JP2021027115A - Laminated iron core stationary induction device and manufacturing method of the same - Google Patents
Laminated iron core stationary induction device and manufacturing method of the same Download PDFInfo
- Publication number
- JP2021027115A JP2021027115A JP2019142783A JP2019142783A JP2021027115A JP 2021027115 A JP2021027115 A JP 2021027115A JP 2019142783 A JP2019142783 A JP 2019142783A JP 2019142783 A JP2019142783 A JP 2019142783A JP 2021027115 A JP2021027115 A JP 2021027115A
- Authority
- JP
- Japan
- Prior art keywords
- iron core
- strip
- induction device
- product
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 192
- 230000006698 induction Effects 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 239000000696 magnetic material Substances 0.000 claims abstract description 47
- PMVSDNDAUGGCCE-TYYBGVCCSA-L Ferrous fumarate Chemical group [Fe+2].[O-]C(=O)\C=C\C([O-])=O PMVSDNDAUGGCCE-TYYBGVCCSA-L 0.000 claims abstract description 13
- 230000004907 flux Effects 0.000 claims description 26
- 229910000831 Steel Inorganic materials 0.000 claims description 20
- 239000010959 steel Substances 0.000 claims description 20
- 230000003068 static effect Effects 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 13
- 239000011888 foil Substances 0.000 claims description 11
- 238000005304 joining Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 5
- 239000002159 nanocrystal Substances 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims 1
- 239000011162 core material Substances 0.000 description 22
- 238000009826 distribution Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 6
- 230000005284 excitation Effects 0.000 description 4
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 229910001004 magnetic alloy Inorganic materials 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
本発明は、積鉄心を有する積鉄心静止誘導機器およびその製造方法に関する。 The present invention relates to a product core stationary induction device having a product core and a method for manufacturing the same.
変圧器などの静止誘導機器として、アモルファス薄帯を積層したブロック体や電磁鋼板を積み重ねて脚部およびヨーク部から成る鉄心を構成した積鉄心静止誘導機器がある。 As a static induction device such as a transformer, there is a static induction device for a steel core in which a block body in which amorphous thin bands are laminated or an electromagnetic steel plate is stacked to form an iron core composed of a leg portion and a yoke portion.
特許文献1(特開平11−186082号公報)には、「複数のアモルファス磁性合金箔のストリップを重ね合わせたものからなるストリップ重合体を所定の長さに切断することにより単位重合体を形成する。順次形成される単位重合体を長さ方向に位置をずらして段積みすることにより単位重合体の積層ブロックを形成する。積層ブロックを構成している単位重合体を上から順に取って作業台上に積層することにより積鉄心の脚部及び継鉄部を形成する。」(要約参照)と記載されている。 Patent Document 1 (Japanese Unexamined Patent Publication No. 11-186082) states that "a unit polymer is formed by cutting a strip polymer composed of a stack of strips of a plurality of amorphous magnetic alloy foils to a predetermined length. A laminated block of unit polymers is formed by stacking unit polymers that are sequentially formed by shifting their positions in the length direction. The unit polymers constituting the laminated block are taken in order from the top and used as a workbench. By stacking on top of each other, the legs and joints of the iron core are formed. "(See summary).
積鉄心変圧器の鉄心構造として、額縁型と短冊型がある。額縁型は、脚部とヨーク部の磁性体として、台形形状などの斜めの端面形状を有するものを用いて、それぞれ斜めの端面同士をつないで積鉄心を構成するものである。額縁型は、組み立て後の静止誘導機器が短冊型に比べて高効率であるが、磁性体を斜めに切断する必要があり、切断や組み立てが複雑で製造工程が増加する。これに対して、短冊型は、脚部とヨーク部の磁性体として、直方体形状である短冊状のものを用いて、積鉄心を構成するものである。短冊型は、額縁型の製造工程に比べて、磁性体の切断が容易で製造工程が少ない。 There are a frame type and a strip type as the iron core structure of the product core transformer. In the frame type, as the magnetic material of the leg portion and the yoke portion, a material having an oblique end face shape such as a trapezoidal shape is used, and the oblique end faces are connected to each other to form a steel core. In the frame type, the static induction device after assembly is more efficient than the strip type, but it is necessary to cut the magnetic material diagonally, which complicates cutting and assembling and increases the manufacturing process. On the other hand, in the strip type, a rectangular parallelepiped strip-shaped magnetic material is used as the magnetic material of the leg portion and the yoke portion to form the iron core. Compared to the frame type manufacturing process, the strip type is easier to cut the magnetic material and requires less manufacturing process.
特許文献1には、アモルファス磁性合金箔のリボンの重合体からなる単位重合体を容易に形成することができるようにして作業能率を向上させたアモルファス積鉄心の製造方法が開示されている。製造方法の効率化についてのみ考慮されており、組み立て後の変圧器または静止誘導機器の効率を向上させることについては考慮されていない。
本発明は、製造容易な短冊型で、従来よりも効率の良い積鉄心や積鉄心静止誘導機器を提供することを目的とする。 An object of the present invention is to provide a strip-shaped, easy-to-manufacture strip-shaped iron core and a static induction device for the iron core, which are more efficient than before.
上記課題を解決するための、本発明の「積鉄心静止誘導機器」の一例を挙げるならば、短冊状の磁性体部材を突き合わせて積層した積鉄心を有する積鉄心静止誘導機器であって、短冊状の複数の磁性体部材を、端部の位置を長さ方向にずらして幅方向に並べた鉄心ブロック体の複数を、一方の鉄心ブロック体の短冊状の複数の磁性体部材の端部が、他方の鉄心ブロック体の短冊状の複数の磁性体部材の側面に位置するように配置して、両鉄心ブロック体の突合せ部が階段状となるように突き合わせて積鉄心を構成したものである。 To give an example of the "stationary iron core stationary induction device" of the present invention for solving the above-mentioned problems, it is a stationary iron core stationary guiding device having a stacked iron core in which strip-shaped magnetic members are butted against each other. A plurality of iron core block bodies in which a plurality of magnetic members having a shape are arranged in the width direction with the positions of the ends shifted in the length direction are arranged, and the ends of the strip-shaped magnetic members of one of the iron core blocks are arranged. , The other iron core block body is arranged so as to be located on the side surface of a plurality of strip-shaped magnetic member members, and the butted portions of both iron core block bodies are butted so as to form a stepped shape to form a stacked iron core. ..
また、本発明の「積鉄心静止誘導機器の製造方法」の一例を挙げるならば、
短冊状の磁性体部材を突き合わせて積層した積鉄心を有する積鉄心静止誘導機器の製造方法であって、短冊状の複数の磁性体部材を、端部の位置を長さ方向にずらして幅方向に接合して鉄心ブロック体を作成するステップと、前記鉄心ブロック体の複数を、一方の鉄心ブロック体の短冊状の複数の磁性体部材の端部が、他方の鉄心ブロック体の短冊状の複数の磁性体部材の側面に位置するように配置して、両鉄心ブロック体の突合せ部が階段状となるように突き合わせて積鉄心を構成するステップと、を備えるものである。
Further, to give an example of the "method for manufacturing a stationary iron core stationary induction device" of the present invention,
This is a method for manufacturing a steel stack static induction device having a stack of iron cores in which strip-shaped magnetic members are butted against each other, and a plurality of strip-shaped magnetic members are displaced in the length direction in the width direction. A step of creating an iron core block body by joining to, and a plurality of the iron core block bodies, and a plurality of strip-shaped magnetic member members of one iron core block body having a plurality of strip-shaped members of the other iron core block body. It is provided with a step of arranging the two iron core blocks so as to be located on the side surface of the magnetic member of the above and abutting the butt portions of the two iron core blocks so as to form a stepped iron core.
本発明によれば、製造容易な短冊型で、従来よりも効率の良い積鉄心や積鉄心静止誘導機器を提供することができる。 According to the present invention, it is possible to provide a strip-shaped, easy-to-manufacture strip-shaped iron core and a static induction device for the iron core, which are more efficient than before.
上記した以外の課題、構成および効果は、以下の実施例の説明により明らかにされる。 Issues, configurations and effects other than those mentioned above will be clarified by the description of the following examples.
本発明の実施例の説明に先だって、従来の単相の積鉄心変圧器を説明する。図9に、従来の積鉄心形式を示し、図9(a)は額縁型鉄心を、図9(b)は短冊型鉄心を示す。 Prior to the description of the embodiment of the present invention, a conventional single-phase product core transformer will be described. 9A and 9B show a conventional product core type, FIG. 9A shows a frame type iron core, and FIG. 9B shows a strip type iron core.
図9(a)の額縁型積鉄心40は、台形形状などの斜めの端面形状を有する磁性体部材を脚部5およびヨーク部6に用いて、それぞれ斜めの端面同士をつないで、額縁形状の積鉄心を構成する。図には明示されていないが、脚部5とヨーク部6の突合せ部であるギャップの位置を、積層した上層と下層とでずらして設けることにより、上下層間で磁束の流れを良好にして効率化を図る場合がある。なお、脚部5にはコイル7が巻回されている。額縁型は短冊型に比べて、鉄心特性が高効率であるが、磁性体部材を斜めに切断する必要があり、磁性体の切断や積鉄心の組み立てが複雑である。コイルを巻き回す領域を有する鉄心部材を脚部5といい、コイルを巻回す領域を有さない鉄心部材をヨーク部6という。
The frame-
図9(b)の短冊型積鉄心50は、直方体形状である短冊状の磁性体部材を脚部5およびヨーク部6に用いて、それぞれ短冊の端部を他の短冊の側部に突き合わせて配置し、方形枠形の積鉄心を構成する。図には明示されていないが、脚部5とヨーク部6の突き合せ部を、積層した上層と下層とで異ならせることにより、上下層間で磁束の流れを良好にして効率化を図っている。短冊型は、短冊状の磁性体部材を用いるため製造が容易であるが、額縁型に比べて効率が低い。
In the strip-
変圧器等の鉄心材料として、電磁鋼板に代えて、特性の良く厚みが小さいアモルファス薄帯を用いることが行われている。厚みが小さいため渦電流も小さくなるため好適である。現状の市場におけるアモルファス薄帯を用いた変圧器は巻鉄心型であり、大型の変圧器に用いるためには、積鉄心型とすることが必要である。図10(a)に示すように、アモルファス薄帯の幅は規格で決められているが、電磁鋼板に比べて、大型の変圧器に適した広幅のものはない。また、アモルファス薄帯は熱して溶融した部材を低温のローラに注ぎ広げて製造するものであり、その製造原理の都合、幅が広いアモルファス薄帯を製造することは一般に困難である。このため、広幅にするためには、図10(b)に示すように、2枚のアモルファス薄帯を一部で重ねて接合部で接合する必要がある。図10(c)に示すように、広幅としたアモルファス薄帯を額縁型鉄心に用いるためには、アモルファス薄帯を斜めに切断する必要がある。しかし、斜め切断には、対応する幅広の切断刃が必要であり、アモルファス薄帯が幅広化するほど切断刃も大きくする必要があって高コストとなる。また、特にアモルファス薄帯は電磁鋼板に比べて堅いために、広幅のアモルファス材料の切断は困難である。なお、アモルファス薄帯を用いる変圧器に限らず、電磁鋼板を用いる場合にも、同様の課題がある。 As an iron core material for a transformer or the like, an amorphous strip having good characteristics and a small thickness is used instead of an electromagnetic steel sheet. It is suitable because the thickness is small and the eddy current is also small. Transformers using amorphous strips in the current market are of the winding iron core type, and in order to be used for large transformers, it is necessary to use the product core type. As shown in FIG. 10A, the width of the amorphous strip is determined by the standard, but there is no wide one suitable for a large transformer as compared with the electromagnetic steel plate. Further, the amorphous strip is manufactured by pouring a heated and melted member into a low-temperature roller and spreading it, and it is generally difficult to manufacture a wide amorphous strip due to the manufacturing principle thereof. Therefore, in order to increase the width, as shown in FIG. 10B, it is necessary to partially overlap the two amorphous strips and join them at the joint. As shown in FIG. 10C, in order to use the wide amorphous ribbon for the frame type iron core, it is necessary to cut the amorphous ribbon diagonally. However, diagonal cutting requires a corresponding wide cutting blade, and the wider the amorphous strip, the larger the cutting blade, which increases the cost. Further, since the amorphous strip is harder than the electromagnetic steel sheet, it is difficult to cut a wide amorphous material. It should be noted that there is a similar problem not only in the transformer using the amorphous strip but also in the case of using the electromagnetic steel plate.
本発明は、製造容易な短冊型で、効率の良い積鉄心変圧器を提供するものである。
以下、本発明の実施例を、図面を用いて説明する。なお、実施例を説明するための各図において、同一の構成要素にはなるべく同一の名称、符号を付して、その繰り返しの説明を省略する。
The present invention provides a strip-shaped, easy-to-manufacture, efficient core transformer.
Hereinafter, examples of the present invention will be described with reference to the drawings. In addition, in each figure for demonstrating an embodiment, the same constituent elements are given the same name and reference numeral as much as possible, and the repeated description thereof will be omitted.
図1から図7を用いて実施例1について説明する。図1に、本発明の実施例1の単相の静止誘導機器に用いられる積鉄心を示し、図1(a)は、積鉄心の上下の2層の内の1層(例えば、上層)1aを示し、図1(b)は、上下の2層の内の他層(例えば、下層)1bを示す。また、図2に、図1の積鉄心を構成する、1つの鉄心ブロック体10を示す。
The first embodiment will be described with reference to FIGS. 1 to 7. FIG. 1 shows the iron core used in the single-phase stationary induction device of the first embodiment of the present invention, and FIG. 1 (a) shows one layer (for example, the upper layer) 1a of the upper and lower two layers of the iron core. 1 (b) shows the other layer (for example, the lower layer) 1b of the upper and lower two layers. Further, FIG. 2 shows one iron
図2において、鉄心ブロック体10は、直方体形状(短冊状)の第1の磁性体部材11と、第1の磁性体部材よりも長さが短い直方体形状(短冊状)の第2の磁性体部材12を有している。そして、第2の磁性体部材12の端部が、両側において、第1の磁性体部材11の端部よりも内側に(中央側に)来るように、長さ方向にずらして、第1の磁性体部材11と第2の磁性体部材12を並べて配置する。そして、接合部13で両者を接合して、鉄心ブロック体10を作る。すなわち、鉄心ブロック体10は、第1の磁性体部材11と第2の磁性体部材12とが凸字状に構成されている。接合方法は問わないが、接合部に厚みが生じない接合方法であれば、接合部に厚みが出ないため鉄心の占積率を向上させることができる。また、接合部に厚みが出ないことにより鉄心ブロック体10を積み重ねる工程において、位置ずれが起こりにくく生産性が向上する。
In FIG. 2, the iron
鉄心ブロック体10のうち第2の磁性体部材12のうち短辺の位置は、第1の磁性体部材11の短辺から第1の磁性体部材11の幅の分を空けて配置するとよい。この第1の磁性体部材11の幅を空けて配置することにより鉄心ブロック体10同士が互い違いになるように配置することができる。また、第2の磁性体部材12の他の短辺の位置も同様に空けるとよい。これにより、図1に示すように鉄心ブロック10を隙間が小さくなるように面方向に配置することができる。
The position of the short side of the second
第1の磁性体部材11および第2の磁性体部材12の材料は、アモルファス合金箔片でも良いし、電磁鋼板でも実施できる。本明細書において、アモルファス薄帯、アモルファス合金箔片またはアモルファス合金薄帯等の呼び方をするがいずれもアモルファス薄帯を指すものである。また、アモルファス箔片と電磁鋼板やナノ結晶箔を積層したクラッド材でも、またはナノ結晶箔単体の薄帯であっても実施できる。アモルファス箔片は、電磁鋼板の板厚に比べて薄く、凡そ電磁鋼板の十分の一の厚さである。そのため、2つのアモルファス箔片を幅方向に接合したものを、複数重ねて鉄心ブロック体10とすることにより、電磁鋼板と同様に取り扱うことができる。アモルファス薄帯の第1の磁性体部材11と第2の磁性体部材12とを接合したものを鉄心ブロック体10として、互い違いに積層すること鉄心の特性を向上させることができる。また、接合したものを10枚から20枚程度重ね合わせ鉄心ブロック体10とした場合には、製造の際に鉄心ブロック体10ごとに積層できるため、生産性が向上する。
The material of the first
図1は、単相変圧器の積鉄心の例を示すものである。図1(a)の上層および図1(b)の下層において、それぞれ図2に示す鉄心ブロック体10を4個組み合わせて積鉄心を構成する。そして、4個所の鉄心ブロック体の突合せ部において、一方の鉄心ブロック体の短冊状の第1の磁性体部材および第2の磁性体部材の端部が、他方の鉄心ブロック体の短冊状の第1の磁性体部材および第2の磁性体部材の側面に位置するように配置し、両鉄心ブロック体の突合せ部が階段状(階段状部15)となるように突き合わせて積鉄心を構成している。階段状部15について同一平面上に配置される鉄心ブロック体10の位置関係を説明する。なお、同一平面上とは、厳密に同じ平面を意味するものではなく、鉄心として組み立てる場合に同じ層となる鉄心ブロック体10同士の位置関係を示すものである。つまり、面同士で同一平面を形成する必要はなく、同じ層であればよい。第1のブロック体10の第1の磁性部材11の長辺が第2のブロック体10の第1の磁性体部材11の短辺と向かい合い、第1のブロック体10の第2の磁性体12の短辺が第2の鉄心ブロック体10の第1の磁性体11の長辺と向かい合い、第1の鉄心ブロック体10の第2の磁性体12の長辺が第2の鉄心ブロック体10の第2の磁性体12の短辺と向かい合うように配置されている。向かい合うように配置されるとは2つの部材が向かい合う領域を有するように配置されるということである。
FIG. 1 shows an example of a steel core of a single-phase transformer. In the upper layer of FIG. 1A and the lower layer of FIG. 1B, four iron
また、他の階段状部15は、第1のブロック体10の第1の磁性部材11の短辺が第3のブロック体10の第1の磁性体部材11の長辺と向かい合い、第1のブロック体10の第1の磁性体11の長辺が第3の鉄心ブロック体10の第2の磁性体12の短辺と向かい合い、第1の鉄心ブロック体10の第2の磁性体12の短辺が第3の鉄心ブロック体10の第2の磁性体12の長辺と向かい合うように配置されている。この向かい部分は接触してもよい。
Further, in the other stepped
上層と下層とでは、鉄心ブロック体10の配置が異なっており、例えば積鉄心の左上の角部において、図1(a)の上層ではヨーク部6を構成する鉄心ブロック体の第1磁性体部材が配置され、図1(b)の下層では脚部5を構成する鉄心ブロック体の第1磁性体部材が配置されている。上層と下層とがペアとして積み重ねられ、更にこのペアが多数積み重ねられて積鉄心が構成される。鉄心ブロック体の突合せ部ではギャップができるため磁束が流れにくいが、上層と下層とで階段状部15の位置を異ならせることにより、上下の層間で磁束が流れやすくなる。
The arrangement of the iron
上層と下層のヨーク部同士または脚部同士で鉄心ブロック体10を互い違いに積まれた関係は、下層の第1の鉄心ブロック体10の第1の磁性体11の一部と上層の第2の鉄心ブロック体10の第1の磁性体11の一部が重なり合い、下層の第1の鉄心ブロック体10の第2の磁性体12の一部と上層の第2の鉄心ブロック体10の第2の磁性体12の一部が重なり合う。言い換えると、下層の第1の鉄心ブロック体10の第1の方向の端部は第2の鉄心のブロック体10と重なり合わず、第2の鉄心ブロック体10の第2の方向の端部は第1の鉄心ブロック体10と重なり合わない関係である。
The relationship in which the iron
また、上層と下層のヨーク部と脚部で鉄心ブロック体10を互い違いに積まれた関係は、下層の第1の鉄心ブロック体10の第1の磁性体11の第1の方向の端部と上層の第2の鉄心ブロック体10の第1の磁性体11の第1の方向の端部とが重なり合い、下層の第1の鉄心ブロック体10の第2の磁性体12の第1の方向の端部と上層の第2の鉄心ブロック体10の第2の磁性体12の第1の方向の端部とが重なり合う。言い換えると、下層の第1の鉄心ブロック体10の第1の方向の端部と上層の第2の鉄心ブロック体10の第1の方向の端部同士が重なり合い、下層の第1の鉄心ブロック体10の第2の方向の端部と上層の第2の鉄心ブロック体10の第2の方向の端部は重なり合わない関係である。
Further, the relationship in which the iron
図3に、本実施例の積鉄心の端部構成において、磁束密度分布をシミュレーションした図を示す。図は、アモルファス箔片の10枚を一層とし、2層分を有限要素法で磁束密度を計算したものである。なお、突合せ部のギャップ幅は1.2mmである。図3(a)は上層の、図3(b)は下層の、図3(c)は2層重ねた場合の磁束密度分布を示し、図において色の薄い部分が磁束密度が低いことを、色の濃い部分が磁束密度が高いことを示している。色の濃い部分とはグレースケールで黒に近い部分である。 FIG. 3 shows a diagram simulating the magnetic flux density distribution in the end configuration of the iron core of this embodiment. In the figure, 10 pieces of amorphous foil pieces are used as one layer, and the magnetic flux density of two layers is calculated by the finite element method. The gap width of the butt portion is 1.2 mm. FIG. 3A shows the upper layer, FIG. 3B shows the lower layer, and FIG. 3C shows the magnetic flux density distribution when two layers are stacked. In the figure, the light-colored portion shows the low magnetic flux density. The dark part indicates that the magnetic flux density is high. The dark part is the part that is grayscale and close to black.
図3(a)および図3(b)において、後に述べる短冊型に比べて、矢印で示す重ね部先端の磁化不十分な領域は縮小しており、励磁効率が改善している。また、図3(c)の2層にした場合に、短冊端部位置を互いに組み合わせることにより、非動作面積を減少させ鉄心磁束密度を増加できる。そして、左側の励磁コイルを励磁した場合(20ターン、1A)の右側の励磁コイルから55mm位置(観測点)の断面の平均磁束密度は1.4テスラとなり、短冊型に比べて平均磁束密度が向上している。 In FIGS. 3A and 3B, the region of insufficient magnetization at the tip of the overlapping portion indicated by the arrow is smaller than that of the strip type described later, and the excitation efficiency is improved. Further, in the case of the two layers shown in FIG. 3C, the non-operating area can be reduced and the iron core magnetic flux density can be increased by combining the strip end positions with each other. When the left exciting coil is excited (20 turns, 1A), the average magnetic flux density in the cross section 55 mm from the right exciting coil (observation point) is 1.4 Tesla, which is higher than the strip type. It is improving.
図4に、図3と同様の計算を行った、額縁型鉄心の磁束密度分布を示す。図4(a)および図4(b)に示すように、額縁型鉄心においては、矢印で示す重ね部先端部まで十分に磁化されており、励磁効率が良くなっている。また、図4(c)に示すように、右側の励磁コイルから55mm位置(観測点)の断面の平均磁束密度は1.5テスラであり励磁効率が良くなっている。 FIG. 4 shows the magnetic flux density distribution of the frame type iron core obtained by performing the same calculation as in FIG. As shown in FIGS. 4A and 4B, in the frame type iron core, the tip of the overlapping portion indicated by the arrow is sufficiently magnetized, and the excitation efficiency is improved. Further, as shown in FIG. 4 (c), the average magnetic flux density in the cross section at the position (observation point) 55 mm from the right exciting coil is 1.5 Tesla, and the exciting efficiency is improved.
図5に、図3と同様の計算を行った、短冊型鉄心の磁束密度分布を示す。図5(a)および図5(b)に示すように、短冊型鉄心においては、矢印で示す重ね部先端部の磁化は不十分で、励磁効率が悪くなっている。また、図5(c)に示すように、右側の励磁コイルから55mm位置(観測点)の断面の平均磁束密度は1.2テスラであり励磁効率が悪くなっている。 FIG. 5 shows the magnetic flux density distribution of the strip-shaped iron core, which was calculated in the same manner as in FIG. As shown in FIGS. 5A and 5B, in the strip-shaped iron core, the magnetization of the tip of the overlapping portion indicated by the arrow is insufficient, and the excitation efficiency is deteriorated. Further, as shown in FIG. 5C, the average magnetic flux density in the cross section 55 mm from the right exciting coil (observation point) is 1.2 Tesla, and the exciting efficiency is poor.
図3ないし図5の比較からわかるように、本実施例によれば、製造が容易な短冊型でありながら、短冊端部位置を互いに組み合わせることにより、鉄心の非動作面積を減少させ、鉄心の磁束密度を増加し、平均磁束密度を向上できる。 As can be seen from the comparison of FIGS. 3 to 5, according to this embodiment, the non-operating area of the iron core is reduced by combining the strip end positions with each other, although the strip type is easy to manufacture. The magnetic flux density can be increased and the average magnetic flux density can be improved.
図6に、本実施例の積鉄心と、額縁型鉄心および短冊型鉄心について、ギャップ幅と平均磁束密度の関係を比較して示す。図に示すように、短冊型では、ギャップ幅0.5mm程度から平均磁束密度が減少するのに対して、本実施例によれば、ギャップ幅1.5mm位まで平均磁束密度が一定である。本実施例によれば、製造が容易な短冊型でありながら、額縁型に近い励磁効率が得られている。 FIG. 6 shows a comparison of the relationship between the gap width and the average magnetic flux density of the stacked iron core of this embodiment and the frame type iron core and the strip type iron core. As shown in the figure, in the strip type, the average magnetic flux density decreases from a gap width of about 0.5 mm, whereas according to this embodiment, the average magnetic flux density is constant up to a gap width of about 1.5 mm. According to this embodiment, although it is a strip type that is easy to manufacture, an excitation efficiency close to that of a frame type is obtained.
図7に、実施例1に関する請求項と対応させた図を示す。
磁性体部材を積層し鉄心ブロック体30,35を突き合わせた積鉄心を有する積鉄心静止誘導機器において、前記鉄心ブロック体30の短辺方向に第一の磁性体部材31と前記第一の磁性体部材31よりも短い第二の磁性体部材32が並べられ、前記第一の磁性体部材31と前記第二の磁性体部材32が向かい合う辺が接合されており、前記第二の磁性体部材32の長辺方向の端面は前記第一の磁性体部材31の長辺方向の端面よりも内側に配置されており、第一の前記鉄心ブロック体30の前記第二の磁性体部材32は、第二の前記鉄心ブロック体35の前記第一の磁性体部材36及び前記第二の磁性体部材37と突き合わせられるまたは向かい合う領域を有している。
FIG. 7 shows a diagram corresponding to the claims relating to the first embodiment.
In an iron core stationary induction device having an iron core in which magnetic members are laminated and the iron core blocks 30 and 35 are butted against each other, the first
本実施例によれば、製造容易な短冊型で、効率の良い積鉄心変圧器を提供することができる。また、上下の層で、鉄心ブロック体の突合せ部の位置を変えることにより、磁束の流れを良好にし、効率化を図ることができる。 According to this embodiment, it is possible to provide a strip type, which is easy to manufacture, and an efficient core transformer. Further, by changing the position of the abutting portion of the iron core block body in the upper and lower layers, the flow of magnetic flux can be improved and efficiency can be improved.
さらに、本実施例では、第1の磁性体部材と第2の磁性体部材を接合した凸字形状の鉄心ブロック体を組み合わせて積鉄心を構成したので、製造が容易となる。 Further, in the present embodiment, since the stacked iron core is formed by combining the convex-shaped iron core block body obtained by joining the first magnetic material member and the second magnetic material member, the production becomes easy.
図8に、本発明の実施例2の積鉄心を示し、図8(a)は、積鉄心の上下の2層の内の上層100aを示し、図8(b)は、上下の2層の内の下層100bを示す。実施例2は、3相3脚型変圧器に用いたものである。
FIG. 8 shows the iron core of Example 2 of the present invention, FIG. 8 (a) shows the
図に示すように、積鉄心の大多数は図2に示した鉄心ブロック体10で構成されているが、中央の脚部の鉄心ブロック体20およびヨーク部の一部の鉄心ブロック体25は異なる形のもので構成されている。上層と下層とがペアとして積み重ねられ、更にこのペアが多数積み重ねられて積鉄心が構成される点は、実施例1と同様である。
As shown in the figure, the majority of the iron cores are composed of the iron
本実施例によれば、3相3脚型鉄心において、3種類の鉄心ブロック体を組み合わせることにより、製造容易で高効率な積鉄心を構成することができる。 According to this embodiment, in a three-phase three-legged iron core, by combining three types of iron core blocks, a product core that is easy to manufacture and highly efficient can be constructed.
なお、短冊状の第1の磁性体部材11と短冊状の第2の磁性体部材12とを幅方向に接合した鉄心ブロック体の構成としては種々のものが考えられる。また、実施例1および2では、幅方向に2つの磁性体部材で鉄心ブロック体を構成したが、3つ以上の磁性体部材を幅方向に接合して鉄心ブロック体を構成しても良い。
It should be noted that various configurations are conceivable as the configuration of the iron core block body in which the strip-shaped first
さらに、実施例1および2では、磁性体部材を幅方向に接合したが、幅方向に接合することなく、複数の磁性体部材を幅方向に並べて構成しても良い。すなわち、短冊状の複数の磁性体部材を、端部の位置を長さ方向にずらして幅方向に並べた鉄心ブロック体の複数を、一方の鉄心ブロック体の短冊状の複数の磁性体部材の端部が、他方の鉄心ブロック体の短冊状の複数の磁性体部材の側面に位置するように配置して、両鉄心ブロック体の突合せ部が階段状となるように突き合わせて積鉄心を構成したものであればよい。 Further, in Examples 1 and 2, the magnetic members are joined in the width direction, but a plurality of magnetic members may be arranged side by side in the width direction without joining in the width direction. That is, a plurality of iron core block bodies in which a plurality of strip-shaped magnetic members are arranged in the width direction with their ends shifted in the length direction, and a plurality of strip-shaped magnetic members of one iron core block body. The ends are arranged so as to be located on the side surfaces of a plurality of strip-shaped magnetic members of the other iron core block body, and the abutting portions of both iron core block bodies are butted so as to form a stepped shape to form a stacked iron core. Anything is fine.
上記の各実施例においては、本発明を積層型変圧器に用いた例を説明したが、本発明は、リアクトルを含む静止誘導機器に用いることができる。 In each of the above examples, an example in which the present invention is used for a stacked transformer has been described, but the present invention can be used for a stationary induction device including a reactor.
1…積鉄心
1a積鉄心上層
1b…積鉄心下層
5…脚部
6…ヨーク部(継鉄部)
7…コイル
10…鉄心ブロック体
11…第1の磁性体部材
12…第2の磁性体部材
13…接合部
15…階段状部
20…中央脚部の鉄心ブロック体
25…ヨーク部の一部の鉄心ブロック体
30…第1の鉄心ブロック体
31…第1の磁性体部材
32…第2の磁性体部材
35…第2の鉄心ブロック体
36…第1の磁性体部材
37…第2の磁性体部材
39…階段状部
40…額縁型積鉄心
50…短冊型積鉄心
100a…3相3脚型の積鉄心上層
100b…3相3脚型の積鉄心下層
1 ... Iron core 1a Upper layer of iron core 1b ... Lower layer of
7 ...
Claims (14)
短冊状の複数の磁性体部材を、端部の位置を長さ方向にずらして幅方向に並べた鉄心ブロック体の複数を、一方の鉄心ブロック体の短冊状の複数の磁性体部材の端部が、他方の鉄心ブロック体の短冊状の複数の磁性体部材の側面に位置するように配置して、両鉄心ブロック体の突合せ部が階段状となるように突き合わせて積鉄心を構成したことを特徴とする積鉄心静止誘導機器。 It is a product core static induction device having a product core in which strip-shaped magnetic members are butted and laminated.
A plurality of iron core block bodies in which a plurality of strip-shaped magnetic members are arranged in the width direction with their ends shifted in the length direction, and a plurality of strip-shaped magnetic members of one iron core block body are arranged at the ends. However, it was arranged so as to be located on the side surface of a plurality of strip-shaped magnetic members of the other iron core block body, and the butted portions of both iron core block bodies were butted so as to form a stepped shape to form a stacked iron core. A featured iron core stationary induction device.
前記鉄心ブロック体は、前記複数の磁性体部材を幅方向に接合したものであることを特徴とする積鉄心静止誘導機器。 In the product iron core stationary induction device according to claim 1,
The iron core block body is a product core stationary induction device characterized in that the plurality of magnetic members are joined in the width direction.
短冊状の第1の磁性体部材と短冊状の第2の磁性体部材とを、端部の位置を長さ方向にずらして幅方向に接合した鉄心ブロック体の複数を、一方の鉄心ブロック体の短冊状の第1の磁性体部材および第2の磁性体部材の端部が、他方の鉄心ブロック体の短冊状の第1の磁性体部材および第2の磁性体部材の側面に位置するように配置して、両鉄心ブロック体の突合せ部が階段状となるように突き合わせて積鉄心を構成したことを特徴とする積鉄心静止誘導機器。 In the product iron core stationary induction device according to claim 1,
A plurality of iron core block bodies in which a strip-shaped first magnetic material member and a strip-shaped second magnetic material member are joined in the width direction by shifting the position of the end in the length direction, and one iron core block body. The ends of the strip-shaped first magnetic member and the second magnetic member are located on the side surfaces of the strip-shaped first magnetic member and the second magnetic member of the other iron core block body. An iron core stationary induction device characterized in that the butt portions of both iron core blocks are butted so as to form a stepped shape to form a stacked iron core.
2つの鉄心ブロック体の突合せ部において、
第1の層は、一方の鉄心ブロック体の短冊状の複数の磁性体部材の端部が、他方の鉄心ブロック体の短冊状の複数の磁性体部材の側面に位置するように配置し、
第1の層に重なる第2の層は、他方の鉄心ブロック体の短冊状の複数の磁性体部材の端部が、一方の鉄心ブロック体の短冊状の複数の磁性体部材の側面に位置するように配置して、
異なる層の複数の磁性体部材間を磁束が流れるようにしたことを特徴とする積鉄心静止誘導機器。 In the product iron core stationary induction device according to claim 1,
At the abutment of the two iron core blocks
The first layer is arranged so that the ends of the strip-shaped magnetic members of one iron core block body are located on the side surfaces of the strip-shaped magnetic members of the other iron core block body.
In the second layer overlapping the first layer, the ends of the strip-shaped magnetic members of the other iron core block are located on the side surfaces of the strip-shaped magnetic members of the one iron block. Arrange as
A product iron core stationary induction device characterized in that magnetic flux flows between a plurality of magnetic members in different layers.
前記磁性体部材は、アモルファス磁性部材であることを特徴とする積鉄心静止誘導機器。 In the product iron core stationary induction device according to claim 1,
The magnetic material member is a product iron core stationary induction device, characterized in that it is an amorphous magnetic member.
前記磁性体部材は、電磁鋼板であることを特徴とする積鉄心静止誘導機器。 In the product iron core stationary induction device according to claim 1,
The magnetic material member is a product core static induction device characterized in that it is an electromagnetic steel plate.
前記磁性体部材は、アモルファス磁性部材と電磁鋼板やナノ結晶箔を積層したクラッド材であることを特徴とする積鉄心静止誘導機器。 In the product iron core stationary induction device according to claim 1,
The magnetic material member is a clad material obtained by laminating an amorphous magnetic member and an electromagnetic steel plate or a nanocrystal foil.
前記積鉄心は、2つの脚部を有する単相型であることを特徴とする積鉄心静止誘導機器。 In the product iron core stationary induction device according to claim 1,
The product core is a static induction device for a product core, which is a single-phase type having two legs.
前記積鉄心は、3つの脚部を有する3相3脚型であることを特徴とする積鉄心静止誘導機器。 In the product iron core stationary induction device according to claim 1,
The product core is a three-phase three-leg type having three legs, and is a product core stationary induction device.
前記鉄心ブロック体の短辺方向に第一の磁性体部材と前記第一の磁性体部材よりも短い第二の磁性体部材が並べられ、前記第一の磁性体部材と前記第二の磁性体部材が向かい合う辺が接合されており、
前記第二の磁性体部材の長辺方向の端面は前記第一の磁性体部材の長辺方向の端面よりも内側に配置されており、
第一の前記鉄心ブロック体の前記第二の磁性体部材は、第二の前記鉄心ブロック体の前記第一の磁性体部材及び前記第二の磁性体部材と突き合わせられるまたは向かい合う領域を有すること
を特徴とする静止誘導機器。 In a stationary induction device having a product core in which magnetic members are laminated and iron core blocks are butted against each other.
The first magnetic material member and the second magnetic material member shorter than the first magnetic material member are arranged in the short side direction of the iron core block body, and the first magnetic material member and the second magnetic material are arranged. The sides where the members face each other are joined,
The end face in the long side direction of the second magnetic member is arranged inside the end face in the long side direction of the first magnetic member.
The second magnetic member of the first iron core block body has a region abutting or facing the first magnetic member and the second magnetic member of the second iron core block body. A featured stationary guidance device.
前記磁性体部材はアモルファス磁性部材であることを特徴とする静止誘導機器。 In the stationary induction device according to claim 10,
A stationary induction device characterized in that the magnetic member is an amorphous magnetic member.
短冊状の複数の磁性体部材を、端部の位置を長さ方向にずらして幅方向に接合して鉄心ブロック体を作成するステップと、
前記鉄心ブロック体の複数を、一方の鉄心ブロック体の短冊状の複数の磁性体部材の端部が、他方の鉄心ブロック体の短冊状の複数の磁性体部材の側面に位置するように配置して、両鉄心ブロック体の突合せ部が階段状となるように突き合わせて積鉄心を構成するステップと、
を備える積鉄心静止誘導機器の製造方法。 It is a method for manufacturing a product core static induction device having a product core in which strip-shaped magnetic members are butted and laminated.
A step of creating an iron core block body by joining a plurality of strip-shaped magnetic members in the width direction by shifting the positions of the ends in the length direction.
The plurality of iron core blocks are arranged so that the ends of the strip-shaped magnetic members of one iron core block are located on the side surfaces of the strip-shaped magnetic members of the other iron core block. Then, the step of forming the stacked iron core by abutting the abutment portions of both iron core blocks so as to form a step, and
A method for manufacturing a static induction device for a product iron core.
前記積鉄心を構成するステップは、2つの鉄心ブロック体の突合せ部において、
一方の鉄心ブロック体の短冊状の複数の磁性体部材の端部が、他方の鉄心ブロック体の短冊状の複数の磁性体部材の側面に位置するように配置して第1の層を作成するステップと、
他方の鉄心ブロック体の短冊状の複数の磁性体部材の端部が、一方の鉄心ブロック体の短冊状の複数の磁性体部材の側面に位置するように配置して第1の層に重なる第2の層を作成するステップと、を備え、
第1の層を作成するステップと第2の層を作成するステップとを繰り返して積鉄心を構成するものである積鉄心静止誘導機器の製造方法。 In the method for manufacturing a product iron core stationary induction device according to claim 12,
The step of forming the stacked iron core is performed at the abutting portion of the two iron core blocks.
The first layer is created by arranging the ends of the strip-shaped magnetic members of one iron core block body so as to be located on the side surfaces of the strip-shaped magnetic members of the other iron core block body. Steps and
A second layer in which the ends of the strip-shaped magnetic members of the other iron core block are arranged so as to be located on the side surfaces of the strip-shaped magnetic members of the one iron block and overlap the first layer. With the steps to create two layers,
A method for manufacturing a product core static induction device, which comprises repeating a step of creating a first layer and a step of creating a second layer to form a product core.
前記鉄心ブロック体を作成するステップは、短冊状の複数のアモルファス薄帯を長さ方向に端部の位置をずらして幅方向に接合し、この接合したアモルファス薄帯を複数枚積層するものである積鉄心静止誘導機器の製造方法。 In the method for manufacturing a product iron core stationary induction device according to claim 12,
The step of creating the iron core block body is to join a plurality of strip-shaped amorphous strips in the width direction by shifting the positions of the ends in the length direction, and stack a plurality of the joined amorphous strips. A method for manufacturing a static induction device for a steel core.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019142783A JP7337589B2 (en) | 2019-08-02 | 2019-08-02 | Stacked iron asystole induction device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019142783A JP7337589B2 (en) | 2019-08-02 | 2019-08-02 | Stacked iron asystole induction device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021027115A true JP2021027115A (en) | 2021-02-22 |
JP7337589B2 JP7337589B2 (en) | 2023-09-04 |
Family
ID=74664044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019142783A Active JP7337589B2 (en) | 2019-08-02 | 2019-08-02 | Stacked iron asystole induction device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7337589B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS439763Y1 (en) * | 1964-08-27 | 1968-04-27 | ||
JPS59177906A (en) * | 1983-03-29 | 1984-10-08 | Toshiba Corp | Laminated core for induction machine |
WO2016189767A1 (en) * | 2015-05-27 | 2016-12-01 | 株式会社日立産機システム | Stacked core structure, and transformer equipped with same |
JP2018060832A (en) * | 2016-09-30 | 2018-04-12 | 日立金属株式会社 | Magnetic core piece and magnetic core |
-
2019
- 2019-08-02 JP JP2019142783A patent/JP7337589B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS439763Y1 (en) * | 1964-08-27 | 1968-04-27 | ||
JPS59177906A (en) * | 1983-03-29 | 1984-10-08 | Toshiba Corp | Laminated core for induction machine |
WO2016189767A1 (en) * | 2015-05-27 | 2016-12-01 | 株式会社日立産機システム | Stacked core structure, and transformer equipped with same |
JP2018060832A (en) * | 2016-09-30 | 2018-04-12 | 日立金属株式会社 | Magnetic core piece and magnetic core |
Also Published As
Publication number | Publication date |
---|---|
JP7337589B2 (en) | 2023-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020121691A1 (en) | Iron core for stationary induction apparatus, and stationary induction apparatus | |
JP5127728B2 (en) | Transformer | |
WO2010143710A1 (en) | Frame-shaped iron core and method for assembling same | |
JP5722941B2 (en) | Iron core for static induction equipment | |
KR200488717Y1 (en) | Transformer core | |
US4140987A (en) | Core of a core-type transformer | |
US20160196916A1 (en) | Wound transformer core | |
JPS6033291B2 (en) | magnetic iron core | |
JP2009054927A (en) | Stationary induction electric apparatus | |
US20210327644A1 (en) | Transformer and reactor cores with new designs and methods for manufacturing | |
JP2021027115A (en) | Laminated iron core stationary induction device and manufacturing method of the same | |
JP5898248B2 (en) | Manufacturing method of iron core for stationary induction device | |
KR102298557B1 (en) | Stacked core for transformer with excellent no-load loss and noise, and manufacturing method thereof | |
JP7430115B2 (en) | Stacked iron core stationary induction device and its manufacturing method | |
WO2020090577A1 (en) | Stacked core for stationary induction apparatus | |
JP2017054896A (en) | Iron core for transformer and transformer using the same | |
JPH0145204B2 (en) | ||
JP2006179727A (en) | Transformer | |
JP6655525B2 (en) | Transformers, iron cores and amorphous metal parts | |
JP2005340463A (en) | Transformer | |
JP7160589B2 (en) | Wound core for static induction equipment | |
JPS61198706A (en) | Core for induction electric apparatus | |
JPS63260119A (en) | Manufacture of laminated iron core for induction electric apparatus | |
JP3198426B2 (en) | Iron core for stationary induction equipment and method of manufacturing the same | |
JPS6021510A (en) | Laminated magnetic core for stationary induction electric apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221206 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230323 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230725 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230823 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7337589 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |