WO2018216267A1 - Transformer and amorphous ribbon - Google Patents

Transformer and amorphous ribbon Download PDF

Info

Publication number
WO2018216267A1
WO2018216267A1 PCT/JP2018/004426 JP2018004426W WO2018216267A1 WO 2018216267 A1 WO2018216267 A1 WO 2018216267A1 JP 2018004426 W JP2018004426 W JP 2018004426W WO 2018216267 A1 WO2018216267 A1 WO 2018216267A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous ribbon
amorphous
thickness
transformer
joint
Prior art date
Application number
PCT/JP2018/004426
Other languages
French (fr)
Japanese (ja)
Inventor
舘村 誠
佐藤 孝平
将 阿部
遠藤 博之
丸山 英介
年樹 白畑
憲一 相馬
美稀 山崎
今川 尊雄
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201880005016.8A priority Critical patent/CN110073451B/en
Publication of WO2018216267A1 publication Critical patent/WO2018216267A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to a transformer, an iron core, and an amorphous metal ribbon.
  • Patent Document 1 Japanese Patent Laid-Open No. 58-74029 states that “a plurality of narrow-width thin plate-like first group and second group of amorphous elements arranged in the width direction are bonded to each other and cut into a predetermined length. Later, an apparatus for producing a wide-width laminated amorphous material in which both groups of amorphous materials are welded is provided. "(Specification, page 1, right column, line 18 to page 2, upper left column, line 2).
  • those using wound iron cores are opened with a part of the laminated iron core material and a coil wound around the opened part is inserted. Thereafter, the opened portion of the iron core material is lapped.
  • a wound core using an amorphous magnetic ribbon (hereinafter also referred to as an amorphous ribbon, an amorphous material, or an amorphous metal ribbon) as an iron core material is called an amorphous wound core or simply an amorphous iron core.
  • the thickness direction of the iron core increases.
  • the weight of the iron core increases, but since the area that receives the weight is the width of the iron core, as the thickness increases, the stress received by the iron core increases, causing distortion and lowering the magnetic properties of the iron core.
  • the amorphous ribbon has a manufacturing process in which a melted amorphous metal material is brought into contact with a cooled roll member and thinned while being rapidly cooled.
  • the width of the actually manufactured amorphous ribbon is about several tens to 200 mm.
  • ⁇ Amorphous ribbons that are wider than the above, spread with cooling, vary in thickness and size.
  • an amorphous ribbon with a large variation in thickness and size is used as the iron core, the amount of voids in the thickness direction or radial direction in the iron core increases, the space factor of the iron core decreases, and the performance as a core tends to deteriorate. Become. Therefore, it has been difficult to manufacture an amorphous iron core having a width larger than that of the amorphous ribbon.
  • Patent Document 1 discloses an amorphous metal member that adheres the first group of amorphous and the second group of amorphous arranged in the width direction and welds the end portion and the intermediate surface of the first group of amorphous and the second group of amorphous. Is described.
  • the amorphous ribbons should be as close as possible.
  • the outer shape of the amorphous ribbon in the long side direction is not a linear shape, but has a curved shape called a swell, and therefore it is necessary to make it closer in consideration of the swell.
  • This swell may have an error of about sub-millimeters (about 0.1 to 0.9 mm) than the standard width of the amorphous ribbon even if it is a high quality amorphous ribbon. When the quality is good, it is about 0.1 mm or less.
  • the space factor in the thickness direction of the iron core is lowered. Further, if the amorphous ribbons are separated so that the undulations do not overlap, the gap increases, and the space factor in the width direction of the iron core decreases.
  • Patent Document 1 does not consider a structure in which amorphous ribbons arranged in the width direction of the first group and the second group of amorphous are arranged.
  • An object of the present invention is to provide a transformer having an iron core with improved space factor.
  • a transformer according to an example of the present invention is a transformer having a wound iron core and a coil wound around the wound iron core, and the wound iron core extends in the width direction of the wound iron core.
  • Two or more metal members are arranged, and the first metal member of the metal members is joined to the second metal member through a joint portion thinner than the first metal member.
  • FIG. 1 is a perspective view showing an assembly 30 of a three-phase three-legged amorphous iron core and coil constituted by three-phase three-windings.
  • a coil 40a is wound around the outer iron core 30a and the inner iron core 30b
  • a coil 40b is wound around the inner iron core 30b and the inner iron core 30c
  • a coil 40c is wound around the inner iron core 30c and the outer iron core 30a.
  • the outer iron core 30a is an iron core wound around the outer peripheral sides of the inner iron cores 30b and 30c.
  • the width direction of the inner iron core 30b is the x-axis direction
  • the horizontal direction of the inner iron core 30b is the y-direction
  • the vertical direction of the inner iron core 30b is the z-axis direction.
  • the assembly 30 can also be implemented as an oil-filled transformer that fills the assembly 30 with insulating oil or a mold transformer that covers the coils 40a, 40b, and 40c with a mold resin.
  • outer iron core 30a and the inner iron cores 30b and 30c are wound iron cores, and thus are provided with a wrapping portion, but are not shown and omitted.
  • Example 1 will be described with reference to FIGS.
  • FIG. 2 shows an inner core 30b included in the assembly 30 shown in FIG. Also, the coil 40a and the coil 40b are not shown.
  • the inner iron core 30b will be described as a representative example, the outer iron core 30a and the inner iron core 30c can be implemented.
  • a first amorphous ribbon 11a and a second amorphous ribbon 11b are arranged in the inner core 30b.
  • the first amorphous ribbon 11a and the second amorphous ribbon 11b have the same product standard width in the x direction.
  • the width of the inner iron core 30b is about 400 mm.
  • the width of the product standard is the same” does not mean the exact same width but is a concept including the product standard of the amorphous ribbon having the same width. That is, an amorphous ribbon having a product standard of 200 mm in width may have a part such as 199 mm or 201 mm depending on the width measurement location, but it means that the width is the same. The same applies to the case of simply indicating the same width. The swell will be described later with reference to FIG.
  • joint portions 21 are provided at predetermined intervals in the radial direction between the amorphous ribbon 11a and the amorphous ribbon 11b.
  • a lap portion that is a portion where the amorphous ribbon is wrapped is provided in a plane portion between the corner portions c1 and c2.
  • the wrapping method so-called overlap, step wrap, or a combination of these can be used.
  • the amorphous ribbon wrinkles are less likely to occur. Further, it is possible to make the amorphous ribbon wrinkle less likely to occur by increasing the arrangement interval of the joining portions 21 of the curved surface portion than the flat surface portion. Thereby, the distortion of the curved surface part of the inner iron core 30 can be reduced, and the iron loss of the inner iron core 30b can be reduced.
  • the curved surface portion represented by the corner portions c1 and c2 refers to a region having a curvature at a corner portion of the inner iron core 30b.
  • a plane part means the area
  • a wrap part will have a curvature depending on the lapping method, the wrap part which is not provided in the corner
  • FIG. 3 shows a cross section taken along the line aa ′ of FIG.
  • the left side of FIG. 3 is a, and the right side is the a ′ side.
  • the first amorphous ribbon 11a, the first amorphous ribbon 11a, and the second amorphous ribbon 11b having the same product standard width are connected and arranged by the joint portion 21a. Indicated.
  • the junction 21a is a portion where the first amorphous ribbon 11a and the second amorphous ribbon 11b are metal-bonded.
  • the joining portion 21a is a portion where a part of the first amorphous ribbon 11a and a part of the second amorphous ribbon 11b are welded and joined together by laser or electric resistance.
  • the joining method of the joining part 21a is not particularly limited, and if it is laser joining, it can be joined intermittently by pulse irradiation.
  • spot bonding and other electrical resistance bonding can be used. Even when the electrical resistance is continuously applied, it can be implemented even when it is intermittently applied. Further, when electric resistance is intermittently applied, it is possible to join by spot welding.
  • the second layer of amorphous ribbon 20b is shown below the first layer of amorphous ribbon 20a.
  • the first amorphous ribbon 11c and the second amorphous ribbon 11d are joined.
  • the n-th layer amorphous ribbon 20n arranged from the first layer amorphous ribbon 20a to the n-th layer includes a first amorphous ribbon 11e and a second amorphous ribbon 11f. It is joined at the junction 21n.
  • a gap 22 is shown between the first amorphous ribbon 11c and the second amorphous ribbon 11d. Since it has another part in the y-axis direction different from the aa ′ cross section shown in FIG. 3, that is, a part that is joined at the back or near side of the aa ′ cross section, the joint part is present in the aa ′ cross section. Not shown.
  • Such a relationship in which the first amorphous ribbons 11a, 11c, and 11e and the second amorphous ribbons 11b, 11d, and 11f are arranged in the width direction is referred to as abutting the opposing long sides of the amorphous ribbons. Further, the joined amorphous ribbons are referred to as butt joints through the joint portions 21 and 21n.
  • the thickness of the junction points 21a and 21n is preferably equal to or less than the amorphous ribbon 11a or the like. If the thickness of the amorphous ribbon and the joint point is the same, the periphery of the joint point does not have a different thickness from other amorphous ribbon portions, so that the space factor can be improved when laminated as an iron core. Moreover, the part where amorphous thin strips overlap does not arise.
  • amorphous amorphous ribbons When bonded, amorphous amorphous ribbons will be crystallized, but the bonded amorphous ribbons are metal-bonded, resulting in a stronger connection than just contact between amorphous ribbons.
  • the bonding strength can be adjusted by increasing / decreasing the bonding area and the number of bonding points.
  • the crystallization region generated by welding the amorphous ribbon can be reduced, the magnetic circuit flow can be reduced, and the loss increasing function can be reduced.
  • the first amorphous ribbon 11 a and the second amorphous ribbon 11 b are arranged in such a manner that the long sides are butted against each other in the y-axis direction. That is, the second amorphous ribbon 20b is arranged so that the first amorphous ribbon 20a is along the long side direction. Moreover, a part of the short side direction (width direction) is omitted, and the long side is enlarged.
  • Amorphous ribbons vary from individual to individual due to the manufacturing method.
  • a high-quality amorphous ribbon has a width larger or smaller than the standard width by about a submillimeter.
  • the submillimeter means less than 1 mm, specifically, about 0.1 or more and 0.9 mm or less.
  • the transformer core needs to improve the space factor of the amorphous core in the width direction, that is, reduce the butt distance, while reducing such overlapping portions of the undulations.
  • the space factor is the ratio of the total thickness of the core members to the thickness of the entire laminated cores. That is, the smaller the voids in the iron core, the higher the space factor, and the magnetic properties of the iron core are improved.
  • the space factor in the width direction when the amorphous ribbons are arranged is the ratio of the arranged iron core members to the gaps. That is, in FIG. 3, the width of the amorphous ribbon 11a and the ratio of the amorphous ribbon 11b and the gap 21a, and the width of the amorphous ribbon 11c and the ratio of the amorphous ribbon 11d and the gap 22 are shown.
  • FIG. 5 shows an amorphous ribbon 11b that is abutted against the amorphous ribbon 11a. Moreover, these are joined by joining portions 22b, 22c, 22d and the like. Weld marks 41a and 41b are shown on both sides of the joint 22b.
  • FIG. 6 shows the cross sections of the joint portions 22b, 22c, and 22d as b-b 'cross section, c-c' cross section, and e-e 'cross section.
  • welding marks 41a and 42b are shown above the amorphous ribbon 11a.
  • the welding marks 41a and 42b are generated by electric resistance welding, and are generated when electrodes described later are arranged and a current is passed.
  • the joining part 22b is provided between the amorphous ribbons 11a and 11b, and shows that the thickness on the center side is smaller than the outside of the joining part 22b. Moreover, since the melted joint portion 22b is in a state similar to a so-called bridge, it has a curved surface shape so that the thickness gradually decreases from the outside to the center.
  • the bridge is a state in which solder joins two members.
  • the junction becomes a bridge due to the junction mechanism described later. Since the bonding portion 22b is thinner than the amorphous ribbon, the space factor can be improved without producing a portion where the amorphous ribbons overlap each other.
  • the c-c 'cross section shows an example in which no welding mark remains. Moreover, a mode that the junction part 22c is substantially the same thickness as an amorphous ribbon is shown. If the thickness of the bonded portion is equal to or less than the thickness of the amorphous ribbon, the thickness around the bonded portion is not increased at the time of lamination, so that the space factor can be improved.
  • welding marks 41c and 41d remain on the upper surfaces of the amorphous ribbons 11a and 11b, and the joint 22d has a gap in the center.
  • the amorphous ribbons 11a and 11b are connected by connecting the outer edges of the bonding portion 22d.
  • the joint 22d is formed when the melted amorphous material is melted and solidified.
  • the abutted portion of the amorphous ribbon 11a and the amorphous ribbon 11b is melted, and the melted portion is pulled by the surface tension to the portion of the amorphous ribbon that is not melted. Since the amorphous ribbon which is not melted has a higher surface tension than the melted amorphous ribbon, a gap is formed at the center of the melted portion.
  • the thickness of the joint portion 22d does not become larger than the thickness of the amorphous ribbon. Therefore, even if it is the junction part 22d with which the space
  • a second amorphous ribbon 11 b that is abutted against the first amorphous ribbon 11 a is disposed on the insulating table 110.
  • a positive electrode 100a is disposed above the first amorphous ribbon 11a, and a negative electrode 100b is disposed above the second amorphous ribbon 11b.
  • the electrodes 110a and 110b are preferably in contact with the amorphous ribbon 11a or 11b. This is to reduce the contact resistance and increase the efficiency of electric resistance welding.
  • the distance w1 between the centers of the electrode 100a and the electrode 100b is larger than the gap h between the butted amorphous ribbons 100a and 100b, it can be implemented.
  • the distance w1 and the gap d are as close as possible, it becomes easy to control the current path by electric resistance welding. If distance w1> gap w2, this is possible.
  • w3 is the diameter of the electrodes 100a and 100b. This is because the electrodes 100a and 100b are not in contact with each other under this condition, and the electrode 100a and the like are not in contact with the end face of the amorphous ribbon.
  • FIG. 8A shows a state in which plasma is generated in the gap by arc discharge, and the amorphous ribbon around the generated plasma is heated and melted to form a melted portion 41c.
  • arc discharge may occur due to contact resistance generated at a portion where the electrode 100a and the amorphous ribbon 11a are in contact with each other, and a welding mark 41a may be generated.
  • the plasma of about 2000 to 3000 ° C. increases the melting amount of the amorphous ribbon end face, and the melting part 41d increased from the melting part 41c. Indicated.
  • the melted amorphous ribbons are brought into contact with each other and cooled to form a joint 22e.
  • the contact of the melted part 41d means that the melted amorphous ribbon is attracted by an electrical path, or the increased force of the melted part 41d to spread is larger than the surface tension of the end face of the amorphous ribbon. It is considered that the melting parts 41d come into contact with each other.
  • the thickness d ⁇ gap w2 of the amorphous ribbons 11a and 11b can be sufficiently implemented if the thickness d ⁇ gap w2 of the amorphous ribbons 11a and 11b.
  • the gap w2 can be obtained by an average value obtained by measuring the end faces of the bonded amorphous ribbons. Since the amorphous ribbon has waviness, the gap w2 changes the distance between the amorphous ribbons 11a and 11b in the long side direction.
  • the swell is generated depending on the cooling roll for the convenience of the manufacturing process, it has periodicity. Therefore, the average value of the swell can be used as the measurement point of the gap, and the gap w2 can be obtained. Further, since the swell has periodicity as described above, the shortest point can be set as the measurement point of the gap. The cycle depends on the diameter of the cooling roll and is often about several hundred mm or less due to the convenience of the manufacturing process.
  • the aspect ratio of the gap w2 and the thickness d is 1: 2 or less.
  • the amorphous ribbon has waviness, when the gap w2 is 25 ⁇ m, the abutted amorphous ribbons may contact and overlap each other. Even in this case, it has been confirmed that when electrical resistance welding is performed under the above-described conditions, it is preferable to manufacture a joint.
  • the overlapping part is local, and when electric resistance welding is performed around the overlapping part, a current path is likely to be generated in the local overlapping part. This is because the overlapping portion has a smaller gap, and the current path is more likely to occur than the other portions.
  • the bonded amorphous ribbon has a gap w2 smaller than the thickness d of the amorphous ribbon. Furthermore, in order to improve the space factor, the gap w2 is preferably less than or equal to half of the thickness d.
  • the cross section of the joint will be described using a cross-sectional image shown in FIG. A state is shown in which the second amorphous ribbon 11h butted against the first amorphous ribbon 11g is connected by the joint 22f.
  • the position of the cross section is the d-d 'cross section of FIG.
  • the first amorphous ribbon 11g is cut.
  • the d-d ′ cross section of FIG. 5 has a gap in the center, which is shown. That is, the image on the center side from the white line of the central portion 22g is a bonded amorphous ribbon shown in the back of the gap. That is, the white line is a boundary line between the amorphous ribbon in the back of the cross section and the amorphous ribbon in the cross section.
  • the joining portion 22g refers to the welded portion 22f ′ of the first amorphous ribbon 11h to the welded portion (not shown) of the second amorphous ribbon 11g. Further, the thickness of the welded portion 22f ′ is larger than the thickness of the central portion 22g, and the thickness of the amorphous ribbon 11h is larger than the thickness of the welded portion 22f ′. That is, the thickness decreases in the order of the first amorphous ribbon, the first welded portion, and the central portion, and the thickness increases in the order of the central portion, the second welded portion, and the second amorphous ribbon. By the order of the thicknesses, the joint portion has a stepped thickness, and even if distortion occurs, the stress can be received stepwise, so that the overall quality is improved.
  • the thickness of the amorphous ribbons 11g and 11h is about 20 ⁇ m, and the thickness of the junction 22f is about 10 ⁇ m. Further, there is a undulation 11i between the junction 22f and the second amorphous ribbon 11h, which is not less than the thickness of the junction 22f and not more than the thickness of the second amorphous ribbon 11h. In other words, the thickness of the joining portion 22f is equal to or less than the thickness of the first amorphous ribbon 11g.
  • the junction 22g is thinner than the region that does not have the amorphous ribbon 11g or 11h junction 22g. Further, when the bonded amorphous ribbons are stacked, the cross section having no joint has a higher space factor than the cross section having the joint. By providing the bonding portion 22g, a wide amorphous ribbon can be manufactured.
  • the gap between the abutted amorphous ribbons can be reduced, and the space factor in the width direction can be improved as compared with the prior art. Further, the amorphous ribbon is hard to come off, and the lapping operation of the manufacturing process becomes easy as a wound iron core.
  • a white dot is shown in the welded portion 22f 'in the thickness direction of the joint portion 22f, it is a portion where the amorphous structure is confirmed to be a recrystallized region.
  • the welded portion showed a crystallized reaction.
  • the size of the recrystallized grains differs between the center portion 22g side and the welded portions 22f 'on both ends of the entire joint portion 22f. It was confirmed that the central portion 22g side is less than the weld portion 22f '.
  • the recrystallized grains can be confirmed by SEM observation near the welded portion. However, since the magnetic flux of the bonded amorphous ribbon flows in the longitudinal direction, the influence of the crystallized portion on the flow of the magnetic flux is small.
  • the crystallized region is plastically deformed unlike amorphous. Therefore, even when the welded portion becomes thicker than the original plate thickness, the plate thickness can be reduced by crushing.
  • Example 2 will be described with reference to FIG. FIG. 10 shows the a-a ′ cross section of FIG. 2, but the width of the amorphous ribbon is different from FIG. Description of the same reference numerals is omitted.
  • the second amorphous ribbon 11 ′ b butted against the first amorphous ribbon 11 ′ a is joined by the joint portion 21 ′ a.
  • the second layer 10'b is joined to the second amorphous ribbon 11'd butted against the first amorphous ribbon 11'c by a joint 21'b.
  • the first amorphous ribbons 11'a and 11'd have the same standard width
  • the second amorphous ribbons 11'b and 11'c have the same standard width.
  • the joint portions 21'a and 21'b are arranged alternately in the first layer 10'a and the second layer 10'b.
  • the nth layer 10'n is repeatedly arranged. That is, the junction is arranged at a different position for each layer.
  • the joints are staggered in each layer, so even if stress is applied to multiple layers, the stress concentration point differs for each layer, so the stress is distributed throughout the multiple layers, so the layers are almost the same. It is harder to break than when a joint is provided at the position.
  • the width of the amorphous ribbon is two types, the manufacturing process is simplified, and the quality is improved when the amorphous ribbon after bonding is assembled as an iron core.
  • Example 3 will be described with reference to FIG. It is a modification of FIG. 10, and the width
  • the second amorphous ribbon 11'f butted against the first amorphous ribbon 11'e is joined by the joining portion 21'c.
  • the second layer 10'd is joined to the second amorphous ribbon 11'g butted against the first amorphous ribbon 11'g by the joint 21'd.
  • the third layer 10 ′ e the second amorphous ribbon 11 ′ i butted against the first amorphous ribbon 11 ′ j is joined by the joint portion 21 ′ e.
  • the first amorphous ribbons 11'a to 11'j have different widths according to the standard. With such a width, the joint portions 21'c to 21'e can be arranged at different positions in each layer. That is, since the step structure of the joint portion can be obtained, the strength and flexibility can be further improved than in the first embodiment. As a result, it can contribute to the improvement of the life of the assembled iron core and transformer.
  • Example 4 will be described with reference to FIG. It is a modification of FIG. Only the first layer 107'f is shown as a representative.
  • first amorphous ribbon 11′k and the second amorphous ribbon 11′l are connected by the joint 21′f
  • the second amorphous ribbon 11′l and the second amorphous ribbon 11′l 3 amorphous ribbons 11'm are connected by a joint 21'g.
  • the amorphous ribbons 11'k, 11'l and 11'm have different standard widths. According to the bonding method of the present invention, amorphous ribbons having a plurality of widths can be bonded to each other to produce a wide amorphous ribbon. Since three or more amorphous ribbons can be joined, an amorphous iron core and an amorphous transformer having a larger capacity than two butt joints can be realized.
  • an amorphous ribbon having a width suitable for the transformer capacity can be manufactured.
  • the degree of freedom in design can be improved, and a more suitable amorphous ribbon after joining can be obtained, so that a high-quality amorphous iron core and transformer can be provided.
  • each embodiment can be combined with each other.
  • the embodiment 2 or 3 can be applied to the embodiment 4, a plurality of amorphous ribbons are butt-joined, and joint portions are provided at different positions in each layer. it can.
  • the strength and flexibility can be improved as in Example 2 or 3.
  • the present invention can be implemented if it is a plate-like metal member such as a silicon steel plate or a grain-oriented electrical steel plate.
  • a wide amorphous iron core can be manufactured by these methods.
  • the joining portion is provided, it is difficult for the amorphous ribbon to be misaligned during the work of assembling the iron core, so that variations in iron core performance can be reduced.
  • production efficiency can be improved.
  • the bonded portion of the amorphous ribbon that has been butted and bonded is crystallized, it is bonded with a small cross-sectional area with respect to the flow of the magnetic circuit, so that the influence of the crystallized bonded portion can be suppressed. As a result, the influence of magnetic loss can be reduced as an iron core or a transformer.
  • the present invention is also applicable to a single-phase transformer and a three-phase five-legged transformer having a so-called outer iron core.
  • each embodiment described above can be applied not only to the transformer and the iron core of the transformer, but also to a reactor (stationary induction device) having an iron core and a coil. Also in this case, it is possible to improve the space factor of the manufactured reactor for each iron core, and to provide a reactor having stable iron core characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

The objective of the present invention is to provide a transformer having an iron core which improves the space factor thereof. In order to solve the problem mentioned above, in an example of the present invention, the transformer is characterized by having a wound iron core and a coil wound around the wound iron core, wherein the wound iron core comprises two or more metal members aligned in the width direction of the wound iron core, and among the metal members, a first metal member is joined to a second metal member via a joining part that is thinner than the first metal member.

Description

変圧器及びアモルファス薄帯Transformer and amorphous ribbon
 本発明は、変圧器、鉄心及びアモルファス金属薄帯に関する。 The present invention relates to a transformer, an iron core, and an amorphous metal ribbon.
 特許文献1(特開昭58-74029号公報)には、「巾方向に複数枚並べた狭巾薄板状の第1群及び第2群のアモルファス間を接着して所定の長さに切断した後、両群のアモルファス間を溶着するようにした広巾積層アモルファスの製造装置を提供する。」と記載されている(明細書1頁右欄18行目から2頁左上欄2行目)。 Patent Document 1 (Japanese Patent Laid-Open No. 58-74029) states that “a plurality of narrow-width thin plate-like first group and second group of amorphous elements arranged in the width direction are bonded to each other and cut into a predetermined length. Later, an apparatus for producing a wide-width laminated amorphous material in which both groups of amorphous materials are welded is provided. "(Specification, page 1, right column, line 18 to page 2, upper left column, line 2).
特開昭58-74029号公報JP 58-74029 A
 変圧器に使用される鉄心のうち巻鉄心を用いるものは、積層された鉄心材料の一部を開き、開かれた部分に巻き回されたコイルを挿入される。その後、鉄心材料のうち開かれた部分がラッピングされる。 Of the iron cores used in transformers, those using wound iron cores are opened with a part of the laminated iron core material and a coil wound around the opened part is inserted. Thereafter, the opened portion of the iron core material is lapped.
 鉄心材料としてアモルファス磁性薄帯(以下、アモルファス薄帯、アモルファス材またはアモルファス金属薄帯とも呼ぶ)を用いた巻鉄心はアモルファス巻鉄心または単にアモルファス鉄心と呼ばれる。 A wound core using an amorphous magnetic ribbon (hereinafter also referred to as an amorphous ribbon, an amorphous material, or an amorphous metal ribbon) as an iron core material is called an amorphous wound core or simply an amorphous iron core.
 アモルファス鉄心を有するアモルファス変圧器の大容量化に伴い、鉄心に流れる磁束密度が大きくなるため、鉄心の大型化が必要である。鉄心の大型化には鉄心の厚みまたは幅を大きくすることが考えられる。 As the capacity of an amorphous transformer having an amorphous iron core increases, the density of the magnetic flux flowing through the iron core increases. Therefore, it is necessary to increase the size of the iron core. To increase the size of the iron core, it is conceivable to increase the thickness or width of the iron core.
 鉄心の厚みのみを大きくする場合には、鉄心の厚み方向が大きくなるため好ましくない。また、鉄心の自重が大きくなるが、自重を受ける面積は鉄心幅であるため、厚みが大きくなるにつれ、鉄心が受ける応力が大きくなり、歪が生じ鉄心の磁性特性が低下する。 It is not preferable to increase only the thickness of the iron core because the thickness direction of the iron core increases. In addition, the weight of the iron core increases, but since the area that receives the weight is the width of the iron core, as the thickness increases, the stress received by the iron core increases, causing distortion and lowering the magnetic properties of the iron core.
 一方で、幅の広いアモルファス薄帯を採用することが考えられる。しかし、アモルファス薄帯は、溶融したアモルファス金属材料を冷却されたロール部材に接触させ急速冷却を行いつつ薄く広げる製造工程を有する。 On the other hand, it is conceivable to use a wide amorphous ribbon. However, the amorphous ribbon has a manufacturing process in which a melted amorphous metal material is brought into contact with a cooled roll member and thinned while being rapidly cooled.
 そのため、溶融されたアモルファス金属材料の冷却と広げる工程を同時に行う必要があるため、原理上、幅が広いアモルファス薄帯を製造することは困難である。実際に製造されるアモルファス薄帯の幅は数十mmから200mm程度の幅である。 Therefore, since it is necessary to simultaneously perform the cooling and spreading process of the molten amorphous metal material, it is difficult in principle to produce a wide amorphous ribbon. The width of the actually manufactured amorphous ribbon is about several tens to 200 mm.
 冷却と広げる上記より幅が広いアモルファス薄帯は厚みや大きさにばらつきが出る。厚みや大きさにばらつきが大きいアモルファス薄帯を鉄心とする場合には、鉄心内の厚み方向または径方向の空隙の量が増え、鉄心の占積率が低くなり鉄心としての性能は低下しやすくなる。そのため、アモルファス薄帯の幅より大きな幅を持つアモルファス鉄心の製造は困難であった。 ¡Amorphous ribbons that are wider than the above, spread with cooling, vary in thickness and size. When an amorphous ribbon with a large variation in thickness and size is used as the iron core, the amount of voids in the thickness direction or radial direction in the iron core increases, the space factor of the iron core decreases, and the performance as a core tends to deteriorate. Become. Therefore, it has been difficult to manufacture an amorphous iron core having a width larger than that of the amorphous ribbon.
 特許文献1には、巾方向に並べられた第1群のアモルファス及び第2群のアモルファスを接着し、第1群のアモルファス及び第2群のアモルファスの端末部及び中間面を溶接するアモルファス金属部材が記載されている。 Patent Document 1 discloses an amorphous metal member that adheres the first group of amorphous and the second group of amorphous arranged in the width direction and welds the end portion and the intermediate surface of the first group of amorphous and the second group of amorphous. Is described.
 鉄心の磁性特性は、鉄心の占積率に依存するため、アモルファス薄帯同士をできるだけ近づけるとよい。しかし、アモルファス薄帯の長辺方向の外形は直線形状になっておらず、うねりと呼ばれる曲線形状を有するため、うねりを考慮して近づける必要がある。 Since the magnetic properties of the iron core depend on the space factor of the iron core, the amorphous ribbons should be as close as possible. However, the outer shape of the amorphous ribbon in the long side direction is not a linear shape, but has a curved shape called a swell, and therefore it is necessary to make it closer in consideration of the swell.
 このうねりは、品質のよいアモルファス薄帯であってもアモルファス薄帯の規格上の幅よりもサブミリ程度(0.1から0.9mm程度)の誤差を有する場合がある。品質がよい場合には、0.1mm程度以下である。 This swell may have an error of about sub-millimeters (about 0.1 to 0.9 mm) than the standard width of the amorphous ribbon even if it is a high quality amorphous ribbon. When the quality is good, it is about 0.1 mm or less.
 また、このうねり同士の距離を近づけ重なり合うことで重なり合わない部分との厚みに差ができることで鉄心の厚み方向の占積率が低下することとなる。また、このうねりが重なり合わないようにアモルファス薄帯同士を離すと間隙が大きくなり、鉄心の幅方向の占積率が低下することとなる。 Also, by making the distance between the undulations close to each other and making the difference in thickness from the non-overlapping portion, the space factor in the thickness direction of the iron core is lowered. Further, if the amorphous ribbons are separated so that the undulations do not overlap, the gap increases, and the space factor in the width direction of the iron core decreases.
 特許文献1は、第1群及び第2群のアモルファスの巾方向に並べられたアモルファス薄帯を並べる構造については考慮されていない。 Patent Document 1 does not consider a structure in which amorphous ribbons arranged in the width direction of the first group and the second group of amorphous are arranged.
 本発明の目的は、占積率が向上する鉄心を有する変圧器を提供することにある。 An object of the present invention is to provide a transformer having an iron core with improved space factor.
 上記課題を解決するために、本発明の一例である変圧器は、巻鉄心と、巻鉄心に巻き回されたコイルとを有する変圧器であって、巻鉄心は、該巻鉄心の幅方向に金属部材が2以上並べられており、金属部材のうち第1の金属部材は、第1の金属部材よりも薄い接合部を介して第2の金属部材と接合されていることを特徴とする。 In order to solve the above problems, a transformer according to an example of the present invention is a transformer having a wound iron core and a coil wound around the wound iron core, and the wound iron core extends in the width direction of the wound iron core. Two or more metal members are arranged, and the first metal member of the metal members is joined to the second metal member through a joint portion thinner than the first metal member.
 本発明により、並べられたアモルファス薄帯の占積率が向上する変圧器を提供することができる。 According to the present invention, it is possible to provide a transformer that improves the space factor of the arranged amorphous ribbons.
本発明の実施の形態に係る3相3巻線で構成された鉄心とコイルの組立体を示す斜視図である。It is a perspective view which shows the assembly of an iron core and a coil comprised by the three-phase three winding which concerns on embodiment of this invention. 本発明の実施例に係るアモルファス薄帯を積層し、鉄心の構成を示す斜視図である。It is a perspective view which laminates | stacks the amorphous ribbon which concerns on the Example of this invention, and shows the structure of an iron core. 本発明の実施例に係るアモルファス薄帯の断面図である。It is sectional drawing of the amorphous ribbon which concerns on the Example of this invention. アモルファス薄帯のうねりの例を示す上面図である。It is a top view which shows the example of the wave | undulation of an amorphous ribbon. 本発明の実施例に係るアモルファス薄帯の接合状態を示す上面図である。It is a top view which shows the joining state of the amorphous ribbon which concerns on the Example of this invention. 本発明の実施例に係るアモルファス薄帯の接合部の断面図である。It is sectional drawing of the junction part of the amorphous ribbon which concerns on the Example of this invention. 本発明の実施例に係るアモルファス薄帯の接合方法の一例を示す図である。It is a figure which shows an example of the joining method of the amorphous ribbon which concerns on the Example of this invention. 本発明の実施例に係るアモルファス薄帯の接合方法の工程ごとの接合断面を示す図である。It is a figure which shows the joining cross section for every process of the joining method of the amorphous ribbon which concerns on the Example of this invention. 本発明の実施例に係る接合されたアモルファス薄帯の断面像である。It is a cross-sectional image of the bonded amorphous ribbon which concerns on the Example of this invention. 本発明の実施例に係るアモルファス薄帯の接合方法の一例を示す図である。It is a figure which shows an example of the joining method of the amorphous ribbon which concerns on the Example of this invention. 本発明の実施例に係るアモルファス薄帯の接合方法の一例を示す図である。It is a figure which shows an example of the joining method of the amorphous ribbon which concerns on the Example of this invention. 本発明の実施例に係るアモルファス薄帯の接合方法の一例を示す図である。It is a figure which shows an example of the joining method of the amorphous ribbon which concerns on the Example of this invention.
 以下、実施例について図面を用いて説明する。なお、全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, examples will be described with reference to the drawings. In all the drawings, members having the same function are denoted by the same reference numerals, and repeated description thereof is omitted.
 以下の実施の形態では便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明などの関係にある。 In the following embodiment, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. Some or all of the modifications, details, supplementary explanations, and the like are related.
 また、以下の実施例において、要素の数など(個数、数値、量、範囲などを含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合などを除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良いものとする。 In addition, in the following examples, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), unless otherwise specified, the principle is clearly limited to a specific number, etc. The number is not limited to the specific number, and may be a specific number or more.
 同様に、以下の実施例において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲等についても同様である。 Similarly, in the following examples, when referring to the shape and positional relationship of components and the like, the shape and the like of the component are substantially excluding unless specifically stated or considered otherwise in principle. It shall include those that are approximate or similar to. The same applies to the above numerical values and ranges.
 本発明の実施の形態を図1を用いて説明する。図1は、3相3巻線で構成した3相3脚式のアモルファス鉄心とコイルとの組立体30を示す斜視図である。組立体30は、外鉄心30aと内鉄心30bにコイル40aが、内鉄心30bと内鉄心30cにコイル40bが、内鉄心30cと外鉄心30aにコイル40cが、それぞれ巻き回されている。外鉄心30aは、内鉄心30bと30cの外周側に巻き回された鉄心である。 An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a perspective view showing an assembly 30 of a three-phase three-legged amorphous iron core and coil constituted by three-phase three-windings. In the assembly 30, a coil 40a is wound around the outer iron core 30a and the inner iron core 30b, a coil 40b is wound around the inner iron core 30b and the inner iron core 30c, and a coil 40c is wound around the inner iron core 30c and the outer iron core 30a. The outer iron core 30a is an iron core wound around the outer peripheral sides of the inner iron cores 30b and 30c.
 内鉄心30bの幅方向がx軸方向、内鉄心30bの水平方向がy方向、内鉄心30bの鉛直方向がz軸方向である。 The width direction of the inner iron core 30b is the x-axis direction, the horizontal direction of the inner iron core 30b is the y-direction, and the vertical direction of the inner iron core 30b is the z-axis direction.
 組立体30は組立体30を絶縁油で満たす油入変圧器またはコイル40a、40b、40cをモールド樹脂で覆うモールド変圧器にも実施可能である。 The assembly 30 can also be implemented as an oil-filled transformer that fills the assembly 30 with insulating oil or a mold transformer that covers the coils 40a, 40b, and 40c with a mold resin.
 なお、外鉄心30a、内鉄心30b、30cは巻鉄心であるためラッピング部分が設けられるが、図示せず省略する。 Note that the outer iron core 30a and the inner iron cores 30b and 30c are wound iron cores, and thus are provided with a wrapping portion, but are not shown and omitted.
 実施例1について図2から図5を用いて説明する。
 図2には図1に示した組立体30が有する内鉄心30bを示す。また、コイル40aとコイル40bを非表示とした図である。内鉄心30bを代表例として説明するが、外鉄心30a及び内鉄心30cであっても実施可能である。
Example 1 will be described with reference to FIGS.
FIG. 2 shows an inner core 30b included in the assembly 30 shown in FIG. Also, the coil 40a and the coil 40b are not shown. Although the inner iron core 30b will be described as a representative example, the outer iron core 30a and the inner iron core 30c can be implemented.
 内鉄心30bには、第1のアモルファス薄帯11aと第2のアモルファス薄帯11bが並べられている。説明の一例として、第1のアモルファス薄帯11aと第2のアモルファス薄帯11bは、x方向の製品規格の幅が同一である。一例として製品規格が200mmのアモルファス薄帯が2枚並べられているため、内鉄心30bの幅は約400mmである。 In the inner core 30b, a first amorphous ribbon 11a and a second amorphous ribbon 11b are arranged. As an example of description, the first amorphous ribbon 11a and the second amorphous ribbon 11b have the same product standard width in the x direction. As an example, since two amorphous ribbons having a product standard of 200 mm are arranged, the width of the inner iron core 30b is about 400 mm.
 ここで、「製品規格の幅が同一」とは、厳密に同一の幅を意味するのではなくアモルファス薄帯の製品規格が同一の幅のものを含む概念である。すなわち、製品規格が幅200mmであるアモルファス薄帯は、幅の測定箇所によって199mmや201mm等の部分を有する場合があるが、同じ幅であることを意味する。単に同じ幅と示すときも同様である。うねりについては図4を用いて後述する。 Here, “the width of the product standard is the same” does not mean the exact same width but is a concept including the product standard of the amorphous ribbon having the same width. That is, an amorphous ribbon having a product standard of 200 mm in width may have a part such as 199 mm or 201 mm depending on the width measurement location, but it means that the width is the same. The same applies to the case of simply indicating the same width. The swell will be described later with reference to FIG.
 また、アモルファス薄帯11aとアモルファス薄帯11bとの間に接合部21が径方向に所定の間隔で設けられている。 Further, the joint portions 21 are provided at predetermined intervals in the radial direction between the amorphous ribbon 11a and the amorphous ribbon 11b.
 図示しないが、コーナ部c1とc2との間である平面部分には、アモルファス薄帯がラッピングされる部分であるラップ部が設けられる。ラッピング方法は、いわゆるオーバーラップやステップラップまたはこれらを組み合わせたものを用いることができる。なお、コーナ部c1とc2以外の他の平面部分にラップ部を設けることも可能である。 Although not shown, a lap portion that is a portion where the amorphous ribbon is wrapped is provided in a plane portion between the corner portions c1 and c2. As the wrapping method, so-called overlap, step wrap, or a combination of these can be used. In addition, it is also possible to provide a lap | wrap part in plane parts other than the corner parts c1 and c2.
 接合部21は、コーナ部c1やc2の曲面部に設けない場合、または平面部よりも接合部21の数を減らす場合にはアモルファス薄帯の皺が生じにくくなる。さらに、平面部よりも曲面部の接合部21の配置間隔を長くすることでアモルファス薄帯の皺が生じにくくすることができる。これにより、内鉄心30の曲面部の歪を小さくでき、内鉄心30bの鉄損を小さくすることができる。 When the joint portion 21 is not provided on the curved surface portion of the corner portions c1 and c2, or when the number of the joint portions 21 is reduced as compared with the flat surface portion, the amorphous ribbon wrinkles are less likely to occur. Further, it is possible to make the amorphous ribbon wrinkle less likely to occur by increasing the arrangement interval of the joining portions 21 of the curved surface portion than the flat surface portion. Thereby, the distortion of the curved surface part of the inner iron core 30 can be reduced, and the iron loss of the inner iron core 30b can be reduced.
 ここでコーナ部c1とc2に代表される曲面部とは、内鉄心30bの角部にある曲率を有する領域をいう。平面部とはコーナ部と他のコーナ部との間に設けられる領域のことをいう。なお、ラップ部は、ラッピング方法によっては曲率を有することとなるが、鉄心30bの角部に設けられないラップ部は、平面部の概念に含まれる。 Here, the curved surface portion represented by the corner portions c1 and c2 refers to a region having a curvature at a corner portion of the inner iron core 30b. A plane part means the area | region provided between a corner part and another corner part. In addition, although a wrap part will have a curvature depending on the lapping method, the wrap part which is not provided in the corner | angular part of the iron core 30b is included in the concept of a plane part.
 図2のa-a’断面を図3に示す。図3左側がa、右側がa’側である。
 第1のアモルファス薄帯11aと第1のアモルファス薄帯11aと製品規格の幅が同一の第2のアモルファス薄帯11bが接合部21aによって接続され配置される第1の層のアモルファス薄帯20aが示される。接合部21aは第1のアモルファス薄帯11aと第2のアモルファス薄帯11bが金属接合された部分である。
FIG. 3 shows a cross section taken along the line aa ′ of FIG. The left side of FIG. 3 is a, and the right side is the a ′ side.
The first amorphous ribbon 11a, the first amorphous ribbon 11a, and the second amorphous ribbon 11b having the same product standard width are connected and arranged by the joint portion 21a. Indicated. The junction 21a is a portion where the first amorphous ribbon 11a and the second amorphous ribbon 11b are metal-bonded.
 接合部21aは、第1のアモルファス薄帯11aと第2のアモルファス薄帯11bの一部がレーザ或いは電気抵抗などで溶接され接合された部分である。接合部21aの接合方法は、これらの接合方法は特に限定されることなく、レーザ接合であればパルス照射で断続的に接合することができる。 The joining portion 21a is a portion where a part of the first amorphous ribbon 11a and a part of the second amorphous ribbon 11b are welded and joined together by laser or electric resistance. The joining method of the joining part 21a is not particularly limited, and if it is laser joining, it can be joined intermittently by pulse irradiation.
 その他、スポット接合、その他、電気抵抗接合を用いることができる。電気抵抗を連続的に加える場合、断続的に加える場合であっても実施できる。さらに、電気抵抗を断続的に加える場合にスポット溶接で接合することも可能である。 In addition, spot bonding and other electrical resistance bonding can be used. Even when the electrical resistance is continuously applied, it can be implemented even when it is intermittently applied. Further, when electric resistance is intermittently applied, it is possible to join by spot welding.
 第1の層のアモルファス薄帯20aの下の層には、第2の層のアモルファス薄帯20bが示される。第2の層のアモルファス薄帯20bは、第1のアモルファス薄帯11cと第2のアモルファス薄帯11dとが接合されている。 The second layer of amorphous ribbon 20b is shown below the first layer of amorphous ribbon 20a. In the amorphous ribbon 20b of the second layer, the first amorphous ribbon 11c and the second amorphous ribbon 11d are joined.
 次に、第1の層のアモルファス薄帯20aから数えてn層目に配置される第nの層のアモルファス薄帯20nは、第1のアモルファス薄帯11eと第2のアモルファス薄帯11fとが接合部21nで接合されている。 Next, the n-th layer amorphous ribbon 20n arranged from the first layer amorphous ribbon 20a to the n-th layer includes a first amorphous ribbon 11e and a second amorphous ribbon 11f. It is joined at the junction 21n.
 ここで、第2の層のアモルファス薄帯20bには、第1のアモルファス薄帯11cと第2のアモルファス薄帯11dとの間には空隙22が示される。図3に示すa-a’断面とは異なるy軸方向の他の部分、すなわち、a-a’断面の奥又は手前側で接合する部分を有するため、a-a’断面には接合部が図示されていない。 Here, in the amorphous ribbon 20b of the second layer, a gap 22 is shown between the first amorphous ribbon 11c and the second amorphous ribbon 11d. Since it has another part in the y-axis direction different from the aa ′ cross section shown in FIG. 3, that is, a part that is joined at the back or near side of the aa ′ cross section, the joint part is present in the aa ′ cross section. Not shown.
 このような第1のアモルファス薄帯11a、11c、11eと第2のアモルファス薄帯11b、11d、11fが幅方向に並べられる関係をアモルファス薄帯の対向する長辺を突き合わせるという。また、突き合わせられたアモルファス薄帯を接合部21、21n等を介した接合を突き合わせ接合と呼ぶ。 Such a relationship in which the first amorphous ribbons 11a, 11c, and 11e and the second amorphous ribbons 11b, 11d, and 11f are arranged in the width direction is referred to as abutting the opposing long sides of the amorphous ribbons. Further, the joined amorphous ribbons are referred to as butt joints through the joint portions 21 and 21n.
 図示するように接合点21a、21nの厚みは、アモルファス薄帯11a等以下の厚みであることが望ましい。アモルファス薄帯と接合点の厚みが同一であれば、接合点周囲が他のアモルファス薄帯の部分と異なる厚みとならないため、鉄心として積層した場合に、占積率を向上させることができる。また、アモルファス薄帯同士が重なり合う部分が生じない。 As shown in the drawing, the thickness of the junction points 21a and 21n is preferably equal to or less than the amorphous ribbon 11a or the like. If the thickness of the amorphous ribbon and the joint point is the same, the periphery of the joint point does not have a different thickness from other amorphous ribbon portions, so that the space factor can be improved when laminated as an iron core. Moreover, the part where amorphous thin strips overlap does not arise.
 接合すると非晶質のアモルファス薄帯が結晶化されることとなるが、突き合わせられたアモルファス薄帯同士が金属接合されるため、単なるアモルファス薄帯同士の接触に比べて強固な接続となる。なお、接合面積や接合部の点数の増減により接合強度は調整可能である。 When bonded, amorphous amorphous ribbons will be crystallized, but the bonded amorphous ribbons are metal-bonded, resulting in a stronger connection than just contact between amorphous ribbons. The bonding strength can be adjusted by increasing / decreasing the bonding area and the number of bonding points.
 また、接合部の面積を小さくすることで、アモルファス薄帯を溶接することで生じる結晶化領域を小さくでき、磁気回路の流れを低減し、損失を増加させる働きを小さくすることができる。 Also, by reducing the area of the joint portion, the crystallization region generated by welding the amorphous ribbon can be reduced, the magnetic circuit flow can be reduced, and the loss increasing function can be reduced.
 図4を用いてうねりについて説明する。図4には、y軸方向に向かって第1のアモルファス薄帯11aと第2のアモルファス薄帯11bが長辺同士が突き合わせられるように並べられている。すなわち、第1のアモルファス薄帯20aが長辺方向で沿うように第2のアモルファス薄帯20bが並べられている。また、短辺方向(幅方向)は一部省略し、長辺を拡大した例を示している。 The swell will be described with reference to FIG. In FIG. 4, the first amorphous ribbon 11 a and the second amorphous ribbon 11 b are arranged in such a manner that the long sides are butted against each other in the y-axis direction. That is, the second amorphous ribbon 20b is arranged so that the first amorphous ribbon 20a is along the long side direction. Moreover, a part of the short side direction (width direction) is omitted, and the long side is enlarged.
 アモルファス薄帯は製造方法の都合上、うねりは個体ごとにバラつきを有する。品質のよいアモルファス薄帯では規格上の幅からサブミリ程度大きいまたは少ない幅を有する。サブミリとは、1mm未満をいい、具体的には、0.1以上から0.9mm以下程度である。 Amorphous ribbons vary from individual to individual due to the manufacturing method. A high-quality amorphous ribbon has a width larger or smaller than the standard width by about a submillimeter. The submillimeter means less than 1 mm, specifically, about 0.1 or more and 0.9 mm or less.
 上述のうねりを考慮して人手で2つのアモルファス薄帯の突き合わせを行うのは困難である。突き合わせた後に、うねり同士が重なり合うと単純に2枚のアモルファス薄帯の厚みを有する部分が生じる。 It is difficult to manually match two amorphous ribbons in consideration of the above-mentioned swell. If the undulations overlap after butting, a portion having the thickness of two amorphous ribbons is simply generated.
 うねり同士が重なったアモルファス薄帯を2000枚程度積層した鉄心の場合に、アモルファス薄帯の席層方向の占積率の低下の原因となる。変圧器の鉄心は、このようなうねり同士の重なり合う部分を減らしつつ、さらに、アモルファス鉄心の幅方向の占積率を向上すること、つまり、突き合わせ距離を小さくすることが必要である。 In the case of an iron core in which about 2,000 amorphous ribbons with overlapping undulations are laminated, it causes a decrease in the space factor of the amorphous ribbon in the seat layer direction. The transformer core needs to improve the space factor of the amorphous core in the width direction, that is, reduce the butt distance, while reducing such overlapping portions of the undulations.
 しかし、また、うねりを考慮して2つのアモルファス薄帯同士を離れるように突き合わせると幅方向の占積率が低下する。そのため、アモルファス薄帯同士が重なり合わないようにしつつ、近づけることが重要である。 However, if the two amorphous ribbons are abutted apart in consideration of the undulation, the space factor in the width direction decreases. For this reason, it is important to bring the amorphous ribbons close to each other while preventing them from overlapping each other.
 ここで、占積率とは、積層された鉄心全体の厚みに対する鉄心部材の厚さの総計の比率である。つまり、鉄心内部に空隙が少ないほど占積率は高くなり、鉄心の磁気特性が向上する。また、アモルファス薄帯を並べたときの幅方向の占積率とは、並べられた鉄心部材と空隙の比率である。つまり、図3では、アモルファス薄帯11aの幅とアモルファス薄帯11bと空隙21aとの比率、アモルファス薄帯11cの幅とアモルファス薄帯11dと空隙22との比率である。 Here, the space factor is the ratio of the total thickness of the core members to the thickness of the entire laminated cores. That is, the smaller the voids in the iron core, the higher the space factor, and the magnetic properties of the iron core are improved. The space factor in the width direction when the amorphous ribbons are arranged is the ratio of the arranged iron core members to the gaps. That is, in FIG. 3, the width of the amorphous ribbon 11a and the ratio of the amorphous ribbon 11b and the gap 21a, and the width of the amorphous ribbon 11c and the ratio of the amorphous ribbon 11d and the gap 22 are shown.
 突き合わせ接合の構造について図5から6を用いて説明する。
 図5には、アモルファス薄帯11aに突き合わせられたアモルファス薄帯11bが示される。また、これらは、接合部22b、22c、22d等によって接合されている。接合部22bの両側には、溶接痕41aと41bが示される。
The structure of the butt joint will be described with reference to FIGS.
FIG. 5 shows an amorphous ribbon 11b that is abutted against the amorphous ribbon 11a. Moreover, these are joined by joining portions 22b, 22c, 22d and the like. Weld marks 41a and 41b are shown on both sides of the joint 22b.
 各接合部22b、22c、22dの断面をb-b’断面、c-c’断面、e-e’断面として図6に示す。 FIG. 6 shows the cross sections of the joint portions 22b, 22c, and 22d as b-b 'cross section, c-c' cross section, and e-e 'cross section.
 図6b-b’断面では、アモルファス薄帯11aの上側に溶接痕41a、42bが示される。この溶接痕41a、42bは、電気抵抗溶接によるものであり、後述の電極が配置され、電流が流されたことにより生じた痕である。 In the cross section of FIG. 6b-b ', welding marks 41a and 42b are shown above the amorphous ribbon 11a. The welding marks 41a and 42b are generated by electric resistance welding, and are generated when electrodes described later are arranged and a current is passed.
 接合部22bは、アモルファス薄帯11aと11bの間に設けられ、接合部22bの外側よりも中央側の厚みが小さい様子が示される。また、溶融した状態の接合部22bはいわゆるブリッジと同様の状態となるため、外側から中央にかけて徐々に厚みが小さくなるよう曲面形状を有する。なお、ブリッジとは、はんだが2つの部材を接合した状態である。 The joining part 22b is provided between the amorphous ribbons 11a and 11b, and shows that the thickness on the center side is smaller than the outside of the joining part 22b. Moreover, since the melted joint portion 22b is in a state similar to a so-called bridge, it has a curved surface shape so that the thickness gradually decreases from the outside to the center. The bridge is a state in which solder joins two members.
 接合部がブリッジとなるのは、後述の接合メカニズムによるものである。接合部22bがアモルファス薄帯より薄くなることで積層した際にアモルファス薄帯同士が重なり合う部分が生じずに占積率を向上させることができる。 接合 The junction becomes a bridge due to the junction mechanism described later. Since the bonding portion 22b is thinner than the amorphous ribbon, the space factor can be improved without producing a portion where the amorphous ribbons overlap each other.
 c-c’断面では、溶接痕が残らない例を示している。また、接合部22cは、アモルファス薄帯とほぼ同一の厚みである様子が示される。接合部の厚みがアモルファス薄帯との厚みと同一以下であれば、積層した際に接合部周辺の厚みが増すことがなくなるため、占積率を向上させることができる。 The c-c 'cross section shows an example in which no welding mark remains. Moreover, a mode that the junction part 22c is substantially the same thickness as an amorphous ribbon is shown. If the thickness of the bonded portion is equal to or less than the thickness of the amorphous ribbon, the thickness around the bonded portion is not increased at the time of lamination, so that the space factor can be improved.
 d-d’断面では、溶接痕は41c、41dでアモルファス薄帯11a、11bの上部表面に残っており、接合部22dは中央に空隙を有している。接合部22dの外縁同士が接続されることによって、アモルファス薄帯11aと11bが接続されている。 In the d-d 'cross section, welding marks 41c and 41d remain on the upper surfaces of the amorphous ribbons 11a and 11b, and the joint 22d has a gap in the center. The amorphous ribbons 11a and 11b are connected by connecting the outer edges of the bonding portion 22d.
 この接合部22dは、溶融されたアモルファス材料が溶融し、凝固する際にできたものである。接合部22dは、アモルファス薄帯11aとアモルファス薄帯11bの突き合わせられた部分が溶融し、溶融部がアモルファス薄帯のうち溶融していない部分に表面張力により溶融部が引っ張られる。溶融したアモルファス薄帯よりも溶融していないアモルファス薄帯の方が表面張力が大きいため、溶融部の中央に空隙ができる。 The joint 22d is formed when the melted amorphous material is melted and solidified. In the joining portion 22d, the abutted portion of the amorphous ribbon 11a and the amorphous ribbon 11b is melted, and the melted portion is pulled by the surface tension to the portion of the amorphous ribbon that is not melted. Since the amorphous ribbon which is not melted has a higher surface tension than the melted amorphous ribbon, a gap is formed at the center of the melted portion.
 この空隙ができたまま、溶融部が凝固することによって生じるものである。表面張力によって引っ張られる最大の厚みがアモルファス薄帯の断面の厚みのため、接合部22dの厚みはアモルファス薄帯の厚みより大きくなることはない。よって、空隙ができた接合部22dであっても、占積率の向上に寄与することができる。 This is caused by the solidification of the melted part with this void formed. Since the maximum thickness pulled by the surface tension is the thickness of the cross section of the amorphous ribbon, the thickness of the joint portion 22d does not become larger than the thickness of the amorphous ribbon. Therefore, even if it is the junction part 22d with which the space | gap was made, it can contribute to the improvement of a space factor.
 次に、電気抵抗溶接を用いた場合の接合メカニズムについて図7と8を用いて説明する。
 第1のアモルファス薄帯11aに突き合わせられる第2のアモルファス薄帯11bが絶縁台110に配置されている。第1のアモルファス薄帯11aの上部に正極の電極100a、第2のアモルファス薄帯11bの上部に負極の電極100bが配置されている。電極110a、110bはアモルファス薄帯11aまたは11bに接触することが望ましい。
 コンタクト抵抗を小さくして電気抵抗溶接の効率を上げるためである。
Next, the joining mechanism in the case of using electric resistance welding will be described with reference to FIGS.
A second amorphous ribbon 11 b that is abutted against the first amorphous ribbon 11 a is disposed on the insulating table 110. A positive electrode 100a is disposed above the first amorphous ribbon 11a, and a negative electrode 100b is disposed above the second amorphous ribbon 11b. The electrodes 110a and 110b are preferably in contact with the amorphous ribbon 11a or 11b.
This is to reduce the contact resistance and increase the efficiency of electric resistance welding.
 電極100aと電極100bの中心同士の距離w1は、突き合わせられたアモルファス薄帯100aと100bの間隙hよりも大きければ実施できる。距離w1と間隙dはできるだけ近いと電気抵抗溶接による電流パスをコントロールしやすくなる。距離w1>間隙w2であれば実施可能である。 If the distance w1 between the centers of the electrode 100a and the electrode 100b is larger than the gap h between the butted amorphous ribbons 100a and 100b, it can be implemented. When the distance w1 and the gap d are as close as possible, it becomes easy to control the current path by electric resistance welding. If distance w1> gap w2, this is possible.
 さらに、望ましくは、w1>w3+2×w2の条件を満たす場合である。w3は電極100aと100bの直径である。この条件であれば、電極100aと100b同士が接触することはなく、電極100a等がアモルファス薄帯の端面に接触することもないからである。 Furthermore, it is desirable that the condition of w1> w3 + 2 × w2 is satisfied. w3 is the diameter of the electrodes 100a and 100b. This is because the electrodes 100a and 100b are not in contact with each other under this condition, and the electrode 100a and the like are not in contact with the end face of the amorphous ribbon.
 電極100aと100bに電流を流すと電極100a、第1のアモルファス薄帯11a、間隙h、第2のアモルファス薄帯11b、電極11bの順に電流パスが生成される。電流パスは、アモルファス薄帯11aと11bとの間でアーク放電が生じる。アーク放電は電流パスのうち抵抗の大きい部分で生じるため、突き合わせられたアモルファス薄帯11a、11bとの間の間隙で生じる。 When a current is passed through the electrodes 100a and 100b, current paths are generated in the order of the electrode 100a, the first amorphous ribbon 11a, the gap h, the second amorphous ribbon 11b, and the electrode 11b. In the current path, arc discharge occurs between the amorphous ribbons 11a and 11b. Since arc discharge occurs in the portion of the current path where the resistance is high, it occurs in the gap between the butted amorphous ribbons 11a and 11b.
 図8の(a)には、アーク放電により間隙でプラズマが発生し、発生したプラズマ周囲のアモルファス薄帯が加熱、溶融されることにより溶融部41cが生じる様子が示される。
 また、電極100aとアモルファス薄帯11aとが接触する部分に生じるコンタクト抵抗によって、アーク放電が生じ、溶接痕41aが生じる場合がある。
FIG. 8A shows a state in which plasma is generated in the gap by arc discharge, and the amorphous ribbon around the generated plasma is heated and melted to form a melted portion 41c.
In addition, arc discharge may occur due to contact resistance generated at a portion where the electrode 100a and the amorphous ribbon 11a are in contact with each other, and a welding mark 41a may be generated.
 次に、図8の(b)には、電流を流し続けることによって、2000以上3000℃以下程度のプラズマがアモルファス薄帯端面の溶融量を増加させ、溶融部41cよりも増加した溶融部41dが示される。 Next, in FIG. 8B, by continuing to pass the current, the plasma of about 2000 to 3000 ° C. increases the melting amount of the amorphous ribbon end face, and the melting part 41d increased from the melting part 41c. Indicated.
 その後、図8の(c)に示すように、溶融したアモルファス薄帯同士が接触し、冷却されることで接合部22eが生成される。この溶融部41dが接触することは、溶融したアモルファス薄帯が電気的パスによって引き付け合う、または、増加した溶融部41dの広がろうとする力が、アモルファス薄帯の端面の表面張力よりも大きくなることにより溶融部41d同士が接触すると考えられる。 Thereafter, as shown in FIG. 8 (c), the melted amorphous ribbons are brought into contact with each other and cooled to form a joint 22e. The contact of the melted part 41d means that the melted amorphous ribbon is attracted by an electrical path, or the increased force of the melted part 41d to spread is larger than the surface tension of the end face of the amorphous ribbon. It is considered that the melting parts 41d come into contact with each other.
 ここで、溶融部41dが接触し、接合部22eを製造するための間隙hとアモルファス薄帯11a、11bの厚みdとの関係について説明する。発明者らの実験により、厚みdが25μm、間隙w2を12μmとして、電気抵抗溶接を行ったところ、好適に接合部22eを製造できることを確認した。 Here, a description will be given of the relationship between the gap h for contacting the melting part 41d and manufacturing the joined part 22e and the thickness d of the amorphous ribbons 11a and 11b. According to experiments by the inventors, when electrical resistance welding was performed with a thickness d of 25 μm and a gap w2 of 12 μm, it was confirmed that the joint portion 22e could be suitably manufactured.
 すなわち、アモルファス薄帯11a、11bの厚みd≧間隙w2であれば十分実施できる。間隙w2は、接合されたアモルファス薄帯の端面同士を測定した平均値で求めることができる。アモルファス薄帯はうねりを有するため間隙w2は、アモルファス薄帯11aと11bの距離は長辺方向で変化する。 That is, it can be sufficiently implemented if the thickness d ≧ gap w2 of the amorphous ribbons 11a and 11b. The gap w2 can be obtained by an average value obtained by measuring the end faces of the bonded amorphous ribbons. Since the amorphous ribbon has waviness, the gap w2 changes the distance between the amorphous ribbons 11a and 11b in the long side direction.
 しかし、うねりは製造工程の都合上、冷却ロールに依存して生成されるため、周期性を有している。そのため、うねりの平均値を間隙の測定点とすることができ、間隙w2を求めることができる。また、うねりは上記したように周期性を有するため、最も短い点を間隙の測定点とすることもできる。周期は、冷却ロールの直径に依存し、製造プロセスの都合により数百mm程度以下である場合が多い。 However, since the swell is generated depending on the cooling roll for the convenience of the manufacturing process, it has periodicity. Therefore, the average value of the swell can be used as the measurement point of the gap, and the gap w2 can be obtained. Further, since the swell has periodicity as described above, the shortest point can be set as the measurement point of the gap. The cycle depends on the diameter of the cooling roll and is often about several hundred mm or less due to the convenience of the manufacturing process.
 また、発明者らの他の実験によって、厚みdが20μm、間隙w2を40μmであっても接合できることを確認した。一方で、厚みdが20μm、間隙w2が50μとした場合には、接合が不十分となる場合が確認された。 Moreover, it was confirmed by other experiments by the inventors that bonding can be performed even when the thickness d is 20 μm and the gap w2 is 40 μm. On the other hand, when the thickness d was 20 μm and the gap w2 was 50 μm, it was confirmed that the bonding was insufficient.
 つまり、鉄心またはアモルファス薄帯の幅方向の占積率を向上させるためには、望ましくはw2≦2×dの関係となるよう接合するとよい。間隙w2と厚みdのアスペクト比が1:2以下の関係であるとよい。 That is, in order to improve the space factor in the width direction of the iron core or the amorphous ribbon, it is desirable to join so as to satisfy the relationship of w2 ≦ 2 × d. It is preferable that the aspect ratio of the gap w2 and the thickness d is 1: 2 or less.
 この値とすることで、溶融部41dがアモルファス薄帯11a側と11b側から生じるため、溶融部41d同士が接触しやすくなるからである。また、溶融部41d同士が接触しやすいため、電気抵抗溶接により加熱される時間が短くなるためアモルファス金属が結晶化しづらくなる。ひいては、巻鉄心及び変圧器の損失低下に寄与する。 This is because, by setting this value, the melted part 41d is generated from the amorphous ribbon 11a side and the 11b side, so that the melted parts 41d can easily come into contact with each other. In addition, since the melted portions 41d are easily in contact with each other, the time for heating by electric resistance welding is shortened, so that the amorphous metal is difficult to crystallize. As a result, it contributes to the loss reduction of the wound core and the transformer.
 上記の条件とアモルファス薄帯のうねりがサブミリ程度であることについて説明する。
 アモルファス薄帯はうねりを有するため、間隙w2を25μmとすると、突き合わせられたアモルファス薄帯同士が接触し重なり合う場合がある。この場合でも、上記の条件で電気抵抗溶接を行うと、好適に接合部を製造することが確認されている。
The above conditions and the fact that the undulation of the amorphous ribbon is about submillimeters will be described.
Since the amorphous ribbon has waviness, when the gap w2 is 25 μm, the abutted amorphous ribbons may contact and overlap each other. Even in this case, it has been confirmed that when electrical resistance welding is performed under the above-described conditions, it is preferable to manufacture a joint.
 重なり合う部分は局所的であり、その周囲で電気抵抗溶接を行うと、局所的な重なり合う部分に電流パスが生成されやすくなる。重なり合う部分は間隙が少なくなるため、電流パスが他の部分よりも生じやすくなるためである。 The overlapping part is local, and when electric resistance welding is performed around the overlapping part, a current path is likely to be generated in the local overlapping part. This is because the overlapping portion has a smaller gap, and the current path is more likely to occur than the other portions.
 また、局所的に重なり合う部分にはコンタクト抵抗が生じるため、この周囲でアーク放電によるプラズマが生じる。プラズマによってアモルファス薄帯の局所的に重なり合う部分が加熱溶融され、重なり合う部分溶融されるため重なり合う部分がなくなる。 In addition, since contact resistance occurs in the locally overlapping portion, plasma due to arc discharge is generated around this. The locally overlapping portion of the amorphous ribbon is heated and melted by the plasma, and the overlapping portion is melted, so that the overlapping portion disappears.
 その後、溶融部が接触するアモルファス薄帯の端面の表面張力によって長辺方向に広がりながら冷却される。これによって、重なり合う部分がある場合でも実施可能である。また、アモルファス薄帯にうねりがあっても、上記条件を満たすことで実施可能である。この条件を満たすことは、突き合わせられたアモルファス薄帯の間隙w2の幅を測定することにより確認できる。 After that, it is cooled while spreading in the long side direction by the surface tension of the end face of the amorphous ribbon contacted by the melted part. This can be implemented even when there are overlapping portions. Moreover, even if there is a wave in the amorphous ribbon, it can be implemented by satisfying the above conditions. Satisfying this condition can be confirmed by measuring the width of the gap w2 between the amorphous ribbons that have been abutted.
 すなわち、接合されたアモルファス薄帯は、間隙w2がアモルファス薄帯の厚みdよりも小さいということである。さらに、占積率を向上させるためには、間隙w2が厚みdの半分以下であるとよい。 That is, the bonded amorphous ribbon has a gap w2 smaller than the thickness d of the amorphous ribbon. Furthermore, in order to improve the space factor, the gap w2 is preferably less than or equal to half of the thickness d.
 接合部の断面について図9に示す断面撮影像を用いて説明する。第1のアモルファス薄帯11gに突き合わせられた第2のアモルファス薄帯11hが接合部22fによって接続されている様子が示されている。断面の位置は、図5のd-d’断面である。撮像の都合により、第1のアモルファス薄帯11gは切断されている。 The cross section of the joint will be described using a cross-sectional image shown in FIG. A state is shown in which the second amorphous ribbon 11h butted against the first amorphous ribbon 11g is connected by the joint 22f. The position of the cross section is the d-d 'cross section of FIG. For convenience of imaging, the first amorphous ribbon 11g is cut.
 接合部22fの中央に示される中央部22gには、厚み方向に2本の白い線がある。図5のd-d’断面には中央に空隙があるが、これを示したものである。つまり、中央部22gの白い線より中央側の像は、空隙の奥に示される接合されたアモルファス薄帯である。すなわち、白い線は、断面よりも奥にあるアモルファス薄帯と断面のアモルファス薄帯との境界線である。 There are two white lines in the thickness direction at the center 22g shown at the center of the joint 22f. The d-d ′ cross section of FIG. 5 has a gap in the center, which is shown. That is, the image on the center side from the white line of the central portion 22g is a bonded amorphous ribbon shown in the back of the gap. That is, the white line is a boundary line between the amorphous ribbon in the back of the cross section and the amorphous ribbon in the cross section.
 接合部22gは、第1のアモルファス薄帯11hの溶着部22f’から第2のアモルファス薄帯11gの溶着部(図示しない)までをいう。また、中央部22gの厚みより溶着部22f’の厚みが大きく、溶着部22f’の厚みよりアモルファス薄帯11hの厚みが大きい。すなわち、第1のアモルファス薄帯、第1の溶着部、中央部の順に厚みが小さくなり、また、中央部、第2の溶着部、第2のアモルファス薄帯の順に厚みが大きくなる。
 このような厚みの順になることで、接合部が段階的な厚みとなり、歪が生じても段階的に応力を受けることができるため、全体の品質が向上する。
The joining portion 22g refers to the welded portion 22f ′ of the first amorphous ribbon 11h to the welded portion (not shown) of the second amorphous ribbon 11g. Further, the thickness of the welded portion 22f ′ is larger than the thickness of the central portion 22g, and the thickness of the amorphous ribbon 11h is larger than the thickness of the welded portion 22f ′. That is, the thickness decreases in the order of the first amorphous ribbon, the first welded portion, and the central portion, and the thickness increases in the order of the central portion, the second welded portion, and the second amorphous ribbon.
By the order of the thicknesses, the joint portion has a stepped thickness, and even if distortion occurs, the stress can be received stepwise, so that the overall quality is improved.
 アモルファス薄帯11g、11hの厚みは約20μmであり、接合部22fの厚みは約10μm程度である。また、接合部22fと第2のアモルファス薄帯11hとの間には、うねり11iがあり、接合部22fの厚み以上第2のアモルファス薄帯11hの厚み以下である。換言すると、接合部22fの厚みは、第1のアモルファス薄帯11gの厚み以下である。 The thickness of the amorphous ribbons 11g and 11h is about 20 μm, and the thickness of the junction 22f is about 10 μm. Further, there is a undulation 11i between the junction 22f and the second amorphous ribbon 11h, which is not less than the thickness of the junction 22f and not more than the thickness of the second amorphous ribbon 11h. In other words, the thickness of the joining portion 22f is equal to or less than the thickness of the first amorphous ribbon 11g.
 そのため、接合部22gはアモルファス薄帯11gまたは11hの接合部22gを有さない領域よりも薄い。また、接合されたアモルファス薄帯を積層した場合に、接合部を有する断面よりも接合部を有さない断面の方が占積率が高い。接合部22gを設けることで、幅が広いアモルファス薄帯を製造することができる。 Therefore, the junction 22g is thinner than the region that does not have the amorphous ribbon 11g or 11h junction 22g. Further, when the bonded amorphous ribbons are stacked, the cross section having no joint has a higher space factor than the cross section having the joint. By providing the bonding portion 22g, a wide amorphous ribbon can be manufactured.
 また、突き合わせたアモルファス薄帯の間に接合部を設けることができるため、突き合わせたアモルファス薄帯同士の間隙を小さくすることができ、幅方向の占積率を従来よりも向上させることができる。また、アモルファス薄帯は外れにくく、巻鉄心として製造工程のラッピング作業が容易となる。 Further, since a joint portion can be provided between the abutted amorphous ribbons, the gap between the abutted amorphous ribbons can be reduced, and the space factor in the width direction can be improved as compared with the prior art. Further, the amorphous ribbon is hard to come off, and the lapping operation of the manufacturing process becomes easy as a wound iron core.
 なお、接合部22fの厚み方向のうち溶着部22f’に白い点が示されるが、アモルファス組織が再結晶化した領域であることが確認された部分である。 In addition, although a white dot is shown in the welded portion 22f 'in the thickness direction of the joint portion 22f, it is a portion where the amorphous structure is confirmed to be a recrystallized region.
 また、マイクロX線で調べたところ溶着部は結晶化した反応を示した。再結晶粒の大きさは接合部22f全体のうち中央部22g側とその両端側の溶着部22f’で異なる。中央部22g側は溶着部22f’に比べると少ないことが確認された。本実施例では溶着部周辺の方が再結晶粒がSEM観察で確認できるものであった。ただし、接合したアモルファス薄帯の磁束は長手方向に流れるため、結晶化部分が磁束の流れに与える影響は小さい。 Further, when examined by micro X-ray, the welded portion showed a crystallized reaction. The size of the recrystallized grains differs between the center portion 22g side and the welded portions 22f 'on both ends of the entire joint portion 22f. It was confirmed that the central portion 22g side is less than the weld portion 22f '. In this example, the recrystallized grains can be confirmed by SEM observation near the welded portion. However, since the magnetic flux of the bonded amorphous ribbon flows in the longitudinal direction, the influence of the crystallized portion on the flow of the magnetic flux is small.
 また、結晶化領域はアモルファスと異なり,塑性変形が生じる。そのため,その溶着部の箇所が元の板厚より厚くなった場合でも押し潰すことで板厚を薄くすることができる。 Also, the crystallized region is plastically deformed unlike amorphous. Therefore, even when the welded portion becomes thicker than the original plate thickness, the plate thickness can be reduced by crushing.
 実施例2について、図10を用いて説明する。図10は図2のa-a’断面を示すが、図2とはアモルファス薄帯の幅が異なる。同一の符号については説明を省略する。 Example 2 will be described with reference to FIG. FIG. 10 shows the a-a ′ cross section of FIG. 2, but the width of the amorphous ribbon is different from FIG. Description of the same reference numerals is omitted.
 第1の層10’aは、第1のアモルファス薄帯11’aに突き合わせられた第2のアモルファス薄帯11’bが接合部21’aによって接合されている。また、第2の層10’bは、第1のアモルファス薄帯11’cに突き合わせられた第2のアモルファス薄帯11’dが接合部21’bによって接合されている。 In the first layer 10 ′ a, the second amorphous ribbon 11 ′ b butted against the first amorphous ribbon 11 ′ a is joined by the joint portion 21 ′ a. The second layer 10'b is joined to the second amorphous ribbon 11'd butted against the first amorphous ribbon 11'c by a joint 21'b.
 第1のアモルファス薄帯11’aと11’dは規格上同一の幅であり、第2のアモルファス薄帯11’bと11’cは規格上同一の幅である。このような幅にすることで、第1の層10’aと第2の層10’bで、接合部21’aと21’bがそれぞれ互い違いになるように配置されている。第nの層10’nまで繰り返して配置されている。つまり、層ごとに接合部を異なる位置に配置している。 The first amorphous ribbons 11'a and 11'd have the same standard width, and the second amorphous ribbons 11'b and 11'c have the same standard width. With such a width, the joint portions 21'a and 21'b are arranged alternately in the first layer 10'a and the second layer 10'b. The nth layer 10'n is repeatedly arranged. That is, the junction is arranged at a different position for each layer.
 この場合は、接合部が各層で互い違いとなるため、複数層に応力が加えられても、応力が集中する点は各層で異なるため、複数層全体で応力が分散されるため、各層でほぼ同様の位置に接合部を設けた場合よりも破損しづらくなる。また、アモルファス薄帯の幅が2種類となるため、製造プロセスが簡易になるため、接合後のアモルファス薄帯を鉄心として組み上げた際に品質が向上する。 In this case, the joints are staggered in each layer, so even if stress is applied to multiple layers, the stress concentration point differs for each layer, so the stress is distributed throughout the multiple layers, so the layers are almost the same. It is harder to break than when a joint is provided at the position. In addition, since the width of the amorphous ribbon is two types, the manufacturing process is simplified, and the quality is improved when the amorphous ribbon after bonding is assembled as an iron core.
 実施例3について、図11を用いて説明する。図10の変形例であり、アモルファス薄帯の幅が各層ごとに異なる。 Example 3 will be described with reference to FIG. It is a modification of FIG. 10, and the width | variety of an amorphous ribbon differs for every layer.
 第1の層10’cは、第1のアモルファス薄帯11’eに突き合わせられた第2のアモルファス薄帯11’fが接合部21’cによって接合されている。また、第2の層10’dは、第1のアモルファス薄帯11’gに突き合わせられた第2のアモルファス薄帯11’gが接合部21’dによって接合されている。第3の層10’eは、第1のアモルファス薄帯11’jに突き合わせられた第2のアモルファス薄帯11’iが接合部21’eによって接合されている。 In the first layer 10'c, the second amorphous ribbon 11'f butted against the first amorphous ribbon 11'e is joined by the joining portion 21'c. In addition, the second layer 10'd is joined to the second amorphous ribbon 11'g butted against the first amorphous ribbon 11'g by the joint 21'd. In the third layer 10 ′ e, the second amorphous ribbon 11 ′ i butted against the first amorphous ribbon 11 ′ j is joined by the joint portion 21 ′ e.
 第1のアモルファス薄帯11’aから11’jはそれぞれ規格上異なる幅である。このような幅にすることで、接合部21’cから21’eを各層で異なる位置に配置することができる。つまり、接合部のステップ構造にすることができるため、実施例1よりさらに、強度、柔軟性を向上させることができる。ひいては組み上がった鉄心、変圧器の寿命の向上に寄与することができる。 The first amorphous ribbons 11'a to 11'j have different widths according to the standard. With such a width, the joint portions 21'c to 21'e can be arranged at different positions in each layer. That is, since the step structure of the joint portion can be obtained, the strength and flexibility can be further improved than in the first embodiment. As a result, it can contribute to the improvement of the life of the assembled iron core and transformer.
 図12を用いて、実施例4について説明する。図11の変形例である。代表して第1の層107’fのみ図示する。 Example 4 will be described with reference to FIG. It is a modification of FIG. Only the first layer 107'f is shown as a representative.
 第1の層107’fは第1のアモルファス薄帯11’kと第2のアモルファス薄帯11’lが接合部21’fによって接続され、また、第2のアモルファス薄帯11’lと第3のアモルファス薄帯11’mが接合部21’gによって接続されている。 In the first layer 107′f, the first amorphous ribbon 11′k and the second amorphous ribbon 11′l are connected by the joint 21′f, and the second amorphous ribbon 11′l and the second amorphous ribbon 11′l 3 amorphous ribbons 11'm are connected by a joint 21'g.
 アモルファス薄帯11’k、11’l、11’mはそれぞれ規格上の幅が異なる。本発明の接合方法によれば、複数の幅のアモルファス薄帯同士を接合し、幅が広いアモルファス薄帯を製造することができる。3枚以上のアモルファス薄帯を接合することができるため、2枚の突き合わせ接合よりもさらに大容量のアモルファス鉄心及びアモルファス変圧器を実現することができる。 The amorphous ribbons 11'k, 11'l and 11'm have different standard widths. According to the bonding method of the present invention, amorphous ribbons having a plurality of widths can be bonded to each other to produce a wide amorphous ribbon. Since three or more amorphous ribbons can be joined, an amorphous iron core and an amorphous transformer having a larger capacity than two butt joints can be realized.
 また、複数種類のアモルファス薄帯を接合することができるため、変圧器容量に適した幅のアモルファス薄帯を製造することができる。設計自由度が向上させることができ、より適した接合後のアモルファス薄帯となるため、高品質のアモルファス鉄心及び変圧器を提供することができる。 Also, since multiple types of amorphous ribbons can be joined, an amorphous ribbon having a width suitable for the transformer capacity can be manufactured. The degree of freedom in design can be improved, and a more suitable amorphous ribbon after joining can be obtained, so that a high-quality amorphous iron core and transformer can be provided.
 各実施例はそれぞれの構造を組み合わせ等可能であり、例えば実施例4に実施例2または3を適用し、複数枚のアモルファス薄帯を突き合わせ接合し、各層で異なる位置に接合部を設けることができる。この場合は、実施例2または3同様に強度、柔軟性を向上させることができる。 Each embodiment can be combined with each other. For example, the embodiment 2 or 3 can be applied to the embodiment 4, a plurality of amorphous ribbons are butt-joined, and joint portions are provided at different positions in each layer. it can. In this case, the strength and flexibility can be improved as in Example 2 or 3.
 上記実施例についてアモルファス薄帯を代表例として説明したが、ケイ素鋼板や方向性電磁鋼板等の板状の金属部材であれば、実施可能である。 Although the amorphous ribbon has been described as a representative example for the above embodiment, the present invention can be implemented if it is a plate-like metal member such as a silicon steel plate or a grain-oriented electrical steel plate.
 これらの方法で、幅が広いアモルファス鉄心を製造することができる。また、接合部を設けるため、鉄心を組み立てる作業の際に、アモルファス薄帯の位置ズレが生じにくくなるため、鉄心性能のバラ付きを低減できる。さらには、人手による突き合わせ面の間隙の調整が不要となるため、生産効率を向上させることが可能となる。 A wide amorphous iron core can be manufactured by these methods. In addition, since the joining portion is provided, it is difficult for the amorphous ribbon to be misaligned during the work of assembling the iron core, so that variations in iron core performance can be reduced. Furthermore, since it is not necessary to manually adjust the gap between the butted surfaces, production efficiency can be improved.
 さらに、突き合わせし接合したアモルファス薄帯の接合部は結晶化しているが、磁気回路の流れに対して小さな断面積で接合しているため、結晶化した接合箇所の影響を抑えることができる。ひいては鉄心や変圧器として磁気損失の影響は小さくすることができる。 Furthermore, although the bonded portion of the amorphous ribbon that has been butted and bonded is crystallized, it is bonded with a small cross-sectional area with respect to the flow of the magnetic circuit, so that the influence of the crystallized bonded portion can be suppressed. As a result, the influence of magnetic loss can be reduced as an iron core or a transformer.
 また、3相3脚の変圧器について説明したが、単相変圧器や、3相5脚のいわゆる外鉄形鉄心を有する変圧器にも適用可能である。 In addition, the three-phase three-legged transformer has been described, but the present invention is also applicable to a single-phase transformer and a three-phase five-legged transformer having a so-called outer iron core.
 上記した各実施例の構成は、変圧器及び変圧器の鉄心のみならず、鉄心とコイルを有するリアクトル(静止誘導機器)にも本発明を適用可能である。この場合も製造されたリアクトルの鉄心ごとの占積率を向上させることができ、ひいては、鉄心特性が安定したリアクトルを提供することを実現できる。 The configuration of each embodiment described above can be applied not only to the transformer and the iron core of the transformer, but also to a reactor (stationary induction device) having an iron core and a coil. Also in this case, it is possible to improve the space factor of the manufactured reactor for each iron core, and to provide a reactor having stable iron core characteristics.
11a…第1のアモルファス薄帯
11b…第2のアモルファス薄帯
20a…第1層
20b…第2層
30n…第n層
21、22b、22c、22d、22e、22f…接合部
30…組立体
30a…外鉄心
30b、30c…内鉄心
40a、40b、40c…コイル
41a、41b、41c、41d…溶接痕
 
11a ... 1st amorphous ribbon 11b ... 2nd amorphous ribbon 20a ... 1st layer 20b ... 2nd layer 30n ... n- th layer 21, 22b, 22c, 22d, 22e, 22f ... Junction 30 ... Assembly 30a ... outer iron cores 30b, 30c ... inner iron cores 40a, 40b, 40c ... coils 41a, 41b, 41c, 41d ... welding marks

Claims (14)

  1.  巻鉄心と、前記巻鉄心に巻き回されたコイルとを有する変圧器であって、
     前記巻鉄心は、該巻鉄心の幅方向に金属部材が2以上並べられており、
     前記金属部材のうち第1の金属部材の厚みは、前記第1の金属部材の厚みよりも小さい接合部を介して第2の金属部材と接合されていること
    を特徴とする変圧器。
    A transformer having a wound core and a coil wound around the wound core,
    The wound core has two or more metal members arranged in the width direction of the wound core,
    The transformer characterized by the thickness of the 1st metal member being joined to the 2nd metal member via the junction part smaller than the thickness of the 1st metal member among the metal members.
  2.  請求項1に記載の変圧器であって、
     前記金属部材はアモルファス薄帯であること
    を特徴とする変圧器。
    The transformer of claim 1,
    The transformer is characterized in that the metal member is an amorphous ribbon.
  3.  請求項2に記載の変圧器であって、
     前記第1の金属部材の厚みより前記接合部の溶着部の厚みの方が小さいこと
    を特徴とする変圧器。
    The transformer according to claim 2,
    The transformer characterized in that the thickness of the welded portion of the joint portion is smaller than the thickness of the first metal member.
  4.  請求項3に記載の変圧器であって、
     前記溶着部の厚みより前記接合部の中央部の厚みの方が小さいこと
    を特徴とする変圧器。
    The transformer according to claim 3,
    The transformer characterized by the thickness of the center part of the said junction part being smaller than the thickness of the said welding part.
  5.  請求項2に記載の変圧器であって、
     前記巻鉄心の厚み方向の断面のうち、前記接合部を有する断面よりも前記接合部を有さない断面の方が占積率が高いこと
    を特徴とする変圧器。
    The transformer according to claim 2,
    Of the cross sections in the thickness direction of the wound core, the cross section having no joint has a higher space factor than the cross section having the joint.
  6.  請求項2に記載の変圧器であって、
     前記第1の金属部材と前記接合部との間に、結晶化された領域を有すること
    The transformer according to claim 2,
    Having a crystallized region between the first metal member and the joint;
  7.  請求項6に記載の変圧器であって、
     前記結晶化された領域は、前記接合部の中央部よりも溶着部に多く設けられたこと
    を特徴とする変圧器。
    The transformer according to claim 6, wherein
    The transformer is characterized in that the crystallized region is provided more in the welded portion than in the central portion of the joint portion.
  8.  請求項2に記載の変圧器であって、
     前記巻鉄心の径方向に所定の間隔で前記接合部が設けられ、
     前記所定の間隔は、該巻鉄心のコーナ部よりも平面部の方が短いこと
    を特徴とする変圧器。
    The transformer according to claim 2,
    The joints are provided at predetermined intervals in the radial direction of the wound core;
    The transformer is characterized in that the predetermined interval is shorter in the flat portion than in the corner portion of the wound core.
  9.  請求項2に記載の変圧器であって、
     前記第1の金属部材と前記第2の金属部材は異なる幅であって、
     前記接合部と、第1の金属部材と前記第2の金属部材が並べられた層と異なる層の接合部は異なる位置に配置されたこと
    を特徴とする変圧器。
    The transformer according to claim 2,
    The first metal member and the second metal member have different widths,
    The transformer, wherein the joint and the joint of a layer different from the layer in which the first metal member and the second metal member are arranged are arranged at different positions.
  10.  複数枚のアモルファス薄帯が並べられ接合されたアモルファス薄帯であって、
     第1のアモルファス薄帯と前記第1のアモルファス薄帯に突き合わせられて並べられた第2のアモルファス薄帯とが、前記第1のアモルファス薄帯の厚みよりも薄い接合部を介して接続されたこと
    を特徴とするアモルファス薄帯。
    An amorphous ribbon in which a plurality of amorphous ribbons are arranged and joined,
    The first amorphous ribbon and the second amorphous ribbon arranged in abutment with the first amorphous ribbon were connected via a joint portion thinner than the thickness of the first amorphous ribbon. An amorphous ribbon characterized by that.
  11.  請求項7に記載のアモルファス薄帯であって、
     前記第1のアモルファス薄帯と前記接合部との間に、結晶化された領域を有すること
    を特徴とするアモルファス薄帯。
    The amorphous ribbon according to claim 7,
    An amorphous ribbon having a crystallized region between the first amorphous ribbon and the joint.
  12.  請求項10に記載のアモルファス薄帯であって、
     前記第1のアモルファス薄帯の厚みより前記接合部の溶着部の厚みの方が小さいこと
    を特徴とするアモルファス薄帯。
    The amorphous ribbon according to claim 10,
    An amorphous ribbon characterized in that the thickness of the welded portion of the joint portion is smaller than the thickness of the first amorphous ribbon.
  13.  請求項12に記載のアモルファス薄帯であって、
     前記溶着部の厚みより前記接合部の中央部の厚みの方が小さいこと
    を特徴とするアモルファス薄帯。
    The amorphous ribbon according to claim 12,
    The amorphous ribbon characterized by the thickness of the center part of the said junction part being smaller than the thickness of the said weld part.
  14.  請求項13に記載のアモルファス薄帯であって、
     前記結晶化された領域は、前記接合部の中央部よりも溶着部に多く設けられたこと
    を特徴とするアモルファス薄帯。
     
    The amorphous ribbon according to claim 13,
    An amorphous ribbon characterized in that the crystallized region is provided more in the welded portion than in the central portion of the joint portion.
PCT/JP2018/004426 2017-05-24 2018-02-08 Transformer and amorphous ribbon WO2018216267A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880005016.8A CN110073451B (en) 2017-05-24 2018-02-08 Transformer device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-102257 2017-05-24
JP2017102257A JP7356785B2 (en) 2017-05-24 2017-05-24 Transformers and amorphous ribbon

Publications (1)

Publication Number Publication Date
WO2018216267A1 true WO2018216267A1 (en) 2018-11-29

Family

ID=64395513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004426 WO2018216267A1 (en) 2017-05-24 2018-02-08 Transformer and amorphous ribbon

Country Status (4)

Country Link
JP (1) JP7356785B2 (en)
CN (1) CN110073451B (en)
TW (1) TWI656545B (en)
WO (1) WO2018216267A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167015A1 (en) * 2022-03-03 2023-09-07 Jfeスチール株式会社 Three-phased three-legged wound core and method for manufacturing same
JP7318845B1 (en) * 2022-03-03 2023-08-01 Jfeスチール株式会社 Three-phase tripod-wound iron core and manufacturing method thereof
JP7318846B1 (en) * 2022-03-03 2023-08-01 Jfeスチール株式会社 Three-phase tripod-wound iron core and manufacturing method thereof
WO2023167016A1 (en) * 2022-03-03 2023-09-07 Jfeスチール株式会社 Three-phase tripod iron core and manufacturing method therefor
CN114823111B (en) * 2022-04-06 2023-11-07 中国科学院近代物理研究所 Electromagnet core capable of inhibiting accelerator fast pulse eddy current and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3399365A (en) * 1964-11-24 1968-08-27 Vadim Subovici Wound magnetic core having staggered strips
JP2005026249A (en) * 2003-06-30 2005-01-27 Mitsuo Ebisawa Core body for toroidal coil
JP2013098349A (en) * 2011-11-01 2013-05-20 Hitachi Industrial Equipment Systems Co Ltd Amorphous core transformer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218781A (en) * 1988-02-26 1989-08-31 Toyo Seikan Kaisha Ltd Butt welding method by laser beam
JPH0642438B2 (en) * 1989-03-02 1994-06-01 株式会社ダイヘン Winding iron core manufacturing method
TW376187U (en) * 1998-07-31 1999-12-01 Fortune Electric Co Ltd Mold cast type power distribution transformer of non crystal metal core
IL126748A0 (en) * 1998-10-26 1999-08-17 Amt Ltd Three-phase transformer and method for manufacturing same
JP2002083716A (en) * 2000-09-11 2002-03-22 Takaoka Electric Mfg Co Ltd Wound core
JP2002283092A (en) * 2001-03-26 2002-10-02 Nippon Steel Corp Method for continuously welding steel strip in longitudinal direction
JP4397353B2 (en) * 2005-06-22 2010-01-13 株式会社日立産機システム Amorphous transformer
JP5867982B2 (en) * 2008-06-13 2016-02-24 株式会社日立産機システム Transformer, transformer core manufacturing apparatus and manufacturing method
JP2014146719A (en) * 2013-01-30 2014-08-14 Daihen Corp Transformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3399365A (en) * 1964-11-24 1968-08-27 Vadim Subovici Wound magnetic core having staggered strips
JP2005026249A (en) * 2003-06-30 2005-01-27 Mitsuo Ebisawa Core body for toroidal coil
JP2013098349A (en) * 2011-11-01 2013-05-20 Hitachi Industrial Equipment Systems Co Ltd Amorphous core transformer

Also Published As

Publication number Publication date
TWI656545B (en) 2019-04-11
CN110073451B (en) 2021-05-28
TW201901713A (en) 2019-01-01
JP2018198258A (en) 2018-12-13
CN110073451A (en) 2019-07-30
JP7356785B2 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
WO2018216267A1 (en) Transformer and amorphous ribbon
WO2017212777A1 (en) Method of manufacturing stator core, and stator core
US20220051840A1 (en) Iron core for stationary induction apparatus and stationary induction apparatus
JP3024471B2 (en) Electromagnetic actuator and method of manufacturing the same
JP5722941B2 (en) Iron core for static induction equipment
JP2005072049A (en) Coil for electric equipment and method for manufacturing same
US7471183B2 (en) Transformer
WO2018062274A1 (en) Magnetic core piece and magnetic core
JP6454634B2 (en) Amorphous transformer and amorphous iron core
US20230207179A1 (en) Magnetic core and magnetic component
JP5005169B2 (en) Transformer
JP5432078B2 (en) Transformer
JP3711248B2 (en) Welded iron core with excellent iron loss characteristics
JP2014204120A (en) Method of manufacturing iron core for stationary induction apparatus
JP7300366B2 (en) Stacked iron core applicable transformer and assembly method
JP2021141218A (en) Amorphous wound iron core for static induction electric device, and static induction electric device
JP7088057B2 (en) How to manufacture alloy strips
JPS61180408A (en) Stationary induction electric apparatus
JPS6142114A (en) Method of fixing end portion of laminated amorphous magnetic alloy thin belt
JP7430115B2 (en) Stacked iron core stationary induction device and its manufacturing method
JP2021027115A (en) Laminated iron core stationary induction device and manufacturing method of the same
JP3198426B2 (en) Iron core for stationary induction equipment and method of manufacturing the same
JPS5939012A (en) Core of stationary electric induction apparatus
JPS6058603A (en) Laminated iron core
JPH06297182A (en) Welding method for high silicon electromagnetic steel sheets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805676

Country of ref document: EP

Kind code of ref document: A1