WO2018216362A1 - Care support system - Google Patents

Care support system Download PDF

Info

Publication number
WO2018216362A1
WO2018216362A1 PCT/JP2018/014461 JP2018014461W WO2018216362A1 WO 2018216362 A1 WO2018216362 A1 WO 2018216362A1 JP 2018014461 W JP2018014461 W JP 2018014461W WO 2018216362 A1 WO2018216362 A1 WO 2018216362A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
sensor unit
sensor
radiation frequency
image
Prior art date
Application number
PCT/JP2018/014461
Other languages
French (fr)
Japanese (ja)
Inventor
和田 滋
楠田 将之
木戸 稔人
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019519501A priority Critical patent/JPWO2018216362A1/en
Publication of WO2018216362A1 publication Critical patent/WO2018216362A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing

Definitions

  • the present invention provides a care support system in which a sensor unit disposed in a casing of a moving object detection unit installed in a subject's living room detects biological information (for example, a respiratory state) of the subject by radiating and receiving radio waves. It is about.
  • JP 2006-3289 A (refer to claim 1, paragraphs [0022], [0023], etc.)
  • Patent Document 1 The method described in Patent Document 1 is effective only when the signal to be observed (the reflected wave from the object) is larger than the clutter signal.
  • the signal to be observed is smaller than the clutter signal, the signal to be observed is buried in the clutter signal. Therefore, when the subtraction process is performed, the signal to be observed cannot be detected.
  • a signal for example, a respiratory signal
  • the signal (breathing signal) to be observed is often smaller than the clutter signal. Therefore, in the care support system, a method of removing the clutter signal by subtraction processing cannot be adopted.
  • the sensor unit Doppler sensor
  • the sensor unit is covered with a casing, and is installed on the ceiling of a living room, for example.
  • the direction of a sensor part is normally adjusted so that it may face the direction of the bed and the futon in a living room (in order to detect the respiratory state in bedtime).
  • the relative positional relationship for example, the relative distance
  • the present invention has been made in order to solve the above-described problems.
  • the object of the present invention is to reduce detection accuracy in a sensor unit (Doppler sensor) by reducing clutter as noise without performing subtraction processing of the clutter signal.
  • An object of the present invention is to provide a care support system that can suppress variation in detection performance due to the orientation of a sensor unit.
  • a care support system is disposed in a casing of a moving object detection unit installed in a subject's room, and detects a biological information of the subject by emitting and receiving radio waves,
  • the noise level detected by the sensor unit for each different direction of the radiation control unit that controls the radiation frequency of the radio wave and the sensor unit in the housing is higher than a predetermined level at which the biological information can be detected.
  • a storage unit that stores a table that defines a specific radiation frequency that decreases, and the radiation control unit determines a radiation frequency of the radio wave radiated from the sensor unit according to a setting of an orientation of the sensor unit. The specific radiation frequency corresponding to the direction of the sensor unit obtained based on the table is switched.
  • the clutter signal subtraction process is not performed in post-processing, and noise clutter can be reduced to increase detection accuracy at the sensor unit, and variations in detection performance due to the orientation of the sensor unit can be suppressed. .
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a care support system 1 of the present embodiment.
  • the care support system 1 is a system for supporting the daily life of a cared person living in a nursing facility or a general house, or a patient admitted to a hospital (nurse), and is also called a monitoring system. It is.
  • the cared person and the cared person are objects to be supported by the care support system 1, that is, a target person (subject) managed by recognition or detection in the image recognition system 20 or the radio wave detection unit 30 described later. .
  • a target person subject
  • the care support system 1 is constructed in a care facility will be described.
  • the staff station 100 is a so-called stuffing station for caregivers who support the lives of the care recipients who spend at the care facilities.
  • the staff station 100 is provided with a management server 100a and a display unit 100b.
  • the management server 100a is a terminal device that is communicably connected to a later-described moving object detection unit 10 installed in the living room 101 via the communication line 200, and includes a central processing unit (CPU; Central Processing Unit). Composed.
  • the communication line 200 is configured by, for example, a wired LAN (Local Area Network), but may be a wireless LAN.
  • the management server 100a receives and manages various types of information transmitted (output) from the moving body detection unit 10 (for example, a captured image in the living room 101 and biological information of the care recipient) via the communication line 200, The received information is displayed on the display unit 100b. Thereby, the caregiver of the care facility can grasp the state in the living room 101 and the biological information of the care recipient by looking at the information displayed on the display unit 100b.
  • the display unit 100b can be configured by a display of a personal computer, for example.
  • the management server 100a moves the moving object detection unit.
  • At least one living room 101 is provided in a care facility, and FIG. 1 shows a case where two living rooms 101 are provided as an example.
  • each living room 101 one bed 102 used by a care recipient is installed.
  • a plurality of beds 102 corresponding to each of the care recipients are installed.
  • FIG. 2 is an explanatory diagram schematically showing the inside of the living room 101 in which the moving object detection unit 10 is installed.
  • the moving body detection unit 10 is installed on the ceiling portion 101 a of each living room 101 and is communicably connected to a communication line 200.
  • the living room 101 is a multi-bed room in which a plurality of beds 102 are installed
  • the moving object detection unit 10 is installed on the ceiling 101 a of the living room 101 corresponding to each bed 102.
  • the care support system 1 described above includes a moving body detection unit 10 (at least one moving body detection unit 10) installed in at least one living room 101 and a management server 100a provided in the staff station 100 via a communication line 200. Are connected to communicate with each other.
  • FIG. 3 is a block diagram showing a schematic configuration of the moving object detection unit 10.
  • the moving body detection unit 10 is a unit that detects information on a cared person in the living room 101, and includes an image recognition system 20, a radio wave detection unit 30, and a unit control unit 40 in a housing 11 (see FIG. 6). Yes. Since the moving body detection unit 10 includes various sensors such as the above-described radio wave detection unit 30 and an optical detection unit 23 described later, it is also called a sensor box.
  • the image recognition system 20 includes an illumination unit 21, an illumination control unit 22, and an optical detection unit 23.
  • the illumination unit 21 includes an LED (LightLEDEmitting Diode) that emits infrared light (for example, near-infrared light) to enable photographing in the dark, and is provided at the center of the ceiling 101a of the living room 101. Located to illuminate the interior of the living room 101.
  • the illumination unit 21 has a plurality of LEDs and illuminates a floor surface 101b (see FIG. 2) in the living room 101 and a wall connecting the ceiling portion 101a and the floor surface 101b.
  • the illumination control part 22 is comprised, for example with CPU, and controls the illumination (infrared light emission) by the illumination part 21.
  • the optical detection unit 23 is an imaging unit that captures an image of the interior of the living room 101 under the illumination of the illumination unit 21 and is configured by a camera, for example.
  • FIG. 4 is a block diagram illustrating a detailed configuration of the optical detection unit 23, and FIG. 5 schematically illustrates an example of an image acquired by photographing with the optical detection unit 23.
  • the optical detection unit 23 is disposed adjacent to the illumination unit 21 in the center of the ceiling 101a (see FIG. 2) of the living room 101, and acquires an image of a viewpoint directly above that has a viewing direction immediately below by photographing.
  • the optical detection unit 23 includes a lens 51, an image sensor 52, an AD conversion unit 53, an image processing unit 54, and a control calculation unit 55.
  • the lens 51 is, for example, a fixed focus lens, and is configured by a general super wide angle lens or fisheye lens.
  • a lens having a diagonal angle of view of 150 ° or more can be used.
  • the entire living room 101 can be photographed from the ceiling 101a, and the care recipient in the room and the entire room can be photographed without blind spots.
  • the imaging element 52 is configured by an image sensor such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Metal Oxide Semiconductor).
  • the image sensor 52 is configured by removing the IR cut filter so that the state of the cared person can be detected as an image even in a dark environment.
  • An output signal from the image sensor 52 is input to the AD conversion unit 53.
  • the AD conversion unit 53 receives an analog image signal of an image captured by the image sensor 52 and converts the analog image signal into a digital image signal.
  • the digital image signal output from the AD conversion unit 53 is input to the image processing unit 54.
  • the image processing unit 54 receives the digital image signal output from the AD conversion unit 53 and executes image processing such as black correction, noise correction, color interpolation, and white balance on the digital image signal. .
  • image processing such as black correction, noise correction, color interpolation, and white balance on the digital image signal.
  • the image-processed signal output from the image processing unit 54 is input to the image recognition unit 25 described later.
  • the control calculation unit 55 executes calculations such as AE (Automatic Exposure) related to the control of the image sensor 52 and controls the image sensor 52 such as exposure time and gain. Moreover, the control calculating part 55 performs control while performing calculations, such as a suitable light quantity setting and light distribution setting, with respect to the illumination part 21, as needed.
  • the control calculation unit 55 may have the function of the illumination control unit 22 described above.
  • the image processing unit 54 and the control calculation unit 55 are configured by separate CPUs, for example. However, the image processing unit 54 and the control calculation unit 55 may be configured by a single CPU or by dedicated circuits that perform image processing and calculation processing. May be.
  • the image recognition system 20 described above further includes a storage unit 24 and an image recognition unit 25.
  • the storage unit 24 is a memory that stores a control program executed by the unit control unit 40 and various types of information, and includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a nonvolatile memory, and the like.
  • the image recognition unit 25 performs image recognition processing on the image data of the image acquired by the optical detection unit 23. More specifically, the image recognition unit 25 receives a signal after the image processing unit 54 of the optical detection unit 23 performs image processing, extracts the contour of the object, for example, and shapes it by a method such as pattern matching. An image recognition process for recognizing the image is executed. Thereby, the image recognition part 25 can recognize the state of the cared person in the living room 101.
  • the state of the cared person in the living room 101 is assumed to be rising, getting out of bed, entering the floor, falling over, and the like.
  • Waking up refers to the state from when the cared person wakes up to wake up on the bed.
  • Getting out of bed refers to the state from when the cared person wakes up on the bed until it gets off the floor and leaves the bed.
  • Entering the floor refers to the movement of the care recipient from the floor to the bed and lying down. Falling refers to an action in which the care recipient falls on the floor.
  • the above-mentioned getting-up, getting-off, getting-in, falling-over is accompanied by the movement of the cared person's body (body movement), and the minute movement detected by the radio wave detection unit 30 (the minute movement of the body by breathing etc.) ).
  • the image recognition part 25 can also recognize the shape and position of the bed 102 or the futon in the living room 101 by image recognition.
  • the radio wave detection unit 30 is a block that detects a moving object in the living room 101 by emitting and receiving radio waves.
  • the radio wave detection unit 30 radiates, for example, a 24 GHz band microwave from a radiating unit (not shown) toward the bed of each living room.
  • the reflected wave reflected by Doppler and shifted by Doppler is received by a receiving unit (not shown).
  • the radio wave detection unit 30 can detect biological information (information such as a respiratory state, a sleep state, and a heart rate) of the cared person from the received reflected wave.
  • the radio wave detection unit 30 functions as a microscopic motion detection unit that detects microscopic motion of a care recipient (subject).
  • the unit control unit 40 controls the operations of the image recognition system 20 and the radio wave detection unit 30, and performs image processing and signal processing on information obtained from the image recognition system 20 and the radio wave detection unit 30, and results obtained Is a control board that outputs to the management server 100a as information on the status of the care recipient.
  • the unit control unit 40 includes a main control unit 41, an information processing unit 42, and an interface unit 43, and further includes the storage unit 24 and the image recognition unit 25 described above. Note that the storage unit 24 and the image recognition unit 25 may be provided independently of the unit control unit 40.
  • the main control unit 41 is composed of a CPU that controls the operation of each unit in the moving object detection unit 10.
  • the information processing unit 42 and the image recognition unit 25 may be configured by the above-described CPU (may be integrated with the main control unit 41), or may be another arithmetic unit or a circuit that performs a specific process. It may be configured.
  • the information processing unit 42 uses a predetermined algorithm for information (for example, image data) output from the optical detection unit 23 of the image recognition system 20 and information (for example, data related to a respiratory state) output from the radio wave detection unit 30. Based on the signal processing. Information obtained by the signal processing is used for image recognition in the image recognition system 20 (particularly, the image recognition unit 25).
  • information for example, image data
  • information for example, data related to a respiratory state
  • the network cable (not shown) of the communication line 200 is electrically connected to the interface unit 43.
  • Information relating to the status of the cared person detected by the moving object detection unit 10 based on images and microwaves is transmitted to the management server 100a via the interface unit 43 and the communication line 200.
  • FIG. 6 is a cross-sectional view of the moving object detection unit 10 and the radio wave detection unit 30 in an attached state and a detached state of the front cover 11a with respect to a main body 11b described later of the housing 11.
  • the radio wave detection unit 30 includes a sensor unit 31 and a radome lens 32.
  • the sensor unit 31 is a chip composed of a microwave Doppler sensor for individually detecting biological information of a cared person by emitting and receiving radio waves, and is mounted on a substrate 33.
  • the sensor unit 31 includes an RFLSI (high frequency integrated circuit element), and a transmission antenna and a reception antenna for transmitting and receiving radio waves.
  • the radome lens 32 is a radio wave lens that protects the sensor unit 31 and controls (for example, narrows) the directivity of radio waves radiated from the sensor unit 31, and is located in front of the sensor unit 31 (on the radio wave emission side). It is provided integrally with the sensor unit 31 via the holding unit 34 so as to be positioned.
  • the surface 32a on the sensor unit 31 side is a flat surface
  • the surface 32b on the opposite side to the sensor unit 31 is formed of a plano-convex lens having a convex shape on the radio wave radiation side. It is held by the holding part 34 so as to pass through the center. Therefore, the direction of the sensor unit 31 coincides with the direction of the main axis of the radome lens 32.
  • the main axis of the radome lens 32 is an axis that passes through the center of curvature of the surface 32b of the radome lens 32 and is perpendicular to the surface 32a, and is synonymous with the optical axis or rotational symmetry axis.
  • the angle that defines the “direction of the sensor unit 31” described above is such that the sensor unit 31 has a rotation axis in a direction perpendicular to a horizontal plane (here, the ceiling 101a of the living room 101 where the moving object detection unit 10 is installed).
  • the pitch angle that is a rotation angle when rotating around one rotation axis for example, the left-right direction
  • the yaw angle that is the rotation angle when rotating around the rotation axis for example, the front-rear direction
  • both are treated as a pitch angle in a unified manner.
  • the casing 11 of the moving object detection unit 10 described above includes a front cover 11a located in front of the radome lens 32 (on the side opposite to the sensor unit 31) and the remaining main body 11b.
  • the front cover 11a is detachably installed on the main body 11b.
  • the substrate 33 on which the sensor unit 31 is mounted is fixed to a fixing member 38.
  • the fixing member 38 is rotatably supported by the support body 39 fixed to the main body 11b of the housing
  • a signal (data) detected by the sensor unit 31 constituted by a Doppler sensor is obtained as time-series (continuous) amplitude data.
  • signal analysis in the frequency domain becomes possible.
  • the Fourier transform spectrum of the signal detected by the sensor unit 31 is obtained as a waveform as shown in FIG.
  • the power level on the vertical axis in FIG. 7 is indicated in an arbitrary unit corresponding to the intensity (dB) of the radio wave detected by the sensor unit 31.
  • the noise level refers to the spectrum shown in FIG. 7, that is, the magnitude (power level) of a signal detected by the sensor unit 31 when the care receiver who is the detection target is not in the living room 101.
  • the sensor unit 31 detects the respiratory state of the care recipient sleeping on the bed 102 in the living room 101
  • the Fourier transform spectrum of the detection signal has a waveform as shown in FIG.
  • the spectrum is such that the respiration signal is added.
  • the ratio of the signal level at the breathing frequency (about 0.2 Hz (around 12 times / minute)) and the noise level becomes the S / N (signal to noise) ratio, and the larger this S / N ratio, The detection accuracy of the breathing state is increased.
  • the S / N ratio is large, not only the respiratory frequency but also its harmonic components can be detected.
  • the noise level be as small as possible than the level of the detection signal (respiration signal) of the biological information of the care recipient. That is, in order to increase the detection accuracy of the sensor unit 31, it is necessary to reduce the noise level detected by the sensor unit 31 as much as possible.
  • the clutter signal is a received wave that has not been Doppler shifted, that is, a received wave having the same frequency as the radiated radio wave (transmitted wave).
  • a Doppler sensor is a sensor that detects a reflected wave that is reflected back by a moving object, but the transmitted wave is also a radio wave, so it is directly reflected by a stationary object that is not moving and received by the sensor. There are also reflected waves.
  • the directly reflected wave is called a clutter signal.
  • a clutter cancel circuit is built in the Doppler sensor and has a function of canceling the clutter signal by electrical processing using a filter or the like.
  • a clutter signal exceeding the capacity that can be canceled by the clutter cancellation circuit is generated.
  • FIG. 9 schematically shows several generation paths of clutter signals generated inside the moving object detection unit 10 shown in FIG.
  • (1) A path A in which a radio wave transmitted from the transmission antenna of the sensor unit 31 directly enters (leaks) into the reception antenna.
  • (2) The radio wave transmitted from the transmission antenna of the sensor unit 31 is reflected by the surface 32a on the sensor unit 31 side of the radome lens 32, which is a stationary object located in the very vicinity of the transmission antenna, and directly enters the sensor unit 31.
  • Path B (3)
  • a path C in which the radio wave transmitted from the transmission antenna of the sensor unit 31 is reflected by the inner surface of the front cover 11a of the housing 11 that is a stationary object located in the vicinity of the transmission antenna and directly enters the sensor unit 31.
  • the influence of the clutter signal generated in the path C has the greatest influence on the noise compared to the clutter signal generated in the other paths. This is suppressed to some extent by the clutter signal generated in the route A and the route B by the design of the sensor unit 31 and the design of the radio wave detection unit 30 (including the setting of the positional relationship between the sensor unit 31 and the radome lens 32). Although the relative positional relationship between the sensor unit 31 and the front cover 11a is not fixed for the clutter signal generated in the path C (the direction of the sensor unit 31 varies depending on the position of the bed 102 in the living room 101). To control) by design.
  • FIG. 10 schematically shows the relationship between the magnitude of the respiratory signal detected by the sensor unit 31 and the noise level.
  • the upper diagram shows a case where the noise level is relatively low, and the lower diagram shows noise.
  • the case where the level is relatively large is shown.
  • the “magnitude of the respiratory signal” on the horizontal axis represents a respiratory detection spectrum (for example, a respiratory frequency (near 0.2 Hz) in the Fourier transform spectrum of the detection signal shown in FIG. This corresponds to the integrated value (area) in the respiration frequency band of 0.5 Hz, and the person with a small respiration signal (for example, an elderly person) is to the left of the center of the horizontal axis (the person with a normal respiration signal magnitude).
  • a person with a large respiratory signal (for example, a young person) is distributed on the right side with respect to the center of the horizontal axis.
  • the “frequency” on the vertical axis corresponds to the total number (frequency) of people indicating the magnitude of a certain respiratory signal.
  • the noise level shown in FIG. 10 is equivalent to the integral value in the said respiration detection area of the signal detected by the sensor part 31 when it is unattended.
  • the respiratory signal can be detected even if the respiratory signal is small (the respiratory signal is not reported). .
  • the respiratory signal below the noise level is buried in the noise level, so that the respiratory signal cannot be detected (the respiratory signal is lost). ). Therefore, in order to increase the detection accuracy of the respiratory signal, it is necessary to suppress an increase in noise level due to the clutter signal.
  • FIG. 11 is a Fourier transform spectrum of a signal detected by the sensor unit 31 when there is no cared person in the living room 101, and shows a case where the clutter signal is large and a case where the clutter signal is small. Since noise generated by the clutter signal is white noise generated at all frequencies, when the clutter signal is large, the spectrum is such that the entire power level is offset upward compared to when the clutter signal is small.
  • FIG. 12 shows a Fourier transform spectrum of the detection signal when the respiratory signal of the care recipient is acquired, and shows a case where the clutter signal is larger than the power level of the respiratory signal to be detected. As shown in the figure, when the level of the respiratory signal to be detected is lower than the noise level raised by the clutter signal, the respiratory signal to be detected is buried in the noise, so that the respiratory signal cannot be detected.
  • the above clutter signal is considered to be a composite wave of a transmission wave and a reflected wave, similarly to the wave interference phenomenon.
  • the synthesized wave becomes stronger or weaker depending on the position of the fixed end.
  • the fixed end corresponds to the radome lens 32 (surface 32a) or the front cover 11a of the housing 11 shown in FIG. Therefore, the clutter signal is strengthened or weakened depending on the positional relationship between the radome lens 32 and the front cover 11a and the sensor unit 31 (particularly the transmission antenna). That is, as shown in the upper diagram of FIG.
  • FIG. 14 schematically shows the orientation of the sensor unit 31 that changes in accordance with the positions of the plurality of beds 102 in the living room 101.
  • the vertical direction perpendicular to the ceiling 101a (horizontal plane) is defined as a reference (0 °)
  • the pitch angle ⁇ of the sensor unit 31 from the vertical direction here, the angle of the main axis of the radome lens 32 (the radome angle)).
  • the care support system 1 in order to detect the respiratory state of the cared person P lying on the bed 102 by the sensor unit 31 while the cared person P is sleeping, the inside of the moving object detection unit 10 installed in the ceiling part 101a The sensor unit 31 is operated in the direction of the bed 102.
  • the relative positional relationship (relative distance) between the sensor unit 31 (especially the transmission antenna) and the radome lens 32 changes.
  • the relative positional relationship (relative distance) between the sensor unit 31 and the front cover 11a changes. This depends on the position of the bed 102 installed in the living room 101 (depending on the distance between the moving object detection unit 10 and the bed 102 and the direction of the bed 102 as viewed from the moving object detection unit 10), and the sensor unit 31 and the front cover 11a. This means that the relative distance between and changes.
  • FIG. 15 shows an example of the relationship between the radome angle and the noise level.
  • the radiation frequency (transmission wave frequency) of the radio wave from the sensor unit 31 is constant at A (Hz).
  • the noise level on the vertical axis indicates the integral value of the breath detection interval in the Fourier transform spectrum of the signal detected by the sensor unit 31 when unattended. Since each of the radome angles ⁇ 1 to ⁇ 4 has a different relative distance between the sensor unit 31 and the front cover 11a, it can be seen that the noise level changes according to the radome angle as shown in FIG. In other words, the noise level depends on the radome angle.
  • the detected noise level varies (varies) depending on the positional relationship between the moving body detection unit 10 and the bed 102 (the direction of the set sensor unit 31), and the micro body movement detection is performed depending on the direction of the sensor unit 31. There will be a difference in ability.
  • the amplitude of the synthesized wave is 30 to 40% smaller than that of the transmission wave (or reflected wave) than when the radiation frequency is A. This is because the phase of the transmission wave at the fixed end position is changed by changing the radiation frequency.
  • FIG. 17 shows the radome angle dependence of the noise level at different radiation frequencies A and B.
  • the noise level increases as the radome angle increases.
  • the noise level decreases as the radome angle increases. ing.
  • the noise level is minimum at the radiation frequency A, and when the radome angle is ⁇ 3 and ⁇ 4, the noise level is minimum at the radiation frequency B.
  • a table defining the radiation frequency (specific radiation frequency) that minimizes the noise level for each radome angle is stored in the memory, and the specific radiation frequency corresponding to the set radome angle is obtained from the table.
  • the radiation frequency of the radio wave from the sensor unit 31 is controlled based on such a concept.
  • the characteristic configuration of the care support system 1 of the present embodiment will be described as specific examples 1 to 3.
  • FIG. 18 is a block diagram illustrating a configuration of the care support system 1 of the first specific example.
  • the radio wave detection unit 30 described above further includes a storage unit 35, a radiation control unit 36, and an interface unit 37 in addition to the sensor unit 31, the radome lens 32, and the like.
  • the interface unit 37 is an interface for inputting / outputting information or control signals to / from the unit control unit 40, and includes an input / output port (terminal).
  • the storage unit 35 can detect biological information based on the noise level detected by the sensor unit 31 by the emission of radio waves for each different direction (here, radome angle) of the sensor unit 31 in the housing of the moving object detection unit 10.
  • This is a memory for storing a table defining a specific radiation frequency that is smaller than a predetermined level (for example, the noise level is minimized).
  • the storage unit 35 is composed of, for example, a RAM, a ROM, a nonvolatile memory, and the like.
  • FIG. 19 shows an example of a table stored in the storage unit 35.
  • FIG. 20 shows an example of the specific radiation frequency obtained based on the radome angle dependence of the noise level shown in FIG.
  • the radome angles ⁇ 1 and ⁇ 2 have the minimum noise level at the radiation frequency A
  • the radome angles ⁇ 3 and ⁇ 4 have the minimum noise level at the radiation frequency B. It has become. Therefore, in the specific example 1, as shown in FIGS. 19 and 20, the radiation frequency A is set as the specific radiation frequency for the radome angles ⁇ 1 and ⁇ 2, and the radiation frequency B is specified for the radome angles ⁇ 3 and ⁇ 4.
  • the frequency is set.
  • the storage unit 35 stores a table (radiation frequency setting table) indicating the correspondence between the radome angle and the specific radiation frequency.
  • the radiation control unit 36 is a control unit that controls the radiation frequency of the radio wave in the sensor unit 31, and is configured by a CPU, for example.
  • the radiation control unit 36 can obtain the radiation frequency of the radio wave radiated from the sensor unit 31 based on the table stored in the storage unit 35 according to the setting of the direction of the sensor unit 31. Switch to a specific radiation frequency corresponding to the direction (radome angle).
  • the radiation control unit 36 refers to the above table and specifies the specific radiation frequency (corresponding to the radome angle ⁇ 3).
  • the radiation frequency B) is grasped, and the radiation frequency is switched from the specific radiation frequency (radiation frequency A) corresponding to the radome angle ⁇ 2 to the specific radiation frequency (radiation frequency B) corresponding to the radome angle ⁇ 3.
  • the sensor part 31 radiates
  • whether or not the radome angle has been changed can be determined by the radiation control unit 36 by using image recognition of the captured image. That is, in the configuration in which the moving body detection unit 10 includes the optical detection unit 23 and the image recognition unit 25, image recognition (the shape of the bed 102) by the image recognition unit 25 is obtained from an image acquired by the optical detection unit 23 by photographing the inside of the living room 101. Recognition) allows the shape and position of the bed 102 to be recognized, whereby the sleeping place of the care recipient can be identified in the image. If the sleeping place can be specified in the image, the angle of view corresponding to the sleeping place, that is, the angle of view in the vertical direction and the horizontal direction of the sleeping place (position of the bed 102) in the image can be known.
  • the sensor unit 31 is installed in the ceiling 101a of the living room 101 as the moving body detection unit 10 together with the optical detection unit 23, and the direction of the sensor unit 31 is directed toward the bed 102, so that it corresponds to a sleeping place in the image.
  • the angle of view may be considered to indicate the direction of the bed 102 as viewed from the moving object detection unit 10, that is, the direction of the sensor unit 31. Therefore, the radiation control unit 36 can determine the presence / absence of a change in the orientation of the sensor unit 31 (a change in the radome angle) using image recognition of the captured image.
  • the radiation frequency of the radio wave radiated from the sensor unit 31 is based on the table and the specific radiation corresponding to the direction of the sensor unit 31. Switch to frequency.
  • the noise level detected by the sensor unit 31 is minimized. Therefore, even when the biological information signal (breathing signal) to be detected is small, the signal can be reliably detected in a state where noise including clutter is reduced from the beginning. Therefore, the noise can be reduced and the detection accuracy in the sensor unit 31 can be increased without performing post-processing for subtracting the clutter signal as in the prior art.
  • the detected noise level is minimized in any direction of the sensor unit 31, it is possible to suppress variation in detection performance depending on the direction of the sensor unit 31.
  • the clutter signal that is the main factor of the noise level includes radio waves that directly enter the sensor unit 31 through other paths (for example, radio waves that satisfy resonance conditions). It is. However, in the specific example 1, since the specific radiation frequency that minimizes the entire noise level is set including the noise caused by such a direct incident wave, the switching to the specific radiation frequency causes all routes to be changed. The generated clutter signals can be collectively reduced to reduce the overall noise, thereby reliably increasing the detection accuracy of the sensor unit 31.
  • the moving object detection unit 10 includes the storage unit 35 and the radiation control unit 36 described above, the moving object detection unit 10 alone (without depending on an instruction from the management server 100a) can perform internal processing of the moving object detection unit 10. Thus, switching to the specific radiation frequency according to the setting of the orientation of the sensor unit 31 can be performed.
  • the radiation control unit 36 is based on the angle of view corresponding to the sleeping place (the position of the bed 102) in the captured image.
  • the orientation of the sensor unit 31 can be grasped.
  • the radiation control unit 36 can automatically switch the radiation frequency of the radio wave radiated from the sensor unit 31 to the specific radiation frequency corresponding to the direction of the sensor unit 31 with reference to the table. That is, it becomes possible for the moving body detection unit 10 (the radio wave detection unit 30) itself to switch the radiation frequency of the sensor unit 31 to the specific radiation frequency using the change or setting of the direction of the sensor unit 31 as a trigger.
  • the radome lens 32 of the radio wave detection unit 30 is integrally provided via the sensor unit 31 and the holding unit 34, the direction of the sensor unit 31 together with the radome lens 32 depends on the position of the bed 102. Even if it changes, the detection accuracy in the sensor unit 31 can be increased by switching to the specific radiation frequency while appropriately controlling the directivity of the radio wave by the radome lens 32, and the orientation of the sensor unit 31 Variations in detection performance due to can be reduced.
  • the table stored in the storage unit 35 defines a specific radiation frequency that minimizes the noise level for each different direction (radome angle) of the sensor unit 31 in the housing 11 (see FIG. 19).
  • the radiation control unit 36 refers to the above table and switches the radiation frequency to a specific radiation frequency corresponding to the direction of the sensor unit 31, thereby minimizing the noise level detected by the sensor unit 31 due to radio wave radiation. .
  • a signal for example, a respiratory signal
  • the specific radiation frequency stored in the table is not limited to the radiation frequency that minimizes the noise level.
  • the specific radiation frequency may be a radiation frequency such that the noise level detected by the sensor unit 31 is smaller than a predetermined level at which biological information can be detected.
  • FIG. 21 shows another example of the specific radiation frequency set for each radome angle.
  • the noise level (Fourier) detected by the sensor unit 31 even at the radiation frequency P (Hz) between the radiation frequency A and the radiation frequency B at the radome angles ⁇ 1 and ⁇ 2. If the integral value of the respiration detection section in the converted spectrum is smaller than a predetermined level Nth at which biological information can be detected, such a radiation frequency P may be set as the specific radiation frequency.
  • the noise level detected by the sensor unit 31 is higher than the predetermined level Nth. If it becomes smaller, such a radiation frequency Q may be set as the specific radiation frequency.
  • the noise level increases at radome angles ⁇ 1 and ⁇ 2 compared to the radiation frequency A, and at the radiation frequency Q, the noise level increases at radome angles ⁇ 3 and ⁇ 4 compared to the radiation frequency B.
  • these noise levels are both lower than the predetermined level Nth at which the biological information can be detected and lower than the level of the respiratory signal to be detected, the noise level is lower than the level of the respiratory signal as shown in FIG. Largely, the detection accuracy of the respiration signal can be improved as compared with the case where the respiration signal is buried in the noise level.
  • the bed 102 in the living room 101 is assumed as a sleeping place of the care recipient, but the care receiver who does not install the bed 102 in the living room 101 and sleeps with a futon on the floor,
  • the futon may be considered as a sleeping place.
  • the radiation control unit 36 grasps the orientation of the sensor unit 31 based on the angle of view corresponding to the sleeping place in the image. can do.
  • the storage unit 35 and the radiation control unit 36 of the radio wave detection unit 30 may be provided in the unit control unit 40, and the storage unit 24 and the main control unit 41 of the unit control unit 40 are the storage units described above. 35 and the function of the radiation control unit 36 may also be used.
  • FIG. 22 is a block diagram illustrating a configuration of the care support system 1 of the second specific example.
  • the table described in the first specific example is stored in the management server 100a of the care support system 1, and a request for switching to the specific radiation frequency grasped from the above table is sent from the management server 100a to the moving object detection unit 10 side.
  • the radiation frequency of the sensor unit 31 is switched based on this switching request. More details are as follows.
  • the radio wave detection unit 30 of the care support system 1 has the same configuration as that of the specific example 1 except that the storage unit 35 is omitted from the radio wave detection unit 30 of the specific example 1 illustrated in FIG.
  • a radiation control unit 36 and an interface unit 37 are provided.
  • the radiation control unit 36 controls the radiation of the radio wave in the sensor unit 31, but differs from the first specific example in that the radio wave radiation is controlled based on a control signal from a management control unit 111 (to be described later) of the management server 100 a. ing.
  • the management server 100a includes a management control unit 111, a storage unit 112, an input unit 113, and an interface unit 114.
  • the interface unit 114 is an interface for inputting / outputting information or control signals to / from the unit control unit 40 via the communication line 200, and includes an input / output port (terminal).
  • the management control unit 111 includes a CPU that controls the operation of each unit of the management server 100a.
  • storage part 112 is a memory which memorize
  • the input unit 113 includes, for example, a keyboard, a mouse, a touch panel, and the like, and is provided for inputting information regarding the orientation of the sensor unit 31.
  • a system user owns (mobile) an external terminal 300 that can wirelessly communicate with the management server 100a via the communication line 200. Accordingly, the user can provide various information to the management server 100a via the external terminal 300.
  • the external terminal 300 for example, a terminal having at least an input unit such as a multifunctional portable terminal such as a tablet or a smartphone or a notebook personal computer can be assumed.
  • the system user when the radome angle is changed in accordance with the change of the position of the bed 102 in the living room 101, the system user can input the changed radome angle by the input unit 113 of the management server 100a.
  • the external terminal 300 inputs the changed radome angle and transmits the information to the management server 100a.
  • the management control unit 111 refers to the table stored in the storage unit 112, obtains the specific radiation frequency corresponding to the input radome angle, and requests a control signal (setting command) for switching to the obtained specific radiation frequency. ) Is transmitted to the moving object detection unit 10.
  • the moving body detection unit 10 receives the control signal, and the radiation control unit 36 switches the radiation frequency of the radio wave radiated from the sensor unit 31 to the specific radiation frequency based on the control signal. Thereby, the sensor part 31 radiates
  • the management control unit 111 transmits a control signal for requesting switching to a specific radiation frequency obtained based on the table to the moving object detection unit 10, and in response to this, the radiation control unit 36 of the moving object detection unit 10
  • the radiation frequency of the sensor unit 31 is switched to the specific radiation frequency. Therefore, in the configuration in which the management server 100 manages the radiation frequency of the sensor unit 31, the detection accuracy at the sensor unit 31 can be increased, and variation in detection performance due to the orientation of the sensor unit 31 can be reduced. The effect of can be obtained.
  • the management control unit 111 uses the sensor in the storage unit 112 based on the table. A specific radiation frequency corresponding to the direction of the unit 31 is obtained, and a control signal for requesting switching to the specific radiation frequency is transmitted to the moving object detection unit 10.
  • the management control unit 111 can grasp the direction of the sensor unit 31 based on the information input from the input unit 113 or the information received from the external terminal 300, thereby obtaining the specific radiation frequency corresponding to the direction of the sensor unit 31. It can be determined based on a table. Therefore, the management control unit 111 can request the moving object detection unit 10 to switch to an appropriate specific radiation frequency (transmission of a control signal).
  • the management server 100a may grasp the direction of the sensor unit 31. That is, the information acquired by the optical detection unit 23 and the image recognition unit 25 (the captured image and the sleeping place information specified in the image) is transmitted to the management server 100a, and the management control unit 111 is based on the information.
  • the angle of view corresponding to the sleeping place in the image and the orientation of the sensor unit 31 may be grasped.
  • the management control part 111 calculates
  • the management server 100 a (management control unit 111) does not receive any information regarding the orientation of the sensor unit 31 from the input unit 113 or the external terminal 300.
  • the direction of the unit 31 is grasped, and the specific radiation frequency corresponding to the direction of the sensor unit 31 can be obtained based on the table.
  • the management control unit 111 can make a request for switching to an appropriate specific radiation frequency (transmission of a control signal) to the moving object detection unit 10.
  • the care support system 1 of the specific example 3 is the care support system 1 of the specific example 1 or 2 except that the table stored in the storage unit (the storage unit 35 of the radio wave detection unit 30 or the storage unit 112 of the management server 100a) is different. It is the same.
  • FIG. 23 illustrates an example of a table stored in the storage unit of the care support system 1 according to the third specific example.
  • the angle defining the direction of the sensor unit 31 is only the radome angle, but strictly speaking, it is necessary to consider the radome rotation angle.
  • the radome rotation angle corresponds to the yaw angle when the sensor unit 31 rotates with the direction perpendicular to the horizontal plane (ceiling 101a) as the rotation axis.
  • the radome angle described above corresponds to a pitch angle when the sensor unit 31 rotates with a direction parallel to the horizontal plane as a rotation axis.
  • the radome rotation angle changes, depending on the shape of the front cover 11a of the housing 11, the relative positional relationship (relative distance) between the sensor unit 31 and the front cover 11a changes, and as a result, depending on the radome rotation angle.
  • the noise level changes.
  • both the radome rotation angle and the radome angle are considered as the angles that define the direction of the sensor unit 31, and noise is detected for each direction of the sensor unit 31 defined by both the radome rotation angle and the radome angle.
  • a specific radiation frequency that minimizes the level is set in advance, and the correspondence relationship is stored as a table in the storage unit (storage unit 35 or storage unit 112).
  • the specific radiation frequency corresponding to the set direction of the sensor unit 31 is obtained from the table, and the sensor unit 31 is driven at the obtained specific radiation frequency (the radiation frequency is switched) as in the first or second example.
  • the sensor unit Improvement of detection accuracy in the sensor unit 31 by realizing switching to an appropriate specific radiation frequency according to the direction of the sensor unit 31 regardless of the direction in the room 101 in which the direction of the 31 is a three-dimensional space
  • the radio wave detection part 30 has the radome lens 32
  • the radome lens 32 should just be provided as needed, and installation of the radome lens 32 is also omissible.
  • the direction of the sensor unit 31 may be a direction perpendicular to the substrate 33 on which the sensor unit 31 is mounted.
  • the above-described “radome angle” may be read as “the pitch angle of the sensor unit 31”
  • “radome rotation angle” may be read as “the yaw angle of the sensor unit 31”.
  • the orientation of the sensor unit 31 after the change is grasped by image recognition (refer to specific example 1) or manual input (refer to specific example 2), but after the change using a pitch angle sensor or the like.
  • the direction (angle) of the sensor unit 31 may be read, and thereby the specific radiation frequency corresponding to the direction of the sensor unit 31 may be obtained based on a table.
  • the care support system described in the present embodiment is disposed in a casing of a moving body detection unit installed in a subject's room, and detects a biological information of the subject by emitting and receiving radio waves, A noise level detected by the sensor unit for each of different directions of the radiation control unit for controlling the radiation frequency of the radio wave and the sensor unit in the housing is smaller than a predetermined level at which the biological information can be detected.
  • a storage unit that stores a table that defines a specific radiation frequency such that the radiation control unit determines the radiation frequency of the radio wave radiated from the sensor unit according to the setting of the orientation of the sensor unit, The specific radiation frequency corresponding to the direction of the sensor unit obtained based on the table is switched.
  • the radiation control unit switches the radiation frequency of the radio wave radiated from the sensor unit to the specific radiation frequency obtained based on the table according to the setting of the direction of the sensor unit.
  • the moving object detection unit may include the radiation control unit and the storage unit. In this case, even if there is no instruction from the outside (for example, the management server), switching to a specific radiation frequency corresponding to the direction of the sensor unit is performed by internal processing of the motion detection unit (by itself). Can do.
  • the moving body detection unit captures an image of a living room and acquires an image, and identifies a sleeping place by recognizing the position of a bed or a futon in the living room by image recognition from the image acquired by the imaging unit.
  • An image recognizing unit configured to recognize the orientation of the sensor unit based on an angle of view corresponding to the sleeping place in the image acquired by the imaging unit, and the sensor
  • the radiation frequency of the radio wave radiated from the unit may be switched to the specific radiation frequency corresponding to the direction of the sensor unit obtained based on the table.
  • the position (sleeping place) of the bed or the like can be specified by image recognition from the image acquired by photographing the living room, and thereby the bedtime in the image You can see the vertical and horizontal (shooting) angle of view of the place.
  • the sensor unit is provided in the moving body detection unit together with the imaging unit, and is usually installed in the unit in the direction of the sleeping place for the purpose of detecting a breathing state while the subject is sleeping. It may be considered that the angle of view corresponding to the sleeping place indicates the direction of the sensor unit.
  • the radiation control unit grasps the direction of the sensor unit from the angle of view every time the sensor unit is set (adjusted), even if no information on the direction of the sensor unit is input from the outside. It is possible to automatically switch to a specific radiation frequency corresponding to the direction.
  • the system further includes a management server that manages information output from the moving object detection unit, the moving object detection unit includes the radiation control unit, and the management server stores the storage unit and the storage unit.
  • a management control unit that transmits a control signal that requests switching to the specific radiation frequency obtained based on the table to the moving object detection unit, and the radiation control unit of the moving object detection unit includes the management control Based on the control signal transmitted from the unit, the radiation frequency of the radio wave radiated from the sensor unit may be switched to the specific radiation frequency.
  • the management server Since the management server has a storage unit that stores the table, it is not necessary to provide a large-capacity memory in the motion detection unit, and the manufacturing cost and size of the motion detection unit can be reduced. Further, the management control unit of the management server transmits a control signal requesting switching to the specific radiation frequency obtained based on the table to the moving object detection unit, and the radiation control unit of the moving object detection unit is based on the control signal. The radiation frequency of the sensor unit is switched to the specific radiation frequency. Therefore, in the configuration in which the management server (particularly, the management control unit) manages the radiation frequency of the sensor unit, the above-described effects can be obtained, for example, the detection accuracy at the sensor unit can be increased without performing a subtraction process.
  • the management server includes an input unit for inputting information related to the orientation of the sensor unit, and the management control unit is configured to input the sensor unit based on the table when the information is input by the input unit.
  • the specific radiant frequency corresponding to the direction may be obtained, and the control signal may be transmitted to the moving object detection unit.
  • the management control unit can grasp the direction of the sensor unit from the information input by the input unit, and can obtain the specific radiation frequency corresponding to the direction of the sensor unit based on the table. As a result, the management control unit can make a request for switching to an appropriate specific radiation frequency (transmission of a control signal) to the moving object detection unit.
  • the management control unit obtains the specific radiation frequency corresponding to the direction of the sensor unit based on the table when receiving information on the direction of the sensor unit from an external terminal capable of communicating with the management server.
  • the control signal may be transmitted to the moving object detection unit.
  • the management control unit grasps the direction of the sensor unit from the information received from the external terminal (for example, a multi-function mobile terminal), and obtains the specific radiation frequency corresponding to the direction of the sensor unit based on the table. it can. As a result, the management control unit can make a request for switching to an appropriate specific radiation frequency (transmission of a control signal) to the moving object detection unit.
  • the moving body detection unit captures an image of a living room and acquires an image, and identifies a sleeping place by recognizing the position of a bed or a futon in the living room by image recognition from the image acquired by the imaging unit.
  • An image recognizing unit that further includes an angle of view corresponding to the sleeping place in the image based on the image and the sleeping place information output from the moving body detection unit.
  • the direction of the sensor unit may be grasped, the specific radiation frequency corresponding to the direction of the sensor unit may be obtained based on the table, and the control signal may be transmitted to the moving object detection unit.
  • the position (sleeping place) of the bed or the like can be specified by image recognition from the image acquired by photographing the living room, and thereby the bedtime in the image You can see the vertical and horizontal (shooting) angle of view of the place.
  • the sensor unit is provided in the moving body detection unit together with the imaging unit, and is usually installed in the unit in the direction of the sleeping place for the purpose of detecting a breathing state while the subject is sleeping. It may be considered that the angle of view corresponding to the sleeping place indicates the direction of the sensor unit.
  • the management server (management control unit) is based on information (captured image and sleeping place information) output from the motion detection unit even if no information on the orientation of the sensor unit is input from the input unit or the external terminal.
  • information captured image and sleeping place information
  • the management control unit can make a request for switching to an appropriate specific radiation frequency (transmission of a control signal) to the moving object detection unit.
  • the angle that defines the orientation of the sensor unit is a yaw angle when the sensor unit rotates with a direction perpendicular to the horizontal plane as a rotation axis, and when the sensor unit rotates with a direction parallel to the horizontal plane as a rotation axis.
  • the pitch angle may be included.
  • the direction of the sensor unit is three-dimensionally defined using the yaw angle and the pitch angle, the direction of the sensor unit is the same regardless of the direction of the sensor unit in the room that is a three-dimensional space.
  • the system may further include a radome lens that is provided integrally via the sensor unit and the holding unit and controls the directivity of the radio wave radiated from the sensor unit.
  • a radome lens that is provided integrally via the sensor unit and the holding unit and controls the directivity of the radio wave radiated from the sensor unit.
  • the table may define the specific radiation frequency that minimizes the noise level for each different direction of the sensor unit in the housing. Switching to a specific radiation frequency corresponding to the direction of the sensor unit minimizes the noise level detected by the sensor unit due to radio wave radiation. Therefore, a signal to be detected by the sensor unit (a detection signal of biological information to be observed) ) Can be acquired reliably.
  • the present invention can be used for a care support system that supports the daily life of a subject such as a care recipient in a living room.

Abstract

This care support system includes a sensor unit, an emission control unit, and a storage unit. The sensor unit is disposed in a housing of a moving body detection unit installed in a room of a subject, and detects biological information related to the subject by emitting and receiving radio waves. The storage unit stores a table specifying, for each of a plurality of different orientations of the sensor unit in the housing, a specific emission frequency at which a noise level detected by the sensor unit is smaller than a prescribed level at which the biological information can be detected. The emission control unit switches the emission frequency of the radio waves emitted from the sensor unit to the specific emission frequency which corresponds to the orientation of the sensor unit, and which is obtained on the basis of the table, in accordance with the setting of the orientation of the sensor unit.

Description

ケアサポートシステムCare support system
 本発明は、被検者の居室に設置される動体検知ユニットの筐体内に配置されるセンサ部が、電波の放射および受信によって被検者の生体情報(例えば呼吸状態)を検知するケアサポートシステムに関するものである。 The present invention provides a care support system in which a sensor unit disposed in a casing of a moving object detection unit installed in a subject's living room detects biological information (for example, a respiratory state) of the subject by radiating and receiving radio waves. It is about.
 従来から、物体に向けて電波を放射し、物体で反射してドップラーシフトした反射波を受信することで、物体の動きを検知するドップラーセンサが種々提案されている。このようなドップラーセンサでは、検知精度を上げるために、クラッターと呼ばれる不要なノイズ(検知対象以外の物体での反射波)を極力低減することが必要とされる。そこで、例えば特許文献1では、検知対象の物体が存在しない状態(クラッターのみが存在する状態)で取得した信号と、検知対象の物体が存在する状態(物体およびクラッターが存在する状態)で取得した信号との差をとることにより、ノイズとなるクラッター信号を除去するようにしている。 Conventionally, various Doppler sensors that detect the movement of an object by radiating a radio wave toward the object and receiving a reflected wave reflected by the object and Doppler shifted have been proposed. In such a Doppler sensor, in order to improve detection accuracy, it is necessary to reduce unnecessary noise called a clutter (a reflected wave from an object other than the detection target) as much as possible. Therefore, in Patent Document 1, for example, a signal acquired in a state where there is no object to be detected (a state in which only clutter exists) and a state in which an object to be detected exists (a state in which an object and clutter exist) are acquired. By taking the difference from the signal, the clutter signal that becomes noise is removed.
特開2006-3289号公報(請求項1、段落〔0022〕、〔0023〕等参照)JP 2006-3289 A (refer to claim 1, paragraphs [0022], [0023], etc.)
 近年では、介護施設や病院などにおいて、被介護者等の被検者の日常の生活を支援することを目的として、ドップラーセンサ(以下、センサ部とも称する)を用いて被検者の状態を検知し、これをサーバーで管理するケアサポートシステムが利用されつつある。このようなケアサポートシステムにおいても、センサ部での検知精度を上げることが望まれるが、このときに上記した特許文献1の方法を適用することは、以下の理由により適切ではない。 In recent years, for the purpose of supporting the daily life of a subject such as a care recipient in a nursing facility or a hospital, the state of the subject is detected using a Doppler sensor (hereinafter also referred to as a sensor unit). However, a care support system that manages this with a server is being used. Even in such a care support system, it is desired to increase the detection accuracy in the sensor unit, but it is not appropriate to apply the method of Patent Document 1 described above at this time for the following reason.
 上記した特許文献1の方法は、観測したい信号(物体での反射波)がクラッター信号よりも大きい場合のみ有効である。観測したい信号がクラッター信号よりも小さい場合、観測したい信号がクラッター信号の中に埋もれてしまうため、減算処理を行うと、観測したい信号を検知することができなくなる。特に、介護施設では、高齢者が入居している場合が多く、高齢者の場合、センサ部で検知される信号(例えば呼吸信号)は、中年層や若年層の人に比べて小さい。このため、観測したい信号(呼吸信号)がクラッター信号よりも小さい場合が多い。したがって、ケアサポートシステムでは、減算処理によってクラッター信号を除去する方法は採用できない。 The method described in Patent Document 1 is effective only when the signal to be observed (the reflected wave from the object) is larger than the clutter signal. When the signal to be observed is smaller than the clutter signal, the signal to be observed is buried in the clutter signal. Therefore, when the subtraction process is performed, the signal to be observed cannot be detected. In particular, in elderly care facilities, elderly people are often resident, and in the case of elderly people, a signal (for example, a respiratory signal) detected by the sensor unit is smaller than that of middle-aged and young people. For this reason, the signal (breathing signal) to be observed is often smaller than the clutter signal. Therefore, in the care support system, a method of removing the clutter signal by subtraction processing cannot be adopted.
 また、介護施設では、高齢や身体不自由などの理由により、一日の大半を居室内で過ごす被介護者も多い。このため、介護施設で構築されるケアサポートシステムにおいて、居室内で被介護者が存在せず、クラッターのみが存在する状況を自由に作り出すことができない。このため、ケアサポートシステムの用途では、クラッターのみが存在する状況を故意に作り出して減算処理を行う特許文献1の方法を使用することは困難である。 Also, in nursing care facilities, there are many cared people who spend most of their day in the room due to reasons such as aging and physical disabilities. For this reason, in the care support system constructed in the care facility, it is not possible to freely create a situation in which no care recipient exists in the room and only the clutter exists. For this reason, in the use of the care support system, it is difficult to use the method of Patent Document 1 that intentionally creates a situation where only clutter exists and performs the subtraction process.
 また、ケアサポートシステムにおいて、センサ部(ドップラーセンサ)は筐体で覆われており、例えば居室の天井に設置される。そして、センサ部の向きは、通常、居室内のベッドや布団の方向を向くように調整される(就寝中の呼吸状態を検知するため)。センサ部の向きを調整すると、センサ部とその前方の筐体との相対的な位置関係(例えば相対距離)が変化するため、センサ部から放射される電波の放射周波数を一定としたとき、センサ部の向きによっては、センサ部から放射されて筐体内面で反射され、センサ部に戻ってくる不要な反射波(クラッター)が増大し、センサ部の向きによって検知性能がばらつく。したがって、センサ部がどの向きに設定されても、筐体との相対位置の変化に起因するノイズの増大を抑え、センサ部の向きによる検知性能のばらつきを抑えることが望まれる。 In the care support system, the sensor unit (Doppler sensor) is covered with a casing, and is installed on the ceiling of a living room, for example. And the direction of a sensor part is normally adjusted so that it may face the direction of the bed and the futon in a living room (in order to detect the respiratory state in bedtime). When the orientation of the sensor unit is adjusted, the relative positional relationship (for example, the relative distance) between the sensor unit and the housing in front of the sensor unit changes. Therefore, when the radiation frequency of the radio wave radiated from the sensor unit is constant, the sensor Depending on the orientation of the part, unnecessary reflected waves (clutter) radiated from the sensor part and reflected by the inner surface of the housing and returning to the sensor part increase, and the detection performance varies depending on the orientation of the sensor part. Therefore, it is desired to suppress an increase in noise caused by a change in the relative position with respect to the housing, and to suppress a variation in detection performance due to the orientation of the sensor unit, regardless of the orientation of the sensor unit.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、クラッター信号の減算処理を行うことなく、ノイズとなるクラッターを低減してセンサ部(ドップラーセンサ)での検知精度を上げるとともに、センサ部の向きによる検知性能のばらつきを抑えることができるケアサポートシステムを提供することにある。 The present invention has been made in order to solve the above-described problems. The object of the present invention is to reduce detection accuracy in a sensor unit (Doppler sensor) by reducing clutter as noise without performing subtraction processing of the clutter signal. An object of the present invention is to provide a care support system that can suppress variation in detection performance due to the orientation of a sensor unit.
 本発明の一側面に係るケアサポートシステムは、被検者の居室に設置される動体検知ユニットの筐体内に配置され、電波の放射および受信によって被検者の生体情報を検知するセンサ部と、前記電波の放射周波数を制御する放射制御部と、前記筐体内での前記センサ部の異なる向きごとに、前記センサ部にて検知されるノイズレベルが、前記生体情報を検知可能な所定レベルよりも小さくなるような特定放射周波数を規定したテーブルを記憶する記憶部とを含み、前記放射制御部は、前記センサ部の向きの設定に応じて、前記センサ部から放射される前記電波の放射周波数を、前記テーブルに基づいて得られる、前記センサ部の向きに対応する前記特定放射周波数に切り替える。 A care support system according to one aspect of the present invention is disposed in a casing of a moving object detection unit installed in a subject's room, and detects a biological information of the subject by emitting and receiving radio waves, The noise level detected by the sensor unit for each different direction of the radiation control unit that controls the radiation frequency of the radio wave and the sensor unit in the housing is higher than a predetermined level at which the biological information can be detected. A storage unit that stores a table that defines a specific radiation frequency that decreases, and the radiation control unit determines a radiation frequency of the radio wave radiated from the sensor unit according to a setting of an orientation of the sensor unit. The specific radiation frequency corresponding to the direction of the sensor unit obtained based on the table is switched.
 ケアサポートシステムにおいて、クラッター信号の減算処理を後処理で行うことなく、ノイズとなるクラッターを低減してセンサ部での検知精度を上げるとともに、センサ部の向きによる検知性能のばらつきを抑えることができる。 In the care support system, the clutter signal subtraction process is not performed in post-processing, and noise clutter can be reduced to increase detection accuracy at the sensor unit, and variations in detection performance due to the orientation of the sensor unit can be suppressed. .
本発明の実施の一形態に係るケアサポートシステムの概略の構成を示す説明図である。It is explanatory drawing which shows the structure of the outline of the care support system which concerns on one Embodiment of this invention. 上記ケアサポートシステムの動体検知ユニットが設置された居室内の様子を模式的に示す説明図である。および第2の電波検出部が設置された居室内の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode in the living room where the moving body detection unit of the said care support system was installed. It is explanatory drawing which shows typically the mode of the living room in which the 2nd electromagnetic wave detection part was installed. 上記動体検知ユニットの概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of the said moving body detection unit. 上記動体検知ユニットが有する光学検出部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the optical detection part which the said moving body detection unit has. 上記光学検出部での撮影によって取得された画像の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the image acquired by imaging | photography with the said optical detection part. 上記動体検知ユニットの筐体の前カバーの取付状態および離脱状態のそれぞれにおける、上記動体検知ユニットおよび電波検出部の断面図である。It is sectional drawing of the said moving body detection unit and an electromagnetic wave detection part in each of the attachment state of the front cover of the housing | casing of the said moving body detection unit, and a detached state. 上記電波検出部から出力される、無人のときの検知信号のフーリエ変換スペクトルの一例を示す説明図である。It is explanatory drawing which shows an example of the Fourier-transform spectrum of the detection signal when it is unmanned output from the said electromagnetic wave detection part. 被介護者の呼吸状態を検知したときの、検知信号のフーリエ変換スペクトルを示す説明図である。It is explanatory drawing which shows the Fourier-transform spectrum of a detection signal when the care receiver's respiratory state is detected. 図6で示した動体検知ユニットの内部で発生するクラッター信号の発生経路を模式的に示す説明図である。It is explanatory drawing which shows typically the generation path | route of the clutter signal which generate | occur | produces inside the moving body detection unit shown in FIG. 上記電波検出部のセンサ部にて検知される呼吸信号の大きさと、ノイズレベルとの関係を模式的に示す説明図である。It is explanatory drawing which shows typically the relationship between the magnitude | size of the respiration signal detected by the sensor part of the said electromagnetic wave detection part, and a noise level. 無人のときに上記センサ部にて検知される信号のフーリエ変換スペクトルを、クラッター信号の大小のそれぞれについて示す説明図である。It is explanatory drawing which shows the magnitude | size of a clutter signal for the Fourier-transform spectrum of the signal detected by the said sensor part at the time of unattended. クラッター信号が呼吸信号のパワーレベルよりも大きい場合の、上記センサ部での検知信号のフーリエ変換スペクトルを示す説明図である。It is explanatory drawing which shows the Fourier-transform spectrum of the detection signal in the said sensor part in case a clutter signal is larger than the power level of a respiration signal. 波の干渉現象を説明するための説明図である。It is explanatory drawing for demonstrating the interference phenomenon of a wave. 居室内の複数のベッドの位置に応じて変化する上記センサ部の向きを示す説明図である。It is explanatory drawing which shows direction of the said sensor part which changes according to the position of the some bed in a living room. レドーム角度とノイズレベルとの関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between a radome angle and a noise level. 送信波の放射周波数を変化させた場合の、送信波、反射波および合成波の各波形を模式的に示す説明図である。It is explanatory drawing which shows typically each waveform of a transmission wave, a reflected wave, and a synthetic wave at the time of changing the radiation frequency of a transmission wave. 異なる放射周波数でのノイズレベルのレドーム角度依存性を示す説明図である。It is explanatory drawing which shows the radome angle dependence of the noise level in a different radiation frequency. 具体例1のケアサポートシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the care support system of the specific example 1. 上記ケアサポートシステムの記憶部に記憶されるテーブルの一例を示す説明図である。It is explanatory drawing which shows an example of the table memorize | stored in the memory | storage part of the said care support system. 図17で示したノイズレベルのレドーム角度依存性に基づいて得られる、特定放射周波数の一例を示す説明図である。It is explanatory drawing which shows an example of the specific radiation frequency obtained based on the radome angle dependence of the noise level shown in FIG. 上記特定放射周波数の他の例を示す説明図である。It is explanatory drawing which shows the other example of the said specific radiation frequency. 具体例2のケアサポートシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the care support system of the specific example 2. 具体例3のケアサポートシステムにおいて、記憶部に記憶されるテーブルの一例を示す説明図である。In the care support system of the specific example 3, it is explanatory drawing which shows an example of the table memorize | stored in a memory | storage part.
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。 An embodiment of the present invention will be described below with reference to the drawings.
 〔ケアサポートシステムの概略〕
 図1は、本実施形態のケアサポートシステム1の概略の構成を示す説明図である。ケアサポートシステム1は、介護施設や一般住宅に入居している被介護者や、病院に入院している患者(被看護者)の日常の生活を支援するためのシステムであり、見守りシステムとも呼ばれている。被介護者および被看護者は、ケアサポートシステム1による支援の対象、つまり、後述する画像認識システム20や電波検出部30での認識や検出等によって管理される対象者(被検者)である。ここでは、例として、ケアサポートシステム1が介護施設内で構築されている場合について説明する。
[Outline of care support system]
FIG. 1 is an explanatory diagram showing a schematic configuration of a care support system 1 of the present embodiment. The care support system 1 is a system for supporting the daily life of a cared person living in a nursing facility or a general house, or a patient admitted to a hospital (nurse), and is also called a monitoring system. It is. The cared person and the cared person are objects to be supported by the care support system 1, that is, a target person (subject) managed by recognition or detection in the image recognition system 20 or the radio wave detection unit 30 described later. . Here, as an example, a case where the care support system 1 is constructed in a care facility will be described.
 介護施設には、スタッフステーション100および居室101が設けられている。スタッフステーション100は、介護施設で過ごす被介護者の生活をサポートする介護者のいわゆる詰め所である。このスタッフステーション100には、管理サーバー100aおよび表示部100bが設けられている。管理サーバー100aは、通信回線200を介して、居室101に設置される後述の動体検知ユニット10と通信可能に接続される端末装置であり、中央演算処理装置(CPU;Central Processing Unit)を含んで構成される。なお、通信回線200は、例えば有線LAN(Local Area Network)で構成されるが、無線LANであっても勿論構わない。 In the nursing facility, a staff station 100 and a living room 101 are provided. The staff station 100 is a so-called stuffing station for caregivers who support the lives of the care recipients who spend at the care facilities. The staff station 100 is provided with a management server 100a and a display unit 100b. The management server 100a is a terminal device that is communicably connected to a later-described moving object detection unit 10 installed in the living room 101 via the communication line 200, and includes a central processing unit (CPU; Central Processing Unit). Composed. The communication line 200 is configured by, for example, a wired LAN (Local Area Network), but may be a wireless LAN.
 管理サーバー100aは、通信回線200を介して、動体検知ユニット10から送信(出力)される各種の情報(例えば居室101内の撮影画像や被介護者の生体情報)を受信して管理するとともに、受信した情報を表示部100bに表示する処理を行う。これにより、介護施設の介護者は、表示部100bに表示された情報を見て、居室101内の様子や被介護者の生体情報を把握することができる。表示部100bは、例えばパーソナルコンピュータのディスプレイで構成することができる。また、後述する画像認識システム20での画像認識処理により、被介護者が床面で転倒するなど、被介護者の動作が異常であることが認識されたときには、管理サーバー100aは、動体検知ユニット10からその旨の情報を受信して、動体検知ユニット10の光学検出部23で取得される居室101内の撮影画像のデータを、介護者が所有する携帯端末に送信し、被介護者の異常を介護者に知らせることも可能である。なお、管理サーバー100aから上記携帯端末への画像データの送信時には、画像のサイズや解像度は適宜調整される。 The management server 100a receives and manages various types of information transmitted (output) from the moving body detection unit 10 (for example, a captured image in the living room 101 and biological information of the care recipient) via the communication line 200, The received information is displayed on the display unit 100b. Thereby, the caregiver of the care facility can grasp the state in the living room 101 and the biological information of the care recipient by looking at the information displayed on the display unit 100b. The display unit 100b can be configured by a display of a personal computer, for example. In addition, when it is recognized that an operation of the cared person is abnormal, such as when the cared person falls on the floor by an image recognition process in the image recognition system 20 described later, the management server 100a moves the moving object detection unit. 10 is transmitted to the mobile terminal owned by the caregiver and the data of the captured image in the living room 101 acquired by the optical detection unit 23 of the moving object detection unit 10 is received. It is also possible to inform the caregiver. Note that, when image data is transmitted from the management server 100a to the portable terminal, the size and resolution of the image are appropriately adjusted.
 居室101は、介護施設において少なくとも1つ設けられており、図1では例として居室101が2つ設けられている場合を示している。各居室101内には、被介護者が使用するベッド102が1つ設置されている。なお、1つの居室101内に被介護者が二人以上入居する場合、被介護者の各々に対応する複数のベッド102が設置される。 At least one living room 101 is provided in a care facility, and FIG. 1 shows a case where two living rooms 101 are provided as an example. In each living room 101, one bed 102 used by a care recipient is installed. In addition, when two or more care recipients move in one living room 101, a plurality of beds 102 corresponding to each of the care recipients are installed.
 図2は、動体検知ユニット10が設置された居室101内の様子を模式的に示す説明図である。図1および図2に示すように、動体検知ユニット10は、各居室101の天井部101aに設置され、通信回線200と通信可能に接続されている。居室101が複数のベッド102が設置された多床室である場合、動体検知ユニット10は各ベッド102に対応して居室101の天井部101aに設置される。 FIG. 2 is an explanatory diagram schematically showing the inside of the living room 101 in which the moving object detection unit 10 is installed. As shown in FIGS. 1 and 2, the moving body detection unit 10 is installed on the ceiling portion 101 a of each living room 101 and is communicably connected to a communication line 200. When the living room 101 is a multi-bed room in which a plurality of beds 102 are installed, the moving object detection unit 10 is installed on the ceiling 101 a of the living room 101 corresponding to each bed 102.
 上述したケアサポートシステム1は、少なくとも1つの居室101に設置される動体検知ユニット10(少なくとも1つの動体検知ユニット10)と、スタッフステーション100に設けられた管理サーバー100aとを、通信回線200を介して通信可能に接続して構成されている。 The care support system 1 described above includes a moving body detection unit 10 (at least one moving body detection unit 10) installed in at least one living room 101 and a management server 100a provided in the staff station 100 via a communication line 200. Are connected to communicate with each other.
 〔動体検知ユニット〕
 次に、上記した動体検知ユニット10の詳細について説明する。図3は、動体検知ユニット10の概略の構成を示すブロック図である。動体検知ユニット10は、居室101内の被介護者の情報を検知するユニットであり、筐体11(図6参照)内に、画像認識システム20、電波検出部30およびユニット制御部40を備えている。動体検知ユニット10は、上記の電波検出部30をはじめ、後述する光学検出部23など、種々のセンサを備えていることから、センサボックスとも呼ばれる。
[Motion detection unit]
Next, the details of the moving object detection unit 10 will be described. FIG. 3 is a block diagram showing a schematic configuration of the moving object detection unit 10. The moving body detection unit 10 is a unit that detects information on a cared person in the living room 101, and includes an image recognition system 20, a radio wave detection unit 30, and a unit control unit 40 in a housing 11 (see FIG. 6). Yes. Since the moving body detection unit 10 includes various sensors such as the above-described radio wave detection unit 30 and an optical detection unit 23 described later, it is also called a sensor box.
 画像認識システム20は、照明部21、照明制御部22および光学検出部23を備えている。照明部21は、暗闇での撮影を可能にすべく、赤外線(例えば近赤外光)を発光するLED(Light Emitting Diode)を含んで構成されており、居室101の天井部101aの中央部に位置して、居室101内を照明する。例えば、照明部21は、複数のLEDを有しており、居室101内の床面101b(図2参照)や、天井部101aと床面101bとをつなぐ壁を照明する。照明制御部22は、例えばCPUで構成されて、照明部21による照明(赤外線の発光)を制御する。 The image recognition system 20 includes an illumination unit 21, an illumination control unit 22, and an optical detection unit 23. The illumination unit 21 includes an LED (LightLEDEmitting Diode) that emits infrared light (for example, near-infrared light) to enable photographing in the dark, and is provided at the center of the ceiling 101a of the living room 101. Located to illuminate the interior of the living room 101. For example, the illumination unit 21 has a plurality of LEDs and illuminates a floor surface 101b (see FIG. 2) in the living room 101 and a wall connecting the ceiling portion 101a and the floor surface 101b. The illumination control part 22 is comprised, for example with CPU, and controls the illumination (infrared light emission) by the illumination part 21. FIG.
 光学検出部23は、照明部21の照明のもとで居室101内を撮影して画像を取得する撮像部であり、例えばカメラで構成される。図4は、光学検出部23の詳細な構成を示すブロック図であり、図5は、光学検出部23での撮影によって取得された画像の一例を模式的に示している。光学検出部23は、居室101の天井部101a(図2参照)の中央部に、照明部21と隣接して配置されており、撮影によって視野方向が直下である直上視点の画像を取得する。この光学検出部23は、レンズ51、撮像素子52、AD変換部53、画像処理部54および制御演算部55を備えている。 The optical detection unit 23 is an imaging unit that captures an image of the interior of the living room 101 under the illumination of the illumination unit 21 and is configured by a camera, for example. FIG. 4 is a block diagram illustrating a detailed configuration of the optical detection unit 23, and FIG. 5 schematically illustrates an example of an image acquired by photographing with the optical detection unit 23. The optical detection unit 23 is disposed adjacent to the illumination unit 21 in the center of the ceiling 101a (see FIG. 2) of the living room 101, and acquires an image of a viewpoint directly above that has a viewing direction immediately below by photographing. The optical detection unit 23 includes a lens 51, an image sensor 52, an AD conversion unit 53, an image processing unit 54, and a control calculation unit 55.
 レンズ51は、例えば固定焦点レンズであり、一般的な超広角レンズや魚眼レンズで構成されている。超広角レンズとしては、対角画角が150°以上のレンズを用いることができる。これにより、図5で示したように、天井部101aから居室101の全体を撮影することが可能となり、室内の被介護者と部屋全体とを死角レスで撮影することが可能となる。 The lens 51 is, for example, a fixed focus lens, and is configured by a general super wide angle lens or fisheye lens. As the super wide angle lens, a lens having a diagonal angle of view of 150 ° or more can be used. As a result, as shown in FIG. 5, the entire living room 101 can be photographed from the ceiling 101a, and the care recipient in the room and the entire room can be photographed without blind spots.
 撮像素子52は、例えばCCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)といったイメージセンサで構成されている。撮像素子52は、真っ暗な環境でも被介護者の状態が画像として検出できるように、IRカットフィルタを除去して構成されている。撮像素子52からの出力信号は、AD変換部53に入力される。 The imaging element 52 is configured by an image sensor such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Metal Oxide Semiconductor). The image sensor 52 is configured by removing the IR cut filter so that the state of the cared person can be detected as an image even in a dark environment. An output signal from the image sensor 52 is input to the AD conversion unit 53.
 AD変換部53は、撮像素子52によって撮像された画像のアナログの画像信号を受信し、そのアナログの画像信号をデジタルの画像信号に変換する。AD変換部53から出力されるデジタルの画像信号は、画像処理部54に入力される。 The AD conversion unit 53 receives an analog image signal of an image captured by the image sensor 52 and converts the analog image signal into a digital image signal. The digital image signal output from the AD conversion unit 53 is input to the image processing unit 54.
 画像処理部54は、AD変換部53から出力されるデジタルの画像信号を受信し、そのデジタルの画像信号に対して、例えば黒補正、ノイズ補正、色補間、ホワイトバランスなどの画像処理を実行する。画像処理部54から出力される画像処理後の信号は、後述する画像認識部25に入力される。 The image processing unit 54 receives the digital image signal output from the AD conversion unit 53 and executes image processing such as black correction, noise correction, color interpolation, and white balance on the digital image signal. . The image-processed signal output from the image processing unit 54 is input to the image recognition unit 25 described later.
 制御演算部55は、撮像素子52の制御に関する例えばAE(Automatic Exposure)などの演算を実行するとともに、撮像素子52に対して露光時間やゲインなどの制御を実行する。また、制御演算部55は、必要に応じて、照明部21に対して好適な光量設定や配光設定などの演算を実行するとともに、制御を実行する。なお、制御演算部55に、上述の照明制御部22の機能を持たせるようにしてもよい。 The control calculation unit 55 executes calculations such as AE (Automatic Exposure) related to the control of the image sensor 52 and controls the image sensor 52 such as exposure time and gain. Moreover, the control calculating part 55 performs control while performing calculations, such as a suitable light quantity setting and light distribution setting, with respect to the illumination part 21, as needed. The control calculation unit 55 may have the function of the illumination control unit 22 described above.
 上記の画像処理部54および制御演算部55は、例えば別々のCPUで構成されるが、1つのCPUで一体的に構成されてもよいし、画像処理や演算処理を行う専用の回路でそれぞれ構成されてもよい。 The image processing unit 54 and the control calculation unit 55 are configured by separate CPUs, for example. However, the image processing unit 54 and the control calculation unit 55 may be configured by a single CPU or by dedicated circuits that perform image processing and calculation processing. May be.
 上記した画像認識システム20は、さらに、記憶部24および画像認識部25を備えている。 The image recognition system 20 described above further includes a storage unit 24 and an image recognition unit 25.
 記憶部24は、ユニット制御部40が実行する制御プログラムや各種の情報を記憶するメモリであり、例えばRAM(Random Access Memory)、ROM(Read Only Memory)、不揮発性メモリなどで構成されている。 The storage unit 24 is a memory that stores a control program executed by the unit control unit 40 and various types of information, and includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a nonvolatile memory, and the like.
 画像認識部25は、光学検出部23にて取得された画像の画像データに対して画像認識処理を行う。より具体的には、画像認識部25は、光学検出部23の画像処理部54が画像処理を実行した後の信号を受信し、例えば対象物の輪郭を抽出してパターンマッチング等の手法で形状を認識する画像認識処理を実行する。これにより、画像認識部25は、居室101内にいる被介護者の状態を認識することができる。 The image recognition unit 25 performs image recognition processing on the image data of the image acquired by the optical detection unit 23. More specifically, the image recognition unit 25 receives a signal after the image processing unit 54 of the optical detection unit 23 performs image processing, extracts the contour of the object, for example, and shapes it by a method such as pattern matching. An image recognition process for recognizing the image is executed. Thereby, the image recognition part 25 can recognize the state of the cared person in the living room 101.
 ここで、居室101内にいる被介護者の状態としては、起床、離床、入床、転倒などが想定される。起床は、被介護者が目を覚ましてから、ベッドの上で体を起こすまでの状態を指す。離床は、被介護者がベッドの上で体を起こしてから、床面に降りてベッドから離れるまでの状態を指す。入床は、被介護者が床面からベッドの上に上がり、横になるまでの動作を指す。転倒は、被介護者が床面上で転倒する動作を指す。上記の起床、離床、入床、転倒は、被介護者の体の大きさ動作(体動)を伴う点で、電波検出部30で検出される微体動(呼吸等による体の微小な動き)と区別される。 Here, the state of the cared person in the living room 101 is assumed to be rising, getting out of bed, entering the floor, falling over, and the like. Waking up refers to the state from when the cared person wakes up to wake up on the bed. Getting out of bed refers to the state from when the cared person wakes up on the bed until it gets off the floor and leaves the bed. Entering the floor refers to the movement of the care recipient from the floor to the bed and lying down. Falling refers to an action in which the care recipient falls on the floor. The above-mentioned getting-up, getting-off, getting-in, falling-over is accompanied by the movement of the cared person's body (body movement), and the minute movement detected by the radio wave detection unit 30 (the minute movement of the body by breathing etc.) ).
 なお、画像認識部25は、画像認識によって、居室101内のベッド102や布団の形状および位置も認識することができる。 In addition, the image recognition part 25 can also recognize the shape and position of the bed 102 or the futon in the living room 101 by image recognition.
 電波検出部30は、電波の放射および受信によって居室101内の動体を検出するブロックであり、不図示の放射部から例えば24GHz帯のマイクロ波を各居室のベッドに向けて放射し、被介護者にて反射してドップラーシフトした反射波を不図示の受信部にて受信する。これにより、電波検出部30は、受信した反射波から被介護者の生体情報(呼吸状態、睡眠状態、心拍数などの情報)を検出することができる。 The radio wave detection unit 30 is a block that detects a moving object in the living room 101 by emitting and receiving radio waves. The radio wave detection unit 30 radiates, for example, a 24 GHz band microwave from a radiating unit (not shown) toward the bed of each living room. The reflected wave reflected by Doppler and shifted by Doppler is received by a receiving unit (not shown). Thereby, the radio wave detection unit 30 can detect biological information (information such as a respiratory state, a sleep state, and a heart rate) of the cared person from the received reflected wave.
 なお、被介護者が呼吸しているとき(睡眠中も含む)、被介護者の呼吸による体の微小な動き(微体動)が生じる。このため、被介護者の呼吸状態や睡眠状態を検出することは、被介護者の微体動を検出するのと同じである。このことから、電波検出部30は、被介護者(被検者)の微体動を検出する微体動検出部として機能しているとも言うことができる。 In addition, when the cared person is breathing (including during sleep), minute movements of the body due to the cared person's breathing (micromotion) occur. For this reason, detecting the care recipient's breathing state and sleep state is the same as detecting the care receiver's micromotion. From this, it can also be said that the radio wave detection unit 30 functions as a microscopic motion detection unit that detects microscopic motion of a care recipient (subject).
 ユニット制御部40は、画像認識システム20および電波検出部30の動作を制御するとともに、画像認識システム20および電波検出部30から得た情報に対して画像処理や信号処理を行い、得られた結果を被介護者の状態に関する情報として管理サーバー100aに出力する制御基板である。このユニット制御部40は、主制御部41、情報処理部42、およびインターフェース部43を備えており、さらに上記した記憶部24および画像認識部25を備えている。なお、記憶部24および画像認識部25は、ユニット制御部40とは独立して設けられていてもよい。 The unit control unit 40 controls the operations of the image recognition system 20 and the radio wave detection unit 30, and performs image processing and signal processing on information obtained from the image recognition system 20 and the radio wave detection unit 30, and results obtained Is a control board that outputs to the management server 100a as information on the status of the care recipient. The unit control unit 40 includes a main control unit 41, an information processing unit 42, and an interface unit 43, and further includes the storage unit 24 and the image recognition unit 25 described above. Note that the storage unit 24 and the image recognition unit 25 may be provided independently of the unit control unit 40.
 主制御部41は、動体検知ユニット10内の各部の動作を制御するCPUで構成されている。情報処理部42および画像認識部25は、上記のCPUで構成されてもよいし(主制御部41と一体化されていてもよいし)、他の演算部や、特定の処理を行う回路で構成されてもよい。 The main control unit 41 is composed of a CPU that controls the operation of each unit in the moving object detection unit 10. The information processing unit 42 and the image recognition unit 25 may be configured by the above-described CPU (may be integrated with the main control unit 41), or may be another arithmetic unit or a circuit that performs a specific process. It may be configured.
 情報処理部42は、画像認識システム20の光学検出部23から出力される情報(例えば画像データ)や、電波検出部30から出力される情報(例えば呼吸状態に関するデータ)に対して、所定のアルゴリズムに基づいた信号処理を行う。信号処理によって得られた情報は、画像認識システム20(特に画像認識部25)での画像認識に利用される。 The information processing unit 42 uses a predetermined algorithm for information (for example, image data) output from the optical detection unit 23 of the image recognition system 20 and information (for example, data related to a respiratory state) output from the radio wave detection unit 30. Based on the signal processing. Information obtained by the signal processing is used for image recognition in the image recognition system 20 (particularly, the image recognition unit 25).
 インターフェース部43には、通信回線200のネットワークケーブル(不図示)が電気的に接続される。画像やマイクロ波に基づいて動体検知ユニット10が検出した被介護者の状態に関する情報は、インターフェース部43および通信回線200を介して管理サーバー100aに送信される。 The network cable (not shown) of the communication line 200 is electrically connected to the interface unit 43. Information relating to the status of the cared person detected by the moving object detection unit 10 based on images and microwaves is transmitted to the management server 100a via the interface unit 43 and the communication line 200.
 〔電波検出部についての補足〕
 次に、上記した電波検出部30について説明を補足する。図6は、筐体11の後述する本体11bに対する前カバー11aの取付状態および離脱状態のそれぞれにおける、動体検知ユニット10および電波検出部30の断面図である。電波検出部30は、センサ部31と、レドームレンズ32とを有している。
[Supplemental information on radio wave detector]
Next, the description of the radio wave detection unit 30 will be supplemented. FIG. 6 is a cross-sectional view of the moving object detection unit 10 and the radio wave detection unit 30 in an attached state and a detached state of the front cover 11a with respect to a main body 11b described later of the housing 11. The radio wave detection unit 30 includes a sensor unit 31 and a radome lens 32.
 センサ部31は、電波の放射および受信によって被介護者の生体情報を個別に検出するためのマイクロ波ドップラーセンサによって構成されるチップであり、基板33に搭載されている。このセンサ部31は、RFLSI(高周波用集積回路素子)や、電波を送受信するための送信アンテナおよび受信アンテナを含んで構成されている。 The sensor unit 31 is a chip composed of a microwave Doppler sensor for individually detecting biological information of a cared person by emitting and receiving radio waves, and is mounted on a substrate 33. The sensor unit 31 includes an RFLSI (high frequency integrated circuit element), and a transmission antenna and a reception antenna for transmitting and receiving radio waves.
 レドームレンズ32は、センサ部31を保護するとともに、センサ部31から放射される電波の指向性を制御する(例えば狭くする)ための電波レンズであり、センサ部31の前方(電波放射側)に位置するように、保持部34を介してセンサ部31と一体的に設けられている。レドームレンズ32は、例えばセンサ部31側の面32aが平面で、センサ部31とは反対側の面32bが電波放射側に凸形状の平凸レンズで構成されており、その主軸がセンサ部31の中心を通るように保持部34で保持されている。それゆえ、センサ部31の向きは、レドームレンズ32の主軸の方向と一致している。 The radome lens 32 is a radio wave lens that protects the sensor unit 31 and controls (for example, narrows) the directivity of radio waves radiated from the sensor unit 31, and is located in front of the sensor unit 31 (on the radio wave emission side). It is provided integrally with the sensor unit 31 via the holding unit 34 so as to be positioned. For example, the surface 32a on the sensor unit 31 side is a flat surface, and the surface 32b on the opposite side to the sensor unit 31 is formed of a plano-convex lens having a convex shape on the radio wave radiation side. It is held by the holding part 34 so as to pass through the center. Therefore, the direction of the sensor unit 31 coincides with the direction of the main axis of the radome lens 32.
 ここで、レドームレンズ32の主軸とは、レドームレンズ32の面32bの曲率中心を通り、面32aに垂直な軸であり、光軸または回転対称軸と同義である。また、上記した「センサ部31の向き」を規定する角度は、水平面(ここでは動体検知ユニット10が設置される居室101の天井部101aを想定)に垂直な方向を回転軸としてセンサ部31が回転するときのヨー角、および上記水平面に平行な方向を回転軸としてセンサ部31が回転するときのピッチ角によって規定されるが、ここでは説明の理解をしやすくするために、特に断らない限り、ピッチ角を指すものとする。 Here, the main axis of the radome lens 32 is an axis that passes through the center of curvature of the surface 32b of the radome lens 32 and is perpendicular to the surface 32a, and is synonymous with the optical axis or rotational symmetry axis. In addition, the angle that defines the “direction of the sensor unit 31” described above is such that the sensor unit 31 has a rotation axis in a direction perpendicular to a horizontal plane (here, the ceiling 101a of the living room 101 where the moving object detection unit 10 is installed). It is defined by the yaw angle when rotating and the pitch angle when the sensor unit 31 rotates with the direction parallel to the horizontal plane as the rotation axis, but here, in order to facilitate understanding of the description, unless otherwise noted , And refers to the pitch angle.
 また、ここでは、水平面に平行な面内で互いに垂直な2つの回転軸を考えたときに、一方の回転軸(例えば左右方向)を中心として回転するときの回転角であるピッチ角と、他方の回転軸(例えば前後方向)を中心として回転するときの回転角であるヨー角とを区別する必要がないため(水平面に平行な方向の回転によって上記一方の回転軸は上記他方の回転軸にもなり得るため)、両者はピッチ角として統一して扱うことにする。 Further, here, when considering two rotation axes perpendicular to each other in a plane parallel to the horizontal plane, the pitch angle that is a rotation angle when rotating around one rotation axis (for example, the left-right direction), and the other It is not necessary to distinguish the yaw angle that is the rotation angle when rotating around the rotation axis (for example, the front-rear direction) (the one rotation axis becomes the other rotation axis by rotation in a direction parallel to the horizontal plane). Therefore, both are treated as a pitch angle in a unified manner.
 また、上述した動体検知ユニット10の筐体11は、レドームレンズ32の前方(センサ部31とは反対側)に位置する前カバー11aと、残りの本体11bとを含んで構成されている。前カバー11aは、本体11bに対して着脱自在に設置されている。これにより、後述するように就寝中の被介護者の呼吸状態をセンサ部31で検知すべく、センサ部31の向きを、ベッド102の方向を向くように調整する際には、本体11bから前カバー11aを取り外して調整することが可能となる。センサ部31の向きの調整が完了すると、前カバー11aは本体11bに再び装着される。 The casing 11 of the moving object detection unit 10 described above includes a front cover 11a located in front of the radome lens 32 (on the side opposite to the sensor unit 31) and the remaining main body 11b. The front cover 11a is detachably installed on the main body 11b. Thereby, when adjusting the direction of the sensor unit 31 to face the direction of the bed 102 so that the sensor unit 31 detects the respiratory state of the care recipient who is sleeping, as described later, It is possible to remove and adjust the cover 11a. When the adjustment of the orientation of the sensor unit 31 is completed, the front cover 11a is attached to the main body 11b again.
 センサ部31が搭載される上記の基板33は、固定部材38に固定されている。そして、固定部材38は、センサ部31の向きを変更できるように、筐体11の本体11bに固定された支持体39に回動自在に支持されている。 The substrate 33 on which the sensor unit 31 is mounted is fixed to a fixing member 38. And the fixing member 38 is rotatably supported by the support body 39 fixed to the main body 11b of the housing | casing 11 so that the direction of the sensor part 31 can be changed.
 〔センサ部の向きとノイズレベルとの関係について〕
 次に、上記したセンサ部31の向きと、センサ部31にて検知されるノイズレベルとの関係について説明する。
[Relationship between sensor direction and noise level]
Next, the relationship between the orientation of the sensor unit 31 and the noise level detected by the sensor unit 31 will be described.
 (ノイズレベルについて)
 ドップラーセンサで構成されるセンサ部31にて検知される信号(データ)は、時系列の(連続した)振幅データとして得られる。これらのデータをフーリエ変換することにより、周波数領域での信号解析が可能となる。例えば、居室101内に被介護者がいないとき、センサ部31にて検知される信号のフーリエ変換スペクトルは、図7のような波形として得られる。なお、図7の縦軸のパワーレベルは、便宜的に、センサ部31にて検出される電波の強さ(dB)に対応する任意単位(arbitary unit)で示している。ノイズレベルとは、図7で示したスペクトル、つまり、検知対象である被介護者が居室101にいないときに、センサ部31にて検知される信号の大きさ(パワーレベル)を指す。
(About noise level)
A signal (data) detected by the sensor unit 31 constituted by a Doppler sensor is obtained as time-series (continuous) amplitude data. By performing Fourier transform on these data, signal analysis in the frequency domain becomes possible. For example, when there is no cared person in the living room 101, the Fourier transform spectrum of the signal detected by the sensor unit 31 is obtained as a waveform as shown in FIG. For convenience, the power level on the vertical axis in FIG. 7 is indicated in an arbitrary unit corresponding to the intensity (dB) of the radio wave detected by the sensor unit 31. The noise level refers to the spectrum shown in FIG. 7, that is, the magnitude (power level) of a signal detected by the sensor unit 31 when the care receiver who is the detection target is not in the living room 101.
 一方、居室101内のベッド102で寝ている被介護者の呼吸状態をセンサ部31で検知したとき、検知信号のフーリエ変換スペクトルは、例えば図8のような波形となり、上記のノイズレベルに、呼吸信号が上乗せされたようなスペクトルとなる。このとき、呼吸周波数(約0.2Hz(12回/分)付近)での信号レベルと、ノイズレベルとの比がS/N(signal to noise)比となり、このS/N比が大きいほど、呼吸状態の検知精度が高くなる。なお、S/N比が大きいと、呼吸周波数のみならず、その高調波成分も検知できる。 On the other hand, when the sensor unit 31 detects the respiratory state of the care recipient sleeping on the bed 102 in the living room 101, the Fourier transform spectrum of the detection signal has a waveform as shown in FIG. The spectrum is such that the respiration signal is added. At this time, the ratio of the signal level at the breathing frequency (about 0.2 Hz (around 12 times / minute)) and the noise level becomes the S / N (signal to noise) ratio, and the larger this S / N ratio, The detection accuracy of the breathing state is increased. When the S / N ratio is large, not only the respiratory frequency but also its harmonic components can be detected.
 したがって、良好なS/N比で呼吸信号を検知するためには、ノイズレベルを、被介護者の生体情報の検知信号(呼吸信号)のレベルよりもできるだけ小さくすることが望ましい。つまり、センサ部31での検知精度を上げるためには、センサ部31にて検知されるノイズレベルを極力低減することが必要である。 Therefore, in order to detect a respiration signal with a good S / N ratio, it is desirable that the noise level be as small as possible than the level of the detection signal (respiration signal) of the biological information of the care recipient. That is, in order to increase the detection accuracy of the sensor unit 31, it is necessary to reduce the noise level detected by the sensor unit 31 as much as possible.
 ここで、本願発明者らによる種々の検討および解析の結果、ノイズレベルを悪化させる主要因は、クラッター信号であることが分かっている。クラッター信号とは、ドップラーシフトしていない受信波、つまり、放射電波(送信波)と同一の周波数の受信波のことである。本来、ドップラーセンサは、送信波が動く物体で反射されて戻ってくる反射波を検知するセンサであるが、送信波も電波であるため、動いていない静止物体で直接反射されてセンサで受信される反射波も存在する。その直接反射波のことを、クラッター信号と呼ぶ。 Here, as a result of various examinations and analyzes by the inventors of the present application, it is known that the main factor that deteriorates the noise level is the clutter signal. The clutter signal is a received wave that has not been Doppler shifted, that is, a received wave having the same frequency as the radiated radio wave (transmitted wave). Originally, a Doppler sensor is a sensor that detects a reflected wave that is reflected back by a moving object, but the transmitted wave is also a radio wave, so it is directly reflected by a stationary object that is not moving and received by the sensor. There are also reflected waves. The directly reflected wave is called a clutter signal.
 通常、ドップラーセンサ内部には、クラッターキャンセル回路が内蔵されており、フィルタ等を使用した電気的な処理によってクラッター信号をキャンセルさせる機能が備わっている。しかし、センサの電波送信部(送信アンテナ)の近傍に反射物体が存在する場合は、クラッターキャンセル回路でキャンセルできる能力以上のクラッター信号が発生してしまう。 Normally, a clutter cancel circuit is built in the Doppler sensor and has a function of canceling the clutter signal by electrical processing using a filter or the like. However, when there is a reflective object in the vicinity of the radio wave transmission unit (transmission antenna) of the sensor, a clutter signal exceeding the capacity that can be canceled by the clutter cancellation circuit is generated.
 図9は、図6で示した動体検知ユニット10の内部で発生するクラッター信号の幾つかの発生経路を模式的に示している。上記クラッター信号の発生経路は、主に、以下の3つである。
 (1)センサ部31の送信アンテナから送信された電波が、受信アンテナに直接入射する(漏れ込む)経路A。
 (2)センサ部31の送信アンテナから送信された電波が、送信アンテナの極近傍に位置する静止物体であるレドームレンズ32のセンサ部31側の面32aで反射されてセンサ部31に直接入射する経路B。
 (3)センサ部31の送信アンテナから送信された電波が、送信アンテナの近傍に位置する静止物体である筐体11の前カバー11aの内面で反射されてセンサ部31に直接入射する経路C。
FIG. 9 schematically shows several generation paths of clutter signals generated inside the moving object detection unit 10 shown in FIG. There are mainly the following three generation paths of the clutter signal.
(1) A path A in which a radio wave transmitted from the transmission antenna of the sensor unit 31 directly enters (leaks) into the reception antenna.
(2) The radio wave transmitted from the transmission antenna of the sensor unit 31 is reflected by the surface 32a on the sensor unit 31 side of the radome lens 32, which is a stationary object located in the very vicinity of the transmission antenna, and directly enters the sensor unit 31. Path B.
(3) A path C in which the radio wave transmitted from the transmission antenna of the sensor unit 31 is reflected by the inner surface of the front cover 11a of the housing 11 that is a stationary object located in the vicinity of the transmission antenna and directly enters the sensor unit 31.
 上記3つの経路A~Cのうち、経路Cで発生するクラッター信号の影響が他の経路で発生するクラッター信号に比べて、ノイズへの影響が最も大きい。これは、経路Aおよび経路Bで発生するクラッター信号については、センサ部31の設計、および電波検出部30の設計(センサ部31とレドームレンズ32との位置関係の設定を含む)によって、ある程度抑えることができるが、経路Cで発生するクラッター信号については、センサ部31と前カバー11aとの相対的な位置関係が固定でないため(居室101内のベッド102の位置によってセンサ部31の向きが変化するため)、設計でコントロールすることができないことによる。 Among the above three paths A to C, the influence of the clutter signal generated in the path C has the greatest influence on the noise compared to the clutter signal generated in the other paths. This is suppressed to some extent by the clutter signal generated in the route A and the route B by the design of the sensor unit 31 and the design of the radio wave detection unit 30 (including the setting of the positional relationship between the sensor unit 31 and the radome lens 32). Although the relative positional relationship between the sensor unit 31 and the front cover 11a is not fixed for the clutter signal generated in the path C (the direction of the sensor unit 31 varies depending on the position of the bed 102 in the living room 101). To control) by design.
 ここで、図10は、センサ部31にて検知される呼吸信号の大きさと、ノイズレベルとの関係を模式的に示しており、上図はノイズレベルが相対的に小さい場合を、下図はノイズレベルが相対的に大きい場合を示している。なお、同図において、横軸の「呼吸信号の大きさ」は、図8で示した検知信号のフーリエ変換スペクトルの、呼吸検知区間(例えば呼吸周波数(0.2Hz付近)を含む0.1~0.5Hzの呼吸周波数帯)における積分値(面積)に相当し、呼吸信号の小さい人(例えば高齢者)は、横軸の中央(呼吸信号の大きさが標準的な人)に対して左側に分布し、呼吸信号の大きい人(例えば若年層の人)は、横軸の中央に対して右側に分布する。また、縦軸の「頻度」とは、ある呼吸信号の大きさを示す人のトータルの数(度数)に対応している。また、図10で示すノイズレベルは、無人のときにセンサ部31にて検知される信号の上記呼吸検知区間での積分値に相当する。 Here, FIG. 10 schematically shows the relationship between the magnitude of the respiratory signal detected by the sensor unit 31 and the noise level. The upper diagram shows a case where the noise level is relatively low, and the lower diagram shows noise. The case where the level is relatively large is shown. In the figure, the “magnitude of the respiratory signal” on the horizontal axis represents a respiratory detection spectrum (for example, a respiratory frequency (near 0.2 Hz) in the Fourier transform spectrum of the detection signal shown in FIG. This corresponds to the integrated value (area) in the respiration frequency band of 0.5 Hz, and the person with a small respiration signal (for example, an elderly person) is to the left of the center of the horizontal axis (the person with a normal respiration signal magnitude). A person with a large respiratory signal (for example, a young person) is distributed on the right side with respect to the center of the horizontal axis. The “frequency” on the vertical axis corresponds to the total number (frequency) of people indicating the magnitude of a certain respiratory signal. Moreover, the noise level shown in FIG. 10 is equivalent to the integral value in the said respiration detection area of the signal detected by the sensor part 31 when it is unattended.
 図10の上図のように、呼吸信号の大きさの分布に対して、ノイズレベルが十分小さければ、呼吸信号が小さくてもその呼吸信号を検知できる(呼吸信号を失報することはない)。しかし、図10の下図のように、クラッター信号によってノイズレベルが悪化(増大)すると、ノイズレベル以下の呼吸信号はノイズレベルに埋もれてしまうため、上記呼吸信号を検知できない(呼吸信号を失報する)。したがって、呼吸信号の検知精度を上げるためには、クラッター信号によるノイズレベルの増大を抑えることが必要である。 As shown in the upper diagram of FIG. 10, if the noise level is sufficiently small with respect to the distribution of the magnitude of the respiratory signal, the respiratory signal can be detected even if the respiratory signal is small (the respiratory signal is not reported). . However, as shown in the lower diagram of FIG. 10, when the noise level is deteriorated (increased) by the clutter signal, the respiratory signal below the noise level is buried in the noise level, so that the respiratory signal cannot be detected (the respiratory signal is lost). ). Therefore, in order to increase the detection accuracy of the respiratory signal, it is necessary to suppress an increase in noise level due to the clutter signal.
 また、図11は、居室101内に被介護者がいないときに、センサ部31にて検知される信号のフーリエ変換スペクトルであって、クラッター信号が大きい場合と小さい場合とを示している。クラッター信号によって発生するノイズは、全周波数に発生するホワイトノイズであるため、クラッター信号が大きい場合は、クラッター信号が小さい場合に比べて、パワーレベル全体が上方にオフセットされたようなスペクトルとなる。 FIG. 11 is a Fourier transform spectrum of a signal detected by the sensor unit 31 when there is no cared person in the living room 101, and shows a case where the clutter signal is large and a case where the clutter signal is small. Since noise generated by the clutter signal is white noise generated at all frequencies, when the clutter signal is large, the spectrum is such that the entire power level is offset upward compared to when the clutter signal is small.
 図12は、被介護者の呼吸信号の取得時の検知信号のフーリエ変換スペクトルであって、クラッター信号が、検知したい呼吸信号のパワーレベルよりも大きい場合を示している。同図のように、クラッター信号によって持ち上がったノイズレベルよりも、検知したい呼吸信号のレベルが小さい場合、検知したい呼吸信号がノイズに埋もれてしまうため、呼吸信号を検知できなくなることがわかる。 FIG. 12 shows a Fourier transform spectrum of the detection signal when the respiratory signal of the care recipient is acquired, and shows a case where the clutter signal is larger than the power level of the respiratory signal to be detected. As shown in the figure, when the level of the respiratory signal to be detected is lower than the noise level raised by the clutter signal, the respiratory signal to be detected is buried in the noise, so that the respiratory signal cannot be detected.
 前述の特許文献1のように、ノイズレベルを減算処理してクラッター信号をキャンセルする場合、図8で示したように、検知したい呼吸信号のパワーレベルがノイズレベルよりも大きければ、上記減算処理によってクラッター信号をキャンセルすることができる。しかし、図12のように、呼吸信号のパワーレベルがノイズレベルよりも小さい場合、呼吸信号がノイズに埋もれているため、上記減算処理を行っても呼吸信号を検知することができない。ケアサポートシステム1では、呼吸信号が決して大きくはない高齢者も被検者に含まれ、クラッター信号もかなり大きい場合を想定しているため、特許文献1のような減算処理でクラッター信号をキャンセルする手法を採用することはできない。そのため、減算処理以外の方法で、クラッター信号を低減することが必要となる。 When the noise level is subtracted and the clutter signal is canceled as in Patent Document 1 described above, if the power level of the respiratory signal to be detected is larger than the noise level as shown in FIG. The clutter signal can be canceled. However, as shown in FIG. 12, when the power level of the respiration signal is smaller than the noise level, the respiration signal cannot be detected even if the subtraction process is performed because the respiration signal is buried in noise. In the care support system 1, since it is assumed that elderly persons whose respiratory signals are never large are included in the subject and the clutter signal is also quite large, the clutter signal is canceled by the subtraction process as in Patent Document 1. The method cannot be adopted. Therefore, it is necessary to reduce the clutter signal by a method other than the subtraction process.
 ところで、上記のクラッター信号は、波の干渉現象と同様に、送信波と反射波との合成波であると考えられる。波の場合、固定端の位置によって合成波が強まったり、弱まったりする。クラッター信号の場合、固定端は、図9で示したレドームレンズ32(面32a)や筐体11の前カバー11aに相当する。したがって、レドームレンズ32や前カバー11aと、センサ部31(特に送信アンテナ)との位置関係によって、クラッター信号も強まったり、弱まったりする。つまり、図13の上図に示すように、固定端での反射波が送信波(入射波)と逆位相となるような位置に固定端がある場合、送信波と反射波とは互いに打ち消される(振幅がゼロの合成波(定常波)が得られる)。一方、図13の下図に示すように、固定端での反射波が送信波と同位相となるような位置に固定端がある場合、送信波と反射波とは互いに強め合う(振幅が送信波の2倍である合成波(定常波)が得られる)。 By the way, the above clutter signal is considered to be a composite wave of a transmission wave and a reflected wave, similarly to the wave interference phenomenon. In the case of a wave, the synthesized wave becomes stronger or weaker depending on the position of the fixed end. In the case of a clutter signal, the fixed end corresponds to the radome lens 32 (surface 32a) or the front cover 11a of the housing 11 shown in FIG. Therefore, the clutter signal is strengthened or weakened depending on the positional relationship between the radome lens 32 and the front cover 11a and the sensor unit 31 (particularly the transmission antenna). That is, as shown in the upper diagram of FIG. 13, when the fixed end is in a position where the reflected wave at the fixed end is opposite in phase to the transmitted wave (incident wave), the transmitted wave and the reflected wave cancel each other. (A synthesized wave (stationary wave) with zero amplitude is obtained). On the other hand, as shown in the lower diagram of FIG. 13, when the fixed end is at a position where the reflected wave at the fixed end is in phase with the transmitted wave, the transmitted wave and the reflected wave reinforce each other (the amplitude is the transmitted wave). A synthetic wave (stationary wave) that is twice as large is obtained).
 図14は、居室101内の複数のベッド102の位置に応じて変化するセンサ部31の向きを模式的に示している。なお、図14では、天井部101a(水平面)に垂直な鉛直方向を基準(0°)とし、その鉛直方向からのセンサ部31のピッチ角θ(ここではレドームレンズ32の主軸の角度(レドーム角度)とする)を、ベッド102の位置に応じて、θ=0°から、θ=+20°およびθ=+45°に変化させた場合を示している。ケアサポートシステム1では、センサ部31により、被介護者Pの就寝中に、ベッド102に横たわっている被介護者Pの呼吸状態を検知するため、天井部101aに設置された動体検知ユニット10内のセンサ部31は、ベッド102の方向に向けられて運用される。 FIG. 14 schematically shows the orientation of the sensor unit 31 that changes in accordance with the positions of the plurality of beds 102 in the living room 101. In FIG. 14, the vertical direction perpendicular to the ceiling 101a (horizontal plane) is defined as a reference (0 °), and the pitch angle θ of the sensor unit 31 from the vertical direction (here, the angle of the main axis of the radome lens 32 (the radome angle)). )) Is shown when θ = 0 ° is changed from θ = 0 ° to θ = + 20 ° and θ = + 45 ° according to the position of the bed 102. In the care support system 1, in order to detect the respiratory state of the cared person P lying on the bed 102 by the sensor unit 31 while the cared person P is sleeping, the inside of the moving object detection unit 10 installed in the ceiling part 101a The sensor unit 31 is operated in the direction of the bed 102.
 同図に示すように、センサ部31の向きをベッド102の位置に応じて変化させても、センサ部31(特に送信アンテナ)とレドームレンズ32との相対的な位置関係(相対距離)は変化しないが、センサ部31と前カバー11aとの相対的な位置関係(相対距離)は変化する。このことは、居室101内に設置されるベッド102の位置によって(動体検知ユニット10とベッド102との距離、および動体検知ユニット10から見たベッド102の方角によって)、センサ部31と前カバー11aとの相対距離が変化することを意味する。 As shown in the figure, even if the orientation of the sensor unit 31 is changed in accordance with the position of the bed 102, the relative positional relationship (relative distance) between the sensor unit 31 (especially the transmission antenna) and the radome lens 32 changes. However, the relative positional relationship (relative distance) between the sensor unit 31 and the front cover 11a changes. This depends on the position of the bed 102 installed in the living room 101 (depending on the distance between the moving object detection unit 10 and the bed 102 and the direction of the bed 102 as viewed from the moving object detection unit 10), and the sensor unit 31 and the front cover 11a. This means that the relative distance between and changes.
 このように、センサ部31の向きによって、センサ部31と前カバー11aとの相対的な位置関係が変化すると、センサ部31に対して、図13で示した固定端(前カバー11a)の位置が変化する。これは、センサ部31の向きによってクラッター信号の大きさ(合成波の振幅、レベル)が変化し、センサ部31にて検知されるノイズレベルがセンサ部31の向きによって変化することを意味する。 Thus, when the relative positional relationship between the sensor unit 31 and the front cover 11a changes depending on the orientation of the sensor unit 31, the position of the fixed end (front cover 11a) shown in FIG. Changes. This means that the magnitude of the clutter signal (amplitude and level of the synthesized wave) varies depending on the direction of the sensor unit 31, and the noise level detected by the sensor unit 31 varies depending on the direction of the sensor unit 31.
 図15は、レドーム角度とノイズレベルとの関係の一例を示している。ただし、同図では、センサ部31からの電波の放射周波数(送信波周波数)はA(Hz)で一定とする。また、縦軸のノイズレベルは、無人のときにセンサ部31にて検知される信号のフーリエ変換スペクトルにおける呼吸検知区間の積分値を指す。レドーム角度θ1~θ4のそれぞれにおいて、センサ部31と前カバー11aとの相対距離が異なるため、同図のように、ノイズレベルがレドーム角度に応じて変化していることがわかる。つまり、ノイズレベルにレドーム角度依存性がある。このような特性では、動体検知ユニット10とベッド102との位置関係(設定されるセンサ部31の向き)によって、検知されるノイズレベルが異なり(ばらつき)、センサ部31の向きによって微体動検知能力に差が出ることになる。 FIG. 15 shows an example of the relationship between the radome angle and the noise level. However, in the figure, the radiation frequency (transmission wave frequency) of the radio wave from the sensor unit 31 is constant at A (Hz). The noise level on the vertical axis indicates the integral value of the breath detection interval in the Fourier transform spectrum of the signal detected by the sensor unit 31 when unattended. Since each of the radome angles θ1 to θ4 has a different relative distance between the sensor unit 31 and the front cover 11a, it can be seen that the noise level changes according to the radome angle as shown in FIG. In other words, the noise level depends on the radome angle. With such characteristics, the detected noise level varies (varies) depending on the positional relationship between the moving body detection unit 10 and the bed 102 (the direction of the set sensor unit 31), and the micro body movement detection is performed depending on the direction of the sensor unit 31. There will be a difference in ability.
 〔ノイズレベルを低減する考え方〕
 センサ部31の向きによるノイズレベルのばらつきを抑えるためには、センサ部31の向きを変化させたときに、検知されるノイズレベルの変化を抑えることが必要であり、そのためには、例えば、センサ部31の向きごとに、固定端となる前カバー11aの位置を、ノイズレベルが小さくなる位置(クラッター信号を打ち消すことができる位置)に変化させればよいとも考えられる。しかし、動体検知ユニット10において、センサ部31の向きごとに前カバー11aを上記の位置を変化させることは現実的には困難であり(ほぼ不可能に近く)、また、センサ部31の向きによらずにノイズレベルを低減できるような、前カバー11aの形状の設計も実際には困難である。
[Concept of reducing noise level]
In order to suppress the variation in the noise level due to the direction of the sensor unit 31, it is necessary to suppress the change in the detected noise level when the direction of the sensor unit 31 is changed. It may be considered that the position of the front cover 11a serving as the fixed end may be changed to a position where the noise level is reduced (position where the clutter signal can be canceled) for each direction of the portion 31. However, in the moving body detection unit 10, it is practically difficult (almost impossible) to change the position of the front cover 11 a for each direction of the sensor unit 31, and in the direction of the sensor unit 31. It is actually difficult to design the shape of the front cover 11a so that the noise level can be reduced.
 そこで、再び波の性質に戻って検討する。波の場合、固定端の位置は同じであっても、送信波の周波数(放射周波数)を変えることにより、合成波の大きさを下げることができる。図16は、送信波の放射周波数をA(Hz)、B(Hz)、C(Hz)とした場合の、送信波、反射波および合成波の各波形を模式的に示している。なお、B=1.1Aであり、C=0.9Aである。同図のように、固定端の位置は同じであっても、送信波の放射周波数を変化させることにより、合成波の大きさ(振幅)は変化する。例えば、放射周波数がBおよびCの場合、放射周波数がAの場合よりも、合成波の振幅が送信波(または反射波)よりも30~40%ほど小さくなっている。これは、放射周波数を変化させることで、固定端の位置での送信波の位相を変えているからである。 So, go back to the nature of the wave and consider again. In the case of a wave, even if the position of the fixed end is the same, the magnitude of the synthesized wave can be reduced by changing the frequency (radiation frequency) of the transmission wave. FIG. 16 schematically shows waveforms of a transmission wave, a reflected wave, and a composite wave when the radiation frequency of the transmission wave is A (Hz), B (Hz), and C (Hz). Note that B = 1.1A and C = 0.9A. As shown in the figure, even if the position of the fixed end is the same, the magnitude (amplitude) of the combined wave changes by changing the radiation frequency of the transmission wave. For example, when the radiation frequencies are B and C, the amplitude of the synthesized wave is 30 to 40% smaller than that of the transmission wave (or reflected wave) than when the radiation frequency is A. This is because the phase of the transmission wave at the fixed end position is changed by changing the radiation frequency.
 図16に示すように、固定端の位置が同じであれば、送信波の放射周波数が変化すると、合成波の大きさ、つまり、クラッター信号の大きさも変化するため、ノイズレベルのレドーム角度依存性も放射周波数によって異なる特性を示す。図17は、異なる放射周波数AおよびBでのノイズレベルのレドーム角度依存性を示している。同図において、放射周波数Aでは、レドーム角度が増大するに伴ってノイズレベルが増大する特性となっているが、放射周波数Bでは、レドーム角度が増大するに伴ってノイズレベルが減少する特性となっている。この結果、レドーム角度がθ1およびθ2では、放射周波数Aのときにノイズレベルが最小となり、レドーム角度がθ3およびθ4では、放射周波数Bのときにノイズレベルが最小となっている。 As shown in FIG. 16, if the position of the fixed end is the same, the magnitude of the synthesized wave, that is, the magnitude of the clutter signal changes when the radiation frequency of the transmission wave changes. Also show different characteristics depending on the radiation frequency. FIG. 17 shows the radome angle dependence of the noise level at different radiation frequencies A and B. In the figure, at the radiation frequency A, the noise level increases as the radome angle increases. At the radiation frequency B, the noise level decreases as the radome angle increases. ing. As a result, when the radome angle is θ1 and θ2, the noise level is minimum at the radiation frequency A, and when the radome angle is θ3 and θ4, the noise level is minimum at the radiation frequency B.
 したがって、レドーム角度ごとに、ノイズレベルが最小となるような放射周波数(特定放射周波数)を規定したテーブルをメモリに記憶させておき、設定されたレドーム角度に対応する特定放射周波数を上記テーブルから求め、そのような特定放射周波数でセンサ部31から電波を放射させることにより、センサ部31にて検出されるノイズレベルを、どのレドーム角度においても最小にすることができ、レドーム角度による検知性能のばらつきを低減することができる。本実施形態のケアサポートシステム1では、このような考え方に基づき、センサ部31からの電波の放射周波数を制御するようにしている。以下、本実施形態のケアサポートシステム1の特徴的な構成について、具体例1~3として説明する。 Therefore, a table defining the radiation frequency (specific radiation frequency) that minimizes the noise level for each radome angle is stored in the memory, and the specific radiation frequency corresponding to the set radome angle is obtained from the table. By emitting radio waves from the sensor unit 31 at such a specific radiation frequency, the noise level detected by the sensor unit 31 can be minimized at any radome angle, and the detection performance varies depending on the radome angle. Can be reduced. In the care support system 1 of the present embodiment, the radiation frequency of the radio wave from the sensor unit 31 is controlled based on such a concept. Hereinafter, the characteristic configuration of the care support system 1 of the present embodiment will be described as specific examples 1 to 3.
 〔具体例1〕
 図18は、具体例1のケアサポートシステム1の構成を示すブロック図である。なお、同図では、便宜的に、画像認識ユニット20の一部の構成を省略しているが、画像認識ユニット20の構成は、図3で示した通りである。具体例1のケアサポートシステム1では、上述した電波検出部30が、上記のセンサ部31およびレドームレンズ32等に加えて、記憶部35と、放射制御部36と、インターフェース部37とをさらに備えている。インターフェース部37は、ユニット制御部40との間で情報または制御信号を入出力するためのインターフェースであり、入出力ポート(端子)を含む。
[Specific Example 1]
FIG. 18 is a block diagram illustrating a configuration of the care support system 1 of the first specific example. In the figure, for the sake of convenience, a part of the configuration of the image recognition unit 20 is omitted, but the configuration of the image recognition unit 20 is as shown in FIG. In the care support system 1 of the first specific example, the radio wave detection unit 30 described above further includes a storage unit 35, a radiation control unit 36, and an interface unit 37 in addition to the sensor unit 31, the radome lens 32, and the like. ing. The interface unit 37 is an interface for inputting / outputting information or control signals to / from the unit control unit 40, and includes an input / output port (terminal).
 記憶部35は、動体検知ユニット10の筐体内でのセンサ部31の異なる向き(ここではレドーム角度)ごとに、電波の放射によってセンサ部31にて検知されるノイズレベルが、生体情報を検知可能な所定レベルよりも小さくなるような(例えばノイズレベルが最小となるような)特定放射周波数を規定したテーブルを記憶するメモリである。この記憶部35は、例えばRAM、ROM、不揮発性メモリなどで構成される。 The storage unit 35 can detect biological information based on the noise level detected by the sensor unit 31 by the emission of radio waves for each different direction (here, radome angle) of the sensor unit 31 in the housing of the moving object detection unit 10. This is a memory for storing a table defining a specific radiation frequency that is smaller than a predetermined level (for example, the noise level is minimized). The storage unit 35 is composed of, for example, a RAM, a ROM, a nonvolatile memory, and the like.
 図19は、記憶部35に記憶されるテーブルの一例を示している。また、図20は、図17で示したノイズレベルのレドーム角度依存性に基づいて得られる、特定放射周波数の一例を示している。図17では、上述のように、レドーム角度θ1およびθ2については、放射周波数Aのときにノイズレベルが最小となっており、レドーム角度θ3およびθ4については、放射周波数Bのときにノイズレベルが最小となっている。このため、具体例1では、図19および図20のように、レドーム角度θ1およびθ2については、放射周波数Aを特定放射周波数として設定し、レドーム角度θ3およびθ4については、放射周波数Bを特定放射周波数として設定している。記憶部35は、このようなレドーム角度と特定放射周波数との対応関係を示すテーブル(放射周波数設定テーブル)を記憶している。 FIG. 19 shows an example of a table stored in the storage unit 35. FIG. 20 shows an example of the specific radiation frequency obtained based on the radome angle dependence of the noise level shown in FIG. In FIG. 17, as described above, the radome angles θ1 and θ2 have the minimum noise level at the radiation frequency A, and the radome angles θ3 and θ4 have the minimum noise level at the radiation frequency B. It has become. Therefore, in the specific example 1, as shown in FIGS. 19 and 20, the radiation frequency A is set as the specific radiation frequency for the radome angles θ1 and θ2, and the radiation frequency B is specified for the radome angles θ3 and θ4. The frequency is set. The storage unit 35 stores a table (radiation frequency setting table) indicating the correspondence between the radome angle and the specific radiation frequency.
 放射制御部36は、センサ部31における電波の放射周波数を制御する制御部であり、例えばCPUで構成される。特に、放射制御部36は、センサ部31の向きの設定に応じて、センサ部31から放射される電波の放射周波数を、記憶部35に記憶されたテーブルに基づいて得られる、センサ部31の向き(レドーム角度)に対応する特定放射周波数に切り替える。 The radiation control unit 36 is a control unit that controls the radiation frequency of the radio wave in the sensor unit 31, and is configured by a CPU, for example. In particular, the radiation control unit 36 can obtain the radiation frequency of the radio wave radiated from the sensor unit 31 based on the table stored in the storage unit 35 according to the setting of the direction of the sensor unit 31. Switch to a specific radiation frequency corresponding to the direction (radome angle).
 例えば、居室101内のベッド102の位置の変更に伴い、レドーム角度がθ2からθ3に変更された場合、放射制御部36は、上記テーブルを参照して、レドーム角度θ3に対応する特定放射周波数(放射周波数B)を把握し、放射周波数を、レドーム角度θ2に対応する特定放射周波数(放射周波数A)から、レドーム角度θ3に対応する特定放射周波数(放射周波数B)に切り替える。これにより、センサ部31は、切り替え後の放射周波数Bで電波を放射することになる。 For example, when the radome angle is changed from θ2 to θ3 in accordance with the change of the position of the bed 102 in the living room 101, the radiation control unit 36 refers to the above table and specifies the specific radiation frequency (corresponding to the radome angle θ3). The radiation frequency B) is grasped, and the radiation frequency is switched from the specific radiation frequency (radiation frequency A) corresponding to the radome angle θ2 to the specific radiation frequency (radiation frequency B) corresponding to the radome angle θ3. Thereby, the sensor part 31 radiates | emits a radio wave with the radiation frequency B after switching.
 ここで、上記したレドーム角度の変更の有無は、撮影画像の画像認識を利用することで、放射制御部36が判断することができる。すなわち、動体検知ユニット10が光学検出部23および画像認識部25を有する構成では、光学検出部23が居室101内を撮影して取得した画像から、画像認識部25による画像認識(ベッド102の形状認識)によって、ベッド102の形状および位置を認識し、これによって被介護者の就寝場所を画像内で特定することができる。画像内で就寝場所を特定できると、就寝場所に対応する画角、つまり、画像内での就寝場所(ベッド102の位置)の縦方向および横方向のそれぞれの画角がわかる。センサ部31は光学検出部23とともに動体検知ユニット10として居室101の天井部101aに設置されており、センサ部31の向きはベッド102の方向に向けられるため、画像内での就寝場所に対応する画角は、動体検知ユニット10から見たベッド102の方向、つまり、センサ部31の向きを示すと考えてもよい。したがって、放射制御部36は、撮影画像の画像認識を利用して、センサ部31の向きの変更(レドーム角度の変更)の有無を判断することができる。 Here, whether or not the radome angle has been changed can be determined by the radiation control unit 36 by using image recognition of the captured image. That is, in the configuration in which the moving body detection unit 10 includes the optical detection unit 23 and the image recognition unit 25, image recognition (the shape of the bed 102) by the image recognition unit 25 is obtained from an image acquired by the optical detection unit 23 by photographing the inside of the living room 101. Recognition) allows the shape and position of the bed 102 to be recognized, whereby the sleeping place of the care recipient can be identified in the image. If the sleeping place can be specified in the image, the angle of view corresponding to the sleeping place, that is, the angle of view in the vertical direction and the horizontal direction of the sleeping place (position of the bed 102) in the image can be known. The sensor unit 31 is installed in the ceiling 101a of the living room 101 as the moving body detection unit 10 together with the optical detection unit 23, and the direction of the sensor unit 31 is directed toward the bed 102, so that it corresponds to a sleeping place in the image. The angle of view may be considered to indicate the direction of the bed 102 as viewed from the moving object detection unit 10, that is, the direction of the sensor unit 31. Therefore, the radiation control unit 36 can determine the presence / absence of a change in the orientation of the sensor unit 31 (a change in the radome angle) using image recognition of the captured image.
 以上のように、放射制御部36により、センサ部31の向きの設定に応じて、センサ部31から放射される電波の放射周波数が、テーブルに基づいて、センサ部31の向きに対応する特定放射周波数に切り替えられる。これにより、居室101内のベッド102の位置の変更によってセンサ部31がどの向きに設定された場合でも、センサ部31にて検知されるノイズレベルが最小となる。したがって、検知したい生体情報の信号(呼吸信号)が小さい場合でも、クラッターを含むノイズが最初から低減された状態で、その信号を確実に検知することが可能となる。よって、従来のように、クラッター信号を減算する後処理を行うことなくノイズを低減して、センサ部31での検知精度を上げることができる。また、センサ部31のどの向きにおいても、検知されるノイズレベルが最小となるため、センサ部31の向きによって検知性能にばらつきが生じるのを抑えることが可能となる。 As described above, according to the setting of the direction of the sensor unit 31 by the radiation control unit 36, the radiation frequency of the radio wave radiated from the sensor unit 31 is based on the table and the specific radiation corresponding to the direction of the sensor unit 31. Switch to frequency. Thereby, no matter which direction the sensor unit 31 is set by changing the position of the bed 102 in the living room 101, the noise level detected by the sensor unit 31 is minimized. Therefore, even when the biological information signal (breathing signal) to be detected is small, the signal can be reliably detected in a state where noise including clutter is reduced from the beginning. Therefore, the noise can be reduced and the detection accuracy in the sensor unit 31 can be increased without performing post-processing for subtracting the clutter signal as in the prior art. In addition, since the detected noise level is minimized in any direction of the sensor unit 31, it is possible to suppress variation in detection performance depending on the direction of the sensor unit 31.
 また、ノイズレベルの主要因となるクラッター信号には、図9で示した経路A~Cのほか、それ以外の経路でセンサ部31に直接入射する電波(例えば共鳴条件を満足する電波)も含まれる。しかし、具体例1では、そのような直接入射波によるノイズも含めて、全体のノイズレベルが最小となる特定放射周波数を設定しているため、上記特定放射周波数への切り替えにより、全ての経路で発生するクラッター信号をまとめて低減して、全体のノイズを低減でき、これによってセンサ部31での検知精度を確実に上げることができる。 In addition to the paths A to C shown in FIG. 9, the clutter signal that is the main factor of the noise level includes radio waves that directly enter the sensor unit 31 through other paths (for example, radio waves that satisfy resonance conditions). It is. However, in the specific example 1, since the specific radiation frequency that minimizes the entire noise level is set including the noise caused by such a direct incident wave, the switching to the specific radiation frequency causes all routes to be changed. The generated clutter signals can be collectively reduced to reduce the overall noise, thereby reliably increasing the detection accuracy of the sensor unit 31.
 また、動体検知ユニット10は、上記の記憶部35および放射制御部36を含んでいるため、動体検知ユニット10単独で(管理サーバー100aからの指示によらずに)、動体検知ユニット10の内部処理によって、センサ部31の向きの設定に応じた、特定放射周波数への切り替えを行うことができる。 In addition, since the moving object detection unit 10 includes the storage unit 35 and the radiation control unit 36 described above, the moving object detection unit 10 alone (without depending on an instruction from the management server 100a) can perform internal processing of the moving object detection unit 10. Thus, switching to the specific radiation frequency according to the setting of the orientation of the sensor unit 31 can be performed.
 特に、動体検知ユニット10が、光学検出部23および画像認識部25を含む構成では、放射制御部36は、撮影画像内での就寝場所(ベッド102の位置)に対応する画角に基づいて、センサ部31の向きを把握することができる。これにより、放射制御部36は、センサ部31から放射される電波の放射周波数を、テーブルを参照して、センサ部31の向きに対応する特定放射周波数に自動的に切り替えることが可能となる。つまり、センサ部31の向きの変更や設定をトリガーとして、動体検知ユニット10(電波検出部30)自身で、センサ部31の放射周波数を特定放射周波数に切り替えることが可能となる。 In particular, in the configuration in which the moving body detection unit 10 includes the optical detection unit 23 and the image recognition unit 25, the radiation control unit 36 is based on the angle of view corresponding to the sleeping place (the position of the bed 102) in the captured image. The orientation of the sensor unit 31 can be grasped. Thereby, the radiation control unit 36 can automatically switch the radiation frequency of the radio wave radiated from the sensor unit 31 to the specific radiation frequency corresponding to the direction of the sensor unit 31 with reference to the table. That is, it becomes possible for the moving body detection unit 10 (the radio wave detection unit 30) itself to switch the radiation frequency of the sensor unit 31 to the specific radiation frequency using the change or setting of the direction of the sensor unit 31 as a trigger.
 また、電波検出部30のレドームレンズ32は、センサ部31と保持部34を介して一体的に設けられているため、ベッド102の位置に応じて、レドームレンズ32とともにセンサ部31の向きがどのように変化しても、電波の指向性をレドームレンズ32によって適切に制御しながら、上記特定放射周波数への切り替えによって、センサ部31での検知精度を上げることができるとともに、センサ部31の向きによる検知性能のばらつきを低減することができる。 In addition, since the radome lens 32 of the radio wave detection unit 30 is integrally provided via the sensor unit 31 and the holding unit 34, the direction of the sensor unit 31 together with the radome lens 32 depends on the position of the bed 102. Even if it changes, the detection accuracy in the sensor unit 31 can be increased by switching to the specific radiation frequency while appropriately controlling the directivity of the radio wave by the radome lens 32, and the orientation of the sensor unit 31 Variations in detection performance due to can be reduced.
 また、記憶部35に記憶されるテーブルは、筐体11内でのセンサ部31の異なる向き(レドーム角度)ごとに、ノイズレベルが最小となるような特定放射周波数を規定していている(図19参照)。放射制御部36は、上記テーブルを参照して、放射周波数をセンサ部31の向きに対応する特定放射周波数に切り替えることで、電波の放射によってセンサ部31にて検知されるノイズレベルが最小となる。その結果、センサ部31にて検知すべき信号(例えば呼吸信号)を確実に取得することができる。 The table stored in the storage unit 35 defines a specific radiation frequency that minimizes the noise level for each different direction (radome angle) of the sensor unit 31 in the housing 11 (see FIG. 19). The radiation control unit 36 refers to the above table and switches the radiation frequency to a specific radiation frequency corresponding to the direction of the sensor unit 31, thereby minimizing the noise level detected by the sensor unit 31 due to radio wave radiation. . As a result, a signal (for example, a respiratory signal) to be detected by the sensor unit 31 can be reliably acquired.
 なお、テーブルに記憶される特定放射周波数は、ノイズレベルが最小となる放射周波数には限定されない。特定放射周波数は、センサ部31にて検知されるノイズレベルが、生体情報を検知可能な所定レベルよりも小さくなるような放射周波数であればよい。 The specific radiation frequency stored in the table is not limited to the radiation frequency that minimizes the noise level. The specific radiation frequency may be a radiation frequency such that the noise level detected by the sensor unit 31 is smaller than a predetermined level at which biological information can be detected.
 例えば、図21は、レドーム角度ごとに設定される特定放射周波数の他の例を示している。同図に示すように、レドーム角度θ1およびθ2のときに、放射周波数Aと放射周波数Bとの間の放射周波数P(Hz)であっても、センサ部31にて検知されるノイズレベル(フーリエ変換スペクトルにおける呼吸検知区間の積分値)が、生体情報を検知可能な所定レベルNthよりも小さくなるのであれば、そのような放射周波数Pを特定放射周波数として設定してもよい。同様に、レドーム角度θ3およびθ4のときに、放射周波数Aと放射周波数Bとの間の放射周波数Q(Hz)であっても、センサ部31にて検知されるノイズレベルが所定レベルNthよりも小さくなるのであれば、そのような放射周波数Qを特定放射周波数として設定してもよい。 For example, FIG. 21 shows another example of the specific radiation frequency set for each radome angle. As shown in the figure, the noise level (Fourier) detected by the sensor unit 31 even at the radiation frequency P (Hz) between the radiation frequency A and the radiation frequency B at the radome angles θ1 and θ2. If the integral value of the respiration detection section in the converted spectrum is smaller than a predetermined level Nth at which biological information can be detected, such a radiation frequency P may be set as the specific radiation frequency. Similarly, at the radome angles θ3 and θ4, even if the radiation frequency Q (Hz) is between the radiation frequency A and the radiation frequency B, the noise level detected by the sensor unit 31 is higher than the predetermined level Nth. If it becomes smaller, such a radiation frequency Q may be set as the specific radiation frequency.
 放射周波数Pでは、放射周波数Aに比べて、レドーム角度θ1およびθ2のときにノイズレベルが増大し、放射周波数Qでは、放射周波数Bに比べて、レドーム角度θ3およびθ4のときにノイズレベルが増大するが、それらのノイズレベルはいずれも、生体情報を検知可能な所定レベルNthよりも小さく、検知したい呼吸信号のレベルよりも小さいため、図12のように、ノイズレベルが呼吸信号のレベルよりも大きく、呼吸信号がノイズレベルに埋もれてしまう場合に比べて、呼吸信号の検知精度を上げることができることに変わりはない。 At the radiation frequency P, the noise level increases at radome angles θ1 and θ2 compared to the radiation frequency A, and at the radiation frequency Q, the noise level increases at radome angles θ3 and θ4 compared to the radiation frequency B. However, since these noise levels are both lower than the predetermined level Nth at which the biological information can be detected and lower than the level of the respiratory signal to be detected, the noise level is lower than the level of the respiratory signal as shown in FIG. Largely, the detection accuracy of the respiration signal can be improved as compared with the case where the respiration signal is buried in the noise level.
 なお、以上では、被介護者の就寝場所として、居室101内のベッド102を想定しているが、居室101内にベッド102を設置せず、床に布団を敷いて寝る被介護者については、上記布団を就寝場所として考えればよい。この場合でも、画像認識によって布団の形状および位置を認識して就寝場所を特定できるため、放射制御部36は、画像内の就寝場所に対応する画角に基づいて、センサ部31の向きを把握することができる。 In the above, the bed 102 in the living room 101 is assumed as a sleeping place of the care recipient, but the care receiver who does not install the bed 102 in the living room 101 and sleeps with a futon on the floor, The futon may be considered as a sleeping place. Even in this case, since the sleeping place can be specified by recognizing the shape and position of the futon by image recognition, the radiation control unit 36 grasps the orientation of the sensor unit 31 based on the angle of view corresponding to the sleeping place in the image. can do.
 なお、電波検出部30の記憶部35および放射制御部36は、ユニット制御部40に設けられていてもよく、また、ユニット制御部40の記憶部24および主制御部41が、上記した記憶部35および放射制御部36の機能を兼ねていてもよい。 The storage unit 35 and the radiation control unit 36 of the radio wave detection unit 30 may be provided in the unit control unit 40, and the storage unit 24 and the main control unit 41 of the unit control unit 40 are the storage units described above. 35 and the function of the radiation control unit 36 may also be used.
 〔具体例2〕
 図22は、具体例2のケアサポートシステム1の構成を示すブロック図である。具体例2では、具体例1で説明したテーブルを、ケアサポートシステム1の管理サーバー100aに記憶させ、管理サーバー100aから動体検知ユニット10側に上記テーブルから把握される特定放射周波数への切り替え要求を出し、この切り替え要求に基づいて、センサ部31の放射周波数を切り替えるようにしている。より詳細には、以下の通りである。
[Specific Example 2]
FIG. 22 is a block diagram illustrating a configuration of the care support system 1 of the second specific example. In the second specific example, the table described in the first specific example is stored in the management server 100a of the care support system 1, and a request for switching to the specific radiation frequency grasped from the above table is sent from the management server 100a to the moving object detection unit 10 side. The radiation frequency of the sensor unit 31 is switched based on this switching request. More details are as follows.
 ケアサポートシステム1の電波検出部30は、図18で示した具体例1の電波検出部30から記憶部35を省略した以外は、具体例1と同様の構成であり、センサ部31およびレドームレンズ32(図6等参照)に加えて、放射制御部36と、インターフェース部37とを有している。放射制御部36は、センサ部31における電波の放射を制御するが、管理サーバー100aの後述する管理制御部111からの制御信号に基づいて電波の放射を制御する点で、具体例1とは異なっている。 The radio wave detection unit 30 of the care support system 1 has the same configuration as that of the specific example 1 except that the storage unit 35 is omitted from the radio wave detection unit 30 of the specific example 1 illustrated in FIG. In addition to 32 (see FIG. 6 and the like), a radiation control unit 36 and an interface unit 37 are provided. The radiation control unit 36 controls the radiation of the radio wave in the sensor unit 31, but differs from the first specific example in that the radio wave radiation is controlled based on a control signal from a management control unit 111 (to be described later) of the management server 100 a. ing.
 管理サーバー100aは、管理制御部111と、記憶部112と、入力部113と、インターフェース部114とを有している。インターフェース部114は、通信回線200を介してユニット制御部40との間で情報または制御信号を入出力するためのインターフェースであり、入出力ポート(端子)を含む。 The management server 100a includes a management control unit 111, a storage unit 112, an input unit 113, and an interface unit 114. The interface unit 114 is an interface for inputting / outputting information or control signals to / from the unit control unit 40 via the communication line 200, and includes an input / output port (terminal).
 管理制御部111は、管理サーバー100aの各部の動作を制御するCPUで構成されている。記憶部112は、図19で示した、レドーム角度と特定放射周波数との対応関係を示すテーブルを記憶するメモリであり、例えばハードディスクで構成されている。入力部113は、例えばキーボード、マウス、タッチパネルなどで構成され、センサ部31の向きに関する情報を入力するために設けられている。 The management control unit 111 includes a CPU that controls the operation of each unit of the management server 100a. The memory | storage part 112 is a memory which memorize | stores the table which shows the corresponding | compatible relationship between a radome angle and specific radiation frequency shown in FIG. 19, for example, is comprised by the hard disk. The input unit 113 includes, for example, a keyboard, a mouse, a touch panel, and the like, and is provided for inputting information regarding the orientation of the sensor unit 31.
 また、システムの利用者(管理者)は、管理サーバー100aと通信回線200を介して無線通信可能な外部端末300を所有(携帯)している。これにより、利用者は、外部端末300を介して管理サーバー100aに種々の情報を提供することが可能である。外部端末300としては、例えば、タブレットやスマートフォンなどの多機能型携帯端末や、ノート型パーソナルコンピュータなど、少なくとも入力部を有する端末を想定することができる。 In addition, a system user (administrator) owns (mobile) an external terminal 300 that can wirelessly communicate with the management server 100a via the communication line 200. Accordingly, the user can provide various information to the management server 100a via the external terminal 300. As the external terminal 300, for example, a terminal having at least an input unit such as a multifunctional portable terminal such as a tablet or a smartphone or a notebook personal computer can be assumed.
 上記システムの構成において、居室101内のベッド102の位置の変更に伴い、レドーム角度を変更した場合、システムの利用者は、管理サーバー100aの入力部113により、変更後のレドーム角度を入力したり、外部端末300にて、変更後のレドーム角度を入力して、その情報を管理サーバー100aに送信する。すると、管理制御部111は、記憶部112に記憶されたテーブルを参照し、入力されたレドーム角度に対応する特定放射周波数を求め、求めた特定放射周波数への切り替えを要求する制御信号(設定コマンド)を、動体検知ユニット10に送信する。動体検知ユニット10は上記制御信号を受信し、放射制御部36は、上記制御信号に基づいて、センサ部31から放射される電波の放射周波数を、上記特定放射周波数に切り替える。これにより、センサ部31は、切り替え後の特定放射周波数で電波を放射することになる。 In the above system configuration, when the radome angle is changed in accordance with the change of the position of the bed 102 in the living room 101, the system user can input the changed radome angle by the input unit 113 of the management server 100a. The external terminal 300 inputs the changed radome angle and transmits the information to the management server 100a. Then, the management control unit 111 refers to the table stored in the storage unit 112, obtains the specific radiation frequency corresponding to the input radome angle, and requests a control signal (setting command) for switching to the obtained specific radiation frequency. ) Is transmitted to the moving object detection unit 10. The moving body detection unit 10 receives the control signal, and the radiation control unit 36 switches the radiation frequency of the radio wave radiated from the sensor unit 31 to the specific radiation frequency based on the control signal. Thereby, the sensor part 31 radiates | emits an electromagnetic wave with the specific radiation frequency after switching.
 具体例2のケアサポートシステム1では、管理サーバー100aが、上記テーブルを記憶した記憶部112を有しているため、動体検知ユニット10に大容量のメモリを設ける必要がなくなり、動体検知ユニット10の製造コストの低減および小型化を図ることができる。また、管理制御部111は、上記テーブルに基づいて得られる特定放射周波数への切り替えを要求する制御信号を動体検知ユニット10に送信し、それを受けて、動体検知ユニット10の放射制御部36は、センサ部31の放射周波数を特定放射周波数に切り替える。したがって、管理サーバー100がセンサ部31の放射周波数を管理する構成において、センサ部31での検知精度を上げたり、センサ部31の向きによる検知性能のばらつきを低減できるなどの、具体例1と同様の効果を得ることができる。 In the care support system 1 of Example 2, since the management server 100a has the storage unit 112 that stores the table, it is not necessary to provide a large-capacity memory in the motion detection unit 10, and the motion detection unit 10 The manufacturing cost can be reduced and the size can be reduced. In addition, the management control unit 111 transmits a control signal for requesting switching to a specific radiation frequency obtained based on the table to the moving object detection unit 10, and in response to this, the radiation control unit 36 of the moving object detection unit 10 The radiation frequency of the sensor unit 31 is switched to the specific radiation frequency. Therefore, in the configuration in which the management server 100 manages the radiation frequency of the sensor unit 31, the detection accuracy at the sensor unit 31 can be increased, and variation in detection performance due to the orientation of the sensor unit 31 can be reduced. The effect of can be obtained.
 また、管理制御部111は、入力部113によってセンサ部31の向きに関する情報が入力されたとき、または、外部端末300から、上記情報を受信したときに、記憶部112のテーブルに基づいて、センサ部31の向きに対応する特定放射周波数を求め、上記特定放射周波数への切り替えを要求する制御信号を動体検知ユニット10に送信する。管理制御部111は、入力部113にて入力された情報または外部端末300から受信した情報に基づき、センサ部31の向きを把握でき、これによって、センサ部31の向きに対応する特定放射周波数をテーブルに基づいて求めることができる。したがって、管理制御部111は、動体検知ユニット10に対して、適切な特定放射周波数への切り替え要求(制御信号の送信)を行うことができる。 In addition, when the information related to the orientation of the sensor unit 31 is input by the input unit 113 or when the management control unit 111 receives the information from the external terminal 300, the management control unit 111 uses the sensor in the storage unit 112 based on the table. A specific radiation frequency corresponding to the direction of the unit 31 is obtained, and a control signal for requesting switching to the specific radiation frequency is transmitted to the moving object detection unit 10. The management control unit 111 can grasp the direction of the sensor unit 31 based on the information input from the input unit 113 or the information received from the external terminal 300, thereby obtaining the specific radiation frequency corresponding to the direction of the sensor unit 31. It can be determined based on a table. Therefore, the management control unit 111 can request the moving object detection unit 10 to switch to an appropriate specific radiation frequency (transmission of a control signal).
 ところで、動体検知ユニット10が前述の光学検出部23(図3参照)および画像認識部25を有する構成では、具体例1で示したような、画像内での就寝場所を示す画角およびそれに基づくセンサ部31の向きの把握を、管理サーバー100aで行ってもよい。つまり、光学検出部23および画像認識部25で取得される情報(撮影画像および画像内で特定された就寝場所の情報)を管理サーバー100aに送信し、管理制御部111が、上記情報に基づいて、画像内での就寝場所に対応する画角およびセンサ部31の向きを把握してもよい。そして、管理制御部111は、記憶部112に記憶されたテーブルに基づいて、センサ部31の向きに対応する特定放射周波数を求め、上記特定放射周波数への切り替えを要求する制御信号を動体検知ユニット10に送信してもよい。 By the way, in the configuration in which the moving body detection unit 10 includes the above-described optical detection unit 23 (see FIG. 3) and the image recognition unit 25, the angle of view indicating the sleeping place in the image, as shown in the specific example 1, and based on it. The management server 100a may grasp the direction of the sensor unit 31. That is, the information acquired by the optical detection unit 23 and the image recognition unit 25 (the captured image and the sleeping place information specified in the image) is transmitted to the management server 100a, and the management control unit 111 is based on the information. The angle of view corresponding to the sleeping place in the image and the orientation of the sensor unit 31 may be grasped. And the management control part 111 calculates | requires the specific radiation frequency corresponding to the direction of the sensor part 31 based on the table memorize | stored in the memory | storage part 112, and gives the control signal which requests | requires the switch to the said specific radiation frequency to a moving body detection unit. 10 may be transmitted.
 この場合、管理サーバー100a(管理制御部111)は、入力部113や外部端末300からセンサ部31の向きに関する情報が何ら入力されなくても、動体検知ユニット10から出力される情報に基づいてセンサ部31の向きを把握し、テーブルに基づいて、センサ部31の向きに対応する特定放射周波数を求めることができる。その結果、管理制御部111は、動体検知ユニット10に対して、適切な特定放射周波数への切り替え要求(制御信号の送信)を行うことができる。 In this case, the management server 100 a (management control unit 111) does not receive any information regarding the orientation of the sensor unit 31 from the input unit 113 or the external terminal 300. The direction of the unit 31 is grasped, and the specific radiation frequency corresponding to the direction of the sensor unit 31 can be obtained based on the table. As a result, the management control unit 111 can make a request for switching to an appropriate specific radiation frequency (transmission of a control signal) to the moving object detection unit 10.
 〔具体例3〕
 具体例3のケアサポートシステム1は、記憶部(電波検出部30の記憶部35または管理サーバー100aの記憶部112)に記憶されるテーブルが異なる以外は、具体例1または2のケアサポートシステム1と同様である。図23は、具体例3のケアサポートシステム1の記憶部に記憶されるテーブルの一例を示している。具体例1および2では、センサ部31の向きを規定する角度がレドーム角度のみであったが、厳密には、レドーム回転角も考慮する必要がある。レドーム回転角は、水平面(天井部101a)に垂直な方向を回転軸としてセンサ部31が回転するときのヨー角に相当する。なお、上記したレドーム角度は、上記水平面に平行な方向を回転軸としてセンサ部31が回転するときのピッチ角に相当する。レドーム回転角が変化すると、筐体11の前カバー11aの形状によっては、センサ部31と前カバー11aとの相対的な位置関係(相対距離)が変化し、その結果、レドーム回転角に応じて、ノイズレベルが変化する。
[Specific Example 3]
The care support system 1 of the specific example 3 is the care support system 1 of the specific example 1 or 2 except that the table stored in the storage unit (the storage unit 35 of the radio wave detection unit 30 or the storage unit 112 of the management server 100a) is different. It is the same. FIG. 23 illustrates an example of a table stored in the storage unit of the care support system 1 according to the third specific example. In the specific examples 1 and 2, the angle defining the direction of the sensor unit 31 is only the radome angle, but strictly speaking, it is necessary to consider the radome rotation angle. The radome rotation angle corresponds to the yaw angle when the sensor unit 31 rotates with the direction perpendicular to the horizontal plane (ceiling 101a) as the rotation axis. The radome angle described above corresponds to a pitch angle when the sensor unit 31 rotates with a direction parallel to the horizontal plane as a rotation axis. When the radome rotation angle changes, depending on the shape of the front cover 11a of the housing 11, the relative positional relationship (relative distance) between the sensor unit 31 and the front cover 11a changes, and as a result, depending on the radome rotation angle. The noise level changes.
 そこで、具体例3では、センサ部31の向きを規定する角度として、レドーム回転角およびレドーム角度の両方を考え、レドーム回転角およびレドーム角度の両方によって規定されるセンサ部31の向きごとに、ノイズレベルが最小となる特定放射周波数を予め設定し、その対応関係をテーブルとして記憶部(記憶部35または記憶部112)に記憶させている。設定されるセンサ部31の向きに対応する特定放射周波数をテーブルから求め、求めた特定放射周波数でセンサ部31を駆動する(放射周波数を切り替える)点は、具体例1または2と同様である。 Therefore, in the specific example 3, both the radome rotation angle and the radome angle are considered as the angles that define the direction of the sensor unit 31, and noise is detected for each direction of the sensor unit 31 defined by both the radome rotation angle and the radome angle. A specific radiation frequency that minimizes the level is set in advance, and the correspondence relationship is stored as a table in the storage unit (storage unit 35 or storage unit 112). The specific radiation frequency corresponding to the set direction of the sensor unit 31 is obtained from the table, and the sensor unit 31 is driven at the obtained specific radiation frequency (the radiation frequency is switched) as in the first or second example.
 具体例3のように、ヨー角およびピッチ角を用いてセンサ部31の向きを3次元的で規定して、センサ部31の向きと特定放射周波数との関係をテーブルとして記憶するため、センサ部31の向きが3次元空間である居室101内でどの方向であっても、センサ部31の向きに応じた適切な特定放射周波数への切り替えを実現して、センサ部31での検知精度の向上およびセンサ部31の向きによる検知性能のばらつきの低減を図ることができる。 In order to store the relationship between the direction of the sensor unit 31 and the specific radiation frequency as a table by specifying the direction of the sensor unit 31 three-dimensionally using the yaw angle and the pitch angle as in the specific example 3, the sensor unit Improvement of detection accuracy in the sensor unit 31 by realizing switching to an appropriate specific radiation frequency according to the direction of the sensor unit 31 regardless of the direction in the room 101 in which the direction of the 31 is a three-dimensional space In addition, it is possible to reduce variations in detection performance due to the orientation of the sensor unit 31.
 なお、以上では、電波検出部30がレドームレンズ32を有する構成について説明したが、レドームレンズ32は必要に応じて設けられればよく、レドームレンズ32の設置を省略することも可能である。電波検出部30において、レドームレンズ32がない場合、センサ部31の向きは、センサ部31が搭載される基板33に垂直な方向を考えればよい。また、上述した「レドーム角度」は「センサ部31のピッチ角」と読み替えればよく、「レドーム回転角」は「センサ部31のヨー角」と読み替えればよい。 In addition, although the structure which the radio wave detection part 30 has the radome lens 32 was demonstrated above, the radome lens 32 should just be provided as needed, and installation of the radome lens 32 is also omissible. In the radio wave detection unit 30, when the radome lens 32 is not provided, the direction of the sensor unit 31 may be a direction perpendicular to the substrate 33 on which the sensor unit 31 is mounted. Further, the above-described “radome angle” may be read as “the pitch angle of the sensor unit 31”, and “radome rotation angle” may be read as “the yaw angle of the sensor unit 31”.
 なお、以上では、変更後のセンサ部31の向きを、画像認識(具体例1参照)または手動入力(具体例2参照)によって把握するようにしているが、ピッチ角センサ等を用いて変更後のセンサ部31の向き(角度)を読み取り、これによって、センサ部31の向きに対応する特定放射周波数をテーブルに基づいて求めるようにしてもよい。 In the above, the orientation of the sensor unit 31 after the change is grasped by image recognition (refer to specific example 1) or manual input (refer to specific example 2), but after the change using a pitch angle sensor or the like. The direction (angle) of the sensor unit 31 may be read, and thereby the specific radiation frequency corresponding to the direction of the sensor unit 31 may be obtained based on a table.
 以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。例えば、具体例1および2の構成を両方とも備えたケアサポートシステム1を構成することも勿論可能である。 The embodiment of the present invention has been described above, but the scope of the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention. For example, it is of course possible to configure the care support system 1 including both the configurations of the specific examples 1 and 2.
 〔その他〕
 以上で説明した本実施形態のケアサポートシステムは、以下のように表現することができ、これによって以下の作用効果を奏する。
[Others]
The care support system of the present embodiment described above can be expressed as follows, thereby producing the following effects.
 本実施形態で説明したケアサポートシステムは、被検者の居室に設置される動体検知ユニットの筐体内に配置され、電波の放射および受信によって被検者の生体情報を検知するセンサ部と、前記電波の放射周波数を制御する放射制御部と、前記筐体内での前記センサ部の異なる向きごとに、前記センサ部にて検知されるノイズレベルが、前記生体情報を検知可能な所定レベルよりも小さくなるような特定放射周波数を規定したテーブルを記憶する記憶部とを含み、前記放射制御部は、前記センサ部の向きの設定に応じて、前記センサ部から放射される前記電波の放射周波数を、前記テーブルに基づいて得られる、前記センサ部の向きに対応する前記特定放射周波数に切り替える。 The care support system described in the present embodiment is disposed in a casing of a moving body detection unit installed in a subject's room, and detects a biological information of the subject by emitting and receiving radio waves, A noise level detected by the sensor unit for each of different directions of the radiation control unit for controlling the radiation frequency of the radio wave and the sensor unit in the housing is smaller than a predetermined level at which the biological information can be detected. And a storage unit that stores a table that defines a specific radiation frequency such that the radiation control unit determines the radiation frequency of the radio wave radiated from the sensor unit according to the setting of the orientation of the sensor unit, The specific radiation frequency corresponding to the direction of the sensor unit obtained based on the table is switched.
 上記の構成によれば、放射制御部により、センサ部の向きの設定に応じて、センサ部から放射される電波の放射周波数が、テーブルに基づいて得られる特定放射周波数に切り替えられる。これにより、センサ部がどの向きに設定された場合でも、センサ部にて検知されるノイズレベルは、生体情報を検知可能な所定レベルよりも小さくなり、ノイズ(クラッターを含む)を最初から低減した信号(生体情報の検知信号)が得られる。したがって、従来のように、検知信号からクラッター信号を減算する後処理を行うことなくノイズを低減して、センサ部での検知精度を上げることができる。また、センサ部がどの向きに設定された場合でも、ノイズレベルが小さいため、センサ部の向きによって検知性能にばらつきが生じるのを抑えることが可能となる。 According to the above configuration, the radiation control unit switches the radiation frequency of the radio wave radiated from the sensor unit to the specific radiation frequency obtained based on the table according to the setting of the direction of the sensor unit. Thereby, no matter what direction the sensor unit is set, the noise level detected by the sensor unit is smaller than a predetermined level at which biological information can be detected, and noise (including clutter) is reduced from the beginning. A signal (detection signal of biological information) is obtained. Therefore, unlike the prior art, noise can be reduced without performing post-processing of subtracting the clutter signal from the detection signal, and detection accuracy at the sensor unit can be increased. In addition, since the noise level is small regardless of the orientation of the sensor unit, it is possible to suppress variation in detection performance depending on the orientation of the sensor unit.
 前記動体検知ユニットは、前記放射制御部および前記記憶部を含んでいてもよい。この場合、外部(例えば管理サーバー)からの指示を仰がなくても、動体検知ユニットの内部処理によって(動体検知ユニット単体で)、センサ部の向きに対応する特定放射周波数への切り替えを行うことができる。 The moving object detection unit may include the radiation control unit and the storage unit. In this case, even if there is no instruction from the outside (for example, the management server), switching to a specific radiation frequency corresponding to the direction of the sensor unit is performed by internal processing of the motion detection unit (by itself). Can do.
 前記動体検知ユニットは、居室内を撮影して画像を取得する撮像部と、前記撮像部にて取得された画像から、画像認識によって居室内のベッドまたは布団の位置を認識して就寝場所を特定する画像認識部とをさらに含み、前記放射制御部は、前記撮像部によって取得された前記画像内での前記就寝場所に対応する画角に基づいて、前記センサ部の向きを把握し、前記センサ部から放射される前記電波の放射周波数を、前記テーブルに基づいて得られる、前記センサ部の向きに対応する前記特定放射周波数に切り替えてもよい。 The moving body detection unit captures an image of a living room and acquires an image, and identifies a sleeping place by recognizing the position of a bed or a futon in the living room by image recognition from the image acquired by the imaging unit. An image recognizing unit configured to recognize the orientation of the sensor unit based on an angle of view corresponding to the sleeping place in the image acquired by the imaging unit, and the sensor The radiation frequency of the radio wave radiated from the unit may be switched to the specific radiation frequency corresponding to the direction of the sensor unit obtained based on the table.
 動体検知ユニットが、撮像部と画像認識部とを有する構成では、居室内を撮影して取得した画像から画像認識によってベッド等の位置(就寝場所)を特定でき、これによって、画像内での就寝場所の縦方向および横方向の(撮影)画角がわかる。センサ部は、撮像部とともに動体検知ユニットに設けられ、ユニット内で通常、被検者の就寝中の呼吸状態等の検知を目的として、就寝場所の方向に向けて設置されるため、画像内での就寝場所に対応する画角は、センサ部の向きを示すと考えてよい。したがって、放射制御部は、センサ部の向きに関する情報が外部から何ら入力されなくても、センサ部の向きを設定(調整)するごとに、上記画角からセンサ部の向きを把握して、その向きに対応する特定放射周波数に自動的に切り替えることができる。 In the configuration in which the moving body detection unit includes the imaging unit and the image recognition unit, the position (sleeping place) of the bed or the like can be specified by image recognition from the image acquired by photographing the living room, and thereby the bedtime in the image You can see the vertical and horizontal (shooting) angle of view of the place. The sensor unit is provided in the moving body detection unit together with the imaging unit, and is usually installed in the unit in the direction of the sleeping place for the purpose of detecting a breathing state while the subject is sleeping. It may be considered that the angle of view corresponding to the sleeping place indicates the direction of the sensor unit. Therefore, the radiation control unit grasps the direction of the sensor unit from the angle of view every time the sensor unit is set (adjusted), even if no information on the direction of the sensor unit is input from the outside. It is possible to automatically switch to a specific radiation frequency corresponding to the direction.
 該システムは、前記動体検知ユニットから出力される情報を管理する管理サーバーをさらに含み、前記動体検知ユニットは、前記放射制御部を含み、前記管理サーバーは、前記記憶部と、前記記憶部に記憶された前記テーブルに基づいて得られる前記特定放射周波数への切り替えを要求する制御信号を前記動体検知ユニットに送信する管理制御部とを含み、前記動体検知ユニットの前記放射制御部は、前記管理制御部から送信される前記制御信号に基づいて、前記センサ部から放射される前記電波の放射周波数を、前記特定放射周波数に切り替えてもよい。 The system further includes a management server that manages information output from the moving object detection unit, the moving object detection unit includes the radiation control unit, and the management server stores the storage unit and the storage unit. A management control unit that transmits a control signal that requests switching to the specific radiation frequency obtained based on the table to the moving object detection unit, and the radiation control unit of the moving object detection unit includes the management control Based on the control signal transmitted from the unit, the radiation frequency of the radio wave radiated from the sensor unit may be switched to the specific radiation frequency.
 管理サーバーが、上記テーブルを記憶した記憶部を有しているため、動体検知ユニットに大容量のメモリを設ける必要がなくなり、動体検知ユニットの製造コストの低減および小型化を図ることができる。また、管理サーバーの管理制御部は、テーブルに基づいて得られる特定放射周波数への切り替えを要求する制御信号を動体検知ユニットに送信し、動体検知ユニットの放射制御部は、上記制御信号に基づいて、センサ部の放射周波数を特定放射周波数に切り替える。したがって、管理サーバー(特に管理制御部)がセンサ部の放射周波数を管理する構成において、減算処理を行うことなくセンサ部での検知精度を上げることができるなど、上述の効果を得ることができる。 Since the management server has a storage unit that stores the table, it is not necessary to provide a large-capacity memory in the motion detection unit, and the manufacturing cost and size of the motion detection unit can be reduced. Further, the management control unit of the management server transmits a control signal requesting switching to the specific radiation frequency obtained based on the table to the moving object detection unit, and the radiation control unit of the moving object detection unit is based on the control signal. The radiation frequency of the sensor unit is switched to the specific radiation frequency. Therefore, in the configuration in which the management server (particularly, the management control unit) manages the radiation frequency of the sensor unit, the above-described effects can be obtained, for example, the detection accuracy at the sensor unit can be increased without performing a subtraction process.
 前記管理サーバーは、前記センサ部の向きに関する情報を入力するための入力部を含み、前記管理制御部は、前記入力部によって前記情報が入力されたときに、前記テーブルに基づいて、前記センサ部の向きに対応する前記特定放射周波数を求め、前記制御信号を前記動体検知ユニットに送信してもよい。管理制御部は、入力部にて入力された情報から、センサ部の向きを把握し、そのセンサ部の向きに対応する特定放射周波数をテーブルに基づいて求めることができる。その結果、管理制御部は、動体検知ユニットに対して、適切な特定放射周波数への切り替え要求(制御信号の送信)を行うことができる。 The management server includes an input unit for inputting information related to the orientation of the sensor unit, and the management control unit is configured to input the sensor unit based on the table when the information is input by the input unit. The specific radiant frequency corresponding to the direction may be obtained, and the control signal may be transmitted to the moving object detection unit. The management control unit can grasp the direction of the sensor unit from the information input by the input unit, and can obtain the specific radiation frequency corresponding to the direction of the sensor unit based on the table. As a result, the management control unit can make a request for switching to an appropriate specific radiation frequency (transmission of a control signal) to the moving object detection unit.
 前記管理制御部は、前記管理サーバーと通信可能な外部端末から、前記センサ部の向きに関する情報を受信したときに、前記テーブルに基づいて、前記センサ部の向きに対応する前記特定放射周波数を求め、前記制御信号を前記動体検知ユニットに送信してもよい。この場合、管理制御部は、外部端末(例えば多機能携帯端末)から受信した情報から、センサ部の向きを把握し、そのセンサ部の向きに対応する特定放射周波数をテーブルに基づいて求めることができる。その結果、管理制御部は、動体検知ユニットに対して、適切な特定放射周波数への切り替え要求(制御信号の送信)を行うことができる。 The management control unit obtains the specific radiation frequency corresponding to the direction of the sensor unit based on the table when receiving information on the direction of the sensor unit from an external terminal capable of communicating with the management server. The control signal may be transmitted to the moving object detection unit. In this case, the management control unit grasps the direction of the sensor unit from the information received from the external terminal (for example, a multi-function mobile terminal), and obtains the specific radiation frequency corresponding to the direction of the sensor unit based on the table. it can. As a result, the management control unit can make a request for switching to an appropriate specific radiation frequency (transmission of a control signal) to the moving object detection unit.
 前記動体検知ユニットは、居室内を撮影して画像を取得する撮像部と、前記撮像部にて取得された画像から、画像認識によって居室内のベッドまたは布団の位置を認識して就寝場所を特定する画像認識部とをさらに含み、前記管理制御部は、前記動体検知ユニットから出力される、前記画像および前記就寝場所の情報に基づいて、前記画像内での前記就寝場所に対応する画角および前記センサ部の向きを把握し、前記テーブルに基づいて、前記センサ部の向きに対応する前記特定放射周波数を求め、前記制御信号を前記動体検知ユニットに送信してもよい。 The moving body detection unit captures an image of a living room and acquires an image, and identifies a sleeping place by recognizing the position of a bed or a futon in the living room by image recognition from the image acquired by the imaging unit. An image recognizing unit that further includes an angle of view corresponding to the sleeping place in the image based on the image and the sleeping place information output from the moving body detection unit. The direction of the sensor unit may be grasped, the specific radiation frequency corresponding to the direction of the sensor unit may be obtained based on the table, and the control signal may be transmitted to the moving object detection unit.
 動体検知ユニットが、撮像部と画像認識部とを有する構成では、居室内を撮影して取得した画像から画像認識によってベッド等の位置(就寝場所)を特定でき、これによって、画像内での就寝場所の縦方向および横方向の(撮影)画角がわかる。センサ部は、撮像部とともに動体検知ユニットに設けられ、ユニット内で通常、被検者の就寝中の呼吸状態等の検知を目的として、就寝場所の方向に向けて設置されるため、画像内での就寝場所に対応する画角は、センサ部の向きを示すと考えてよい。したがって、管理サーバー(管理制御部)は、入力部や外部端末からセンサ部の向きに関する情報が何ら入力されなくても、動体検知ユニットから出力される情報(撮影画像や就寝場所の情報)に基づいて、画角およびセンサ部の向きを把握し、テーブルに基づいて、センサ部の向きに対応する特定放射周波数を求めることができる。その結果、管理制御部は、動体検知ユニットに対して、適切な特定放射周波数への切り替え要求(制御信号の送信)を行うことができる。 In the configuration in which the moving body detection unit includes the imaging unit and the image recognition unit, the position (sleeping place) of the bed or the like can be specified by image recognition from the image acquired by photographing the living room, and thereby the bedtime in the image You can see the vertical and horizontal (shooting) angle of view of the place. The sensor unit is provided in the moving body detection unit together with the imaging unit, and is usually installed in the unit in the direction of the sleeping place for the purpose of detecting a breathing state while the subject is sleeping. It may be considered that the angle of view corresponding to the sleeping place indicates the direction of the sensor unit. Therefore, the management server (management control unit) is based on information (captured image and sleeping place information) output from the motion detection unit even if no information on the orientation of the sensor unit is input from the input unit or the external terminal. Thus, the angle of view and the direction of the sensor unit can be grasped, and the specific radiation frequency corresponding to the direction of the sensor unit can be obtained based on the table. As a result, the management control unit can make a request for switching to an appropriate specific radiation frequency (transmission of a control signal) to the moving object detection unit.
 前記センサ部の向きを規定する角度は、水平面に垂直な方向を回転軸として前記センサ部が回転するときのヨー角、および前記水平面に平行な方向を回転軸として前記センサ部が回転するときのピッチ角を含んでいてもよい。この場合、ヨー角およびピッチ角を用いてセンサ部の向きが3次元的に規定されるため、センサ部の向きが3次元空間である居室内でどの方向であっても、センサ部の向きに対応する特定放射周波数への切り替えを実現して、減算処理を行うことなくセンサ部での検知精度を上げることができる、などの上述の効果を得ることができる。 The angle that defines the orientation of the sensor unit is a yaw angle when the sensor unit rotates with a direction perpendicular to the horizontal plane as a rotation axis, and when the sensor unit rotates with a direction parallel to the horizontal plane as a rotation axis. The pitch angle may be included. In this case, since the direction of the sensor unit is three-dimensionally defined using the yaw angle and the pitch angle, the direction of the sensor unit is the same regardless of the direction of the sensor unit in the room that is a three-dimensional space. By switching to the corresponding specific radiation frequency, it is possible to obtain the above-described effects such as that the detection accuracy at the sensor unit can be increased without performing subtraction processing.
 該システムは、前記センサ部と保持部を介して一体的に設けられ、前記センサ部から放射される前記電波の指向性を制御するレドームレンズをさらに含んでいてもよい。この場合、レドームレンズとともにセンサ部の向きがどのように変化しても、電波の指向性をレドームレンズによって適切に制御しながら、センサ部の向きに対応する特定放射周波数への切り替えにより、減算処理を行うことなくセンサ部での検知精度を上げることができる、などの上述の効果を得ることができる。 The system may further include a radome lens that is provided integrally via the sensor unit and the holding unit and controls the directivity of the radio wave radiated from the sensor unit. In this case, no matter how the direction of the sensor unit changes with the radome lens, subtraction processing is performed by switching to a specific radiation frequency corresponding to the direction of the sensor unit while appropriately controlling the directivity of the radio wave with the radome lens. It is possible to obtain the above-described effect such that the detection accuracy at the sensor unit can be increased without performing the above.
 前記テーブルは、前記筐体内での前記センサ部の異なる向きごとに、前記ノイズレベルが最小となるような前記特定放射周波数を規定していてもよい。センサ部の向きに対応する特定放射周波数への切り替えにより、電波の放射によってセンサ部にて検知されるノイズレベルが最小となるため、センサ部にて検知すべき信号(観測したい生体情報の検知信号)を確実に取得することができる。 The table may define the specific radiation frequency that minimizes the noise level for each different direction of the sensor unit in the housing. Switching to a specific radiation frequency corresponding to the direction of the sensor unit minimizes the noise level detected by the sensor unit due to radio wave radiation. Therefore, a signal to be detected by the sensor unit (a detection signal of biological information to be observed) ) Can be acquired reliably.
 本発明は、例えば居室内での被介護者等の被検者の日常の生活を支援するケアサポートシステムに利用可能である。 The present invention can be used for a care support system that supports the daily life of a subject such as a care recipient in a living room.
   1   ケアサポートシステム
  10   動体検知ユニット
  11   筐体
  11a  前カバー
  23   光学検出部(撮像部)
  25   画像認識部
  31   センサ部
  32   レドームレンズ
  34   保持部
  35   記憶部
  36   放射制御部
 100a  管理サーバー
 101   居室
 102   ベッド
 111   管理制御部
 112   記憶部
 113   入力部
 300   外部端末
DESCRIPTION OF SYMBOLS 1 Care support system 10 Moving body detection unit 11 Case 11a Front cover 23 Optical detection part (imaging part)
25 Image recognition unit 31 Sensor unit 32 Radome lens 34 Holding unit 35 Storage unit 36 Radiation control unit 100a Management server 101 Living room 102 Bed 111 Management control unit 112 Storage unit 113 Input unit 300 External terminal

Claims (10)

  1.  被検者の居室に設置される動体検知ユニットの筐体内に配置され、電波の放射および受信によって被検者の生体情報を検知するセンサ部と、
     前記電波の放射周波数を制御する放射制御部と、
     前記筐体内での前記センサ部の異なる向きごとに、前記センサ部にて検知されるノイズレベルが、前記生体情報を検知可能な所定レベルよりも小さくなるような特定放射周波数を規定したテーブルを記憶する記憶部とを含み、
     前記放射制御部は、前記センサ部の向きの設定に応じて、前記センサ部から放射される前記電波の放射周波数を、前記テーブルに基づいて得られる、前記センサ部の向きに対応する前記特定放射周波数に切り替える、ケアサポートシステム。
    A sensor unit that is arranged in a housing of a moving object detection unit installed in the subject's room and detects biological information of the subject by radiating and receiving radio waves;
    A radiation control unit for controlling the radiation frequency of the radio wave;
    Stores a table defining a specific radiation frequency such that the noise level detected by the sensor unit is lower than a predetermined level at which the biological information can be detected for each different orientation of the sensor unit in the housing. And a storage unit
    The radiation control unit is configured to obtain the radiation frequency of the radio wave radiated from the sensor unit based on the table in accordance with the setting of the direction of the sensor unit, and the specific radiation corresponding to the direction of the sensor unit. Care support system that switches to frequency.
  2.  前記動体検知ユニットは、前記放射制御部および前記記憶部を含む、請求項1に記載のケアサポートシステム。 The care support system according to claim 1, wherein the moving object detection unit includes the radiation control unit and the storage unit.
  3.  前記動体検知ユニットは、
     居室内を撮影して画像を取得する撮像部と、
     前記撮像部にて取得された画像から、画像認識によって居室内のベッドまたは布団の位置を認識して就寝場所を特定する画像認識部とをさらに含み、
     前記放射制御部は、前記撮像部によって取得された前記画像内での前記就寝場所に対応する画角に基づいて、前記センサ部の向きを把握し、前記センサ部から放射される前記電波の放射周波数を、前記テーブルに基づいて得られる、前記センサ部の向きに対応する前記特定放射周波数に切り替える、請求項2に記載のケアサポートシステム。
    The moving object detection unit is
    An image capturing unit that captures an image of a room and acquires an image;
    An image recognition unit that recognizes the position of a bed or a futon in the living room by image recognition from the image acquired by the imaging unit, and identifies a sleeping place;
    The radiation control unit grasps the direction of the sensor unit based on an angle of view corresponding to the sleeping place in the image acquired by the imaging unit, and emits the radio wave radiated from the sensor unit. The care support system according to claim 2, wherein the frequency is switched to the specific radiation frequency corresponding to the direction of the sensor unit, which is obtained based on the table.
  4.  該システムは、前記動体検知ユニットから出力される情報を管理する管理サーバーをさらに含み、
     前記動体検知ユニットは、前記放射制御部を含み、
     前記管理サーバーは、
     前記記憶部と、
     前記記憶部に記憶された前記テーブルに基づいて得られる前記特定放射周波数への切り替えを要求する制御信号を前記動体検知ユニットに送信する管理制御部とを含み、
     前記動体検知ユニットの前記放射制御部は、前記管理制御部から送信される前記制御信号に基づいて、前記センサ部から放射される前記電波の放射周波数を、前記特定放射周波数に切り替える、請求項1に記載のケアサポートシステム。
    The system further includes a management server that manages information output from the motion detection unit,
    The moving object detection unit includes the radiation control unit,
    The management server is
    The storage unit;
    A management control unit that transmits a control signal that requests switching to the specific radiation frequency obtained based on the table stored in the storage unit to the moving object detection unit;
    The radiation control unit of the moving object detection unit switches the radiation frequency of the radio wave radiated from the sensor unit to the specific radiation frequency based on the control signal transmitted from the management control unit. As described in the care support system.
  5.  前記管理サーバーは、前記センサ部の向きに関する情報を入力するための入力部を含み、
     前記管理制御部は、前記入力部によって前記情報が入力されたときに、前記テーブルに基づいて、前記センサ部の向きに対応する前記特定放射周波数を求め、前記制御信号を前記動体検知ユニットに送信する、請求項4に記載のケアサポートシステム。
    The management server includes an input unit for inputting information on the orientation of the sensor unit,
    The management control unit obtains the specific radiation frequency corresponding to the direction of the sensor unit based on the table when the information is input by the input unit, and transmits the control signal to the moving object detection unit. The care support system according to claim 4.
  6.  前記管理制御部は、前記管理サーバーと通信可能な外部端末から、前記センサ部の向きに関する情報を受信したときに、前記テーブルに基づいて、前記センサ部の向きに対応する前記特定放射周波数を求め、前記制御信号を前記動体検知ユニットに送信する、請求項4または5に記載のケアサポートシステム。 The management control unit obtains the specific radiation frequency corresponding to the direction of the sensor unit based on the table when receiving information on the direction of the sensor unit from an external terminal capable of communicating with the management server. The care support system according to claim 4, wherein the control signal is transmitted to the moving object detection unit.
  7.  前記動体検知ユニットは、
     居室内を撮影して画像を取得する撮像部と、
     前記撮像部にて取得された画像から、画像認識によって居室内のベッドまたは布団の位置を認識して就寝場所を特定する画像認識部とをさらに含み、
     前記管理制御部は、前記動体検知ユニットから出力される、前記画像および前記就寝場所の情報に基づいて、前記画像内での前記就寝場所に対応する画角および前記センサ部の向きを把握し、前記テーブルに基づいて、前記センサ部の向きに対応する前記特定放射周波数を求め、前記制御信号を前記動体検知ユニットに送信する、請求項4から6のいずれかに記載のケアサポートシステム。
    The moving object detection unit is
    An image capturing unit that captures an image of a room and acquires an image;
    An image recognition unit that recognizes the position of a bed or a futon in the living room by image recognition from the image acquired by the imaging unit, and identifies a sleeping place;
    The management control unit grasps the angle of view corresponding to the sleeping place in the image and the direction of the sensor unit based on the image and the sleeping place information output from the moving object detection unit, The care support system according to any one of claims 4 to 6, wherein the specific radiation frequency corresponding to the direction of the sensor unit is obtained based on the table, and the control signal is transmitted to the moving object detection unit.
  8.  前記センサ部の向きを規定する角度は、水平面に垂直な方向を回転軸として前記センサ部が回転するときのヨー角、および前記水平面に平行な方向を回転軸として前記センサ部が回転するときのピッチ角を含む、請求項1から7のいずれかに記載のケアサポートシステム。 The angle that defines the orientation of the sensor unit is a yaw angle when the sensor unit rotates with a direction perpendicular to the horizontal plane as a rotation axis, and when the sensor unit rotates with a direction parallel to the horizontal plane as a rotation axis. The care support system according to any one of claims 1 to 7, comprising a pitch angle.
  9.  前記センサ部と保持部を介して一体的に設けられ、前記センサ部から放射される前記電波の指向性を制御するレドームレンズをさらに含む、請求項1から8のいずれかに記載のケアサポートシステム。 The care support system according to any one of claims 1 to 8, further comprising a radome lens that is provided integrally via the sensor unit and the holding unit and controls the directivity of the radio wave radiated from the sensor unit. .
  10.  前記テーブルは、前記筐体内での前記センサ部の異なる向きごとに、前記ノイズレベルが最小となるような前記特定放射周波数を規定している、請求項1から9のいずれかに記載のケアサポートシステム。 The care support according to any one of claims 1 to 9, wherein the table defines the specific radiation frequency that minimizes the noise level for each different orientation of the sensor unit in the housing. system.
PCT/JP2018/014461 2017-05-25 2018-04-04 Care support system WO2018216362A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019519501A JPWO2018216362A1 (en) 2017-05-25 2018-04-04 Care support system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017103862 2017-05-25
JP2017-103862 2017-05-25

Publications (1)

Publication Number Publication Date
WO2018216362A1 true WO2018216362A1 (en) 2018-11-29

Family

ID=64396544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014461 WO2018216362A1 (en) 2017-05-25 2018-04-04 Care support system

Country Status (2)

Country Link
JP (1) JPWO2018216362A1 (en)
WO (1) WO2018216362A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189803A (en) * 1986-02-14 1987-08-19 Matsushita Electric Works Ltd Antenna dome
WO2016140186A1 (en) * 2015-03-05 2016-09-09 コニカミノルタ株式会社 Watching system
JP2016209327A (en) * 2015-05-11 2016-12-15 沖電気工業株式会社 Sleep depth estimation device, sleep depth estimation method and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189803A (en) * 1986-02-14 1987-08-19 Matsushita Electric Works Ltd Antenna dome
WO2016140186A1 (en) * 2015-03-05 2016-09-09 コニカミノルタ株式会社 Watching system
JP2016209327A (en) * 2015-05-11 2016-12-15 沖電気工業株式会社 Sleep depth estimation device, sleep depth estimation method and program

Also Published As

Publication number Publication date
JPWO2018216362A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
WO2018216363A1 (en) Care support system and radio wave control method
US11948441B2 (en) System and method for state identity of a user and initiating feedback using multiple sources
US11747463B2 (en) Technologies for tracking objects within defined areas
US20240004054A1 (en) System and method for determining user activities using artificial intelligence processing
US11184738B1 (en) System and method for processing using multi core processors, signals, and AI processors from multiple sources to create a spatial heat map of selected region
US20190099156A1 (en) Sonar-Based Contactless Vital and Environmental Monitoring System and Method
WO2016088717A1 (en) Monitoring device
WO2018216362A1 (en) Care support system
WO2018034064A1 (en) Care support system
WO2020071374A1 (en) Condition monitoring device and condition monitoring method
CN117321448A (en) Techniques for tracking objects within a defined area
WO2019216062A1 (en) Care support system and information provision method
JP2017131581A (en) Nursing care bed, mounting method of radio-frequency sensor, and method for manufacturing nursing care bed
JP6733668B2 (en) Watching system
JP7163923B2 (en) Care support system and communication control method
WO2017217285A1 (en) Care support system
WO2018030017A1 (en) Moving body detection unit and care support system
US11971503B2 (en) System and method for determining user activities using multiple sources
JP2017174706A (en) Image recognition system, moving body detection unit, and care support system
WO2019216055A1 (en) Care support system and information processing method
JP2023544517A (en) Smart home device that uses a single radar transmission mode for activity recognition of active users and vital signs monitoring of inactive users
US20200264278A1 (en) System and method for determining user activities using multiple sources
WO2018168104A1 (en) Body motion detection device and monitoring system
WO2019216063A1 (en) Care support system and information provision method
JP2020091521A (en) Sensor box, watching system, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805555

Country of ref document: EP

Kind code of ref document: A1