WO2018216644A1 - Secondary battery manufacturing method - Google Patents

Secondary battery manufacturing method Download PDF

Info

Publication number
WO2018216644A1
WO2018216644A1 PCT/JP2018/019450 JP2018019450W WO2018216644A1 WO 2018216644 A1 WO2018216644 A1 WO 2018216644A1 JP 2018019450 W JP2018019450 W JP 2018019450W WO 2018216644 A1 WO2018216644 A1 WO 2018216644A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
secondary battery
precursor
electrode precursor
metal sheet
Prior art date
Application number
PCT/JP2018/019450
Other languages
French (fr)
Japanese (ja)
Inventor
達夫 新野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018216644A1 publication Critical patent/WO2018216644A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a secondary battery.
  • the present invention relates to a method for manufacturing a secondary battery characterized by the production of at least one of a positive electrode and a negative electrode.
  • Secondary batteries are so-called “storage batteries” that can be repeatedly charged and discharged, and are used in various applications.
  • secondary batteries are used in mobile devices such as mobile phones, smartphones, and notebook computers.
  • the secondary battery includes at least a positive electrode, a negative electrode, and a separator between them.
  • the positive electrode is composed of a positive electrode material layer and a positive electrode current collector
  • the negative electrode is composed of a negative electrode material layer and a negative electrode current collector.
  • the secondary battery has, for example, a laminated structure in which electrode constituent layers composed of a positive electrode and a negative electrode sandwiching a separator are stacked on each other.
  • the inventor of the present application has found that there is a problem to be overcome in the conventional method of manufacturing a secondary battery, and has found that it is necessary to take measures for that. Specifically, the present inventors have found that there are the following problems.
  • an electrode precursor 30 is obtained by forming an electrode material layer 20 containing an electrode active material on a metal sheet material 10 to be an electrode current collector.
  • a desired electrode 40 can be obtained by cutting out a predetermined shape as shown in FIGS. 12 (b) and 12 (c). When cutting out, if the region of the metal sheet material 10 on which no electrode material layer is provided is included in the cut out shape, the tab 45 can be provided on the electrode 40.
  • the electrode precursor is formed while feeding the metal sheet material in a predetermined direction.
  • the metal sheet material is moved while being unwound in a roll shape, and an electrode material raw material is supplied to the metal sheet material to form the electrode precursor 30.
  • a guide roll can be used for the movement of the metal sheet material, that is, the transport of the electrode precursor obtained from the sheet material.
  • the electrode precursor layer 30 is continuously formed by forming the electrode material layer 20 on the metal sheet material while moving / conveying the metal sheet material in a predetermined direction via the guide roll.
  • the inventors of the present application have found that conveyance by a guide roll can cause a surprisingly inconvenient phenomenon to the electrode precursor. Specifically, it has been found that the electrode precursor being transported can be adversely affected by the guide rolls used for the transport.
  • the transported electrode precursor may be subjected to a cutting process called “trimming” or “pre-trimming” (hereinafter also simply referred to as “trimming process”).
  • triming process a cutting process called “trimming” or “pre-trimming” (hereinafter also simply referred to as “trimming process”).
  • the edge of the electrode precursor may be cut off at least partially. It has now been found that the trimmed electrode precursor can be adversely affected by the guide roll during transport by the guide roll. In particular, the trimmed electrode precursor is easily cut or easily broken from the trimmed local portion due to an external force applied from the guide roll (particularly due to an external force that causes the electrode precursor to bend). I understood.
  • a main object of the present invention is to provide a method for manufacturing a secondary battery in which an inconvenient phenomenon caused by a guide roll used for transporting an electrode precursor is reduced.
  • the inventor of the present application tried to solve the above-mentioned problem by addressing in a new direction rather than responding on the extension of the prior art. As a result, the inventors have reached an invention of a method for manufacturing a secondary battery in which the main object is achieved.
  • a method for manufacturing a secondary battery according to the present invention includes: Production of at least one of a positive electrode and a negative electrode Forming an electrode material layer on a metal sheet material to be an electrode current collector to obtain an electrode precursor, and applying trimming to the electrode precursor to at least partially cut off the edge of the electrode precursor, Trimming is performed so that the edges of the electrode precursor have wave-like irregularities.
  • the trimming process is performed so that the edge of the electrode precursor has a wave-shaped unevenness, so that an inconvenient phenomenon caused by the guide roll used for transporting the electrode precursor can be reduced.
  • a phenomenon in which the electrode precursor is cut or torn by an external force received from the guide roll is reduced. Therefore, a desired electrode precursor can be obtained by the present invention, and thus a desired electrode can be obtained.
  • the top view which showed typically the process aspect in the manufacturing method which concerns on one Embodiment of this invention Schematic showing a continuous manufacturing process using guide rolls
  • FIG. 5B not only the pole material non-formation region but also the pole material Preferred embodiment B) to cut off so as to partially include the formation region
  • FIG. 6A tip (point)
  • FIG. 6B jump point
  • FIG. 7A isolated point
  • FIG. 7B double point
  • FIG. 7C Self-contact point
  • a “plan view (or plan view shape)” (for example, a plan view shape of an electrode precursor or an edge or an edge contour thereof) described directly or indirectly in the specification is a thickness of a metal sheet material or an electrode material. It is based on a sketch when taken from above or below along the direction. Here, the thickness direction of the metal sheet material / electrode material corresponds to the stacking direction of the electrodes (positive electrode / negative electrode) in the secondary battery.
  • vertical direction and horizontal direction used directly or indirectly in the present specification correspond to the vertical direction and horizontal direction in the drawing, respectively. Unless otherwise specified, the same symbols or symbols indicate the same members or the same meaning. In a preferable aspect, it can be understood that the downward direction in the vertical direction (that is, the direction in which gravity works) corresponds to the “down direction” and the reverse direction corresponds to the “up direction”.
  • a secondary battery In the manufacturing method of the present invention, a secondary battery is obtained.
  • “secondary battery” refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery obtained by the manufacturing method according to an embodiment of the present invention is not excessively bound by the name, and may include, for example, “electric storage device”.
  • the term “electrode precursor” in the present specification broadly means that an electrode material layer is formed on a metal sheet material to be an electrode current collector, and contributes to the formation of a negative electrode or a positive electrode. Pointing to things. In particular, in a narrow sense, the “electrode precursor” in the present invention refers to an electrode body before a so-called “punching” for obtaining an electrode shape.
  • the secondary battery obtained by the production method of the present invention has an electrode assembly in which electrode constituent layers including a positive electrode, a negative electrode, and a separator are laminated.
  • the positive electrode and the negative electrode are stacked via a separator to form an electrode constituent layer, and an electrode assembly in which at least one electrode constituent layer is laminated is enclosed in an outer package together with an electrolyte.
  • the structure of the electrode assembly is not necessarily limited to a planar laminated structure.
  • an electrode unit (electrode constituent layer) including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode is wound in a roll shape. You may have a winding structure (jelly roll type).
  • the electrode assembly may have a so-called stack and folding structure in which a positive electrode, a separator, and a negative electrode are stacked on a long film and then folded.
  • the positive electrode is composed of at least a positive electrode material layer and a positive electrode current collector.
  • a positive electrode material layer is provided on at least one surface of the positive electrode current collector, and the positive electrode material layer contains a positive electrode active material as an electrode active material.
  • each of the plurality of positive electrodes in the electrode assembly may be provided with a positive electrode material layer on both surfaces of the positive electrode current collector, or may be provided with a positive electrode material layer only on one surface of the positive electrode current collector.
  • the positive electrode is preferably provided with a positive electrode material layer on both surfaces of the positive electrode current collector.
  • the negative electrode is composed of at least a negative electrode material layer and a negative electrode current collector.
  • a negative electrode material layer is provided on at least one surface of the negative electrode current collector, and the negative electrode material layer contains a negative electrode active material as an electrode active material.
  • each of the plurality of negative electrodes in the electrode assembly may be provided with a negative electrode material layer on both surfaces of the negative electrode current collector, or may be provided with a negative electrode material layer only on one surface of the negative electrode current collector.
  • the negative electrode is preferably provided with a negative electrode material layer on both sides of the negative electrode current collector.
  • the electrode active materials contained in the positive electrode and the negative electrode are materials directly involved in the transfer of electrons in the secondary battery, and are the main materials of the positive and negative electrodes responsible for charge / discharge, that is, the battery reaction. is there. More specifically, ions are brought into the electrolyte due to the “positive electrode active material included in the positive electrode material layer” and the “negative electrode active material included in the negative electrode material layer”, and the ions are interposed between the positive electrode and the negative electrode. Then, the electrons are transferred and the electrons are delivered and charged and discharged.
  • the positive electrode material layer and the negative electrode material layer are particularly preferably layers capable of occluding and releasing lithium ions.
  • the secondary battery obtained by the production method of the present invention corresponds to a so-called “lithium ion battery”, and the positive electrode and the negative electrode have layers capable of occluding and releasing lithium ions. .
  • the positive electrode active material of the positive electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included in the positive electrode material layer for more sufficient contact between the particles and shape retention. Furthermore, a conductive additive may be included in the positive electrode material layer in order to facilitate the transmission of electrons that promote the battery reaction.
  • the negative electrode active material of the negative electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included for more sufficient contact and shape retention between the particles, facilitating the transfer of electrons that promote the battery reaction.
  • the conductive support agent may be contained in the negative electrode material layer.
  • the positive electrode material layer and the negative electrode material layer can also be referred to as “positive electrode composite material layer” and “negative electrode composite material layer”, respectively.
  • the positive electrode active material is preferably a material that contributes to occlusion and release of lithium ions.
  • the positive electrode active material is preferably, for example, a lithium-containing composite oxide.
  • the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material layer of the secondary battery obtained by the production method of the present invention, such a lithium transition metal composite oxide is preferably contained as the positive electrode active material.
  • the positive electrode active material may be lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or a part of those transition metals replaced with another metal.
  • the positive electrode active material contained in a positive electrode material layer may be lithium cobaltate.
  • the binder that can be included in the positive electrode material layer is not particularly limited, but includes polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and Mention may be made of at least one selected from the group consisting of polytetrafluoroethylene and the like.
  • the conductive auxiliary agent that can be included in the positive electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth.
  • the binder of the positive electrode material layer may be polyvinylidene fluoride
  • the conductive additive of the positive electrode material layer may be carbon black.
  • the binder and conductive support agent of a positive electrode material layer may be a combination of polyvinylidene fluoride and carbon black.
  • the negative electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, or lithium alloys.
  • Examples of various carbon materials of the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, diamond-like carbon, and the like.
  • graphite is preferable in that it has high electron conductivity and excellent adhesion to the negative electrode current collector.
  • Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and the like.
  • the lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium.
  • Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn It may be a binary, ternary or higher alloy of a metal such as La and lithium.
  • a binary, ternary or higher alloy of a metal such as La and lithium.
  • Such an oxide is preferably amorphous in its structural form. This is because deterioration due to non-uniformity such as crystal grain boundaries or defects is less likely to be caused.
  • the negative electrode active material of a negative electrode material layer may be artificial graphite.
  • the binder that can be included in the negative electrode material layer is not particularly limited, but is at least one selected from the group consisting of styrene butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. Can be mentioned.
  • the binder contained in the negative electrode material layer may be styrene butadiene rubber.
  • the conductive aid that can be included in the negative electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth.
  • Examples thereof include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives.
  • the component resulting from the thickener component for example, carboxymethylcellulose used at the time of battery manufacture may be contained in the negative electrode material layer.
  • the negative electrode active material and the binder in the negative electrode material layer may be a combination of artificial graphite and styrene butadiene rubber.
  • the positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode are members that contribute to collecting and supplying electrons generated in the active material due to the battery reaction.
  • a current collector may be a sheet-like metal member and may have a porous or perforated form.
  • the current collector may be a metal foil, a punching metal, a net or an expanded metal.
  • the positive electrode current collector used for the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil.
  • the negative electrode current collector used for the negative electrode is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.
  • the separator used for the positive electrode and the negative electrode is a member provided from the viewpoint of preventing short circuit due to contact between the positive electrode and the negative electrode and maintaining the electrolyte.
  • the separator can be said to be a member that allows ions to pass while preventing electronic contact between the positive electrode and the negative electrode.
  • the separator is a porous or microporous insulating member and has a film form due to its small thickness.
  • a polyolefin microporous film may be used as the separator.
  • the microporous membrane used as the separator may include, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin.
  • the separator may be a laminate composed of “a microporous membrane made of PE” and “a microporous membrane made of PP”.
  • the surface of the separator may be covered with an inorganic particle coat layer, an adhesive layer, or the like.
  • the surface of the separator may have adhesiveness.
  • the separator is not particularly limited by its name, and may be a solid electrolyte, a gel electrolyte, insulating inorganic particles or the like having the same function.
  • an electrode assembly including an electrode constituent layer including a positive electrode, a negative electrode, and a separator is enclosed in an exterior together with an electrolyte.
  • the electrolyte is preferably a “non-aqueous” electrolyte such as an organic electrolyte or an organic solvent (that is, the electrolyte is a non-aqueous electrolyte). preferable).
  • the electrolyte metal ions released from the electrodes (positive electrode and negative electrode) exist, and therefore, the electrolyte assists the movement of the metal ions in the battery reaction.
  • a non-aqueous electrolyte is an electrolyte containing a solvent and a solute.
  • a solvent containing at least carbonate is preferable.
  • Such carbonates may be cyclic carbonates and / or chain carbonates.
  • examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to.
  • chain carbonates examples include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • a Li salt such as LiPF 6 and / or LiBF 4 is preferably used as LiPF 6 and / or LiBF 4 is preferably used as LiPF 6 and / or LiBF 4 is preferably used as LiPF 6 and / or LiBF 4 is preferably used.
  • the outer package of the secondary battery encloses the electrode assembly in which the electrode constituent layers including the positive electrode, the negative electrode, and the separator are laminated, but may be in a hard case form or a soft case form.
  • the exterior body may be a hard case type corresponding to a so-called “metal can” or a soft case type corresponding to a “pouch” made of a so-called laminate film.
  • the production method of the present invention is characterized by a method for producing an electrode.
  • it is characterized by the trimming of the electrode precursor from which the electrode is based.
  • the production of at least one of the positive electrode and the negative electrode is performed by forming the electrode material layer 20 on the metal sheet material 10 serving as the electrode current collector to obtain the electrode precursor 30.
  • trimming to the electrode precursor 30 is performed by forming the electrode material layer 20 on the metal sheet material 10 serving as the electrode current collector to obtain the electrode precursor 30.
  • trimming to the electrode precursor 30 to at least partially cut off the edge 35 of the resulting electrode precursor 30 so that the edge 35 of the electrode precursor 30 forms a wave-like irregularity in the trimming. Then, the electrode precursor 30 is cut.
  • the electrode precursor edge is not simply trimmed into irregularities, but is trimmed so that the electrode precursor edges have “waveform” irregularities.
  • Such wavy irregularities are composed of “plurality of recesses” and “plurality of projections”, and therefore, the edge contour of the electrode precursor is generally curved or curved.
  • an edge portion of the electrode precursor when viewed in a plan view of the electrode precursor, is angular or linear. Such as a straight portion extending in the longitudinal direction or a direction perpendicular thereto is not present.
  • the electrode precursor that is trimmed according to the present invention is suitable for a continuous manufacturing process.
  • an electrode precursor having a curved uneven edge according to the present invention can be resistant to the electrode precursor being cut or torn by an external force received from a guide roll used for its conveyance. In other words, such inconveniences are avoided even under conditions where stress causing such breakage and / or tearing is likely to occur.
  • the electrode precursor conveyed by the guide roll may be broken or torn due to the influence caused by the guide roll, such a possibility is reduced in one embodiment of the present invention.
  • the manufacturing method according to the embodiment of the present invention does not cause such “probability of tearing” and / or “probability of tearing”. Therefore, according to the present invention, the intended electrode precursor can be obtained more suitably, and as a result, a desired electrode can be obtained.
  • the electrode precursor has an end profile (particularly, “longitudinal end” or “end along the transport direction” in the electrode precursor) having a “smoothly changing shape”.
  • the effect of dispersing inconvenient stress that can occur in the electrode precursor due to the “smooth change” becomes more effective.
  • the manufacturing method of the present invention is characterized by the electrode precursor trimming process.
  • a general method for manufacturing a secondary battery as a premise will be described in detail below.
  • the secondary battery After preparing and preparing the positive electrode, the negative electrode, the electrolytic solution, and the separator, respectively (may be procured from a commercial product if necessary), the secondary battery is integrated by combining them. Obtainable.
  • a positive electrode material slurry is used for production of the positive electrode.
  • the positive electrode material slurry is an electrode material layer raw material containing at least a positive electrode active material and a binder.
  • a positive electrode precursor that is, an electrode precursor is obtained by applying the positive electrode material slurry to a metal sheet material (for example, aluminum foil) as a positive electrode current collector. If necessary, the positive electrode precursor may be subjected to rolling or pressing with a roll press.
  • the metal sheet material used as the positive electrode current collector preferably has a long strip shape, and the positive electrode material slurry is applied to such a long metal sheet.
  • the area to be applied is not applied to the entire periphery of the main surface of the long metal sheet, but to the peripheral portions in both width directions of the metal sheet material (especially at both end portions in the short direction of the metal sheet material). It is preferable not to apply the positive electrode material slurry).
  • the positive electrode material slurry is applied in a similar long shape so as to be slightly smaller than the long metal sheet material (particularly, the positive electrode material slurry is applied outside the edge region of the metal sheet material). preferable.
  • the formation of the positive electrode precursor that is, the production of the electrode precursor can be continuously performed. That is, the electrode precursor can be obtained by a continuous manufacturing process.
  • the positive electrode material slurry is applied to the metal sheet material while feeding the metal sheet material in a predetermined direction from a sheet supply source wound in a roll shape.
  • the metal sheet material is applied with the positive electrode material slurry while being moved and conveyed, whereby the electrode precursor is continuously produced.
  • the metal sheet material or the electrode precursor obtained therefrom may undergo a drying process and / or a rolling process.
  • a guide roll is used for conveyance of a metal sheet material, that is, conveyance of an electrode precursor. With such a guide roll, a tension is applied to the electrode precursor, and the electrode precursor is moved in a predetermined direction in that state.
  • the produced positive electrode precursor (especially a positive electrode precursor having a long strip shape) is stored, for example, in a roll shape as necessary, or is appropriately transported until it is used in the next step. Then, in the next step, cutting is performed to obtain a plurality of positive electrodes from the positive electrode precursor (in the case of being wound in a roll, cutting is performed after unfolding).
  • the positive electrode precursor is subjected to mechanical cutting to cut out the positive electrode from the positive electrode precursor (particularly, “part where the positive electrode material slurry is applied”).
  • a cutting process such as a so-called “punching operation” may be performed.
  • a tab can be provided on the electrode.
  • a “positive electrode tab made of a metal sheet material” can be provided on the positive electrode by including a region where the metal sheet material not provided with the positive electrode material layer is exposed in the cut out shape to obtain the positive electrode.
  • a plurality of desired positive electrodes can be obtained through the operations as described above.
  • the production of the negative electrode is the same as the production of the positive electrode.
  • a negative electrode material slurry is used.
  • the negative electrode material slurry is an electrode material layer raw material containing at least a negative electrode active material and a binder.
  • a negative electrode precursor that is, an electrode precursor is obtained by applying such a negative electrode material slurry to a metal sheet material (for example, copper foil) as a negative electrode current collector. If necessary, the negative electrode precursor may be subjected to rolling or press treatment with a roll press.
  • the metal sheet material used as the negative electrode current collector preferably has a long strip shape, and the negative electrode material slurry is applied to such a long metal sheet material.
  • the area to be applied is not applied to the entire periphery of the main surface of the long metal sheet material but to the peripheral portions in both width directions of the metal sheet material (particularly, both end portions of the metal sheet material in the short direction) It is preferable not to apply the negative electrode material slurry to the above).
  • the negative electrode material slurry is applied in the same long shape so as to be slightly smaller than the long metal sheet material (particularly, it is applied to other than the edge region of the metal sheet material).
  • the production of the negative electrode precursor can also be carried out continuously as in the case of the positive electrode precursor. That is, the negative electrode precursor as an electrode precursor can be obtained by a continuous manufacturing process using a guide roll.
  • the obtained negative electrode precursor (particularly, a long negative electrode precursor) is stored, for example, by being rolled into a roll as necessary, or is appropriately transported until it is used in the next step. Then, in the next step, cutting is performed to obtain a plurality of negative electrodes from the negative electrode precursor (in the case of being wound in a roll, cutting is performed after unfolding). For example, the negative electrode is cut out from the negative electrode precursor (particularly, “part where the negative electrode material slurry is applied”) by subjecting the negative electrode precursor to mechanical cutting. Although this is only an example, a so-called “punching operation” may be performed.
  • a tab can be provided on the electrode. That is, a negative electrode tab made of a metal sheet material can be provided on the negative electrode by obtaining the negative electrode by including a region where the metal sheet material not provided with the negative electrode material layer is exposed in the cut shape. A plurality of desired negative electrodes can be obtained through the operations described above.
  • An electrolyte that is responsible for ion transfer between the positive electrode and the negative electrode when the battery is used is prepared (in the case of a lithium ion battery, a nonaqueous electrolyte is particularly prepared). Therefore, a desired electrolyte is prepared by mixing raw materials to be such an electrolyte.
  • the electrolyte may be a conventional electrolyte used in a conventional secondary battery, and therefore, the raw material may be the one conventionally used for manufacturing the secondary battery. .
  • the separator may be conventional, and therefore, a separator that is conventionally used as a secondary battery may be used.
  • the secondary battery can be obtained by integrally combining the positive electrode, the negative electrode, the electrolytic solution, and the separator prepared and prepared as described above.
  • a secondary battery can be obtained by stacking a plurality of positive electrodes and negative electrodes through a separator to form an electrode assembly and enclosing the electrode assembly together with an electrolyte in an exterior body.
  • the separator may be a laminate of sheets cut into sheets, or may be stacked in a ninety-nine shape and cut off excess. Furthermore, you may laminate
  • the present invention is characterized by the production of an electrode in the production of the secondary battery described above, and particularly by the trimming process of the electrode precursor. More specifically, in the production of at least one of the positive electrode and the negative electrode, the electrode precursor 30 is trimmed by trimming the edge 35 of the electrode precursor 30 at least partially. This is performed so that the edge 35 of the body 30 has a wave-like unevenness (see FIG. 1).
  • “at least partially cut off” is not intended to mean a mode in which a part of the edge is cut off (for example, a mode in which such a part is cut out a plurality of times), but the entire edge is cut off.
  • a mode of cutting off for example, a mode in which cutting processing is collectively performed on the entire edge is also intended.
  • the edge of the electrode precursor is trimmed into “wave-like” irregularities, so that the edge contour of the electrode precursor as a whole is curved or curved.
  • all of the edge contours of the electrode precursor are all curved or curved. Yes.
  • the electrode precursor having the curved uneven (or curved uneven) edge can be more suitably subjected to the moving feed regardless of the external force that can be received from the guide roll in a continuous manufacturing process.
  • the “wave-shaped unevenness” has the effect of more effectively dispersing the stress that can be brought from the guide roll to the electrode precursor (particularly the edge of the electrode precursor) by the feeding operation by the guide roll, Cutting and tearing from the edge of the electrode precursor is more effectively prevented.
  • the edge of the electrode precursor is not “wavy uneven”.
  • the edge contour of the electrode precursor includes a straight line portion. This may be a case where the edge contour includes a straight portion along the “longitudinal direction” or “conveying direction” of the electrode precursor, or “electrode” corresponding to the direction orthogonal to such a direction.
  • a straight line portion is included as an edge contour along the “short direction of the precursor” can be considered.
  • a trimming (pre-trimming) edge cutting may include a linear cutting portion, or an edge cutting that is tabbed in advance (particularly the shape in plan view).
  • edge cutting is performed to perform tab cutting so as to have a quadrangular shape / rectangular shape.
  • the metal sheet material / electrode precursor is caused by the guide rolls 60 (“60A, 60B” and / or “60B, 60C”) separated from each other in the direction in which the electrode precursor moves.
  • the guide rolls 60 (“60A, 60B” and / or “60B, 60C”) separated from each other in the direction in which the electrode precursor moves.
  • a stress that easily causes a break or tear in the width direction of the metal sheet material 10 / electrode precursor 30 that is, the short direction of the metal sheet material / electrode precursor
  • cutting and tearing easily occurs from the edge along the direction.
  • the linear edge of the metal sheet material / electrode precursor is taken as the starting point along the short direction of the metal sheet material 10 / electrode precursor 30. It can be said that breaks and tears are likely to occur. This is because the stress caused to the metal sheet material / electrode precursor due to the guide rolls spaced apart from each other cannot be effectively dispersed at the “straight edge”, and the stress tends to concentrate on a certain local portion. This is considered to be because. In this respect, in the present invention, local stress concentration can be reduced due to the fact that the edge of the electrode precursor has “wave-like unevenness”, and cutting and tearing from the edge is more effective. Can be prevented.
  • the term “wave-shaped unevenness” broadly means that the edge of the electrode precursor has a curved shape or a curved shape including both “mountains” and “valleys”. ing.
  • the plan view shape of the edge of the electrode precursor is “at least one curved peak” and “at least one curved valley”. It means that it has a curved or curved shape.
  • the wavy irregularities do not have angular or linear portions (particularly preferably, the wavy irregularities on the electrode precursor edge in a plan view are all curved or curved. It can be said to consist of:
  • the “wave-shaped unevenness” includes a waved concave and a waved convex. That is, it is preferable that the contour shape at the edge of the electrode precursor is a wave-like unevenness including at least a waved concave and a waved convex. In particular, it is preferable that the edge 35 (that is, the longitudinal edge of the electrode precursor) along the moving feed direction of the metal sheet material is a wave-like unevenness including both a waved concave and a waved convex (See FIG. 3). As described above, when the edge contour of the electrode precursor is entirely curved / curved, the stress applied to the metal sheet material / electrode precursor is more easily dispersed by the guide roll used for conveyance, and from the edge Cutting and tearing can be prevented more effectively.
  • the “wave-like unevenness” is obtained by trimming.
  • trimming corresponds to a cutting process performed on the edge of the electrode precursor.
  • a cutting process that is, edge cutting
  • Appropriate cutting means may be used for trimming.
  • a mechanical cutting means such as a cutting blade may be used.
  • the corrugated concave and the corrugated convex adjacent to each other share a part. That is, the contour shape of the edge of the trimmed electrode precursor has a wave-like unevenness, and a part of “one of the waved concave and the waved convex” can constitute the other part of them.
  • a part of the corrugated concave constitutes a part of the corrugated convex, and vice versa, a part of the corrugated convex constitutes a part of the corrugated concave.
  • the edge contour of the electrode precursor may be a continuous curve / curve as a whole due to the curved irregularities, and therefore, the curve or the curve that changes integrally along the direction of the edge or A curve line is obtained. Therefore, the stress brought from the guide roll to the metal sheet material / electrode precursor becomes easier to disperse, and breakage and tearing from the edge can be more effectively prevented.
  • the edges in the transport direction of the electrode precursor are subjected to the trimming process.
  • all the edges of the trimmed electrode precursor are wavyly contoured, and therefore such trimmed edges
  • it does not preferably include an angular portion or a straight portion (particularly, a straight portion along the conveying direction or a direction perpendicular thereto), and all of the trimming edges are curved or curved.
  • it preferably consists of That is, it is preferable that “curved unevenness” occupies most of the longitudinal edges of the electrode precursor (preferably, all of the edges that will pass through the guide roll).
  • the electrode material layer 20 is not included in the cut-off portion removed by trimming.
  • the electrode is formed in a central region other than the peripheral region of the metal sheet material (more specifically, other than the end portion in the short direction of the metal sheet material, preferably other than the both ends in plan view).
  • the trimming process is performed only on the peripheral area.
  • the innermost point of the corrugated concave portion of the “wave-shaped concave / convex” is positioned outside the edge of the electrode material layer in plan view.
  • the trimming cutting accuracy can be improved because the cutting is performed on a single metal sheet material.
  • the contour curve of the edge of the electrode precursor can be a more accurate curve, so that the stress caused from the guide roll to the metal sheet material / electrode precursor is more easily dispersed and cut from the edge. -Tearing can be prevented more effectively.
  • the electrode material non-formation region of the metal sheet material not provided with the electrode material layer 20 but also the electrode material formation region provided with the electrode material layer 20 is partially applied. Cut off to include. That is, as shown in FIG. 5B, the electrode material layer 20 is partially included in the cut-off portion removed by trimming.
  • the electrode material layer is formed in the central region other than the peripheral region of the metal sheet material, and the trimming process is performed not only on the peripheral region but also on the central region.
  • the innermost point of the wave-shaped concave portion of the “wave-shaped unevenness” in a plan view is located inside the electrode material layer edge (preferably, (It will be located slightly inside the electrode material layer edge).
  • the finally obtained tabbed electrode is obtained as “an electrode having a higher proportion of the polar material layer”. This contributes to more favorable battery production in terms of battery capacity. That is, in this aspect, not only the electrode manufacturing process that can prevent the cutting and tearing of the edge of the electrode precursor, but also an advantageous effect can be achieved not only in terms of the characteristics of the finally manufactured secondary battery.
  • the “wave-like unevenness” may form a periodic curve. That is, when the trimming process is performed so that the edge contour of the electrode precursor has a curved uneven curve, the curve may be a regular curve.
  • the wavelength dimension may be substantially constant and / or the amplitude dimension may be constant for a wave curve of an edge contour due to a wave-shaped unevenness. From another perspective, it can be said that all the recesses and / or all the projections in the “edge contour has a wave-like unevenness” may have substantially the same shape.
  • the edge contour of the electrode precursor can be equalized as a whole due to the curved irregularities, the stress caused from the guide roll to the metal sheet material / electrode precursor is more easily dispersed, and from the edge Cutting and tearing can be more effectively prevented.
  • the wavy unevenness forms a “curve that does not include geometric singularities”. That is, when the trimming process is performed so that the edge contour of the electrode precursor has a curve due to the wavy irregularities, it is preferable that the function representing the curve does not have a singular point.
  • geometric singularity as used herein means, in a broad sense, a place where the target curve can show an abnormal form as compared to the general curve. In other words, “geometric singularity” means a point that is not given by the smooth embedding of the parameters for the curve in question.
  • the “geometric singularity” in the present invention is the mathematics handbook (published on April 5, 1994, 1st edition, 5th edition, publisher: Morikita Publishing Co., Ltd., supervisor: Kentaro Yano, editor) : Toshio Miyamoto, publisher: Atsushi Morikita) means “singularity” described on page 583.
  • the curve of the edge contour of the electrode precursor becomes smoother as a whole, so that from the guide roll to the metal sheet material / electrode precursor.
  • the resulting stress can be more easily dispersed, and cutting and tearing from the edge can be prevented more effectively.
  • the contour curve of the edge of the trimmed electrode precursor is a point (point), jump point, corner point, isolated point, double point, self, which is a geometric singular point It may be a curve that does not have a contact point and / or a triple point. Such a contour curve may be a regular curve.
  • the contour curve of the edge of the electrode precursor does not have a point (a cusp), a jump point, a corner point, an isolated point, a double point, a self-contact point, or a triple point as geometric singular points.
  • trimming processing is performed so as to obtain a regular curve.
  • FIGS. 7A to 7D are schematic views in which the edge contour of the electrode precursor has geometric singularities in order to understand the aspect of “curved irregularities do not include geometric singularities”. Examples are shown in FIGS. 7A to 7D.
  • the contour curve with trigonometric functions as a basis function also has the effect of further distributing the stress caused from the guide roll to the metal sheet material / electrode precursor, and more effectively prevents breakage and tearing from the edge. Is done.
  • contour curve may be a contour curve as shown in FIG. That is, with respect to the contour curve of the edge of the trimmed electrode precursor, when the “longitudinal direction” or “transport direction” of the electrode precursor is the x axis and the direction orthogonal thereto is the y axis, the contour curve is expressed by the following formula ( The curve may satisfy Equation 1). Such a contour curve can also have an effect of further dispersing the stress caused from the guide roll to the metal sheet material / electrode precursor.
  • “wave-like unevenness” can be used for electrode tab formation. More specifically, the trimmed electrode precursor 30 may be cut out so that the tab 45 is positioned in the “wave-convex” region of the wave-like unevenness, whereby the “electrode provided with the tab” Can be obtained more suitably (see FIG. 10).
  • the trimmed electrode precursor 30 may be cut out so that the tab 45 is positioned in the “wave-convex” region of the wave-like unevenness, whereby the “electrode provided with the tab” Can be obtained more suitably (see FIG. 10).
  • FIG. 10 when cutting is performed by including a region (electrode material non-forming region) of the metal sheet material 10 where the electrode material layer 20 is not provided in the cut shape, the pole included in the cut shape 40.
  • the material non-formation region is particularly located on the corrugation.
  • the “convex convex” constitutes the tab 45, and a “tabbed electrode” can be obtained more suitably.
  • a “tabbed electrode” can be obtained more suitably.
  • tab means an external terminal element used for electrical connection with the outside in a broad sense, and in a narrow sense, a part of a positive or negative current collector.
  • an electrode active material positive electrode material / negative electrode material
  • it means an external terminal element having a form protruding from the positive electrode or the negative electrode in the electrode assembly.
  • the electrode may be cut out so that the contour of the tip of the tab forms the same curve (planar curve) as the “wave shape convex”.
  • the tab is a tab having a curved or curved contour (preferably a curved or curved contour similar to or similar to a “convex portion” in the wave-like unevenness of the long edge of the electrode precursor). Preferably formed.
  • the present invention is not particularly limited to this.
  • an aspect in which the amplitude of the wave curve is not constant may be employed (in the aspect illustrated, an aspect in which the change in amplitude is periodic is illustrated).
  • the wavelength of the wave curve of the edge contour resulting from the wave-shaped unevenness may be a mode in which the wavelength changes periodically in the mode shown. The mode which is shown is illustrated. Even in such an embodiment, since the stress caused from the guide roll to the metal sheet material / electrode precursor is dispersed, it is possible to effectively prevent breakage and tear from the edge.
  • the secondary battery obtained by the manufacturing method according to an embodiment of the present invention can be used in various fields where power storage is assumed.
  • secondary batteries are used in the electrical / information / communication field where mobile devices are used (for example, mobile phones, smart watches, smartphones, laptop computers, digital cameras, activity meters, arm computers and electronic devices).
  • Paper and other mobile devices home / small industrial applications (eg, power tools, golf carts, home / care / industrial robots), large industrial applications (eg, forklifts, elevators, bay harbor cranes) ), Transportation systems (for example, hybrid vehicles, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles, etc.), power system applications (for example, various power generation, road conditioners, smart grids, general home-installed energy storage systems) Field), IoT field, and space / Sea applications (for example, spacecraft, areas such as submersible research vessel) can be used, such as in.
  • home / small industrial applications eg, power tools, golf carts, home / care / industrial robots
  • large industrial applications eg, forklifts, elevators, bay harbor cranes
  • Transportation systems for example, hybrid vehicles, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles, etc.
  • power system applications for example, various power generation, road conditioners, smart grids, general home-installed energy storage systems
  • Electrode material layer 30 Electrode precursor 35 Edge of electrode precursor 40 Cut shape of electrode / electrode to be cut (for example, “non-rectangular” electrode) 45 tabs

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The main purpose of the present invention is to provide a secondary battery manufacturing method with which a problematic phenomenon due to a guide roll for transferring an electrode precursor is reduced. Provided is a secondary battery manufacturing method comprising, for fabricating at least one of a positive electrode and a negative electrode: obtaining an electrode precursor by forming an electrode material layer on a metal sheet material for a current collector; and subjecting the electrode precursor to trimming to at least partially cut off an edge of the electrode precursor. In particular, the trimming involves cutting off the edge in such a way that the edge of the electrode precursor forms wavy irregularities.

Description

二次電池の製造方法Manufacturing method of secondary battery
 本発明は二次電池の製造方法に関する。特に、正極および負極の少なくとも一方の電極の作製に特徴を有する二次電池の製造方法に関する。 The present invention relates to a method for manufacturing a secondary battery. In particular, the present invention relates to a method for manufacturing a secondary battery characterized by the production of at least one of a positive electrode and a negative electrode.
 二次電池は、いわゆる“蓄電池”ゆえ充電および放電の繰り返しが可能であり、様々な用途に用いられている。例えば、携帯電話、スマートフォンおよびノートパソコンなどのモバイル機器に二次電池が用いられている。 Secondary batteries are so-called “storage batteries” that can be repeatedly charged and discharged, and are used in various applications. For example, secondary batteries are used in mobile devices such as mobile phones, smartphones, and notebook computers.
 二次電池は、正極、負極およびそれらの間のセパレータから少なくとも構成されている。正極は正極材層および正極集電体から構成され、負極は負極材層および負極集電体から構成されている。二次電池は、例えばセパレータを挟み込んだ正極および負極から成る電極構成層が互いに積み重なった積層構造を有している。 The secondary battery includes at least a positive electrode, a negative electrode, and a separator between them. The positive electrode is composed of a positive electrode material layer and a positive electrode current collector, and the negative electrode is composed of a negative electrode material layer and a negative electrode current collector. The secondary battery has, for example, a laminated structure in which electrode constituent layers composed of a positive electrode and a negative electrode sandwiching a separator are stacked on each other.
特表2015-536036号公報Special table 2015-536036 gazette 特許3801087号公報Japanese Patent No. 381087 特許2015-536036号公報Japanese Patent No. 2015-536036
 本願発明者は、従前の二次電池の製法では克服すべき課題があることに気付き、そのための対策を取る必要性を見出した。具体的には以下の課題があることを本願発明者は見出した。 The inventor of the present application has found that there is a problem to be overcome in the conventional method of manufacturing a secondary battery, and has found that it is necessary to take measures for that. Specifically, the present inventors have found that there are the following problems.
 正極および負極のそれぞれの電極の作製では、電極前駆体を一旦形成し、それに対して切出しを施して電極を得る。図12(a)~(c)を参照して説明する。図12(a)および(b)に示すように、電極集電体となる金属シート材10に電極活物質を含む電極材層20を形成して電極前駆体30を得る。電極前駆体30に対しては、図12(b)および(c)に示すように所定形状の切出しを行うことによって所望の電極40を得ることができる。切出しに際して、電極材層が設けられていない金属シート材10の領域を切出し形状に含めると、電極40にタブ45を設けることができる。 In the production of each of the positive electrode and the negative electrode, an electrode precursor is once formed and then cut out to obtain an electrode. This will be described with reference to FIGS. 12 (a) to 12 (c). As shown in FIGS. 12A and 12B, an electrode precursor 30 is obtained by forming an electrode material layer 20 containing an electrode active material on a metal sheet material 10 to be an electrode current collector. For the electrode precursor 30, a desired electrode 40 can be obtained by cutting out a predetermined shape as shown in FIGS. 12 (b) and 12 (c). When cutting out, if the region of the metal sheet material 10 on which no electrode material layer is provided is included in the cut out shape, the tab 45 can be provided on the electrode 40.
 連続的な製造プロセスにおいては、金属シート材を所定方向に送り出しながら電極前駆体の形成を実施する。具体的には、例えばロール状に巻かれた金属シート材を巻き出しつつ金属シート材を移動させ、かかる金属シート材に電極材原料を供給して電極前駆体30を形成する。金属シート材の移動、すなわち、そのシート材から得られる電極前駆体の搬送のためにはガイドロールが利用され得る。かかる場合、ガイドロールを介して金属シート材を所定方向へと移動/搬送させながら、金属シート材上に電極材層20を形成して電極前駆体30を連続的に得ることになる。 In the continuous manufacturing process, the electrode precursor is formed while feeding the metal sheet material in a predetermined direction. Specifically, for example, the metal sheet material is moved while being unwound in a roll shape, and an electrode material raw material is supplied to the metal sheet material to form the electrode precursor 30. A guide roll can be used for the movement of the metal sheet material, that is, the transport of the electrode precursor obtained from the sheet material. In this case, the electrode precursor layer 30 is continuously formed by forming the electrode material layer 20 on the metal sheet material while moving / conveying the metal sheet material in a predetermined direction via the guide roll.
 このような連続的な製造プロセスにつき、本願発明者らは、ガイドロールによる搬送が電極前駆体に意外にも不都合な現象をもたらし得ることを見出した。具体的には、搬送中の電極前駆体は、その搬送に供するガイドロールから不都合な影響を受け得ることが分かった。 For such a continuous manufacturing process, the inventors of the present application have found that conveyance by a guide roll can cause a surprisingly inconvenient phenomenon to the electrode precursor. Specifically, it has been found that the electrode precursor being transported can be adversely affected by the guide rolls used for the transport.
 搬送される電極前駆体に対しては、いわゆる“トリミング”あるいは“プレトリミング”などと称される切除処理(以下では単に「トリミング処理」とも称す)を行う場合があり、タブ設置などを想定して電極前駆体のエッジを少なくとも部分的に切り落としておくことがある。今回、トリミング処理された電極前駆体は、ガイドロールによる搬送中に、そのガイドロールから不都合な影響を受け得ることを見出した。特にトリミング処理された電極前駆体は、ガイドロールから受ける外力に起因して(特に、電極前駆体に撓みをもたらす外力に起因して)、トリミングされた局所箇所を起点に切れ易い/裂け易いことが分かった。 The transported electrode precursor may be subjected to a cutting process called “trimming” or “pre-trimming” (hereinafter also simply referred to as “trimming process”). The edge of the electrode precursor may be cut off at least partially. It has now been found that the trimmed electrode precursor can be adversely affected by the guide roll during transport by the guide roll. In particular, the trimmed electrode precursor is easily cut or easily broken from the trimmed local portion due to an external force applied from the guide roll (particularly due to an external force that causes the electrode precursor to bend). I understood.
 本発明はかかる課題に鑑みて為されたものである。即ち、本発明の主たる目的は、電極前駆体の搬送に供するガイドロールに起因する不都合な現象を減じた二次電池の製造方法を提供することである。 The present invention has been made in view of such problems. That is, a main object of the present invention is to provide a method for manufacturing a secondary battery in which an inconvenient phenomenon caused by a guide roll used for transporting an electrode precursor is reduced.
 本願発明者は、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記課題の解決を試みた。その結果、上記主たる目的が達成された二次電池の製造方法の発明に至った。 The inventor of the present application tried to solve the above-mentioned problem by addressing in a new direction rather than responding on the extension of the prior art. As a result, the inventors have reached an invention of a method for manufacturing a secondary battery in which the main object is achieved.
 本発明に係る二次電池の製造方法は、
 正極および負極の少なくとも一方の電極の作製が、
 電極集電体となる金属シート材に電極材層を形成して電極前駆体を得ること、および
 電極前駆体のエッジを少なくとも部分的に切り落とすトリミングを電極前駆体に施すこと
を含んで成り、
 電極前駆体のエッジが波曲状凹凸を成すようにトリミングを行う。
A method for manufacturing a secondary battery according to the present invention includes:
Production of at least one of a positive electrode and a negative electrode
Forming an electrode material layer on a metal sheet material to be an electrode current collector to obtain an electrode precursor, and applying trimming to the electrode precursor to at least partially cut off the edge of the electrode precursor,
Trimming is performed so that the edges of the electrode precursor have wave-like irregularities.
 本発明の製造方法では、電極前駆体のエッジに対して波曲状凹凸を成すようにトリミング処理を施すので、電極前駆体の搬送に供するガイドロールに起因した不都合な現象を減じることができる。特に、ガイドロールが使用された連続的な製造プロセスであっても、そのガイドロールから受ける外力で電極前駆体が切れたり裂けたりする現象が減じられる。よって、本発明により所望の電極前駆体を得ることができ、ひいては、所望の電極を得ることができる。 In the manufacturing method of the present invention, the trimming process is performed so that the edge of the electrode precursor has a wave-shaped unevenness, so that an inconvenient phenomenon caused by the guide roll used for transporting the electrode precursor can be reduced. In particular, even in a continuous manufacturing process in which a guide roll is used, a phenomenon in which the electrode precursor is cut or torn by an external force received from the guide roll is reduced. Therefore, a desired electrode precursor can be obtained by the present invention, and thus a desired electrode can be obtained.
 より具体的には、トリミング処理された電極前駆体がガイドロールに起因して撓むように変位しながら搬送される場合であっても、「局所箇所を起点にした電極前駆体の切れ/裂けなどの不都合な現象」が“電極前駆体エッジの波曲状凹凸”によって減じられる。 More specifically, even when the trimmed electrode precursor is transported while being displaced so as to be bent due to the guide rolls, “cutting or tearing of the electrode precursor starting from the local location, etc. The “inconvenient phenomenon” is reduced by the “waveform irregularities of the electrode precursor edge”.
本発明の一実施形態に係る製造方法におけるプロセス態様を模式的に示した平面図The top view which showed typically the process aspect in the manufacturing method which concerns on one Embodiment of this invention ガイドロールを利用した連続的な製造プロセス態様を示した模式図Schematic showing a continuous manufacturing process using guide rolls 波形凹と波形凸との双方を含む波曲状凹凸の態様を模式的に示した平面図The top view which showed typically the aspect of the curved unevenness | corrugation containing both a corrugated concave and a corrugated convex 波曲状凹凸の互いに隣接する波形凹と波形凸とがそれぞれ一部を互いに共有する態様を模式的に示した平面図The top view which showed typically the aspect in which the waveform corrugation and corrugation which adjoin each other of a corrugated unevenness share a part mutually トリミングのある好適な態様を模式的に示した平面図(図5(A):極材非形成領域のみを切り落とす好適態様A、図5(B):極材非形成領域のみならず、極材形成領域を部分的に含むように切り落とす好適態様B)Plan view schematically showing a preferred embodiment with trimming (FIG. 5A: preferred embodiment A in which only the pole material non-formation region is cut off, FIG. 5B: not only the pole material non-formation region but also the pole material Preferred embodiment B) to cut off so as to partially include the formation region 電極前駆体のエッジ輪郭が幾何学的特異点を有する態様を説明するための模式的な説明図(図6(A):先点(尖点)、図6(B):跳躍点、図6(C):角点)Schematic explanatory diagram for explaining a mode in which the edge contour of the electrode precursor has a geometric singular point (FIG. 6A: tip (point), FIG. 6B: jump point, FIG. 6 (C): Corner point) 電極前駆体のエッジ輪郭が幾何学的特異点を有する態様を説明するための模式的な説明図(図7(A):孤立点、図7(B):2重点、図7(C):自己接触点、図7(D):3重点)Schematic explanatory diagram for explaining a mode in which the edge contour of the electrode precursor has a geometric singular point (FIG. 7A: isolated point, FIG. 7B: double point, FIG. 7C): Self-contact point, Fig. 7 (D): 3 points) 三角関数を基底関数とする輪郭曲線を説明するための模式図Schematic diagram for explaining contour curves with trigonometric functions as basis functions 数1を満たす輪郭曲線を説明するための模式図Schematic diagram for explaining a contour curve satisfying Equation 1 波曲状凹凸を電極タブ形成に利用する態様を説明するための模式的平面図Typical top view for demonstrating the aspect which utilizes a waveform uneven | corrugated for electrode tab formation 波曲状凹凸の変更態様を示した模式的平面図(図11(A):振幅非一定、図11(B):波長非一定)Schematic plan view showing how the wave-shaped irregularities are changed (FIG. 11A: amplitude non-constant, FIG. 11B: wavelength non-constant) 対比例となるプロセス態様を模式的に示した平面図Plan view schematically showing the process aspect to be compared
 以下では、本発明の一実施形態に係る二次電池の製造方法をより詳細に説明する。必要に応じて図面を参照して説明を行うものの、図面における各種の要素は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。 Hereinafter, a method for manufacturing a secondary battery according to an embodiment of the present invention will be described in more detail. Although the description will be made with reference to the drawings as necessary, the various elements in the drawings are merely schematically and exemplarily shown for the understanding of the present invention, and the appearance and size ratio may be different from the actual ones. .
 本明細書で直接的または間接的に説明される「平面視(または平面視形状)」(例えば、電極前駆体またはそのエッジもしくはエッジ輪郭の平面視形状)は、金属シート材または電極材の厚み方向に沿って上側または下側から捉えた場合の見取図に基づいている。ここで、金属シート材・電極材の厚み方向は、二次電池における電極(正極・負極)の積層方向に相当する。 A “plan view (or plan view shape)” (for example, a plan view shape of an electrode precursor or an edge or an edge contour thereof) described directly or indirectly in the specification is a thickness of a metal sheet material or an electrode material. It is based on a sketch when taken from above or below along the direction. Here, the thickness direction of the metal sheet material / electrode material corresponds to the stacking direction of the electrodes (positive electrode / negative electrode) in the secondary battery.
 また、本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。 Also, “vertical direction” and “horizontal direction” used directly or indirectly in the present specification correspond to the vertical direction and horizontal direction in the drawing, respectively. Unless otherwise specified, the same symbols or symbols indicate the same members or the same meaning. In a preferable aspect, it can be understood that the downward direction in the vertical direction (that is, the direction in which gravity works) corresponds to the “down direction” and the reverse direction corresponds to the “up direction”.
[本発明で製造される二次電池の構成]
 本発明の製造方法では二次電池が得られる。本明細書でいう「二次電池」とは、充電および放電の繰り返しが可能な電池のことを指している。従って、本発明の一実施形態に係る製造方法で得られる二次電池は、その名称に過度に拘泥されるものでなく、例えば“蓄電デバイス”なども対象に含まれ得る。また、本明細書でいう「電極前駆体」とは、広義には、電極集電体となる金属シート材に電極材層が形成されたものであって、負極または正極の電極の形成に資するものを指している。特に狭義には、本発明における「電極前駆体」は、電極形状を得るためのいわゆる“打ち抜き”が為される前の時点における電極体を指している。
[Configuration of Secondary Battery Manufactured by the Present Invention]
In the manufacturing method of the present invention, a secondary battery is obtained. As used herein, “secondary battery” refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery obtained by the manufacturing method according to an embodiment of the present invention is not excessively bound by the name, and may include, for example, “electric storage device”. In addition, the term “electrode precursor” in the present specification broadly means that an electrode material layer is formed on a metal sheet material to be an electrode current collector, and contributes to the formation of a negative electrode or a positive electrode. Pointing to things. In particular, in a narrow sense, the “electrode precursor” in the present invention refers to an electrode body before a so-called “punching” for obtaining an electrode shape.
 本発明の製造方法で得られる二次電池は、正極、負極およびセパレータを含む電極構成層が積層した電極組立体を有して成る。正極と負極とはセパレータを介して積み重なって電極構成層を成しており、かかる電極構成層が少なくとも1つ以上積層した電極組立体が電解質と共に外装体に封入されている。なお、電極組立体の構造は平面積層構造に必ずしも限定されず、例えば、正極、負極および正極と負極との間に配置されたセパレータを含む電極ユニット(電極構成層)をロール状に巻回した巻回構造(ジェリーロール型)を有していてもよい。また例えば、電極組立体は、正極、セパレータおよび負極を長いフィルム上に積層してから折りたたんだ、いわゆるスタックアンドフォールディング型構造を有していてもよい。 The secondary battery obtained by the production method of the present invention has an electrode assembly in which electrode constituent layers including a positive electrode, a negative electrode, and a separator are laminated. The positive electrode and the negative electrode are stacked via a separator to form an electrode constituent layer, and an electrode assembly in which at least one electrode constituent layer is laminated is enclosed in an outer package together with an electrolyte. The structure of the electrode assembly is not necessarily limited to a planar laminated structure. For example, an electrode unit (electrode constituent layer) including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode is wound in a roll shape. You may have a winding structure (jelly roll type). For example, the electrode assembly may have a so-called stack and folding structure in which a positive electrode, a separator, and a negative electrode are stacked on a long film and then folded.
 正極は、少なくとも正極材層および正極集電体から構成されている。正極では正極集電体の少なくとも片面に正極材層が設けられており、正極材層には電極活物質として正極活物質が含まれている。例えば、電極組立体における複数の正極は、それぞれ、正極集電体の両面に正極材層が設けられていてよいし、あるいは、正極集電体の片面にのみ正極材層が設けられていてよい。二次電池のさらなる高容量化の観点でいえば正極は正極集電体の両面に正極材層が設けられていることが好ましい。 The positive electrode is composed of at least a positive electrode material layer and a positive electrode current collector. In the positive electrode, a positive electrode material layer is provided on at least one surface of the positive electrode current collector, and the positive electrode material layer contains a positive electrode active material as an electrode active material. For example, each of the plurality of positive electrodes in the electrode assembly may be provided with a positive electrode material layer on both surfaces of the positive electrode current collector, or may be provided with a positive electrode material layer only on one surface of the positive electrode current collector. . From the viewpoint of further increasing the capacity of the secondary battery, the positive electrode is preferably provided with a positive electrode material layer on both surfaces of the positive electrode current collector.
 負極は、少なくとも負極材層および負極集電体から構成されている。負極では負極集電体の少なくとも片面に負極材層が設けられており、負極材層には電極活物質として負極活物質が含まれている。例えば、電極組立体における複数の負極は、それぞれ、負極集電体の両面に負極材層が設けられていてよいし、あるいは、負極集電体の片面にのみ負極材層が設けられていてよい。二次電池のさらなる高容量化の観点でいえば負極は負極集電体の両面に負極材層が設けられていることが好ましい。 The negative electrode is composed of at least a negative electrode material layer and a negative electrode current collector. In the negative electrode, a negative electrode material layer is provided on at least one surface of the negative electrode current collector, and the negative electrode material layer contains a negative electrode active material as an electrode active material. For example, each of the plurality of negative electrodes in the electrode assembly may be provided with a negative electrode material layer on both surfaces of the negative electrode current collector, or may be provided with a negative electrode material layer only on one surface of the negative electrode current collector. . From the viewpoint of further increasing the capacity of the secondary battery, the negative electrode is preferably provided with a negative electrode material layer on both sides of the negative electrode current collector.
 正極および負極に含まれる電極活物質、即ち、正極活物質および負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。より具体的には、「正極材層に含まれる正極活物質」および「負極材層に含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極と負極との間で移動して電子の受け渡しが行われて充放電がなされる。正極材層および負極材層は特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、非水電解質を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われる非水電解質二次電池となっていることが好ましい。充放電にリチウムイオンが関与する場合、本発明の製造方法で得られる二次電池は、いわゆる“リチウムイオン電池”に相当し、正極および負極がリチウムイオンを吸蔵放出可能な層を有している。 The electrode active materials contained in the positive electrode and the negative electrode, that is, the positive electrode active material and the negative electrode active material are materials directly involved in the transfer of electrons in the secondary battery, and are the main materials of the positive and negative electrodes responsible for charge / discharge, that is, the battery reaction. is there. More specifically, ions are brought into the electrolyte due to the “positive electrode active material included in the positive electrode material layer” and the “negative electrode active material included in the negative electrode material layer”, and the ions are interposed between the positive electrode and the negative electrode. Then, the electrons are transferred and the electrons are delivered and charged and discharged. The positive electrode material layer and the negative electrode material layer are particularly preferably layers capable of occluding and releasing lithium ions. That is, it is preferable to be a nonaqueous electrolyte secondary battery in which lithium ions move between the positive electrode and the negative electrode through the nonaqueous electrolyte and the battery is charged and discharged. When lithium ions are involved in charge and discharge, the secondary battery obtained by the production method of the present invention corresponds to a so-called “lithium ion battery”, and the positive electrode and the negative electrode have layers capable of occluding and releasing lithium ions. .
 正極材層の正極活物質は例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダーが正極材層に含まれていることが好ましい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層に含まれていてもよい。同様にして、負極材層の負極活物質は例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダーが含まれることが好ましく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層に含まれていてもよい。このように、複数の成分が含有されて成る形態ゆえ、正極材層および負極材層はそれぞれ“正極合材層”および“負極合材層”などと称すこともできる。 The positive electrode active material of the positive electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included in the positive electrode material layer for more sufficient contact between the particles and shape retention. Furthermore, a conductive additive may be included in the positive electrode material layer in order to facilitate the transmission of electrons that promote the battery reaction. Similarly, the negative electrode active material of the negative electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included for more sufficient contact and shape retention between the particles, facilitating the transfer of electrons that promote the battery reaction. In order to make it, the conductive support agent may be contained in the negative electrode material layer. Thus, because of the form in which a plurality of components are contained, the positive electrode material layer and the negative electrode material layer can also be referred to as “positive electrode composite material layer” and “negative electrode composite material layer”, respectively.
 正極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であることが好ましい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であることが好ましい。つまり、本発明の製造方法で得られる二次電池の正極材層においては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれている。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。あくまでも例示にすぎないが、本発明の製造方法で得られる二次電池では、正極材層に含まれる正極活物質がコバルト酸リチウムとなっていてよい。 The positive electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the positive electrode active material is preferably, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material layer of the secondary battery obtained by the production method of the present invention, such a lithium transition metal composite oxide is preferably contained as the positive electrode active material. For example, the positive electrode active material may be lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or a part of those transition metals replaced with another metal. Although such a positive electrode active material may be included as a single species, two or more types may be included in combination. Although it is only an illustration to the last, in the secondary battery obtained with the manufacturing method of this invention, the positive electrode active material contained in a positive electrode material layer may be lithium cobaltate.
 正極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビリニデン、ビリニデンフルオライド-ヘキサフルオロプロピレン共重合体、ビリニデンフルオライド-テトラフルオロチレン共重合体およびポリテトラフルオロチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。例えば、正極材層のバインダーはポリフッ化ビニリデンであってよく、また、正極材層の導電助剤はカーボンブラックであってよい。あくまでも例示にすぎないが、正極材層のバインダーおよび導電助剤は、ポリフッ化ビニリデンとカーボンブラックとの組合せとなっていてよい。 The binder that can be included in the positive electrode material layer is not particularly limited, but includes polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and Mention may be made of at least one selected from the group consisting of polytetrafluoroethylene and the like. The conductive auxiliary agent that can be included in the positive electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth. Examples thereof include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives. For example, the binder of the positive electrode material layer may be polyvinylidene fluoride, and the conductive additive of the positive electrode material layer may be carbon black. Although it is only an illustration to the last, the binder and conductive support agent of a positive electrode material layer may be a combination of polyvinylidene fluoride and carbon black.
 負極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、または、リチウム合金などであることが好ましい。 The negative electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, or lithium alloys.
 負極活物質の各種の炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、ハードカーボン、ソフトカーボン、ダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体との接着性が優れる点などで好ましい。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金であってよい。このような酸化物は、その構造形態としてアモルファスとなっていることが好ましい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるからである。あくまでも例示にすぎないが、本発明の製造方法で得られる二次電池では、負極材層の負極活物質が人造黒鉛となっていてよい。 Examples of various carbon materials of the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, diamond-like carbon, and the like. In particular, graphite is preferable in that it has high electron conductivity and excellent adhesion to the negative electrode current collector. Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and the like. The lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium. For example, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, It may be a binary, ternary or higher alloy of a metal such as La and lithium. Such an oxide is preferably amorphous in its structural form. This is because deterioration due to non-uniformity such as crystal grain boundaries or defects is less likely to be caused. Although it is only an illustration to the last, in the secondary battery obtained with the manufacturing method of this invention, the negative electrode active material of a negative electrode material layer may be artificial graphite.
 負極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。例えば、負極材層に含まれるバインダーはスチレンブタジエンゴムとなっていてよい。負極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材層には、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。 The binder that can be included in the negative electrode material layer is not particularly limited, but is at least one selected from the group consisting of styrene butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. Can be mentioned. For example, the binder contained in the negative electrode material layer may be styrene butadiene rubber. The conductive aid that can be included in the negative electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth. Examples thereof include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives. In addition, the component resulting from the thickener component (for example, carboxymethylcellulose) used at the time of battery manufacture may be contained in the negative electrode material layer.
 あくまでも例示にすぎないが、負極材層における負極活物質およびバインダーは人造黒鉛とスチレンブタジエンゴムとの組合せになっていてよい。 For illustration purposes only, the negative electrode active material and the binder in the negative electrode material layer may be a combination of artificial graphite and styrene butadiene rubber.
 正極および負極に用いられる正極集電体および負極集電体は電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。このような集電体は、シート状の金属部材であってよく、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタル等であってよい。正極に用いられる正極集電体は、アルミニウム、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えばアルミニウム箔であってよい。一方、負極に用いられる負極集電体は、銅、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔であってよい。 The positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode are members that contribute to collecting and supplying electrons generated in the active material due to the battery reaction. Such a current collector may be a sheet-like metal member and may have a porous or perforated form. For example, the current collector may be a metal foil, a punching metal, a net or an expanded metal. The positive electrode current collector used for the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil. On the other hand, the negative electrode current collector used for the negative electrode is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.
 正極および負極に用いられるセパレータは、正負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータは、正極と負極と間の電子的接触を防止しつつイオンを通過させる部材であるといえる。好ましくは、セパレータは多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータとして用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータは、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータの表面が無機粒子コート層や接着層等により覆われていてもよい。セパレータの表面が接着性を有していてもよい。なお、本発明において、セパレータは、その名称によって特に拘泥されるべきでなく、同様の機能を有する固体電解質、ゲル状電解質、絶縁性の無機粒子などであってもよい。 The separator used for the positive electrode and the negative electrode is a member provided from the viewpoint of preventing short circuit due to contact between the positive electrode and the negative electrode and maintaining the electrolyte. In other words, the separator can be said to be a member that allows ions to pass while preventing electronic contact between the positive electrode and the negative electrode. Preferably, the separator is a porous or microporous insulating member and has a film form due to its small thickness. Although only illustrative, a polyolefin microporous film may be used as the separator. In this regard, the microporous membrane used as the separator may include, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin. Furthermore, the separator may be a laminate composed of “a microporous membrane made of PE” and “a microporous membrane made of PP”. The surface of the separator may be covered with an inorganic particle coat layer, an adhesive layer, or the like. The surface of the separator may have adhesiveness. In the present invention, the separator is not particularly limited by its name, and may be a solid electrolyte, a gel electrolyte, insulating inorganic particles or the like having the same function.
 本発明の製造方法で得られる二次電池では、正極、負極およびセパレータを含む電極構成層から成る電極組立体が電解質と共に外装に封入されている。正極および負極がリチウムイオンを吸蔵放出可能な層を有する場合、電解質は有機電解質・有機溶媒などの“非水系”の電解質であることが好ましい(すなわち、電解質が非水電解質となっていることが好ましい)。電解質では電極(正極・負極)から放出された金属イオンが存在することになり、それゆえ、電解質は電池反応における金属イオンの移動を助力することになる。 In the secondary battery obtained by the manufacturing method of the present invention, an electrode assembly including an electrode constituent layer including a positive electrode, a negative electrode, and a separator is enclosed in an exterior together with an electrolyte. When the positive electrode and the negative electrode have a layer capable of occluding and releasing lithium ions, the electrolyte is preferably a “non-aqueous” electrolyte such as an organic electrolyte or an organic solvent (that is, the electrolyte is a non-aqueous electrolyte). preferable). In the electrolyte, metal ions released from the electrodes (positive electrode and negative electrode) exist, and therefore, the electrolyte assists the movement of the metal ions in the battery reaction.
 非水電解質は、溶媒と溶質とを含む電解質である。具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものが好ましい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。あくまでも例示にすぎないが、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられてよく、例えばエチレンカーボネートとジエチルカーボネートとの混合物を用いてよい。また、具体的な非水電解質の溶質としては、例えば、LiPFおよび/またはLiBFなどのLi塩が好ましく用いられる。 A non-aqueous electrolyte is an electrolyte containing a solvent and a solute. As a specific non-aqueous electrolyte solvent, a solvent containing at least carbonate is preferable. Such carbonates may be cyclic carbonates and / or chain carbonates. Although not particularly limited, examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to. Examples of the chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC). Although it is only an illustration to the last, the combination of cyclic carbonate and chain carbonate may be used as a nonaqueous electrolyte, for example, you may use the mixture of ethylene carbonate and diethyl carbonate. In addition, as a specific nonaqueous electrolyte solute, for example, a Li salt such as LiPF 6 and / or LiBF 4 is preferably used.
 二次電池の外装体は、正極、負極及びセパレータを含む電極構成層が積層した電極組立体を包み込むものであるが、ハードケースの形態であってよく、あるいは、ソフトケースの形態であってもよい。具体的には、外装体は、いわゆる“金属缶”に相当するハードケース型であってもよく、あるいは、いわゆるラミネートフィルムから成る“パウチ”に相当するソフトケース型であってもよい。 The outer package of the secondary battery encloses the electrode assembly in which the electrode constituent layers including the positive electrode, the negative electrode, and the separator are laminated, but may be in a hard case form or a soft case form. Good. Specifically, the exterior body may be a hard case type corresponding to a so-called “metal can” or a soft case type corresponding to a “pouch” made of a so-called laminate film.
[本発明の製造方法の特徴]
 本発明の製造方法は、電極の作製法に特徴を有している。特に、電極の元になる電極前駆体のトリミングに特徴を有している。具体的には、正極および負極の少なくとも一方の電極の作製が、図1に示すように、電極集電体となる金属シート材10に電極材層20を形成して電極前駆体30を得ること、および、得られる電極前駆体30のエッジ35を少なくとも部分的に切り落とすトリミングを電極前駆体30に施すことを含んで成り、トリミングにおいては電極前駆体30のエッジ35が波曲状凹凸を成すように電極前駆体30の切断処理を行う。
[Features of the production method of the present invention]
The production method of the present invention is characterized by a method for producing an electrode. In particular, it is characterized by the trimming of the electrode precursor from which the electrode is based. Specifically, as shown in FIG. 1, the production of at least one of the positive electrode and the negative electrode is performed by forming the electrode material layer 20 on the metal sheet material 10 serving as the electrode current collector to obtain the electrode precursor 30. And applying trimming to the electrode precursor 30 to at least partially cut off the edge 35 of the resulting electrode precursor 30 so that the edge 35 of the electrode precursor 30 forms a wave-like irregularity in the trimming. Then, the electrode precursor 30 is cut.
 図示する平面視から分かるように、本発明の製造方法では、電極前駆体エッジを単に凹凸にトリミング処理するのではなく、あくまでも、“波曲状”の凹凸を電極前駆体エッジが有するようにトリミング処理する。かかる波曲状凹凸は“複数の凹部”と“複数の凸”とから構成されており、それゆえ電極前駆体のエッジ輪郭が全体として曲線状または湾曲状となる。つまり、ある好適な一態様では、電極前駆体の平面視で捉えると、電極前駆体のエッジ輪郭(特に、電極前駆体の長手方向または長尺に沿ったエッジ輪郭)に角張った部分又は直線的な部分(例えば、当該長手方向又はそれに直交するような方向に延在する直線部分)などが存在していない。 As can be seen from the plan view shown in the drawing, in the manufacturing method of the present invention, the electrode precursor edge is not simply trimmed into irregularities, but is trimmed so that the electrode precursor edges have “waveform” irregularities. Process. Such wavy irregularities are composed of “plurality of recesses” and “plurality of projections”, and therefore, the edge contour of the electrode precursor is generally curved or curved. In other words, in a preferred aspect, when viewed in a plan view of the electrode precursor, an edge portion of the electrode precursor (particularly, an edge contour along the longitudinal direction or the length of the electrode precursor) is angular or linear. Such as a straight portion extending in the longitudinal direction or a direction perpendicular thereto is not present.
 本発明に従ってトリミング処理される電極前駆体は、連続的な製造プロセスに適している。特に、本発明に従って波曲凹凸状のエッジを備える電極前駆体は、その搬送に供するガイドロールから受ける外力で電極前駆体が切れたり裂けたりすることに対して耐性を有し得る。つまり、そのような切れおよび/または裂けをもたらす応力が生じ易い条件下であっても、そのような不都合が回避されるようになっている。ガイドロールによる搬送がなされる電極前駆体は、そのガイドロールからもたらされる影響によって切れたり裂けたりする虞があるものの、本発明の一実施形態ではそのような虞が減じられている。好ましくは、本発明の一実施形態に係る製造方法は、かかる“切れる虞”および/または“裂ける虞”が生じないようになっている。よって、本発明に従えば、意図した電極前駆体をより好適に得ることができ、ひいては、所望の電極を得ることができる。 The electrode precursor that is trimmed according to the present invention is suitable for a continuous manufacturing process. In particular, an electrode precursor having a curved uneven edge according to the present invention can be resistant to the electrode precursor being cut or torn by an external force received from a guide roll used for its conveyance. In other words, such inconveniences are avoided even under conditions where stress causing such breakage and / or tearing is likely to occur. Although the electrode precursor conveyed by the guide roll may be broken or torn due to the influence caused by the guide roll, such a possibility is reduced in one embodiment of the present invention. Preferably, the manufacturing method according to the embodiment of the present invention does not cause such “probability of tearing” and / or “probability of tearing”. Therefore, according to the present invention, the intended electrode precursor can be obtained more suitably, and as a result, a desired electrode can be obtained.
 これは、特定の理論に拘束されるわけではないが、電極前駆体のエッジにおいて応力分散効果がより好適に奏されるからであると考えられる。つまり、本発明では電極前駆体は、その端部輪郭(特に電極前駆体における“長手方向端部”または“搬送方向に沿った端部”)が“滑らかに変化する形状”を有することになるところ、その“滑らかな変化”に起因して電極前駆体に生じ得る不都合な応力を分散する効果がより効果的になるからであると推測される。 This is not limited by a specific theory, but is considered to be because the stress dispersion effect is more suitably achieved at the edge of the electrode precursor. In other words, in the present invention, the electrode precursor has an end profile (particularly, “longitudinal end” or “end along the transport direction” in the electrode precursor) having a “smoothly changing shape”. However, it is presumed that the effect of dispersing inconvenient stress that can occur in the electrode precursor due to the “smooth change” becomes more effective.
 本発明の製造方法は、電極前駆体のトリミング処理に特徴を有するが、まず前提となる二次電池の一般的な製法について以下で詳述しておく。 The manufacturing method of the present invention is characterized by the electrode precursor trimming process. First, a general method for manufacturing a secondary battery as a premise will be described in detail below.
 二次電池の製法では、正極、負極、電解液およびセパレータをそれぞれに作製・調製した後(必要に応じて市販品から調達してもよい)、それらを一体化して組み合わせることで二次電池を得ることができる。 In the manufacturing method of the secondary battery, after preparing and preparing the positive electrode, the negative electrode, the electrolytic solution, and the separator, respectively (may be procured from a commercial product if necessary), the secondary battery is integrated by combining them. Obtainable.
(正極の作製)
 正極の作製のためには、正極材スラリーが用いられる。正極材スラリーは、正極活物質およびバインダーを少なくとも含む電極材層原料である。かかる正極材スラリーを正極集電体としての金属シート材(例えば、アルミニウム箔)に塗布することで正極前駆体、すなわち、電極前駆体が得られる。必要に応じて、正極前駆体は、ロールプレス機で圧延またはプレス処理に付してもよい。正極集電体として用いられる金属シート材は、帯状に長い形状を有していることが好ましく、そのような長尺状の金属シートに対して正極材スラリーを塗布する。塗布するエリアは、長尺状の金属シートの主面全域ではなく、金属シート材の両幅方向の周縁部分などには塗布しないことが好ましい(特に、金属シート材の短手方向の両端部分に正極材スラリーを塗布しないことが好ましい)。ある1つの好適な態様では、長尺状の金属シート材よりもひとまわり小さくなるように正極材スラリーを同様の長尺状に塗布する(特に金属シート材のエッジ領域以外に塗布する)ことが好ましい。
(Preparation of positive electrode)
For production of the positive electrode, a positive electrode material slurry is used. The positive electrode material slurry is an electrode material layer raw material containing at least a positive electrode active material and a binder. A positive electrode precursor, that is, an electrode precursor is obtained by applying the positive electrode material slurry to a metal sheet material (for example, aluminum foil) as a positive electrode current collector. If necessary, the positive electrode precursor may be subjected to rolling or pressing with a roll press. The metal sheet material used as the positive electrode current collector preferably has a long strip shape, and the positive electrode material slurry is applied to such a long metal sheet. It is preferable that the area to be applied is not applied to the entire periphery of the main surface of the long metal sheet, but to the peripheral portions in both width directions of the metal sheet material (especially at both end portions in the short direction of the metal sheet material). It is preferable not to apply the positive electrode material slurry). In one preferable aspect, the positive electrode material slurry is applied in a similar long shape so as to be slightly smaller than the long metal sheet material (particularly, the positive electrode material slurry is applied outside the edge region of the metal sheet material). preferable.
 このような正極前駆体の形成、すなわち、電極前駆体の製作は連続的に行うことができる。つまり、連続的な製造プロセスで電極前駆体を得ることができる。かかる場合、ロール状に巻かれたシート供給源から金属シート材を所定方向に送り出しながら、正極材スラリーを金属シート材に対して塗布する。つまり、金属シート材は、移動・搬送を伴いながら、正極材スラリーの塗布がなされることで電極前駆体の連続的な作製が行われる。金属シート材またはそれから得られる電極前駆体は、乾燥工程および/または圧延工程などを経てよい。金属シート材の搬送、すなわち、電極前駆体の搬送には、ガイドロールが用いられる。かかるガイドロールにより、電極前駆体には張力が加えられた状態となり、その状態で所定方向に電極前駆体の移動が為されることになる。 The formation of the positive electrode precursor, that is, the production of the electrode precursor can be continuously performed. That is, the electrode precursor can be obtained by a continuous manufacturing process. In such a case, the positive electrode material slurry is applied to the metal sheet material while feeding the metal sheet material in a predetermined direction from a sheet supply source wound in a roll shape. In other words, the metal sheet material is applied with the positive electrode material slurry while being moved and conveyed, whereby the electrode precursor is continuously produced. The metal sheet material or the electrode precursor obtained therefrom may undergo a drying process and / or a rolling process. A guide roll is used for conveyance of a metal sheet material, that is, conveyance of an electrode precursor. With such a guide roll, a tension is applied to the electrode precursor, and the electrode precursor is moved in a predetermined direction in that state.
 作製された正極前駆体(特に帯状に長い正極前駆体)は、次工程に供されるまで、必要に応じてロール状に巻かれるなどして保管されたり、適宜運搬などに付されたりする。そして、次工程では、正極前駆体から複数の正極を得るべく切り出しが行われる(ロール状に巻かれていた場合では展開した後で切り出しがなされる)。例えば、正極前駆体を機械的な切断に付すことによって正極前駆体(特に「正極材スラリーが塗布された部分」)から正極の切出しを行う。あくまでも例示にすぎないが、いわゆる“打ち抜き操作”などの切出し処理を行ってよい。ここで、電極材層が設けられていない金属シート材の領域が切出し形状に含まれるように電極前駆体に切出しを行うと、電極にタブを設けることができる。つまり、正極材層が設けられていない金属シート材が露出した領域を切出し形状に含めて正極を得ることによって、“金属シート材から成る正極タブ”を正極に設けることができる。以上の如くの操作を経ることによって、所望の正極を複数得ることができる。 The produced positive electrode precursor (especially a positive electrode precursor having a long strip shape) is stored, for example, in a roll shape as necessary, or is appropriately transported until it is used in the next step. Then, in the next step, cutting is performed to obtain a plurality of positive electrodes from the positive electrode precursor (in the case of being wound in a roll, cutting is performed after unfolding). For example, the positive electrode precursor is subjected to mechanical cutting to cut out the positive electrode from the positive electrode precursor (particularly, “part where the positive electrode material slurry is applied”). Although this is only an example, a cutting process such as a so-called “punching operation” may be performed. Here, when the electrode precursor is cut so that the region of the metal sheet material not provided with the electrode material layer is included in the cut shape, a tab can be provided on the electrode. In other words, a “positive electrode tab made of a metal sheet material” can be provided on the positive electrode by including a region where the metal sheet material not provided with the positive electrode material layer is exposed in the cut out shape to obtain the positive electrode. A plurality of desired positive electrodes can be obtained through the operations as described above.
(負極の作製)
 負極の作製は、正極の作製と同様である。負極の作製では、負極材スラリーが用いられる。負極材スラリーは、負極活物質およびバインダーを少なくとも含む電極材層原料である。かかる負極材スラリーを負極集電体としての金属シート材(例えば銅箔)に塗布することで負極前駆体、すなわち、電極前駆体が得られる。必要に応じて、負極前駆体は、ロールプレス機で圧延またはプレス処理に付してもよい。負極集電体として用いられる金属シート材は、帯状に長い形状を有していることが好ましく、そのような長尺状の金属シート材に対して負極材スラリーを塗布する。塗布するエリアは、長尺状の金属シート材の主面全域ではなく、金属シート材の両幅方向の周縁部分などには塗布しないことが好ましい(特に、金属シート材の短手方向の両端部分に負極材スラリーを塗布しないことが好ましい)。ある1つの好適な態様では、長尺状の金属シート材よりもひとまわり小さくなるように負極材スラリーを同様の長尺状に塗布する(特に金属シート材のエッジ領域以外に塗布する)ことが好ましい。負極前駆体の作製も、正極前駆体と同様、連続的に行うことができる。つまり、ガイドロールを利用した連続的な製造プロセスで電極前駆体としての負極前駆体を得ることができる。得られる負極前駆体(特に帯状に長い負極前駆体)は、次工程に供されるまで、必要に応じてロール状に丸められるなどで保管されたり、適宜運搬などに付されたりする。そして、次工程では、負極前駆体から複数の負極を得るべく切り出しが行われる(ロール状に巻かれていた場合では展開した後で切り出しが行われる)。例えば、負極前駆体を機械的な切断に付すことによって負極前駆体(特に「負極材スラリーが塗布された部分」)から負極の切出しを行う。あくまでも例示にすぎないが、いわゆる“打ち抜き操作”を行ってよい。正極前駆体と同様、負極材層が設けられていない金属シート材の領域が切出し形状に含まれるように電極前駆体に切出しを行うと、電極にタブを設けることができる。つまり、負極材層が設けられていない金属シート材が露出した領域を切出し形状に含めて負極を得ることによって、“金属シート材から成る負極タブ”を負極に設けることができる。以上のような操作を経ることによって、所望の負極を複数得ることができる。
(Preparation of negative electrode)
The production of the negative electrode is the same as the production of the positive electrode. In producing the negative electrode, a negative electrode material slurry is used. The negative electrode material slurry is an electrode material layer raw material containing at least a negative electrode active material and a binder. A negative electrode precursor, that is, an electrode precursor is obtained by applying such a negative electrode material slurry to a metal sheet material (for example, copper foil) as a negative electrode current collector. If necessary, the negative electrode precursor may be subjected to rolling or press treatment with a roll press. The metal sheet material used as the negative electrode current collector preferably has a long strip shape, and the negative electrode material slurry is applied to such a long metal sheet material. It is preferable that the area to be applied is not applied to the entire periphery of the main surface of the long metal sheet material but to the peripheral portions in both width directions of the metal sheet material (particularly, both end portions of the metal sheet material in the short direction) It is preferable not to apply the negative electrode material slurry to the above). In one preferred embodiment, the negative electrode material slurry is applied in the same long shape so as to be slightly smaller than the long metal sheet material (particularly, it is applied to other than the edge region of the metal sheet material). preferable. The production of the negative electrode precursor can also be carried out continuously as in the case of the positive electrode precursor. That is, the negative electrode precursor as an electrode precursor can be obtained by a continuous manufacturing process using a guide roll. The obtained negative electrode precursor (particularly, a long negative electrode precursor) is stored, for example, by being rolled into a roll as necessary, or is appropriately transported until it is used in the next step. Then, in the next step, cutting is performed to obtain a plurality of negative electrodes from the negative electrode precursor (in the case of being wound in a roll, cutting is performed after unfolding). For example, the negative electrode is cut out from the negative electrode precursor (particularly, “part where the negative electrode material slurry is applied”) by subjecting the negative electrode precursor to mechanical cutting. Although this is only an example, a so-called “punching operation” may be performed. Similarly to the positive electrode precursor, when the electrode precursor is cut so that the region of the metal sheet material not provided with the negative electrode material layer is included in the cut shape, a tab can be provided on the electrode. That is, a negative electrode tab made of a metal sheet material can be provided on the negative electrode by obtaining the negative electrode by including a region where the metal sheet material not provided with the negative electrode material layer is exposed in the cut shape. A plurality of desired negative electrodes can be obtained through the operations described above.
(電解質の調製)
 電池使用時にて正極・負極間のイオン移動を担うことになる電解質を調製する(リチウムイオン電池の場合、特に非水電解質を調製することになる)。よって、そのような電解質となる原料を混合して所望の電解質を調製する。本発明の製造方法では、電解質は常套の二次電池に使用される常套的な電解質であってよく、それゆえ、その原料も二次電池の製造に常套的に使用されるものを用いてよい。
(Preparation of electrolyte)
An electrolyte that is responsible for ion transfer between the positive electrode and the negative electrode when the battery is used is prepared (in the case of a lithium ion battery, a nonaqueous electrolyte is particularly prepared). Therefore, a desired electrolyte is prepared by mixing raw materials to be such an electrolyte. In the manufacturing method of the present invention, the electrolyte may be a conventional electrolyte used in a conventional secondary battery, and therefore, the raw material may be the one conventionally used for manufacturing the secondary battery. .
(セパレータの準備)
 本発明の製造方法において、セパレータは常套的なものであってよく、それゆえ、二次電池として常套的に使用されるものを用いてよい。
(Preparation of separator)
In the production method of the present invention, the separator may be conventional, and therefore, a separator that is conventionally used as a secondary battery may be used.
 二次電池は、以上のように作製・調製された正極、負極、電解液およびセパレータを一体的に組み合わせることによって得ることができる。特に、正極と負極とはセパレータを介して複数積み重ねて電極組立体を形成し、かかる電極組立体を電解質と共に外装体に封入することによって二次電池を得ることができる。なお、セパレータは枚葉にカットしたものを積層してよいし、あるいは、九十九状に積層して余剰分をカットしたものでもよい。更には電極をセパレータで個装したものを積層してもよい。 The secondary battery can be obtained by integrally combining the positive electrode, the negative electrode, the electrolytic solution, and the separator prepared and prepared as described above. In particular, a secondary battery can be obtained by stacking a plurality of positive electrodes and negative electrodes through a separator to form an electrode assembly and enclosing the electrode assembly together with an electrolyte in an exterior body. The separator may be a laminate of sheets cut into sheets, or may be stacked in a ninety-nine shape and cut off excess. Furthermore, you may laminate | stack what packaged the electrode with the separator.
(本発明の特徴)
 本発明は、上述した二次電池の製造において、電極作製に特徴を有しており、特に電極前駆体のトリミング処理に特徴を有している。より具体的には、正極および負極の少なくとも一方の電極の作製において、電極前駆体30のエッジ35を少なくとも部分的に切り落とすトリミングを電極前駆体30に施すことを含んでおり、そのトリミングは電極前駆体30のエッジ35が波曲状凹凸を成すように行う(図1参照)。ここでいう「少なくとも部分的に切り落とす」とは、エッジの一部分を切り落とす態様(例えば、そのような一部分の切落しを複数回実施するような態様)を意図しているだけでなく、エッジを全体的に切り落とす態様(例えば、エッジ全体に切落し処理を一括的に施すような態様)をも意図している。
(Features of the present invention)
The present invention is characterized by the production of an electrode in the production of the secondary battery described above, and particularly by the trimming process of the electrode precursor. More specifically, in the production of at least one of the positive electrode and the negative electrode, the electrode precursor 30 is trimmed by trimming the edge 35 of the electrode precursor 30 at least partially. This is performed so that the edge 35 of the body 30 has a wave-like unevenness (see FIG. 1). Here, “at least partially cut off” is not intended to mean a mode in which a part of the edge is cut off (for example, a mode in which such a part is cut out a plurality of times), but the entire edge is cut off. In addition, a mode of cutting off (for example, a mode in which cutting processing is collectively performed on the entire edge) is also intended.
 本発明では電極前駆体のエッジが“波曲状”の凹凸にトリミング処理されるので、電極前駆体のエッジ輪郭が全体として曲線状または湾曲状になる。ある好適な一態様では、電極前駆体の平面視において、電極前駆体のエッジ輪郭(特に、電極前駆体の長手方向または長尺に沿ったエッジ輪郭)の全てが曲線状または湾曲状となっている。このように波曲凹凸状(または湾曲凹凸状)のエッジを備える電極前駆体は、連続的な製造プロセスにおいて、ガイドロールから受け得る外力に拘わらず、より好適に移動送りに付すことができる。つまり、“波曲状凹凸”は、ガイドロールによる送り操作でガイドロールから電極前駆体(特に電極前駆体のエッジ)へともたらされ得る応力をより効果的に分散させる効果を奏し、それによって、電極前駆体のエッジからの切れ・裂けがより効果的に防止される。 In the present invention, the edge of the electrode precursor is trimmed into “wave-like” irregularities, so that the edge contour of the electrode precursor as a whole is curved or curved. In one preferable aspect, in the plan view of the electrode precursor, all of the edge contours of the electrode precursor (particularly, the edge contours along the longitudinal direction or the length of the electrode precursor) are all curved or curved. Yes. In this way, the electrode precursor having the curved uneven (or curved uneven) edge can be more suitably subjected to the moving feed regardless of the external force that can be received from the guide roll in a continuous manufacturing process. In other words, the “wave-shaped unevenness” has the effect of more effectively dispersing the stress that can be brought from the guide roll to the electrode precursor (particularly the edge of the electrode precursor) by the feeding operation by the guide roll, Cutting and tearing from the edge of the electrode precursor is more effectively prevented.
 仮に電極前駆体のエッジが“波曲状凹凸”になっていない場合を想定してみる。例えば、電極前駆体のエッジ輪郭に直線部分が含まれる場合を想定してみる。これには電極前駆体の“長手方向”または“搬送方向”に沿うような直線部分がエッジ輪郭に含まれている場合が考えられたり、あるいは、そのような方向の直交方向に相当する“電極前駆体の短手方向”に沿うように直線部分がエッジ輪郭として含まれている場合が考えられる。このような想定態様のより具体な例としては、トリミング(プレトリミング)のエッジ切断に直線状切断部が含まれる場合があり、あるいは、予めタブ出しされるようなエッジ切断(特に平面視形状が四角形状/矩形状を有するようにタブ切出しを行うエッジ切断)がなされる場合がある。このような場合、ガイドロールから電極前駆体へともたらされる応力を効果的に分散させることが難しく、“直線部分”のエッジから切れ・裂けが生じ易い。特に、図2に示すように、電極前駆体が移動する方向に互いに離隔したガイドロール60(「60A,60B」および/または「60B,60C」)に起因して金属シート材/電極前駆体が撓んだ状態で移動する態様では、金属シート材10/電極前駆体30の幅方向(すなわち、金属シート材/電極前駆体の短手方向)に切れ目・裂け目をもたらすような応力が生じ易く、それゆえ、その方向に沿ってエッジから切れ・裂けが生じ易い。 Suppose that the edge of the electrode precursor is not “wavy uneven”. For example, assume that the edge contour of the electrode precursor includes a straight line portion. This may be a case where the edge contour includes a straight portion along the “longitudinal direction” or “conveying direction” of the electrode precursor, or “electrode” corresponding to the direction orthogonal to such a direction. A case where a straight line portion is included as an edge contour along the “short direction of the precursor” can be considered. As a more specific example of such an assumed aspect, a trimming (pre-trimming) edge cutting may include a linear cutting portion, or an edge cutting that is tabbed in advance (particularly the shape in plan view). In some cases, edge cutting is performed to perform tab cutting so as to have a quadrangular shape / rectangular shape. In such a case, it is difficult to effectively disperse the stress caused from the guide roll to the electrode precursor, and the edge of the “straight portion” is likely to be cut or torn. In particular, as shown in FIG. 2, the metal sheet material / electrode precursor is caused by the guide rolls 60 (“60A, 60B” and / or “60B, 60C”) separated from each other in the direction in which the electrode precursor moves. In the mode of moving in a bent state, a stress that easily causes a break or tear in the width direction of the metal sheet material 10 / electrode precursor 30 (that is, the short direction of the metal sheet material / electrode precursor) is likely to occur. Therefore, cutting and tearing easily occurs from the edge along the direction.
 換言すれば、図2に示すような態様(「離隔した下側設置ガイドロール60Aと上側設置ガイドロール60B」および/または「離隔した上側設置ガイドロール60Bと下側設置ガイドロール60C」とに起因して電極前駆体30が撓んだ状態で移動する態様)では、金属シート材10/電極前駆体30の短手方向に沿うように金属シート材/電極前駆体の直線状のエッジを起点に切れ目・裂け目が生じ易いといえる。これは、“直線状のエッジ”では、互いに離隔したガイドロールに起因して金属シート材/電極前駆体にもたらされる応力が効果的に分散し得ず、ある局所的箇所に応力が集中し易くなるからであると考えられる。この点、本発明では、電極前駆体のエッジが“波曲状凹凸”になっていることに起因して、局所的な応力集中を減じることができ、エッジからの切れ・裂けをより効果的に防止できる。 In other words, as shown in FIG. 2 ("separated lower installation guide roll 60A and upper installation guide roll 60B" and / or "separated upper installation guide roll 60B and lower installation guide roll 60C". In an aspect in which the electrode precursor 30 moves in a bent state), the linear edge of the metal sheet material / electrode precursor is taken as the starting point along the short direction of the metal sheet material 10 / electrode precursor 30. It can be said that breaks and tears are likely to occur. This is because the stress caused to the metal sheet material / electrode precursor due to the guide rolls spaced apart from each other cannot be effectively dispersed at the “straight edge”, and the stress tends to concentrate on a certain local portion. This is considered to be because. In this respect, in the present invention, local stress concentration can be reduced due to the fact that the edge of the electrode precursor has “wave-like unevenness”, and cutting and tearing from the edge is more effective. Can be prevented.
 ここで、本発明において「波曲状凹凸」とは、広義には、電極前駆体のエッジが、“山部”および“谷部”の双方を備える曲線形状または湾曲形状を有することを意味している。狭義には、電極前駆体のエッジ(特に、金属シート材の移動送りの方向に沿ったエッジ)の平面視形状が、“少なくとも1つの湾曲山部”と“少なくとも1つの湾曲谷部”とを備えた曲線状または湾曲状となっていることを意味している。好ましくは、波曲状凹凸には、角張った部分又は直線的な部分などが存在していない(特に好ましくは、平面視において電極前駆体エッジの波曲状凹凸は、全てが曲線状または湾曲状から成っているともいえる)。 Here, in the present invention, the term “wave-shaped unevenness” broadly means that the edge of the electrode precursor has a curved shape or a curved shape including both “mountains” and “valleys”. ing. In a narrow sense, the plan view shape of the edge of the electrode precursor (in particular, the edge along the direction of movement of the metal sheet material) is “at least one curved peak” and “at least one curved valley”. It means that it has a curved or curved shape. Preferably, the wavy irregularities do not have angular or linear portions (particularly preferably, the wavy irregularities on the electrode precursor edge in a plan view are all curved or curved. It can be said to consist of:
 上記から分かるように、“波曲状凹凸”では波形凹と波形凸とが含まれることが好ましい。つまり、電極前駆体のエッジにおける輪郭形状が、波形凹と波形凸とを少なくとも含む波曲状凹凸となっていることが好ましい。特に、金属シート材の移動送りの方向に沿ったエッジ35(すなわち、電極前駆体の長手方向エッジ)が波形凹と波形凸との双方を含んだ波曲状凹凸となっていることが好ましい(図3参照)。このように電極前駆体のエッジ輪郭が全体的に曲線・湾曲を成していると、搬送に供するガイドロールで金属シート材/電極前駆体へともたらされる応力がより分散され易くなり、エッジからの切れ・裂けがより効果的に防止され得る。 As can be seen from the above, it is preferable that the “wave-shaped unevenness” includes a waved concave and a waved convex. That is, it is preferable that the contour shape at the edge of the electrode precursor is a wave-like unevenness including at least a waved concave and a waved convex. In particular, it is preferable that the edge 35 (that is, the longitudinal edge of the electrode precursor) along the moving feed direction of the metal sheet material is a wave-like unevenness including both a waved concave and a waved convex ( (See FIG. 3). As described above, when the edge contour of the electrode precursor is entirely curved / curved, the stress applied to the metal sheet material / electrode precursor is more easily dispersed by the guide roll used for conveyance, and from the edge Cutting and tearing can be prevented more effectively.
 本発明において、“波曲状凹凸”はトリミング処理によって得られる。かかるトリミングは、電極前駆体のエッジに対して行う切断処理に相当する。トリミングでは、電極前駆体のエッジを適当に切り落とす切断処理(すなわち、エッジ切断)を行ってよい。特に、電極前駆体の“搬送方向に沿ったエッジ”、すなわち、典型的には“長手方向エッジ”を切り落とす切断処理をトリミングで行うことが好ましい。これにより、特に移動送り時/搬送時にて不都合な応力を受けやすいエッジに対して応力拡散効果を効果的に供すことができ、そのエッジからの切れ・裂けをより有意に防止できる。 In the present invention, the “wave-like unevenness” is obtained by trimming. Such trimming corresponds to a cutting process performed on the edge of the electrode precursor. In trimming, a cutting process (that is, edge cutting) for appropriately cutting off the edge of the electrode precursor may be performed. In particular, it is preferable to perform trimming to cut the “edge along the transport direction” of the electrode precursor, that is, typically the “longitudinal edge”. This makes it possible to effectively provide a stress diffusion effect to an edge that is susceptible to inconvenient stress, particularly during moving feeding / conveying, and can more significantly prevent breakage and tearing from the edge.
 トリミングの実施のために、適当な切断手段を用いてよい。例えば、切断刃などの機械的切断手段を用いてよい。あくまでも例示にすぎないが、ロール形態を有する上刃と下刃とから構成される一対の切断刃(回転駆動型の切断刃)を用いてよい。上刃と下刃との間にシート状の電極前駆体を通すことでトリミング処理がなされることになる。なお、そのような切断刃の態様に限らず、例えばレーザなどの手段を用いることによってもトリミングを行ってもよい。 ) Appropriate cutting means may be used for trimming. For example, a mechanical cutting means such as a cutting blade may be used. Although it is only an example to the last, you may use a pair of cutting blade (rotation drive type cutting blade) comprised from the upper blade and lower blade which have a roll form. Trimming is performed by passing a sheet-shaped electrode precursor between the upper blade and the lower blade. Note that the trimming may be performed not only by such a cutting blade mode but also by using means such as a laser.
 ある好適な態様に従えば、“波曲状凹凸”において互いに隣接する波形凹と波形凸とはそれぞれ一部を互いに共有する。つまり、トリミング処理された電極前駆体のエッジの輪郭形状は波曲状凹凸を有するところ、「波形凹および波形凸の一方」の一部分が、それらの他方の一部分を構成し得る。図4を参照して説明する。波形凹の一部が、波形凸の一部を構成し、その逆も同様に波形凸の一部が波形凹の一部を構成する。このような態様では、湾曲凹凸に起因して電極前駆体のエッジ輪郭が、全体として連続的な曲線・湾曲を成し得、それゆえ、エッジを成す方向に沿って一体的に変化する曲線または湾曲線が得られる。よって、ガイドロールから金属シート材/電極前駆体へともたらされる応力がより分散し易くなり、エッジからの切れ・裂けをより効果的に防止できる。 According to a preferred aspect, in the “wave-shaped unevenness”, the corrugated concave and the corrugated convex adjacent to each other share a part. That is, the contour shape of the edge of the trimmed electrode precursor has a wave-like unevenness, and a part of “one of the waved concave and the waved convex” can constitute the other part of them. This will be described with reference to FIG. A part of the corrugated concave constitutes a part of the corrugated convex, and vice versa, a part of the corrugated convex constitutes a part of the corrugated concave. In such an embodiment, the edge contour of the electrode precursor may be a continuous curve / curve as a whole due to the curved irregularities, and therefore, the curve or the curve that changes integrally along the direction of the edge or A curve line is obtained. Therefore, the stress brought from the guide roll to the metal sheet material / electrode precursor becomes easier to disperse, and breakage and tearing from the edge can be more effectively prevented.
 本発明では、電極前駆体の搬送方向におけるエッジの大部分(好ましくはその搬送方向におけるエッジの実質的に全て)がトリミング処理に付されることが好ましい。これは、トリミング処理された電極前駆体のエッジ(特に、電極前駆体の長尺エッジ)の全てが、波曲状凹凸を成していることを意味しており、それゆえ、かかるトリミング・エッジでは、角張った部分又は直線的な部分(特に、搬送方向又はそれに直交するような方向に沿った直線的な部分)が好ましくは含まれておらず、トリミング・エッジの全てが曲線状または湾曲状から好ましくは成っているともいえる。つまり、電極前駆体の長手方向エッジの大部分(好ましくは、ガイドロールを通過することになるエッジの全て)を“湾曲凹凸”が占めていることが好ましい。これにより、ガイドロールで連続的に搬送される電極前駆体は、その搬送方向エッジに相当する長手方向エッジからの切れ・裂けが効果的に防止された状態となる。 In the present invention, it is preferable that most of the edges in the transport direction of the electrode precursor (preferably substantially all of the edges in the transport direction) are subjected to the trimming process. This means that all the edges of the trimmed electrode precursor (especially the long edges of the electrode precursor) are wavyly contoured, and therefore such trimmed edges However, it does not preferably include an angular portion or a straight portion (particularly, a straight portion along the conveying direction or a direction perpendicular thereto), and all of the trimming edges are curved or curved. It can be said that it preferably consists of That is, it is preferable that “curved unevenness” occupies most of the longitudinal edges of the electrode precursor (preferably, all of the edges that will pass through the guide roll). Thereby, the electrode precursor continuously conveyed by the guide roll is in a state in which cutting and tearing from the longitudinal edge corresponding to the conveyance direction edge is effectively prevented.
 ある好適な態様に従ったトリミングでは、電極材層が設けられていない金属シート材の極材非形成領域のみを切り落とす。つまり、図5(A)示すように、トリミングで除去される切落し部分に電極材層20が含まれないようにする。電極前駆体の形成においては金属シート材の周縁領域以外(より具体的には、平面視にて金属シート材の短手方向の端部以外、好ましくはその両端分以外)となる中央領域に電極材層20を形成するところ、その周縁領域にのみトリミング処理を施す。かかる態様に従うと、図5(A)に示すように、平面視にて“波曲状凹凸”の波形凹の最内側ポイントが電極材層エッジよりも外側に位置することになる。 In the trimming according to a preferred aspect, only the electrode material non-formation region of the metal sheet material not provided with the electrode material layer is cut off. That is, as shown in FIG. 5A, the electrode material layer 20 is not included in the cut-off portion removed by trimming. In the formation of the electrode precursor, the electrode is formed in a central region other than the peripheral region of the metal sheet material (more specifically, other than the end portion in the short direction of the metal sheet material, preferably other than the both ends in plan view). When the material layer 20 is formed, the trimming process is performed only on the peripheral area. According to such an aspect, as shown in FIG. 5A, the innermost point of the corrugated concave portion of the “wave-shaped concave / convex” is positioned outside the edge of the electrode material layer in plan view.
 “極材非形成領域”にのみトリミングを施す態様では、切落しが金属シート材の単一材に対して行われることになるので、トリミング切断の精度が向上し得る。つまり、かかる態様では、電極前駆体のエッジの輪郭曲線がより精度良い曲線と成り得るので、ガイドロールから金属シート材/電極前駆体へともたらされる応力がより分散し易くなり、エッジからの切れ・裂けがより効果的に防止され得る。 In the aspect in which trimming is performed only on the “polar material non-formation region”, the trimming cutting accuracy can be improved because the cutting is performed on a single metal sheet material. In other words, in this aspect, the contour curve of the edge of the electrode precursor can be a more accurate curve, so that the stress caused from the guide roll to the metal sheet material / electrode precursor is more easily dispersed and cut from the edge. -Tearing can be prevented more effectively.
 別のある好適な態様に従ったトリミングでは、電極材層20が設けられていない金属シート材の極材非形成領域のみならず、電極材層20が設けられている極材形成領域を部分的に含むように切り落とす。つまり、図5(B)に示すように、トリミングで除去される切落し部分に電極材層20が一部含まれるようにする。電極前駆体の形成においては金属シート材の周縁領域以外の中央領域に電極材層を形成するところ、その周縁領域のみならず、中央領域にも一部かかるようにトリミング処理を施す。かかる態様に従うと、図5(B)に示すように、平面視にて“波曲状凹凸”の波形凹の最内側ポイントが電極材層エッジよりも内側に位置することになる(好ましくは、電極材層エッジよりも僅かに内側に位置することになる)。 In trimming according to another preferred embodiment, not only the electrode material non-formation region of the metal sheet material not provided with the electrode material layer 20 but also the electrode material formation region provided with the electrode material layer 20 is partially applied. Cut off to include. That is, as shown in FIG. 5B, the electrode material layer 20 is partially included in the cut-off portion removed by trimming. In the formation of the electrode precursor, the electrode material layer is formed in the central region other than the peripheral region of the metal sheet material, and the trimming process is performed not only on the peripheral region but also on the central region. According to such an aspect, as shown in FIG. 5 (B), the innermost point of the wave-shaped concave portion of the “wave-shaped unevenness” in a plan view is located inside the electrode material layer edge (preferably, (It will be located slightly inside the electrode material layer edge).
 “極材非形成領域”のみならず、“極材形成領域”も一部含めてトリミングを施す態様は、最終的に得られるタブ付き電極を「より極材層の割合が多い電極」として得ることができ、電池容量の点でより好適な電池製造に資する。つまり、かかる態様では、電極前駆体のエッジの切れ・裂けを防止できるといった電極作製プロセスの点のみならず、最終的に製造される二次電池の特性の点でも有利な効果が奏され得る。 In the aspect of performing trimming including not only the “polar material non-formation region” but also a part of the “polar material formation region”, the finally obtained tabbed electrode is obtained as “an electrode having a higher proportion of the polar material layer”. This contributes to more favorable battery production in terms of battery capacity. That is, in this aspect, not only the electrode manufacturing process that can prevent the cutting and tearing of the edge of the electrode precursor, but also an advantageous effect can be achieved not only in terms of the characteristics of the finally manufactured secondary battery.
 本発明では、“波曲状凹凸”が周期的な曲線を成していてよい。つまり、電極前駆体のエッジ輪郭が波曲状凹凸の曲線を有するようにトリミング処理するところ、その曲線が規則的な曲線となっていてよい。例えば、波曲状凹凸に起因するエッジ輪郭の波曲線について、波長寸法が実質的に一定であってよく、および/または、振幅寸法が一定であってもよい。別の切り口で捉えれば、“エッジ輪郭が波曲状凹凸”における全ての凹および/または全ての凸が実質的に同一形状となっていてよいといえる。このような態様では、湾曲凹凸に起因して電極前駆体のエッジ輪郭が全体として均等化し得るので、ガイドロールから金属シート材/電極前駆体へともたらされる応力がより分散し易くなり、エッジからの切れ・裂けなどがより効果的に防止され得る。 In the present invention, the “wave-like unevenness” may form a periodic curve. That is, when the trimming process is performed so that the edge contour of the electrode precursor has a curved uneven curve, the curve may be a regular curve. For example, the wavelength dimension may be substantially constant and / or the amplitude dimension may be constant for a wave curve of an edge contour due to a wave-shaped unevenness. From another perspective, it can be said that all the recesses and / or all the projections in the “edge contour has a wave-like unevenness” may have substantially the same shape. In such an aspect, since the edge contour of the electrode precursor can be equalized as a whole due to the curved irregularities, the stress caused from the guide roll to the metal sheet material / electrode precursor is more easily dispersed, and from the edge Cutting and tearing can be more effectively prevented.
 ある好適な態様では、波曲状凹凸が“幾何学的特異点を含まない曲線”を成している。つまり、電極前駆体のエッジ輪郭が波曲状凹凸に起因して曲線を有するようにトリミング処理するところ、その曲線を表す関数が特異点を有していないことが好ましい。ここでいう「幾何学的特異点」は、広義には、対象となる曲線につき、その曲線一般のところに比べて異常な形態を示し得るところを意味している。換言すれば、「幾何学的特異点」は、対象となる曲線について、パラメーターの滑らかな埋め込みによって与えられていない点を意味している。狭義にいえば、本発明における「幾何学的特異点」は、数学ハンドブック(1994年4月5日第1版第5刷発行、発行所:森北出版株式会社、監修者:矢野健太郎、訳編者:宮本敏雄、発行者:森北肇)の第583頁で説明されている“特異点”を意味している。 In a preferred embodiment, the wavy unevenness forms a “curve that does not include geometric singularities”. That is, when the trimming process is performed so that the edge contour of the electrode precursor has a curve due to the wavy irregularities, it is preferable that the function representing the curve does not have a singular point. The term “geometric singularity” as used herein means, in a broad sense, a place where the target curve can show an abnormal form as compared to the general curve. In other words, “geometric singularity” means a point that is not given by the smooth embedding of the parameters for the curve in question. In a narrow sense, the “geometric singularity” in the present invention is the mathematics handbook (published on April 5, 1994, 1st edition, 5th edition, publisher: Morikita Publishing Co., Ltd., supervisor: Kentaro Yano, editor) : Toshio Miyamoto, publisher: Atsushi Morikita) means “singularity” described on page 583.
 「波曲状凹凸が幾何学的特異点を含まない曲線」の態様は、電極前駆体のエッジ輪郭の曲線が全体としてより好適に滑らかになるので、ガイドロールから金属シート材/電極前駆体へともたらされる応力がより分散し易くなり、エッジからの切れ・裂けがより効果的に防止される。 In the aspect of “curved irregularities that do not include geometric singularities”, the curve of the edge contour of the electrode precursor becomes smoother as a whole, so that from the guide roll to the metal sheet material / electrode precursor. The resulting stress can be more easily dispersed, and cutting and tearing from the edge can be prevented more effectively.
 あくまでも例示の範疇にすぎないが、トリミング処理された電極前駆体のエッジの輪郭曲線は、幾何学的特異点となる先点(尖点)、跳躍点、角点、孤立点、2重点、自己接触点および/または3重点を持っていない曲線であってよい。また、このような輪郭曲線は、正則である曲線であってもよい。好ましくは、電極前駆体のエッジの輪郭曲線が、幾何学的特異点となる先点(尖点)、跳躍点、角点、孤立点、2重点、自己接触点および3重点を持っておらず、かつ、正則である曲線となるようにトリミング処理する。ここでいう「先点(尖点)」、「孤立点」、「2重点」、「自己接触点」、「3重点」、「跳躍点」、「角点」および「正則」といった用語は、上記「数学ハンドブック」で説明されているものを実質的に指している。「波曲状凹凸が幾何学的特異点を含まない曲線」の態様の理解のため、電極前駆体のエッジ輪郭が幾何学的特異点を有する模式的態様を図6(A)~(C)および図7(A)~(D)に例示しておく。 Although it is merely an exemplary category, the contour curve of the edge of the trimmed electrode precursor is a point (point), jump point, corner point, isolated point, double point, self, which is a geometric singular point It may be a curve that does not have a contact point and / or a triple point. Such a contour curve may be a regular curve. Preferably, the contour curve of the edge of the electrode precursor does not have a point (a cusp), a jump point, a corner point, an isolated point, a double point, a self-contact point, or a triple point as geometric singular points. In addition, trimming processing is performed so as to obtain a regular curve. The terms “point (point)”, “isolation point”, “two points”, “self-contact point”, “three points”, “leap point”, “corner point” and “regular” It essentially refers to what is described in the "Mathematical Handbook" above. 6A to 6C are schematic views in which the edge contour of the electrode precursor has geometric singularities in order to understand the aspect of “curved irregularities do not include geometric singularities”. Examples are shown in FIGS. 7A to 7D.
 更に、トリミング処理された電極前駆体のエッジの輪郭曲線について、電極前駆体の“長手方向”または“搬送方向”をx軸、それに直交する方向をy軸とすると、輪郭曲線がy=Sin(nx)+Cos(mx)(-π≦x≦π、0<n、0<m、y/x≦1)を基底関数とする曲線となっていてよい(図8参照)。このように三角関数を基底関数とする輪郭曲線もまた、ガイドロールから金属シート材/電極前駆体へともたらされる応力をより分散する効果を奏し、エッジからの切れ・裂けがより効果的に防止される。更にいえば図9に示すような輪郭曲線であってもよい。つまり、トリミング処理された電極前駆体のエッジの輪郭曲線について、電極前駆体の“長手方向”または“搬送方向”をx軸、それに直交する方向をy軸とすると、輪郭曲線が以下の数式(数1)を満たす曲線となっていてもよい。このような輪郭曲線もまたガイドロールから金属シート材/電極前駆体にもたらされる応力をより分散する効果を奏し得る。
Figure JPOXMLDOC01-appb-M000001
Further, regarding the contour curve of the edge of the trimmed electrode precursor, when the “longitudinal direction” or “conveying direction” of the electrode precursor is the x axis and the direction orthogonal thereto is the y axis, the contour curve is y = Sin ( nx) + Cos (mx) (−π ≦ x ≦ π, 0 <n, 0 <m, y / x ≦ 1) may be a curve having a basis function (see FIG. 8). In this way, the contour curve with trigonometric functions as a basis function also has the effect of further distributing the stress caused from the guide roll to the metal sheet material / electrode precursor, and more effectively prevents breakage and tearing from the edge. Is done. Furthermore, it may be a contour curve as shown in FIG. That is, with respect to the contour curve of the edge of the trimmed electrode precursor, when the “longitudinal direction” or “transport direction” of the electrode precursor is the x axis and the direction orthogonal thereto is the y axis, the contour curve is expressed by the following formula ( The curve may satisfy Equation 1). Such a contour curve can also have an effect of further dispersing the stress caused from the guide roll to the metal sheet material / electrode precursor.
Figure JPOXMLDOC01-appb-M000001
 本発明の製造方法では、“波曲状凹凸”を電極タブ形成に利用することができる。より具体的には、トリミング処理された電極前駆体30において、波曲状凹凸の“波形凸”の領域にタブ45が位置付けられるように切出しを行ってよく、それによって「タブが設けられた電極」をより好適に得ることができる(図10参照)。つまり、図10に示すように、電極材層20が設けられていない金属シート材10の領域(極材非形成領域)を切出し形状に含めて切出しを行うに際して、その切出し形状40に含まれる極材非形成領域が特に波形凸に位置するようにする。これによって、“波形凸”の少なくとも一部がタブ45を構成することになり、“タブ付き電極”をより好適に得ることができる。このように“波曲状凹凸”を電極タブ形成に利用する態様では、電極前駆体のエッジの切れ・裂けを防止できるといった電極作製プロセスの点のみならず、作製される電極の構成の点でも有利な効果が奏され得るといえる。 In the manufacturing method of the present invention, “wave-like unevenness” can be used for electrode tab formation. More specifically, the trimmed electrode precursor 30 may be cut out so that the tab 45 is positioned in the “wave-convex” region of the wave-like unevenness, whereby the “electrode provided with the tab” Can be obtained more suitably (see FIG. 10). In other words, as shown in FIG. 10, when cutting is performed by including a region (electrode material non-forming region) of the metal sheet material 10 where the electrode material layer 20 is not provided in the cut shape, the pole included in the cut shape 40. The material non-formation region is particularly located on the corrugation. As a result, at least a part of the “convex convex” constitutes the tab 45, and a “tabbed electrode” can be obtained more suitably. As described above, in the aspect of utilizing the “waved unevenness” for forming the electrode tab, not only in terms of the electrode manufacturing process in which cutting and tearing of the edge of the electrode precursor can be prevented, but also in terms of the configuration of the electrode to be manufactured. It can be said that an advantageous effect can be achieved.
 なお、本明細書において「タブ」とは、広義には、外部との電気的接続に供する外部端子要素を意味しており、狭義には、正極または負極の集電体の一部であって、特に電極活物質(正極材・負極材)が設けられておらず、電極組立体において正極または負極から突出した形態を有する外部端子要素を意味している。 In the present specification, the term “tab” means an external terminal element used for electrical connection with the outside in a broad sense, and in a narrow sense, a part of a positive or negative current collector. In particular, an electrode active material (positive electrode material / negative electrode material) is not provided, and it means an external terminal element having a form protruding from the positive electrode or the negative electrode in the electrode assembly.
 図10から分かるように、波曲状凹凸を電極タブ形成に利用する態様ではタブの先端の輪郭が“波形凸”と同様の曲線(平面視曲線)を成すように電極切出しを行ってもよい。つまり、かかる態様において、タブは、曲線輪郭または湾曲輪郭(好ましくは、電極前駆体の長尺エッジの波曲状凹凸における“凸部”に類似または相似する曲線輪郭または湾曲輪郭)を有するタブとして好ましくは形成される。 As can be seen from FIG. 10, in the embodiment in which the wavy unevenness is used for forming the electrode tab, the electrode may be cut out so that the contour of the tip of the tab forms the same curve (planar curve) as the “wave shape convex”. . That is, in such an embodiment, the tab is a tab having a curved or curved contour (preferably a curved or curved contour similar to or similar to a “convex portion” in the wave-like unevenness of the long edge of the electrode precursor). Preferably formed.
 以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の態様が考えられることを当業者は容易に理解されよう。 As mentioned above, although the embodiment of the present invention has been described, a typical example is merely illustrated. Therefore, those skilled in the art will easily understand that the present invention is not limited to this, and various modes are conceivable.
 例えば、波曲状凹凸に起因するエッジ輪郭の波曲線の振幅が実質的に一定であって、波長も一定である態様について説明してきたが、本発明は特にこれに限定されない。図11(A)に示すように、かかる波曲線の振幅が一定でない態様であってもよい(図示する態様では、振幅の変化が周期的となっている態様を例示している)。また、図11(B)に示すように、波曲状凹凸に起因するエッジ輪郭の波曲線の波長が一定でない態様であってもよい(図示する態様では、波長の変化が周期的となっている態様を例示している)。このような態様であっても、ガイドロールから金属シート材/電極前駆体へともたらされる応力が分散するので、エッジからの切れ・裂けを効果的に防止できる。 For example, although the description has been given of the aspect in which the amplitude of the wave curve of the edge contour caused by the wavy irregularities is substantially constant and the wavelength is also constant, the present invention is not particularly limited to this. As shown in FIG. 11A, an aspect in which the amplitude of the wave curve is not constant may be employed (in the aspect illustrated, an aspect in which the change in amplitude is periodic is illustrated). Moreover, as shown in FIG. 11 (B), the wavelength of the wave curve of the edge contour resulting from the wave-shaped unevenness may be a mode in which the wavelength changes periodically in the mode shown. The mode which is shown is illustrated. Even in such an embodiment, since the stress caused from the guide roll to the metal sheet material / electrode precursor is dispersed, it is possible to effectively prevent breakage and tear from the edge.
 本発明の一実施形態に係る製造方法で得られる二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、二次電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートウォッチ、スマートフォン、ノートパソコン、デジタルカメラ、活動量計、アームコンピューターおよび電子ペーパーなどのモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、IoT分野、ならびに、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。 The secondary battery obtained by the manufacturing method according to an embodiment of the present invention can be used in various fields where power storage is assumed. For illustration purposes only, secondary batteries are used in the electrical / information / communication field where mobile devices are used (for example, mobile phones, smart watches, smartphones, laptop computers, digital cameras, activity meters, arm computers and electronic devices). Paper and other mobile devices), home / small industrial applications (eg, power tools, golf carts, home / care / industrial robots), large industrial applications (eg, forklifts, elevators, bay harbor cranes) ), Transportation systems (for example, hybrid vehicles, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles, etc.), power system applications (for example, various power generation, road conditioners, smart grids, general home-installed energy storage systems) Field), IoT field, and space / Sea applications (for example, spacecraft, areas such as submersible research vessel) can be used, such as in.
 10 金属シート材
 20 電極材層
 30 電極前駆体
 35 電極前駆体のエッジ
 40 電極の切出し形状/切出しされる電極(例えば“非矩形状”の電極)
 45 タブ
DESCRIPTION OF SYMBOLS 10 Metal sheet material 20 Electrode material layer 30 Electrode precursor 35 Edge of electrode precursor 40 Cut shape of electrode / electrode to be cut (for example, “non-rectangular” electrode)
45 tabs

Claims (11)

  1. 二次電池を製造するための方法であって、
     正極および負極の少なくとも一方の電極の作製が、
     電極集電体となる金属シート材に電極材層を形成して電極前駆体を得ること、および
     前記電極前駆体のエッジを少なくとも部分的に切り落とすトリミングを該電極前駆体に施すこと
    を含んで成り、
     前記電極前駆体の前記エッジが波曲状凹凸を成すように前記トリミングを行う、二次電池の製造方法。
    A method for manufacturing a secondary battery, comprising:
    Production of at least one of a positive electrode and a negative electrode
    Forming an electrode material layer on a metal sheet material to be an electrode current collector to obtain an electrode precursor, and applying trimming to the electrode precursor to at least partially cut off an edge of the electrode precursor. ,
    A method for manufacturing a secondary battery, wherein the trimming is performed so that the edge of the electrode precursor has a wave-like unevenness.
  2. 前記波曲状凹凸では波形凹と波形凸との双方が含まれる、請求項1に記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to claim 1, wherein the wave-like unevenness includes both a waved concave and a waved convex.
  3. 前記波曲状凹凸にて互いに隣接する波形凹と波形凸とはそれぞれ一部を互いに共有する、請求項1または2に記載の二次電池の製造方法。 3. The method of manufacturing a secondary battery according to claim 1, wherein the corrugated concave and the convex corrugated adjacent to each other in the wave-shaped irregularities share a part with each other.
  4. 前記波曲状凹凸が周期的な曲線を成す、請求項1~3のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 1 to 3, wherein the undulating unevenness forms a periodic curve.
  5. 前記波曲状凹凸が、幾何学的特異点を含まない曲線を成す、請求項1~4のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 1 to 4, wherein the undulating unevenness forms a curve that does not include a geometric singular point.
  6. 前記トリミングにおいて、前記電極材層が設けられていない前記金属シート材の極材非形成領域のみを切り落とす、請求項1~5のいずれかに記載の二次電池の製造方法。 6. The method of manufacturing a secondary battery according to claim 1, wherein, in the trimming, only an electrode material non-formation region of the metal sheet material on which the electrode material layer is not provided is cut off.
  7. 前記トリミングにおいて、前記電極材層が設けられていない前記金属シート材の極材非形成領域のみならず、前記電極材層が設けられている極材形成領域を部分的に含むように切り落とす、請求項1~5のいずれかに記載の二次電池の製造方法。 In the trimming, the metal sheet material not provided with the electrode material layer is cut off so as to partially include not only the electrode material non-formation region of the metal sheet material but also the electrode material layer provided with the electrode material layer. Item 6. The method for producing a secondary battery according to any one of Items 1 to 5.
  8. 前記電極前駆体の形成に際してはガイドロールを使用して前記金属シート材を移動させており、
     前記移動の方向に互いに離隔した前記ガイドロールに起因して前記金属シート材が撓んだ状態で前記移動する、請求項1~7のいずれかに記載の二次電池の製造方法。
    In the formation of the electrode precursor, the metal sheet material is moved using a guide roll,
    The method of manufacturing a secondary battery according to any one of claims 1 to 7, wherein the metal sheet material moves in a bent state due to the guide rolls spaced apart from each other in the movement direction.
  9.  前記電極前駆体からの切出しを行って前記電極を形成することを更に含んで成り、
     前記電極材層が設けられていない前記金属シート材の領域が切出し形状に含まれるように該電極前駆体に切出しを施し、前記電極にタブを設ける、請求項1~8のいずれかに記載の二次電池の製造方法。
    Further comprising cutting out from the electrode precursor to form the electrode;
    The electrode precursor is cut out so that a region of the metal sheet material not provided with the electrode material layer is included in the cut shape, and a tab is provided on the electrode. A method for manufacturing a secondary battery.
  10. 前記電極前駆体の長手方向エッジに対して前記トリミングを施す、請求項1~9のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 1 to 9, wherein the trimming is performed on a longitudinal edge of the electrode precursor.
  11. リチウムイオンを吸蔵放出可能な層を前記正極および前記負極が有する、請求項1~10のいずれかに記載の二次電池の製造方法。 The method for producing a secondary battery according to any one of claims 1 to 10, wherein the positive electrode and the negative electrode have a layer capable of inserting and extracting lithium ions.
PCT/JP2018/019450 2017-05-26 2018-05-21 Secondary battery manufacturing method WO2018216644A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-104833 2017-05-26
JP2017104833A JP2020144975A (en) 2017-05-26 2017-05-26 Method for manufacturing secondary battery

Publications (1)

Publication Number Publication Date
WO2018216644A1 true WO2018216644A1 (en) 2018-11-29

Family

ID=64396520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019450 WO2018216644A1 (en) 2017-05-26 2018-05-21 Secondary battery manufacturing method

Country Status (2)

Country Link
JP (1) JP2020144975A (en)
WO (1) WO2018216644A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012002A (en) * 1998-06-17 2000-01-14 Toshiba Battery Co Ltd Manufacturing device for belt-like electrode
JP2009252611A (en) * 2008-04-09 2009-10-29 Toyota Motor Corp Sealed battery
WO2014027606A1 (en) * 2012-08-14 2014-02-20 株式会社 豊田自動織機 Electrical storage device
WO2017057012A1 (en) * 2015-09-28 2017-04-06 日立オートモティブシステムズ株式会社 Nonaqueous electrolytic solution secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012002A (en) * 1998-06-17 2000-01-14 Toshiba Battery Co Ltd Manufacturing device for belt-like electrode
JP2009252611A (en) * 2008-04-09 2009-10-29 Toyota Motor Corp Sealed battery
WO2014027606A1 (en) * 2012-08-14 2014-02-20 株式会社 豊田自動織機 Electrical storage device
WO2017057012A1 (en) * 2015-09-28 2017-04-06 日立オートモティブシステムズ株式会社 Nonaqueous electrolytic solution secondary battery

Also Published As

Publication number Publication date
JP2020144975A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
US11811022B2 (en) Secondary battery
JP6780766B2 (en) Secondary battery and its manufacturing method
US11108032B2 (en) Method and apparatus for manufacturing secondary battery
JP2016001575A (en) Method for manufacturing electrode
WO2018138977A1 (en) Stacked rechargeable battery, method for producing same, and device
WO2018138976A1 (en) Stacked rechargeable battery, method for producing same, and device
WO2017208537A1 (en) Secondary battery manufacturing method
US20190074535A1 (en) Secondary battery
WO2018180020A1 (en) Method and device for producing secondary battery
US20190334210A1 (en) Secondary battery
US20190296399A1 (en) Secondary battery
WO2018216644A1 (en) Secondary battery manufacturing method
JP6866922B2 (en) How to manufacture a secondary battery
JP7031671B2 (en) How to manufacture a secondary battery
JP6773208B2 (en) Secondary battery and its manufacturing method
WO2019077664A1 (en) Electrolyte sheet, battery member for secondary battery, secondary battery, and production methods therefor
WO2021149541A1 (en) Secondary battery
WO2023127726A1 (en) Secondary battery
WO2021006161A1 (en) Secondary battery
WO2018131344A1 (en) Secondary cell production method
WO2017208532A1 (en) Secondary battery
WO2017208531A1 (en) Secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP