R36- …(A6)
From the viewpoint of excellent solubility in a solvent, R AF2 is preferably represented by the following formula (A6): That is, R AF2 preferably further has an ether bond.
-R34O- ( R35O ) m6 - R36- ... (A6)
 式(A6)中、R34及びR36は、それぞれ独立に、炭素数1~6のフルオロアルキレン基であり、R35はそれぞれ独立に、炭素数1~6のフルオロアルキレン基であり、m6は0~500の整数である。 In formula (A6), R 34 and R 36 each independently represent a fluoroalkylene group having 1 to 6 carbon atoms; R 35 each independently represent a fluoroalkylene group having 1 to 6 carbon atoms; and m6 is an integer of 0 to 500.
 式(A6)中、R34及びR36は、それぞれ式(A5)中のR31及びR33に対応する。R31が水素原子を含む場合、R34はR31と同一の基又はR31に含まれる少なくとも一部の水素原子がフッ素原子に置換された基である。R31が水素原子を含まない場合、R34はR31と同じである。R33が水素原子を含む場合、R36はR33と同一の基又はR33に含まれる少なくとも一部の水素原子がフッ素原子に置換された基である。R33が水素原子を含まない場合、R36はR34と同じである。 In formula (A6), R 34 and R 36 correspond to R 31 and R 33 in formula (A5), respectively. When R 31 contains a hydrogen atom, R 34 is the same group as R 31 or a group in which at least a part of the hydrogen atoms contained in R 31 are substituted with fluorine atoms. When R 31 does not contain a hydrogen atom, R 34 is the same as R 31. When R 33 contains a hydrogen atom, R 36 is the same group as R 33 or a group in which at least a part of the hydrogen atoms contained in R 33 are substituted with fluorine atoms. When R 33 does not contain a hydrogen atom, R 36 is the same as R 34 .
 式(A6)中、-(R35O)m6-は、式(A5)中の-(R32O)m5-に対応する。R32が水素原子を含む場合、R35は、R32と同一の基又はR32に含まれる少なくとも一部の水素原子がフッ素原子に置換された基である。R32が水素原子を含まない場合、R35は、R32と同じである。 In formula (A6), -(R 35 O) m6 - corresponds to -(R 32 O) m5 - in formula (A5). When R 32 contains a hydrogen atom, R 35 is the same group as R 32 or a group in which at least a part of the hydrogen atoms contained in R 32 are substituted with fluorine atoms. When R 32 does not contain a hydrogen atom, R 35 is the same as R 32 .
 式(A6)中、R34及びR36としては、それぞれ独立に、式(A5)中のR31及びR33と同様のものが挙げられる。
 式(A6)中、-(R35O)m6-としては、式(A5)中の-(R32O)m5-と同様のものが挙げられる。
In formula (A6), R 34 and R 36 each independently have the same meaning as R 31 and R 33 in formula (A5).
In formula (A6), examples of -(R 35 O) m6 - include the same as -(R 32 O) m5 - in formula (A5).
 RAF2の具体例として、例えば、以下の構造及び下記構造中のフッ素原子の一部が水素原子に置換された構造が挙げられる。*は、-O-との結合部位を表し、n2は0~500の整数を表す。 Specific examples of R AF2 include the following structures and structures in which some of the fluorine atoms in the following structures have been replaced with hydrogen atoms: * represents a bonding site with —O—, and n2 represents an integer of 0 to 500.
〔RBF2及びRBF3
 式(7)中、RBF2及びRBF3は、それぞれ、RB2及びRB3に対応する基である。
 RB2が水素原子を含む場合には、RBF2は、RB2と同一の基又はRB2に存在する少なくとも一部の水素原子がフッ素原子に置換された基である。RB2が水素原子を含まない場合には、RBF2は、RB2と同一の基である。
 RB3が水素原子を含む場合には、RBF3は、RB3と同一の基又はRB3に存在する少なくとも一部の水素原子がフッ素原子に置換された基である。RB3が水素原子を含まない場合には、RBF3は、RB3と同一の基である。
[ RBF2 and RBF3 ]
In formula (7), R 3 BF2 and R 3 BF3 are groups corresponding to R 3 B2 and R 3 B3 , respectively.
When R B2 contains a hydrogen atom, R BF2 is the same group as R B2 or a group in which at least a part of the hydrogen atoms present in R B2 is substituted with a fluorine atom. When R B2 does not contain a hydrogen atom, R BF2 is the same group as R B2 .
When R contains a hydrogen atom, R is the same group as R or a group in which at least a part of the hydrogen atoms present in R is substituted with a fluorine atom. When R does not contain a hydrogen atom, R is the same group as R.
 RBF2又はRBF3で表される基は、式(6)中のRBF1で表される基と同様の基が挙げられる。 Examples of the group represented by R 3 BF2 or R 3 BF3 include the same groups as the group represented by R 3 BF1 in formula (6).
 以下、本開示を実施例によりさらに具体的に説明するが、本開示はその主旨を超えない限り、以下の実施例に限定されるものではない。例1-1~1-7、2-1~2-4、及び3-1~3-3は実施例であり、例1-8~1-9及び2-5は比較例である。 Below, the present disclosure will be explained in more detail using examples, but the present disclosure is not limited to the following examples as long as it does not exceed the gist of the disclosure. Examples 1-1 to 1-7, 2-1 to 2-4, and 3-1 to 3-3 are examples, and Examples 1-8 to 1-9 and 2-5 are comparative examples.
 以下、CClFCClFCFOCFCClFを「CFE-419」と記載する。 Hereinafter, CClF 2 CClFCF 2 OCF 2 CClF 2 will be referred to as "CFE-419".
[例1-1~1-9]
 まず、初期溶媒としてCFE-419を、下記表に示す循環液量でステンレス製反応器に仕込み、300L/時間で循環ラインを循環させた。
 次に、循環ラインに、原料化合物である下記式(1-1)で表される化合物を溶媒であるCFE-419で希釈した原料溶液を、原料化合物の流量が下記表に示す原料流量であり、かつ、原料溶液の流量が下記表に示す原料溶液流量となる条件の流量でフィードした。
 次に、循環ラインに、窒素ガスで30体積%に希釈したフッ素ガスを、下記表に示すガス流量でフィードした。
 なお、循環ラインの循環液温度を、コンデンサにより20℃に調整した。
 また、循環液量が、下記表に示す循環液量を保つよう、循環液を連続的に抜き出した。
 反応器気相部をコンデンサで-10℃に冷やし、凝縮液を反応器に戻し、ガスを除害塔へ送った。
[Examples 1-1 to 1-9]
First, CFE-419 was charged as an initial solvent into a stainless steel reactor in the amount of circulation liquid shown in the table below, and circulated through the circulation line at 300 L/hour.
Next, a raw material solution prepared by diluting a raw material compound represented by the following formula (1-1) with a solvent CFE-419 was fed to the circulation line at a flow rate under conditions such that the flow rate of the raw material compound was the raw material flow rate shown in the table below, and the flow rate of the raw material solution was the raw material solution flow rate shown in the table below.
Next, fluorine gas diluted to 30% by volume with nitrogen gas was fed into the circulation line at the gas flow rates shown in the table below.
The temperature of the circulating liquid in the circulation line was adjusted to 20° C. by a condenser.
The circulating fluid was continuously withdrawn so as to maintain the amount of the circulating fluid as shown in the table below.
The gas phase of the reactor was cooled to -10°C by a condenser, the condensate was returned to the reactor, and the gas was sent to the detoxification tower.
 以上のようにして、原料化合物のフッ素化を行い、原料化合物のフッ素化体である含フッ素化合物を得た。
 フッ素化における滞留時間を表1に示す。なお、溶媒であるCFE-419の質量は原料化合物の質量の2.33倍であり、フッ素化における圧力は常圧とした。
 原料化合物の数平均分子量は4,236であり、例1-1~1-9で得られたフッ素化体の数平均分子量は4,956~5,046であった。
 得られたフッ素化体のH残数及び収率を併せて表1に示す。
In the manner described above, the raw material compound was fluorinated to obtain a fluorinated product of the raw material compound, that is, a fluorine-containing compound.
The residence time during fluorination is shown in Table 1. The mass of the solvent CFE-419 was 2.33 times the mass of the raw material compound, and the pressure during fluorination was normal pressure.
The number average molecular weight of the raw material compound was 4,236, and the number average molecular weights of the fluorinated products obtained in Examples 1-1 to 1-9 were 4,956 to 5,046.
The hydrogen residues and yields of the obtained fluorinated products are shown in Table 1.
 得られたフッ素化体について、以下のようにして耐熱試験を行った。
 耐熱試験機として熱重量・示差熱分析装置(TG/DTA、SHIMADZU製、DTG-60)を用い、開始温度25℃とし、昇温速度10℃/分で500℃まで昇温し、下記基準で耐熱性を評価した。結果を表1に示す。
 S:50%重量減少の温度が230℃以上である
 A:50%重量減少の温度が220℃以上230℃未満である
 B:50%重量減少の温度が215℃以上220℃未満である
 C:50%重量減少の温度が210℃以上215℃未満である
 D:50%重量減少の温度が200℃以上210℃未満である
 E:50%重量減少の温度が200℃未満である
The obtained fluorinated product was subjected to a heat resistance test as follows.
A thermogravimetric/differential thermal analyzer (TG/DTA, Shimadzu Corporation, DTG-60) was used as a heat resistance tester, and the starting temperature was set at 25° C., and the temperature was raised to 500° C. at a rate of 10° C./min. The heat resistance was evaluated according to the following criteria. The results are shown in Table 1.
S: The temperature at which the weight loss is 50% is 230°C or higher. A: The temperature at which the weight loss is 50% is 220°C or higher and lower than 230°C. B: The temperature at which the weight loss is 50% is 215°C or higher and lower than 220°C. C: The temperature at which the weight loss is 50% is 210°C or higher and lower than 215°C. D: The temperature at which the weight loss is 200°C or higher and lower than 210°C. E: The temperature at which the weight loss is 50% is lower than 200°C.
[例2-1~2-5]
 原料溶液流量を0.100kg/時間、原料流量を0.030kg/時間、ガス流量を1200NL/時間、循環液量を3.0L、滞留時間を166時間とし、循環液温度を下記表に示す温度に調整した以外は、例1-1~1-9と同様にして、原料化合物のフッ素化を行い、原料化合物のフッ素化体である含フッ素化合物を得た。
 溶媒であるCFE-419の質量は原料化合物の質量の2.33倍であり、フッ素化における圧力は常圧とした。
 原料化合物の数平均分子量は4,236であり、例2-1~2-5で得られたフッ素化体の数平均分子量は4,956~5,046であった。
 得られたフッ素化体のH残数及び収率を表2に示す。
 また、得られたフッ素化体について、例1-1~1-9と同様にして耐熱試験を行い、耐熱性を評価した。結果を併せて表2に示す。
[Examples 2-1 to 2-5]
The raw material compounds were fluorinated in the same manner as in Examples 1-1 to 1-9, except that the raw material solution flow rate was 0.100 kg/hour, the raw material flow rate was 0.030 kg/hour, the gas flow rate was 1200 NL/hour, the circulating liquid volume was 3.0 L, the residence time was 166 hours, and the circulating liquid temperature was adjusted to the temperatures shown in the following table, to obtain fluorinated compounds that were fluorinated products of the raw material compounds.
The mass of the solvent CFE-419 was 2.33 times the mass of the raw material compound, and the pressure during fluorination was normal pressure.
The number average molecular weight of the raw material compound was 4,236, and the number average molecular weights of the fluorinated products obtained in Examples 2-1 to 2-5 were 4,956 to 5,046.
The hydrogen residues and yields of the obtained fluorinated products are shown in Table 2.
The obtained fluorinated products were subjected to a heat resistance test in the same manner as in Examples 1-1 to 1-9 to evaluate their heat resistance. The results are also shown in Table 2.
[例3-1~3-3]
 原料溶液流量を0.100kg/時間、原料流量を0.030kg/時間、ガス流量を1200NL/時間、循環液量を3.0L、滞留時間を166時間、循環液温度を20℃とし、原料化合物の種類を下記表に示すものに変更した以外は、例1-1~1-9と同様にして、原料化合物のフッ素化を行い、原料化合物のフッ素化体である含フッ素化合物を得た。
 溶媒であるCFE-419の質量は原料化合物の質量の2.33倍であり、フッ素化における圧力は常圧とした。
 なお、下記表中、(1-2)は下記式(1-2)で表される化合物、(1-3)は下記式(1-3)で表される化合物、(1-4)は下記式(1-4)で表される化合物を意味し、下記式中の単位数は平均値である。
 得られたフッ素化体のH残数及び収率を表3に示す。原料化合物の数平均分子量及び得られたフッ素化体の数平均分子量を併せて表3に示す。
 また、得られたフッ素化体について、例1-1~1-9と同様にして耐熱試験を行い、耐熱性を評価した。結果を併せて表3に示す。
[Examples 3-1 to 3-3]
The raw material compounds were fluorinated in the same manner as in Examples 1-1 to 1-9, except that the raw material solution flow rate was 0.100 kg/hour, the raw material flow rate was 0.030 kg/hour, the gas flow rate was 1200 NL/hour, the circulating liquid volume was 3.0 L, the residence time was 166 hours, the circulating liquid temperature was 20° C., and the types of the raw material compounds were changed to those shown in the table below, to obtain fluorinated products of the raw material compounds.
The mass of the solvent CFE-419 was 2.33 times the mass of the raw material compound, and the pressure during fluorination was normal pressure.
In the table below, (1-2) means a compound represented by the following formula (1-2), (1-3) means a compound represented by the following formula (1-3), and (1-4) means a compound represented by the following formula (1-4), and the number of units in the formulas below is an average value.
The hydrogen residues and yields of the obtained fluorinated products are shown in Table 3. The number average molecular weights of the raw material compounds and the number average molecular weights of the obtained fluorinated products are also shown in Table 3.
The obtained fluorinated products were subjected to a heat resistance test in the same manner as in Examples 1-1 to 1-9 to evaluate their heat resistance. The results are also shown in Table 3.
 表1に示されるように、例1-1~1-7、2-1~2-4、及び3-1~3-3では、例1-8~1-9及び2-5に比べて、高い収率で目的物である含フッ素化合物が得られている。 As shown in Table 1, in Examples 1-1 to 1-7, 2-1 to 2-4, and 3-1 to 3-3, the target fluorine-containing compound was obtained in a higher yield than in Examples 1-8 to 1-9 and 2-5.
 本開示の含フッ素化合物の製造方法は、従来よりも高い収率で目的物である含フッ素化合物を製造できる。得られた含フッ素化合物は、種々の官能基(例えば、水酸基、エチレン性不飽和基、エポキシ基、カルボキシ基等)を有する含フッ素化合物に誘導できる。また、得られた含フッ素化合物及び誘導された含フッ素化合物は、表面処理剤、乳化剤、ゴム、界面活性剤、溶媒、熱媒体、医薬品、農薬、潤滑油、これらの中間体等に利用可能である。 The disclosed method for producing a fluorine-containing compound can produce the target fluorine-containing compound in a higher yield than conventional methods. The obtained fluorine-containing compound can be derived into a fluorine-containing compound having various functional groups (e.g., a hydroxyl group, an ethylenically unsaturated group, an epoxy group, a carboxy group, etc.). In addition, the obtained fluorine-containing compound and the derived fluorine-containing compound can be used as a surface treatment agent, an emulsifier, rubber, a surfactant, a solvent, a heat transfer medium, a pharmaceutical, an agricultural chemical, a lubricant, an intermediate thereof, etc.
 2022年11月21日に出願された日本国特許出願2022-185978号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2022-185978, filed on November 21, 2022, is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards described herein are incorporated herein by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference.

Claims (11)

  1.  フッ素化可能な原子を少なくとも1つ有する有機化合物を含有する液体中において、前記有機化合物をフッ素化することで、1分子あたりの前記フッ素化可能な原子の平均個数が0.01個以上のフッ素化体である含フッ素化合物を得る、含フッ素化合物の製造方法。 A method for producing a fluorine-containing compound, comprising fluorinating an organic compound having at least one fluorinatable atom in a liquid containing the organic compound, thereby obtaining a fluorinated product having an average number of fluorinatable atoms per molecule of 0.01 or more.
  2.  1分子あたりの前記フッ素化可能な原子の平均個数が5個以下である、請求項1に記載の含フッ素化合物の製造方法。 The method for producing a fluorine-containing compound according to claim 1, wherein the average number of fluorinable atoms per molecule is 5 or less.
  3.  前記有機化合物は、前記フッ素化可能な原子として水素原子を有する、請求項1又は2に記載の含フッ素化合物の製造方法。 The method for producing a fluorine-containing compound according to claim 1 or 2, wherein the organic compound has a hydrogen atom as the fluorinatable atom.
  4.  前記液体に、フッ素ガスを含有する気体を導入することで前記有機化合物をフッ素化する、請求項1又は2に記載の含フッ素化合物の製造方法。 The method for producing a fluorine-containing compound according to claim 1 or 2, wherein the organic compound is fluorinated by introducing a gas containing fluorine gas into the liquid.
  5.  前記フッ素化が行われる反応器に前記液体が滞留する時間は、200時間以下である、請求項1又は2に記載の含フッ素化合物の製造方法。 The method for producing a fluorine-containing compound according to claim 1 or 2, wherein the liquid is retained in the reactor in which the fluorination is carried out for 200 hours or less.
  6.  前記液体は、さらに溶媒を含有する、請求項1又は2に記載の含フッ素化合物の製造方法。 The method for producing a fluorine-containing compound according to claim 1 or 2, wherein the liquid further contains a solvent.
  7.  前記溶媒の質量が前記有機化合物の質量の10倍以下である、請求項6に記載の含フッ素化合物の製造方法。 The method for producing a fluorine-containing compound according to claim 6, wherein the mass of the solvent is 10 times or less the mass of the organic compound.
  8.  前記フッ素化の温度は、5~50℃である、請求項1又は2に記載の含フッ素化合物の製造方法。 The method for producing a fluorine-containing compound according to claim 1 or 2, wherein the fluorination temperature is 5 to 50°C.
  9.  前記有機化合物の数平均分子量は、800~28,000である、請求項1又は2に記載の含フッ素化合物の製造方法。 The method for producing a fluorine-containing compound according to claim 1 or 2, wherein the organic compound has a number average molecular weight of 800 to 28,000.
  10.  1分子あたりの水素原子の平均個数が0.01~5個であり、数平均分子量が1,000~30,000である、含フッ素化合物。 A fluorine-containing compound with an average number of hydrogen atoms per molecule of 0.01 to 5 and a number average molecular weight of 1,000 to 30,000.
  11.  フルオロポリエーテル鎖を含む、請求項10に記載の含フッ素化合物。 The fluorine-containing compound according to claim 10, which contains a fluoropolyether chain.
PCT/JP2023/041156 2022-11-21 2023-11-15 Production method for fluorine-containing compound and fluorine-containing compound WO2024111491A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022185978 2022-11-21
JP2022-185978 2022-11-21

Publications (1)

Publication Number Publication Date
WO2024111491A1 true WO2024111491A1 (en) 2024-05-30

Family

ID=91195633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041156 WO2024111491A1 (en) 2022-11-21 2023-11-15 Production method for fluorine-containing compound and fluorine-containing compound

Country Status (1)

Country Link
WO (1) WO2024111491A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155031A (en) * 2000-11-20 2002-05-28 Asahi Glass Co Ltd Method for producing fluorinated ester compound by using gas chromatography
WO2014163004A1 (en) * 2013-04-04 2014-10-09 旭硝子株式会社 Fluorine-containing ether compound, fluorine-containing ether composition, and coating solution, as well as substrate having surface layer, and method for manufacturing same
JP2018197344A (en) * 2013-12-13 2018-12-13 Agc株式会社 Fluorine-containing ether composition, method for producing the same, surface treatment agent for base material, surface treatment agent for touch panels, coating liquid, base material having surface treatment layer, and method for producing the same
JP2020117733A (en) * 2017-05-26 2020-08-06 Agc株式会社 Method for producing fluorine-containing ether compounds and fluorine-containing ether compounds
JP2020196898A (en) * 2015-09-01 2020-12-10 Agc株式会社 Fluorinated ether compound, fluorinated ether composition, coating liquid and article
JP2022001653A (en) * 2017-03-15 2022-01-06 Agc株式会社 Fluorine-containing ether composition, coating liquid, and article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155031A (en) * 2000-11-20 2002-05-28 Asahi Glass Co Ltd Method for producing fluorinated ester compound by using gas chromatography
WO2014163004A1 (en) * 2013-04-04 2014-10-09 旭硝子株式会社 Fluorine-containing ether compound, fluorine-containing ether composition, and coating solution, as well as substrate having surface layer, and method for manufacturing same
JP2018197344A (en) * 2013-12-13 2018-12-13 Agc株式会社 Fluorine-containing ether composition, method for producing the same, surface treatment agent for base material, surface treatment agent for touch panels, coating liquid, base material having surface treatment layer, and method for producing the same
JP2020196898A (en) * 2015-09-01 2020-12-10 Agc株式会社 Fluorinated ether compound, fluorinated ether composition, coating liquid and article
JP2022001653A (en) * 2017-03-15 2022-01-06 Agc株式会社 Fluorine-containing ether composition, coating liquid, and article
JP2020117733A (en) * 2017-05-26 2020-08-06 Agc株式会社 Method for producing fluorine-containing ether compounds and fluorine-containing ether compounds

Similar Documents

Publication Publication Date Title
EP1568730B1 (en) Peroxidic perfluoropolyethers
EP0870778B1 (en) Modifed hydrogenated polymers, process and use
JP5154737B2 (en) Perfluoropolyether and its production and use
US4760198A (en) 1:1 copolymer of difluoromethylene oxide and tetrafluoroethylene oxide and synthesis
JPH0582409B2 (en)
JP5005175B2 (en) Peroxide perfluoropolyether
US5539059A (en) Perfluorinated polyethers
US20150073112A1 (en) Hexafluoropropylene Oxide Polymer Compositions and a Preparing Method of Hexafluoropropylene Oxide Polymer Using Hexafluoropropylene Oligomer
JPS63501367A (en) Perfluoropolyether
EP2943456B1 (en) Quarternary ammonium perfluoroalkoxy salts for preparation of perfluoropolyethers
BG62394B1 (en) Method for the preparation of perfluorpolyoxyalkylene-peroxides
EP1710267A1 (en) Fluorinated lubricants resistant to lewis acids
JP2007204586A (en) Method for producing perfluoropolyether carboxylic acid fluoride
US5506309A (en) Perfluorinates polyethers
WO2024111491A1 (en) Production method for fluorine-containing compound and fluorine-containing compound
EP0678540A1 (en) Perfluoralkyleneethertriazine oligomer and process for producing the same
EP2280037A1 (en) Fluorine-containing polyether compound and method for producing the same
DE69828103T2 (en) Crosslinkable fluoroelastomer compositions
WO2024111490A1 (en) Method for producing fluorine-containing compounds
WO2024111489A1 (en) Production method for fluorine-containing compound
JP6110556B2 (en) Method for producing fluoropolyether
JP2024074667A (en) Method for producing fluorine-containing compound
JP2006348292A (en) Fluorinated lubricant
JPS6310626A (en) Substituted polyether compound and its production
JP2023513967A (en) (Per)fluoropolyether polymer