WO2021149541A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2021149541A1
WO2021149541A1 PCT/JP2021/000720 JP2021000720W WO2021149541A1 WO 2021149541 A1 WO2021149541 A1 WO 2021149541A1 JP 2021000720 W JP2021000720 W JP 2021000720W WO 2021149541 A1 WO2021149541 A1 WO 2021149541A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collecting
collecting tab
electrode current
tab
positive electrode
Prior art date
Application number
PCT/JP2021/000720
Other languages
French (fr)
Japanese (ja)
Inventor
健太 江口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021149541A1 publication Critical patent/WO2021149541A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery.
  • the present invention relates to a secondary battery including an electrode assembly in which electrode constituent layers including a positive electrode, a negative electrode and a separator are laminated.
  • the secondary battery is a so-called storage battery, it can be repeatedly charged and discharged, and is used for various purposes.
  • secondary batteries are widely used in mobile devices such as mobile phones, smartphones and notebook computers.
  • the inventor of the present application noticed that there was a problem to be overcome with the conventional secondary battery, and found that it was necessary to take measures for that purpose. Specifically, the inventor of the present application has found that there are the following problems.
  • the positive electrode current collecting tab (23a) and the negative electrode current collecting tab (23b) face each other and face each other.
  • An electrode configuration that extends in the opposite direction and is arranged is being studied (for example, Patent Documents 1 and 2).
  • the dimension (or "tab width") in the width direction of the current collecting tab can be increased, but on the other hand.
  • the electrode In order to secure the dimension (or "tab length") of the current collecting tab in the extending direction, for example, the electrode must be cut (or notched) at two places above and below, and the area of the electrode body is small. As a result, it was found that there was a problem that the capacity of the battery itself was significantly reduced.
  • the inventor of the present application cuts (or cuts out) only one upper electrode, for example, as shown in the schematic top view of FIG. 8 (b), and positive electrode.
  • a secondary battery in which the current collecting tab (33a) and the negative electrode current collecting tab (33b) are arranged side by side was examined.
  • such a configuration in which the two current collecting tabs shown in FIG. 8B are arranged in parallel has a larger area of the electrode body than the configuration shown in FIG. 8A, but is in the width direction of the current collecting tabs. It was found that the dimensions (or "tab width") decreased and the resistance, especially the current collecting resistance, increased.
  • the area of the electrode body must be further reduced as in the configuration shown in FIG. 8A, and the battery It was also found that there was a problem that the capacity of itself was significantly reduced.
  • the present invention has been made in view of such a problem. That is, the main object of the present invention is to further improve the arrangement and design of the current collecting tabs in the secondary battery.
  • the inventor of the present application arranges the positive electrode current collecting tab and the negative electrode current collecting tab that can extend from the electrode assembly "diagonally”, respectively, and more specifically, the extending direction of the positive electrode current collecting tab and the negative electrode.
  • the current collecting tabs By arranging the current collecting tabs so that they form corners (or corners) with each other, more appropriate "electrode area”, “tab width” and / or “tab length” can be obtained. It was found that the degree of freedom in tab design increases significantly with them. As a result, the invention of the secondary battery which achieved the above-mentioned main purpose was completed.
  • the present invention provides a secondary battery having an electrode assembly in which a positive electrode current collecting tab and a negative electrode current collecting tab extend "diagonally" from the electrode assembly. ..
  • the above-mentioned secondary battery may be referred to as “the secondary battery of the present disclosure”.
  • the "outward direction” and the “extending direction of the negative electrode current collecting tab” so as to form a corner (corner) with each other, the "electrode area”, “tab width” and / or “ “Tab lengths” can be obtained, and together with them, the degree of freedom in tab design can be increased more significantly.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the electrode assembly (FIG. 1 (a): non-winding plane laminated type, FIG. 1 (b): wound type).
  • FIG. 2 is a schematic exploded top view schematically showing an electrode assembly and a current collecting tab included in a secondary battery according to an embodiment of the present invention.
  • FIG. 3 is a schematic top view schematically showing an electrode assembly and a current collecting tab included in a secondary battery according to an embodiment of the present invention.
  • FIG. 4 is a schematic top view schematically showing an electrode assembly and a current collecting tab used in Comparative Examples and Examples (FIG. 4 (a): Comparative Example 1, FIG. 4 (b): Comparative Example 2, FIG. 4 (c) Example 1).
  • FIG. 4 (a) Comparative Example 1
  • FIG. 4 (b) Comparative Example 2
  • FIG. 4 (c) Example 1 Comparative Example 1
  • FIG. 5 is a graph showing a comparison between the examples and the comparative examples regarding the “electrode area”.
  • FIG. 6 is a graph showing a comparison between an example and a comparative example regarding the relationship between the “tab area” and the “electrode area change rate” (tab length 1 mm).
  • FIG. 7 is a graph showing a comparison between an example and a comparative example regarding the relationship between the “tab area” and the “electrode area change rate” (tab length 2 mm).
  • FIG. 8 is a schematic top view schematically showing the electrode assembly and the current collecting tab used in the comparative example (previous).
  • the "cross-sectional view” described directly or indirectly herein is, for example, along the stacking direction or stacking direction of the electrode assembly or electrode constituent layer or electrode constituent unit that can constitute a secondary battery. It is based on a virtual cross section of the secondary battery (see FIG. 1). Similarly, the direction of "thickness” as described directly or indirectly herein is based on the stacking direction of the electrode materials that may constitute the secondary battery. For example, in the case of a "plate-shaped thick secondary battery” such as a button type (or coin type), the direction of "thickness” corresponds to the plate thickness direction of such a secondary battery. As used herein, "planar view” is based on a sketch of an object viewed from above or below along the direction of such thickness.
  • the vertical direction and the “horizontal direction” used directly or indirectly in the present specification correspond to the vertical direction and the horizontal direction in the figure, respectively.
  • the same code or symbol shall indicate the same member or part or the same meaning.
  • the vertical downward direction that is, the direction in which gravity acts
  • the opposite direction corresponds to the "upward direction”.
  • the term "secondary battery” as used herein refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery according to the embodiment of the present invention is not excessively bound by its name, and may include, for example, a power storage device.
  • the secondary battery according to the embodiment of the present invention has, for example, an electrode assembly having a structure in which at least one or more electrode constituent layers or electrode constituent units including at least a positive electrode, a negative electrode and a separator are laminated. It consists of.
  • FIGS. 1 (a) and 1 (b) illustrate the electrode assembly 10.
  • the positive electrode 1 and the negative electrode 2 may be stacked with each other via the separator 3 to form an electrode constituent layer (or electrode constituent unit) 5.
  • At least one or more of these electrode constituent layers 5 may be laminated to form the electrode assembly 10.
  • such an electrode assembly may be enclosed in an exterior body together with an electrolyte (for example, a non-aqueous electrolyte).
  • the structure of the electrode assembly is not necessarily limited to the planar laminated structure (see FIG. 1A), and for example, the electrode unit (or electrode) including the positive electrode, the negative electrode, and the separator arranged between the positive electrode and the negative electrode. It may have a winding structure (see FIG. 1B) (for example, a jelly roll structure) formed by winding a constituent layer or an electrode constituent unit in a roll shape. That is, as shown in FIG. 1A, for example, the electrode assembly 10 may have a flat laminated structure in which the electrode constituent layers 5 are laminated so as to be stacked on each other.
  • the electrode assembly 10 may have a winding structure in which the electrode constituent layer 5 extending in a strip shape for a relatively long time is wound in a roll shape, for example, as shown in FIG. 1 (b). ..
  • FIG. 1B merely illustrates a wound structure of the electrode assembly, and the electrode assembly is placed inside the exterior with the cross section shown in FIG. 1B set to "upward” or "downward". It may be placed in.
  • the electrode assembly may have a so-called stack-and-folding structure in which a positive electrode, a separator and a negative electrode are laminated on a long film and then folded.
  • the positive electrode is composed of at least a positive electrode material layer and, if necessary, a positive electrode current collector.
  • the positive electrode material layer contains a positive electrode active material as an electrode active material.
  • the positive electrode current collector may or may not be present in the positive electrode.
  • a positive electrode material layer may be provided on at least one surface of the positive electrode current collector on the positive electrode.
  • each of the plurality of positive electrodes in the electrode assembly may have positive electrode material layers provided on both sides of the positive electrode current collector, or positive electrode material layers may be provided on only one side of the positive electrode current collector. It may be the one that exists.
  • the positive electrode current collector may have a foil form. That is, the positive electrode current collector may be composed of the metal foil.
  • the negative electrode is composed of at least a negative electrode material layer and, if necessary, a negative electrode current collector.
  • the negative electrode material layer contains a negative electrode active material as an electrode active material.
  • the negative electrode current collector may or may not be present in the negative electrode.
  • the negative electrode material layer may be provided on at least one surface of the negative electrode current collector in the negative electrode.
  • each of the plurality of negative electrodes in the electrode assembly may have negative electrode material layers provided on both sides of the negative electrode current collector, or negative electrode material layers may be provided on only one side of the negative electrode current collector. It may be the one that exists.
  • the negative electrode current collector may have a foil form. That is, the negative electrode current collector may be composed of the metal foil.
  • the electrode active material that is, the positive electrode active material and the negative electrode active material, which can be contained in the positive electrode material layer and the negative electrode material layer, are substances that can be directly involved in the transfer of electrons in the secondary battery, respectively, and are charged and discharged, that is, the battery reaction. It is the main material of the positive electrode and the negative electrode.
  • ions can be brought to the electrolyte due to the "positive electrode active material that can be contained in the positive electrode material layer" and the "negative electrode active material that can be contained in the negative electrode material layer". Such ions may move between the positive electrode and the negative electrode to transfer electrons and charge / discharge.
  • the positive electrode material layer and the negative electrode material layer may be particularly layers capable of occluding and releasing lithium ions. That is, the secondary battery according to the embodiment of the present invention is, for example, a non-aqueous electrolyte secondary battery in which lithium ions can move between the positive electrode and the negative electrode via a non-aqueous electrolyte to charge and discharge the battery. It may be.
  • the secondary battery according to the embodiment of the present invention can correspond to a so-called "lithium ion battery".
  • the lithium ion battery has a layer in which the positive electrode and the negative electrode can occlude and release lithium ions.
  • the positive electrode active material of the positive electrode material layer may be composed of, for example, granules, and a binder may be contained in the positive electrode material layer for more sufficient contact between particles and shape retention.
  • a conductive aid may be included in the positive electrode material layer to facilitate the transfer of electrons that can drive the battery reaction.
  • the negative electrode active material of the negative electrode material layer may be composed of, for example, granules, and a binder may be contained in the negative electrode material layer for more sufficient contact between particles and shape retention.
  • a conductive auxiliary agent may be contained in the negative electrode material layer in order to further smooth the transfer of electrons that can promote the battery reaction.
  • the positive electrode material layer and the negative electrode material layer can also be referred to as a "positive electrode mixture layer” and a “negative electrode mixture layer”, respectively, because of the form in which a plurality of components are contained.
  • the positive electrode active material may be, for example, a substance that contributes to the occlusion and release of lithium ions. From this point of view, the positive electrode active material may be, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material may be a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese and iron.
  • such a lithium transition metal composite oxide may be contained as the positive electrode active material.
  • the positive electrode active material may be lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate, or a part of the transition metal thereof replaced with another metal.
  • Such a positive electrode active material may be contained as a single species, it may be contained in combination of two or more species.
  • the binder that can be contained in the positive electrode material layer is not particularly limited, but is limited to polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer and polytetrafluoroethylene. At least one species selected from the group consisting of the above can be mentioned.
  • the conductive auxiliary agent that can be contained in the positive electrode material layer is not particularly limited, but is limited to carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes, and vapor phase growth. At least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives can be mentioned.
  • the thickness dimension of the positive electrode material layer is not particularly limited, but may be 1 ⁇ m or more and 300 ⁇ m or less, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • the thickness dimension of the positive electrode material layer is the thickness inside the secondary battery, and the average value of the measured values at any 10 points may be adopted.
  • the negative electrode active material may be a substance that contributes to the occlusion and release of lithium ions. From this point of view, the negative electrode active material may be, for example, various carbon materials, oxides, and / or lithium alloys, metallic lithium, and the like.
  • Examples of various carbon materials for the negative electrode active material include graphite (specifically, natural graphite and / or artificial graphite, etc.), hard carbon, soft carbon, diamond-like carbon, and the like.
  • graphite has high electron conductivity and excellent adhesion to a negative electrode current collector.
  • the oxide of the negative electrode active material at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide and the like can be mentioned.
  • Such an oxide may be amorphous as its structural form. This is because deterioration due to non-uniformity such as grain boundaries or defects is less likely to occur.
  • the lithium alloy of the negative electrode active material may be an alloy of a metal that can be alloyed with lithium, for example, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, It may be a binary, ternary or higher alloy of a metal such as Zn or La and lithium.
  • Such an alloy may be amorphous as its structural form. This is because deterioration that can be caused by non-uniformity such as grain boundaries or defects is less likely to occur.
  • the binder that can be contained in the negative electrode material layer is not particularly limited, but is at least one selected from the group consisting of styrene-butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide-based resin, and polyamide-imide-based resin. Can be mentioned.
  • the conductive auxiliary agent that can be contained in the negative electrode material layer is not particularly limited, but is limited to carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes, and vapor phase growth. At least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives can be mentioned.
  • the thickness dimension of the negative electrode material layer is not particularly limited, but may be 1 ⁇ m or more and 300 ⁇ m or less, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • the thickness dimension of the negative electrode material layer is the thickness inside the secondary battery, and the average value of the measured values at any 10 points may be adopted.
  • the positive electrode current collector and the negative electrode current collector that can be used for the positive electrode and the negative electrode are electrons generated by the electrode active material due to the battery reaction. It is a member that can collect and supply.
  • Such an electrode current collector may be a sheet-shaped metal member. Further, such an electrode current collector may have a perforated or perforated form.
  • the current collector may be a metal leaf, a punching metal, a net or an expanded metal, a plate, or the like.
  • the positive electrode current collector that can be used for the positive electrode may be made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel (SUS), nickel and the like.
  • the positive electrode current collector may be, for example, an aluminum foil.
  • the negative electrode current collector that can be used for the negative electrode may be made of a metal foil containing at least one selected from the group consisting of copper, stainless steel (SUS), nickel and the like.
  • the negative electrode current collector may be, for example, a copper foil.
  • stainless steel refers to, for example, stainless steel defined in “JIS G0203 steel terminology", and is an alloy steel containing chromium or chromium and nickel. It's okay.
  • the thickness dimensions of the positive electrode current collector and the negative electrode current collector are not particularly limited, but may be 1 ⁇ m or more and 100 ⁇ m or less, for example, 10 ⁇ m or more and 70 ⁇ m or less.
  • Each thickness dimension of the positive electrode current collector and the negative electrode current collector is the thickness inside the secondary battery, and the average value of the measured values at any 10 points may be adopted.
  • the separator that can be used for the positive electrode and the negative electrode is a member that can be provided from the viewpoint of preventing a short circuit due to contact between the positive electrode and the negative electrode and retaining the electrolyte.
  • the separator is a member capable of passing ions while preventing electronic contact between the positive electrode and the negative electrode.
  • the separator is a porous or microporous insulating member, and may have a film morphology due to its small thickness.
  • a microporous polyolefin membrane may be used as the separator.
  • the microporous membrane that can be used as a separator may contain, for example, only polyethylene (PE) or polypropylene (PP) as the polyolefin.
  • the separator may be a laminate that can be composed of a "microporous membrane made of PE” and a "microporous membrane made of PP".
  • the surface of the separator may be covered with an inorganic particle coat layer and / or an adhesive layer or the like.
  • the surface of the separator may have adhesiveness.
  • the thickness dimension of the separator is not particularly limited, but may be 1 ⁇ m or more and 100 ⁇ m or less, for example, 2 ⁇ m or more and 20 ⁇ m or less.
  • the thickness dimension of the separator is the thickness inside the secondary battery (particularly the thickness between the positive electrode and the negative electrode), and the average value of the measured values at any 10 points may be adopted.
  • the separator should not be particularly bound by its name, and may be a solid electrolyte, a gel-like electrolyte, and / or insulating inorganic particles having the same function.
  • an electrode constituent layer including a positive electrode, a negative electrode and a separator, or an electrode assembly including an electrode constituent unit may be enclosed in an exterior body together with an electrolyte.
  • the electrolyte can assist in the movement of metal ions released from the electrodes (positive electrode and / or negative electrode).
  • the electrolyte may be an organic electrolyte and / or a "non-aqueous" electrolyte comprising organic solvents and the like, or it may be a "water-based" electrolyte containing water.
  • the electrolyte is an "non-aqueous" electrolyte (hereinafter referred to as "non-aqueous electrolyte”) containing an organic electrolyte and / or an organic solvent and the like. Is preferable. That is, it is preferable that the electrolyte is a non-aqueous electrolyte. In the electrolyte, there will be metal ions released from the electrodes (positive electrode and / or negative electrode), and therefore the electrolyte can assist in the movement of the metal ions in the battery reaction.
  • the secondary battery according to the embodiment of the present invention is preferably a non-aqueous electrolyte secondary battery in which a "non-aqueous" electrolyte containing a "non-aqueous” solvent and a solute is used as the electrolyte.
  • the electrolyte may have a form such as liquid or gel (note that the “liquid” non-aqueous electrolyte is also referred to as “non-aqueous electrolyte solution” in the present specification).
  • the non-aqueous electrolyte is preferably an electrolyte containing a non-aqueous solvent and a solute.
  • the specific solvent for the non-aqueous electrolyte may contain at least carbonate. Such carbonates may be cyclic carbonates and / or chain carbonates.
  • the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and vinylene carbonate (VC). be able to.
  • PC propylene carbonate
  • EC ethylene carbonate
  • BC butylene carbonate
  • VC vinylene carbonate
  • chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • a combination of cyclic carbonates and chain carbonates may be used as the non-aqueous electrolyte, for example ethylene carbonate (EC) and diethyl carbonate ( A mixture with DEC), a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC), and the like may be used.
  • a specific non-aqueous electrolyte solute for example, a Li salt such as LiPF 6 and / or LiBF 4 may be used.
  • the exterior body of the secondary battery can house or enclose, for example, an electrode assembly having a structure in which at least one or more electrode constituent layers or electrode constituent units including a positive electrode, a negative electrode and a separator are laminated. It is a member.
  • the exterior body of the secondary battery is not particularly limited as long as it can accommodate the above-mentioned electrode assembly.
  • a conventionally known exterior body can be appropriately used as needed.
  • the exterior body is preferably a metal exterior body.
  • the metal exterior body may have, for example, a two-part configuration of a cup-shaped member and a lid-shaped member.
  • the "cup-shaped member” has a side surface portion corresponding to a body portion and a main surface portion (in a typical embodiment, for example, an upper surface or a lower surface) continuous with the side surface portion, and a hollow portion is formed inside. It means such a member.
  • the "lid-shaped member” means a member that can be provided to cover such a cup-shaped member.
  • the lid-shaped member may be, for example, a single member (typically a flat plate-shaped member) extending in the same plane. In the exterior body, the cup-shaped member and the lid-shaped member may be arbitrarily combined so that the cup-shaped member and the lid-shaped member engage, connect, or fit with each other.
  • cup-shaped member and the lid-shaped member are fitted and joined to each other.
  • an insulating member including an insulating material is arranged between the cup-shaped member and the lid-shaped member.
  • an insulating member With such an insulating member, it is possible to achieve sealing (or sealing) between the cup-shaped member and the lid-shaped member while electrically insulating the cup-shaped member and the lid-shaped member.
  • the insulating material that can form the insulating member.
  • the insulating member for example, a member including a thermoplastic resin can be used.
  • the exterior body may be a flexible case having a laminated structure or the like, or a hard case having a non-laminated structure such as a metal exterior body.
  • the metal exterior preferably has a non-laminated structure. That is, in the present invention, the metal exterior body is not, for example, a laminated member of a metal sheet / fusion layer / protective layer.
  • the metal exterior has a structure composed of a single metal member.
  • the metal exterior body (specifically, each of the cup-shaped member and the lid-shaped member) may be a single member made of a metal such as stainless steel (SUS) or aluminum.
  • the exterior body in the present disclosure may contain an alloy as a metal.
  • the term "single metal member” means that the exterior body does not have a so-called laminated structure in a broad sense, and in a narrow sense, the exterior body (specifically, a cup-shaped member and a lid). It means that each of the shaped members) is a member substantially composed of only metal. Therefore, an appropriate surface treatment may be applied to the surface of the metal exterior body as long as the member is substantially composed of only metal.
  • the metal exterior can have a relatively thin thickness.
  • the metal exterior body in the present invention may have a thickness dimension of 50 ⁇ m or more and less than 200 ⁇ m, for example, 50 ⁇ m or more and 190 ⁇ m or less, 50 ⁇ m or more and 180 ⁇ m or less, or 50 ⁇ m or more and 170 ⁇ m or less.
  • the above configuration (particularly the exterior body) may be appropriately changed or modified as necessary.
  • the secondary battery of the present invention comprises an electrode assembly, and can extend from the electrode assembly as a "positive electrode current collecting tab” and a “negative electrode current collecting tab” (hereinafter, both are collectively referred to as a "collecting tab”. It is characterized by the arrangement of). That is, in the secondary battery, the "positive electrode current collecting tab” and the “negative electrode current collecting tab” each extend “diagonally” from the electrode assembly. More specifically, it is characterized in that the "extending direction of the positive electrode current collecting tab” and the "extending direction of the negative electrode current collecting tab” are arranged so as to form a corner (corner portion) with each other.
  • the secondary battery according to the embodiment of the present invention is, for example, as shown in the top view of FIGS. 2 (a) to 2 (c), particularly FIG. 2 (c), from the electrode assembly (or electrode) 11 to the positive electrode current collecting tab.
  • the negative electrode current collecting tab 13a and the negative electrode current collecting tab 13b each extend "diagonally".
  • the fact that the positive electrode current collecting tab (13a) and the negative electrode current collecting tab (13b) each extend “diagonally” from the electrode assembly (or electrode) (11) is an arbitrary projection in the secondary battery.
  • the figure specifically, in a plan view, for example, as shown in FIG. 2 (c), from the electrode assembly (or electrode) (11) to the “positive electrode current collecting tab (13a)” and the “negative electrode current collecting tab (13b)”.
  • the extending direction of the positive electrode current collecting tab and the extending direction of the negative electrode current collecting tab intersect (in other words, they are non-parallel) to form an angle (corner) having a certain angle.
  • the "extension direction" of the “collection tab” is defined as the line segment of the portion where the current collection tab and the electrode assembly meet (or the portion where the current collection tab extends from the electrode assembly). means the normal direction extended from the point in a direction extending current collecting tab (e.g. extending the "extending direction X a of the positive electrode current collector tabs 13a" and “negative electrode current collector tab 13b shown in FIG. 2 (b) Direction X b ").
  • the extension direction of the current collection tab is, for example, when two current collection tabs (specifically, the positive electrode current collection tab 13a and the negative electrode current collection tab 13b) are in a line-symmetrical relationship, the axis of symmetry (for example, FIG. 2).
  • the "angle ⁇ " of the angle formed by is preferably "15 ° or more and 120 ° or less”.
  • An electrode assembly or an electrode (see FIG. 1) that can be included in a secondary battery according to an embodiment of the present invention (hereinafter, may be referred to as “secondary battery of the present disclosure”) is a feature of the present invention.
  • the configuration and shape (particularly the plan-view shape of the main body) are not particularly limited.
  • the electrode assembly 11 may have a substantially circular (particularly circular) plan view shape in which the main body is partially cut out. preferable.
  • the "main body" of the electrode assembly means the remaining part excluding the "current collection tab” (specifically, the positive electrode current collection tab and the negative electrode current collection tab) described below in a plan view. do.
  • the main body of the electrode assembly (or electrode) 11 is a circle or substantially a circle (particularly a circle) cut out from a circle or a substantially circular shape (particularly a circle) having a center O and a diameter D. ) It is preferable to have a plan view shape.
  • the main bodies of the positive electrode and the negative electrode included in the electrode assembly 11 also have a circular or substantially circular (particularly circular) plan view shape obtained by cutting out a part thereof from, for example, a circular or substantially circular (particularly circular) having a center O and a diameter D. It is preferable to have.
  • notched means, for example, a shape or state obtained by removing a part thereof from a circle or a substantially circular shape, and even if it is formed in such a shape in advance, it is cut and formed later. May be good.
  • the electrode assembly 11 and the main body of the positive electrode and the negative electrode are circular or substantially circular (particularly circular) with a part cut out from the circular or substantially circular (particularly circular) plan view shape, whereby two current collecting tabs (specifically) are provided.
  • the positive electrode current collecting tab and the negative electrode current collecting tab) can be successfully arranged "diagonally”.
  • circular or substantially circular is a concept including a circular (perfect circle) and a figure that can be usually recognized as a circular at first glance.
  • a “circle” or “substantially circular” is not limited to a perfect circle (ie, simply a “circle” or “perfect circle”), but is modified from that. It also includes shapes that can normally be included in a "round shape” as recognized by those skilled in the art. For example, not only a circle and a perfect circle, but also the curvature of the arc may be locally different, and further, a shape derived from a circle and a perfect circle such as an ellipse may be used.
  • the circular diameter D is not particularly limited, and is, for example, 5 mm or more and 30 mm or less, particularly preferably 10 mm.
  • a portion cut out from such a circle or a substantially circular shape (particularly a circle) is a cutout 12 as shown by a broken line in FIG. 2 (a), for example.
  • the contour of the notched portion may consist of at least two sides (for example, sides m and n). preferable.
  • the outline of the notched portion is not limited to that consisting of two sides, and a polygon may be formed.
  • the current collecting tabs (for example, the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b) can be extended obliquely from the contour of the notched portion including at least two sides.
  • the two sides (m, n) of the notched portion may form a corner (corner or top), and the “angle ⁇ ” of the corner (corner or top). Is preferably less than 180 ° (but not including 0 °).
  • the two current collecting tabs for example, the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b
  • the two current collecting tabs are facing outward from each other, or "in directions X a and X b" .
  • the intersection of straight lines along the notch 12 or two current collection tabs is below, or along two sides (m, n), for example, an electrode set.
  • notch portions two) by notching (cutting) a solid or electrode
  • straight lines along two sides intersect and the two notched portions overlap.
  • the angle ⁇ is less than 180 ° in this way, for example, a configuration (a) in which two current collecting tabs face each other in opposite directions or a configuration in which two current collecting tabs are arranged in parallel (b) as shown in FIG. ) Can be excluded, and the two current collecting tabs (for example, the positive current collecting tab 13a and the negative negative current collecting tab 13b as shown in FIG. 2C) can be arranged “obliquely” with each other.
  • the angle (corner or top) formed by the two sides (m, n) of the notched portion exists inside or inside the circle in the configuration shown in FIG. 2 (a), but is on the circumference. It may exist.
  • the electrode assembly 11 has a mirror image symmetrical shape in a plan view. More two sides of a specific cut in-away portion (e.g., sides m, n) a mirror symmetry with respect to a vertical plane including the straight line P 1 connecting the center O of the circle and a vertex (corner) which forms good.
  • planar shape of the electrode assembly 11 may be in the form of line symmetry or symmetry, for example with respect to the straight line P 1.
  • the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b can be extended “diagonally”, respectively (for example, FIGS. 2A to 2C).
  • the current collecting tab 13a arranged on the left side is used as the positive electrode current collecting tab, but the current collecting tab 13a may be the negative electrode current collecting tab.
  • the current collecting tab 13b arranged on the right side is used as the negative electrode current collecting tab, but the current collecting tab 13b may be the positive electrode current collecting tab.
  • the "current collecting tab” is particularly limited as long as it can extend from the electrode assembly (specifically, the main body of the electrode assembly, more specifically, the positive electrode and / or the negative electrode).
  • the positive electrode current collector tab 13a and the negative electrode current collector tab 13b shown in FIG. 2 are, for example, each of a plurality of positive electrode current collectors or negative electrode current collectors that can be provided on each of the positive electrode and / or the negative electrode included in the electrode assembly. It may consist of overlapping protruding portions. For example, as shown in FIG.
  • the positive electrode current collecting tab 13a that can extend “diagonally” from the electrode assembly 11 can form the electrode assembly 11. It may have a configuration in which the protruding portions of the positive electrode current collectors of the plurality of positive electrodes are integrated on the tip side.
  • the negative electrode current collecting tab 13b that can extend “diagonally” from the electrode assembly 11 is a negative electrode current collecting tab 13b of each of a plurality of negative electrodes that can form the electrode assembly 11. It may have a structure in which the protruding portion of the body is integrated on the tip side.
  • the positive electrode current collector tab 13a and the negative electrode current collector tab 13b are preferably integrally formed of the same material as the positive electrode current collector and the negative electrode current collector, which can be included in the electrode assembly, respectively, and are particularly characterized in their shape and dimensions. There is no limit.
  • the current collection tab (positive electrode current collection tab 13a and / or negative electrode current collection tab 13b) is, for example, a virtual circle (upper surface view) in the plan view (top view) of FIG. It is preferable that it is positioned within a substantially circular shape or a perfect circle). With such a configuration, the two current collecting tabs (that is, the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b) can be arranged "diagonally" respectively. In addition, such an electrode assembly can be successfully and easily housed together with the current collecting tab, for example, in an exterior body having a substantially circular plan view (not shown).
  • the current collecting tabs may be connected “directly” or “indirectly” to the exterior body.
  • the fact that the current collecting tab is “directly” connected to the exterior means that, for example, if the exterior is a metal exterior, the current collecting tab is electrically connected to the exterior.
  • the current collecting tab is "indirectly” connected to the exterior body, it means that the current collecting tab is electrically connected to the exterior body via a terminal such as an external output terminal or an external terminal.
  • the exterior body is a metal exterior body, it is preferable that the external output terminal is attached to the exterior body via an insulating member.
  • the method of connecting the current collector tab to the exterior body is not particularly limited, and a conventionally known connection method may be appropriately used.
  • the external output terminal may be a metal plate.
  • the metal plate may have a plurality of layers made of different metal materials.
  • the metal plate is preferably attached to the exterior body via an insulating member.
  • the "insulating member” for example, a member including a resin material or an elastomer material can be used.
  • thermoplastic resin preferably a heat-sealing resin
  • thermoplastic resin include polyolefin resins such as polyethylene and / or polypropylene and copolymers thereof.
  • insulating member a single-layer film made of a thermoplastic resin or a multilayer film containing a thermoplastic resin can be used.
  • multilayer film include a multilayer heat-sealing film in which both sides of a high melting point resin layer to be an intermediate layer are sandwiched between low melting point resin layers (thermoplastic resin layers).
  • elastomer material include polyester-based thermoplastic elastomers.
  • the electrode assembly 11 of the secondary battery according to the embodiment of the present invention has two current collecting tabs (13a, 13b). Each extends “diagonally”. Specifically, the "positive electrode current collecting tab 13a " and “positive electrode current collecting tab 13a” so that the "extending direction X a of the positive electrode current collecting tab 13a” and the "extending direction X b of the negative electrode current collecting tab 13b” form an "angle ⁇ ".
  • the negative electrode current collecting tabs 13b ” are arranged“ diagonally ”(for example, FIG. 2B).
  • the “angle ⁇ ” of the angle formed by the “extending direction X a of the positive electrode current collecting tab 13a ” and the “extending direction X b of the negative electrode current collecting tab 13b” is, for example, 15 ° or more and 120 ° or less, preferably 25 ° or more. It is 105 ° or less, more preferably 57 ° or more and 105 ° or less, and even more preferably 57 ° or more and 102 ° or less. Within the above range, values such as "tab width", "tab length” and / or “electrode area” described below can be further appropriately improved. In addition, the degree of freedom in tab design can be further increased.
  • each of the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b which can be arranged diagonally, may have an arbitrary geometric shape and are shown in the figure. It is not limited to a rectangle such as a rectangle or a square or a shape such as a substantially rectangular shape as in the embodiment.
  • the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b have a rectangular shape (for example, a rectangle, a square, etc.) or a substantially rectangular shape, respectively. If the plan view shape of the current collecting tab is rectangular, the design and manufacture of the current collecting tab becomes simpler.
  • the shapes of the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b may be the same or different in plan view, but they are preferably the same shape.
  • the dimensions of the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b may be the same or different, but are preferably the same.
  • the current collection tab (positive electrode current collection tab 13a and / or negative electrode current collection tab 13b) has a rectangular shape in a plan view
  • the current collection tab with respect to the circular diameter D of the main body (or electrode main body) of the electrode assembly.
  • Ratio of length W in the width direction (hereinafter, may be referred to as "tab width (W)") (tab width W / diameter D, that is, the ratio of "W / D”) (for example, the positive electrode collection shown in FIG.
  • Tab width W a / diameter D of the electrical tab 13a ie, the ratio of "W a / D"
  • tab width W b / diameter D of the negative electrode current collector tab 13 b ie, the ratio of "W b / D"
  • the tab widths W a and W b may be the same or different, but are preferably the same.
  • the above ratio (W / D, in particular W a / D and / or W b / D) When is within the above range, while avoiding the area of the electrode body is remarkably reduced, the current collecting tabs The area of the plan view shape can be further increased. In addition, the degree of freedom in tab design can be further improved.
  • the current collecting tab when the plan view shape of the current collecting tabs (positive electrode current collecting tab 13a and / or negative electrode current collecting tab 13b) is rectangular, the current collecting tab with respect to the circular diameter D of the main body (or electrode main body) of the electrode assembly.
  • the ratio of the width direction length W (tab width (W)) (tab width W / diameter D, i.e. "W / D" ratio) (e.g., tab width of the positive electrode current collector tabs 13a shown in FIG.
  • the diameter D (that is, the ratio of “W a / D”) and / or the tab width W b / diameter D (that is, the ratio of “W b / D”) of the negative electrode current collecting tab 13b) is preferably, for example, 0.3 or more. Is 0.3 or more and 0.5 or less.
  • the tab widths W a and W b may be the same or different, but are preferably the same.
  • the above ratio (W / D, in particular W a / D and / or W b / D) When is within the above range, while avoiding the area of the electrode body is remarkably reduced, the current collecting tabs The area of the plan view shape can be increased. In addition, the degree of freedom in tab design can be improved.
  • the current collecting tab when the plan view shape of the current collecting tab (positive electrode current collecting tab 13a and / or negative electrode current collecting tab 13b) is rectangular, the current collecting tab with respect to the circular diameter D of the main body (or electrode main body) of the electrode assembly.
  • Ratio of length L in the extending direction hereinafter, may be referred to as "tab length (L)" (tab length L / diameter D, that is, "L / D" ratio)
  • the positive electrode shown in FIG. tab length L a / the diameter D of the current collector tabs 13a tab length (i.e., "L a / D" ratio) and / or the negative electrode current collector tab 13b L b / diameter D i.e.
  • the ratio of the "L b / D" ) Is for example, 0.1 or more and 0.2 or less, preferably 0.1 or 0.2.
  • tab length L a and L b may be different even in the same, but are preferably the same.
  • the current collecting tab of the current collecting tab avoids a significant decrease in the area of the electrode body.
  • the area of the plan view shape can be further increased.
  • the degree of freedom in tab design can be further improved.
  • the electrodes of the electrode assembly include a positive electrode and a negative electrode capable of occluding and releasing lithium ions.
  • the “positive electrode current collecting tab” and the “negative electrode current collecting tab” are arranged “diagonally”, respectively (for example, FIG. 2 (c)).
  • Comparative Examples 1 and 2 in which the two current collecting tabs are arranged facing each other or in parallel for example, the conventional configuration shown in FIGS. 8A and 8B
  • the present invention is not limited to the following examples.
  • the electrode assembly 21 shown in FIG. 4 (a) was prepared.
  • two current collecting tabs positive electrode current collecting tab 23a and negative electrode current collecting tab 23b
  • the main body (and the electrode main body) of the electrode assembly 21 has a shape (notches 22a and 22b) in which a part thereof is cut out vertically from a circle having a diameter of 10 mm. It has a circular shape in a plan view.
  • the positive electrode current collecting tab 23a and the negative electrode current collecting tab 23b have the same plan-view shape.
  • the electrode assembly 31 shown in FIG. 4B was prepared.
  • two current collecting tabs positive electrode current collecting tab 33a and negative electrode current collecting tab 33b
  • the main body (and the electrode main body) of the electrode assembly 31 is a circular plane (a circle having a notch 32) cut out from a circle having a diameter of 10 mm. It has a visual shape.
  • the positive electrode current collecting tab 33a and the negative electrode current collecting tab 33b have the same plan-view shape.
  • Example 1 The electrode assembly 11 shown in FIG. 4C was prepared.
  • the “angle ⁇ ” of the angle formed by the “ extending direction X a of the positive electrode current collecting tab 13a” and the “extending direction X b of the negative electrode current collecting tab 13b” is formed. Is within the range of "15 ° or more and 120 ° or less”.
  • the “positive electrode current collecting tab 13a” and the “negative electrode current collecting tab 13b” are relatively arranged so as to extend “diagonally”, respectively.
  • the main body (and the electrode main body) of the electrode assembly 11 has a circular plan view shape (a circle having a notch 12 having two sides m and n) cut out from a circle having a diameter of 10 mm (FIG. FIG. 2 (a)).
  • the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b have the same plan-view shape.
  • tab dimensions were changed in “Comparative Example 1", “Comparative Example 2” and “Example 1" according to “Conditions 1 to 10" shown in Table 1 below.
  • Electrode area (area in plan view of the main body of the electrode assembly) (mm 2 ) of each electrode assembly measured under "conditions 1 to 10" shown in Table 1 is shown in the graphs of Table 2 and FIG. 5 below. show.
  • Example 1 -Comparison between Example 1 and Comparative Example 1
  • Example 1 and Comparative Example 1 were compared, it was found that the electrode area of Example 1 was larger than that of Comparative Example 1 under all of the conditions 1 to 10.
  • .. -Comparison between Example 1 and Comparative Example 2 When Example 1 and Comparative Example 2 were compared, the electrode areas were about the same under conditions 1 to 4, but under conditions 5 to 10, the electrode area was similar to that of Example 1. It was found that the electrode area was larger than that of Comparative Example 2. In particular, in Example 1, it was found that the tendency became remarkable as the angle ⁇ and the tab width increased.
  • the "tab length” was divided into “1 mm” and “2 mm”, and the relationship between the "tab area” and the “electrode area change rate” was examined and considered.
  • the “electrode area change rate” slope of the curve
  • [Electrode area change rate] [Electrode area change amount] / [Tab area change amount]
  • the "electrode area change amount” is the change amount of the electrode area before and after each condition shown in the table below
  • the "tab area change amount” is the change amount before and after each condition shown in the following table. The amount of change in the tab area. ]
  • Example 1 of the present invention it was surprisingly found that a tab length of 1 mm has the same degree of freedom in tab design as Comparative Example 1 (see FIG. 4A).
  • the electrode area change rate of Example 1 was much smaller than that of Comparative Example 2 under any of the conditions, and the tabs were tabbed. It was found that the degree of freedom in design was remarkably large.
  • Example 1 of the present invention it was surprisingly found that even with a tab length of 2 mm, the degree of freedom in tab design is comparable to that of Comparative Example 1 (see FIG. 4A).
  • -Comparison between Example 1 and Comparative Example 2 Comparing Example 1 and Comparative Example 2 the value of the electrode area change rate in Example 1 was much smaller than that in Comparative Example 2 under all conditions. It was found that the degree of freedom in tab design is remarkably large.
  • the secondary battery having a circular button shape (coin shape) in a plan view is mainly mentioned, but the present invention is not necessarily limited to the above embodiment. That is, the secondary battery of the present disclosure is not limited to a circular shape in a plan view, and may have any other geometric shape.
  • the secondary battery according to the embodiment of the present invention can be used in various fields where battery use or storage can be expected.
  • the secondary battery according to the embodiment of the present invention includes electric / information / communication fields (for example, mobile phones, smartphones, laptop computers and digital cameras, activities) in which electric / electronic devices can be used.
  • Electric / electronic equipment field or mobile equipment field including meter, arm computer, electronic paper, wearable device, RFID tag, card type electronic money, small electronic device such as smart watch), home / small industrial application (for example, electric) Tools, golf carts, home / nursing / industrial robots), large industrial applications (eg forklifts, elevators, bay port cranes), transportation systems (eg hybrids, electrics, buses, trains) , Electric assisted bicycles, electric motorcycles, etc.), power system applications (for example, various power generation, road conditioners, smart grids, general household installation type power storage systems, etc.), medical applications (medical equipment fields such as earphone hearing aids) , Pharmaceutical applications (fields such as dose management systems), IoT fields, space / deep sea applications (for example, fields such as space probes and submersible research vessels) and the like.
  • electric for example, electric
  • Tools golf carts, home / nursing / industrial robots
  • large industrial applications eg forklifts, elevators, bay port cranes
  • transportation systems
  • Electrode constituent layer or electrode constituent unit
  • Electrode assembly or electrode 12 22, 32 Notch 13, 23, 33 Current collector tab

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a secondary battery having an electrode assembly. In the secondary battery, each of a positive electrode collector tab and a negative electrode collector tab obliquely extends from the electrode assembly.

Description

二次電池Secondary battery
 本発明は、二次電池に関する。特に、本発明は、正極、負極およびセパレータを含む電極構成層が積層されて成る電極組立体を備えた二次電池に関する。 The present invention relates to a secondary battery. In particular, the present invention relates to a secondary battery including an electrode assembly in which electrode constituent layers including a positive electrode, a negative electrode and a separator are laminated.
 二次電池は、いわゆる蓄電池ゆえ充電および放電の繰り返しが可能であり、様々な用途に用いられている。例えば、携帯電話、スマートフォンおよびノートパソコンなどのモバイル機器において二次電池が広く用いられている。 Since the secondary battery is a so-called storage battery, it can be repeatedly charged and discharged, and is used for various purposes. For example, secondary batteries are widely used in mobile devices such as mobile phones, smartphones and notebook computers.
日本国特許第5317195号公報Japanese Patent No. 5317195 米国特許出願公開第2015/0221925号公報U.S. Patent Application Publication No. 2015/0221925
 本願発明者は、従前の二次電池では克服すべき課題があることに気付き、そのための対策を取る必要性を見出した。具体的には以下の課題があることを本願発明者は見出した。 The inventor of the present application noticed that there was a problem to be overcome with the conventional secondary battery, and found that it was necessary to take measures for that purpose. Specifically, the inventor of the present application has found that there are the following problems.
 例えば図8(a)の概略上面図に示す通り、従前のコイン形(又はボタン形)の二次電池では、正極集電タブ(23a)と負極集電タブ(23b)とが対向して互いに逆方向に延出して配置されて成る電極構成が検討されている(例えば、特許文献1、2)。しかし、本願発明者によると、このように集電タブが逆向きに対向する電極構成では、集電タブの幅方向の寸法(又は「タブ幅」)は大きくすることができるが、その一方で集電タブの延出方向の寸法(又は「タブ長」)を確保するためには、例えば、電極を上下2箇所もカット(又は切り欠き形成)しなければならず、電極本体の面積が小さくなり、電池自体の容量が大幅に低減するといった問題があることがわかった。 For example, as shown in the schematic top view of FIG. 8A, in the conventional coin-shaped (or button-shaped) secondary battery, the positive electrode current collecting tab (23a) and the negative electrode current collecting tab (23b) face each other and face each other. An electrode configuration that extends in the opposite direction and is arranged is being studied (for example, Patent Documents 1 and 2). However, according to the inventor of the present application, in such an electrode configuration in which the current collecting tabs face each other in opposite directions, the dimension (or "tab width") in the width direction of the current collecting tab can be increased, but on the other hand. In order to secure the dimension (or "tab length") of the current collecting tab in the extending direction, for example, the electrode must be cut (or notched) at two places above and below, and the area of the electrode body is small. As a result, it was found that there was a problem that the capacity of the battery itself was significantly reduced.
 そこで、本願発明者は、例えば、電極本体の面積を大きくするために、例えば図8(b)の概略上面図に示すように電極を上側1箇所だけカットして(又は切り欠いて)、正極集電タブ(33a)および負極集電タブ(33b)を並べて配置して成る二次電池を検討した。しかしながら、このような図8(b)に示す2つの集電タブが並列する構成は、図8(a)に示す構成と比べて、電極本体の面積は大きくなるものの集電タブの幅方向の寸法(又は「タブ幅」)が小さくなり、抵抗、特に集電抵抗が大きくなることがわかった。また、集電タブの延出方向の寸法(又は「タブ長」)をさらに大きくしようとすると、図8(a)に示す構成と同様に電極本体の面積をさらに小さくしなければならず、電池自体の容量が大幅に低減するといった問題があることもわかった。 Therefore, for example, in order to increase the area of the electrode body, the inventor of the present application cuts (or cuts out) only one upper electrode, for example, as shown in the schematic top view of FIG. 8 (b), and positive electrode. A secondary battery in which the current collecting tab (33a) and the negative electrode current collecting tab (33b) are arranged side by side was examined. However, such a configuration in which the two current collecting tabs shown in FIG. 8B are arranged in parallel has a larger area of the electrode body than the configuration shown in FIG. 8A, but is in the width direction of the current collecting tabs. It was found that the dimensions (or "tab width") decreased and the resistance, especially the current collecting resistance, increased. Further, in order to further increase the dimension (or "tab length") of the current collecting tab in the extending direction, the area of the electrode body must be further reduced as in the configuration shown in FIG. 8A, and the battery It was also found that there was a problem that the capacity of itself was significantly reduced.
 このように、「電極面積」、「タブ幅」および「タブ長」は、互いに密接かつ複雑に関連していることが本願発明者の研究により初めてわかった。そして、本願発明者は、このような知見に基づいて、二次電池の開発において電極のカット(又は切り欠き)とともに「集電タブ」の配置および設計が非常に重要であり、さらなる改良の余地があることをつきとめた。 Thus, it was found for the first time by the research of the inventor of the present application that "electrode area", "tab width" and "tab length" are closely and complicatedly related to each other. Based on these findings, the inventor of the present application finds that the arrangement and design of the "current collector tab" as well as the cut (or notch) of the electrode is very important in the development of the secondary battery, and there is room for further improvement. I found out that there is.
 本発明は、このような課題に鑑みてなされたものである。つまり、本発明の主たる目的は、二次電池における集電タブの配置および設計をさらに改良することである。 The present invention has been made in view of such a problem. That is, the main object of the present invention is to further improve the arrangement and design of the current collecting tabs in the secondary battery.
 本願発明者は、鋭意研究の結果、電極組立体から延出し得る正極集電タブおよび負極集電タブをそれぞれ「斜め」に配置し、より具体的には正極集電タブの延出方向と負極集電タブの延出方向とが互いに角(又は角部)を成すように配置することで、従前よりもより適切な「電極面積」、「タブ幅」および/または「タブ長」などが得られ、それらとともにタブ設計の自由度がより顕著に増加することを見出した。その結果、上記の主たる目的が達成された二次電池の発明を完成させるに至った。 As a result of diligent research, the inventor of the present application arranges the positive electrode current collecting tab and the negative electrode current collecting tab that can extend from the electrode assembly "diagonally", respectively, and more specifically, the extending direction of the positive electrode current collecting tab and the negative electrode. By arranging the current collecting tabs so that they form corners (or corners) with each other, more appropriate "electrode area", "tab width" and / or "tab length" can be obtained. It was found that the degree of freedom in tab design increases significantly with them. As a result, the invention of the secondary battery which achieved the above-mentioned main purpose was completed.
 本発明では、電極組立体を有して成る二次電池であって、この電極組立体から正極集電タブおよび負極集電タブがそれぞれ「斜め」に延出している二次電池が提供される。以下、本開示において、上記の二次電池を「本開示の二次電池」と称する場合もある。 INDUSTRIAL APPLICABILITY The present invention provides a secondary battery having an electrode assembly in which a positive electrode current collecting tab and a negative electrode current collecting tab extend "diagonally" from the electrode assembly. .. Hereinafter, in the present disclosure, the above-mentioned secondary battery may be referred to as "the secondary battery of the present disclosure".
 本発明の二次電池では、電極組立体から延出し得る「正極集電タブ」および「負極集電タブ」を「斜め」に配置することによって、より具体的には「正極集電タブの延出方向」と「負極集電タブの延出方向」とが互いに角(角部)を成すように配置することで、従前よりもより適切な「電極面積」、「タブ幅」および/または「タブ長」が得られ、それらとともにタブ設計の自由度をより顕著に増加させることができる。 In the secondary battery of the present invention, by arranging the "positive electrode current collecting tab" and the "negative electrode current collecting tab" that can extend from the electrode assembly "diagonally", more specifically, the "positive electrode current collecting tab" is extended. By arranging the "outward direction" and the "extending direction of the negative electrode current collecting tab" so as to form a corner (corner) with each other, the "electrode area", "tab width" and / or " "Tab lengths" can be obtained, and together with them, the degree of freedom in tab design can be increased more significantly.
図1は、電極組立体の構成を模式的に示した断面図である(図1(a):非巻回の平面積層型、図1(b):巻回型)。FIG. 1 is a cross-sectional view schematically showing the configuration of the electrode assembly (FIG. 1 (a): non-winding plane laminated type, FIG. 1 (b): wound type). 図2は、本発明の一実施形態に係る二次電池に含まれる電極組立体および集電タブを模式的に示す概略分解上面図である。FIG. 2 is a schematic exploded top view schematically showing an electrode assembly and a current collecting tab included in a secondary battery according to an embodiment of the present invention. 図3は、本発明の一実施形態に係る二次電池に含まれる電極組立体および集電タブを模式的に示す概略上面図である。FIG. 3 is a schematic top view schematically showing an electrode assembly and a current collecting tab included in a secondary battery according to an embodiment of the present invention. 図4は、比較例および実施例で使用する電極組立体および集電タブを模式的に示す概略上面図である(図4(a):比較例1、図4(b):比較例2、図4(c)実施例1)。FIG. 4 is a schematic top view schematically showing an electrode assembly and a current collecting tab used in Comparative Examples and Examples (FIG. 4 (a): Comparative Example 1, FIG. 4 (b): Comparative Example 2, FIG. 4 (c) Example 1). 図5は、「電極面積」について実施例と比較例との対比を示すグラフである。FIG. 5 is a graph showing a comparison between the examples and the comparative examples regarding the “electrode area”. 図6は、「タブ面積」と「電極面積変化率」との関係について実施例と比較例との対比を示すグラフである(タブ長1mm)。FIG. 6 is a graph showing a comparison between an example and a comparative example regarding the relationship between the “tab area” and the “electrode area change rate” (tab length 1 mm). 図7は、「タブ面積」と「電極面積変化率」との関係について実施例と比較例との対比を示すグラフである(タブ長2mm)。FIG. 7 is a graph showing a comparison between an example and a comparative example regarding the relationship between the “tab area” and the “electrode area change rate” (tab length 2 mm). 図8は、比較例(従前)で使用する電極組立体および集電タブを模式的に示す概略上面図である。FIG. 8 is a schematic top view schematically showing the electrode assembly and the current collecting tab used in the comparative example (previous).
 以下では、本発明の一実施形態に係る二次電池を挙げて本発明をより詳細に説明する。必要に応じて図面を参照して説明を行うものの、図面における各種の要素および構成は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観および/または寸法比などは実物と異なり得る。 Hereinafter, the present invention will be described in more detail with reference to the secondary battery according to the embodiment of the present invention. Although the description will be given with reference to the drawings as necessary, the various elements and configurations in the drawings are merely schematically and exemplary for the understanding of the present invention, and the appearance and / or dimensional ratio and the like are shown. It can be different from the real thing.
 本明細書で直接的または間接的に説明される「断面視」は、例えば、二次電池を構成することができる電極組立体または電極構成層もしくは電極構成単位の積層方向または重ねる方向に沿って二次電池を切り取った仮想的な断面に基づいている(図1参照)。同様にして、本明細書で直接的または間接的に説明される“厚み”の方向は、二次電池を構成し得る電極材の積層方向に基づいている。例えばボタン形(又はコイン形)などの「板状に厚みを有する二次電池」でいえば、“厚み”の方向は、かかる二次電池の板厚方向に相当する。本明細書で用いる「平面視」とは、かかる厚みの方向に沿って対象物を上側または下側から見た場合の見取図に基づいている。 The "cross-sectional view" described directly or indirectly herein is, for example, along the stacking direction or stacking direction of the electrode assembly or electrode constituent layer or electrode constituent unit that can constitute a secondary battery. It is based on a virtual cross section of the secondary battery (see FIG. 1). Similarly, the direction of "thickness" as described directly or indirectly herein is based on the stacking direction of the electrode materials that may constitute the secondary battery. For example, in the case of a "plate-shaped thick secondary battery" such as a button type (or coin type), the direction of "thickness" corresponds to the plate thickness direction of such a secondary battery. As used herein, "planar view" is based on a sketch of an object viewed from above or below along the direction of such thickness.
 また、本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材もしくは部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。 Further, the "vertical direction" and the "horizontal direction" used directly or indirectly in the present specification correspond to the vertical direction and the horizontal direction in the figure, respectively. Unless otherwise specified, the same code or symbol shall indicate the same member or part or the same meaning. In one preferred embodiment, it can be considered that the vertical downward direction (that is, the direction in which gravity acts) corresponds to the "downward direction" and the opposite direction corresponds to the "upward direction".
[二次電池の基本構成]
 本明細書でいう「二次電池」は、充電および放電の繰り返しが可能な電池のことを指している。従って、本発明の一実施形態に係る二次電池は、その名称に過度に拘泥されるものでなく、例えば蓄電デバイスなども対象に含まれ得る。
[Basic configuration of secondary battery]
The term "secondary battery" as used herein refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery according to the embodiment of the present invention is not excessively bound by its name, and may include, for example, a power storage device.
 本発明の一実施形態に係る二次電池は、例えば、少なくとも正極、負極及びセパレータを含む電極構成層または電極構成単位が少なくとも1つ以上積層されて成る構造を有して成る電極組立体を有して成る。例えば図1(a)および図1(b)には電極組立体10を例示している。図示されるように、正極1と負極2とはセパレータ3を介して積み重なって電極構成層(または電極構成単位)5を成してよい。かかる電極構成層5が少なくとも1つ以上積層して電極組立体10が構成されてよい。二次電池において、このような電極組立体が電解質(例えば非水電解質)と共に外装体に封入されていてよい。なお、電極組立体の構造は平面積層型構造(図1(a)参照)に必ずしも限定されず、例えば、正極、負極および正極と負極との間に配置されたセパレータを含む電極ユニット(又は電極構成層もしくは電極構成単位)をロール状に巻回して成る巻回型構造(図1(b)参照)(例えばジェリーロール構造)を有していてもよい。つまり、電極組立体10は、例えば図1(a)に示すように、電極構成層5が互いに積み重なるように積層した平面積層型構造を有していてよい。あるいは、電極組立体10は、例えば図1(b)に示すように、帯状に比較的長く延在する電極構成層5がロール状に巻回された巻回型構造を有していてもよい。
 尚、図1(b)は、電極組立体の巻回型構造を例示するに過ぎず、図1(b)に示す断面を「上方向」または「下方向」にして電極組立体を外装体内に配置してもよい。
 また、例えば、電極組立体は、正極、セパレータおよび負極を長いフィルム上に積層してから折りたたんだ、いわゆるスタック・アンド・フォールディング型構造を有していてもよい。
The secondary battery according to the embodiment of the present invention has, for example, an electrode assembly having a structure in which at least one or more electrode constituent layers or electrode constituent units including at least a positive electrode, a negative electrode and a separator are laminated. It consists of. For example, FIGS. 1 (a) and 1 (b) illustrate the electrode assembly 10. As shown, the positive electrode 1 and the negative electrode 2 may be stacked with each other via the separator 3 to form an electrode constituent layer (or electrode constituent unit) 5. At least one or more of these electrode constituent layers 5 may be laminated to form the electrode assembly 10. In a secondary battery, such an electrode assembly may be enclosed in an exterior body together with an electrolyte (for example, a non-aqueous electrolyte). The structure of the electrode assembly is not necessarily limited to the planar laminated structure (see FIG. 1A), and for example, the electrode unit (or electrode) including the positive electrode, the negative electrode, and the separator arranged between the positive electrode and the negative electrode. It may have a winding structure (see FIG. 1B) (for example, a jelly roll structure) formed by winding a constituent layer or an electrode constituent unit in a roll shape. That is, as shown in FIG. 1A, for example, the electrode assembly 10 may have a flat laminated structure in which the electrode constituent layers 5 are laminated so as to be stacked on each other. Alternatively, the electrode assembly 10 may have a winding structure in which the electrode constituent layer 5 extending in a strip shape for a relatively long time is wound in a roll shape, for example, as shown in FIG. 1 (b). ..
Note that FIG. 1B merely illustrates a wound structure of the electrode assembly, and the electrode assembly is placed inside the exterior with the cross section shown in FIG. 1B set to "upward" or "downward". It may be placed in.
Further, for example, the electrode assembly may have a so-called stack-and-folding structure in which a positive electrode, a separator and a negative electrode are laminated on a long film and then folded.
 正極は、少なくとも正極材層および必要に応じて正極集電体から構成されている。正極材層には電極活物質として正極活物質が含まれている。正極には正極集電体が存在してもよいし、存在していなくてもよい。正極に正極集電体が存在する場合、正極では正極集電体の少なくとも片面に正極材層が設けられてよい。例えば、電極組立体における複数の正極は、それぞれ、正極集電体の両面に正極材層が設けられているものでよいし、あるいは、正極集電体の片面にのみ正極材層が設けられているものでもよい。例えば、正極集電体は、箔形態を有していてよい。つまり、金属箔から正極集電体が構成されていてもよい。 The positive electrode is composed of at least a positive electrode material layer and, if necessary, a positive electrode current collector. The positive electrode material layer contains a positive electrode active material as an electrode active material. The positive electrode current collector may or may not be present in the positive electrode. When a positive electrode current collector is present on the positive electrode, a positive electrode material layer may be provided on at least one surface of the positive electrode current collector on the positive electrode. For example, each of the plurality of positive electrodes in the electrode assembly may have positive electrode material layers provided on both sides of the positive electrode current collector, or positive electrode material layers may be provided on only one side of the positive electrode current collector. It may be the one that exists. For example, the positive electrode current collector may have a foil form. That is, the positive electrode current collector may be composed of the metal foil.
 負極は、少なくとも負極材層および必要に応じて負極集電体から構成されている。負極材層には電極活物質として負極活物質が含まれている。負極には負極集電体が存在してもよいし、存在していなくてもよい。負極に負極集電体が存在する場合、負極では負極集電体の少なくとも片面に負極材層が設けられてよい。例えば、電極組立体における複数の負極は、それぞれ、負極集電体の両面に負極材層が設けられているものでよいし、あるいは、負極集電体の片面にのみ負極材層が設けられているものでもよい。例えば、負極集電体は、箔形態を有していてよい。つまり、金属箔から負極集電体が構成されていてもよい。 The negative electrode is composed of at least a negative electrode material layer and, if necessary, a negative electrode current collector. The negative electrode material layer contains a negative electrode active material as an electrode active material. The negative electrode current collector may or may not be present in the negative electrode. When the negative electrode current collector is present in the negative electrode, the negative electrode material layer may be provided on at least one surface of the negative electrode current collector in the negative electrode. For example, each of the plurality of negative electrodes in the electrode assembly may have negative electrode material layers provided on both sides of the negative electrode current collector, or negative electrode material layers may be provided on only one side of the negative electrode current collector. It may be the one that exists. For example, the negative electrode current collector may have a foil form. That is, the negative electrode current collector may be composed of the metal foil.
 正極材層および負極材層に含まれ得る電極活物質、即ち、正極活物質および負極活物質は、それぞれ、二次電池において電子の受け渡しに直接関与し得る物質であり、充放電、すなわち電池反応を担う正極および負極の主物質である。 The electrode active material, that is, the positive electrode active material and the negative electrode active material, which can be contained in the positive electrode material layer and the negative electrode material layer, are substances that can be directly involved in the transfer of electrons in the secondary battery, respectively, and are charged and discharged, that is, the battery reaction. It is the main material of the positive electrode and the negative electrode.
 より具体的には、「正極材層に含まれ得る正極活物質」および「負極材層に含まれ得る負極活物質」に起因して電解質にイオンがもたらされ得る。かかるイオンが正極と負極との間で移動して電子の受け渡しが行われて充放電がなされ得る。 More specifically, ions can be brought to the electrolyte due to the "positive electrode active material that can be contained in the positive electrode material layer" and the "negative electrode active material that can be contained in the negative electrode material layer". Such ions may move between the positive electrode and the negative electrode to transfer electrons and charge / discharge.
 正極材層および負極材層は特にリチウムイオンを吸蔵放出可能な層であってよい。つまり、本発明の一実施形態に係る二次電池は、例えば、非水電解質を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われ得る非水電解質二次電池となっていてよい。 The positive electrode material layer and the negative electrode material layer may be particularly layers capable of occluding and releasing lithium ions. That is, the secondary battery according to the embodiment of the present invention is, for example, a non-aqueous electrolyte secondary battery in which lithium ions can move between the positive electrode and the negative electrode via a non-aqueous electrolyte to charge and discharge the battery. It may be.
 充放電にリチウムイオンが関与する場合、本発明の一実施形態に係る二次電池は、いわゆる“リチウムイオン電池”に相当し得る。リチウムイオン電池は、正極および負極がリチウムイオンを吸蔵放出可能な層を有する。 When lithium ions are involved in charging / discharging, the secondary battery according to the embodiment of the present invention can correspond to a so-called "lithium ion battery". The lithium ion battery has a layer in which the positive electrode and the negative electrode can occlude and release lithium ions.
 正極材層の正極活物質は、例えば、粒状体から構成され得るところ、粒子同士のより十分な接触と形状保持のためにバインダーが正極材層に含まれていてよい。電池反応を推進し得る電子の伝達をより円滑にするために導電助剤が正極材層に含まれていてもよい。 The positive electrode active material of the positive electrode material layer may be composed of, for example, granules, and a binder may be contained in the positive electrode material layer for more sufficient contact between particles and shape retention. A conductive aid may be included in the positive electrode material layer to facilitate the transfer of electrons that can drive the battery reaction.
 負極材層の負極活物質は、例えば、粒状体から構成され得るところ、粒子同士のより十分な接触と形状保持のためにバインダーが負極材層に含まれていてよい。電池反応を推進し得る電子の伝達をより円滑にするために導電助剤が負極材層に含まれていてもよい。 The negative electrode active material of the negative electrode material layer may be composed of, for example, granules, and a binder may be contained in the negative electrode material layer for more sufficient contact between particles and shape retention. A conductive auxiliary agent may be contained in the negative electrode material layer in order to further smooth the transfer of electrons that can promote the battery reaction.
 このように、複数の成分が含有されて成る形態ゆえ、正極材層および負極材層は、それぞれ“正極合材層”および“負極合材層”などと称すこともできる。 As described above, the positive electrode material layer and the negative electrode material layer can also be referred to as a "positive electrode mixture layer" and a "negative electrode mixture layer", respectively, because of the form in which a plurality of components are contained.
 正極活物質は、例えば、リチウムイオンの吸蔵放出に資する物質であってよい。かかる観点でいえば、正極活物質は、例えば、リチウム含有複合酸化物であってよい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であってよい。 The positive electrode active material may be, for example, a substance that contributes to the occlusion and release of lithium ions. From this point of view, the positive electrode active material may be, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material may be a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese and iron.
 つまり、本発明の一実施形態に係る二次電池の正極材層においては、そのようなリチウム遷移金属複合酸化物が正極活物質として含まれていてよい。例えば、正極活物質は、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。 That is, in the positive electrode material layer of the secondary battery according to the embodiment of the present invention, such a lithium transition metal composite oxide may be contained as the positive electrode active material. For example, the positive electrode active material may be lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate, or a part of the transition metal thereof replaced with another metal.
 このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。 Although such a positive electrode active material may be contained as a single species, it may be contained in combination of two or more species.
 正極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体およびポリテトラフルオロエチレンなどから成る群から選択される少なくとも1種を挙げることができる。 The binder that can be contained in the positive electrode material layer is not particularly limited, but is limited to polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer and polytetrafluoroethylene. At least one species selected from the group consisting of the above can be mentioned.
 正極材層に含まれ得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。 The conductive auxiliary agent that can be contained in the positive electrode material layer is not particularly limited, but is limited to carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes, and vapor phase growth. At least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives can be mentioned.
 正極材層の厚み寸法は、特に制限されるわけではないが、1μm以上300μm以下であってよく、例えば、5μm以上200μm以下である。正極材層の厚み寸法は二次電池内部での厚みであり、任意の10箇所における測定値の平均値を採用してよい。 The thickness dimension of the positive electrode material layer is not particularly limited, but may be 1 μm or more and 300 μm or less, for example, 5 μm or more and 200 μm or less. The thickness dimension of the positive electrode material layer is the thickness inside the secondary battery, and the average value of the measured values at any 10 points may be adopted.
 負極活物質は、リチウムイオンの吸蔵放出に資する物質であってよい。かかる観点でいえば、負極活物質は、例えば、各種の炭素材料、酸化物、および/または、リチウム合金、金属リチウムなどであってよい。 The negative electrode active material may be a substance that contributes to the occlusion and release of lithium ions. From this point of view, the negative electrode active material may be, for example, various carbon materials, oxides, and / or lithium alloys, metallic lithium, and the like.
 負極活物質の各種の炭素材料としては、例えば、黒鉛(具体的には天然黒鉛および/または人造黒鉛など)、ハードカーボン、ソフトカーボン、ダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体との接着性が優れる。 Examples of various carbon materials for the negative electrode active material include graphite (specifically, natural graphite and / or artificial graphite, etc.), hard carbon, soft carbon, diamond-like carbon, and the like. In particular, graphite has high electron conductivity and excellent adhesion to a negative electrode current collector.
 負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。 As the oxide of the negative electrode active material, at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide and the like can be mentioned.
 このような酸化物は、その構造形態としてアモルファスとなっていてよい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるからである。 Such an oxide may be amorphous as its structural form. This is because deterioration due to non-uniformity such as grain boundaries or defects is less likely to occur.
 負極活物質のリチウム合金は、リチウムと合金形成され得る金属の合金であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金であってよい。 The lithium alloy of the negative electrode active material may be an alloy of a metal that can be alloyed with lithium, for example, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, It may be a binary, ternary or higher alloy of a metal such as Zn or La and lithium.
 このような合金は、その構造形態としてアモルファスとなっていてよい。結晶粒界または欠陥といった不均一性に起因し得る劣化が引き起こされにくくなるからである。 Such an alloy may be amorphous as its structural form. This is because deterioration that can be caused by non-uniformity such as grain boundaries or defects is less likely to occur.
 負極材層に含まれ得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。 The binder that can be contained in the negative electrode material layer is not particularly limited, but is at least one selected from the group consisting of styrene-butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide-based resin, and polyamide-imide-based resin. Can be mentioned.
 負極材層に含まれ得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。 The conductive auxiliary agent that can be contained in the negative electrode material layer is not particularly limited, but is limited to carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes, and vapor phase growth. At least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives can be mentioned.
 負極材層の厚み寸法は、特に制限されるわけではないが、1μm以上300μm以下であってよく、例えば、5μm以上200μm以下である。負極材層の厚み寸法は二次電池内部での厚みであり、任意の10箇所における測定値の平均値を採用してよい。 The thickness dimension of the negative electrode material layer is not particularly limited, but may be 1 μm or more and 300 μm or less, for example, 5 μm or more and 200 μm or less. The thickness dimension of the negative electrode material layer is the thickness inside the secondary battery, and the average value of the measured values at any 10 points may be adopted.
 正極および負極に用いられ得る正極集電体および負極集電体(以下、両者をまとめて単に「集電体」と呼ぶ場合もある)は、電池反応に起因して電極活物質で発生した電子を集めたり供給したりすることができる部材である。このような電極集電体は、シート状の金属部材であってよい。また、このような電極集電体は、多孔または穿孔の形態を有していてよい。例えば、集電体は、金属箔、パンチングメタル、網またはエキスパンドメタル、プレート等であってよい。 The positive electrode current collector and the negative electrode current collector that can be used for the positive electrode and the negative electrode (hereinafter, both may be collectively referred to simply as “current collector”) are electrons generated by the electrode active material due to the battery reaction. It is a member that can collect and supply. Such an electrode current collector may be a sheet-shaped metal member. Further, such an electrode current collector may have a perforated or perforated form. For example, the current collector may be a metal leaf, a punching metal, a net or an expanded metal, a plate, or the like.
 正極に用いられ得る正極集電体は、アルミニウム、ステンレス(SUS)およびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものであってよい。正極集電体は、例えば、アルミニウム箔であってよい。 The positive electrode current collector that can be used for the positive electrode may be made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel (SUS), nickel and the like. The positive electrode current collector may be, for example, an aluminum foil.
 負極に用いられ得る負極集電体は、銅、ステンレス(SUS)およびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものであってよい。負極集電体は、例えば、銅箔であってよい。 The negative electrode current collector that can be used for the negative electrode may be made of a metal foil containing at least one selected from the group consisting of copper, stainless steel (SUS), nickel and the like. The negative electrode current collector may be, for example, a copper foil.
 本開示において、「ステンレス」(SUS)とは、例えば、「JIS G 0203 鉄鋼用語」に規定されているステンレス鋼のことを指しており、クロムまたはクロムとニッケルとを含有させた合金鋼であってよい。 In the present disclosure, "stainless steel" (SUS) refers to, for example, stainless steel defined in "JIS G0203 steel terminology", and is an alloy steel containing chromium or chromium and nickel. It's okay.
 正極集電体および負極集電体の各厚み寸法は、特に制限されるわけではないが、1μm以上100μm以下であってよく、例えば10μm以上70μm以下である。正極集電体および負極集電体の各厚み寸法は二次電池内部での厚みであり、任意の10箇所における測定値の平均値を採用してよい。 The thickness dimensions of the positive electrode current collector and the negative electrode current collector are not particularly limited, but may be 1 μm or more and 100 μm or less, for example, 10 μm or more and 70 μm or less. Each thickness dimension of the positive electrode current collector and the negative electrode current collector is the thickness inside the secondary battery, and the average value of the measured values at any 10 points may be adopted.
 正極および負極に用いられ得るセパレータは、正極と負極との接触による短絡防止および電解質保持などの観点から設けられ得る部材である。換言すれば、セパレータは、正極と負極との間の電子的な接触を防止しつつ、イオンを通過させることができる部材であるといえる。 The separator that can be used for the positive electrode and the negative electrode is a member that can be provided from the viewpoint of preventing a short circuit due to contact between the positive electrode and the negative electrode and retaining the electrolyte. In other words, it can be said that the separator is a member capable of passing ions while preventing electronic contact between the positive electrode and the negative electrode.
 例えば、セパレータは、多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して、膜形態を有していてよい。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。 For example, the separator is a porous or microporous insulating member, and may have a film morphology due to its small thickness. Although only an example, a microporous polyolefin membrane may be used as the separator.
 セパレータとして用いられ得る微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータは、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成され得る積層体であってもよい。セパレータの表面が無機粒子コート層および/または接着層等により覆われていてもよい。セパレータの表面が接着性を有していてもよい。 The microporous membrane that can be used as a separator may contain, for example, only polyethylene (PE) or polypropylene (PP) as the polyolefin. Furthermore, the separator may be a laminate that can be composed of a "microporous membrane made of PE" and a "microporous membrane made of PP". The surface of the separator may be covered with an inorganic particle coat layer and / or an adhesive layer or the like. The surface of the separator may have adhesiveness.
 セパレータの厚み寸法は、特に制限されるわけではないが、1μm以上100μm以下であってよく、例えば2μm以上20μm以下である。セパレータの厚み寸法は二次電池内部での厚み(特に正極と負極との間での厚み)であり、任意の10箇所における測定値の平均値を採用してよい。 The thickness dimension of the separator is not particularly limited, but may be 1 μm or more and 100 μm or less, for example, 2 μm or more and 20 μm or less. The thickness dimension of the separator is the thickness inside the secondary battery (particularly the thickness between the positive electrode and the negative electrode), and the average value of the measured values at any 10 points may be adopted.
 なお、本発明において、セパレータは、その名称によって特に拘泥されるべきでなく、同様の機能を有し得る固体電解質、ゲル状電解質、および/または絶縁性の無機粒子などであってもよい。 In the present invention, the separator should not be particularly bound by its name, and may be a solid electrolyte, a gel-like electrolyte, and / or insulating inorganic particles having the same function.
 本発明の一実施形態に係る二次電池では、例えば、正極、負極およびセパレータを含む電極構成層または電極構成単位を含んで成る電極組立体が電解質と共に外装体に封入されていてよい。電解質は電極(正極および/または負極)から放出された金属イオンの移動を助力することができる。電解質は有機電解質および/または有機溶媒などを含んで成る“非水系”の電解質であってよく、または水を含む“水系”の電解質であってもよい。 In the secondary battery according to the embodiment of the present invention, for example, an electrode constituent layer including a positive electrode, a negative electrode and a separator, or an electrode assembly including an electrode constituent unit may be enclosed in an exterior body together with an electrolyte. The electrolyte can assist in the movement of metal ions released from the electrodes (positive electrode and / or negative electrode). The electrolyte may be an organic electrolyte and / or a "non-aqueous" electrolyte comprising organic solvents and the like, or it may be a "water-based" electrolyte containing water.
 正極および負極がリチウムイオンを吸蔵放出可能な層を有する場合、電解質は、有機電解質および/または有機溶媒などを含んで成る“非水系”の電解質(以下、「非水電解質」と称する)であることが好ましい。すなわち、電解質が非水電解質となっていることが好ましい。電解質では電極(正極および/または負極)から放出された金属イオンが存在することになり、それゆえ、電解質は電池反応における金属イオンの移動を助力することができる。 When the positive electrode and the negative electrode have a layer capable of occluding and releasing lithium ions, the electrolyte is an "non-aqueous" electrolyte (hereinafter referred to as "non-aqueous electrolyte") containing an organic electrolyte and / or an organic solvent and the like. Is preferable. That is, it is preferable that the electrolyte is a non-aqueous electrolyte. In the electrolyte, there will be metal ions released from the electrodes (positive electrode and / or negative electrode), and therefore the electrolyte can assist in the movement of the metal ions in the battery reaction.
 本発明の一実施形態に係る二次電池は、電解質として“非水系”の溶媒と溶質とを含む“非水系”の電解質が用いられた非水電解質二次電池であることが好ましい。電解質は液体状またはゲル状などの形態を有していてよい(なお、本明細書において“液体状”の非水電解質は「非水電解質液」とも称される)。 The secondary battery according to the embodiment of the present invention is preferably a non-aqueous electrolyte secondary battery in which a "non-aqueous" electrolyte containing a "non-aqueous" solvent and a solute is used as the electrolyte. The electrolyte may have a form such as liquid or gel (note that the “liquid” non-aqueous electrolyte is also referred to as “non-aqueous electrolyte solution” in the present specification).
 非水電解質は、非水系の溶媒と溶質とを含む電解質であることが好ましい。具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものであってよい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。 The non-aqueous electrolyte is preferably an electrolyte containing a non-aqueous solvent and a solute. The specific solvent for the non-aqueous electrolyte may contain at least carbonate. Such carbonates may be cyclic carbonates and / or chain carbonates.
 特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。 Although not particularly limited, the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and vinylene carbonate (VC). be able to.
 鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。 Examples of the chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC).
 あくまでも例示にすぎないが、本発明の1つの好適な実施形態では、非水電解質として、環状カーボネート類と鎖状カーボネート類との組合せが用いられてよく、例えばエチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合物、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合物などを用いてよい。具体的な非水電解質の溶質としては、例えば、LiPFおよび/またはLiBFなどのLi塩などが用いられてよい。 By way of example only, in one preferred embodiment of the present invention, a combination of cyclic carbonates and chain carbonates may be used as the non-aqueous electrolyte, for example ethylene carbonate (EC) and diethyl carbonate ( A mixture with DEC), a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC), and the like may be used. As a specific non-aqueous electrolyte solute, for example, a Li salt such as LiPF 6 and / or LiBF 4 may be used.
 二次電池の外装体は、例えば、正極、負極およびセパレータを含む電極構成層または電極構成単位が少なくとも1つ以上積層されて成る構造を有して成る電極組立体を収納する又は包み込むことができる部材である。本発明において二次電池の外装体は、上述の電極組立体を収納することができれば特に制限はない。従来公知の外装体を必要に応じて適宜使用することができる。 The exterior body of the secondary battery can house or enclose, for example, an electrode assembly having a structure in which at least one or more electrode constituent layers or electrode constituent units including a positive electrode, a negative electrode and a separator are laminated. It is a member. In the present invention, the exterior body of the secondary battery is not particularly limited as long as it can accommodate the above-mentioned electrode assembly. A conventionally known exterior body can be appropriately used as needed.
 外装体は好ましくは金属外装体である。金属外装体は、例えばカップ状部材および蓋状部材の2パーツ構成を有していてよい。 The exterior body is preferably a metal exterior body. The metal exterior body may have, for example, a two-part configuration of a cup-shaped member and a lid-shaped member.
 本開示において「カップ状部材」とは、胴部に相当する側面部とそれに連続する主面部(典型的な態様では、例えば上面または下面)を有して成り、内側に中空部が形成されるような部材を意味している。
 本開示において「蓋状部材」とは、そのようなカップ状部材に対して蓋をするように設けられ得る部材を意味している。蓋状部材は、例えば同一平面状に延在する単一部材(典型的には平板状の部材)であってよい。外装体においては、カップ状部材と蓋状部材とが互いに係合または結合または嵌合するようにカップ状部材と蓋状部材とが任意に組み合わされてよい。
In the present disclosure, the "cup-shaped member" has a side surface portion corresponding to a body portion and a main surface portion (in a typical embodiment, for example, an upper surface or a lower surface) continuous with the side surface portion, and a hollow portion is formed inside. It means such a member.
In the present disclosure, the "lid-shaped member" means a member that can be provided to cover such a cup-shaped member. The lid-shaped member may be, for example, a single member (typically a flat plate-shaped member) extending in the same plane. In the exterior body, the cup-shaped member and the lid-shaped member may be arbitrarily combined so that the cup-shaped member and the lid-shaped member engage, connect, or fit with each other.
 カップ状部材と蓋状部材とが互いに嵌合して結合することが好ましい。金属外装体の場合、カップ状部材と蓋状部材との間には絶縁性の材料を含んで成る絶縁部材が配置されていることが好ましい。このような構成とすることでカップ状部材および蓋状部材をそれぞれ電極端子として独立して機能させることができる。 It is preferable that the cup-shaped member and the lid-shaped member are fitted and joined to each other. In the case of a metal exterior body, it is preferable that an insulating member including an insulating material is arranged between the cup-shaped member and the lid-shaped member. With such a configuration, the cup-shaped member and the lid-shaped member can function independently as electrode terminals.
 このような絶縁部材によりカップ状部材と蓋状部材とを電気的に絶縁しつつ、カップ状部材と蓋状部材との間において密封(又はシール)を達成することができる。ここで、絶縁部材を構成し得る絶縁性の材料に特に制限はない。絶縁部材として、例えば熱可塑性樹脂を含んで成るものを用いることができる。 With such an insulating member, it is possible to achieve sealing (or sealing) between the cup-shaped member and the lid-shaped member while electrically insulating the cup-shaped member and the lid-shaped member. Here, there is no particular limitation on the insulating material that can form the insulating member. As the insulating member, for example, a member including a thermoplastic resin can be used.
 本開示において、外装体は、ラミネート構造などを有するフレキシブルケースであっても、金属外装体などの非ラミネート構造を有するハードケースであってもよい。金属外装体は、非ラミネート構成を有していることが好ましい。つまり、本発明において金属外装体は、例えば金属シート/融着層/保護層のラミネート部材とはなっていない。好ましくは、金属外装体は、金属単一部材から成る構成を有している。例えば、金属外装体(具体的にはカップ状部材および蓋状部材の各々)は、ステンレス(SUS)、アルミニウムなどの金属から成る単一部材であってよい。尚、本開示における外装体は金属として合金を含んでいてよい。
 本開示において、「金属単一部材」とは、広義には、外装体がいわゆるラミネート構成を有さないことを意味しており、狭義には、外装体(具体的にはカップ状部材および蓋状部材の各々)が実質的に金属のみから成る部材となっていることを意味している。したがって、実質的に金属のみから成る部材となるのであれば、金属外装体の表面に適当な表面処理がなされていてもよい。
In the present disclosure, the exterior body may be a flexible case having a laminated structure or the like, or a hard case having a non-laminated structure such as a metal exterior body. The metal exterior preferably has a non-laminated structure. That is, in the present invention, the metal exterior body is not, for example, a laminated member of a metal sheet / fusion layer / protective layer. Preferably, the metal exterior has a structure composed of a single metal member. For example, the metal exterior body (specifically, each of the cup-shaped member and the lid-shaped member) may be a single member made of a metal such as stainless steel (SUS) or aluminum. The exterior body in the present disclosure may contain an alloy as a metal.
In the present disclosure, the term "single metal member" means that the exterior body does not have a so-called laminated structure in a broad sense, and in a narrow sense, the exterior body (specifically, a cup-shaped member and a lid). It means that each of the shaped members) is a member substantially composed of only metal. Therefore, an appropriate surface treatment may be applied to the surface of the metal exterior body as long as the member is substantially composed of only metal.
 金属外装体は、比較的薄い厚さを有し得る。例えば、本発明における金属外装体は、その厚さ寸法が50μm以上200μm未満であってよく、例えば、50μm以上190μm以下、50μm以上180μm以下、あるいは、50μm以上170μm以下などであってよい。 The metal exterior can have a relatively thin thickness. For example, the metal exterior body in the present invention may have a thickness dimension of 50 μm or more and less than 200 μm, for example, 50 μm or more and 190 μm or less, 50 μm or more and 180 μm or less, or 50 μm or more and 170 μm or less.
 本発明において、上記の構成(特に外装体)は、必要に応じて適宜変更または改変されてよい。 In the present invention, the above configuration (particularly the exterior body) may be appropriately changed or modified as necessary.
[本発明の二次電池の特徴]
 本発明の二次電池は、電極組立体を有して成り、この電極組立体から延出し得る「正極集電タブ」および「負極集電タブ」(以下、両者をまとめて単に「集電タブ」と呼ぶ場合もある)の配置に特徴を有している。つまり、二次電池において、電極組立体から「正極集電タブ」および「負極集電タブ」がそれぞれ「斜め」に延出していることを特徴とする。より具体的には「正極集電タブの延出方向」と「負極集電タブの延出方向」とが互いに角(角部)を成すように配置されていることを特徴として有する。
[Characteristics of the secondary battery of the present invention]
The secondary battery of the present invention comprises an electrode assembly, and can extend from the electrode assembly as a "positive electrode current collecting tab" and a "negative electrode current collecting tab" (hereinafter, both are collectively referred to as a "collecting tab". It is characterized by the arrangement of). That is, in the secondary battery, the "positive electrode current collecting tab" and the "negative electrode current collecting tab" each extend "diagonally" from the electrode assembly. More specifically, it is characterized in that the "extending direction of the positive electrode current collecting tab" and the "extending direction of the negative electrode current collecting tab" are arranged so as to form a corner (corner portion) with each other.
 本発明の一実施形態に係る二次電池は、例えば図2(a)~(c)、特に図2(c)の上面図に示す通り、電極組立体(又は電極)11から正極集電タブ13aおよび負極集電タブ13bがそれぞれ「斜め」に延出していることを特徴とする。 The secondary battery according to the embodiment of the present invention is, for example, as shown in the top view of FIGS. 2 (a) to 2 (c), particularly FIG. 2 (c), from the electrode assembly (or electrode) 11 to the positive electrode current collecting tab. The negative electrode current collecting tab 13a and the negative electrode current collecting tab 13b each extend "diagonally".
 本開示において電極組立体(または電極)(11)から正極集電タブ(13a)および負極集電タブ(13b)がそれぞれ「斜め」に延出しているとは、当該二次電池における任意の投影図(具体的には平面視)において、例えば図2(c)に示すように電極組立体(または電極)(11)から「正極集電タブ(13a)」および「負極集電タブ(13b)」がそれぞれ延出し、それらの延出方向が角(角部)を形成して一定の角度を有することを意味する(例えば後述する図2(b)に示す「角度θ」)。換言すると例えば1つの平面上で正極集電タブの延出方向と負極集電タブの延出方向とが交差して(換言すると非平行で)一定の角度を有する角(角部)を形成することを意味する。 In the present disclosure, the fact that the positive electrode current collecting tab (13a) and the negative electrode current collecting tab (13b) each extend “diagonally” from the electrode assembly (or electrode) (11) is an arbitrary projection in the secondary battery. In the figure (specifically, in a plan view), for example, as shown in FIG. 2 (c), from the electrode assembly (or electrode) (11) to the “positive electrode current collecting tab (13a)” and the “negative electrode current collecting tab (13b)”. Means that each of them extends, and the extending directions form an angle (corner portion) and have a constant angle (for example, “angle θ” shown in FIG. 2 (b) described later). In other words, for example, on one plane, the extending direction of the positive electrode current collecting tab and the extending direction of the negative electrode current collecting tab intersect (in other words, they are non-parallel) to form an angle (corner) having a certain angle. Means that.
 本開示において「集電タブ」の「延出方向」とは、集電タブと電極組立体とが接面する部分(又は電極組立体から集電タブが延出する部分)の線分の中点から集電タブが延びる方向に延ばした法線の方向を意味する(例えば図2(b)に示す「正極集電タブ13aの延出方向X」および「負極集電タブ13bの延出方向X」)。
 尚、集電タブの延出方向は、例えば2つの集電タブ(具体的には正極集電タブ13aおよび負極集電タブ13b)が線対称の関係にある場合、その対称軸(例えば図2(b)の方向P[通常の延出方向(図8参照)、例えば時計の0時(または12時または24時)の方向]に沿う対称軸)を基準とする「斜め」の方向であってもよい。
In the present disclosure, the "extension direction" of the "collection tab" is defined as the line segment of the portion where the current collection tab and the electrode assembly meet (or the portion where the current collection tab extends from the electrode assembly). means the normal direction extended from the point in a direction extending current collecting tab (e.g. extending the "extending direction X a of the positive electrode current collector tabs 13a" and "negative electrode current collector tab 13b shown in FIG. 2 (b) Direction X b ").
The extension direction of the current collection tab is, for example, when two current collection tabs (specifically, the positive electrode current collection tab 13a and the negative electrode current collection tab 13b) are in a line-symmetrical relationship, the axis of symmetry (for example, FIG. 2). In the "diagonal" direction with respect to the direction P 0 [normal extension direction (see FIG. 8), for example, the axis of symmetry along the 0 o'clock (or 12 o'clock or 24 o'clock) direction of the clock] in the direction (b). There may be.
 より具体的には、図2(b)に示す通り、「斜め」に延出する「正極集電タブ13aの延出方向X」と「負極集電タブ13bの延出方向X」とが成す角の「角度θ」は「15°以上120°以下」であることが好ましい。 More specifically, as shown in FIG. 2B, "extending direction X a of the positive electrode current collecting tab 13a" and "extending direction X b of the negative electrode current collecting tab 13b" extending "diagonally". The "angle θ" of the angle formed by is preferably "15 ° or more and 120 ° or less".
 以下、本発明の一実施形態に係る二次電池に含まれる「電極組立体」や「集電タブ」について簡単に説明した後、本発明の特徴である「集電タブの斜めの配置」について、より詳しく説明する。 Hereinafter, the "electrode assembly" and the "current collecting tab" included in the secondary battery according to the embodiment of the present invention will be briefly described, and then the "diagonal arrangement of the current collecting tabs", which is a feature of the present invention, will be described. , Will be explained in more detail.
 [電極組立体]
 本発明の一実施形態に係る二次電池(以下、「本開示の二次電池」と呼ぶ場合もある)に含まれ得る電極組立体または電極(図1参照)は、本発明の特徴である「集電タブ」の「斜め」の配置を達成することができれば、その構成および形状(特にその本体の平面視形状)に特に制限はない。
 例えば図2(a)に示す通り、本開示の二次電池において、電極組立体11は、その本体が一部を切り欠いた略円形(特に円形)の平面視形状を有して成ることが好ましい。
[Electrode assembly]
An electrode assembly or an electrode (see FIG. 1) that can be included in a secondary battery according to an embodiment of the present invention (hereinafter, may be referred to as “secondary battery of the present disclosure”) is a feature of the present invention. As long as the "diagonal" arrangement of the "collection tab" can be achieved, the configuration and shape (particularly the plan-view shape of the main body) are not particularly limited.
For example, as shown in FIG. 2A, in the secondary battery of the present disclosure, the electrode assembly 11 may have a substantially circular (particularly circular) plan view shape in which the main body is partially cut out. preferable.
 本開示において電極組立体の「本体」とは、平面視において、以下にて説明する「集電タブ」(具体的には正極集電タブおよび負極集電タブ)を除いた残りの部分を意味する。 In the present disclosure, the "main body" of the electrode assembly means the remaining part excluding the "current collection tab" (specifically, the positive electrode current collection tab and the negative electrode current collection tab) described below in a plan view. do.
 例えば図2(a)に示すように電極組立体(または電極)11の本体は中心O、直径Dの円形または略円形(特に円形)からその一部を切り欠いた円形または略円形(特に円形)の平面視形状を有して成ることが好ましい。 For example, as shown in FIG. 2A, the main body of the electrode assembly (or electrode) 11 is a circle or substantially a circle (particularly a circle) cut out from a circle or a substantially circular shape (particularly a circle) having a center O and a diameter D. ) It is preferable to have a plan view shape.
 同様に電極組立体11に含まれる正極および負極の本体も例えば中心O、直径Dの円形または略円形(特に円形)からその一部を切り欠いた円形または略円形(特に円形)の平面視形状を有して成ることが好ましい。 Similarly, the main bodies of the positive electrode and the negative electrode included in the electrode assembly 11 also have a circular or substantially circular (particularly circular) plan view shape obtained by cutting out a part thereof from, for example, a circular or substantially circular (particularly circular) having a center O and a diameter D. It is preferable to have.
 本開示において「切り欠いた」とは、例えば円形または略円形からその一部を除いた形状または状態を意味し、予めそのような形状に形成されていても、後からカットされて形成されてもよい。 In the present disclosure, "notched" means, for example, a shape or state obtained by removing a part thereof from a circle or a substantially circular shape, and even if it is formed in such a shape in advance, it is cut and formed later. May be good.
 電極組立体11ならびに正極および負極の本体が円形または略円形(特に円形)から一部を切り欠いた円形または略円形(特に円形)の平面視形状を有することによって2つの集電タブ(具体的には正極集電タブおよび負極集電タブ)を首尾よく「斜め」に配置することができる。 The electrode assembly 11 and the main body of the positive electrode and the negative electrode are circular or substantially circular (particularly circular) with a part cut out from the circular or substantially circular (particularly circular) plan view shape, whereby two current collecting tabs (specifically) are provided. The positive electrode current collecting tab and the negative electrode current collecting tab) can be successfully arranged "diagonally".
 本開示において「円形」または「略円形」(切り欠いた部分を含む)とは、円形(真円)を含み、一見して円形と通常認識できる図形を含む概念である。換言すると、「円形」または「略円形」(切り欠いた部分を含む)とは、完全な円形(すなわち単に“円”または“真円”)であることに限らず、それから変更されつつも当業者の認識として“丸い形”に通常含まれ得る形状も含んでいる。例えば、円および真円のみならず、その円弧の曲率が局所的に異なるものであってよく、さらには例えば楕円などの円および真円から派生した形状であってもよい。 In the present disclosure, "circular" or "substantially circular" (including a notched portion) is a concept including a circular (perfect circle) and a figure that can be usually recognized as a circular at first glance. In other words, a "circle" or "substantially circular" (including notched parts) is not limited to a perfect circle (ie, simply a "circle" or "perfect circle"), but is modified from that. It also includes shapes that can normally be included in a "round shape" as recognized by those skilled in the art. For example, not only a circle and a perfect circle, but also the curvature of the arc may be locally different, and further, a shape derived from a circle and a perfect circle such as an ellipse may be used.
 円形の直径Dに特に制限はなく、例えば5mm以上30mm以下、特に好ましくは10mmである。 The circular diameter D is not particularly limited, and is, for example, 5 mm or more and 30 mm or less, particularly preferably 10 mm.
 このような円形または略円形(特に円形)(以下、「切り欠き前の仮想円形」と称する場合もある)から切り欠いた部分は、例えば図2(a)の破線で示すような切り欠き12を形成する。電極組立体11の本体(又は切り欠き12)は、その平面視において、その切り欠いた部分(又は縁部(エッジ))の輪郭が少なくとも二辺(例えば、辺m,n)からなることが好ましい。尚、切り欠いた部分の輪郭は二辺からなるものに限定されず多角形を形成してもよい。このような少なくとも二辺からなる切り欠いた部分の輪郭から、集電タブ(例えば正極集電タブ13aおよび負極集電タブ13b)を互いに斜めに延出させることができる。 A portion cut out from such a circle or a substantially circular shape (particularly a circle) (hereinafter, may be referred to as a “virtual circle before the cutout”) is a cutout 12 as shown by a broken line in FIG. 2 (a), for example. To form. In the plan view of the main body (or notch 12) of the electrode assembly 11, the contour of the notched portion (or edge) may consist of at least two sides (for example, sides m and n). preferable. The outline of the notched portion is not limited to that consisting of two sides, and a polygon may be formed. The current collecting tabs (for example, the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b) can be extended obliquely from the contour of the notched portion including at least two sides.
 例えば図2(a)に示す通り、切り欠いた部分の2辺(m,n)は、角(角部又は頂部)を形成してよく、かかる角(角部又は頂部)の「角度φ」は180°未満である(ただし0°は含まない)ことが好ましい。
 換言すると、図2(b)に示すように、2つの集電タブ(例えば正極集電タブ13aおよび負極集電タブ13b)が互いに外側を向いていること、または「方向X,Xに沿う直線の交点が切り欠き12または2つの集電タブ(例えば正極集電タブ13aおよび負極集電タブ13b)よりも下側にあること、あるいは2辺(m,n)に沿って例えば電極組立体または電極を切り欠く(カットする)ことによって切り欠き部分(2つ)を作成するとき、2辺に沿う直線が交わって、2つの切り欠き部分が重複することが好ましい。
 このように角度φが180°未満であると、例えば図8に示すような2つの集電タブが逆向きに対向する構成(a)や2つの集電タブが並列に配置された構成(b)を除くことができ、2つの集電タブ(例えば図2(c)に示すように正極集電タブ13aおよび負極集電タブ13b)を互いに「斜め」に配置することができる。
For example, as shown in FIG. 2A, the two sides (m, n) of the notched portion may form a corner (corner or top), and the “angle φ” of the corner (corner or top). Is preferably less than 180 ° (but not including 0 °).
In other words, as shown in FIG. 2 (b), the two current collecting tabs (for example, the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b) are facing outward from each other, or "in directions X a and X b" . The intersection of straight lines along the notch 12 or two current collection tabs (for example, positive electrode current collection tab 13a and negative electrode current collection tab 13b) is below, or along two sides (m, n), for example, an electrode set. When creating notch portions (two) by notching (cutting) a solid or electrode, it is preferable that straight lines along two sides intersect and the two notched portions overlap.
When the angle φ is less than 180 ° in this way, for example, a configuration (a) in which two current collecting tabs face each other in opposite directions or a configuration in which two current collecting tabs are arranged in parallel (b) as shown in FIG. ) Can be excluded, and the two current collecting tabs (for example, the positive current collecting tab 13a and the negative negative current collecting tab 13b as shown in FIG. 2C) can be arranged “obliquely” with each other.
 切り欠いた部分の2辺(m,n)が成す角(角部又は頂部)は、例えば図2(a)に示す構成において、円形の内部または内側に存在しているが、円周上に存在してもよい。 The angle (corner or top) formed by the two sides (m, n) of the notched portion exists inside or inside the circle in the configuration shown in FIG. 2 (a), but is on the circumference. It may exist.
 本開示の発明において、例えば図2(c)に示す通り、電極組立体11は平面視にて鏡像対称形状を有することが好ましい。より具体的には切り欠いた部分の二辺(例えば、辺m,n)が成す頂点(角)と円の中心Oとを結ぶ直線Pを含む垂直な面に対して鏡像対称であってよい。あるいは電極組立体11の平面視形状は例えば直線Pに対して線対称または左右対称の形状であってもよい。電極組立体が平面視にて鏡像対称形状を有することによって、より適切な電極面積、タブ幅および/またはタブ長などが得られ、それとともにタブ設計の自由度を顕著に増加させることができる。 In the invention of the present disclosure, for example, as shown in FIG. 2C, it is preferable that the electrode assembly 11 has a mirror image symmetrical shape in a plan view. More two sides of a specific cut in-away portion (e.g., sides m, n) a mirror symmetry with respect to a vertical plane including the straight line P 1 connecting the center O of the circle and a vertex (corner) which forms good. Alternatively planar shape of the electrode assembly 11 may be in the form of line symmetry or symmetry, for example with respect to the straight line P 1. When the electrode assembly has a mirror image symmetrical shape in a plan view, a more appropriate electrode area, tab width and / or tab length, etc. can be obtained, and at the same time, the degree of freedom in tab design can be significantly increased.
 本発明の一実施形態に係る二次電池において、このような電極組立体または電極11の本体から、好ましくはその切り欠いた部分から、より好ましくは切り欠いた部分の各辺(例えば、辺m,n)から正極集電タブ13aおよび負極集電タブ13bをそれぞれ「斜め」に延出させることができる(例えば図2(a)~(c))。
 尚、図示する実施形態では左側に配置される集電タブ13aを正極集電タブとしているが、この集電タブ13aは負極集電タブであってよい。同様に、図示する実施形態において右側に配置される集電タブ13bを負極集電タブとしているが、この集電タブ13bは正極集電タブであってよい。
In the secondary battery according to the embodiment of the present invention, from such an electrode assembly or the main body of the electrode 11, preferably from a notched portion thereof, and more preferably each side (for example, a side m) of the notched portion. , N), the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b can be extended “diagonally”, respectively (for example, FIGS. 2A to 2C).
In the illustrated embodiment, the current collecting tab 13a arranged on the left side is used as the positive electrode current collecting tab, but the current collecting tab 13a may be the negative electrode current collecting tab. Similarly, in the illustrated embodiment, the current collecting tab 13b arranged on the right side is used as the negative electrode current collecting tab, but the current collecting tab 13b may be the positive electrode current collecting tab.
 [集電タブ]
 本開示において、「集電タブ」は、電極組立体(具体的には電極組立体の本体、より具体的には正極および/または負極)から延在し得るものであればその構成に特に制限はない。例えば図2に示す正極集電タブ13aおよび負極集電タブ13bは、例えば電極組立体に含まれる正極および/または負極の各々に設けられ得る複数の正極集電体または負極集電体のそれぞれの突出部分の重ね合わせから構成されていてよい。
 例えば図2(c)に示すように、電極組立体11(具体的には電極組立体11の本体)から「斜め」に延出し得る正極集電タブ13aは、電極組立体11を構成し得る複数の正極のそれぞれの正極集電体の突出部分が先端側で一体化されたような構成を有していてよい。同様にして電極組立体11(具体的には電極組立体の本体)から「斜め」に延出し得る負極集電タブ13bは、電極組立体11を構成し得る複数の負極のそれぞれの負極集電体の突出部分が先端側で一体化されたような構成を有していてよい。
 正極集電タブ13aおよび負極集電タブ13bは、それぞれ電極組立体に含まれ得る正極集電体および負極集電体と同じ材料から一体的に形成されることが好ましく、その形状および寸法に特に制限はない。
[Current collector tab]
In the present disclosure, the "current collecting tab" is particularly limited as long as it can extend from the electrode assembly (specifically, the main body of the electrode assembly, more specifically, the positive electrode and / or the negative electrode). There is no. For example, the positive electrode current collector tab 13a and the negative electrode current collector tab 13b shown in FIG. 2 are, for example, each of a plurality of positive electrode current collectors or negative electrode current collectors that can be provided on each of the positive electrode and / or the negative electrode included in the electrode assembly. It may consist of overlapping protruding portions.
For example, as shown in FIG. 2C, the positive electrode current collecting tab 13a that can extend “diagonally” from the electrode assembly 11 (specifically, the main body of the electrode assembly 11) can form the electrode assembly 11. It may have a configuration in which the protruding portions of the positive electrode current collectors of the plurality of positive electrodes are integrated on the tip side. Similarly, the negative electrode current collecting tab 13b that can extend “diagonally” from the electrode assembly 11 (specifically, the main body of the electrode assembly) is a negative electrode current collecting tab 13b of each of a plurality of negative electrodes that can form the electrode assembly 11. It may have a structure in which the protruding portion of the body is integrated on the tip side.
The positive electrode current collector tab 13a and the negative electrode current collector tab 13b are preferably integrally formed of the same material as the positive electrode current collector and the negative electrode current collector, which can be included in the electrode assembly, respectively, and are particularly characterized in their shape and dimensions. There is no limit.
 集電タブ(正極集電タブ13aおよび/または負極集電タブ13b)は、例えば図2(b)の平面視(上面図)において、切り欠いた円形の破線で示す切り欠き前の仮想円形(略円形や真円であってよい)内に位置付けられていることが好ましい。このような構成によって2つの集電タブ(すなわち正極集電タブ13aおよび負極集電タブ13b)をそれぞれ「斜め」に配置することができる。また、このような電極組立体を集電タブとともに例えば平面視が略円形の外装体内に首尾よく簡便に収納することができる(図視せず)。 The current collection tab (positive electrode current collection tab 13a and / or negative electrode current collection tab 13b) is, for example, a virtual circle (upper surface view) in the plan view (top view) of FIG. It is preferable that it is positioned within a substantially circular shape or a perfect circle). With such a configuration, the two current collecting tabs (that is, the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b) can be arranged "diagonally" respectively. In addition, such an electrode assembly can be successfully and easily housed together with the current collecting tab, for example, in an exterior body having a substantially circular plan view (not shown).
 集電タブ(正極集電タブ13aおよび/または負極集電タブ13b)は外装体に「直接的」または「間接的」に接続されてよい。集電タブが外装体に「直接的」に接続されるとは、例えば外装体が金属外装体である場合、集電タブが外装体に電気的に接続されていることを意味する。集電タブが外装体に「間接的」に接続されるとは、集電タブが外部出力端子または外部端子などの端子を介して外装体に電気的に接続されていることを意味する。例えば外装体が金属外装体である場合、外部出力端子は絶縁部材を介して外装体に取り付けられていることが好ましい。尚、集電タブの外装体への接続方法に特に制限はなく、従来公知の接続方法を適宜使用すればよい。 The current collecting tabs (positive electrode current collecting tab 13a and / or negative electrode current collecting tab 13b) may be connected "directly" or "indirectly" to the exterior body. The fact that the current collecting tab is "directly" connected to the exterior means that, for example, if the exterior is a metal exterior, the current collecting tab is electrically connected to the exterior. When the current collecting tab is "indirectly" connected to the exterior body, it means that the current collecting tab is electrically connected to the exterior body via a terminal such as an external output terminal or an external terminal. For example, when the exterior body is a metal exterior body, it is preferable that the external output terminal is attached to the exterior body via an insulating member. The method of connecting the current collector tab to the exterior body is not particularly limited, and a conventionally known connection method may be appropriately used.
 外部出力端子は金属板であってもよい。金属板は、異なる金属材質から成る複数の層を有していてもよい。金属板は、絶縁部材を介して外装体に取り付けられていることが好ましい。 The external output terminal may be a metal plate. The metal plate may have a plurality of layers made of different metal materials. The metal plate is preferably attached to the exterior body via an insulating member.
 「絶縁部材」として、例えば、樹脂材料またはエラストマー材料を含んで成るものを用いることができる。 As the "insulating member", for example, a member including a resin material or an elastomer material can be used.
 樹脂材料としては、熱可塑性樹脂、好ましくは熱融着性樹脂を用いることができる。熱可塑性樹脂としては、例えば、ポリエチレンおよび/またはポリプロピレン等のポリオレフィン系樹脂およびその共重合体などを挙げることができる。絶縁部材としては、熱可塑性樹脂の単一層フィルムや、熱可塑性樹脂を含む多層フィルムを用いることができる。多層フィルムの例としては、中間層となる高融点樹脂層の両面を低融点樹脂層(熱可塑性樹脂層)でサンドイッチした多層熱融着性フィルムを挙げることができる。また、エラストマー材料にはポリエステル系熱可塑性エラストマーなどを挙げることができる。 As the resin material, a thermoplastic resin, preferably a heat-sealing resin can be used. Examples of the thermoplastic resin include polyolefin resins such as polyethylene and / or polypropylene and copolymers thereof. As the insulating member, a single-layer film made of a thermoplastic resin or a multilayer film containing a thermoplastic resin can be used. Examples of the multilayer film include a multilayer heat-sealing film in which both sides of a high melting point resin layer to be an intermediate layer are sandwiched between low melting point resin layers (thermoplastic resin layers). Further, examples of the elastomer material include polyester-based thermoplastic elastomers.
 [集電タブの斜めの配置]
 例えば図2(a)~(c)、特に図2(c)に示すように、本発明の一実施形態に係る二次電池の電極組立体11では2つの集電タブ(13a、13b)がそれぞれ「斜め」に延出している。具体的には「正極集電タブ13aの延出方向X」と「負極集電タブ13bの延出方向X」とが「角度θ」を成すように「正極集電タブ13a」と「負極集電タブ13b」とがそれぞれ「斜め」に配置されている(例えば図2(b))。
[Diagonal placement of current collection tabs]
For example, as shown in FIGS. 2 (a) to 2 (c), particularly in FIG. 2 (c), the electrode assembly 11 of the secondary battery according to the embodiment of the present invention has two current collecting tabs (13a, 13b). Each extends "diagonally". Specifically, the "positive electrode current collecting tab 13a " and "positive electrode current collecting tab 13a" so that the "extending direction X a of the positive electrode current collecting tab 13a" and the "extending direction X b of the negative electrode current collecting tab 13b" form an "angle θ". The negative electrode current collecting tabs 13b ”are arranged“ diagonally ”(for example, FIG. 2B).
 「正極集電タブ13aの延出方向X」と「負極集電タブ13bの延出方向X」の成す角の「角度θ」は、例えば15°以上120°以下、好ましくは25°以上105°以下、より好ましくは57°以上105°以下、さらにより好ましくは57°以上102°以下である。上記範囲内であると、以下にて説明する「タブ幅」、「タブ長」および/または「電極面積」などの値をさらに適切に改善することができる。また、タブ設計の自由度をさらに高めることができる。 The “angle θ” of the angle formed by the “extending direction X a of the positive electrode current collecting tab 13a ” and the “extending direction X b of the negative electrode current collecting tab 13b” is, for example, 15 ° or more and 120 ° or less, preferably 25 ° or more. It is 105 ° or less, more preferably 57 ° or more and 105 ° or less, and even more preferably 57 ° or more and 102 ° or less. Within the above range, values such as "tab width", "tab length" and / or "electrode area" described below can be further appropriately improved. In addition, the degree of freedom in tab design can be further increased.
 本発明の一実施形態に係る二次電池において、斜めに配置され得る正極集電タブ13aおよび負極集電タブ13bのそれぞれの平面視形状は、任意の幾何学的形状であってよく、図示する実施形態のように長方形や正方形などの矩形または略矩形などの形状に限定されるものではない。 In the secondary battery according to the embodiment of the present invention, each of the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b, which can be arranged diagonally, may have an arbitrary geometric shape and are shown in the figure. It is not limited to a rectangle such as a rectangle or a square or a shape such as a substantially rectangular shape as in the embodiment.
 正極集電タブ13aおよび負極集電タブ13bの平面視形状は、それぞれ矩形(例えば、長方形、正方形など)または略矩形などの形状であることが好ましい。集電タブの平面視形状が矩形であると集電タブの設計および製造がより簡便となる。正極集電タブ13aおよび負極集電タブ13bの平面視形状は同一であっても異なっていてもよいが、同一形状であることが好ましい。また、正極集電タブ13aおよび負極集電タブ13bの寸法は同一であっても異なっていてもよいが、同一寸法であることが好ましい。 It is preferable that the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b have a rectangular shape (for example, a rectangle, a square, etc.) or a substantially rectangular shape, respectively. If the plan view shape of the current collecting tab is rectangular, the design and manufacture of the current collecting tab becomes simpler. The shapes of the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b may be the same or different in plan view, but they are preferably the same shape. The dimensions of the positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b may be the same or different, but are preferably the same.
 例えば、集電タブ(正極集電タブ13aおよび/または負極集電タブ13b)の平面視形状が矩形である場合、上記電極組立体の本体(又は電極本体)の円形の直径Dに対する集電タブの幅方向の長さW(以下、「タブ幅(W)」と呼ぶ場合もある)の比(タブ幅W/直径D、すなわち「W/D」の比)(例えば図3に示す正極集電タブ13aのタブ幅W/直径D(すなわち「W/D」の比)および/または負極集電タブ13bのタブ幅W/直径D(すなわち「W/D」の比))は、例えば0.1以上0.45以下、好ましくは0.3以上0.45以下である。ここでタブ幅WおよびWは同一であっても異なっていてもよいが、同一であることが好ましい。
 上記の比(W/D、具体的にはW/Dおよび/またはW/D)が上記範囲内であると、電極本体の面積が著しく低下することを回避しつつ、集電タブの平面視形状の面積をより増加させることができる。また、タブ設計の自由度もより向上させることができる。
For example, when the current collection tab (positive electrode current collection tab 13a and / or negative electrode current collection tab 13b) has a rectangular shape in a plan view, the current collection tab with respect to the circular diameter D of the main body (or electrode main body) of the electrode assembly. Ratio of length W in the width direction (hereinafter, may be referred to as "tab width (W)") (tab width W / diameter D, that is, the ratio of "W / D") (for example, the positive electrode collection shown in FIG. Tab width W a / diameter D of the electrical tab 13a (ie, the ratio of "W a / D") and / or tab width W b / diameter D of the negative electrode current collector tab 13 b (ie, the ratio of "W b / D")) Is, for example, 0.1 or more and 0.45 or less, preferably 0.3 or more and 0.45 or less. Here, the tab widths W a and W b may be the same or different, but are preferably the same.
The above ratio (W / D, in particular W a / D and / or W b / D) When is within the above range, while avoiding the area of the electrode body is remarkably reduced, the current collecting tabs The area of the plan view shape can be further increased. In addition, the degree of freedom in tab design can be further improved.
 あるいは、集電タブ(正極集電タブ13aおよび/または負極集電タブ13b)の平面視形状が矩形である場合、上記電極組立体の本体(又は電極本体)の円形の直径Dに対する集電タブの幅方向の長さW(タブ幅(W))の比(タブ幅W/直径D、すなわち「W/D」の比)(例えば図3に示す正極集電タブ13aのタブ幅W/直径D(すなわち「W/D」の比)および/または負極集電タブ13bのタブ幅W/直径D(すなわち「W/D」の比))は、例えば0.3以上、好ましくは0.3以上0.5以下である。ここでタブ幅WおよびWは同一であっても異なっていてもよいが、同一であることが好ましい。
 上記の比(W/D、具体的にはW/Dおよび/またはW/D)が上記範囲内であると、電極本体の面積が著しく低下することを回避しつつ、集電タブの平面視形状の面積を増加させることができる。また、タブ設計の自由度も向上させることができる。
Alternatively, when the plan view shape of the current collecting tabs (positive electrode current collecting tab 13a and / or negative electrode current collecting tab 13b) is rectangular, the current collecting tab with respect to the circular diameter D of the main body (or electrode main body) of the electrode assembly. the ratio of the width direction length W (tab width (W)) (tab width W / diameter D, i.e. "W / D" ratio) (e.g., tab width of the positive electrode current collector tabs 13a shown in FIG. 3 W a / The diameter D (that is, the ratio of “W a / D”) and / or the tab width W b / diameter D (that is, the ratio of “W b / D”) of the negative electrode current collecting tab 13b) is preferably, for example, 0.3 or more. Is 0.3 or more and 0.5 or less. Here, the tab widths W a and W b may be the same or different, but are preferably the same.
The above ratio (W / D, in particular W a / D and / or W b / D) When is within the above range, while avoiding the area of the electrode body is remarkably reduced, the current collecting tabs The area of the plan view shape can be increased. In addition, the degree of freedom in tab design can be improved.
 例えば、集電タブ(正極集電タブ13aおよび/または負極集電タブ13b)の平面視形状が矩形である場合、上記電極組立体の本体(又は電極本体)の円形の直径Dに対する集電タブの延出方向の長さL(以下、「タブ長(L)」と呼ぶ場合もある)の比(タブ長L/直径D、すなわち「L/D」の比)(例えば図3に示す正極集電タブ13aのタブ長L/直径D(すなわち「L/D」の比)および/または負極集電タブ13bのタブ長L/直径D(すなわち「L/D」の比))は、例えば0.1以上0.2以下、好ましくは0.1または0.2である。ここでタブ長LおよびLは同一であっても異なっていてもよいが、同一であることが好ましい。
 上記の比(L/D、具体的にはL/Dおよび/またはL/D)が上記範囲内であると、電極本体の面積が著しく低下することを回避しつつ、集電タブの平面視形状の面積をより増加させることができる。また、タブ設計の自由度もより向上させることができる。
For example, when the plan view shape of the current collecting tab (positive electrode current collecting tab 13a and / or negative electrode current collecting tab 13b) is rectangular, the current collecting tab with respect to the circular diameter D of the main body (or electrode main body) of the electrode assembly. Ratio of length L in the extending direction (hereinafter, may be referred to as "tab length (L)") (tab length L / diameter D, that is, "L / D" ratio) (for example, the positive electrode shown in FIG. tab length L a / the diameter D of the current collector tabs 13a tab length (i.e., "L a / D" ratio) and / or the negative electrode current collector tab 13b L b / diameter D (i.e. the ratio of the "L b / D") ) Is, for example, 0.1 or more and 0.2 or less, preferably 0.1 or 0.2. Here tab length L a and L b may be different even in the same, but are preferably the same.
When the above ratio (L / D, specifically La / D and / or L b / D) is within the above range, the current collecting tab of the current collecting tab avoids a significant decrease in the area of the electrode body. The area of the plan view shape can be further increased. In addition, the degree of freedom in tab design can be further improved.
 本開示の二次電池において、電極組立体の電極として、リチウムイオンを吸蔵放出可能な正極および負極が含まれることが好ましい。 In the secondary battery of the present disclosure, it is preferable that the electrodes of the electrode assembly include a positive electrode and a negative electrode capable of occluding and releasing lithium ions.
 以下、本発明の一実施形態に係る二次電池の電極組立体において「正極集電タブ」と「「負極集電タブ」がそれぞれ「斜め」に配置された実施例1(例えば図2(c)に示す構成)と、2つの集電タブが対向または並列して配置されている比較例1,2(例えば図8(a)、(b)に示す従前の構成)とを対比して説明する。尚、本発明は以下の実施例に限定されるものではない。 Hereinafter, in the electrode assembly of the secondary battery according to the embodiment of the present invention, the “positive electrode current collecting tab” and the “negative electrode current collecting tab” are arranged “diagonally”, respectively (for example, FIG. 2 (c)). ) And Comparative Examples 1 and 2 in which the two current collecting tabs are arranged facing each other or in parallel (for example, the conventional configuration shown in FIGS. 8A and 8B) will be described. do. The present invention is not limited to the following examples.
 比較例1
 図4(a)に示す電極組立体21を準備した。電極組立体21では2つの集電タブ(正極集電タブ23aと負極集電タブ23b)とが逆向きに延出するように対向して配置されている。
 より具体的には図8(a)に示す通り、電極組立体21の本体(および電極本体)は、直径10mmの円形からその一部を上下に切り欠いた形状(切り欠き22aおよび22bを有する円形)の平面視形状を有する。尚、正極集電タブ23aおよび負極集電タブ23bの平面視形状は同一である。
Comparative Example 1
The electrode assembly 21 shown in FIG. 4 (a) was prepared. In the electrode assembly 21, two current collecting tabs (positive electrode current collecting tab 23a and negative electrode current collecting tab 23b) are arranged so as to extend in opposite directions.
More specifically, as shown in FIG. 8A, the main body (and the electrode main body) of the electrode assembly 21 has a shape ( notches 22a and 22b) in which a part thereof is cut out vertically from a circle having a diameter of 10 mm. It has a circular shape in a plan view. The positive electrode current collecting tab 23a and the negative electrode current collecting tab 23b have the same plan-view shape.
 比較例2
 図4(b)に示す電極組立体31を準備した。電極組立体31では、2つの集電タブ(正極集電タブ33aおよび負極集電タブ33b)が同じ方向に延出するように並んで配置されている。
 より具体的には図8(b)に示す通り、電極組立体31の本体(および電極本体)は、直径10mmの円形からその一部を切り欠いた円形(切り欠き32を有する円形)の平面視形状を有する。尚、正極集電タブ33aおよび負極集電タブ33bの平面視形状は同一である。
Comparative Example 2
The electrode assembly 31 shown in FIG. 4B was prepared. In the electrode assembly 31, two current collecting tabs (positive electrode current collecting tab 33a and negative electrode current collecting tab 33b) are arranged side by side so as to extend in the same direction.
More specifically, as shown in FIG. 8B, the main body (and the electrode main body) of the electrode assembly 31 is a circular plane (a circle having a notch 32) cut out from a circle having a diameter of 10 mm. It has a visual shape. The positive electrode current collecting tab 33a and the negative electrode current collecting tab 33b have the same plan-view shape.
 実施例1
 図4(c)に示す電極組立体11を準備した。電極組立体11では、例えば図2(b)に示す通り「正極集電タブ13aの延出方向X」と「負極集電タブ13bの延出方向X」との成す角の「角度θ」が「15°以上120°以下」の範囲内である。「正極集電タブ13a」および「負極集電タブ13b」は、それぞれ「斜め」に延出するような関係で相対的に配置されている。
 電極組立体11の本体(および電極本体)は、直径10mmの円形からその一部を切り欠いた円形の平面視形状(2つの辺m,nを有する切り欠き12を有する円形)を有する(図2(a)参照)。
 尚、正極集電タブ13aおよび負極集電タブ13bの平面視形状は同一である。
Example 1
The electrode assembly 11 shown in FIG. 4C was prepared. In the electrode assembly 11, for example, as shown in FIG. 2B, the “angle θ” of the angle formed by the “ extending direction X a of the positive electrode current collecting tab 13a” and the “extending direction X b of the negative electrode current collecting tab 13b” is formed. Is within the range of "15 ° or more and 120 ° or less". The “positive electrode current collecting tab 13a” and the “negative electrode current collecting tab 13b” are relatively arranged so as to extend “diagonally”, respectively.
The main body (and the electrode main body) of the electrode assembly 11 has a circular plan view shape (a circle having a notch 12 having two sides m and n) cut out from a circle having a diameter of 10 mm (FIG. FIG. 2 (a)).
The positive electrode current collecting tab 13a and the negative electrode current collecting tab 13b have the same plan-view shape.
 以下の表1に示す「条件1~10」に従って、「比較例1」、「比較例2」および「実施例1」において、タブの寸法(タブ幅、タブ長およびタブ面積)を変更した。 The tab dimensions (tab width, tab length and tab area) were changed in "Comparative Example 1", "Comparative Example 2" and "Example 1" according to "Conditions 1 to 10" shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す「条件1~10」で測定した各電極組立体の「電極面積」(電極組立体の本体の平面視での面積)(mm)を以下の表2および図5のグラフに示す。 The "electrode area" (area in plan view of the main body of the electrode assembly) (mm 2 ) of each electrode assembly measured under "conditions 1 to 10" shown in Table 1 is shown in the graphs of Table 2 and FIG. 5 below. show.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2および図5のグラフから以下のことがわかった。 The following was found from the graphs in Table 2 and FIG.
・実施例1と比較例1との対比
 実施例1と比較例1とを対比すると、条件1~10のいずれにおいても実施例1の方が比較例1よりも電極面積が大きいことがわかった。
・実施例1と比較例2との対比
 実施例1と比較例2とを対比すると、条件1~4において電極面積は同程度であったが、条件5~10では、いずれにおいても実施例1の方が比較例2よりも電極面積が大きいことがわかった。特に実施例1において角度θおよびタブ幅が大きくなるに従ってその傾向は顕著になることが分かった。
-Comparison between Example 1 and Comparative Example 1 When Example 1 and Comparative Example 1 were compared, it was found that the electrode area of Example 1 was larger than that of Comparative Example 1 under all of the conditions 1 to 10. ..
-Comparison between Example 1 and Comparative Example 2 When Example 1 and Comparative Example 2 were compared, the electrode areas were about the same under conditions 1 to 4, but under conditions 5 to 10, the electrode area was similar to that of Example 1. It was found that the electrode area was larger than that of Comparative Example 2. In particular, in Example 1, it was found that the tendency became remarkable as the angle θ and the tab width increased.
 次に「条件1~10」ついて、「タブ長」を「1mm」と「2mm」とに分けて「タブ面積」と「電極面積変化率」との関係を検討および考察した。
 ここで「電極面積変化率」(曲線の傾き)は、その値が小さいとタブ設計の自由度が大きくなることを示す指標であり、以下の式で示すことができる。
      [電極面積変化率]=[電極面積変化量]/[タブ面積変化量]
[式中、「電極面積変化量」は、以下の表に示す各条件の前後での電極面積の変化量であり、「タブ面積変化量」は、以下の表に示す各条件の前後でのタブ面積の変化量である。]
Next, regarding "conditions 1 to 10", the "tab length" was divided into "1 mm" and "2 mm", and the relationship between the "tab area" and the "electrode area change rate" was examined and considered.
Here, the "electrode area change rate" (slope of the curve) is an index showing that the degree of freedom in tab design increases when the value is small, and can be expressed by the following equation.
[Electrode area change rate] = [Electrode area change amount] / [Tab area change amount]
[In the formula, the "electrode area change amount" is the change amount of the electrode area before and after each condition shown in the table below, and the "tab area change amount" is the change amount before and after each condition shown in the following table. The amount of change in the tab area. ]
 「タブ長」が「1mm」の場合の結果を以下の表3および図6のグラフに示す。 The results when the "tab length" is "1 mm" are shown in the graphs of Table 3 and FIG. 6 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3および図6のグラフから以下のことがわかった。 The following was found from the graphs in Table 3 and FIG.
・実施例1と比較例1との対比
 実施例1と比較例1とを対比すると、いずれの条件においても実施例1と比較例1のタブ設計の自由度(電極面積変化率)には大差がないことがわかった。従って、本発明の実施例1では、1mmのタブ長において、驚くべきことに、比較例1(図4(a)参照)と同程度のタブ設計の自由度を有することがわかった。
・実施例1と比較例2との対比
 実施例1と比較例2とを対比すると、いずれの条件においても、実施例1の方が比較例2よりも電極面積変化率がはるかに小さく、タブ設計の自由度が顕著に大きいことがわかった。
-Comparison between Example 1 and Comparative Example 1 Comparing Example 1 and Comparative Example 1, there is a large difference in the degree of freedom (electrode area change rate) of tab design between Example 1 and Comparative Example 1 under any condition. It turned out that there was no. Therefore, in Example 1 of the present invention, it was surprisingly found that a tab length of 1 mm has the same degree of freedom in tab design as Comparative Example 1 (see FIG. 4A).
-Comparison between Example 1 and Comparative Example 2 Comparing Example 1 and Comparative Example 2, the electrode area change rate of Example 1 was much smaller than that of Comparative Example 2 under any of the conditions, and the tabs were tabbed. It was found that the degree of freedom in design was remarkably large.
 「タブ長」が「2mm」の場合の結果を以下の表4および図7のグラフに示す。 The results when the "tab length" is "2 mm" are shown in the graphs of Table 4 and FIG. 7 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4および図7のグラフから以下のことがわかった。 The following was found from the graphs in Table 4 and FIG.
・実施例1と比較例1との対比
 実施例1と比較例1とを対比すると、いずれの条件においても実施例1と比較例1のタブ設計の自由度(電極面積変化率)には大差がないことがわかった。従って、本発明の実施例1では、2mmのタブ長においても、驚くべきことに、比較例1(図4(a)参照)と同程度のタブ設計の自由度を有することがわかった。
・実施例1と比較例2との対比
 実施例1と比較例2とを対比すると、いずれの条件においても実施例1の方が比較例2よりも電極面積変化率の値がはるかに小さく、タブ設計の自由度が顕著に大きいことがわかった。
-Comparison between Example 1 and Comparative Example 1 Comparing Example 1 and Comparative Example 1, there is a large difference in the degree of freedom (electrode area change rate) of tab design between Example 1 and Comparative Example 1 under any condition. It turned out that there was no. Therefore, in Example 1 of the present invention, it was surprisingly found that even with a tab length of 2 mm, the degree of freedom in tab design is comparable to that of Comparative Example 1 (see FIG. 4A).
-Comparison between Example 1 and Comparative Example 2 Comparing Example 1 and Comparative Example 2, the value of the electrode area change rate in Example 1 was much smaller than that in Comparative Example 2 under all conditions. It was found that the degree of freedom in tab design is remarkably large.
 以上の対比から、特に表2(図5)の結果から、本発明の「実施例1」では集電タブの「斜め配置」、具体的には「角度θ」を「15°以上120°以下」の範囲内で設定することで「比較例1」に対して、全域にわたって「電極面積」を大きくすることができ(条件1~10)、「比較例2」に対しても「タブ幅」、「タブ面積」が大きくなるに従って「電極面積」を大きくすることができることがわかった(特に条件5~10)。
 また、表3(図6)および表4(図7)の結果から、「実施例1」と「比較例1」のタブ設計の自由度には大差がないことがわかった。そして「実施例1」は「比較例2」に対して顕著にタブ設計の自由度に優れることがわかった。
From the above comparison, especially from the results of Table 2 (FIG. 5), in "Example 1" of the present invention, the "diagonal arrangement" of the current collection tab, specifically, the "angle θ" is set to "15 ° or more and 120 ° or less". By setting within the range of "Comparative Example 1", the "electrode area" can be increased over the entire area (Conditions 1 to 10), and the "Tab width" is also set for "Comparative Example 2". , It was found that the "electrode area" can be increased as the "tab area" increases (particularly conditions 5 to 10).
Further, from the results of Table 3 (FIG. 6) and Table 4 (FIG. 7), it was found that there is no great difference in the degree of freedom of tab design between "Example 1" and "Comparative Example 1". Then, it was found that "Example 1" was remarkably superior to "Comparative Example 2" in the degree of freedom in tab design.
 以上、実施例を参照しながら本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の態様が考えられることを当業者は容易に理解されよう。 Although the embodiments of the present invention have been described above with reference to the examples, they are merely examples of typical examples. Therefore, those skilled in the art will easily understand that the present invention is not limited to this, and various aspects are conceivable.
 例えば、上記の実施形態では、平面視形状が円形のボタン形(コイン形)の二次電池について主に触れたが、本発明は必ずしも上記実施形態に限定されない。つまり、本開示の二次電池は、その平面視形状が円形に限らず、任意の他の幾何学的形状を有していてもよい。 For example, in the above embodiment, the secondary battery having a circular button shape (coin shape) in a plan view is mainly mentioned, but the present invention is not necessarily limited to the above embodiment. That is, the secondary battery of the present disclosure is not limited to a circular shape in a plan view, and may have any other geometric shape.
 本発明の一実施形態に係る二次電池は、電池使用または蓄電が想定され得る様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の一実施形態に係る二次電池は、電気・電子機器などが使用され得る電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー、ウェアラブルデバイス、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド自動車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。 The secondary battery according to the embodiment of the present invention can be used in various fields where battery use or storage can be expected. Although only an example, the secondary battery according to the embodiment of the present invention includes electric / information / communication fields (for example, mobile phones, smartphones, laptop computers and digital cameras, activities) in which electric / electronic devices can be used. Electric / electronic equipment field or mobile equipment field including meter, arm computer, electronic paper, wearable device, RFID tag, card type electronic money, small electronic device such as smart watch), home / small industrial application (for example, electric) Tools, golf carts, home / nursing / industrial robots), large industrial applications (eg forklifts, elevators, bay port cranes), transportation systems (eg hybrids, electrics, buses, trains) , Electric assisted bicycles, electric motorcycles, etc.), power system applications (for example, various power generation, road conditioners, smart grids, general household installation type power storage systems, etc.), medical applications (medical equipment fields such as earphone hearing aids) , Pharmaceutical applications (fields such as dose management systems), IoT fields, space / deep sea applications (for example, fields such as space probes and submersible research vessels) and the like.
  1             正極
  2             負極
  3             セパレータ
  5             電極構成層(又は電極構成単位)
  10,11,21,31   電極組立体(又は電極)
  12,22,32      切り欠き
  13,23,33      集電タブ
1 Positive electrode 2 Negative electrode 3 Separator 5 Electrode constituent layer (or electrode constituent unit)
10,11,21,31 Electrode assembly (or electrode)
12, 22, 32 Notch 13, 23, 33 Current collector tab

Claims (12)

  1.  電極組立体を有して成る二次電池であって、前記電極組立体から正極集電タブおよび負極集電タブがそれぞれ斜めに延出している二次電池。 A secondary battery having an electrode assembly, in which a positive electrode current collecting tab and a negative electrode current collecting tab extend diagonally from the electrode assembly.
  2.  前記斜めに延出する前記正極集電タブの延出方向と前記負極集電タブの延出方向とが成す角の角度が15°以上120°以下である、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the angle formed by the extending direction of the positive electrode current collecting tab extending diagonally and the extending direction of the negative electrode current collecting tab is 15 ° or more and 120 ° or less. ..
  3.  前記角度が25°以上105°以下である、請求項2に記載の二次電池。 The secondary battery according to claim 2, wherein the angle is 25 ° or more and 105 ° or less.
  4.  前記電極組立体に含まれる正極および負極の本体が、その一部を切り欠いた円形の平面視形状を有している、請求項1~3のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 3, wherein the main bodies of the positive electrode and the negative electrode included in the electrode assembly have a circular plan view shape in which a part thereof is cut out.
  5.  平面視において、前記切り欠いた円形の該切り欠き前の仮想円形内において前記正極集電タブおよび前記負極集電タブが位置付けられている、請求項4に記載の二次電池。 The secondary battery according to claim 4, wherein the positive electrode current collecting tab and the negative electrode current collecting tab are positioned in the virtual circle before the notch in the notched circular view in a plan view.
  6.  平面視において前記切り欠いた部分の輪郭が少なくとも二辺からなる、請求項4または5に記載の二次電池。 The secondary battery according to claim 4 or 5, wherein the contour of the cutout portion is composed of at least two sides in a plan view.
  7.  前記二辺の成す角の角度が180°未満である、請求項6に記載の二次電池。 The secondary battery according to claim 6, wherein the angle between the two sides is less than 180 °.
  8.  前記正極集電タブおよび前記負極集電タブがそれぞれ矩形の平面視形状を有しており、前記本体の円形の直径に対する前記正極集電タブおよび/または前記負極集電タブの幅方向の長さの比が0.1以上0.45以下である、請求項4~7のいずれかに記載の二次電池。 The positive electrode current collecting tab and the negative electrode current collecting tab each have a rectangular plan view shape, and the length in the width direction of the positive electrode current collecting tab and / or the negative electrode current collecting tab with respect to the circular diameter of the main body. The secondary battery according to any one of claims 4 to 7, wherein the ratio of the above is 0.1 or more and 0.45 or less.
  9.  前記正極集電タブおよび前記負極集電タブがそれぞれ矩形の平面視形状を有しており、前記本体の円形の直径に対する前記正極集電タブおよび/または前記負極集電タブの幅方向の長さの比が0.3以上である、請求項4~8のいずれかに記載の二次電池。 The positive electrode current collecting tab and the negative electrode current collecting tab each have a rectangular plan view shape, and the length in the width direction of the positive electrode current collecting tab and / or the negative electrode current collecting tab with respect to the circular diameter of the main body. The secondary battery according to any one of claims 4 to 8, wherein the ratio of the above is 0.3 or more.
  10.  前記正極集電タブおよび前記負極集電タブがそれぞれ矩形の平面視形状を有しており、前記本体の円形の直径に対する前記正極集電タブおよび/または前記負極集電タブの延出方向の長さの比が0.1以上0.2以下である、請求項4~9のいずれかに記載の二次電池。 The positive electrode current collecting tab and the negative electrode current collecting tab each have a rectangular plan view shape, and the length of the positive electrode current collecting tab and / or the negative electrode current collecting tab in the extending direction with respect to the circular diameter of the main body. The secondary battery according to any one of claims 4 to 9, wherein the ratio of the electrodes is 0.1 or more and 0.2 or less.
  11.  前記電極組立体が平面視にて鏡像対称形状を有する、請求項1~10のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 10, wherein the electrode assembly has a mirror image symmetrical shape in a plan view.
  12.  前記電極組立体の電極として、リチウムイオンを吸蔵放出可能な正極および負極が含まれる、請求項1~11のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 11, wherein the electrode of the electrode assembly includes a positive electrode and a negative electrode capable of storing and releasing lithium ions.
PCT/JP2021/000720 2020-01-20 2021-01-12 Secondary battery WO2021149541A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-006515 2020-01-20
JP2020006515 2020-01-20

Publications (1)

Publication Number Publication Date
WO2021149541A1 true WO2021149541A1 (en) 2021-07-29

Family

ID=76992249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000720 WO2021149541A1 (en) 2020-01-20 2021-01-12 Secondary battery

Country Status (1)

Country Link
WO (1) WO2021149541A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074205A (en) * 2011-09-28 2013-04-22 Tdk Corp Power storage element, power storage device and circuit board
JP2018504763A (en) * 2015-02-10 2018-02-15 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Design for solid state battery
WO2018173751A1 (en) * 2017-03-24 2018-09-27 株式会社村田製作所 Secondary battery
CN209169236U (en) * 2018-12-19 2019-07-26 广东维都利新能源有限公司 A kind of novel lamination cylindrical battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074205A (en) * 2011-09-28 2013-04-22 Tdk Corp Power storage element, power storage device and circuit board
JP2018504763A (en) * 2015-02-10 2018-02-15 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Design for solid state battery
WO2018173751A1 (en) * 2017-03-24 2018-09-27 株式会社村田製作所 Secondary battery
CN209169236U (en) * 2018-12-19 2019-07-26 广东维都利新能源有限公司 A kind of novel lamination cylindrical battery

Similar Documents

Publication Publication Date Title
US11811022B2 (en) Secondary battery
JP6780766B2 (en) Secondary battery and its manufacturing method
US11437653B2 (en) Laminated secondary battery and manufacturing method of the same, and device
US10998600B2 (en) Laminated secondary battery and manufacturing method of the same, and device
WO2020256023A1 (en) Secondary battery
JP6879358B2 (en) Secondary battery
US20190074535A1 (en) Secondary battery
US20230037438A1 (en) Secondary battery
US20190296399A1 (en) Secondary battery
WO2021140838A1 (en) Secondary battery
WO2021221018A1 (en) Secondary battery
WO2021149541A1 (en) Secondary battery
WO2021149644A1 (en) Secondary battery and manufacturing method for same
WO2021020151A1 (en) Secondary battery
WO2020218213A1 (en) Secondary battery
JP6773208B2 (en) Secondary battery and its manufacturing method
JP6885410B2 (en) Secondary battery
JP6828751B2 (en) Rechargeable battery
JP6773133B2 (en) Rechargeable battery
JP7456163B2 (en) secondary battery
WO2017208683A1 (en) Secondary battery
WO2022044672A1 (en) Secondary battery and method for manufacturing same
WO2021006161A1 (en) Secondary battery
WO2022168502A1 (en) Secondary battery and method for producing secondary battery
US20230040384A1 (en) Secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21743941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21743941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP