WO2018216288A1 - Washing machine - Google Patents

Washing machine Download PDF

Info

Publication number
WO2018216288A1
WO2018216288A1 PCT/JP2018/007228 JP2018007228W WO2018216288A1 WO 2018216288 A1 WO2018216288 A1 WO 2018216288A1 JP 2018007228 W JP2018007228 W JP 2018007228W WO 2018216288 A1 WO2018216288 A1 WO 2018216288A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
washing
fine bubble
rinsing
water supply
Prior art date
Application number
PCT/JP2018/007228
Other languages
French (fr)
Japanese (ja)
Inventor
宏格 笹木
具典 内山
Original Assignee
東芝ライフスタイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝ライフスタイル株式会社 filed Critical 東芝ライフスタイル株式会社
Priority to CN201880020594.9A priority Critical patent/CN110494606B/en
Publication of WO2018216288A1 publication Critical patent/WO2018216288A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F17/00Washing machines having receptacles, stationary for washing purposes, wherein the washing action is effected solely by circulation or agitation of the washing liquid
    • D06F17/12Washing machines having receptacles, stationary for washing purposes, wherein the washing action is effected solely by circulation or agitation of the washing liquid solely by gases, e.g. air or steam, introduced into the washing liquid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/08Liquid supply or discharge arrangements

Definitions

  • the embodiment of the present invention relates to a washing machine.
  • a drum-type washing machine in which cleaning water in a drum is circulated by a circulation pump is considered to have the following configuration (for example, see Patent Document 1).
  • an air mixing path for mixing air into the circulation pump is provided, the air is crushed in the circulation pump to generate fine bubbles, and washing water containing fine bubbles that retain the surfactant. And thereby, the effect
  • JP 2011-115360 A Japanese Patent Laid-Open No. 2017-32001
  • a washing machine equipped with a fine bubble generator and capable of using the fine bubble water more effectively even outside the washing process.
  • the washing machine includes a washing tub in which clothes are stored, a water supply mechanism for supplying water into the washing tub, a fine bubble generator for generating fine bubble water in which fine bubbles are mixed, and the inside of the washing tub.
  • a stirring mechanism that stirs the clothes and a control device that controls each of the mechanisms to perform washing and a washing process including rinsing, and is generated by the fine bubble generator in the rinsing process immediately after the washing process. Supply fine bubble water and execute the rinsing process.
  • fine bubbles or “fine bubbles” in the embodiments is a concept including, for example, microbubbles having a diameter of about 1 ⁇ m to several hundred ⁇ m and ultrafine bubbles having a diameter of about 50 nm to 1 ⁇ m.
  • Fine bubble water refers to water containing a large amount of such fine bubbles.
  • FIG. 1 is a longitudinal front view schematically showing the configuration of the washing machine according to the first embodiment.
  • FIG. 2 is a diagram schematically illustrating the configuration of the water supply mechanism according to the first embodiment.
  • FIG. 3 is a block diagram schematically showing an electrical configuration centering on the control device according to the first embodiment.
  • FIG. 4 is a cross-sectional view illustrating a configuration of an assembly portion of the UFB unit according to the first embodiment.
  • FIG. 5 is a perspective view showing the UFB unit viewed from the downstream side according to the first embodiment.
  • FIG. 6 is an exploded perspective view seen from the downstream side of the UFB unit according to the first embodiment.
  • FIG. 7 is an exploded perspective view seen from the upstream side of the UFB unit according to the first embodiment.
  • FIG. 1 is a longitudinal front view schematically showing the configuration of the washing machine according to the first embodiment.
  • FIG. 2 is a diagram schematically illustrating the configuration of the water supply mechanism according to the first embodiment.
  • FIG. 3 is a block
  • FIG. 8 is a cross-sectional view of the UFB unit according to the first embodiment.
  • FIG. 9 is an enlarged vertical side view taken along line X9-X9 in FIG. 8 according to the first embodiment.
  • FIG. 10 is a diagram illustrating a control state in the rinsing process after the washing process performed by the control device according to the first embodiment.
  • FIG. 11 is a diagram showing the ratio of fine bubble water to the total water supply amount in each stroke according to the first embodiment
  • FIG. 12 is a diagram showing test results obtained by examining the cleaning performance when using fine bubble water according to the first embodiment.
  • FIG. 13 is a diagram showing the ratio of fine bubble water to the total water supply amount in each stroke and temperature division according to the second embodiment
  • FIG. 14 is a diagram illustrating a control state from the washing process to the rinsing process performed by the control device according to the third embodiment.
  • FIG. 1 schematically shows the overall configuration of a washing machine 1 according to the present embodiment.
  • the washing machine 1 includes a top cover 3 made of a synthetic resin, for example, on an upper portion of an outer box 2 that is configured as a rectangular box as a whole from a steel plate.
  • a water tub 4 capable of storing washing water is provided in the outer box 2 while being elastically suspended and supported by an elastic suspension mechanism (not shown) having a well-known configuration.
  • a water tank cover having a doorway for laundry, that is, clothing is provided at the upper end opening of the water tank 4.
  • the water tank cover is provided with a water supply port and a hot air supply port.
  • a drain outlet is formed at the bottom of the water tank 4, and a drain passage having a drain valve 32 (shown only in FIG. 3) is connected to the drain outlet.
  • a water level sensor 33 (shown only in FIG. 3) for detecting the water level in the water tank 4 is also provided in the outer box 2 via an air tube connected to an air trap provided at the bottom of the water tank 4. ing.
  • a vertical washing tank 5 also serving as a dewatering tank is rotatably provided.
  • the washing tub 5 has a bottomed cylindrical shape, and a plurality of dewatering holes (not shown) are formed in the peripheral wall portion.
  • a liquid-filled rotary balancer 6 is attached to the upper end of the washing tub 5.
  • a pulsator 7 constituting a stirring mechanism is disposed at the inner bottom of the washing tub 5. Clothes (not shown) are accommodated in the washing tub 5, and a washing operation and a drying operation including processes such as washing, rinsing, and dehydration of the clothes are performed.
  • a circular concave region in which the pulsator 7 is disposed is provided on the inner bottom of the washing tub 5, and a pump chamber 8 is formed between the pulsator 7 and the inner side.
  • the pulsator 7 has a disk shape having convex portions 7a for generating a rotating water flow on the surface, that is, the upper surface.
  • the pulsator 7 is formed with a plurality of water holes (not shown) so as to penetrate the board surface vertically.
  • a plurality of pump blades 9 are integrally provided on the back surface of the pulsator 7.
  • the pump blade 9 has a thin plate shape extending radially from the center portion, that is, in the radial direction.
  • Outflow ports 8a (only two are shown) are provided at three locations on the outer periphery of the pump chamber 8 that are arranged at intervals of 120 degrees in the circumferential direction.
  • the side walls of the washing tub 5 are provided with three water passages 10 (only two are shown) for pumping washing water from the pump chamber 8 so as to extend upward from the respective outlets 8a. Yes.
  • These water passages 10 have discharge ports 10 a below the upper rotary balancer 6 in the washing tub 5.
  • the washing water here includes fine bubble water in which a detergent described later is dissolved, fine bubble water for rinsing, or the like.
  • the washing water discharged from the outflow port 8a rises or pumps up the water passage 10, and is discharged or sprinkled into the washing tub 5 from the discharge port 10a.
  • a well-known drive mechanism 11 that constitutes a stirring mechanism together with the pulsator 7 is disposed on the outer bottom of the water tank 4.
  • the drive mechanism 11 includes a washing machine motor 34 (see FIG. 3) formed of, for example, an outer rotor type DC three-phase brushless motor.
  • the drive mechanism 11 includes a clutch mechanism (not shown) that selectively transmits the driving force of the washing machine motor 34 to the pulsator 7 or the washing tub 5.
  • the washing machine motor 34 and the clutch mechanism are controlled by a control device 31 described later.
  • the driving force of the washing machine motor 34 is transmitted to the pulsator 7 to drive the pulsator 7 directly and reversely at low speed.
  • the clutch mechanism transmits the driving force of the washing machine motor 34 to the washing tub 5 and rotationally drives the washing tub 5 and the pulsator 7 in one direction at high speed.
  • a water supply mechanism 12 for supplying water into the water tub 4, that is, the washing tub 5 is provided in the top cover 3.
  • the water supply mechanism 12 will be described later.
  • a drying unit 28 as a warm air supply mechanism is provided in the top cover 3.
  • the drying unit 28 includes a heater and a blower for generating hot air.
  • the drying unit 28 is configured to suck the air in the water tank 4 and heat it into warm air, and supply the warm air from the warm air supply hose 29 through the warm air supply port to the water tank 4 again.
  • the water supply mechanism 12 includes a water supply path 13, for example, three water supply valves 20 to 22, a water injection case 18, a water injection port 19 that is an outlet of the water injection case 18, and the like.
  • the water supply path 13 has a hose connection port 14 connected to a water supply source such as water supply on the base end side. After extending from the hose connection port 14, the water supply path 13 is branched into three, and becomes a main water supply path 15, an FB water supply path 16, and a softener water supply path 17 as shown in FIG. 2.
  • a flow meter 35 for measuring the flow rate of water is provided in the base end portion of the water supply path 13 on the base end side, that is, the upstream side from the branch portion.
  • the hose connection port 14 is connected to a water tap, and is supplied with water at a predetermined household water pressure, for example, about 1.0 to 3.0 kgf / cm 2 (0.1 to 0.29 MPa). .
  • the water injection case 18 has a rectangular box shape, and a detergent accommodating portion 23 for accommodating a detergent, that is, a powder detergent and a liquid detergent, is provided at the middle portion of the case. It has been.
  • a softener accommodating portion 24 that accommodates a softener or the like is provided in the middle portion of the water injection case 18 on the left side in the drawing.
  • the detergent container 23 and the softener container 24 are constructed as a drawer type.
  • the upper part in the water injection case 18 is partitioned left and right by a partition plate 18a. Thereby, the 1st upper space 25 and the 2nd upper space 26 are provided in the detergent storage part 23 and the softener storage part 24, respectively.
  • the leading ends of the main water supply path 15 and the FB water supply path 16 are connected to the upper wall of the water injection case 18 so as to communicate with the first upper space 25.
  • the distal end portion of the softener water supply path 17 is connected to the upper wall of the water injection case 18 so as to communicate with the second upper space 26.
  • a communication hole 25 a communicating with the detergent container 23 is provided at the bottom of the first upper space 25.
  • a communication hole 26 a that communicates with the softening agent accommodating portion 24 is provided at the bottom of the second upper space 26.
  • the outlet 23 a of the detergent container 23 and the outlet 24 a of the softener container 24 are in communication with the lower space 27 in the water injection case 18.
  • the lower space 27 is connected to the water injection port 19.
  • a main water supply valve 20 is provided in the main water supply path 15.
  • the FB water supply path 16 is provided with an FB water supply valve 21 for fine bubbles and a UFB unit 51 described later.
  • a softener water supply valve 22 is provided in the softener path 17.
  • the main water supply valve 20 when the main water supply valve 20 is opened, the water from the water supply source flows through the main water supply path 15 to the detergent container 23 of the water injection case 18. And when the detergent is accommodated, it is discharged from the water inlet 19 while dissolving the detergent, and poured into the water tank 4 (washing tank 5). In this case, tap water not containing fine bubbles is supplied into the aquarium 4 as it is through the main water supply path 15.
  • the fine bubble FB water supply valve 21 When the fine bubble FB water supply valve 21 is opened, the water from the water supply source flows through the FB water supply path 16 to the detergent container 23 of the water injection case 18. And when the detergent is accommodated, it is discharged from the water injection port 19 while dissolving the detergent and poured into the water tank 4. At this time, as will be described later, when the water flowing through the FB water supply path 16 passes through the UFB unit 51, fine bubble water containing a large amount of fine bubbles is obtained. Thereby, the washing water in which the detergent is dissolved in the fine bubble water is supplied into the water tank 4 (washing tank 5).
  • the softener water supply valve 22 for softener when the softener water supply valve 22 for softener is opened, the water from the water supply source flows through the softener water supply path 17 to the softener container 24 of the water injection case 18. And when the softening agent is accommodated, it discharges
  • FIG. The softening agent is supplied into the water tank 4 in the rinsing process for the last time, for example.
  • the top cover 3 is also provided with a doorway for clothes, a lid for opening and closing the doorway, an operation panel 36 (see FIG. 3), and the like.
  • the operation panel 36 includes an operation unit for the user to turn on and off the washing machine 1 and various settings / instructions, a display unit for performing necessary display, and the like.
  • the UFB unit 51 as the fine bubble generating device is incorporated in the vicinity of the outlet portion on the downstream side of the FB water supply valve 21 in the FB water supply path 16. Provided.
  • the UFB unit 51 generates fine bubbles (hereinafter referred to as “fine bubbles”) using the principle of the Venturi tube.
  • fine bubbles hereinafter referred to as “fine bubbles”.
  • the UFB unit 51 will be described with reference to FIGS.
  • the UFB unit 51 is configured by combining two parts of an upstream flow path member 52 and a downstream flow path member 53, both of which are made of synthetic resin.
  • the UFB unit 51 as a whole has a columnar shape in which the axial direction is the left-right direction in the drawing and the rear end portion (right end portion in the drawing) has a flange portion 54.
  • a shaft 55 that is the center of the UFB unit 51 is formed with a flow passage 55 that penetrates in the left-right direction in the drawing and allows water to flow in the direction of arrow A.
  • the flow path 55 has an opening 55a on the right side in the drawing as an inflow port 55a and an opening on the left side in the drawing as an outflow port 55b.
  • a narrowed portion 55c is formed in the intermediate portion of the flow channel 55 by a protruding portion 56 protruding to the inner peripheral side.
  • the channel 55 is configured in a tapered shape in a range of about 1 ⁇ 4 of the entire length from the inflow port 55a so that the channel cross-sectional area gradually decreases.
  • the remaining part of the flow path 55 is configured in a straight shape with a substantially constant inner diameter except for the throttle part 55c.
  • the UFB unit 51 includes an upstream flow path member 52 and a downstream flow path member 53, which are divided into two parts, and are configured by combining them.
  • the upstream flow path member 52 integrally includes a protruding portion 56 that constitutes the upstream side of the flow path 55 and narrows the flow path cross-sectional area of the throttle portion 55c.
  • the downstream flow path member 53 constitutes the downstream side of the protruding portion 56 of the flow path 55.
  • the upstream flow path portion 52 is integrally provided with a slightly smaller diameter barrel portion 57 on the distal end side (left side in the drawing) of the flange portion 54.
  • a smaller diameter portion 58 having a smaller diameter is provided on the distal end side of the body portion 57.
  • an upstream half of the flow channel 55 is formed inside the upstream flow channel portion 52.
  • a protruding portion 56 protruding from the inner peripheral surface of the flow channel 55 toward the center is integrally formed at the tip of the small diameter portion 58.
  • the protrusions 56 are located at four positions in the figure in the vertical and horizontal directions, that is, at intervals of 90 degrees, and extend in a form in which the tip is pointed toward the inner peripheral side, that is, the center of the flow path.
  • the flow path 55 is narrowed by these protrusions 56, and the portion having the smallest flow path cross-sectional area of the throttle portion 55c is an X-shaped (cross-shaped) slit shape.
  • the downstream flow path member 53 has a cylindrical shape having an outer diameter equivalent to that of the body portion 57 as shown in FIGS.
  • a circular recess 59 into which the small diameter part 58 of the upstream flow path section 52 is fitted is formed.
  • a straight hole constituting the downstream half of the channel 55 is formed in the downstream channel member 53 so as to penetrate in the left-right direction in the drawing.
  • the inner diameter dimension of the circular recess 59 is configured to be slightly larger than the outer dimension of the small diameter section 58.
  • a plurality of, for example, four press-fitting ribs 60 extending in the axial direction (left-right direction in the figure) are integrally provided on the inner peripheral surface of the circular recess 59 at intervals of 90 degrees. Yes.
  • the press-fit rib 60 is crushed as the small-diameter portion 58 of the upstream-side flow path member 52 is inserted into the circular recess 59 of the downstream-side flow path member 53.
  • the small-diameter portion 58 and the circular concave portion 59 are firmly fixed.
  • the water injection case 18 is integrally provided with an inlet pipe 42 as an inlet portion of water.
  • An outlet pipe 44 of the FB water supply valve 21 is connected to the inlet pipe 42.
  • the outlet pipe 44 has a circular tube shape, and a small-diameter portion 44a in which the outer peripheral surface has a small diameter is provided at the tip portion thereof by forming a step.
  • the UFB unit 51 is assembled so as to be sandwiched between the outlet pipe 44 of the FB water supply valve 21 and the inlet pipe 42 of the water injection case 18.
  • the inlet pipe 42 has such a shape that its inner diameter gradually decreases in three steps from the inlet side (right side in the figure), and includes a first large diameter portion 42a, a second large diameter portion 42b, and a small diameter portion 42c. Is provided.
  • the inner diameter dimension of the first large diameter portion 42a corresponds to the outer diameter dimension of the outlet pipe 44, and they can be fitted.
  • the inner diameter of the second large diameter portion 42b corresponds to the outer diameter of the small diameter portion 44a of the outlet pipe 44 and the flange portion 54 of the UFB unit 51, and they can be fitted.
  • the inner diameter dimension of the small diameter part 42c corresponds to the outer diameter dimension of the UFB unit 51, and they can be fitted.
  • a rib 45 is provided on which the front end surface of the UFB unit 51 is locked.
  • a communication hole 45 a that is continuous with the same diameter as the outlet 55 b of the flow path 55 and communicates with the water filling case 18, that is, the detergent storage case, is formed.
  • the UFB unit 51 is inserted into the inner side of the inlet pipe 42 in a state where the upstream flow path member 52 and the downstream flow path member 53 are combined. As a result, the distal end surface of the downstream flow path member 53 of the UFB unit 51 abuts on the rib 45.
  • the outer periphery excluding the rear end portion of the UFB unit 51 that is, the outer periphery of the downstream flow path member 53 is mainly fitted to the inner periphery of the small diameter portion 42c.
  • the outer periphery of the flange portion 54 of the upstream flow path member 52 of the UFB unit 51 is fitted to the inner periphery of the second large diameter portion 42b.
  • a gap is generated between the outer peripheral surface of the trunk portion 57 of the upstream flow path member 52 and the inner peripheral surface of the second large diameter portion 42 b of the inlet pipe 42.
  • An O-ring 46 as a seal member for hermetically sealing the gap is provided in the gap portion.
  • the tip of the outlet pipe 44 of the FB water supply valve 21 is inserted and connected to the opening end side in the inlet pipe 42.
  • the outer periphery of the distal end portion of the outlet pipe 44 is fitted to the inner periphery of the first large diameter portion 42 a of the inlet pipe 42.
  • the front end surface of the outlet pipe 44 comes into contact with the rear end surface of the upstream flow path member 52 of the UFB unit 51.
  • An O-ring 47 for preventing water leakage is also provided between the outer peripheral surface of the small-diameter portion 44a of the outlet pipe 44 and the inner peripheral surface of the first large-diameter portion 42a of the inlet pipe 42. .
  • the UFB unit 51 of the present embodiment can generate a large amount of fine bubbles including ultrafine bubbles having a diameter of about 50 nm to 1 ⁇ m and microbubbles having a diameter of about 1 ⁇ m to several hundred ⁇ m, that is, fine bubbles. .
  • fine bubble water containing a large amount of fine bubbles can be injected into the detergent container 23 of the water injection case 18 and then into the water tank 4 through the communication hole 45a from the outlet 55b.
  • fine bubble water containing fine bubbles having a diameter of 50 nm to 300 nm, for example, at a concentration of 10 6 / ml or more per milliliter is generated.
  • the fine water supply through the UFB unit 51 by opening the FB water supply valve 21 restricts the flow rate of the water when passing through the UFB unit 51. Therefore, the amount of water supplied per unit time, that is, the flow rate is smaller than the amount of water supplied when the main water supply valve 20 and the softener water supply valve 22 are opened. For example, tap water supply through the main water supply valve 20 is performed at a flow rate about twice that of fine bubble water supply through the UFB unit 51.
  • FIG. 3 schematically shows an electrical configuration of the washing machine 1 with the above-described control device 31 as a center.
  • the control device 31 is mainly composed of a computer, and controls the entire washing machine 1 to execute a washing operation and a drying operation including washing, rinsing, and dehydration processes.
  • the control device 31 is connected to the operation panel 36 and receives detection signals from the water level sensor 33 and the flow meter 35. In this case, the control device 31 can calculate the amount of water supplied by integrating the detection signals of the flow meter 35.
  • a water temperature sensor 37 that detects the temperature of the supplied water or the outside air temperature is provided, and the detection signal is input to the control device 31.
  • control device 31 controls the washing machine motor 34, the drain valve 32, the main water supply valve 20, the FB water supply valve 21, the softener water supply valve 22, and the drying unit 28.
  • the control device 31 controls each mechanism of the washing machine 1 based on an input signal from each sensor or a pre-stored control program in accordance with a driving course set by the user on the operation panel 36. To do.
  • the control device 31 automatically executes a well-known washing operation including a washing process, a rinsing process, and a dehydration process, and further a drying operation by the drying unit 28.
  • a well-known cloth amount detection operation is performed, and the water supply water level and operation time in the washing process and the rinsing process are automatically determined based on the detection result.
  • the control device 31 performs the rinsing process by supplying fine bubble water generated by the UFB unit 51 in the rinsing process immediately after the washing process mainly by the software configuration.
  • the rinsing process that is, the rinsing process is performed by driving the pulsator 7 for a predetermined time in a state where water is supplied to the predetermined rinsing water level in the water tub 4 or the washing tub 5.
  • a draining operation is performed, and then, without performing a dehydrating operation, that is, a dehydrating rinse, the process proceeds to a rinsing process, that is, a water supply operation for the first time.
  • water supply in the first rinsing process is performed by alternately opening the main water supply valve 20 and the FB water supply valve 21.
  • the proportion of fine bubble water is 50% of the total amount of water supply, that is, tap water and fine bubble water are supplied at a ratio of 1: 1. Is done.
  • fine bubble water contained at a concentration such that the number of fine bubbles is 10 5 / ml or more is used. That is, fine bubble water and tap water are mixed at a predetermined ratio such that the number of fine bubbles is 10 5 / ml or more.
  • the rinsing process is performed using the same fine bubble water as in the first rinsing process even in the second rinsing process performed after the first rinsing process.
  • the fine bubble water generated by the UFB unit 51 is also supplied in the washing process, and the washing process using the fine bubble water is executed.
  • the main water supply valve 20 and the FB water supply valve 21 are alternately opened to supply water, and water is supplied in a form in which tap water and fine bubble water are mixed.
  • the ratio of fine bubble water to the total water supply at this time is 30%. Therefore, the fine bubble water used in the rinsing process is supplied so that the number of fine bubbles is larger than the fine bubble water in the washing process.
  • the operation of the washing machine 1 configured as described above will be described with reference to FIGS.
  • the user puts clothes to be washed in the washing tub 5.
  • a required amount of detergent is stored in the detergent storage portion 23 of the water injection case 18, and a required amount of softening agent is stored in the softening agent storage portion 24 as necessary.
  • a start operation is performed on the operation panel 36.
  • the control device 31 automatically executes a washing operation including steps such as washing, rinsing, and dehydration.
  • a well-known cloth amount detection operation is first performed, and the water supply level and the like are automatically determined based on the detection result, and the process proceeds to the washing process.
  • the main water supply valve 20 and the FB water supply valve 21 are alternately opened, and as shown in FIG. 11, the wash water containing 30% fine bubble water is supplied to a predetermined water level. Is done. At this time, water supply to the water tank 4 is performed while dissolving the detergent in the detergent container 23, and washing water in which the detergent is dissolved in fine bubble water is supplied into the water tank 4.
  • a washing process for driving the pulsator 7 to rotate forward and reverse is performed for a predetermined time.
  • the fine bubble has a property of staying in the liquid for a long time because it causes Brownian motion that causes irregular motion in the liquid, for example, in water, and its speed is higher than the flying speed. And since the surface of the fine bubble is negatively charged, it is adsorbed while dispersing the detergent contained in the washing water, that is, the surfactant, to improve the dispersibility of the detergent. Fulfill. Fine bubbles repel each other and do not combine. In addition, the fine bubbles that have adsorbed the detergent component easily enter into the gaps of clothing fibers, for example, about 10 ⁇ m. As a result, the fine bubble can efficiently carry the detergent into the garment to remove the dirt and suppress the reattachment of the dirt to the garment. With such a fine bubble function, an excellent cleaning action can be obtained by performing a washing process using washing water obtained by dissolving a detergent in fine bubble water containing a large amount of fine bubbles.
  • FIG. 10 is a time chart showing the state of opening / closing control of the main water supply valve 20, the FB water supply valve 21, the softener water supply valve 22, and the drain valve 32 in the two rinsing strokes after the end of the washing stroke by the control device 31. It is a chart.
  • the drain valve 32 is opened, and the water tank 4 is drained. At this time, all the water supply valves 20, 21, and 22 are closed.
  • the drain valve 32 When drainage is completed, the drain valve 32 is closed and water is supplied.
  • the main water supply valve 20 is first opened to supply tap water.
  • tap water is supplied up to a half of the predetermined rinse water level, that is, 50%
  • the main water supply valve 20 is closed and the FB water supply valve 21 is opened.
  • fine bubble water containing a large amount of fine bubbles is supplied into the water tank 4.
  • the FB water supply valve 21 is closed.
  • the order of opening the main water supply valve 20 and opening the FB water supply valve 21 may be reversed.
  • the cleaning effect can be further enhanced by using fine bubble water in the rinsing process.
  • FIG. 12 shows the test results of examining the washing performance when fine bubble water is used in the washing step and the first rinsing step.
  • This test is performed according to “JIS C9811: 1999 Method for Measuring Performance of Home Electric Washing Machine”. However, evaluation was performed by measuring the color difference of the contaminated cloth after dyeing with oil violet, using the contaminated cloth with artificial sebum stain as a sample.
  • the horizontal axis indicates the concentration of fine bubbles in washing water (pieces / ml), and the vertical axis indicates the improvement rate of the cleaning performance with respect to the case where tap water is used.
  • the process proceeds to the second rinsing process.
  • the drain valve 32 is first opened to drain water, and then an intermediate dehydration operation is performed for a predetermined time while the drain valve 32 is opened.
  • This intermediate dewatering operation is an operation of continuously rotating the washing tub 5 at a high speed.
  • the drain valve 32 is closed and water supply is started.
  • the softener water supply valve 22 is first opened, and tap water is supplied to the water tank 4 through the softener container 24 while dissolving the softener. Is done.
  • the tap water is supplied up to half the predetermined rinse water level, that is, 50%
  • the softener water supply valve 22 is closed and the FB water supply valve 21 is opened.
  • fine bubble water containing a large amount of fine bubbles is supplied into the water tank 4.
  • the FB water supply valve 21 is closed.
  • the order of opening the softener water supply valve 22 and opening the FB water supply valve 21 may be reversed.
  • the fine bubble water containing fine bubbles is used in the rinsing process immediately after the washing process.
  • the effect of washing with fine bubble water can be enhanced.
  • the water supply operation of the rinsing process is performed without performing the dewatering operation after the draining operation.
  • the dehydrating operation is not performed after the draining operation, the discharge of the detergent component accompanying the dehydrating operation is suppressed. Therefore, as compared with the case where the dehydrating operation is performed, the cleaning process is shifted to the rinsing process with a relatively large amount of detergent remaining, and the cleaning effect in the rinsing process can be further enhanced.
  • the rinsing process is performed a plurality of times in this case, and the rinsing process is performed by supplying fine bubble water generated by the UFB unit 51 with respect to the second rinsing process. I made it.
  • cleaning effect by fine bubble water can be acquired also in the 2nd rinse process compared with the case where fine bubble water is not used.
  • the fine bubble water used in the rinsing process has a concentration of fine bubbles of 10 5 / ml or more. Thereby, a good cleaning effect in the rinsing process was obtained.
  • water was supplied while mixing fine bubble water and tap water at a predetermined ratio such that the number of fine bubbles was 10 5 / ml or more. Thereby, while the predetermined
  • the concentration of fine bubble water used in the rinsing step is higher than the concentration of fine bubble water in the washing step. That is, water supply is performed so that the number of fine bubbles increases.
  • the number of fine bubbles in the fine bubble water used in the rinsing process is increased compared to the washing process in order to enhance the cleaning effect. . Thereby, a better cleaning effect can be obtained.
  • FIG. 13 shows a second embodiment.
  • the second embodiment is different from the first embodiment in the control in the washing process and the rinsing process performed by the control device 31.
  • the control device 31 changes the ratio of fine bubble water to the total water supply amount in the water supply in the washing process and the rinsing process according to the water temperature detected by the water temperature sensor 37.
  • the water temperature or the outside air temperature detected by the water temperature sensor 37 is classified into three cases: a low temperature, for example, less than 15 ° C., a medium temperature, for example, 15 ° C. or more and less than 30 ° C., and a high temperature, for example, 30 ° C. or more. .
  • the supply amount of fine bubble water that is, the ratio to the total water supply amount is changed, that is, the ratio of fine bubble water is reduced as the water temperature is higher.
  • the concentration of fine bubble water used in the rinsing step is larger than the concentration of fine bubble water in the washing step, that is, fine bubbles. Water supply is performed so that the number increases.
  • the ratio of fine bubble water to the total water supply amount is 80% when the water temperature is low, 50% when the water temperature is low, and 30% when the water temperature is high. It is said. Further, at the time of water supply in the rinsing process, the ratio of fine bubble water to the total water supply amount is 100% when the water temperature is low, 70% when the water temperature is low, and 50% when the water temperature is high.
  • the higher the temperature of the supplied water the higher the cleaning effect can be obtained. Therefore, according to the present embodiment, when the water temperature is relatively low, the cleaning effect is low, but by increasing the concentration of fine bubble water, the low water temperature is covered and the cleaning performance is ensured. be able to.
  • the water temperature is relatively high, a high cleaning effect can be obtained by the water temperature itself, and therefore the concentration of fine bubble water can be made relatively low to shorten the water supply time. Further, by raising the concentration of fine bubble water used in the rinsing process as compared with the washing process, a better cleaning effect in the rinsing process can be obtained.
  • FIG. 14 shows a third embodiment.
  • the third embodiment it is possible to execute an operation course in which soaking is performed during the washing process. This extra washing is to put the clothes on the washing water in the washing tub 5 for a certain period of time with the pulsator 7 stopped, and is effective when executed when the degree of dirt on the clothes is large.
  • the operation panel 36 By operating the operation panel 36 by the user, it is possible to set the time for applying washing in a plurality of stages.
  • the plurality of stages includes setting the time for extra washing to 0, that is, not performing the extra washing operation.
  • the control device 31 drives the drying unit 28 up to 180 minutes from the start of the washing operation, that is, the first washing process, to drive the temperature.
  • Wind is supplied into the water tank 4.
  • the washing water in the water tub 4, that is, the washing tub 5 is heated at the time of soaking, and the temperature of the washing water can be raised by about 10 degrees from the time of water supply.
  • the control device 31 when the soaking is set, the control device 31 performs the first washing operation for a predetermined time, for example, 20 minutes after the water supply operation up to the predetermined water level in the washing process. To do. Thereafter, the control device 31 stops the pulsator 7 and executes soaking. At this time, as described above, the drying unit 28 is turned on from the start of the first washing, and the washing water is heated by the warm air. The drying unit 28 is turned off after the predetermined time, for example, during the extra washing, and the extra washing and the second washing are performed with the washing water whose temperature has increased by about 10 degrees.
  • the second washing operation is executed for a predetermined time, for example, 20 minutes, and the washing process is finished.
  • the water supply at the start of the washing process is performed by alternately opening the main water supply valve 20 and the FB water supply valve 21 to obtain wash water containing fine bubble water at a predetermined ratio.
  • the ratio of fine bubble water can also be determined according to the current water temperature or the water temperature increased by 10 degrees therefrom.
  • This rinsing process includes a dehydrating operation and a rinsing for one time. After the drainage is performed, the dehydrating operation is performed for a predetermined time. Thereafter, the main water supply valve 20 and the FB water supply valve 21 are alternately opened to supply water up to a predetermined rinse water level. Also in this case, as shown in FIG. 13, the proportion of fine bubble water can be determined according to the current water temperature. Subsequently, a stirring operation for intermittently driving the pulsator 12 forward and reverse is executed.
  • fine bubble water containing fine bubbles is used in the rinsing process immediately after the washing process.
  • cleaning by fine bubble water can be improved can be acquired.
  • the use of extra washing can improve the washing performance in the washing process.
  • stirring is performed after the completion of water supply in the rinsing process.
  • the stirring operation that is, the driving of the pulsator 7 may be started from a low water level during the supply of fine bubble water, for example, about 3/4 of the set water level. .
  • water supply is completed, and stirring is performed for a predetermined time including that time.
  • the fine bubble water supply takes longer time than the tap water supply, but before starting the water supply to the final rinse water level, the agitation is started to start rinsing accordingly. The time required for the entire process can be shortened.
  • the specific numerical values such as the time and water level, the number of fine bubbles, the concentration of fine bubbles, the ratio of tap water and fine bubble water, the temperature classification used in each of the above embodiments are merely examples, It can be implemented with appropriate changes. Various changes can also be made to the content of the washing course, such as rinsing three or more times. Furthermore, in the said embodiment, although applied to the vertical type washing machine, it can apply not only to a vertical type washing machine but to general washing machines, such as a drum type washing machine. In addition, various changes can be made to the specific structure of the fine bubble generating device, the configuration of the water injection case and the water supply mechanism, and the like.

Abstract

A washing machine (1) according to a mode of embodiment of the present invention is provided with: a washing drum (5) in which garments are accommodated; a water feeding mechanism (12) which feeds water into the washing drum (5); a micro-bubble generating device (51) which generates fine bubble water having micro-bubbles mixed therein; an agitating mechanism (7) which agitates the garments inside the washing drum (5); and a control device (31) which controls each mechanism (12, 51, 7) to execute washing processes including washing and rinsing. In a rinsing process immediately following a wash process, the rinsing process is executed by feeding the fine bubble water generated by the micro-bubble generating device (51).

Description

洗濯機Washing machine 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年5月22日に出願された日本出願番号2017-100812号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2017-1000081 filed on May 22, 2017, the contents of which are incorporated herein by reference.
 本発明の実施形態は、洗濯機に関する。 The embodiment of the present invention relates to a washing machine.
 従来、循環ポンプによりドラム内の洗浄水を循環させるようにしたドラム式の洗濯機にあっては、次の構成のものが考えられている(例えば特許文献1参照)。このドラム式洗濯機では、循環ポンプにエアを混入させるエア混入経路を設け、該循環ポンプ内でエアを破砕して微細な気泡を発生させ、界面活性剤を保持する微細気泡を含んだ洗浄水とする。これにより、界面活性剤(洗剤)の作用を増大させて洗浄力の向上が図られる。 Conventionally, a drum-type washing machine in which cleaning water in a drum is circulated by a circulation pump is considered to have the following configuration (for example, see Patent Document 1). In this drum-type washing machine, an air mixing path for mixing air into the circulation pump is provided, the air is crushed in the circulation pump to generate fine bubbles, and washing water containing fine bubbles that retain the surfactant. And Thereby, the effect | action of surfactant (detergent) is increased and the improvement of a cleaning power is aimed at.
 尚、近年では、微細気泡として例えば直径が数十nm~数百nmのファインバブル(ウルトラファインバブル又はマイクロバブル)を発生させるための装置を洗濯機に設けることも考えられている(例えば特許文献2参照)。このファインバブル発生装置は、流体力学のいわゆるベンチュリ効果を利用して、水の流速を高めて、圧力を急激に低下させ、水中に溶存している空気を微細な気泡として多量に析出させるものとなっている。 In recent years, it has been considered that a device for generating fine bubbles (ultrafine bubbles or microbubbles) having a diameter of, for example, several tens to several hundreds of nanometers as a fine bubble is provided in a washing machine (for example, Patent Documents). 2). This fine bubble generator uses the so-called Venturi effect of hydrodynamics to increase the flow rate of water, rapidly reduce the pressure, and precipitate a large amount of air dissolved in water as fine bubbles. It has become.
特開2011-115360号公報JP 2011-115360 A 特開2017-32001号公報Japanese Patent Laid-Open No. 2017-32001
 従来技術では、微細気泡が含まれた水は、洗い行程で洗浄力向上のために用いられるに止まっていた。そのため、洗い行程以外でも、ファインバブル発生装置により発生するファインバブル水を、より一層有効に利用することが望まれる。 In the prior art, water containing fine bubbles has only been used to improve cleaning power in the washing process. Therefore, it is desired to use the fine bubble water generated by the fine bubble generator more effectively than the washing process.
 そこで、微細気泡発生装置を備えたものにあって、洗い行程以外でも、ファインバブル水をより一層有効に利用することができる洗濯機を提供する。 Therefore, there is provided a washing machine equipped with a fine bubble generator and capable of using the fine bubble water more effectively even outside the washing process.
 本実施形態の洗濯機は、衣類が収容される洗濯槽と、前記洗濯槽内に給水する給水機構と、微細気泡が混入されたファインバブル水を生成する微細気泡発生装置と、前記洗濯槽内の衣類を撹拌する撹拌機構と、前記各機構を制御して洗い、すすぎを含む洗濯行程を実行する制御装置とを備え、前記洗い行程直後のすすぎ行程において、前記微細気泡発生装置により生成されたファインバブル水を給水してすすぎ行程を実行する。 The washing machine according to the present embodiment includes a washing tub in which clothes are stored, a water supply mechanism for supplying water into the washing tub, a fine bubble generator for generating fine bubble water in which fine bubbles are mixed, and the inside of the washing tub. A stirring mechanism that stirs the clothes and a control device that controls each of the mechanisms to perform washing and a washing process including rinsing, and is generated by the fine bubble generator in the rinsing process immediately after the washing process. Supply fine bubble water and execute the rinsing process.
 尚、実施形態における「微細気泡」或いは「ファインバブル」とは、例えば直径が1μm~数百μm程度のマイクロバブル、及び、直径が50nm~1μm程度のウルトラファインバブルを含んだ概念である。ファインバブル水とは、そのような微細気泡を多量に含んだ水をいう。 The “fine bubbles” or “fine bubbles” in the embodiments is a concept including, for example, microbubbles having a diameter of about 1 μm to several hundred μm and ultrafine bubbles having a diameter of about 50 nm to 1 μm. Fine bubble water refers to water containing a large amount of such fine bubbles.
図1は、第1の実施形態に係る洗濯機の構成を概略的に示す縦断正面図であり、FIG. 1 is a longitudinal front view schematically showing the configuration of the washing machine according to the first embodiment. 図2は、第1の実施形態に係る給水機構の構成を模式的に示す図であり、FIG. 2 is a diagram schematically illustrating the configuration of the water supply mechanism according to the first embodiment. 図3は、第1の実施形態に係る制御装置を中心にした電気的構成を概略的に示すブロック図であり、FIG. 3 is a block diagram schematically showing an electrical configuration centering on the control device according to the first embodiment. 図4は、第1の実施形態に係るUFBユニットの組付け部分の構成を示す断面図であり、FIG. 4 is a cross-sectional view illustrating a configuration of an assembly portion of the UFB unit according to the first embodiment. 図5は、第1の実施形態に係る下流側から見たUFBユニットを示す斜視図であり、FIG. 5 is a perspective view showing the UFB unit viewed from the downstream side according to the first embodiment. 図6は、第1の実施形態に係るUFBユニットの下流側から見た分解斜視図であり、FIG. 6 is an exploded perspective view seen from the downstream side of the UFB unit according to the first embodiment. 図7は、第1の実施形態に係るUFBユニットの上流側から見た分解斜視図であり、FIG. 7 is an exploded perspective view seen from the upstream side of the UFB unit according to the first embodiment. 図8は、第1の実施形態に係るUFBユニットの断面図であり、FIG. 8 is a cross-sectional view of the UFB unit according to the first embodiment. 図9は、第1の実施形態に係る図8のX9-X9線に沿う拡大縦断側面図であり、FIG. 9 is an enlarged vertical side view taken along line X9-X9 in FIG. 8 according to the first embodiment. 図10は、第1の実施形態に係る制御装置が実行する洗い行程後のすすぎ行程における制御状態を示す図であり、FIG. 10 is a diagram illustrating a control state in the rinsing process after the washing process performed by the control device according to the first embodiment. 図11は、第1の実施形態に係る各行程における全体給水量に対するファインバブル水の割合を示す図であり、FIG. 11 is a diagram showing the ratio of fine bubble water to the total water supply amount in each stroke according to the first embodiment, 図12は、第1の実施形態に係るファインバブル水を用いた場合の洗浄性能を調べた試験結果を示す図であり、FIG. 12 is a diagram showing test results obtained by examining the cleaning performance when using fine bubble water according to the first embodiment. 図13は、第2の実施形態に係る各行程及び温度区分における全体の給水量に対するファインバブル水の割合を示す図であり、FIG. 13 is a diagram showing the ratio of fine bubble water to the total water supply amount in each stroke and temperature division according to the second embodiment, 図14は、第3の実施形態に係る制御装置が実行する洗い行程からすすぎ行程における制御状態を示す図である。FIG. 14 is a diagram illustrating a control state from the washing process to the rinsing process performed by the control device according to the third embodiment.
 以下、いくつかの実施形態について、図面を参照しながら説明する。以下に述べる実施形態では、乾燥機能も備えたいわゆる縦軸型の洗濯機に適用するようにしている。尚、複数の実施形態間で、同一部分には同一符号を付して新たな図示や繰り返しの説明を省略する。 Hereinafter, some embodiments will be described with reference to the drawings. In the embodiment described below, the present invention is applied to a so-called vertical washing machine having a drying function. In addition, between several embodiment, the same code | symbol is attached | subjected to the same part and new illustration and repeated description are abbreviate | omitted.
 (1)第1の実施形態
 図1から図12を参照して第1の実施形態について説明する。図1は、本実施形態に係る洗濯機1の全体構成を概略的に示している。この洗濯機1は、例えば鋼板から全体として矩形箱状に構成された外箱2の上部に、合成樹脂製のトップカバー3を備えている。前記外箱2内には、洗濯水を溜めることが可能な水槽4が、周知構成の弾性吊持機構(図示せず)により弾性的に吊り下げ支持されて設けられている。
(1) First Embodiment A first embodiment will be described with reference to FIGS. FIG. 1 schematically shows the overall configuration of a washing machine 1 according to the present embodiment. The washing machine 1 includes a top cover 3 made of a synthetic resin, for example, on an upper portion of an outer box 2 that is configured as a rectangular box as a whole from a steel plate. A water tub 4 capable of storing washing water is provided in the outer box 2 while being elastically suspended and supported by an elastic suspension mechanism (not shown) having a well-known configuration.
 尚、図示はしないが、水槽4の上端開口部には、洗濯物即ち衣類の出入口を有する水槽カバーが設けられている。この水槽カバーには、給水口や温風供給口が設けられている。また、詳しく図示はしないが、水槽4の底部には、排水口が形成され、この排水口に、排水弁32(図3にのみ図示)を備えた排水路が接続されている。更に、外箱2内には、水槽4の底部に設けられたエアトラップに接続されたエアチューブを介して、水槽4内の水位を検出する水位センサ33(図3にのみ図示)も設けられている。 Although not shown in the drawing, a water tank cover having a doorway for laundry, that is, clothing is provided at the upper end opening of the water tank 4. The water tank cover is provided with a water supply port and a hot air supply port. Although not shown in detail, a drain outlet is formed at the bottom of the water tank 4, and a drain passage having a drain valve 32 (shown only in FIG. 3) is connected to the drain outlet. Furthermore, a water level sensor 33 (shown only in FIG. 3) for detecting the water level in the water tank 4 is also provided in the outer box 2 via an air tube connected to an air trap provided at the bottom of the water tank 4. ing.
 前記水槽4内には、脱水槽を兼用する縦軸型の洗濯槽5が回転可能に設けられている。この洗濯槽5は、有底円筒状をなし、その周壁部には、図示しない多数個の脱水孔が形成されている。この洗濯槽5の上端部には、例えば液体封入形の回転バランサ6が取付けられている。また、洗濯槽5の内底部には、撹拌機構を構成するパルセータ7が配設されている。洗濯槽5内には、図示しない衣類が収容されるようになっており、衣類の洗い、すすぎ、脱水等の行程からなる洗濯運転や、乾燥運転が行われる。 In the water tank 4, a vertical washing tank 5 also serving as a dewatering tank is rotatably provided. The washing tub 5 has a bottomed cylindrical shape, and a plurality of dewatering holes (not shown) are formed in the peripheral wall portion. For example, a liquid-filled rotary balancer 6 is attached to the upper end of the washing tub 5. A pulsator 7 constituting a stirring mechanism is disposed at the inner bottom of the washing tub 5. Clothes (not shown) are accommodated in the washing tub 5, and a washing operation and a drying operation including processes such as washing, rinsing, and dehydration of the clothes are performed.
 本実施形態では、洗濯槽5の内底部には、前記パルセータ7が配置される円形の凹状領域が設けられ、前記パルセータ7との間にポンプ室8が形成される。このとき、前記パルセータ7は、表面即ち上面に回転水流生成用の凸部7aを有する円盤状をなしている。また、パルセータ7には、その盤面を上下に貫通するように複数個の通水孔(図示せず)が形成されている。このパルセータ7の裏面には、複数枚のポンプ羽根9が一体に設けられている。このポンプ羽根9は、中心部から放射方向即ち半径方向に延びる薄板状をなしている。前記ポンプ室8の外周部の、円周方向に120度間隔で配置された3箇所に、流出口8a(2個のみ図示)が設けられている。 In the present embodiment, a circular concave region in which the pulsator 7 is disposed is provided on the inner bottom of the washing tub 5, and a pump chamber 8 is formed between the pulsator 7 and the inner side. At this time, the pulsator 7 has a disk shape having convex portions 7a for generating a rotating water flow on the surface, that is, the upper surface. The pulsator 7 is formed with a plurality of water holes (not shown) so as to penetrate the board surface vertically. A plurality of pump blades 9 are integrally provided on the back surface of the pulsator 7. The pump blade 9 has a thin plate shape extending radially from the center portion, that is, in the radial direction. Outflow ports 8a (only two are shown) are provided at three locations on the outer periphery of the pump chamber 8 that are arranged at intervals of 120 degrees in the circumferential direction.
 前記洗濯槽5の側壁部には、各流出口8aから上方に延びるようにして、洗濯水を前記ポンプ室8から揚水するための3個(2個のみ図示)の通水路10が設けられている。これら通水路10は、洗濯槽5内の上部の回転バランサ6の下方に吐出口10aを有している。これにて、ポンプ室8におけるパルセータ7つまりポンプ羽根9の回転により、洗濯槽5内の洗濯水が、ポンプ室8の3つの流出口8aから外周方向に向けて吐出される。ここでいう洗濯水としては、後述する洗剤が溶けたファインバブル水、或いはすすぎ用のファインバブル水等が含まれる。流出口8aから吐出された洗濯水は、通水路10内を上昇即ち揚水し、吐出口10aから洗濯槽5内に吐出即ち散水される。 The side walls of the washing tub 5 are provided with three water passages 10 (only two are shown) for pumping washing water from the pump chamber 8 so as to extend upward from the respective outlets 8a. Yes. These water passages 10 have discharge ports 10 a below the upper rotary balancer 6 in the washing tub 5. As a result, the washing water in the washing tub 5 is discharged from the three outlets 8 a of the pump chamber 8 toward the outer periphery by the rotation of the pulsator 7, that is, the pump blade 9 in the pump chamber 8. The washing water here includes fine bubble water in which a detergent described later is dissolved, fine bubble water for rinsing, or the like. The washing water discharged from the outflow port 8a rises or pumps up the water passage 10, and is discharged or sprinkled into the washing tub 5 from the discharge port 10a.
 また、前記水槽4の外底部には、前記パルセータ7と共に撹拌機構を構成する周知の駆動機構11が配設されている。詳しい図示及び説明は省略するが、この駆動機構11は、例えばアウタロータ形のDC三相ブラシレスモータからなる洗濯機モータ34(図3参照)を備える。これと共に、駆動機構11は、その洗濯機モータ34の駆動力を前記パルセータ7又は洗濯槽5に選択的に伝達する図示しないクラッチ機構等を備えている。洗濯機モータ34及びクラッチ機構は、後述する制御装置31により制御される。このとき、洗い時、及びすすぎ時即ちためすすぎ時には洗濯槽5の固定つまり停止状態で、洗濯機モータ34の駆動力をパルセータ7に伝達してパルセータ7を低速で直接正逆回転駆動する。また、脱水すすぎ時や脱水時等には、クラッチ機構は、洗濯機モータ34の駆動力を洗濯槽5に伝達し、洗濯槽5及びパルセータ7を一方向に高速で回転駆動する。 Also, a well-known drive mechanism 11 that constitutes a stirring mechanism together with the pulsator 7 is disposed on the outer bottom of the water tank 4. Although detailed illustration and description are omitted, the drive mechanism 11 includes a washing machine motor 34 (see FIG. 3) formed of, for example, an outer rotor type DC three-phase brushless motor. At the same time, the drive mechanism 11 includes a clutch mechanism (not shown) that selectively transmits the driving force of the washing machine motor 34 to the pulsator 7 or the washing tub 5. The washing machine motor 34 and the clutch mechanism are controlled by a control device 31 described later. At this time, at the time of washing and at the time of rinsing, that is, at the time of rinsing, with the washing tub 5 fixed or stopped, the driving force of the washing machine motor 34 is transmitted to the pulsator 7 to drive the pulsator 7 directly and reversely at low speed. Further, at the time of dehydration rinsing or dehydration, the clutch mechanism transmits the driving force of the washing machine motor 34 to the washing tub 5 and rotationally drives the washing tub 5 and the pulsator 7 in one direction at high speed.
 前記トップカバー3内には、図2にも一部示すように、前記水槽4内つまり洗濯槽5内に給水を行う給水機構12が設けられる。給水機構12については後述する。また、本実施形態では、トップカバー3内に、温風供給機構としての乾燥ユニット28が設けられている。詳しく図示はしないが、乾燥ユニット28は、温風生成用のヒータや送風装置を備えている。乾燥ユニット28は、水槽4内の空気を吸込み、加熱して温風とし、その温風を温風供給ホース29から温風供給口を通して再び水槽4内に供給するように構成されている。 In the top cover 3, as shown in part in FIG. 2, a water supply mechanism 12 for supplying water into the water tub 4, that is, the washing tub 5 is provided. The water supply mechanism 12 will be described later. In the present embodiment, a drying unit 28 as a warm air supply mechanism is provided in the top cover 3. Although not shown in detail, the drying unit 28 includes a heater and a blower for generating hot air. The drying unit 28 is configured to suck the air in the water tank 4 and heat it into warm air, and supply the warm air from the warm air supply hose 29 through the warm air supply port to the water tank 4 again.
 前記給水機構12は、給水経路13、例えば3個の給水弁20~22、注水ケース18、注水ケース18の出口部である注水口19等を備えている。前記給水経路13は、基端側に水道等の給水源に接続されるホース接続口14を有している。給水経路13は、ホース接続口14から延びた後、3本に分岐して延び、図2にも示すように、メイン給水経路15、FB用給水経路16、柔軟剤用給水経路17となる。給水経路13の基端部のうち、分岐部分よりも基端側即ち上流側には、水の流量を計測する流量計35が設けられている。尚、ホース接続口14は水道の蛇口に接続され、家庭用の所定の水道水圧、例えば1.0~3.0kgf/cm(0.1~0.29MPa)程度で、水が供給される。 The water supply mechanism 12 includes a water supply path 13, for example, three water supply valves 20 to 22, a water injection case 18, a water injection port 19 that is an outlet of the water injection case 18, and the like. The water supply path 13 has a hose connection port 14 connected to a water supply source such as water supply on the base end side. After extending from the hose connection port 14, the water supply path 13 is branched into three, and becomes a main water supply path 15, an FB water supply path 16, and a softener water supply path 17 as shown in FIG. 2. A flow meter 35 for measuring the flow rate of water is provided in the base end portion of the water supply path 13 on the base end side, that is, the upstream side from the branch portion. The hose connection port 14 is connected to a water tap, and is supplied with water at a predetermined household water pressure, for example, about 1.0 to 3.0 kgf / cm 2 (0.1 to 0.29 MPa). .
 図2に示すように、前記注水ケース18は、矩形箱状をなし、その中段部には、図で右側に位置して、洗剤即ち粉末洗剤及び液体洗剤が収容される洗剤収容部23が設けられている。また、注水ケース18の中段部には、図で左側に位置して、柔軟剤等が収容される柔軟剤収容部24が設けられる。これら洗剤収容部23及び柔軟剤収容部24は引き出し式に構成されている。注水ケース18内の上部は、仕切板18aによって左右に仕切られている。これにより、洗剤収容部23及び柔軟剤収容部24の夫々上方に位置して、第1上部空間25及び第2上部空間26が設けられている。前記メイン給水経路15及びFB用給水経路16の先端部は、前記第1上部空間25に連通するように、注水ケース18の上壁に接続されている。前記柔軟剤用給水経路17の先端部は、前記第2上部空間26に連通するように、注水ケース18の上壁に接続されている。 As shown in FIG. 2, the water injection case 18 has a rectangular box shape, and a detergent accommodating portion 23 for accommodating a detergent, that is, a powder detergent and a liquid detergent, is provided at the middle portion of the case. It has been. In addition, a softener accommodating portion 24 that accommodates a softener or the like is provided in the middle portion of the water injection case 18 on the left side in the drawing. The detergent container 23 and the softener container 24 are constructed as a drawer type. The upper part in the water injection case 18 is partitioned left and right by a partition plate 18a. Thereby, the 1st upper space 25 and the 2nd upper space 26 are provided in the detergent storage part 23 and the softener storage part 24, respectively. The leading ends of the main water supply path 15 and the FB water supply path 16 are connected to the upper wall of the water injection case 18 so as to communicate with the first upper space 25. The distal end portion of the softener water supply path 17 is connected to the upper wall of the water injection case 18 so as to communicate with the second upper space 26.
 前記第1上部空間25の底部には、前記洗剤収容部23に連通する連通孔25aが設けられている。前記第2上部空間26の底部には、前記柔軟剤収容部24に連通する連通孔26aが設けられている。洗剤収容部23の出口部23a及び柔軟剤収容部24の出口部24aは、注水ケース18内の下部空間27に連通している。その下部空間27が前記注水口19に連なっている。そして、前記メイン給水経路15には、メイン給水弁20が設けられている。FB用給水経路16には、ファインバブル用のFB用給水弁21及び後述するUFBユニット51が設けられている。柔軟剤用経路17には、柔軟剤用給水弁22が設けられている。これら給水弁20、21、22は、電磁的に開閉動作する開閉弁からなり、図3に示すように、前記制御装置31により制御される。 A communication hole 25 a communicating with the detergent container 23 is provided at the bottom of the first upper space 25. A communication hole 26 a that communicates with the softening agent accommodating portion 24 is provided at the bottom of the second upper space 26. The outlet 23 a of the detergent container 23 and the outlet 24 a of the softener container 24 are in communication with the lower space 27 in the water injection case 18. The lower space 27 is connected to the water injection port 19. A main water supply valve 20 is provided in the main water supply path 15. The FB water supply path 16 is provided with an FB water supply valve 21 for fine bubbles and a UFB unit 51 described later. A softener water supply valve 22 is provided in the softener path 17. These water supply valves 20, 21, and 22 are open / close valves that open and close electromagnetically, and are controlled by the control device 31 as shown in FIG. 3.
 これにて、メイン給水弁20が開放されると、給水源からの水がメイン給水経路15を通って注水ケース18の洗剤収容部23に流れる。そして、洗剤が収容されている場合にはその洗剤を溶かしながら注水口19から排出され、水槽4(洗濯槽5)内に注水される。この場合、メイン給水経路15を通して、ファインバブルを含まない水道水がそのまま水槽4内に供給される。 Thus, when the main water supply valve 20 is opened, the water from the water supply source flows through the main water supply path 15 to the detergent container 23 of the water injection case 18. And when the detergent is accommodated, it is discharged from the water inlet 19 while dissolving the detergent, and poured into the water tank 4 (washing tank 5). In this case, tap water not containing fine bubbles is supplied into the aquarium 4 as it is through the main water supply path 15.
 また、ファインバブル用のFB用給水弁21が開放されると、給水源からの水がFB用給水経路16を通って注水ケース18の洗剤収容部23に流れる。そして、洗剤が収容されている場合にはその洗剤を溶かしながら注水口19から排出され、水槽4内に注水される。このとき、後述するように、FB用給水経路16を流れる水がUFBユニット51を通ることによって、多量のファインバブルを含んだファインバブル水となる。これにより、ファインバブル水に洗剤が溶け込んだ洗濯水が、水槽4(洗濯槽5)内に供給されるようになる。 When the fine bubble FB water supply valve 21 is opened, the water from the water supply source flows through the FB water supply path 16 to the detergent container 23 of the water injection case 18. And when the detergent is accommodated, it is discharged from the water injection port 19 while dissolving the detergent and poured into the water tank 4. At this time, as will be described later, when the water flowing through the FB water supply path 16 passes through the UFB unit 51, fine bubble water containing a large amount of fine bubbles is obtained. Thereby, the washing water in which the detergent is dissolved in the fine bubble water is supplied into the water tank 4 (washing tank 5).
 更に、柔軟剤用の柔軟剤用給水弁22が開放されると、給水源からの水が柔軟剤用給水経路17を通って注水ケース18の柔軟剤収容部24に流れる。そして、柔軟剤が収容されている場合にはその柔軟剤を溶かしながら注水口19から排出され、水槽4即ち洗濯槽5内に注水される。柔軟剤は、例えば最終回のためすすぎ行程において、水槽4内に供給される。尚、詳しく図示はしないが、このトップカバー3には、衣類の出入口、その出入口を開閉する蓋、操作パネル36(図3参照)等も設けられている。前記操作パネル36は、ユーザが洗濯機1に対する電源の入り切りや各種の設定・指示等を行うための操作部や、必要な表示を行う表示部等を備えて構成されている。 Furthermore, when the softener water supply valve 22 for softener is opened, the water from the water supply source flows through the softener water supply path 17 to the softener container 24 of the water injection case 18. And when the softening agent is accommodated, it discharges | emits from the water pouring opening 19, melting the softening agent, and is poured into the water tank 4, ie, the washing tub 5. FIG. The softening agent is supplied into the water tank 4 in the rinsing process for the last time, for example. Although not shown in detail, the top cover 3 is also provided with a doorway for clothes, a lid for opening and closing the doorway, an operation panel 36 (see FIG. 3), and the like. The operation panel 36 includes an operation unit for the user to turn on and off the washing machine 1 and various settings / instructions, a display unit for performing necessary display, and the like.
 さて、本実施形態では、上記のように、FB用給水経路16のうち、FB用給水弁21の下流側である出口部近傍に組込まれるようにして、微細気泡発生装置としてのUFBユニット51が設けられる。このUFBユニット51は、ベンチュリ管の原理を利用して微細気泡(以下「ファインバブル」という)を発生させる。このUFBユニット51について、図4から図9を参照して述べる。本実施形態では、UFBユニット51は、共に合成樹脂製の、上流側流路部材52と、下流側流路部材53との2部品を組合せることにより構成される。 In the present embodiment, as described above, the UFB unit 51 as the fine bubble generating device is incorporated in the vicinity of the outlet portion on the downstream side of the FB water supply valve 21 in the FB water supply path 16. Provided. The UFB unit 51 generates fine bubbles (hereinafter referred to as “fine bubbles”) using the principle of the Venturi tube. The UFB unit 51 will be described with reference to FIGS. In the present embodiment, the UFB unit 51 is configured by combining two parts of an upstream flow path member 52 and a downstream flow path member 53, both of which are made of synthetic resin.
 即ち、UFBユニット51は、図8、図4等に示すように、全体として、軸方向を図で左右方向とし、後端部(図で右端部)にフランジ部54を有する円柱状をなしている。UFBユニット51の中心部である軸心部には、図で左右方向に貫通し、水が矢印A方向に流れる流路55が形成されている。この流路55は、図で右側の開口部が流入口55aとされ、図で左側の開口部が流出口55bとされている。そして、前記流路55の中間部に、内周側に突出する突出部56によって絞り部55cが形成されている。流路55は、流入口55aから全体の1/4程度の長さの範囲が、流路断面積が次第に小さくなるテーパ状に構成されている。流路55の残りの部分は、前記絞り部55cを除いてほぼ一定の内径のストレート状に構成されている。 That is, as shown in FIGS. 8 and 4, the UFB unit 51 as a whole has a columnar shape in which the axial direction is the left-right direction in the drawing and the rear end portion (right end portion in the drawing) has a flange portion 54. Yes. A shaft 55 that is the center of the UFB unit 51 is formed with a flow passage 55 that penetrates in the left-right direction in the drawing and allows water to flow in the direction of arrow A. The flow path 55 has an opening 55a on the right side in the drawing as an inflow port 55a and an opening on the left side in the drawing as an outflow port 55b. A narrowed portion 55c is formed in the intermediate portion of the flow channel 55 by a protruding portion 56 protruding to the inner peripheral side. The channel 55 is configured in a tapered shape in a range of about ¼ of the entire length from the inflow port 55a so that the channel cross-sectional area gradually decreases. The remaining part of the flow path 55 is configured in a straight shape with a substantially constant inner diameter except for the throttle part 55c.
 UFBユニット51は、全体を二分割した如き、上流側流路部材52と、下流側流路部材53とを有し、それらを組合せて構成される。上流側流路部材52は、流路55の上流側を構成し絞り部55cの流路断面積を狭める突出部56を一体に有している。下流側流路部材53は、流路55の前記突出部56よりも下流側を構成する。図5~図7にも示すように、そのうち上流側流路部52は、前記フランジ部54の先端側(図で左側)に、やや径小な胴部57を一体に備える。これと共に、その胴部57の先端側に更に径小な径小部58を備えている。この上流側流路部52の内部には、図4及び図8に示すように、前記流路55のうち上流側半部が形成されている。 The UFB unit 51 includes an upstream flow path member 52 and a downstream flow path member 53, which are divided into two parts, and are configured by combining them. The upstream flow path member 52 integrally includes a protruding portion 56 that constitutes the upstream side of the flow path 55 and narrows the flow path cross-sectional area of the throttle portion 55c. The downstream flow path member 53 constitutes the downstream side of the protruding portion 56 of the flow path 55. As shown in FIGS. 5 to 7, the upstream flow path portion 52 is integrally provided with a slightly smaller diameter barrel portion 57 on the distal end side (left side in the drawing) of the flange portion 54. At the same time, a smaller diameter portion 58 having a smaller diameter is provided on the distal end side of the body portion 57. As shown in FIGS. 4 and 8, an upstream half of the flow channel 55 is formed inside the upstream flow channel portion 52.
 このとき、径小部58の先端部には、流路55の内周面から中心側に突出する突出部56が一体に形成されている。図9に示すように、突出部56は、図で上下左右、つまり90度間隔の4カ所に位置して内周側つまり流路の中心に向けて先端が尖った形態で延びている。これら突出部56によって、流路55が狭められ、絞り部55cの流路断面積の最も小さい部分が、X字型(十文字型)のスリット状となっている。 At this time, a protruding portion 56 protruding from the inner peripheral surface of the flow channel 55 toward the center is integrally formed at the tip of the small diameter portion 58. As shown in FIG. 9, the protrusions 56 are located at four positions in the figure in the vertical and horizontal directions, that is, at intervals of 90 degrees, and extend in a form in which the tip is pointed toward the inner peripheral side, that is, the center of the flow path. The flow path 55 is narrowed by these protrusions 56, and the portion having the smallest flow path cross-sectional area of the throttle portion 55c is an X-shaped (cross-shaped) slit shape.
 これに対し、前記下流側流路部材53は、図4~図8に示すように、前記胴部57と同等の外径を有する円筒状をなしている。この下流側流路部材53の基端側(図で右端側)には、前記上流側流路部52の径小部58が嵌合する円形凹部59が形成されている。この下流側流路部材53の内部即ち中心部には、前記流路55の下流側半部を構成するストレートな穴が、図で左右方向に貫通するように形成されている。 On the other hand, the downstream flow path member 53 has a cylindrical shape having an outer diameter equivalent to that of the body portion 57 as shown in FIGS. On the proximal end side (right end side in the figure) of the downstream flow path member 53, a circular recess 59 into which the small diameter part 58 of the upstream flow path section 52 is fitted is formed. A straight hole constituting the downstream half of the channel 55 is formed in the downstream channel member 53 so as to penetrate in the left-right direction in the drawing.
 この場合、図9に示すように、前記円形凹部59の内径寸法は、前記径小部58の外形寸法よりもやや大きく構成されている。図7にも示すように、円形凹部59の内周面には、複数本例えば角度90度間隔で4本の圧入用リブ60が軸方向(図で左右方向)に延びて一体に設けられている。これにて、図9に示すように、上流側流路部材52の径小部58を、下流側流路部材53の円形凹部59内に挿入即ち圧入することに伴い、圧入用リブ60が潰れるように変形し、径小部58と円形凹部59とが強固に固定される。 In this case, as shown in FIG. 9, the inner diameter dimension of the circular recess 59 is configured to be slightly larger than the outer dimension of the small diameter section 58. As shown in FIG. 7, a plurality of, for example, four press-fitting ribs 60 extending in the axial direction (left-right direction in the figure) are integrally provided on the inner peripheral surface of the circular recess 59 at intervals of 90 degrees. Yes. As shown in FIG. 9, the press-fit rib 60 is crushed as the small-diameter portion 58 of the upstream-side flow path member 52 is inserted into the circular recess 59 of the downstream-side flow path member 53. Thus, the small-diameter portion 58 and the circular concave portion 59 are firmly fixed.
 一方、図4に示すように、前記注水ケース18には、水の入口部としての入口管42が一体的に設けられている。この入口管42には、前記FB用給水弁21の出口管44が接続される。出口管44は円管状をなし、その先端部には、段差が形成されることにより、外周面が径小になる径小部44aが設けられている。前記UFBユニット51は、FB用給水弁21の出口管44と、注水ケース18の入口管42との間に挟まれるように組付けられる。 On the other hand, as shown in FIG. 4, the water injection case 18 is integrally provided with an inlet pipe 42 as an inlet portion of water. An outlet pipe 44 of the FB water supply valve 21 is connected to the inlet pipe 42. The outlet pipe 44 has a circular tube shape, and a small-diameter portion 44a in which the outer peripheral surface has a small diameter is provided at the tip portion thereof by forming a step. The UFB unit 51 is assembled so as to be sandwiched between the outlet pipe 44 of the FB water supply valve 21 and the inlet pipe 42 of the water injection case 18.
 前記入口管42は、その内径が、入口側(図で右側)から順に3段階に小さくなっていくような形状をなし、第1径大部42a、第2径大部42b、径小部42cが設けられている。第1径大部42aの内径寸法は、前記出口管44の外径寸法に対応し、それらが嵌合可能となっている。第2径大部42bの内径寸法は、出口管44の径小部44a及び前記UFBユニット51のフランジ部54の外径寸法に対応し、それらが嵌合可能となっている。径小部42cの内径寸法は、UFBユニット51の外径寸法に対応し、それらが嵌合可能となっている。入口管42の奥側(図で左側)の端部には、UFBユニット51の先端面が係止されるリブ45が設けられている。そのリブ45の中心部には、流路55の流出口55bと同等の径で連続し、注水ケース18内つまり洗剤収容ケースに連通する連通孔45aが形成されている。 The inlet pipe 42 has such a shape that its inner diameter gradually decreases in three steps from the inlet side (right side in the figure), and includes a first large diameter portion 42a, a second large diameter portion 42b, and a small diameter portion 42c. Is provided. The inner diameter dimension of the first large diameter portion 42a corresponds to the outer diameter dimension of the outlet pipe 44, and they can be fitted. The inner diameter of the second large diameter portion 42b corresponds to the outer diameter of the small diameter portion 44a of the outlet pipe 44 and the flange portion 54 of the UFB unit 51, and they can be fitted. The inner diameter dimension of the small diameter part 42c corresponds to the outer diameter dimension of the UFB unit 51, and they can be fitted. At the end of the back side (left side in the figure) of the inlet pipe 42, a rib 45 is provided on which the front end surface of the UFB unit 51 is locked. At the center of the rib 45, a communication hole 45 a that is continuous with the same diameter as the outlet 55 b of the flow path 55 and communicates with the water filling case 18, that is, the detergent storage case, is formed.
 図4に示すように、前記UFBユニット51は、上流側流路部材52と下流側流路部材53とを組合せた状態で、入口管42内の奥側に挿入される。これにて、UFBユニット51の下流側流路部材53の先端面がリブ45に当接する。これと共に、UFBユニット51の後端部を除く外周、つまり主として下流側流路部材53の外周が径小部42cの内周に嵌合する。また、UFBユニット51の上流側流路部材52のフランジ部54の外周が、第2径大部42bの内周に嵌合する。このとき、上流側流路部材52の胴部57の外周面と、入口管42の第2径大部42bの内周面との間には隙間が生じている。この隙間部分に、該隙間を気密にシールするためのシール部材としてのOリング46が設けられている。 As shown in FIG. 4, the UFB unit 51 is inserted into the inner side of the inlet pipe 42 in a state where the upstream flow path member 52 and the downstream flow path member 53 are combined. As a result, the distal end surface of the downstream flow path member 53 of the UFB unit 51 abuts on the rib 45. At the same time, the outer periphery excluding the rear end portion of the UFB unit 51, that is, the outer periphery of the downstream flow path member 53 is mainly fitted to the inner periphery of the small diameter portion 42c. Further, the outer periphery of the flange portion 54 of the upstream flow path member 52 of the UFB unit 51 is fitted to the inner periphery of the second large diameter portion 42b. At this time, a gap is generated between the outer peripheral surface of the trunk portion 57 of the upstream flow path member 52 and the inner peripheral surface of the second large diameter portion 42 b of the inlet pipe 42. An O-ring 46 as a seal member for hermetically sealing the gap is provided in the gap portion.
 そして、この状態で、入口管42内の開口端部側に、前記FB用給水弁21の出口管44の先端部が挿入されて接続される。この場合、出口管44の先端部の外周が、入口管42の第1径大部42aの内周に嵌合する。これと共に、出口管44の先端面が、UFBユニット51の上流側流路部材52の後端面に当接する。また、出口管44の径小部44aの外周面と、入口管42の第1径大部42aの内周面との間にも、水漏れを防止するためのOリング47が設けられている。 In this state, the tip of the outlet pipe 44 of the FB water supply valve 21 is inserted and connected to the opening end side in the inlet pipe 42. In this case, the outer periphery of the distal end portion of the outlet pipe 44 is fitted to the inner periphery of the first large diameter portion 42 a of the inlet pipe 42. At the same time, the front end surface of the outlet pipe 44 comes into contact with the rear end surface of the upstream flow path member 52 of the UFB unit 51. An O-ring 47 for preventing water leakage is also provided between the outer peripheral surface of the small-diameter portion 44a of the outlet pipe 44 and the inner peripheral surface of the first large-diameter portion 42a of the inlet pipe 42. .
 上記構成においては、図4に示すように、給水時などに、FB用給水弁21が開放されると、出口管44から比較的高圧の水道水がUFBユニット51に供給され、流入口55aから流路55を矢印A方向に流れる。UFBユニット51においては、流路55の途中に突出部56による絞り部55cが設けられていることにより、流体力学のいわゆるベンチュリ効果により、流速が高められて、圧力が急激に低下される。これにより、水中に溶存している空気を微細な気泡として多量に析出させることができる。 In the above configuration, as shown in FIG. 4, when the FB water supply valve 21 is opened, for example, when water is supplied, relatively high-pressure tap water is supplied from the outlet pipe 44 to the UFB unit 51, and from the inflow port 55a. It flows through the flow path 55 in the direction of arrow A. In the UFB unit 51, the throttle portion 55 c formed by the projecting portion 56 is provided in the middle of the flow path 55, so that the flow velocity is increased and the pressure is rapidly decreased by the so-called Venturi effect of hydrodynamics. Thereby, a large amount of air dissolved in water can be deposited as fine bubbles.
 本実施形態のUFBユニット51により、直径が50nm~1μm程度のウルトラファインバブル、及び、直径が1μm~数百μm程度のマイクロバブルを含んだ微細気泡、即ちファインバブルを多量に発生させることができる。これにて、多量のファインバブルを含んだファインバブル水を、流出口55bから連通孔45aを通して注水ケース18の洗剤収容部23ひいては水槽4内に注水することができる。本実施形態のUFBユニット51では、特に、直径50nm~300nmのファインバブルを、1ミリリットル当りの個数で例えば10個/ml以上の濃度で含んだファインバブル水が生成される。 The UFB unit 51 of the present embodiment can generate a large amount of fine bubbles including ultrafine bubbles having a diameter of about 50 nm to 1 μm and microbubbles having a diameter of about 1 μm to several hundred μm, that is, fine bubbles. . Thus, fine bubble water containing a large amount of fine bubbles can be injected into the detergent container 23 of the water injection case 18 and then into the water tank 4 through the communication hole 45a from the outlet 55b. In the UFB unit 51 of this embodiment, fine bubble water containing fine bubbles having a diameter of 50 nm to 300 nm, for example, at a concentration of 10 6 / ml or more per milliliter is generated.
 尚、FB用給水弁21の開放によるUFBユニット51を通したファインバブル水の給水は、UFBユニット51を通す際の水の流量が制限される。そのため、単位時間当りの給水量つまり流量が、メイン給水弁20や柔軟剤用給水弁22を開放させた場合の給水量よりも少なくなる。例えば、メイン給水弁20を通した水道水の給水は、UFBユニット51を通したファインバブル水の給水に比べて2倍程度の流量で行われる。 In addition, the fine water supply through the UFB unit 51 by opening the FB water supply valve 21 restricts the flow rate of the water when passing through the UFB unit 51. Therefore, the amount of water supplied per unit time, that is, the flow rate is smaller than the amount of water supplied when the main water supply valve 20 and the softener water supply valve 22 are opened. For example, tap water supply through the main water supply valve 20 is performed at a flow rate about twice that of fine bubble water supply through the UFB unit 51.
 図3は、上記した制御装置31を中心とした、洗濯機1の電気的構成を概略的に示している。制御装置31は、コンピュータを主体として構成され、洗濯機1全体を制御して、洗い、すすぎ、脱水の各行程からなる洗濯運転、並びに乾燥運転を実行する。この制御装置31は、前記操作パネル36が接続されると共に、水位センサ33や流量計35からの検知信号が入力される。この場合、制御装置31は、流量計35の検知信号の積算により、供給した水量を算出することができる。尚、本実施形態では、給水される水温或いは外気温を検出する水温センサ37が設けられており、その検出信号が制御装置31に入力される。 FIG. 3 schematically shows an electrical configuration of the washing machine 1 with the above-described control device 31 as a center. The control device 31 is mainly composed of a computer, and controls the entire washing machine 1 to execute a washing operation and a drying operation including washing, rinsing, and dehydration processes. The control device 31 is connected to the operation panel 36 and receives detection signals from the water level sensor 33 and the flow meter 35. In this case, the control device 31 can calculate the amount of water supplied by integrating the detection signals of the flow meter 35. In the present embodiment, a water temperature sensor 37 that detects the temperature of the supplied water or the outside air temperature is provided, and the detection signal is input to the control device 31.
 また、制御装置31は、洗濯機モータ34、排水弁32、メイン給水弁20、FB用給水弁21、柔軟剤用給水弁22、乾燥ユニット28を制御する。この構成により、制御装置31は、操作パネル36にてユーザにより設定される運転コースに応じて、各センサからの入力信号や予め記憶された制御プログラムに基づいて、洗濯機1の各機構を制御する。これにて、制御装置31は、洗い行程、すすぎ行程、脱水行程からなる周知の洗濯運転、更には乾燥ユニット28による乾燥運転を自動で実行する。尚、洗濯運転を行うにあたっては、周知の布量検知動作が行われ、その検知結果に基づいて洗い行程及びすすぎ行程における給水水位や動作時間が自動で決定される。 Further, the control device 31 controls the washing machine motor 34, the drain valve 32, the main water supply valve 20, the FB water supply valve 21, the softener water supply valve 22, and the drying unit 28. With this configuration, the control device 31 controls each mechanism of the washing machine 1 based on an input signal from each sensor or a pre-stored control program in accordance with a driving course set by the user on the operation panel 36. To do. Thus, the control device 31 automatically executes a well-known washing operation including a washing process, a rinsing process, and a dehydration process, and further a drying operation by the drying unit 28. In performing the washing operation, a well-known cloth amount detection operation is performed, and the water supply water level and operation time in the washing process and the rinsing process are automatically determined based on the detection result.
 次の作用説明でも述べるように、本実施形態では、ユーザにより例えば通常コースの洗濯運転が選択された場合には、洗い行程、2回のすすぎ行程、脱水行程が順に実行される。このとき、制御装置31は、主としてそのソフトウエア構成により、洗い行程直後のすすぎ行程において、UFBユニット51により生成されたファインバブル水を給水してすすぎ行程を実行する。このすすぎの行程つまりためすすぎの行程は、水槽4即ち洗濯槽5内に、所定のすすぎ水位まで給水した状態で、パルセータ7を所定時間駆動することにより行われる。本実施形態では、洗い行程終了後、排水動作を行い、その後、脱水動作即ち脱水すすぎを行うことなく、1回目のためすすぎの行程、つまり給水動作に移行する。 As will be described in the following description of the operation, in the present embodiment, for example, when a normal course washing operation is selected by the user, a washing process, two rinsing processes, and a dehydrating process are sequentially performed. At this time, the control device 31 performs the rinsing process by supplying fine bubble water generated by the UFB unit 51 in the rinsing process immediately after the washing process mainly by the software configuration. The rinsing process, that is, the rinsing process is performed by driving the pulsator 7 for a predetermined time in a state where water is supplied to the predetermined rinsing water level in the water tub 4 or the washing tub 5. In the present embodiment, after the washing process is completed, a draining operation is performed, and then, without performing a dehydrating operation, that is, a dehydrating rinse, the process proceeds to a rinsing process, that is, a water supply operation for the first time.
 この場合、1回目のすすぎ行程における給水は、メイン給水弁20とFB用給水弁21とを交互に開放させて行われる。具体的には、図11に示すように、全体の給水量に対し、ファインバブル水の割合が50%となる、即ち、水道水とファインバブル水とが1:1の割合となるように給水が行われる。これにより、1回目のすすぎ行程では、例えばファインバブルの数が、10個/ml以上となるような濃度で含まれたファインバブル水が用いられる。つまり、ファインバブル水と、水道水とは、微細気泡数が10個/ml以上となるような所定割合で混合される。 In this case, water supply in the first rinsing process is performed by alternately opening the main water supply valve 20 and the FB water supply valve 21. Specifically, as shown in FIG. 11, the proportion of fine bubble water is 50% of the total amount of water supply, that is, tap water and fine bubble water are supplied at a ratio of 1: 1. Is done. Thereby, in the first rinsing process, for example, fine bubble water contained at a concentration such that the number of fine bubbles is 10 5 / ml or more is used. That is, fine bubble water and tap water are mixed at a predetermined ratio such that the number of fine bubbles is 10 5 / ml or more.
 更に、本実施形態では、1回目のすすぎ行程後に行われる2回目即ち最終のすすぎ行程においても、1回目のすすぎ行程と同様のファインバブル水を用いてすすぎ行程が行われる。 Furthermore, in the present embodiment, the rinsing process is performed using the same fine bubble water as in the first rinsing process even in the second rinsing process performed after the first rinsing process.
 尚、本実施形態では、洗い行程においても、UFBユニット51により生成されたファインバブル水が給水され、ファインバブル水を用いた洗い行程が実行される。この場合、洗い行程開始時に、メイン給水弁20とFB用給水弁21とを交互に開放させて給水が行われ、水道水とファインバブル水とが混合された形態で給水が行われる。図11に示すように、このときの全体の給水量に対するファインバブル水の割合は、30%とされる。従って、すすぎ行程で用いられるファインバブル水の方が、洗い行程のファインバブル水よりも微細気泡数が多くなるように給水される。 In the present embodiment, the fine bubble water generated by the UFB unit 51 is also supplied in the washing process, and the washing process using the fine bubble water is executed. In this case, at the start of the washing process, the main water supply valve 20 and the FB water supply valve 21 are alternately opened to supply water, and water is supplied in a form in which tap water and fine bubble water are mixed. As shown in FIG. 11, the ratio of fine bubble water to the total water supply at this time is 30%. Therefore, the fine bubble water used in the rinsing process is supplied so that the number of fine bubbles is larger than the fine bubble water in the washing process.
 次に、上記構成の洗濯機1の作用について、図10~図12も参照して述べる。洗濯運転を開始するにあたっては、ユーザは、洗濯槽5内に洗濯する衣類を投入する。これと共に、注水ケース18の洗剤収容部23に所要量の洗剤を収容し、更に必要に応じて柔軟剤収容部24に所要量の柔軟剤を収容しておく。その上で、操作パネル36にて開始操作を行う。すると、制御装置31は、洗い、すすぎ、脱水などの行程からなる洗濯運転を自動で実行する。洗濯運転がスタートされると、まず周知の布量検知動作が行われ、その検知結果に基づいて給水水位等が自動で決定され、洗い行程に進む。 Next, the operation of the washing machine 1 configured as described above will be described with reference to FIGS. When starting the washing operation, the user puts clothes to be washed in the washing tub 5. At the same time, a required amount of detergent is stored in the detergent storage portion 23 of the water injection case 18, and a required amount of softening agent is stored in the softening agent storage portion 24 as necessary. Then, a start operation is performed on the operation panel 36. Then, the control device 31 automatically executes a washing operation including steps such as washing, rinsing, and dehydration. When the washing operation is started, a well-known cloth amount detection operation is first performed, and the water supply level and the like are automatically determined based on the detection result, and the process proceeds to the washing process.
 洗い行程では、上記のように、まず、メイン給水弁20とFB用給水弁21とが交互に開放され、図11に示すように、ファインバブル水を30%含んだ洗濯水が所定水位まで給水される。このとき、水槽4への給水は、洗剤収容部23内の洗剤を溶かしながら行われ、ファインバブル水に洗剤が溶け込んだ洗濯水が水槽4内に供給される。所定水位までの給水が行われると、パルセータ7を正逆回転駆動させる洗い行程が、所定時間実行される。 In the washing process, as described above, first, the main water supply valve 20 and the FB water supply valve 21 are alternately opened, and as shown in FIG. 11, the wash water containing 30% fine bubble water is supplied to a predetermined water level. Is done. At this time, water supply to the water tank 4 is performed while dissolving the detergent in the detergent container 23, and washing water in which the detergent is dissolved in fine bubble water is supplied into the water tank 4. When water supply to a predetermined water level is performed, a washing process for driving the pulsator 7 to rotate forward and reverse is performed for a predetermined time.
 ここで、ファインバブルは、液体中例えば水中で、不規則な運動を生ずるブラウン運動を起こし、その速度は浮上速度よりも速いため、長時間に渡って液体中に止まる性質を有する。そして、ファインバブルの表面はマイナスに帯電しているため、洗濯水に含まれている塊りとなっていた洗剤分即ち界面活性剤をばらすようにしながら吸着し、洗剤の分散性を向上させる役割を果たす。ファインバブル同士は反発し合い、結合することがない。また、そのように洗剤分を吸着したファインバブルは、衣類の繊維の隙間、例えば10μm程度の隙間の中に容易に入り込む。これにて、ファインバブルが効率良く洗剤を衣類の内部に運んで汚れをはがすことができ、その汚れの衣類への再付着を抑制する。このようなファインバブルの機能により、多量のファインバブルが含まれたファインバブル水に洗剤を溶かした洗濯水を用いて洗い行程を行うことにより、優れた洗浄作用を得ることができる。 Here, the fine bubble has a property of staying in the liquid for a long time because it causes Brownian motion that causes irregular motion in the liquid, for example, in water, and its speed is higher than the flying speed. And since the surface of the fine bubble is negatively charged, it is adsorbed while dispersing the detergent contained in the washing water, that is, the surfactant, to improve the dispersibility of the detergent. Fulfill. Fine bubbles repel each other and do not combine. In addition, the fine bubbles that have adsorbed the detergent component easily enter into the gaps of clothing fibers, for example, about 10 μm. As a result, the fine bubble can efficiently carry the detergent into the garment to remove the dirt and suppress the reattachment of the dirt to the garment. With such a fine bubble function, an excellent cleaning action can be obtained by performing a washing process using washing water obtained by dissolving a detergent in fine bubble water containing a large amount of fine bubbles.
 さて、所定時間の洗い行程が終了すると、すすぎ行程、即ち1回目のすすぎ行程に移行される。図10は、制御装置31による、洗い行程終了後の2回のすすぎ行程における、メイン給水弁20、FB用給水弁21、柔軟剤用給水弁22、排水弁32の開閉制御の様子を示すタイムチャートである。この図10に示すように、1回目のすすぎ行程が開始されると、まず、排水弁32が開放されて水槽4からの排水が行われる。この時点では、全ての給水弁20、21、22が閉塞されている。 Now, when the washing process for a predetermined time is completed, the process proceeds to the rinsing process, that is, the first rinsing process. FIG. 10 is a time chart showing the state of opening / closing control of the main water supply valve 20, the FB water supply valve 21, the softener water supply valve 22, and the drain valve 32 in the two rinsing strokes after the end of the washing stroke by the control device 31. It is a chart. As shown in FIG. 10, when the first rinsing process is started, first, the drain valve 32 is opened, and the water tank 4 is drained. At this time, all the water supply valves 20, 21, and 22 are closed.
 排水が終了すると、排水弁32が閉塞され、給水が行われる。ここでは、FB用給水弁21及び柔軟剤用給水弁22は閉塞のまま、まずメイン給水弁20が開放され、水道水が給水される。所定のすすぎ水位の半分の水位、即ち50%まで水道水が給水されると、メイン給水弁20が閉塞されてFB用給水弁21が開放される。これにて、多量のファインバブルを含んだファインバブル水が水槽4内に供給される。所定のすすぎ水位まで給水が行われると、FB用給水弁21が閉塞される。メイン給水弁20の開放と、FB用給水弁21の開放とは順序が逆であっても良い。 When drainage is completed, the drain valve 32 is closed and water is supplied. Here, while the FB water supply valve 21 and the softener water supply valve 22 remain closed, the main water supply valve 20 is first opened to supply tap water. When tap water is supplied up to a half of the predetermined rinse water level, that is, 50%, the main water supply valve 20 is closed and the FB water supply valve 21 is opened. Thus, fine bubble water containing a large amount of fine bubbles is supplied into the water tank 4. When water is supplied to a predetermined rinse water level, the FB water supply valve 21 is closed. The order of opening the main water supply valve 20 and opening the FB water supply valve 21 may be reversed.
 引続き、パルセータ12を間欠的に正逆回転駆動させる撹拌動作が実行され、一定時間のためすすぎが行われる。ここで、本発明者らの研究によれば、洗い行程直後のすすぎ行程においても、多量のファインバブルが含まれたファインバブル水を用いることにより、衣類に対する汚れ落ちの効果が得られることの知見が得られた。 Subsequently, a stirring operation for intermittently driving the pulsator 12 forward and reverse is performed, and rinsing is performed for a fixed time. Here, according to the study by the present inventors, the knowledge that the effect of removing dirt on clothes can be obtained by using fine bubble water containing a large amount of fine bubbles even in the rinsing process immediately after the washing process. was gotten.
 即ち、洗い行程直後においては、洗い行程で使用した洗剤の一部、つまり排水により排除されなかった分が残存して衣類に付着しており、ファインバブルにより、残存している洗剤、即ち界面活性剤を吸着し、分散させることができる。この洗剤分を、洗い行程で落としきれなかった衣類の汚れと反応させることができ、汚れ落とし効果を得ることができる。更に、ファインバブルが弾けるときに発生するキャビテーションにより、衣類に付着していた汚れを引き剥がす効果も得られる。これらにより、すすぎ行程においても、ファインバブル水を用いることにより洗浄の効果をより高めることができると考えられる。 That is, immediately after the washing process, a part of the detergent used in the washing process, that is, the portion that is not excluded by the waste water remains and adheres to the clothing, and the remaining detergent, that is, the surface activity, is caused by fine bubbles. The agent can be adsorbed and dispersed. This detergent can be reacted with clothes stains that could not be removed in the washing process, and a stain removal effect can be obtained. Furthermore, the effect of peeling off the dirt adhering to the clothing can be obtained by cavitation generated when the fine bubbles can be flipped. Thus, it is considered that the cleaning effect can be further enhanced by using fine bubble water in the rinsing process.
 この場合、洗い行程後の排水の後に脱水動作が行われていないので、脱水動作に伴う洗剤分の排出が抑えられる。従って、脱水動作が行われた場合と比較して、洗剤分が比較的多く残った状態で、すすぎ行程に移行させることができる。また、本発明者らの研究によれば、すすぎ行程において使用されるファインバブル水を、微細気泡数が、10個/ml以上の濃度とすることにより、すすぎ行程における、良好な洗浄効果が得られることが確認された。 In this case, since the dehydration operation is not performed after the drainage after the washing process, the discharge of the detergent component accompanying the dehydration operation can be suppressed. Therefore, it is possible to shift to the rinsing process with a relatively large amount of detergent remaining as compared with the case where the dehydrating operation is performed. In addition, according to the study by the present inventors, by setting the fine bubble water used in the rinsing process to a concentration of the number of fine bubbles of 10 5 / ml or more, a good cleaning effect in the rinsing process can be obtained. It was confirmed that it was obtained.
 ちなみに、図12は、洗い行程及び1回目のすすぎ行程において、ファインバブル水を用いた場合の洗浄性能を調べた試験結果を示している。この試験は、「JIS C9811:1999家庭用電気洗濯機の性能測定方法」に準じて行われている。但し、人工的な皮脂汚れを付与した汚染布を試料とし、オイルバイオレットによる染色後の汚染布の色差測定により評価を行った。試験結果は、横軸が洗濯水中のファインバブルの濃度(個/ml)を示し、縦軸が水道水を用いた場合に対する洗浄性能の向上率を示している。この結果から、ファインバブルの数が10個/ml以上の濃度のファインバブル水を用いることにより、洗い行程はもとより、すすぎ行程においても洗浄性能が向上することが理解できる。ファインバブルの数即ち濃度が高いほど、より高い洗浄性能が得られた。 Incidentally, FIG. 12 shows the test results of examining the washing performance when fine bubble water is used in the washing step and the first rinsing step. This test is performed according to “JIS C9811: 1999 Method for Measuring Performance of Home Electric Washing Machine”. However, evaluation was performed by measuring the color difference of the contaminated cloth after dyeing with oil violet, using the contaminated cloth with artificial sebum stain as a sample. In the test results, the horizontal axis indicates the concentration of fine bubbles in washing water (pieces / ml), and the vertical axis indicates the improvement rate of the cleaning performance with respect to the case where tap water is used. From this result, it can be understood that the use of fine bubble water having a concentration of 10 5 / ml or more of fine bubbles improves the cleaning performance not only in the washing step but also in the rinsing step. The higher the number of fine bubbles, that is, the higher the concentration, the higher the cleaning performance was obtained.
 図10に戻って、1回目のすすぎの動作が終了すると、2回目のすすぎ行程に移行する。この2回目のすすぎ行程では、まず排水弁32が開放されて排水が行われ、引続き、排水弁32が開放されたまま所定時間の中間脱水動作が実行される。この中間脱水動作は、洗濯槽5を高速で連続回転させる動作である。中間脱水動作が終了すると、排水弁32が閉塞され、給水が開始される。 Referring back to FIG. 10, when the first rinsing operation is completed, the process proceeds to the second rinsing process. In the second rinsing process, the drain valve 32 is first opened to drain water, and then an intermediate dehydration operation is performed for a predetermined time while the drain valve 32 is opened. This intermediate dewatering operation is an operation of continuously rotating the washing tub 5 at a high speed. When the intermediate dehydration operation is completed, the drain valve 32 is closed and water supply is started.
 ここでは、メイン給水弁20及びFB用給水弁21の閉塞状態で、まず柔軟剤用給水弁22が開放され、水道水が柔軟剤収容部24を通って、柔軟剤を溶かしながら水槽4に供給される。所定のすすぎ水位の半分の水位、即ち50%まで水道水が給水されると、柔軟剤用給水弁22が閉塞されてFB用給水弁21が開放される。これにて、多量のファインバブルを含んだファインバブル水が水槽4内に供給される。所定のすすぎ水位まで給水が行われると、FB用給水弁21が閉塞される。柔軟剤用給水弁22の開放と、FB用給水弁21の開放とは順序が逆であっても良い。 Here, when the main water supply valve 20 and the FB water supply valve 21 are closed, the softener water supply valve 22 is first opened, and tap water is supplied to the water tank 4 through the softener container 24 while dissolving the softener. Is done. When the tap water is supplied up to half the predetermined rinse water level, that is, 50%, the softener water supply valve 22 is closed and the FB water supply valve 21 is opened. Thus, fine bubble water containing a large amount of fine bubbles is supplied into the water tank 4. When water is supplied to a predetermined rinse water level, the FB water supply valve 21 is closed. The order of opening the softener water supply valve 22 and opening the FB water supply valve 21 may be reversed.
 引続き、パルセータ12を間欠的に正逆回転駆動させる撹拌動作が実行され、一定時間のためすすぎが行われる。2回目のすすぎ行程でも、ファインバブル水を用いない場合と比べて、ファインバブル水による一定の洗浄効果を得ることができる。また、ファインバブル水を用いることにより、すすぎの性能についての向上も図ることができる。尚、図示はしていないが、2回目のすすぎの行程が終了すると、排水が行われて脱水の行程が実行される。 Subsequently, a stirring operation for intermittently driving the pulsator 12 forward and reverse is performed, and rinsing is performed for a fixed time. Even in the second rinsing step, it is possible to obtain a certain cleaning effect with fine bubble water as compared with the case where fine bubble water is not used. Moreover, the improvement about the performance of a rinse can also be aimed at by using fine bubble water. Although not shown, when the second rinsing process is completed, drainage is performed and a dehydration process is performed.
 このように本実施形態によれば、洗い行程直後のすすぎ行程においても、ファインバブルが含まれたファインバブル水を用いるように構成した。これにより、すすぎ行程においても、ファインバブル水による洗浄の効果を高めることができる。この結果、ファインバブル水を洗い行程で洗浄力向上のために用いるに止まっていた従来と異なり、洗い行程以外でも、UFBユニット51により生成されたファインバブル水を、より一層有効に利用することが可能となる。 Thus, according to the present embodiment, the fine bubble water containing fine bubbles is used in the rinsing process immediately after the washing process. Thereby, also in the rinsing process, the effect of washing with fine bubble water can be enhanced. As a result, it is possible to use the fine bubble water generated by the UFB unit 51 even more effectively outside the washing step, unlike the conventional case where the fine bubble water is only used for improving the washing power in the washing step. It becomes possible.
 本実施形態では、洗い行程後に、排水動作を行った後脱水動作を行うことなくすすぎ行程の給水動作に移行するように構成した。これにより、排水動作の後に脱水動作が行われないので、脱水動作に伴う洗剤分の排出が抑えられる。従って、脱水動作が行われた場合と比較して、洗剤分が比較的多く残った状態で、すすぎ行程に移行されるようになり、すすぎ行程における洗浄効果をより高いものとすることができる。 In the present embodiment, after the washing process, the water supply operation of the rinsing process is performed without performing the dewatering operation after the draining operation. Thereby, since the dehydrating operation is not performed after the draining operation, the discharge of the detergent component accompanying the dehydrating operation is suppressed. Therefore, as compared with the case where the dehydrating operation is performed, the cleaning process is shifted to the rinsing process with a relatively large amount of detergent remaining, and the cleaning effect in the rinsing process can be further enhanced.
 特に本実施形態では、すすぎ行程を複数回この場合2回実行するものにあって、2回目のすすぎ行程に関しても、UFBユニット51により生成されたファインバブル水を給水してすすぎ行程を実行するようにした。これにより、2回目のすすぎ行程でも、ファインバブル水を用いない場合と比べて、ファインバブル水による一定の洗浄効果を得ることができる。 In particular, in the present embodiment, the rinsing process is performed a plurality of times in this case, and the rinsing process is performed by supplying fine bubble water generated by the UFB unit 51 with respect to the second rinsing process. I made it. Thereby, the fixed washing | cleaning effect by fine bubble water can be acquired also in the 2nd rinse process compared with the case where fine bubble water is not used.
 また、本実施形態では、すすぎ行程において使用されるファインバブル水を、微細気泡数が、10個/ml以上の濃度とした。これにより、すすぎ行程における、良好な洗浄効果が得られた。このとき、ファインバブル水と、水道水とを、微細気泡数が10個/ml以上となるような所定割合で混合させながら給水を行うようにした。これにより、ファインバブル水による所定の洗浄効果を得ることができながら、水道水を使用した分だけ給水に要する時間の短縮化を図ることができる。 In the present embodiment, the fine bubble water used in the rinsing process has a concentration of fine bubbles of 10 5 / ml or more. Thereby, a good cleaning effect in the rinsing process was obtained. At this time, water was supplied while mixing fine bubble water and tap water at a predetermined ratio such that the number of fine bubbles was 10 5 / ml or more. Thereby, while the predetermined | prescribed washing | cleaning effect by fine bubble water can be acquired, the time required for water supply can be shortened by the part which used tap water.
 更に、特に本実施形態では、洗い行程におけるファインバブル水の濃度に比べて、すすぎ行程で用いられるファインバブル水の濃度の方が大きくなる。つまり微細気泡数が多くなるように給水が行われる。すすぎ行程においては、洗い行程に比べて洗剤の残存量が少ないため、洗浄効果を高めるために、すすぎ行程で用いるファインバブル水の微細気泡数、即ちファインバブルの濃度を洗い行程に比べて上げた。これにより、より良好な洗浄効果を得ることができる。 Furthermore, particularly in this embodiment, the concentration of fine bubble water used in the rinsing step is higher than the concentration of fine bubble water in the washing step. That is, water supply is performed so that the number of fine bubbles increases. In the rinsing process, since the remaining amount of detergent is smaller than that in the washing process, the number of fine bubbles in the fine bubble water used in the rinsing process, that is, the concentration of fine bubbles, is increased compared to the washing process in order to enhance the cleaning effect. . Thereby, a better cleaning effect can be obtained.
 (2)第2、第3の実施形態、その他の実施形態
 図13は、第2の実施形態を示すものである。この第2の実施形態が、上記第1の実施形態と異なるところは、制御装置31が実行する、洗い行程及びすすぎ行程における制御にある。具体的には、制御装置31は、水温センサ37の検出した水温に応じて、洗い行程およびすすぎ行程の給水における、全体の給水量に対するファインバブル水の割合を変更するようにしている。
(2) Second and Third Embodiments and Other Embodiments FIG. 13 shows a second embodiment. The second embodiment is different from the first embodiment in the control in the washing process and the rinsing process performed by the control device 31. Specifically, the control device 31 changes the ratio of fine bubble water to the total water supply amount in the water supply in the washing process and the rinsing process according to the water temperature detected by the water temperature sensor 37.
 即ち、水温センサ37の検出した水温或いは外気温が、低温例えば15℃未満である場合、中温例えば15℃以上30℃未満である場合、高温例えば30℃以上の場合、の3つに区分される。これら3つの区分において、ファインバブル水の供給量、即ち全体の給水量に対する割合を変更する、つまり水温が高いほどファインバブル水の割合を小さくする。また、上記第1の実施形態と同様に、同じ温度区分であれば、洗い行程におけるファインバブル水の濃度に比べて、すすぎ行程で用いられるファインバブル水の濃度の方が大きくなる、つまり微細気泡数が多くなるように給水が行われる。 That is, the water temperature or the outside air temperature detected by the water temperature sensor 37 is classified into three cases: a low temperature, for example, less than 15 ° C., a medium temperature, for example, 15 ° C. or more and less than 30 ° C., and a high temperature, for example, 30 ° C. or more. . In these three categories, the supply amount of fine bubble water, that is, the ratio to the total water supply amount is changed, that is, the ratio of fine bubble water is reduced as the water temperature is higher. Similarly to the first embodiment, if the temperature is the same, the concentration of fine bubble water used in the rinsing step is larger than the concentration of fine bubble water in the washing step, that is, fine bubbles. Water supply is performed so that the number increases.
 本実施形態では、洗い行程の給水時には、給水量全体に対するファインバブル水の割合を、水温が低温である場合には80%、中温である場合には50%、高温である場合には30%としている。また、すすぎ行程の給水時には、給水量全体に対するファインバブル水の割合を、水温が低温である場合には100%、中温である場合には70%、高温である場合には50%としている。 In this embodiment, at the time of water supply in the washing process, the ratio of fine bubble water to the total water supply amount is 80% when the water temperature is low, 50% when the water temperature is low, and 30% when the water temperature is high. It is said. Further, at the time of water supply in the rinsing process, the ratio of fine bubble water to the total water supply amount is 100% when the water temperature is low, 70% when the water temperature is low, and 50% when the water temperature is high.
 ここで、洗い行程およびすすぎ行程においては、給水される水温が高い方が、より高い洗浄効果が得られることが知られている。従って、本実施形態によれば、水温が比較的低い場合には、洗浄効果が低くなるが、ファインバブル水の濃度を高くすることにより、水温が低い分をカバーして、洗浄性能を確保することができる。一方、水温が比較的高い場合には、水温自体によって高い洗浄効果を得ることができるため、ファインバブル水の濃度を比較的低くして、給水時間の短縮化を図ることができる。また、すすぎ行程で用いるファインバブル水の濃度を洗い行程に比べて上げることにより、すすぎ行程におけるより良好な洗浄効果を得ることができる。 Here, in the washing process and the rinsing process, it is known that the higher the temperature of the supplied water, the higher the cleaning effect can be obtained. Therefore, according to the present embodiment, when the water temperature is relatively low, the cleaning effect is low, but by increasing the concentration of fine bubble water, the low water temperature is covered and the cleaning performance is ensured. be able to. On the other hand, when the water temperature is relatively high, a high cleaning effect can be obtained by the water temperature itself, and therefore the concentration of fine bubble water can be made relatively low to shorten the water supply time. Further, by raising the concentration of fine bubble water used in the rinsing process as compared with the washing process, a better cleaning effect in the rinsing process can be obtained.
 図14は、第3の実施形態を示すものである。この第3の実施形態では、洗い行程の途中につけおき洗いを行う運転コースを実行することが可能となっている。このつけおき洗いとは、パルセータ7を停止した状態で、洗濯槽5内で衣類を洗濯水に一定時間つけておくものであり、衣類の汚れ度合いが大きい場合などに実行すると効果がある。ユーザが操作パネル36を操作することにより、つけおき洗いの時間を、複数段階で設定することができる。複数段階の中には、つけおき洗いの時間を0とする、つまりつけおき洗い動作を実行しないことも含んでいる。 FIG. 14 shows a third embodiment. In the third embodiment, it is possible to execute an operation course in which soaking is performed during the washing process. This extra washing is to put the clothes on the washing water in the washing tub 5 for a certain period of time with the pulsator 7 stopped, and is effective when executed when the degree of dirt on the clothes is large. By operating the operation panel 36 by the user, it is possible to set the time for applying washing in a plurality of stages. The plurality of stages includes setting the time for extra washing to 0, that is, not performing the extra washing operation.
 そして、本実施形態では、つけおき洗いが設定されている場合には、制御装置31は、洗い運転、即ち第1洗い行程の開始から、180分を上限として、乾燥ユニット28を駆動して温風を水槽4内に供給する。これにより、つけおき時に、水槽4即ち洗濯槽5内の洗濯水が加熱され、洗濯水の温度を給水時から約10度程度上昇させることができる。 In the present embodiment, when the extra washing is set, the control device 31 drives the drying unit 28 up to 180 minutes from the start of the washing operation, that is, the first washing process, to drive the temperature. Wind is supplied into the water tank 4. Thereby, the washing water in the water tub 4, that is, the washing tub 5 is heated at the time of soaking, and the temperature of the washing water can be raised by about 10 degrees from the time of water supply.
 図14に示すように、制御装置31は、つけおき洗いが設定されている場合には、洗い行程において、所定水位までの給水動作の後に、第1洗いの動作を所定時間、例えば20分間実行する。制御装置31は、その後、パルセータ7を停止させて、つけおき洗いを実行する。このとき、上記したように、第1洗いの開始から乾燥ユニット28がオンされ、温風により洗濯水が加熱される。乾燥ユニット28は、所定時間経過後例えばつけおき洗いの途中でオフされ、温度が約10度上昇した洗濯水で、つけおき洗い及び第2洗いが行われる。 As shown in FIG. 14, when the soaking is set, the control device 31 performs the first washing operation for a predetermined time, for example, 20 minutes after the water supply operation up to the predetermined water level in the washing process. To do. Thereafter, the control device 31 stops the pulsator 7 and executes soaking. At this time, as described above, the drying unit 28 is turned on from the start of the first washing, and the washing water is heated by the warm air. The drying unit 28 is turned off after the predetermined time, for example, during the extra washing, and the extra washing and the second washing are performed with the washing water whose temperature has increased by about 10 degrees.
 設定された時間のつけおき洗いが終了すると、第2洗いの動作を所定時間、例えば20分間実行して洗い行程を終了する。上記洗い行程の開始時の給水は、メイン給水弁20とFB用給水弁21とを交互に開放することにより行われ、ファインバブル水を所定の割合で含んだ洗濯水とされる。この給水においては、図13に示したように、現在の水温或いはそこから10度上昇した水温に応じて、ファインバブル水の割合を決定することもできる。 When the set washing for the set time is finished, the second washing operation is executed for a predetermined time, for example, 20 minutes, and the washing process is finished. The water supply at the start of the washing process is performed by alternately opening the main water supply valve 20 and the FB water supply valve 21 to obtain wash water containing fine bubble water at a predetermined ratio. In this water supply, as shown in FIG. 13, the ratio of fine bubble water can also be determined according to the current water temperature or the water temperature increased by 10 degrees therefrom.
 洗い行程が終了すると、すすぎ行程に移行される。このすすぎ行程は、脱水動作と1回のためすすぎとを含んでおり、排水が行われた後、脱水動作が所定時間行われる。この後、メイン給水弁20と、FB用給水弁21とを交互に開放して所定のすすぎ水位までの給水が行われる。この場合も、図13に示したように、現在の水温に応じて、ファインバブル水の割合を決定することもできる。引続き、パルセータ12を間欠的に正逆回転駆動させる撹拌動作が実行される。 When the washing process ends, the process proceeds to the rinsing process. This rinsing process includes a dehydrating operation and a rinsing for one time. After the drainage is performed, the dehydrating operation is performed for a predetermined time. Thereafter, the main water supply valve 20 and the FB water supply valve 21 are alternately opened to supply water up to a predetermined rinse water level. Also in this case, as shown in FIG. 13, the proportion of fine bubble water can be determined according to the current water temperature. Subsequently, a stirring operation for intermittently driving the pulsator 12 forward and reverse is executed.
 このような第3の実施形態においても、洗い行程直後のすすぎ行程において、ファインバブルが含まれたファインバブル水を用いるように構成した。これにより、すすぎ行程においても、ファインバブル水による洗浄の効果を高めることができるという優れた効果を得ることができる。また、つけおき洗いの採用により、洗い行程における洗浄性能をより高めることができる。 Also in the third embodiment, fine bubble water containing fine bubbles is used in the rinsing process immediately after the washing process. Thereby, also in the rinse process, the outstanding effect that the effect of the washing | cleaning by fine bubble water can be improved can be acquired. In addition, the use of extra washing can improve the washing performance in the washing process.
 尚、上記各実施形態では、すすぎ行程において、給水完了後に撹拌を行うようにした。これに対し、洗い行程直後のすすぎ行程においては、ファインバブル水の給水途中の低水位、例えば設定水位の3/4程度の水位から、撹拌動作即ちパルセータ7の駆動を開始するようにしても良い。この場合、撹拌が開始されてしばらくした後に、給水が完了し、その時間も含めて所定時間の撹拌が実行される。この場合、ファインバブル水の給水は、水道水の給水に比べて、時間がかかる事情があるが、最終的なすすぎ水位まで給水が完了する以前に、撹拌を開始することにより、その分、すすぎ行程全体に要する時間の短縮を図ることができる。 In each of the above embodiments, stirring is performed after the completion of water supply in the rinsing process. On the other hand, in the rinsing process immediately after the washing process, the stirring operation, that is, the driving of the pulsator 7 may be started from a low water level during the supply of fine bubble water, for example, about 3/4 of the set water level. . In this case, after a while from the start of stirring, water supply is completed, and stirring is performed for a predetermined time including that time. In this case, the fine bubble water supply takes longer time than the tap water supply, but before starting the water supply to the final rinse water level, the agitation is started to start rinsing accordingly. The time required for the entire process can be shortened.
 また、上記各実施形態で用いた時間や水位、微細気泡数、微細気泡の濃度、水道水とファインバブル水との割合、温度区分などの具体的数値は、一例を挙げたものに過ぎず、適宜変更して実施することができる。洗濯運転のコースの内容についても、すすぎを3回以上行うなど様々な変更が可能である。さらに、上記実施形態では、縦軸型の洗濯機に適用したが、縦軸型の洗濯機に限らず、ドラム式洗濯機など洗濯機全般に適用することができる。その他、微細気泡発生装置の具体的構造や、注水ケースや給水機構の構成等についても、様々な変更が可能である。 In addition, the specific numerical values such as the time and water level, the number of fine bubbles, the concentration of fine bubbles, the ratio of tap water and fine bubble water, the temperature classification used in each of the above embodiments are merely examples, It can be implemented with appropriate changes. Various changes can also be made to the content of the washing course, such as rinsing three or more times. Furthermore, in the said embodiment, although applied to the vertical type washing machine, it can apply not only to a vertical type washing machine but to general washing machines, such as a drum type washing machine. In addition, various changes can be made to the specific structure of the fine bubble generating device, the configuration of the water injection case and the water supply mechanism, and the like.
 以上説明したいくつかの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 The several embodiments described above are presented as examples, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (8)

  1.  衣類が収容される洗濯槽(5)と、
     前記洗濯槽(5)内に給水する給水機構(12)と、
     微細気泡が混入されたファインバブル水を生成する微細気泡発生装置(51)と、
     前記洗濯槽(5)内の衣類を撹拌する撹拌機構(7)と、
     前記各機構(12、51、7)を制御して洗い、すすぎを含む洗濯行程を実行する制御装置(31)とを備え、
     前記洗い行程直後のすすぎ行程において、前記微細気泡発生装置(51)により生成されたファインバブル水を給水してすすぎ行程を実行する洗濯機。
    A washing tub (5) in which clothing is stored;
    A water supply mechanism (12) for supplying water into the washing tub (5);
    A fine bubble generator (51) for producing fine bubble water mixed with fine bubbles;
    A stirring mechanism (7) for stirring the clothes in the washing tub (5);
    A control device (31) for controlling and washing each mechanism (12, 51, 7) and executing a washing process including rinsing,
    A washing machine for performing a rinsing step by supplying fine bubble water generated by the fine bubble generating device (51) in a rinsing step immediately after the washing step.
  2.  前記洗い行程後は、排水動作を行った後脱水動作を行うことなくすすぎ行程の給水動作に移行する請求項1記載の洗濯機。 The washing machine according to claim 1, wherein, after the washing step, the draining operation is performed and then the rinsing step water supply operation is performed without performing the dewatering operation.
  3.  前記洗い行程直後のすすぎ行程においては、所定のすすぎ水位に達する前の給水途中から、前記撹拌機構(7)による撹拌を開始する請求項1又は2記載の洗濯機。 The washing machine according to claim 1 or 2, wherein in the rinsing process immediately after the washing process, stirring by the stirring mechanism (7) is started from the middle of water supply before reaching a predetermined rinsing water level.
  4.  前記すすぎ行程を複数回実行するものにあって、2回目以降のすすぎ行程に関しても、前記微細気泡発生装置(51)により生成されたファインバブル水を給水してすすぎ行程を実行する請求項1又は2記載の洗濯機。 The one in which the rinsing process is performed a plurality of times, and the rinsing process is performed by supplying fine bubble water generated by the fine bubble generating device (51) for the second and subsequent rinsing processes. 2. The washing machine according to 2.
  5.  前記すすぎ行程において使用されるファインバブル水は、微細気泡数が、10個/ml以上である請求項1又は2記載の洗濯機。 The washing machine according to claim 1 or 2, wherein the fine bubble water used in the rinsing step has a number of fine bubbles of 10 5 / ml or more.
  6.  前記すすぎ行程においては、前記微細気泡発生装置(51)により生成されたファインバブル水と、水道水とを、微細気泡数が10個/ml以上となるような所定割合で混合させながら給水を行う請求項5記載の洗濯機。 In the rinsing step, water supply is performed while mixing fine bubble water generated by the fine bubble generator (51) and tap water at a predetermined ratio such that the number of fine bubbles is 10 5 / ml or more. The washing machine according to claim 5 to be performed.
  7.  前記洗い行程は、前記ファインバブル水を用いて行われると共に、前記すすぎ行程で用いられるファインバブル水の方が前記洗い行程のファインバブル水よりも微細気泡数が多くなるように給水される請求項1又は2記載の洗濯機。 The washing step is performed using the fine bubble water, and the fine bubble water used in the rinsing step is supplied with water so that the number of fine bubbles is larger than the fine bubble water in the washing step. The washing machine according to 1 or 2.
  8.  前記洗い行程直後のすすぎ行程においては、給水される水温が高い場合より低い場合の方が、ファインバブル水の微細気泡数が多くなるように給水される請求項1又は2記載の洗濯機。 The washing machine according to claim 1 or 2, wherein in the rinsing process immediately after the washing process, the water is supplied such that the number of fine bubbles in the fine bubble water is higher when the temperature of the supplied water is lower than when the temperature of the supplied water is high.
PCT/JP2018/007228 2017-05-22 2018-02-27 Washing machine WO2018216288A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880020594.9A CN110494606B (en) 2017-05-22 2018-02-27 Washing machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017100812A JP6918573B2 (en) 2017-05-22 2017-05-22 washing machine
JP2017-100812 2017-05-22

Publications (1)

Publication Number Publication Date
WO2018216288A1 true WO2018216288A1 (en) 2018-11-29

Family

ID=64396483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007228 WO2018216288A1 (en) 2017-05-22 2018-02-27 Washing machine

Country Status (3)

Country Link
JP (1) JP6918573B2 (en)
CN (1) CN110494606B (en)
WO (1) WO2018216288A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020181829A1 (en) * 2019-03-12 2020-09-17 无锡小天鹅电器有限公司 Water injection control method and device and clothing treatment device
CN111764100A (en) * 2019-03-12 2020-10-13 无锡小天鹅电器有限公司 Water injection control method and device and clothes treatment device
CN112342732A (en) * 2019-07-22 2021-02-09 无锡飞翎电子有限公司 Washing machine water inlet control method and device, washing machine and storage medium
CN112899990A (en) * 2019-12-04 2021-06-04 青岛海尔洗衣机有限公司 Water inlet method of washing equipment and washing equipment using water inlet method
CN114411382A (en) * 2022-01-28 2022-04-29 海信(山东)冰箱有限公司 Washing machine control method and washing machine applying same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021083933A (en) * 2019-11-29 2021-06-03 東芝ライフスタイル株式会社 Washing machine
JP2021104214A (en) * 2019-12-26 2021-07-26 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. washing machine
JP7420594B2 (en) * 2020-03-02 2024-01-23 東芝ライフスタイル株式会社 washing machine
JP7377134B2 (en) 2020-03-02 2023-11-09 東芝ライフスタイル株式会社 washing machine
CN114098572A (en) * 2020-08-31 2022-03-01 无锡小天鹅电器有限公司 Control method for water-bearing household appliance, water-bearing household appliance and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741115B2 (en) * 1986-08-22 1995-05-10 株式会社日立製作所 Washing machine
JP3050671B2 (en) * 1991-11-20 2000-06-12 日本建鐵株式会社 Washing machine operation control method
JP2007195866A (en) * 2006-01-30 2007-08-09 Hitachi Appliances Inc Washing machine and washing method thereof
JP2014108305A (en) * 2012-12-04 2014-06-12 Samsung R&D Institute Japan Co Ltd Washing machine and washing method
JP2016007308A (en) * 2014-06-24 2016-01-18 株式会社東芝 Washing machine
JP2017032001A (en) * 2015-07-29 2017-02-09 東芝ライフスタイル株式会社 Fluid solenoid valve, fluid solenoid valve manufacturing method, and washing machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012040448A (en) * 2008-11-14 2012-03-01 Yasutaka Sakamoto Microbubble generator
JP2011240206A (en) * 2010-05-14 2011-12-01 Maindorei Gijutsu Kagaku Kenkyusho:Kk Ozone microbubble-containing water producing device, ozone microbubble-containing water producing method, article washing device, article washing method, culture method for marine product and hydroponic culture method
CN105986400A (en) * 2015-02-13 2016-10-05 青岛海尔洗衣机有限公司 Washing machine provided with ultra-fine bubble generating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741115B2 (en) * 1986-08-22 1995-05-10 株式会社日立製作所 Washing machine
JP3050671B2 (en) * 1991-11-20 2000-06-12 日本建鐵株式会社 Washing machine operation control method
JP2007195866A (en) * 2006-01-30 2007-08-09 Hitachi Appliances Inc Washing machine and washing method thereof
JP2014108305A (en) * 2012-12-04 2014-06-12 Samsung R&D Institute Japan Co Ltd Washing machine and washing method
JP2016007308A (en) * 2014-06-24 2016-01-18 株式会社東芝 Washing machine
JP2017032001A (en) * 2015-07-29 2017-02-09 東芝ライフスタイル株式会社 Fluid solenoid valve, fluid solenoid valve manufacturing method, and washing machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020181829A1 (en) * 2019-03-12 2020-09-17 无锡小天鹅电器有限公司 Water injection control method and device and clothing treatment device
CN111764100A (en) * 2019-03-12 2020-10-13 无锡小天鹅电器有限公司 Water injection control method and device and clothes treatment device
CN112342732A (en) * 2019-07-22 2021-02-09 无锡飞翎电子有限公司 Washing machine water inlet control method and device, washing machine and storage medium
CN112342732B (en) * 2019-07-22 2023-08-15 无锡飞翎电子有限公司 Washing machine water inlet control method and device, washing machine and storage medium
CN112899990A (en) * 2019-12-04 2021-06-04 青岛海尔洗衣机有限公司 Water inlet method of washing equipment and washing equipment using water inlet method
EP4083299A1 (en) * 2019-12-04 2022-11-02 Qingdao Haier Washing Machine Co., Ltd. Water inlet method of washing device and washing device using water inlet method
EP4083299A4 (en) * 2019-12-04 2023-08-02 Qingdao Haier Washing Machine Co., Ltd. Water inlet method of washing device and washing device using water inlet method
CN114411382A (en) * 2022-01-28 2022-04-29 海信(山东)冰箱有限公司 Washing machine control method and washing machine applying same
CN114411382B (en) * 2022-01-28 2024-01-16 海信冰箱有限公司 Washing machine control method and washing machine applying same

Also Published As

Publication number Publication date
JP2018192191A (en) 2018-12-06
JP6918573B2 (en) 2021-08-11
CN110494606A (en) 2019-11-22
CN110494606B (en) 2021-08-03

Similar Documents

Publication Publication Date Title
WO2018216288A1 (en) Washing machine
CN108474164B (en) Washing machine
US10697109B2 (en) Washing machine
JP7268954B2 (en) washing machine
KR102350317B1 (en) Washing machine
KR101619955B1 (en) Laundry machine and laundry method of using the same
WO2016170726A1 (en) Washing machine
JP6706135B2 (en) Washing machine
JP2019097964A (en) Washing machine
JP6543808B2 (en) Washing machine
JP6471354B2 (en) Washing machine
CN112900007A (en) Washing machine
CN110506140B (en) Washing machine
JP6251349B1 (en) Washing machine
JP2006110091A (en) Washing machine
JP6449419B2 (en) Washing machine
US20190330778A1 (en) Washing machine
JP2017104421A (en) Washing and drying machine
JP2019097866A (en) Drum type washing machine
CN110050095A (en) The control method of washing machine
JP7159058B2 (en) clothing processing equipment
KR102477943B1 (en) Method for controlling washing machine
JP2016097229A (en) Washing machine
JP2023064485A (en) washing machine
JP2017225649A (en) Washing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806709

Country of ref document: EP

Kind code of ref document: A1