JP2006179727A - Transformer - Google Patents

Transformer Download PDF

Info

Publication number
JP2006179727A
JP2006179727A JP2004372408A JP2004372408A JP2006179727A JP 2006179727 A JP2006179727 A JP 2006179727A JP 2004372408 A JP2004372408 A JP 2004372408A JP 2004372408 A JP2004372408 A JP 2004372408A JP 2006179727 A JP2006179727 A JP 2006179727A
Authority
JP
Japan
Prior art keywords
iron core
layer
iron
plate
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004372408A
Other languages
Japanese (ja)
Inventor
Hidemasa Yamaguchi
英正 山口
Toru Honma
徹 本間
Hiroyuki Endo
博之 遠藤
Makoto Shinohara
誠 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2004372408A priority Critical patent/JP2006179727A/en
Priority to US11/138,234 priority patent/US7292127B2/en
Priority to CN2007101077710A priority patent/CN101086913B/en
Publication of JP2006179727A publication Critical patent/JP2006179727A/en
Priority to US11/974,015 priority patent/US7471183B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology in which the improvement of a magnetic flux distribution in a magnetic core, an improvement in manufacturing workability, etc. are possible in a transformer. <P>SOLUTION: A first layer group in which a plurality of first layers are laminated which both ends of plate type magnetic materials are superposed mutually and by which they are made annular, and a plurality of second layers or this second layer by which both the ends of plate type magnetic material are alternately laminated. Moreover, the core is constituted independently from both of the first magnetic core which consists of both of the above first layer group, and the second magnetic core which consists of the above second layer group. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、変圧器の構成に係り、特に、鉄心の構成に関する。   The present invention relates to a configuration of a transformer, and more particularly to a configuration of an iron core.

本発明に関連した従来技術としては、例えば、特開2002−83716号公報(特許文献1)や特開平6−84656号公報(特許文献2)に記載されたものがある。特開2002−83716号公報には、非晶質合金(アモルファス)薄帯を用いた変圧器鉄心において、鉄心厚さの増大を抑え、作業性を改善するために、巻鉄心の内側層の複数ブロックはバットステップラップ方式(突き合わせ方式)の接合部を備え、巻鉄心の外側層の複数ブロックはオーバーラップ方式(重ね合わせ方式)による接合部を備える構成とする技術が記載され、特開平6−84656号公報には、非晶質鋼の変圧器の鉄心で、損失の少ない継目とするために、全ての接合部を重ね合わせ方式による構成とした技術が記載されている。   Examples of conventional techniques related to the present invention include those described in Japanese Patent Application Laid-Open No. 2002-83716 (Patent Document 1) and Japanese Patent Application Laid-Open No. 6-84656 (Patent Document 2). In Japanese Patent Laid-Open No. 2002-83716, in a transformer core using an amorphous alloy ribbon, a plurality of inner layers of a wound core are provided in order to suppress an increase in core thickness and improve workability. A technique is described in which a block is provided with a butt step lap type (butting type) joint, and a plurality of blocks on the outer layer of the wound core are provided with a joint part by an overlap type (superposition method). Japanese Patent No. 84656 discloses a technique in which all the joints are configured by a superposition method in order to provide a low-loss seam of an amorphous steel transformer core.

特開2002−83716号公報JP 2002-83716 A 特開平6−84656号公報JP-A-6-84656

上記従来技術では、変圧器において、鉄心内の磁束分布の改善、鉄心の有効断面積の確保及び鉄心の製作作業性の改善とを併せて実現しようとした場合、一層の構造的工夫が望まれる。
本発明の課題点は、上記従来技術の状況に鑑み、変圧器において、鉄心の有効断面積の確保、鉄心内の磁束分布の改善及び製作作業性の改善とを併せて実現できるようにすることである。
本発明の目的は、上記課題点を解決し、性能、製作性の両面で優れた変圧器を提供することにある。
In the above prior art, in the transformer, when trying to realize the improvement of the magnetic flux distribution in the iron core, the securing of the effective cross-sectional area of the iron core and the improvement of the iron core manufacturing workability, further structural ingenuity is desired. .
In view of the situation of the above-described prior art, it is an object of the present invention to achieve, in a transformer, a combination of securing an effective cross-sectional area of an iron core, improving magnetic flux distribution in the iron core, and improving workability. It is.
An object of the present invention is to solve the above-described problems and provide a transformer that is excellent in both performance and manufacturability.

上記課題点を解決するために、本発明では、変圧器の鉄心のうちの全部のものまたは一部のものを、第1の板状磁性材の両端部が互いに重ね合わされて環状にされた第1の層が複数層積層された第1の層群と、第2の板状磁性材の両端部が互いに突き合わされて環状にされた第2の層または該第2の層が複数層積層された第2の層群とが交互に積層されて成る構成とする。また、変圧器の鉄心として、上記第1の層群から成る鉄心と、上記第2の層群から成る鉄心との両方を備えた構成とする。   In order to solve the above-mentioned problems, in the present invention, all or a part of the iron core of the transformer is formed into a ring shape in which both end portions of the first plate-like magnetic material are overlapped with each other. A first layer group in which a plurality of layers are laminated, and a second layer in which both ends of the second plate-shaped magnetic material are abutted with each other to form an annular shape, or a plurality of the second layers are laminated. The second layer group is alternately laminated. Moreover, it is set as the structure provided with both the iron core which consists of said 1st layer group, and the iron core which consists of said 2nd layer group as an iron core of a transformer.

本発明によれば、変圧器において、鉄心の有効断面積の確保、鉄心内磁束分布の改善及び鉄心の製作作業性の改善とを併せて実現することが可能となる。   According to the present invention, in the transformer, it is possible to achieve the securing of the effective cross-sectional area of the iron core, the improvement of the magnetic flux distribution in the iron core, and the improvement of the iron core manufacturing workability.

以下、本発明の実施例につき、図面を用いて説明する。
図1〜図2は、本発明の第1の実施例の説明図である。図1は、本発明の第1の実施例としての変圧器の構成例図、図2は、図1の変圧器の鉄損特性例図である。図1(a)は変圧器の側面図、図1(b)は鉄心の接合部の拡大断面図である。本第1の実施例は2脚型単相変圧器の場合である。
Embodiments of the present invention will be described below with reference to the drawings.
FIGS. 1-2 is explanatory drawing of the 1st Example of this invention. FIG. 1 is a structural example diagram of a transformer as a first embodiment of the present invention, and FIG. 2 is a diagram showing an example of iron loss characteristics of the transformer of FIG. Fig.1 (a) is a side view of a transformer, FIG.1 (b) is an expanded sectional view of the junction part of an iron core. The first embodiment is a case of a two-leg type single-phase transformer.

図1(a)において、100は変圧器、2は、変圧器磁気回路を形成するための鉄心、3a、3bは励磁用のコイルである。鉄心2は、例えば、厚さ0.02×10−3m〜0.03×10−3m程度のアモルファスの薄板材(薄帯材)が数十枚重ねられて成る複合構造の0.2×10−3m〜0.6×10−3m程度の板状磁性材が複数層積層され環状に成形されて成る。該複数層に積層される板状磁性材のうちの一部のものは、その両端部が互いに重ね合わされて環状にされた層すなわち第1の層を形成し、また他のものは、その両端部が互いに突き合わされて環状にされた層すなわち第2の層を形成している。 In FIG. 1A, 100 is a transformer, 2 is an iron core for forming a transformer magnetic circuit, and 3a and 3b are exciting coils. The iron core 2 is, for example, a composite structure 0.2 in which dozens of amorphous thin plate materials (thin strip materials) having a thickness of about 0.02 × 10 −3 m to 0.03 × 10 −3 m are stacked. × 10 -3 m~0.6 × 10 -3 m approximately plate-shaped magnetic members, which are formed annularly in a plurality of layers stacked. A part of the plate-like magnetic material laminated in the plurality of layers forms an annular layer, i.e., a first layer, with both ends thereof being overlapped with each other. The portions are abutted against each other to form an annular layer, that is, a second layer.

図1(b)は、図1(a)における鉄心2の接合部イの拡大断面構造を示す。図1(b)において、板状磁性材a〜aはそれぞれ、その両端部が互いに重ね合わされて環状にされた層すなわち第1の層を形成し、板状磁性材a〜aは全体として第1の層群(ブロック)を形成している。また、板状磁性材a、aは、それぞれが、その両端部が互いに突き合わされて環状にされた層すなわち第2の層を形成している。本積層構成では、第1の層を形成する板状磁性材aが、環状の鉄心2の最内周側を構成し、板状磁性材aが、環状の鉄心2の最外周側を構成し、第1の層群(ブロック)を形成する板状磁性材a〜aは、上記第1の層を形成する板状磁性材aと板状磁性材aとの間に配されている。すなわち、第1の層群(ブロック)と第2の層とが交互に積層されている。 FIG.1 (b) shows the expanded sectional structure of the junction part a of the iron core 2 in Fig.1 (a). In FIG. 1B, each of the plate-like magnetic materials a 2 to a 6 forms an annular layer, that is, a first layer, with both end portions thereof being overlapped with each other, and the plate-like magnetic materials a 2 to a 6. Forms a first layer group (block) as a whole. Further, each of the plate-like magnetic materials a 1 and a 7 forms an annular layer, that is, a second layer, with both end portions thereof butting each other. In this laminated structure, the plate-like magnetic material a 1 forming the first layer constitutes the innermost peripheral side of the annular iron core 2, and the plate-like magnetic material a 7 constitutes the outermost peripheral side of the annular iron core 2. The plate-like magnetic materials a 2 to a 6 that constitute and form the first layer group (block) are between the plate-like magnetic material a 1 and the plate-like magnetic material a 7 that form the first layer. It is arranged. That is, the first layer group (block) and the second layer are alternately stacked.

図2は、図1の変圧器100における鉄心の鉄損特性の実測結果例を示す。図2の鉄損特性において、横軸は鉄心中の平均磁束密度、縦軸は鉄損である。図2中、Aは、図1の鉄心2すなわち第1の層(板状磁性材の両端部が互いに重ね合わされて環状にされた層)が複数層積層された第1の層群(ブロック)と第2の層(板状磁性材の両端部が互いに突き合わされて環状にされた層)とが交互に積層されて成る鉄心の鉄損特性、Bは、第2の層が複数層積層された第2の層群から成る従来の鉄心の鉄損特性である。図1の第1の実施例における鉄心2は、板状磁性材の接合部イが図1(b)の構成を有し、第1の層群(ブロック)と第2の層とが交互に積層されて成る構成のため、上記第2の層群から構成される従来の鉄心の場合に比べ、鉄心2内における磁束密度の分布が鉄心断面内で平均化される。このため、変圧器磁気回路の有効断面積が増大して磁気抵抗が低減し、磁束量が増大して磁束密度が増大する。従って、鉄心2の磁気特性(B−H特性)は、従来の鉄心よりも、ヒステリシスの少ないカーブの特性となって、ヒステリシス損が減少する。図2の実測結果によると、鉄心2の該ヒステリシス損を含めた鉄損は、従来の場合に比べ約10%減少する。鉄損の減少は変圧器効率を向上させる。また、第2の層の接合部構成は、該接合部を形成し易いため、鉄心の製作作業性を向上させる。   FIG. 2 shows an example of an actual measurement result of iron loss characteristics of the iron core in the transformer 100 of FIG. In the iron loss characteristics of FIG. 2, the horizontal axis represents the average magnetic flux density in the iron core, and the vertical axis represents the iron loss. In FIG. 2, A is a first layer group (block) in which the iron core 2 of FIG. 1, that is, a first layer (a layer in which both end portions of a plate-like magnetic material are overlapped with each other to form an annular shape) is laminated. And the second layer (the layer in which both ends of the plate-like magnetic material are abutted against each other in an annular shape) are alternately laminated, and the iron loss characteristic of the iron core, B, a plurality of second layers are laminated It is the iron loss characteristic of the conventional iron core which consists of a 2nd layer group. The iron core 2 in the first embodiment shown in FIG. 1 has a plate-like magnetic material joined portion A having the structure shown in FIG. 1B, and the first layer group (block) and the second layer are alternately arranged. Due to the laminated structure, the magnetic flux density distribution in the iron core 2 is averaged in the cross section of the iron core as compared with the conventional iron core composed of the second layer group. For this reason, the effective cross-sectional area of a transformer magnetic circuit increases, magnetic resistance reduces, the amount of magnetic flux increases, and magnetic flux density increases. Therefore, the magnetic characteristic (BH characteristic) of the iron core 2 becomes a curve characteristic with less hysteresis than the conventional iron core, and the hysteresis loss is reduced. According to the actual measurement result of FIG. 2, the iron loss including the hysteresis loss of the iron core 2 is reduced by about 10% compared to the conventional case. Reduction of iron loss improves transformer efficiency. Moreover, since the joint structure of the second layer is easy to form the joint part, the workability of manufacturing the iron core is improved.

上記本発明の第1の実施例によれば、変圧器において、鉄心の有効断面積の確保、鉄心内磁束分布の改善、鉄心の製作作業性の改善などを併せて実現することができる。   According to the first embodiment of the present invention, in the transformer, it is possible to achieve the securing of the effective cross-sectional area of the iron core, the improvement of the magnetic flux distribution in the iron core, the improvement of the manufacturing workability of the iron core, and the like.

なお、上記第1の実施例では、鉄心2が、例えば、厚さ0.02×10−3m〜0.03×10−3m程度のアモルファスの薄板材(薄帯材)が数十枚重ねられて成る複合構造の0.2×10−3m〜0.6×10−3m程度の板状磁性材が複数層積層され環状に成形されて成るものとしたが、以下の実施例においても、各鉄心はこれと同じ基本構成を有するものとする。 In the above-described first embodiment, the core 2 is, for example, several tens thickness 0.02 × 10 -3 m~0.03 × 10 -3 m of approximately amorphous thin material (Usuobizai) A plurality of laminated plate-like magnetic materials having a composite structure of about 0.2 × 10 −3 m to 0.6 × 10 −3 m are laminated and formed into an annular shape. In each case, each iron core has the same basic configuration.

図3〜図4は、本発明の第2の実施例の説明図である。図3は本発明の第1の実施例としての変圧器の構成例図、図4は、図3の変圧器における鉄心の鉄損特性例図である。図3(a)は変圧器の側面図、(b)、(c)は鉄心の接合部の拡大断面図である。本第2の実施例は4個の鉄心と3個の励磁用コイルを備えて成る5脚型3相変圧器の場合である。   3-4 is explanatory drawing of the 2nd Example of this invention. FIG. 3 is a structural example diagram of a transformer as a first embodiment of the present invention, and FIG. 4 is a diagram showing an example of iron loss characteristics of an iron core in the transformer of FIG. 3A is a side view of the transformer, and FIGS. 3B and 3C are enlarged cross-sectional views of the joint portion of the iron core. The second embodiment is a case of a five-leg type three-phase transformer comprising four iron cores and three exciting coils.

図3(a)において、100は変圧器、1a、1b、2a、2bはそれぞれ、変圧器磁気回路を形成するための鉄心、3a、3b、3cは励磁用の3相コイルである。各鉄心において、複数層に積層される板状磁性材のうちの一部のものは、その両端部が互いに重ね合わされて環状にされた層すなわち第1の層を形成し、また他のものは、その両端部が互いに突き合わされて環状にされた層すなわち第2の層を形成している。4個の鉄心1a、1b、2a、2bは、互いに隣り合う3対の部分すなわち1aと2a、2aと2b、2bと1bがそれぞれ、対応するコイル3a、3b、3cを共用して励磁される(1aと2aはコイル3aを共用し、2aと2bはコイル3bを共用し、2bと1bはコイル3cを共用する)。 In FIG. 3A, 100 is a transformer, 1a, 1b, 2a and 2b are iron cores for forming a transformer magnetic circuit, and 3a, 3b and 3c are excitation three-phase coils. In each iron core, a part of the plate-like magnetic material laminated in a plurality of layers forms an annular layer, i.e., a first layer, by overlapping both ends thereof, and others The two end portions are butted against each other to form an annular layer, that is, a second layer. The four iron cores 1a, 1b, 2a and 2b have three pairs of adjacent parts, that is, 1a 2 and 2a 1 , 2a 2 and 2b 1 , 2b 2 and 1b 1 , corresponding coils 3a, 3b and 3c, respectively. Excited in common (1a 2 and 2a 1 share the coil 3a, 2a 2 and 2b 1 share the coil 3b, and 2b 2 and 1b 1 share the coil 3c).

図3(b)は、図3(a)における鉄心1a、1bの接合部イ、ニの拡大断面構造を示し、図3(c)は、図3(a)における鉄心2a、2bの接合部ロ、ハの拡大断面構造を示す。図3(b)において、板状磁性材a〜aはそれぞれ、その両端部が互いに重ね合わされて環状にされた層すなわち第1の層を形成し、板状磁性材a〜aは全体として第1の層群(ブロック)を形成している。また、板状磁性材a、aはそれぞれ、その両端部が互いに突き合わされて環状にされた層すなわち第2の層を形成している。本積層構成では、第2の層を形成する板状磁性材aが、環状の鉄心2の最内周側を構成し、同じく第2の層を形成する板状磁性材aが、環状の鉄心2の最外周側を構成し、第1の層群(ブロック)を形成する板状磁性材a〜aは、上記第2の層を形成する板状磁性材aと板状磁性材aとの間に配されている。すなわち、第1の層群(ブロック)と第2の層とが交互に積層される。また、図3(c)において、板状磁性材b〜bは、それぞれが、その両端部が互いに重ね合わされて環状にされた層すなわち第1の層を形成し、板状磁性材b〜bは全体として第1の層群(ブロック)を形成している。また、板状磁性材b、bはそれぞれ、その両端部が互いに突き合わされて環状にされた層すなわち第2の層を形成している。本積層構成では、第2の層を形成する板状磁性材bが、環状の鉄心2の最内周側を構成し、同じく第2の層を形成する板状磁性材bが、環状の鉄心2の最外周側を構成し、第1の層群(ブロック)を形成する板状磁性材b〜bは、上記第2の層を形成する板状磁性材bと板状磁性材bとの間に配されている。すなわち、第1の層群(ブロック)と第2の層とが交互に積層されている。 FIG. 3B shows an enlarged cross-sectional structure of the joints 1a and 2b of the iron cores 1a and 1b in FIG. 3A, and FIG. 3C shows the joints of the iron cores 2a and 2b in FIG. The enlarged cross-sectional structure of B and C is shown. In FIG. 3B, each of the plate-like magnetic materials a 2 to a 6 forms an annular layer, that is, a first layer, by overlapping both ends thereof, and the plate-like magnetic materials a 2 to a 6. Forms a first layer group (block) as a whole. Each of the plate-like magnetic materials a 1 and a 7 forms an annular layer, that is, a second layer, with both end portions thereof butting each other. In this laminated structure, the plate-like magnetic material a 1 forming the second layer constitutes the innermost peripheral side of the annular iron core 2, and the plate-like magnetic material a 7 also forming the second layer is annular. The plate-like magnetic materials a 2 to a 6 that constitute the outermost peripheral side of the iron core 2 and form the first layer group (block) are plate-like magnetic materials a 1 and plate-like that form the second layer. It is arranged between the magnetic material a 7. That is, the first layer group (block) and the second layer are alternately stacked. Further, in FIG. 3C, each of the plate-like magnetic materials b 2 to b 6 forms an annular layer, that is, a first layer, with both end portions thereof being overlapped with each other, and the plate-like magnetic material b 2 to b 6 form a first layer group (block) as a whole. Further, each of the plate-like magnetic materials b 1 and b 7 is formed into a ring-shaped layer, that is, a second layer, with both ends thereof butting each other. In this laminated structure, the plate-like magnetic material b 1 forming the second layer constitutes the innermost peripheral side of the annular iron core 2, and the plate-like magnetic material b 7 also forming the second layer is annular. The plate-like magnetic materials b 2 to b 6 constituting the outermost peripheral side of the iron core 2 and forming the first layer group (block) are plate-like with the plate-like magnetic material b 1 forming the second layer. It is arranged between the magnetic material b 7. That is, the first layer group (block) and the second layer are alternately stacked.

本第2の実施例の変圧器においては、鉄心1a、1bはそれぞれ、板状磁性材a〜aの接合部イ、ニが図3(b)の構成を有し、また、鉄心2a、2bはそれぞれ、板状磁性材b〜bの接合部ロ、ハが図3(c)の構成を有し、いずれの鉄心も、第1の層(板状磁性材の両端部が互いに重ね合わされて環状にされた層)が複数層積層された第1の層群(ブロック)と、第2の層(板状磁性材の両端部が互いに突き合わされて環状にされた層)とが交互に積層されて成る構成のため、上記第1の実施例の場合と同様、第2の層群から構成される従来の鉄心の場合に比べ、各鉄心内における磁束密度の分布が鉄心断面内で平均化されたものとなり、変圧器磁気回路の有効断面積が増大する。その結果、磁気抵抗が低減し、磁束量が増大して磁束密度が増大する。このため、各鉄心の磁気特性(B−H特性)は、従来の鉄心よりも、ヒステリシスの少ないカーブの特性となって、ヒステリシス損が減少する。 In a transformer according to the second embodiment, the core 1a, 1b, respectively, the junction b of the plate-shaped magnetic material a 1 ~a 7, two has the structure of FIG. 3 (b), also, the iron core 2a , respectively 2b, the junction of the plate-shaped magnetic members b 1 ~b 7 b, c has the configuration of FIG. 3 (c), the one of the core also both end portions of the first layer (plate-shaped magnetic material A first layer group (block) in which a plurality of layers that are overlapped with each other in a ring shape are stacked, and a second layer (a layer in which both ends of the plate-like magnetic material are butted against each other) As in the case of the first embodiment, the distribution of magnetic flux density in each iron core is a cross section of the iron core as compared with the case of the conventional iron core composed of the second layer group. And the effective cross-sectional area of the transformer magnetic circuit is increased. As a result, the magnetic resistance is reduced, the amount of magnetic flux is increased, and the magnetic flux density is increased. For this reason, the magnetic characteristic (BH characteristic) of each iron core becomes a characteristic of a curve with less hysteresis than the conventional iron core, and the hysteresis loss is reduced.

図4は、図3の変圧器100における鉄心の鉄損特性の実測結果例を示す。図4中、Aは、図3の鉄心1a、1b、2a、2bにおける鉄損特性、Bは、4個の全ての鉄心が第2の層群から構成される従来の鉄心の場合の鉄損特性である。本実測結果によると、図3の鉄心1a、1b、2a、2bにおけるヒステリシス損を含めた鉄損は、従来の場合に比べ、約30〜35%減少する。鉄損の減少は変圧器の効率を高める。また、第2の層の接合部構成は、該接合部を形成し易くし、鉄心の製作作業性を向上させる。   FIG. 4 shows an example of an actual measurement result of iron loss characteristics of the iron core in the transformer 100 of FIG. In FIG. 4, A is the iron loss characteristic in the iron cores 1a, 1b, 2a, and 2b in FIG. 3, and B is the iron loss in the case of the conventional iron core in which all four iron cores are composed of the second layer group. It is a characteristic. According to the actual measurement result, the iron loss including the hysteresis loss in the iron cores 1a, 1b, 2a, and 2b in FIG. 3 is reduced by about 30 to 35% as compared with the conventional case. Reduction of iron loss increases the efficiency of the transformer. Further, the joint configuration of the second layer facilitates the formation of the joint and improves the workability of manufacturing the iron core.

上記本発明の第2の実施例によれば、変圧器において、鉄心の有効断面積の確保、鉄心内磁束分布の改善、鉄心の製作作業性の改善などを併せて実現することができる。   According to the second embodiment of the present invention, in the transformer, it is possible to achieve the securing of the effective cross-sectional area of the iron core, the improvement of the magnetic flux distribution in the iron core, the improvement of the manufacturing workability of the iron core, and the like.

図5は、本発明の第3の実施例としての変圧器の構成例図である。図5(a)は変圧器の側面図、図5(b)、図5(c)は鉄心の接合部の拡大断面図である。本第3の実施例も、4個の鉄心と3個の励磁用コイルを備えて成る5脚型3相変圧器の場合であるが、4個のうち2個の鉄心を、板状磁性材の両端部が互いに重ね合わされて環状にされた第1の層が複数積層された第1の層群から成る構成とし、他の2個の鉄心を、板状磁性材の両端部が互いに突き合わされて環状にされた第2の層が複数積層された第2の層群から成る構成としている点が特徴である。   FIG. 5 is a configuration diagram of a transformer as a third embodiment of the present invention. Fig.5 (a) is a side view of a transformer, FIG.5 (b) and FIG.5 (c) are the expanded sectional views of the junction part of an iron core. The third embodiment is also a case of a five-leg type three-phase transformer comprising four iron cores and three exciting coils, but two of the four iron cores are made of plate-like magnetic material. The two end portions of the plate-shaped magnetic material are abutted against each other, and the other two iron cores are composed of a first layer group in which a plurality of first layers each having an annular shape are overlapped with each other. This is characterized in that the second layer group is formed by stacking a plurality of second layers formed into a ring shape.

図5(a)において、1a、1bはそれぞれ、第1の鉄心であって、板状磁性材a〜aの両端部が互いに重ね合わされて環状にされた第1の層が複数積層された第1の層群から成る構成、2a、2bはそれぞれ、第2の鉄心であって、板状磁性材b〜bの両端部が互いに突き合わされて環状にされた第2の層が複数積層された第2の層群から成る構成である。3a、3b、3cは励磁用の3相コイルである。4個の鉄心1a、1b、2a、2bは、互いに隣り合う3対の部分、すなわち、1aと2a、2aと2b、2bと1bがそれぞれ、コイル3a、3b、3cのうちの対応するものを共用して励磁される(1aと2aはコイル3aを共用し、2aと2bはコイル3bを共用し、2bと1bはコイル3cを共用する)。 In FIG. 5 (a), 1a, 1b, respectively, a first core, a first layer opposite ends of the plate-shaped magnetic material a 1 ~a 7 is superimposed to each other annularly formed by stacking a plurality first a layer group configurations, 2a, respectively 2b, a second core, a second layer opposite ends of the plate-shaped magnetic material b 1 ~b 8 is in abutted annular each other It is the structure which consists of 2nd layer group laminated | stacked by two or more. Reference numerals 3a, 3b, and 3c denote excitation three-phase coils. The four iron cores 1a, 1b, 2a, and 2b are composed of three pairs of adjacent parts, that is, 1a 2 and 2a 1 , 2a 2 and 2b 1 , 2b 2 and 1b 1 , respectively, of the coils 3a, 3b, and 3c. A corresponding one of them is shared and excited (1a 2 and 2a 1 share a coil 3a, 2a 2 and 2b 1 share a coil 3b, and 2b 2 and 1b 1 share a coil 3c).

図5(b)は、図5(a)における鉄心1a、1bの接合部イ、ニの拡大断面構造を示し、図5(c)は、図5(a)における鉄心2a、2bの接合部ロ、ハの拡大断面構造を示す。図5(b)において、板状磁性材a〜aはそれぞれ、その両端部が互いに重ね合わされて環状にされた第1の層を形成し、板状磁性材a〜aは全体として第1の層群を形成している。また、図5(c)において、板状磁性材b〜bはそれぞれ、その両端部が互いに突き合わされて環状にされた第2の層を形成し、板状磁性材b〜bは全体として第2の層群を形成している。 FIG. 5B shows an enlarged cross-sectional structure of the joints a and d of the iron cores 1a and 1b in FIG. 5A, and FIG. 5C shows a joint of the iron cores 2a and 2b in FIG. The enlarged cross-sectional structure of B and C is shown. In FIG. 5B, each of the plate-like magnetic materials a 1 to a 7 forms a first layer in which both end portions thereof are overlapped with each other to form an annular shape, and the plate-like magnetic materials a 1 to a 7 are formed as a whole. As a result, a first layer group is formed. In FIG. 5C, each of the plate-like magnetic materials b 1 to b 8 forms a second layer whose both ends are butted against each other to form a plate-like magnetic material b 1 to b 8. Forms the second layer group as a whole.

本第3の実施例の変圧器においては、鉄心1a、1bはそれぞれ、板状磁性材a〜aの接合部イ、ニが図5(b)の構成を有しているため、上記各実施例の場合と同様、第2の層群から構成される従来の鉄心の場合に比べ、各鉄心1a、1b内における磁束密度の分布が鉄心断面内で平均化されたものとなり、変圧器磁気回路の有効断面積が増大する。その結果、磁気抵抗が低減し、磁束密度が増大する。このため、各鉄心の磁気特性(B−H特性)は、従来の鉄心よりも、ヒステリシスの少ないカーブの特性となって、ヒステリシス損が減少し全体の鉄損が減少する。鉄損の減少は変圧器の効率を高める。また、鉄心2a、2bはそれぞれ、板状磁性材b〜bの接合部ロ、ハが、図5(b)のように、第2の層の接合部構成を有しているため、該接合部を形成し易く、鉄心の製作作業性を向上させる。 This in transformer of the third embodiment, since each core 1a, is 1b, the junction of the plate-shaped magnetic material a 1 ~a 7 b, d has a configuration of FIG. 5 (b), the As in the case of each embodiment, the magnetic flux density distribution in each of the iron cores 1a and 1b is averaged in the cross section of the iron core as compared with the case of the conventional iron core composed of the second layer group. The effective area of the magnetic circuit is increased. As a result, the magnetic resistance is reduced and the magnetic flux density is increased. For this reason, the magnetic characteristic (BH characteristic) of each iron core becomes a characteristic of a curve with less hysteresis than the conventional iron core, the hysteresis loss is reduced, and the overall iron loss is reduced. Reduction of iron loss increases the efficiency of the transformer. Further, since each core 2a, 2b are joined portion b of the plate-shaped magnetic members b 1 ~b 8, Ha, as shown in FIG. 5 (b), has a joint configuration of the second layer, It is easy to form the joint and improves the workability of manufacturing the iron core.

上記本発明の第3の実施例によっても、変圧器において、鉄心の有効断面積の確保、鉄心内磁束分布の改善、鉄心の製作作業性の改善などを併せて実現することができる。   According to the third embodiment of the present invention as well, in the transformer, it is possible to achieve the securing of the effective cross-sectional area of the iron core, the improvement of the magnetic flux distribution in the iron core, the improvement of the iron core manufacturing workability, and the like.

図6は、本発明の第4の実施例としての変圧器の構成例図である。図6(a)は変圧器の側面図、図6(b)、図6(c)は鉄心の接合部の拡大断面図である。本第4の実施例は、4個の鉄心1a、1b、2a、2bのうち、内側の2個の鉄心2a、2bがそれぞれ第1の鉄心であって、板状磁性材b〜bの両端部が互いに重ね合わされて環状にされた第1の層が複数積層された第1の層群から成る構成、外側の2個の鉄心1a、1bがそれぞれ、第2の鉄心であって、板状磁性材a〜aの両端部が互いに突き合わされて環状にされた第2の層が複数積層された第2の層群から成る構成である。他の構成は、上記図5に示す第3の実施例の場合と同様である。 FIG. 6 is a structural example diagram of a transformer as a fourth embodiment of the present invention. FIG. 6A is a side view of the transformer, and FIGS. 6B and 6C are enlarged sectional views of the joint portion of the iron core. The fourth embodiment, the four iron cores 1a, 1b, 2a, of 2b, the inner of the two iron cores 2a, 2b is a first core, respectively, the plate-shaped magnetic members b 1 ~b 7 Each of the two cores 1a and 1b is a second iron core, each of which is composed of a first layer group in which a plurality of first layers that are formed in an annular shape with both end portions of each other being overlapped with each other, The plate-like magnetic materials a 1 to a 8 are configured by a second layer group in which a plurality of second layers that are annularly formed by abutting both ends of each other are laminated. Other configurations are the same as those of the third embodiment shown in FIG.

本第4の実施例の変圧器においては、鉄心2a、2bはそれぞれ、板状磁性材b〜bの接合部ロ、ハが図6(c)の構成を有しているため、上記各実施例の場合と同様、第2の層群から構成される従来の鉄心の場合に比べ、各鉄心2a、2b内における磁束密度の分布が鉄心断面内で平均化されたものとなり、変圧器磁気回路の有効断面積が増大する。その結果、磁気抵抗が低減し、磁束量が増大して磁束密度が増大する。このため、各鉄心の磁気特性(B−H特性)は、従来の鉄心よりも、ヒステリシスの少ないカーブの特性となって、ヒステリシス損が減少し鉄損が減少する。鉄損の減少は変圧器の効率を高める。また、鉄心1a、1bはそれぞれ、板状磁性材a〜aの接合部イ、ニが、図6(b)のように、第2の層の接合部構成を有しているため、該接合部を形成し易く、鉄心の製作作業性を向上させる。 This in transformer of the fourth embodiment, since each core 2a, 2b are joined portion b of the plate-shaped magnetic members b 1 ~b 7, c has the configuration of FIG. 6 (c), the As in the case of each embodiment, the magnetic flux density distribution in each of the iron cores 2a and 2b is averaged in the cross section of the iron core as compared with the case of the conventional iron core composed of the second layer group. The effective area of the magnetic circuit is increased. As a result, the magnetic resistance is reduced, the amount of magnetic flux is increased, and the magnetic flux density is increased. For this reason, the magnetic characteristic (BH characteristic) of each iron core becomes a curve characteristic with less hysteresis than the conventional iron core, and the hysteresis loss is reduced and the iron loss is reduced. Reduction of iron loss increases the efficiency of the transformer. Further, since each core 1a, is 1b, the junction b of the plate-shaped magnetic material a 1 ~a 8, two are as in FIG. 6 (b), has a joint configuration of the second layer, It is easy to form the joint and improves the workability of manufacturing the iron core.

上記本発明の第4の実施例によっても、変圧器において、鉄心の有効断面積の確保、鉄心内磁束分布の改善、鉄心の製作作業性の改善などを併せて実現することができる。   According to the fourth embodiment of the present invention, in the transformer, it is possible to achieve the securing of the effective cross-sectional area of the iron core, the improvement of the magnetic flux distribution in the iron core, the improvement of the iron core manufacturing workability, and the like.

図7は、本発明の第5の実施例としての変圧器の構成例図である。図7(a)は変圧器の側面図、図7(b)、図7(c)は鉄心の接合部の拡大断面図である。本第5の実施例は3個の鉄心と3個の励磁用コイルとを備えて成る3脚型3相変圧器の場合の例である。   FIG. 7 is a structural diagram of a transformer as a fifth embodiment of the present invention. Fig.7 (a) is a side view of a transformer, FIG.7 (b), FIG.7 (c) is an expanded sectional view of the junction part of an iron core. The fifth embodiment is an example of a three-leg type three-phase transformer comprising three iron cores and three exciting coils.

図7(a)において、100は変圧器、4、5a、5bはそれぞれ鉄心、3a、3b、3cは励磁用の3相コイルである。2個の鉄心5a、5bは、1個の鉄心4の環状領域内に並んだ状態で配される。各鉄心4、5a、5bにおいて、複数層に積層される板状磁性材のうちの一部のものは、その両端部が互いに重ね合わされて環状にされた層すなわち第1の層を形成し、また他のものは、その両端部が互いに突き合わされて環状にされた層すなわち第2の層を形成している。また、3個の鉄心4、5a、5bは、該鉄心4と鉄心5aの互いに隣り合う1対の部分すなわち4aと5aが第1のコイル3aを共用して励磁され、鉄心5a、5bの互いに隣り合う1対の部分すなわち5aと5bが第2のコイル3bを共用して励磁され、鉄心5bと鉄心4の互いに隣り合う1対の部分すなわち5bと4aが第3のコイル3cを共用して励磁される構成である。 In FIG. 7A, 100 is a transformer, 4, 5a, 5b are iron cores, 3a, 3b, 3c are three-phase coils for excitation. The two iron cores 5 a and 5 b are arranged in a state where they are arranged in the annular region of the one iron core 4. In each of the iron cores 4, 5 a, 5 b, some of the plate-like magnetic materials laminated in a plurality of layers form an annular layer, that is, a first layer, whose both ends are overlapped with each other, In the other, both ends thereof are butted against each other to form an annular layer, that is, a second layer. The three iron cores 4, 5 a, 5 b are excited by a pair of adjacent parts of the iron core 4 and the iron core 5 a, that is, 4 a 1 and 5 a 1 , sharing the first coil 3 a, and the iron cores 5 a, 5 b A pair of adjacent parts, ie, 5a 2 and 5b 1 are excited by sharing the second coil 3b, and a pair of adjacent parts of the iron core 5b and the iron core 4 ie 5b 2 and 4a 2 are the third ones. In this configuration, the coil 3c is shared and excited.

図7(b)は、図7(a)における鉄心5a、5bの接合部ホ、トの拡大断面構造を示し、図7(c)は、図7(a)における鉄心4の接合部ヘの拡大断面構造を示す。図7(b)において、板状磁性材a〜aは、それぞれが、その両端部が互いに重ね合わされて環状にされた層すなわち第1の層を形成し、板状磁性材a〜aは全体として第1の層群(ブロック)を形成している。また、板状磁性材a、aはそれぞれ、その両端部が互いに突き合わされて環状にされた層すなわち第2の層を形成している。本積層構成では、第2の層を形成する板状磁性材aが、環状の鉄心5a、5bそれぞれの最内周側を構成し、同じく第2の層を形成する板状磁性材aが、環状の鉄心5a、5bそれぞれの最外周側を構成し、第1の層群(ブロック)を形成する板状磁性材a〜aは、上記第2の層を形成する板状磁性材aと板状磁性材aとの間に配されている。すなわち、鉄心5a、5bにおいて、第1の層群(ブロック)と第2の層とが交互に積層される。また、図7(c)において、板状磁性材b〜bはそれぞれ、その両端部が互いに重ね合わされて環状にされた層すなわち第1の層を形成し、板状磁性材b〜bは全体として第1の層群(ブロック)を形成している。また、板状磁性材b、bはそれぞれ、その両端部が互いに突き合わされて環状にされた層すなわち第2の層を形成している。本積層構成では、第2の層を形成する板状磁性材bが、環状の鉄心4の最内周側を構成し、同じく第2の層を形成する板状磁性材bが、環状の鉄心4の最外周側を構成し、第1の層群(ブロック)を形成する板状磁性材b〜bは、上記第2の層を形成する板状磁性材bと板状磁性材bとの間に配されている。すなわち、鉄心4においても、第1の層群(ブロック)と第2の層とが交互に積層される。 FIG. 7B shows an enlarged cross-sectional structure of the joints 5a and 5b of the iron cores 5a and 5b in FIG. 7A, and FIG. 7C shows the connection to the joint of the iron core 4 in FIG. An enlarged sectional structure is shown. In FIG. 7 (b), the plate-shaped magnetic members a 2 ~a 6 are each, both ends thereof are overlapped with each other to form a layer or first layer is in an annular plate-shaped magnetic material a 2 ~ a 6 forms a first group of layers (block) as a whole. Each of the plate-like magnetic materials a 1 and a 7 forms an annular layer, that is, a second layer, with both end portions thereof butting each other. In this laminated structure, the plate-like magnetic material a 1 that forms the second layer constitutes the innermost peripheral side of each of the annular iron cores 5a and 5b, and the plate-like magnetic material a 7 that also forms the second layer. However, the plate-like magnetic materials a 2 to a 6 constituting the outermost peripheral side of each of the annular iron cores 5a and 5b and forming the first layer group (block) are plate-like magnetic materials forming the second layer. It is arranged between the wood a 1 and the plate-shaped magnetic members a 7. That is, in the iron cores 5a and 5b, the first layer group (block) and the second layer are alternately stacked. In FIG. 7C, each of the plate-like magnetic materials b 2 to b 6 is formed into a ring-shaped layer, ie, a first layer, by overlapping both ends thereof, and the plate-like magnetic materials b 2 to b 6 b 6 forms a first layer group (block) as a whole. Further, each of the plate-like magnetic materials b 1 and b 7 is formed into a ring-shaped layer, that is, a second layer, with both ends thereof butting each other. In this laminated structure, the plate-like magnetic material b 1 forming the second layer constitutes the innermost peripheral side of the annular iron core 4, and the plate-like magnetic material b 7 also forming the second layer is annular. The plate-like magnetic materials b 2 to b 6 that constitute the outermost peripheral side of the iron core 4 and form the first layer group (block) are the plate-like magnetic material b 1 that forms the second layer and the plate-like magnetic material b 1. It is arranged between the magnetic material b 7. That is, also in the iron core 4, the first layer group (block) and the second layer are alternately laminated.

本第5の実施例においては、鉄心5a、5bはそれぞれ、板状磁性材a〜aの接合部ホ、トが図7(b)の構成を有し、また、鉄心4は、板状磁性材b〜bの接合部ヘが図3(c)の構成を有し、いずれの鉄心も、第1の層(板状磁性材の両端部が互いに重ね合わされて環状にされた層)が複数積層された第1の層群(ブロック)と、第2の層(板状磁性材の両端部が互いに突き合わされて環状にされた層)とが交互に積層されて成る構成のため、上記第1の実施例の場合と同様、第2の層群から構成される従来の鉄心の場合に比べ、各鉄心内における磁束密度の分布が鉄心断面内で平均化されたものとなり、変圧器磁気回路の有効断面積が増大する。その結果、磁気抵抗が低減し、磁束量が増大して磁束密度が増大する。このため、各鉄心の磁気特性(B−H特性)は、従来の鉄心よりも、ヒステリシスの少ないカーブの特性となって、ヒステリシス損が減少し鉄損が減少する。鉄損の減少は変圧器の効率を高める。また、第2の層の接合部構成は、該接合部を形成し易くし、鉄心の製作作業性を向上させる。 This In the fifth embodiment, each core 5a, 5b, the bonding portion E of the plate-shaped magnetic members a 1 ~a 7, the bets has a configuration of FIG. 7 (b), also, the iron core 4, the plate joint f of Jo magnetic material b 1 ~b 7 has a configuration of FIG. 3 (c), any of the core is also, both end portions of the first layer (plate-shaped magnetic material is superimposed to each other in a ring The first layer group (block) in which a plurality of layers) are stacked and the second layer (layers in which both end portions of the plate-like magnetic material are butted against each other) are alternately stacked. Therefore, as in the case of the first embodiment, the magnetic flux density distribution in each iron core is averaged in the core cross section compared to the case of the conventional iron core composed of the second layer group. The effective area of the transformer magnetic circuit is increased. As a result, the magnetic resistance is reduced, the amount of magnetic flux is increased, and the magnetic flux density is increased. For this reason, the magnetic characteristic (BH characteristic) of each iron core becomes a curve characteristic with less hysteresis than the conventional iron core, and the hysteresis loss is reduced and the iron loss is reduced. Reduction of iron loss increases the efficiency of the transformer. Further, the joint configuration of the second layer facilitates the formation of the joint and improves the workability of manufacturing the iron core.

上記本発明の第5の実施例によれば、変圧器において、鉄心の有効断面積の確保、鉄心内磁束分布の改善、鉄心の製作作業性の改善などを併せて実現することが可能となる。   According to the fifth embodiment of the present invention, in the transformer, it is possible to achieve the securing of the effective cross-sectional area of the iron core, the improvement of the magnetic flux distribution in the iron core, the improvement of the iron core manufacturing workability, and the like. .

図8は、本発明の第6の実施例としての変圧器の構成例図である。図8(a)は変圧器の側面図、図8(b)、図8(c)はそれぞれ鉄心の接合部の拡大断面図である。本第6の実施例も、上記第5の実施例と同様、3個の鉄心と3個の励磁用コイルを備えて成る3脚型3相変圧器の場合であるが、3個のうち内側の2個の鉄心5a、5bを、板状磁性材の両端部が互いに重ね合わされて環状にされた第1の層が複数積層された第1の層群から成る構成とし、外側の他の1個の鉄心4を、板状磁性材の両端部が互いに突き合わされて環状にされた第2の層が複数積層された第2の層群から成る構成としている点が特徴である。   FIG. 8 is a structural example diagram of a transformer as a sixth embodiment of the present invention. FIG. 8A is a side view of the transformer, and FIG. 8B and FIG. 8C are enlarged sectional views of the joint portion of the iron core. The sixth embodiment is also a case of a tripod type three-phase transformer comprising three iron cores and three exciting coils, as in the fifth embodiment, but the inner side of the three The two iron cores 5a and 5b are composed of a first layer group in which a plurality of first layers each having an annular shape in which both end portions of a plate-like magnetic material are overlapped with each other, The individual iron cores 4 are characterized in that they are composed of a second layer group in which a plurality of second layers each having an annular shape formed by abutting both end portions of a plate-like magnetic material are laminated.

図8(a)において、5a、5bはそれぞれ、第1の鉄心であって、板状磁性材a〜aの両端部が互いに重ね合わされて環状にされた第1の層が複数積層された第1の層群から成る構成、4は、第2の鉄心であって、板状磁性材b〜bの両端部が互いに突き合わされて環状にされた第2の層が複数積層された第2の層群から成る構成である。3a、3b、3cは励磁用の3相コイルである。また、3個の鉄心4、5a、5bは、該鉄心4と鉄心5aの互いに隣り合う1対の部分すなわち4aと5aが第1のコイル3aを共用して励磁され、鉄心5a、5bの互いに隣り合う1対の部分すなわち5aと5bが第2のコイル3bを共用して励磁され、鉄心5bと鉄心4の互いに隣り合う1対の部分すなわち5bと4aが第3のコイル3cを共用して励磁される構成である。 In FIG. 8 (a), 5a, 5b, respectively, a first core, a first layer opposite ends of the plate-shaped magnetic material a 1 ~a 7 is superimposed to each other annularly formed by stacking a plurality 4 is a second iron core, and a plurality of second layers in which both end portions of the plate-like magnetic materials b 1 to b 8 are abutted with each other are laminated. The second layer group. Reference numerals 3a, 3b, and 3c denote excitation three-phase coils. The three iron cores 4, 5 a, 5 b are excited by a pair of adjacent parts of the iron core 4 and the iron core 5 a, that is, 4 a 1 and 5 a 1 , sharing the first coil 3 a, and the iron cores 5 a, 5 b A pair of adjacent parts, ie, 5a 2 and 5b 1 are excited by sharing the second coil 3b, and a pair of adjacent parts of the iron core 5b and the iron core 4 ie 5b 2 and 4a 2 are the third ones. In this configuration, the coil 3c is shared and excited.

図8(b)は、図8(a)における鉄心5a、5bの接合部ホ、トの拡大断面構造を示し、図8(c)は、図8(a)における鉄心5a、5bの接合部ヘの拡大断面構造を示す。図8(b)において、板状磁性材a〜aはそれぞれ、その両端部が互いに重ね合わされて環状にされた第1の層を形成し、板状磁性材a〜aは全体として第1の層群を形成している。また、図8(c)において、板状磁性材b〜bはそれぞれ、その両端部が互いに突き合わされて環状にされた第2の層を形成し、板状磁性材b〜bは全体として第2の層群を形成している。 8B shows an enlarged cross-sectional structure of the joints 5a and 5b of the iron cores 5a and 5b in FIG. 8A, and FIG. 8C shows a joint of the iron cores 5a and 5b in FIG. 8A. The enlarged cross-sectional structure of F is shown. In FIG. 8B, each of the plate-like magnetic materials a 1 to a 7 forms a first layer in which both end portions thereof are overlapped with each other to form an annular shape, and the plate-like magnetic materials a 1 to a 7 are formed as a whole. As a result, a first layer group is formed. In FIG. 8C, each of the plate-like magnetic materials b 1 to b 8 forms a second layer in which both end portions are butted against each other to form a plate-like magnetic material b 1 to b 8. Forms the second layer group as a whole.

本第6の実施例の変圧器においては、鉄心5a、5bはそれぞれ、板状磁性材a〜aの接合部ホ、トが図8(b)の構成を有しているため、上記各実施例の場合と同様、第2の層群から構成される従来の鉄心の場合に比べ、各鉄心5a、5b内における磁束密度の分布が鉄心断面内で平均化されたものとなり、変圧器磁気回路の有効断面積が増大する。その結果、磁気抵抗が低減し、磁束量が増大して磁束密度が増大する。このため、各鉄心の磁気特性(B−H特性)は、従来の鉄心よりも、ヒステリシスの少ないカーブの特性となって、ヒステリシス損が減少し全体の鉄損が減少する。鉄損の減少は変圧器の効率を高める。また、鉄心4は、板状磁性材b〜bの接合部ヘが、図8(c)のように、第2の層の接合部構成を有しているため、該接合部を形成し易く、鉄心の製作作業性を向上させる。 This in transformers of the sixth embodiment, since the iron core 5a, the respectively 5b, junction E of the plate-shaped magnetic material a 1 ~a 7, the bets has the structure of FIG. 8 (b), the As in the case of each embodiment, the magnetic flux density distribution in each of the iron cores 5a and 5b is averaged in the cross section of the iron core as compared with the case of the conventional iron core composed of the second layer group. The effective area of the magnetic circuit is increased. As a result, the magnetic resistance is reduced, the amount of magnetic flux is increased, and the magnetic flux density is increased. For this reason, the magnetic characteristic (BH characteristic) of each iron core becomes a characteristic of a curve with less hysteresis than the conventional iron core, the hysteresis loss is reduced, and the overall iron loss is reduced. Reduction of iron loss increases the efficiency of the transformer. Further, the iron core 4 is formed joint portions F of the plate-shaped magnetic members b 1 ~b 8 is, as shown in FIG. 8 (c), the order has a joint configuration of the second layer, the the joint portion It is easy to do and improves the workability of iron core production.

上記本発明の第6の実施例によっても、変圧器において、鉄心の有効断面積の確保、鉄心内磁束分布の改善、鉄心の製作作業性の改善などを併せて実現することができる。   According to the sixth embodiment of the present invention as well, in the transformer, it is possible to achieve the securing of the effective cross-sectional area of the iron core, the improvement of the magnetic flux distribution in the iron core, the improvement of the manufacturing workability of the iron core, and the like.

図9は、本発明の第7の実施例としての変圧器の構成例図である。図9(a)は変圧器の側面図、図9(b)、図9(c)は鉄心の接合部の拡大断面図である。本第7の実施例は、3個の鉄心4、5a、5bのうち外側の1個の鉄心4が、第1の鉄心であって、板状磁性材b〜bの両端部が互いに重ね合わされて環状にされた第1の層が複数積層された第1の層群から成る構成、内側の2個の鉄心5a、5bがそれぞれ、第2の鉄心であって、板状磁性材a〜aの両端部が互いに突き合わされて環状にされた第2の層が複数積層された第2の層群から成る構成である。他の構成は、上記図8に示す第6の実施例の場合と同様である。 FIG. 9 is a structural example diagram of a transformer as a seventh embodiment of the present invention. 9A is a side view of the transformer, and FIGS. 9B and 9C are enlarged cross-sectional views of the joint portion of the iron core. Examples of the seventh, three core 4, 5a, 1 piece of the iron core 4 of the outer among 5b is a first core, both ends of the plate-shaped magnetic members b 1 ~b 7 from each other A structure composed of a first layer group in which a plurality of first layers that are overlapped to form an annular shape are laminated, and the two inner iron cores 5a and 5b are each a second iron core, and a plate-like magnetic material a a second layer both ends of 1 ~a 8 is abutted with the annular each other is constituted of a second group of layers which are stacked. Other configurations are the same as those of the sixth embodiment shown in FIG.

本第7の実施例の変圧器においては、鉄心4は、板状磁性材b〜bの接合部ヘが図9(c)の構成を有しているため、上記各実施例の場合と同様、第2の層群から構成される従来の鉄心の場合に比べ、各鉄心2a、2b内における磁束密度の分布が鉄心断面内で平均化されたものとなり、変圧器磁気回路の有効断面積が増大する。その結果、磁気抵抗が低減し、磁束量が増大して磁束密度が増大する。このため、各鉄心の磁気特性(B−H特性)は、従来の鉄心よりも、ヒステリシスの少ないカーブの特性となって、ヒステリシス損が減少し全体の鉄損が減少する。鉄損の減少は変圧器の効率を高める。また、鉄心5a、5bはそれぞれ、板状磁性材a〜aの接合部ホ、トが、図9(b)のように、第2の層の接合部構成を有しているため、該接合部を形成し易く、鉄心の製作作業性を改善する。 In the transformer according to the seventh embodiment, the iron core 4 has the configuration shown in FIG. 9C in the joint portions of the plate-like magnetic materials b 1 to b 7 . Similarly to the case of the conventional iron core composed of the second layer group, the distribution of the magnetic flux density in each iron core 2a, 2b is averaged in the cross section of the iron core, and the transformer magnetic circuit is effectively disconnected. The area increases. As a result, the magnetic resistance is reduced, the amount of magnetic flux is increased, and the magnetic flux density is increased. For this reason, the magnetic characteristic (BH characteristic) of each iron core becomes a characteristic of a curve with less hysteresis than the conventional iron core, the hysteresis loss is reduced, and the overall iron loss is reduced. Reduction of iron loss increases the efficiency of the transformer. Further, since the iron core 5a, 5b respectively, the junction E of the plate-shaped magnetic material a 1 ~a 8, is collected by, as shown in FIG. 9 (b), a joint structure of the second layer, It is easy to form the joint and improves the workability of manufacturing the iron core.

上記本発明の第7の実施例によっても、変圧器において、鉄心の有効断面積の確保、鉄心内磁束分布の改善、鉄心の製作作業性の改善などを併せて実現することが可能となる。   According to the seventh embodiment of the present invention as well, in the transformer, it is possible to achieve the securing of the effective cross-sectional area of the iron core, the improvement of the magnetic flux distribution in the iron core, the improvement of the iron core manufacturing workability, and the like.

なお、上記第2の実施例及び第5の実施例では、複数の鉄心の全てを、板状磁性材による第1の層群と第2の層とが交互に積層されて成る構成としたが、本発明はこれに限定されず、複数の鉄心の一部のものを、第1の層群(ブロック)と第2の層とが交互に積層されて成る構成としてもよい。また、第2の実施例及び第5の実施例では、環状の鉄心の最内周側と最外周側とに第2の層を設け、該両第2の層の間に第1の層群(ブロック)を配する構成としたが、本発明はこれにも限定されず、第2の層群(ブロック)の間に第1の層または第1の層群(ブロック)を配する構成としてもよいし、また、第1の層の間または第1の層群(ブロック)の間に第2の層または第2の層群(ブロック)を配する構成としてもよい。さらに、第1の層と第2の層とを1層ずつ交互に積層してもよい。さらに、複数の鉄心を用いて成る変圧器では、鉄心毎に、第1の層または第1の層群と、第2の層または第2の層群との組合わせ方を変えて積層した鉄心としてもよいし、複数の鉄心を、第1の層または第1の層群と、第2の層または第2の層群とを組合わせて積層した鉄心と、他の積層構成の鉄心例えば第1の層群だけから鉄心や第2の層群だけから成る鉄心との組合わせとしてもよい。   In the second embodiment and the fifth embodiment, all of the plurality of iron cores are configured by alternately laminating the first layer group and the second layer made of a plate-like magnetic material. The present invention is not limited to this, and a part of the plurality of iron cores may be configured by alternately laminating the first layer group (block) and the second layer. In the second and fifth embodiments, the second layer is provided on the innermost and outermost sides of the annular iron core, and the first layer group is provided between the two second layers. However, the present invention is not limited to this, and the first layer or the first layer group (block) is disposed between the second layer group (block). Alternatively, the second layer or the second layer group (block) may be arranged between the first layers or between the first layer groups (blocks). Further, the first layer and the second layer may be alternately stacked one by one. Further, in a transformer using a plurality of iron cores, the iron cores are laminated by changing the combination of the first layer or the first layer group and the second layer or the second layer group for each iron core. Or an iron core in which a plurality of iron cores are laminated by combining the first layer or the first layer group and the second layer or the second layer group; A combination with an iron core consisting of only one layer group or an iron core consisting of only the second layer group may be used.

また、上記各実施例においては、鉄心を構成する板状磁性材は、例えば、厚さ0.02×10−3m〜0.03×10−3m程度のアモルファスの薄板材(薄帯材)が数十枚重ねられて成る複合構造としたが、本発明はこれにも限定されず、各板状磁性材は、例えば1枚のシート状部材から構成されたものであってもよいし、珪素鋼板など他の磁性材であってもよい。また、板状磁性材の積層数も上記実施例における7層や8層に限定されない。さらに、コイル数や励磁方式も、実施例のものに限定されない。 Further, in the above embodiments, the plate-shaped magnetic material constituting the iron core, for example, a thickness of 0.02 × 10 -3 m~0.03 × 10 -3 m of approximately amorphous thin material (Usuobizai However, the present invention is not limited to this, and each plate-like magnetic material may be composed of, for example, one sheet-like member. Other magnetic materials such as a silicon steel plate may be used. Further, the number of laminated plate-like magnetic materials is not limited to 7 layers or 8 layers in the above embodiment. Further, the number of coils and the excitation method are not limited to those in the embodiment.

本発明の第1の実施例の構成例図である。It is an example of composition of the 1st example of the present invention. 図1の変圧器における鉄心の鉄損特性例を示す図である。It is a figure which shows the iron loss characteristic example of the iron core in the transformer of FIG. 本発明の第2の実施例の構成例図である。It is a structural example figure of the 2nd Example of this invention. 図3の変圧器における鉄心の鉄損特性例を示す図である。It is a figure which shows the iron loss characteristic example of the iron core in the transformer of FIG. 本発明の第3の実施例の構成例図である。It is an example of a structure of the 3rd Example of this invention. 本発明の第4の実施例の構成例図である。It is a structural example figure of the 4th Example of this invention. 本発明の第5の実施例の構成例図である。It is a structural example figure of the 5th Example of this invention. 本発明の第6の実施例の構成例図である。It is a structural example figure of the 6th Example of this invention. 本発明の第7の実施例の構成例図である。It is a structural example figure of the 7th Example of this invention.

符号の説明Explanation of symbols

1a、1b、2、2a、2b、4、5a、5b…鉄心、
3a、3b、3c…コイル、
100…変圧器、
〜a、b〜b…第1の層、
〜a、b〜b…第2の層。
1a, 1b, 2, 2a, 2b, 4, 5a, 5b ... iron core,
3a, 3b, 3c ... coil,
100 ... transformer,
a 1 to a 7 , b 1 to b 7 ... first layer,
a 1 ~a 8, b 1 ~b 8 ... the second layer.

Claims (5)

板状磁性材を複数層に積層し環状に成形した鉄心と励磁用のコイルとを備えて成る変圧器であって、
上記鉄心として、第1の板状磁性材の両端部が互いに重ね合わされて環状にされた第1の層が複数層積層された第1の層群と、第2の板状磁性材の両端部が互いに突き合わされて環状にされた第2の層または該第2の層が複数層積層された第2の層群とが交互に積層されて成る鉄心を備えたことを特徴とする変圧器。
A transformer comprising an iron core formed by laminating a plurality of layers of a plate-like magnetic material and an annular coil, and an exciting coil,
As the iron core, a first layer group in which a plurality of first layers that are annularly formed by overlapping both end portions of the first plate-like magnetic material are laminated, and both end portions of the second plate-like magnetic material A transformer comprising: an iron core formed by alternately laminating a second layer or a second layer group in which a plurality of the second layers are laminated.
上記積層構成の鉄心を4個備え、該4個の鉄心の互いに隣り合う3対の部分がそれぞれコイルを共用して励磁される構成、または、上記積層構成の1個の鉄心の環状領域内に上記積層構成の2個の鉄心が並んで配され、該1個の鉄心と該2個の鉄心のうちの一方の互いに隣り合う1対の部分が第1のコイルを共用して励磁され、該2個の鉄心の互いに隣り合う1対の部分が第2のコイルを共用して励磁され、該2個の鉄心のうちの他方と上記1個の鉄心の互いに隣り合う1対の部分が第3のコイルを共用して励磁される構成である請求項1に記載の変圧器。   Four cores having the above-described laminated structure are provided, and three pairs of the four cores adjacent to each other are excited by sharing coils, or in the annular region of one core having the above-described laminated structure Two iron cores having the above-described laminated structure are arranged side by side, and one pair of adjacent one of the one iron core and the two iron cores is excited by sharing a first coil, A pair of adjacent portions of the two iron cores are excited by sharing the second coil, and the pair of adjacent ones of the other one of the two iron cores and the one iron core is the third. The transformer according to claim 1, wherein the coil is configured to be excited by sharing the coil. 板状磁性材を複数層に積層し環状に成形した鉄心と励磁用のコイルとを備えて成る変圧器であって、
上記鉄心が、第1の板状磁性材の両端部が互いに重ね合わされて環状にされた第1の層が複数積層された第1の層群から成る第1の鉄心と、第2の板状磁性材の両端部が互いに突き合わされて環状にされた第2の層が複数積層された第2の層群から成る第2の鉄心とを備えて構成されることを特徴とする変圧器。
A transformer comprising an iron core formed by laminating a plurality of layers of a plate-like magnetic material and formed into an annular shape, and an exciting coil,
The iron core includes a first iron core composed of a first layer group in which a plurality of first layers each having an annular shape in which both end portions of the first plate-shaped magnetic material are overlapped with each other, and a second plate shape A transformer comprising: a second iron core composed of a second layer group in which a plurality of second layers in which both end portions of a magnetic material are butted against each other are laminated.
上記鉄心は、上記第1、第2の鉄心をそれぞれ2個ずつ備え、該第1の鉄心の一方と該第2の鉄心の一方とが第1のコイルを共用して励磁され、該第2の鉄心の一方と第2の鉄心の他方とが第2のコイルを共用して励磁され、該第2の鉄心の他方と第1の鉄心の他方とが第3のコイルを共用して励磁される構成、または、1個の上記第1の鉄心の環状領域内に2個の上記第2の鉄心が配され、該第1の鉄心と該第2の鉄心の一方とが第1のコイルを共用して励磁され、該第2の鉄心の一方と第2の鉄心の他方とが第2のコイルを共用して励磁され、該第2の鉄心の他方と上記第1の鉄心とが第3のコイルを共用して励磁される構成である請求項3に記載の変圧器。   The iron core includes two each of the first and second iron cores, and one of the first iron cores and one of the second iron cores are excited by sharing a first coil, and the second One of the iron cores and the other of the second iron core are excited by sharing the second coil, and the other of the second iron core and the other of the first iron core are excited by sharing the third coil. Or two of the second iron cores are arranged in an annular region of one of the first iron cores, and the first iron core and one of the second iron cores form the first coil. The second iron core and the other second iron core are excited by sharing the second coil, and the other second iron core and the first iron core are thirdly excited. The transformer according to claim 3, wherein the coil is configured to be excited by using a common coil. 上記鉄心は、上記板状磁性材がそれぞれ、薄板材が複数重ねられて成る構成である請求項1から4のいずれかに記載の変圧器。
The transformer according to any one of claims 1 to 4, wherein the iron core has a configuration in which a plurality of thin plate materials are stacked on each other.
JP2004372408A 2004-05-26 2004-12-24 Transformer Pending JP2006179727A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004372408A JP2006179727A (en) 2004-12-24 2004-12-24 Transformer
US11/138,234 US7292127B2 (en) 2004-05-26 2005-05-25 Transformer
CN2007101077710A CN101086913B (en) 2004-05-26 2005-05-26 Transformer
US11/974,015 US7471183B2 (en) 2004-05-26 2007-10-10 Transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372408A JP2006179727A (en) 2004-12-24 2004-12-24 Transformer

Publications (1)

Publication Number Publication Date
JP2006179727A true JP2006179727A (en) 2006-07-06

Family

ID=36733531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372408A Pending JP2006179727A (en) 2004-05-26 2004-12-24 Transformer

Country Status (1)

Country Link
JP (1) JP2006179727A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026898A1 (en) * 2008-09-03 2010-03-11 株式会社日立産機システム Wound iron core for static apparatus, amorphous transformer and coil winding frame for transformer
JP2010114170A (en) * 2008-11-05 2010-05-20 Hitachi Industrial Equipment Systems Co Ltd Iron core for static apparatus
JP2011233728A (en) * 2010-04-28 2011-11-17 Hitachi Industrial Equipment Systems Co Ltd Transformer
US8377721B2 (en) 2007-07-12 2013-02-19 Tokyo Electron Limited Substrate processing system and method
KR101481057B1 (en) 2014-05-15 2015-01-14 삼정전기공업 주식회사 Production method of pole-mounted transformers
JP2017054896A (en) * 2015-09-09 2017-03-16 株式会社日立産機システム Iron core for transformer and transformer using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377721B2 (en) 2007-07-12 2013-02-19 Tokyo Electron Limited Substrate processing system and method
WO2010026898A1 (en) * 2008-09-03 2010-03-11 株式会社日立産機システム Wound iron core for static apparatus, amorphous transformer and coil winding frame for transformer
US20110234360A1 (en) * 2008-09-03 2011-09-29 Kenji Nakanoue Wound iron core for static apparatus, amorphous transformer and coil winding frame for transformer
TWI455156B (en) * 2008-09-03 2014-10-01 Hitachi Ind Equipment Sys Static machine with core and static machine
US9013263B2 (en) 2008-09-03 2015-04-21 Hitachi Industrial Equipment Systems Co., Ltd. Wound iron core for static apparatus, amorphous transformer and coil winding frame for transformer
US9601256B2 (en) 2008-09-03 2017-03-21 Hitachi Industrial Equipment Systems Co., Ltd. Wound iron core for static apparatus, amorphous transformer and coil winding frame for transformer
JP2010114170A (en) * 2008-11-05 2010-05-20 Hitachi Industrial Equipment Systems Co Ltd Iron core for static apparatus
JP2011233728A (en) * 2010-04-28 2011-11-17 Hitachi Industrial Equipment Systems Co Ltd Transformer
KR101481057B1 (en) 2014-05-15 2015-01-14 삼정전기공업 주식회사 Production method of pole-mounted transformers
JP2017054896A (en) * 2015-09-09 2017-03-16 株式会社日立産機システム Iron core for transformer and transformer using the same

Similar Documents

Publication Publication Date Title
JP4722589B2 (en) Stator laminated core
JP5604059B2 (en) Frame-shaped iron core
CN203277040U (en) Distribution transformer with laminated iron core
US7471183B2 (en) Transformer
JP2006179727A (en) Transformer
JP2014203915A (en) Iron core for stationary induction apparatus
WO2018062274A1 (en) Magnetic core piece and magnetic core
JP5519550B2 (en) Split core and stator core
JP4369297B2 (en) Transformer
JP5005169B2 (en) Transformer
JP5432078B2 (en) Transformer
JP4381351B2 (en) Three-phase winding core
JP2014204120A (en) Method of manufacturing iron core for stationary induction apparatus
JP3189478U (en) Assembly structure of steel core
JP2017054896A (en) Iron core for transformer and transformer using the same
JP7430115B2 (en) Stacked iron core stationary induction device and its manufacturing method
WO2016006314A1 (en) Wound iron core and method for manufacturing wound iron core
JP7337589B2 (en) Stacked iron asystole induction device and manufacturing method thereof
JP2002083716A (en) Wound core
JP7402092B2 (en) cut core
JP2012015210A (en) Disassembled and transported transformer core
JPH06349643A (en) Transformer iron core
JP2005203445A (en) Transformer
JPH1140434A (en) Iron core for reactor
JP2023043935A (en) Iron core structure and transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728