JP2012015210A - Disassembled and transported transformer core - Google Patents

Disassembled and transported transformer core Download PDF

Info

Publication number
JP2012015210A
JP2012015210A JP2010148214A JP2010148214A JP2012015210A JP 2012015210 A JP2012015210 A JP 2012015210A JP 2010148214 A JP2010148214 A JP 2010148214A JP 2010148214 A JP2010148214 A JP 2010148214A JP 2012015210 A JP2012015210 A JP 2012015210A
Authority
JP
Japan
Prior art keywords
core
yoke
cores
leg
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010148214A
Other languages
Japanese (ja)
Inventor
Yoshio Hamadate
良夫 浜館
Kenichi Kawamura
憲一 河村
Takayasu Otani
隆康 太谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan AE Power Systems Corp
Original Assignee
Japan AE Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan AE Power Systems Corp filed Critical Japan AE Power Systems Corp
Priority to JP2010148214A priority Critical patent/JP2012015210A/en
Publication of JP2012015210A publication Critical patent/JP2012015210A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a core of a disassembled and transported transformer with easy assembly work, which can reduce increase in exciting current and iron loss in a lapping part connecting a lower part divided yoke core connected to each leg core and a connecting yoke core.SOLUTION: A disassembled and transported transformer core includes leg cores 2, 3, 4 vertically-arranged, and an upper part and a lower part yoke core 5, 6 connecting the upper part and the lower part of the leg cores 2, 3, 4. The lower part yoke core 6 includes lower part divided yoke cores 7a, 7b, 8a, 8b that are connected to each of the leg cores 2, 3, 4, and that are formed by laminating a plurality of steel plates divided corresponding to each of the leg cores 2, 3, 4, and connecting yoke cores 9a, 9b formed by laminating the multiple steel plates that connect between the lower part divided yoke cores 7a, 7b, 8a, 8b of the adjacent leg cores 2, 3, 4. A connecting part between the lower part divided yoke cores 7a, 7b, 8a, 8b and the connecting yoke cores 9a, 9b is formed by having a lapping part which is formed so that the abutment positions at which the end faces of the steel plates as the same laminated layer face each other are shifted in the extended direction of the lower part yoke core 6 in at least three continuous layers each other and are laminated.

Description

本発明は、分解輸送変圧器に係り、特に分解輸送変圧器の分解、輸送及び現地組立を容易にできるようにするための鉄心の分解及び接続構造の改良に関する。   The present invention relates to a disassembling / transporting transformer, and more particularly, to an iron core disassembling and improving a connecting structure for facilitating disassembling / transporting / on-site assembly of the disassembling / transporting transformer.

従来から大容量の大型の変圧器においては、工場における製作、組立て、試験及び検査が完了した後、輸送上等の制限を満たす寸法及び重量に分解して据え付け場所に輸送し、再組立て、試験及び検査を可能にする分割輸送変圧器が知られている。従来、例えば、大型変圧器の分解輸送では、上部及び下部ヨーク鉄心と脚鉄心との間は、合計8箇所で繋ぐ構造としていた。これに対し、重量制限の関係上、さらにヨーク鉄心を細分化しなければならない場合がある。その場合に、組立て等の作業性を考慮して細分化すると、下部ヨーク鉄心だけで8箇所の繋ぎ目ができしまう。   Conventional large-capacity large transformers are manufactured, assembled, tested, and inspected at the factory, then disassembled into dimensions and weights that satisfy transportation restrictions, etc., transported to the installation site, reassembled, and tested. And split transport transformers that allow inspection. Conventionally, for example, in the case of disassembling and transporting a large transformer, the upper and lower yoke iron cores and the leg iron cores are connected at a total of eight locations. On the other hand, the yoke iron core may have to be further subdivided due to weight restrictions. In this case, if the subdivision is performed in consideration of workability such as assembly, eight joints can be formed only by the lower yoke iron core.

このような分解輸送変圧器として、例えば、特許文献1に記載されたものが知られている。同文献によれば、立設して配列される3つの脚鉄心と、各脚鉄心の上部及び下部を連結する上部及び下部ヨーク鉄心とを備えてなる鉄心を分解して輸送することが提案されている。特に、分解輸送及び再組み立てを容易にするため、各脚鉄心のそれぞれの下端を接続する下部ヨーク鉄心を各脚鉄心間で分割し、分割された下部ヨーク鉄心(以下、下部分割ヨーク鉄心という。)に各脚鉄心を組み付けた状態で輸送及び据え付け作業できるようにしている。そして、各脚鉄心に対応する下部分割ヨーク鉄心間を長方形又は台形の繋ぎヨーク鉄心で連結するように形成して、再組み立て作業を簡単化するようにしている。   As such an exploded transport transformer, for example, the one described in Patent Document 1 is known. According to this document, it is proposed to disassemble and transport an iron core comprising three leg iron cores arranged upright and upper and lower yoke iron cores connecting the upper and lower parts of each leg iron core. ing. In particular, in order to facilitate disassembly and transportation and reassembly, the lower yoke core that connects the lower ends of the leg iron cores is divided between the leg iron cores, and divided into lower yoke iron cores (hereinafter referred to as lower divided yoke iron cores). ) Can be transported and installed with each leg core assembled. The lower divided yoke cores corresponding to the respective leg iron cores are formed so as to be connected by a rectangular or trapezoidal connecting yoke iron core to simplify the reassembly operation.

さらに、特許文献1には、繋ぎヨーク鉄心と下部分割ヨーク鉄心の繋ぎ部の積層鋼板の両端を互いに重なり合わせた重なり部(以下、ラップ部という。)を設け、ラップ部の同じ重ね合わせ層の鋼板の端面を突き合わせた突き合わせ位置を、層ごとに下部ヨーク鉄心の延在方向に交互にずらして配置するようにしている。   Furthermore, Patent Document 1 is provided with an overlapping portion (hereinafter referred to as a wrap portion) in which both ends of the laminated steel plates of the connecting portion of the connecting yoke iron core and the lower split yoke iron core are overlapped with each other. The abutting positions where the end faces of the steel plates are abutted are alternately shifted for each layer in the extending direction of the lower yoke core.

特開平10―335148号公報JP-A-10-335148

しかし、特許文献1に記載の技術によれば、各脚鉄心に対応する下部分割ヨーク鉄心間を繋ぎヨーク鉄心を介して連結していることから、3相変圧器の場合の下部ヨーク鉄心の繋ぎ部が8箇所になり、下部分割ヨーク鉄心間を直接連結する場合に比べてラップ部(繋ぎ目)の数が2倍になる。また、ラップ部には、積層鋼板の重ね合わせ部及び端面の突き合わせ部に空隙が形成されるから、ラップ部における励磁電流及び鉄損が増加するという問題がある。   However, according to the technique described in Patent Document 1, since the lower divided yoke cores corresponding to the respective leg iron cores are connected via the yoke iron cores, the lower yoke iron cores in the case of a three-phase transformer are connected. There are eight parts, and the number of wrap parts (joints) is doubled compared to the case where the lower divided yoke iron cores are directly connected. Moreover, since a space | gap is formed in the overlap part of a laminated steel plate and the butting | matching part of an end surface in a lap | wrap part, there exists a problem that the exciting current and iron loss in a lap | wrap part increase.

すなわち、特許文献1のように、同じ層の鋼板の端面の突き合わせ位置を交互にずらして積層すると、1層おきに突き合わせ位置が同じ位置になるから、突き合わせ位置における鉄心の有効な磁路断面積が下部ヨーク鉄心の断面積の1/2となる。そのため、ラップ部における磁路抵抗が増加して励磁電流が増加するとともに、磁束密度の変化による鉄損が増加して変圧器の性能や耐久性の面で問題となる。また、下部ヨーク鉄心のラップ部が増えると、磁気抵抗が増加して上部と下部ヨーク鉄心の磁気バランスが崩れることから、下部ヨーク鉄心のラップ部における磁気抵抗を削減する要請がある。   That is, as in Patent Document 1, when the abutting positions of the end faces of the steel plates of the same layer are alternately shifted and laminated, the abutting position becomes the same position every other layer, so the effective magnetic path cross-sectional area of the iron core at the abutting position Becomes 1/2 of the cross-sectional area of the lower yoke core. For this reason, the magnetic path resistance in the wrap portion increases to increase the excitation current, and the iron loss due to the change in magnetic flux density increases, which causes a problem in terms of the performance and durability of the transformer. Further, when the wrap portion of the lower yoke core increases, the magnetic resistance increases and the magnetic balance between the upper and lower yoke cores is lost. Therefore, there is a demand for reducing the magnetic resistance at the wrap portion of the lower yoke core.

本発明が解決しようとする課題は、組み立て作業が簡単で、各脚鉄心に連結された下部分割ヨーク鉄心と繋ぎヨーク鉄心を連結するラップ部における磁気抵抗を削減した分解輸送変圧器鉄心を提供することにある。   SUMMARY OF THE INVENTION The problem to be solved by the present invention is to provide a disassembled transport transformer core that is easy to assemble and has reduced magnetic resistance at the lap portion that connects the lower split yoke core connected to each leg core and connects the yoke core. There is.

本発明は、立設して配列される少なくとも3つの脚鉄心と、前記脚鉄心の上部及び下部を連結する上部及び下部ヨーク鉄心とを備え、前記下部ヨーク鉄心は、前記脚鉄心のそれぞれに対応して分割されて複数の鋼板を重ね合わせて形成され、各脚鉄心に連結された下部分割ヨーク鉄心と、隣り合う前記脚鉄心の前記下部分割ヨーク鉄心間を繋ぐ複数の鋼板を重ね合わせて形成された繋ぎヨーク鉄心とを有し、前記分割下部ヨーク鉄心と前記繋ぎヨーク鉄心との繋ぎ部は、同じ重ね合わせ層の鋼板の端面を突き合わせた突き合わせ位置を、連続する少なくとも3つの層において互いに下部ヨーク鉄心の延在方向にずらして重ね合わせたラップ部を有することを特徴とする。   The present invention includes at least three leg iron cores arranged upright and upper and lower yoke cores connecting upper and lower portions of the leg iron cores, and the lower yoke iron cores correspond to the leg iron cores, respectively. Are formed by overlapping a plurality of steel plates, and are formed by overlapping a plurality of steel plates that connect between the lower divided yoke cores connected to the respective leg iron cores and the lower divided yoke iron cores of the adjacent leg iron cores. A connecting yoke iron core, and the connecting portion between the divided lower yoke iron core and the connecting yoke iron core has a butting position where the end faces of the steel plates of the same overlapping layer are abutted with each other in at least three consecutive layers. It has the lap | wrap part which shifted and overlap | superposed in the extension direction of the yoke core.

本発明によれば、複数の脚鉄心の下部を連結する下部ヨーク鉄心を脚鉄心ごとに分割したことから、工場で鉄心を製作及び組み立てして試験検査した後、各脚鉄心と下部分割ヨーク鉄心を連結したままの状態で輸送することができる。また、各脚鉄心に下部分割ヨーク鉄心が連結されているので、据え付け時に下部分割ヨーク鉄心を変圧器タンクの底部に設けられたベース部材の上に載置することにより、脚鉄心を直立状態に保持できるから、組立て作業を簡単化できる。さらに、下部分割ヨーク鉄心間を繋ぎヨーク鉄心で繋ぐようにしたことから、組立て作業を一層簡単化できる。   According to the present invention, since the lower yoke core that connects the lower portions of the plurality of leg iron cores is divided for each leg iron core, each leg iron core and the lower divided yoke iron core are manufactured and assembled at the factory and tested. Can be transported in a connected state. Also, since the lower split yoke iron core is connected to each leg iron core, the lower split yoke iron core is placed on the base member provided at the bottom of the transformer tank at the time of installation, so that the leg iron core is brought into an upright state. Since it can be held, the assembly work can be simplified. Further, since the lower split yoke iron cores are connected and connected by the yoke iron cores, the assembling work can be further simplified.

特に、本発明によれば、下部分割ヨーク鉄心と繋ぎヨーク鉄心との同じ重ね合わせ層の鋼板の端面の突き合わせ位置を、連続する少なくとも3つの層において互いに下部ヨーク鉄心の延在方向にずらして重ね合わせたことから、例えば3層の鋼板の突き合わせ位置が分散される。その結果、例えば3層の鋼板群からなる磁路断面積を考えた場合、鋼板の突き合わせ位置における有効な磁路断面積の減少を2/3に抑制できるので、特許文献1に比べて、ラップ部における磁気抵抗を削減して励磁電流及び鉄損を低減することができる。   In particular, according to the present invention, the butted positions of the end faces of the steel sheets of the same overlapping layer of the lower divided yoke core and the connecting yoke core are shifted and overlapped in the extending direction of the lower yoke core in at least three consecutive layers. For example, the matching positions of the three-layer steel plates are dispersed. As a result, for example, when considering a magnetic path cross-sectional area composed of a three-layer steel plate group, the decrease in effective magnetic path cross-sectional area at the abutting position of the steel plates can be suppressed to 2/3. The magnetic resistance in the part can be reduced, and the exciting current and iron loss can be reduced.

また、上記の場合において、前記ラップ部のラップ長を5mm以上15mm以下とすること、さらに好ましくは、7mm以上15mm以下とする。すなわち、上述したように、下部分割ヨーク鉄心を変圧器タンクの底部に設けられたベース部材の上に載置して脚鉄心を立設できるから、下部分割ヨーク鉄心間を繋ぐ繋ぎヨーク鉄心とのラップ部の機械的な連結強度が要求されない。そこで、発明者は、ラップ長と励磁電流及び鉄損の関係を検討した結果、図5に示す関係が得られた。図5の横軸はラップ長(mm)、縦軸はラップ長12mmにおける励磁電流及び鉄損を基準(100%)として表した励磁電流比と鉄損比である。また、図5の実測に用いたラップ部の構造は、図4に示した繋ぎヨーク鉄心の9b(B-B、C-C、D-D)のラップ部構造である。図5から明らかなように、鉄損はラップ長に比例して増減する傾向にあるが、励磁電流はラップ長が12mmで極小になり、7mmないし5mm未満になると急激に増加する。また、ラップ長が15mmを超えると励磁電流の増加率が大きくなっている。これらのことから、従来のように、ラップ部の機械的な連結強度を考慮して、ラップ長を例えば20mm以上にすると、励磁電流及び鉄損が大きくなることが分かる。   Moreover, in said case, the wrap length of the said wrap part shall be 5 mm or more and 15 mm or less, More preferably, you may be 7 mm or more and 15 mm or less. That is, as described above, since the lower split yoke iron core can be placed on the base member provided at the bottom of the transformer tank and the leg iron core can be erected, the lower split yoke iron core is connected with the connecting yoke iron core. The mechanical connection strength of the lap part is not required. Therefore, as a result of examining the relationship between the wrap length, the excitation current, and the iron loss, the inventor obtained the relationship shown in FIG. The horizontal axis of FIG. 5 is the wrap length (mm), and the vertical axis is the excitation current ratio and the iron loss ratio expressed with the excitation current and the iron loss at the wrap length of 12 mm as a reference (100%). Further, the structure of the lap portion used in the actual measurement in FIG. 5 is the lap portion structure of 9b (BB, CC, DD) of the connecting yoke iron core shown in FIG. As is apparent from FIG. 5, the iron loss tends to increase or decrease in proportion to the wrap length, but the excitation current becomes minimum when the wrap length is 12 mm, and increases rapidly when the wrap length becomes 7 mm or less than 5 mm. Further, when the wrap length exceeds 15 mm, the rate of increase of the excitation current increases. From these facts, it can be seen that when the wrap length is set to 20 mm or more in consideration of the mechanical connection strength of the lap portion as in the prior art, the excitation current and the iron loss increase.

また、上記の場合において、前記ラップ部は、連続する少なくとも3つの層の鋼板の前記突き合わせ位置を、下部ヨーク鉄心の延在方向に段階的にずらして配置し、これに続く複数の層の鋼板の前記突き合わせ位置を逆方向に段階的にずらして、前記突き合わせ位置を積層方向にジグザグ状に配置することができる。
また、上記の場合において、前記ラップ部は、連続する少なくとも3つの層ごとに複数の群を設定し、各群に属する複数の鋼板の前記突き合わせ位置を下部ヨーク鉄心の延在方向に段階的ないし階段(ステップ)状に、同一のパターンでずらして形成することができる。
また、上記の場合において、繋ぎヨーク鉄心を形成する鋼板の延在方向の長さを同じにすることが望ましい。これによれば、繋ぎヨーク鉄心の各鋼板が積層位置によって特定されないから、鉄心積み作業が容易になる。
Further, in the above case, the lap portion is arranged by gradually shifting the abutting position of at least three successive steel plates in the extending direction of the lower yoke iron core, and a plurality of subsequent steel plates The abutting positions can be shifted in the reverse direction stepwise, and the abutting positions can be arranged in a zigzag shape in the stacking direction.
Further, in the above case, the lap portion sets a plurality of groups for each of at least three consecutive layers, and the abutting positions of the plurality of steel plates belonging to each group are stepped in the extending direction of the lower yoke core. They can be staggered in the same pattern.
Moreover, in said case, it is desirable to make the length of the extension direction of the steel plate which forms a joint yoke iron core the same. According to this, since each steel plate of the connecting yoke iron core is not specified by the lamination position, the iron core stacking operation is facilitated.

本発明の分解輸送変圧器鉄心によれば、組み立て作業が簡単で、各脚鉄心に連結された支持ヨーク鉄心と分割ヨーク鉄心を連結するラップ部における励磁電流及び鉄損の増加を抑えることができる。   According to the disassembled transport transformer core of the present invention, the assembly work is simple, and it is possible to suppress an increase in excitation current and iron loss in the lap portion connecting the support yoke core connected to each leg core and the split yoke core. .

本発明の一実施例の三相3脚変圧器の鉄心構造を示す正面図である。It is a front view which shows the iron core structure of the three-phase tripod transformer of one Example of this invention. 図1の変圧器鉄心の再組み立て時の手順を説明する図である。It is a figure explaining the procedure at the time of reassembly of the transformer core of FIG. 図1の矢視III―IIIにおける下部分割ヨーク鉄心と繋ぎヨーク鉄心の断面図であり、連続する3つの層の鋼板の突き合わせ位置をジグザグ状にずらして積層する例を示す図である。FIG. 3 is a cross-sectional view of a lower split yoke iron core and a connecting yoke iron core taken in the direction of arrows III-III in FIG. 1, showing an example in which the butted positions of three consecutive layers of steel plates are shifted in a zigzag manner and stacked. 図3の断面図において、下部分割ヨーク鉄心と繋ぎヨーク鉄心の連続する3つの層の鋼板の突き合わせ位置を階段状に周期的に繰り返して積層する例を表す図である。In the cross-sectional view of FIG. 3, it is a figure showing the example which repeats and laminates | stacks the butt | matching position of the steel plate of three layers which a lower split yoke iron core and a connection yoke iron core continue. 下部分割ヨーク鉄心と繋ぎヨーク鉄心のラップ部のラップ長に対する励磁電流比と鉄損比との関係を表す図である。It is a figure showing the relationship between the excitation current ratio and iron loss ratio with respect to the lap length of the lap | wrap part of a lower split yoke iron core and a connecting iron core.

以下、本発明を適用してなる分割輸送変圧器の鉄心構造の実施形態について図1〜図5を参照して説明する。   Hereinafter, an embodiment of an iron core structure of a divided transport transformer to which the present invention is applied will be described with reference to FIGS.

図1は分解輸送変圧器の鉄心の構造を示している。図において、三相3脚鉄心1は、立設して配列される脚鉄心2、3、4と、脚鉄心2、3、4の上部及び下部を連結する上部ヨーク鉄心5及び下部ヨーク鉄心6とを備えて構成される。脚鉄心2、3、4は、珪素鋼板などの鋼板を複数積層して形成され、各脚鉄心2、3、4に巻線10が巻回されるようになっている。また、上部ヨーク鉄心5及び下部ヨーク鉄心6も、珪素鋼板などの鋼板を複数積層して形成される。上部ヨーク鉄心5は脚鉄心2、3を連結する上部ヨーク鉄心5aと、脚鉄心3、4を連結する上部ヨーク鉄心5bの2つに分割されている。脚鉄心2、4と上部ヨーク鉄心5a、5bの繋ぎ部は、それぞれの積層鋼板の両端を45度に切断して、交互に噛み合わせてラップ部で繋がれている。また、脚鉄心3の積層鋼板の上端を90度に切断し、これに合わせて上部ヨーク鉄心5a、5bの積層鋼板の端部をそれぞれ45度に切断して、交互に噛み合わせたラップ部で繋がれている。   FIG. 1 shows the structure of an iron core of a disassembled transport transformer. In the figure, a three-phase three-legged iron core 1 includes leg iron cores 2, 3, 4 arranged upright, and an upper yoke iron core 5 and a lower yoke iron core 6 that connect the upper and lower parts of the leg iron cores 2, 3, 4. And is configured. The leg iron cores 2, 3, 4 are formed by laminating a plurality of steel plates such as silicon steel plates, and a winding 10 is wound around each leg iron core 2, 3, 4. The upper yoke core 5 and the lower yoke core 6 are also formed by laminating a plurality of steel plates such as silicon steel plates. The upper yoke core 5 is divided into two parts: an upper yoke core 5 a that connects the leg cores 2 and 3, and an upper yoke core 5 b that connects the leg cores 3 and 4. The connecting portions of the leg iron cores 2 and 4 and the upper yoke iron cores 5a and 5b are cut at both ends of each laminated steel plate at 45 degrees, and are alternately meshed to be connected by a lap portion. In addition, the upper end of the laminated steel plate of the leg iron core 3 is cut at 90 degrees, and the end portions of the laminated steel plates of the upper yoke iron cores 5a and 5b are cut at 45 degrees accordingly, and the lap portions are alternately meshed with each other. It is connected.

一方、下部ヨーク鉄心6は、それぞれの脚鉄心2、3、4に対応して分割され、各脚鉄心2、3、4の下部に連結された下部分割ヨーク鉄心7a、8a及び8b、7bを備えている。また、隣り合う脚鉄心の分割下部ヨーク鉄心7a、8aを繋ぐ繋ぎヨーク鉄心9aと、下部分割ヨーク鉄心8b、7bを繋ぐ繋ぎヨーク鉄心9bを備えて構成される。   On the other hand, the lower yoke iron core 6 is divided corresponding to the respective leg iron cores 2, 3, 4, and the lower divided yoke iron cores 7 a, 8 a and 8 b, 7 b connected to the lower portions of the leg iron cores 2, 3, 4 are provided. I have. In addition, a connecting yoke iron core 9a that connects the divided lower yoke cores 7a and 8a of adjacent leg iron cores and a connecting yoke iron core 9b that connects the lower divided yoke cores 8b and 7b is provided.

両端の脚鉄心2、4と下部分割ヨーク鉄心7a、7bの繋ぎ部は、それぞれの積層鋼板の両端を45度に切断して、交互に噛み合わせたラップ部で繋がれている。また、脚鉄心3と下部分割ヨーク鉄心8a、8bの繋ぎ部は、脚鉄心3の積層鋼板の下端を90度に切断し、これに合わせて下部分割ヨーク鉄心8a、8bの積層鋼板の端部をそれぞれ45度に切断して、交互に噛み合わせたラップ部で繋がれている。さらに、下部分割ヨーク鉄心7aと8a、及び下部分割ヨーク鉄心8bと7bは、それぞれ繋ぎヨーク鉄心9a、9bで互いの積層鋼板の端部を交互に噛み合わせたラップ部で繋がれている。   The connecting portions of the leg iron cores 2 and 4 and the lower split yoke iron cores 7a and 7b at both ends are connected by lap portions that are alternately meshed by cutting both ends of each laminated steel plate at 45 degrees. Further, the connecting portion between the leg iron core 3 and the lower divided yoke iron cores 8a and 8b cuts the lower end of the laminated steel plate of the leg iron core 3 at 90 degrees, and according to this, the end of the laminated steel plate of the lower divided yoke iron cores 8a and 8b Are connected by lap portions that are alternately meshed with each other. Further, the lower divided yoke iron cores 7a and 8a and the lower divided yoke iron cores 8b and 7b are connected by lap portions in which the ends of the laminated steel plates are alternately meshed with the connecting yoke iron cores 9a and 9b, respectively.

このように構成される本実施例の三相3脚鉄心1の輸送を考慮した分解組み立て構造について、図2を参照して説明する。三相3脚鉄心1の輸送時の寸法及び重量を制限内に抑えるため、本実施例では、脚鉄心2と下部分割ヨーク鉄心7aを工場で組立てた状態で荷造りして輸送する。同様に、脚鉄心3と下部分割ヨーク鉄心8a及び8b、脚鉄心4と下部分割ヨーク鉄心7bをそれぞれ、工場で組立てた状態で荷造りして輸送する。そして、据え付け場所である現地で組み立てる時には、下部分割ヨーク鉄心7a、8a及び8b、7bを、脚鉄心2、3、4が連結された状態で変圧器タンクの底板に形成されたベース上に載置する。これにより、下端が45度又は90度の鋭角部を有する脚鉄心2、3、4を安定して立設することができ、組立て工数を低減できる。   A disassembled and assembled structure considering the transportation of the three-phase three-legged core 1 of the present embodiment configured as described above will be described with reference to FIG. In order to keep the size and weight of the three-phase three-legged iron core 1 during transportation within the limits, in this embodiment, the leg iron core 2 and the lower split yoke iron core 7a are packed and transported in a state assembled at the factory. Similarly, the leg iron core 3 and the lower divided yoke iron cores 8a and 8b, and the leg iron core 4 and the lower divided yoke iron core 7b are respectively packed and transported in a state of being assembled at the factory. Then, when assembling at the installation site, the lower split yoke iron cores 7a, 8a and 8b, 7b are mounted on the base formed on the bottom plate of the transformer tank with the leg iron cores 2, 3, 4 connected. Put. Thereby, the leg iron cores 2, 3, and 4 having an acute angle portion whose lower end is 45 degrees or 90 degrees can be stably erected, and the number of assembling steps can be reduced.

次に、下部分割ヨーク鉄心7a、8a間、及び下部分割ヨーク鉄心7b、8b間の積層鋼板の端部に各積層間に形成されたラップ部の隙間に、繋ぎヨーク鉄心9a、9bのラップ部の積層鋼板を挿入して連結する。このようにして、脚鉄心2、3、4と下部ヨーク鉄心6を組み立てた後、巻線10をそれぞれの脚鉄心2、3、4の上部から挿入し、最後に上部ヨーク鉄心5a、5bの積層鋼板を脚鉄心2、3、4のラップ部に挿入して三相3脚鉄心の組み立てを完了する。   Next, between the lower divided yoke iron cores 7a and 8a and between the lower divided yoke iron cores 7b and 8b, the lap portions of the connecting yoke iron cores 9a and 9b are formed in the gaps of the lap portions formed between the respective laminated steel plates. The laminated steel sheet is inserted and connected. Thus, after assembling the leg iron cores 2, 3, 4 and the lower yoke iron core 6, the winding 10 is inserted from the upper part of each leg iron core 2, 3, 4, and finally the upper yoke iron cores 5a, 5b are inserted. The laminated steel sheet is inserted into the lap portions of the leg iron cores 2, 3 and 4 to complete the assembly of the three-phase three-leg iron core.

ここで、本実施例の特徴部について、図3を参照して説明する。図3は、下部分割ヨーク鉄心8bと繋ぎヨーク鉄心9bと下部分割ヨーク鉄心7bからなる下部ヨーク鉄心6及び脚鉄心4における断面図であり、断面における下部ヨーク鉄心6中の磁束の流れを模式的に表記したものである。図3に示すように、下部分割ヨーク鉄心7b、8bと繋ぎヨーク鉄心9bとのラップ部は、同じ重ね合わせ層の鋼板の端面を互いに突き合わせて、連続する少なくとも3つの層の鋼板の突き合わせ位置(B、C、D線で示す。)を互いに下部ヨーク鉄心6の延在方向にずらして配置している。特に、本実施例ではずらしたことによる上下層のラップ長ΔLを同一にし、かつ、連続する少なくとも3つの層の鋼板の突き合わせ位置を下部ヨーク鉄心6の延在方向に階段(ステップ)状にずらして配置している。また、これに続く複数の層の鋼板の突き合わせ位置を階段状にずらして配置しているが、積層鋼板の積層厚みの方向に突き合わせ位置がジグザグ状になるようにずらして形成されている。なお、本発明はジグザグ状にずらすものに限られるものではなく、図4に示すように、連続する少なくとも3つの層ごとに複数の群を設定し、各群に属する複数の鋼板の前記突き合わせ位置を下部ヨーク鉄心の延在方向に段階的にずらしたラップ部を、同一位置で重ねて形成することができる。また、本発明は、図3、4に示した実施例のラップ部構造に限られるものではなく、要は、同じ重ね合わせ層の鋼板の端面を突き合わせた突き合わせ位置を、連続する少なくとも3つの層において互いに下部ヨーク鉄心の延在方向にずらして重ね合わせたラップ部とすればよい。   Here, the characteristic part of a present Example is demonstrated with reference to FIG. FIG. 3 is a cross-sectional view of the lower yoke iron core 6 and the leg iron core 4 composed of the lower divided yoke iron core 8b, the yoke iron core 9b, and the lower divided yoke iron core 7b, and schematically shows the flow of magnetic flux in the lower yoke iron core 6 in the cross section. It is written in. As shown in FIG. 3, the lap portion between the lower divided yoke iron cores 7 b and 8 b and the yoke iron core 9 b abuts the end surfaces of the steel sheets of the same overlapping layer with each other, and the abutting position of at least three consecutive steel sheets ( (Indicated by lines B, C, and D) are shifted from each other in the extending direction of the lower yoke core 6. In particular, in this embodiment, the lap lengths ΔL of the upper and lower layers resulting from the shifting are made the same, and the butting positions of the continuous steel plates of at least three layers are shifted stepwise in the extending direction of the lower yoke core 6. Arranged. In addition, the subsequent butting positions of the plurality of layers of the steel plates are shifted in a stepped manner, but the butting positions are shifted in the zigzag shape in the stacking thickness direction of the laminated steel plates. Note that the present invention is not limited to the zigzag shape, and as shown in FIG. 4, a plurality of groups are set for each of at least three consecutive layers, and the abutting positions of the plurality of steel plates belonging to each group Can be formed by overlapping at the same position, the lap portions being shifted stepwise in the extending direction of the lower yoke core. Further, the present invention is not limited to the lap portion structure of the embodiment shown in FIGS. 3 and 4. In short, the butt position where the end surfaces of the steel plates of the same overlapping layer are butted is arranged at least three continuous layers. In this case, the lap portions may be overlapped by shifting in the extending direction of the lower yoke core.

図3又は図4に示す実施例によれば、ヨーク内を流れる磁束はラップ部において図中矢印で示したように、各層の鋼板の突き合わせ位置に形成される間隙(ギャップ)の磁路抵抗が高いことから、ギャップを回避して隣り合う鋼板とのラップ部(重なり部)を通って流れる。ここで、各層の鋼板の突き合わせ位置のB―B、C―C、D―D線上でみると、図3のジグザグ状にした場合は、磁束が流れる鋼板の有効断面積の割合が、順に3/4、1/2、3/4になる。これに対して、図4のように鋼板の突き合わせ位置を階段状にかつ周期的に繰り返して配置した場合は、どの突き合わせ位置でも、その割合が2/3になる。   According to the embodiment shown in FIG. 3 or FIG. 4, the magnetic flux flowing in the yoke has the magnetic path resistance of the gap (gap) formed at the butt position of the steel plates of each layer as indicated by arrows in the figure. Since it is high, it flows through a lap part (overlap part) with an adjacent steel plate while avoiding a gap. Here, looking at the BB, CC, and DD lines at the butt position of the steel plates of each layer, when the zigzag shape in FIG. / 4, 1/2, and 3/4. On the other hand, when the butted positions of the steel plates are repeatedly arranged stepwise and periodically as shown in FIG. 4, the ratio becomes 2/3 at any butted position.

一方、下部分割ヨーク鉄心7bと脚鉄心4とを繋ぐラップ部は、図3、4に示すように、特許文献1と同様、同じ層の鋼板の端面の突き合わせ位置を、E−E、F−F線のように交互にずらして積層している。これによれば、1層おきに突き合わせ位置が同じ位置になるから、E−E、F−F線上における鉄心の有効な磁路断面積は、いずれの位置でも下部ヨーク鉄心6の断面積の1/2となる。他の脚鉄心2、3と下部分割ヨーク鉄心7a、8a及び8bとのラップ部も同様である。   On the other hand, as shown in FIGS. 3 and 4, the lap portion that connects the lower split yoke iron core 7 b and the leg iron core 4 has the butt positions of the end faces of the steel plates of the same layer as shown in FIGS. The layers are alternately shifted like the F line. According to this, since the butt position is the same every other layer, the effective magnetic path cross-sectional area of the iron core on the EE and FF lines is 1 of the cross-sectional area of the lower yoke iron core 6 at any position. / 2. The same applies to the lap portions of the other leg iron cores 2 and 3 and the lower divided yoke iron cores 7a, 8a and 8b.

すなわち、本発明の図3、4の実施例に示したラップ部の構成によれば、鋼板の端面の突き合わせ位置を交互にずらして積層した特許文献1に比べて、ラップ部を流れる磁束密度の増減が緩和されるから、励磁電流を低減でき、かつ鉄損を低減できる。つまり、磁束がラップ部の積層方向に流れる際に、重ね合わせ層に垂直に入り込むことが少なくなり、励磁電流及び鉄損を低減することができる。   That is, according to the structure of the lap | wrap part shown in the Example of FIG. 3, 4 of this invention, compared with the patent document 1 which laminated | stacked the butt | matching position of the end surface of a steel plate alternately, the magnetic flux density which flows through a lap | wrap part is compared. Since the increase / decrease is reduced, the exciting current can be reduced and the iron loss can be reduced. That is, when the magnetic flux flows in the stacking direction of the wrap portion, it is less likely to enter the overlapping layer perpendicularly, and the excitation current and iron loss can be reduced.

一方、下部分割ヨーク鉄心7a、7b、8a、8bを変圧器タンクの底部に設けられたベース部材の上に載置して脚鉄心2、3、4を立設できるから、下部分割ヨーク鉄心間を繋ぐ繋ぎヨーク鉄心9a、9bとのラップ部には、機械的な連結強度が要求されない。そこで、適切なラップ長を求めるため、図3におけるラップ長ΔLと励磁電流及び鉄損の関係を実測した結果を、図5に示す。同図の横軸はラップ長ΔL(mm)、縦軸はラップ長ΔL=12mmにおける励磁電流及び鉄損を基準(100%)として表した励磁電流比と鉄損比である。同図から明らかなように、鉄損比はラップ長に比例して増減する傾向にあるが、励磁電流比はラップ長ΔL=12mmで極小になることがわかった。特に、ラップ長ΔLが7mmないし5mm未満になると励磁電流比が急激に増加する。また、ラップ長ΔLが15mmを超えると励磁電流比の増加率が大きくなっている。   On the other hand, since the lower split yoke iron cores 7a, 7b, 8a, 8b can be placed on the base member provided at the bottom of the transformer tank and the leg iron cores 2, 3, 4 can be erected, No mechanical connection strength is required for the lap portion with the connecting yoke iron cores 9a and 9b. Therefore, in order to obtain an appropriate wrap length, FIG. 5 shows the results of actual measurement of the relationship between the wrap length ΔL and the excitation current and iron loss in FIG. In the figure, the horizontal axis represents the wrap length ΔL (mm), and the vertical axis represents the excitation current ratio and the iron loss ratio expressed with the excitation current and the iron loss at the wrap length ΔL = 12 mm as a reference (100%). As is apparent from the figure, the iron loss ratio tends to increase or decrease in proportion to the wrap length, but the excitation current ratio is found to be minimal at the wrap length ΔL = 12 mm. In particular, when the wrap length ΔL is 7 mm to less than 5 mm, the excitation current ratio increases rapidly. Further, when the wrap length ΔL exceeds 15 mm, the increasing rate of the excitation current ratio increases.

これらの実測結果から、ラップ部の機械的な連結強度を考慮して、ラップ長を例えば20mm以上にした従来技術によれば、励磁電流及び鉄損が大きくなることが分かる。これらのことから、ラップ長ΔLを5mm以上15mm以下とすること、さらに好ましくは、7mm以上15mm以下とする。   From these actual measurement results, it is understood that the excitation current and the iron loss are increased according to the conventional technique in which the lap length is set to 20 mm or more in consideration of the mechanical connection strength of the lap portion. For these reasons, the wrap length ΔL is set to 5 mm to 15 mm, and more preferably 7 mm to 15 mm.

なお、脚鉄心3と下部分割ヨーク鉄心8a、8bとを組み合わせた概略T字形の鉄心構造、脚鉄心2、4と下部分割ヨーク鉄心7a、7bとを組み合わせた概略L字形の鉄心構造は、従来と変わらないラップ部のラップ長で構成されているため、ラップ部での摩擦力による保持も同じで分割輸送する際、特に問題がない。   Note that a generally T-shaped iron core structure combining the leg iron core 3 and the lower divided yoke iron cores 8a and 8b, and a substantially L-shaped iron core structure combining the leg iron cores 2 and 4 and the lower divided yoke iron cores 7a and 7b, Since the wrap length is the same as that of the wrap portion, the frictional force at the wrap portion is the same as that of the wrap portion, and there is no particular problem when divided and transported.

上述した本発明の各実施例において、分割下部ヨーク鉄心7a、7b、8a、8b及び繋ぎヨーク鉄心9a、9bの材質を低損失材の珪素鋼板を用いることが好ましい。これによれば、図3、4のラップ部の構造による低損失化と相まって、
損失を大幅に低減することが可能となる。
In each of the embodiments of the present invention described above, it is preferable to use a low-loss silicon steel plate as the material of the divided lower yoke cores 7a, 7b, 8a, 8b and the connecting yoke iron cores 9a, 9b. According to this, coupled with the low loss due to the structure of the wrap portion of FIGS.
Loss can be greatly reduced.

なお、上記の各実施例では、積層鉄心の1層あたりの鋼板が1枚の場合について説明したが、本願発明はこれに限られるものではなく、1層あたり複数枚の鋼板により積層しても、同様な効果が得られる。   In each of the above-described embodiments, the case where there is one steel sheet per layer of the laminated iron core has been described, but the present invention is not limited to this, and a plurality of steel sheets per layer may be laminated. A similar effect can be obtained.

また、ラップ部を3段階にずらしたステップ状のラップ鉄心を例に述べたが、3段以上にずらした場合は、一層、励磁電流及び鉄損を低減することができる。   Moreover, although the step-shaped wrap iron core which shifted the lap | wrap part to 3 steps | paragraphs was described as an example, when shifted to 3 steps | paragraphs or more, an exciting current and an iron loss can be reduced further.

上記した各実施例においては、本発明を三相3脚変圧器に適用した例で説明したが、単相2脚変圧器や三相5脚変圧器にも適用でき、この場合も同様な効果を達成することができる。   In each of the above-described embodiments, the present invention has been described with reference to an example in which the present invention is applied to a three-phase three-leg transformer. However, the present invention can also be applied to a single-phase two-leg transformer or a three-phase five-leg transformer. Can be achieved.

1 三相3脚鉄心
2、3、4 脚鉄心
5a、5b 上部ヨーク鉄心
6 下部ヨーク鉄心
7a、7b、8a、8b 下部分割ヨーク鉄心
9a、9b 繋ぎヨーク鉄心
10 巻線
1 Three-phase three-legged iron core 2, 3, 4 Leg iron core 5a, 5b Upper yoke iron core 6 Lower yoke iron core 7a, 7b, 8a, 8b Lower divided yoke iron core 9a, 9b Connecting yoke iron core 10 Winding

Claims (5)

立設して配列される少なくとも3つの脚鉄心と、前記脚鉄心の上部及び下部を連結する上部及び下部ヨーク鉄心とを備え、
前記下部ヨーク鉄心は、前記脚鉄心のそれぞれに対応して分割されて複数の鋼板を重ね合わせて形成され、各脚鉄心に連結された下部分割ヨーク鉄心と、隣り合う前記脚鉄心の前記下部分割ヨーク鉄心間を繋ぐ複数の鋼板を重ね合わせて形成された繋ぎヨーク鉄心とを有し、
前記下部分割ヨーク鉄心と前記繋ぎヨーク鉄心との繋ぎ部は、同じ重ね合わせ層の鋼板の端面を突き合わせた突き合わせ位置を、連続する少なくとも3つの層において互いに下部ヨーク鉄心の延在方向にずらして重ね合わせたラップ部を有することを特徴とする分解輸送変圧器鉄心。
Comprising at least three leg iron cores arranged upright and upper and lower yoke iron cores connecting the upper and lower parts of the leg iron cores;
The lower yoke core is divided corresponding to each of the leg iron cores and formed by overlapping a plurality of steel plates, and is connected to each leg iron core, and the lower division of the adjacent leg iron cores. A connecting yoke iron core formed by overlapping a plurality of steel plates connecting between the yoke iron cores;
The connecting portion between the lower split yoke iron core and the connecting yoke iron core is overlapped by shifting the abutting position where the end surfaces of the steel plates of the same overlapping layer are abutted to each other in the extending direction of the lower yoke core in at least three consecutive layers. An exploded transport transformer core characterized by having a combined wrap portion.
請求項1において、前記ラップ部のラップ長を5mm以上15mm以下としたことを特徴とする分解輸送変圧器鉄心。   2. The disassembled transport transformer core according to claim 1, wherein a wrap length of the wrap portion is 5 mm or more and 15 mm or less. 請求項1又は2において、前記ラップ部は、連続する少なくとも3つの層の鋼板の前記突き合わせ位置を、下部ヨーク鉄心の延在方向に段階的にずらして配置し、これに続く複数の層の鋼板の前記突き合わせ位置を逆方向に段階的にずらして、前記突き合わせ位置を積層方向にジグザグ状に配置したことを特徴とする分解輸送変圧器鉄心。   In Claim 1 or 2, the said lap | wrap part arrange | positions the said abutting position of the continuous steel plate of at least 3 layers shifting in steps in the extension direction of a lower yoke iron core, and the steel plate of several layers following this The abutting position is shifted stepwise in the reverse direction, and the abutting positions are arranged in a zigzag shape in the stacking direction. 請求項1又は2において、前記ラップ部は、連続する少なくとも3つの層ごとに複数の群を設定し、各群に属する複数の鋼板の前記突き合わせ位置を下部ヨーク鉄心の延在方向に段階的にずらして形成されたことを特徴とする分解輸送変圧器鉄心。   In Claim 1 or 2, the lap part sets a plurality of groups for every at least three continuous layers, and the abutting positions of a plurality of steel plates belonging to each group are stepwise in the extending direction of the lower yoke core. Disassembled transport transformer core characterized by being formed by shifting. 請求項1ないし4のいずれかの請求項において、前記繋ぎヨーク鉄心を形成する鋼板の延在方向の長さが同じであることを特徴とする分解輸送変圧器鉄心。
5. The disassembled transport transformer core according to claim 1, wherein the steel plates forming the connecting yoke core have the same length in the extending direction. 6.
JP2010148214A 2010-06-29 2010-06-29 Disassembled and transported transformer core Pending JP2012015210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010148214A JP2012015210A (en) 2010-06-29 2010-06-29 Disassembled and transported transformer core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010148214A JP2012015210A (en) 2010-06-29 2010-06-29 Disassembled and transported transformer core

Publications (1)

Publication Number Publication Date
JP2012015210A true JP2012015210A (en) 2012-01-19

Family

ID=45601323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010148214A Pending JP2012015210A (en) 2010-06-29 2010-06-29 Disassembled and transported transformer core

Country Status (1)

Country Link
JP (1) JP2012015210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851567A (en) * 2014-02-15 2015-08-19 无锡巨龙硅钢片有限公司 Comprehensive stepping joint iron core for transformer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198706A (en) * 1985-02-28 1986-09-03 Toshiba Corp Core for induction electric apparatus
JPS63110711A (en) * 1986-10-29 1988-05-16 Hitachi Ltd Iron core of transformer
JPH03173831A (en) * 1982-07-13 1991-07-29 L'oreal Sa Cosmetic or pharmaceutical composition
JPH0594918A (en) * 1991-10-02 1993-04-16 Matsushita Electric Ind Co Ltd Amorphous alloy wound magnetic core
JPH07283036A (en) * 1994-04-07 1995-10-27 Nippon Steel Corp Noise reduction of transformer core
JPH10303029A (en) * 1997-04-30 1998-11-13 Meidensha Corp Iron core of disassembly-transportation type transformer
JPH11354332A (en) * 1998-06-09 1999-12-24 Meidensha Corp Method for disassembly and transportation of assembled transformer
JP2000173831A (en) * 1998-12-04 2000-06-23 Aichi Electric Co Ltd Transformer core and manufacture thereof
JP2002343647A (en) * 2001-05-16 2002-11-29 Mitsubishi Electric Corp Three-phase wound core

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173831A (en) * 1982-07-13 1991-07-29 L'oreal Sa Cosmetic or pharmaceutical composition
JPS61198706A (en) * 1985-02-28 1986-09-03 Toshiba Corp Core for induction electric apparatus
JPS63110711A (en) * 1986-10-29 1988-05-16 Hitachi Ltd Iron core of transformer
JPH0594918A (en) * 1991-10-02 1993-04-16 Matsushita Electric Ind Co Ltd Amorphous alloy wound magnetic core
JPH07283036A (en) * 1994-04-07 1995-10-27 Nippon Steel Corp Noise reduction of transformer core
JPH10303029A (en) * 1997-04-30 1998-11-13 Meidensha Corp Iron core of disassembly-transportation type transformer
JPH11354332A (en) * 1998-06-09 1999-12-24 Meidensha Corp Method for disassembly and transportation of assembled transformer
JP2000173831A (en) * 1998-12-04 2000-06-23 Aichi Electric Co Ltd Transformer core and manufacture thereof
JP2002343647A (en) * 2001-05-16 2002-11-29 Mitsubishi Electric Corp Three-phase wound core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851567A (en) * 2014-02-15 2015-08-19 无锡巨龙硅钢片有限公司 Comprehensive stepping joint iron core for transformer

Similar Documents

Publication Publication Date Title
JP2015142095A (en) Stationary induction apparatus and method for manufacturing the same
WO2020071512A1 (en) Wound core and transformer
JP2013118254A (en) Product iron core for transformer
JP5604059B2 (en) Frame-shaped iron core
US9601255B2 (en) Amorphous core transformer
CN203277040U (en) Distribution transformer with laminated iron core
US7471183B2 (en) Transformer
US8686824B2 (en) Economical core design for electromagnetic devices
JP2012015210A (en) Disassembled and transported transformer core
WO2018062274A1 (en) Magnetic core piece and magnetic core
JP4387769B2 (en) Winding core and transformer
JP2006179727A (en) Transformer
JP2006173449A (en) Transformer
JP6566351B2 (en) Laminated iron core and stationary electromagnetic equipment
JP2010263233A (en) Transformer
JP4381351B2 (en) Three-phase winding core
JP7092643B2 (en) Laminated iron core for static induction equipment
JP4369297B2 (en) Transformer
JP3189478U (en) Assembly structure of steel core
JP7337589B2 (en) Stacked iron asystole induction device and manufacturing method thereof
CN112041946A (en) Magnetic core for electromagnetic induction device, electromagnetic induction device including the same, and method of manufacturing magnetic core
WO2021255950A1 (en) Stacked-core stationary induction apparatus and method for manufacturing same
JP2011029376A (en) Transformer
JP2018186113A (en) Stationary induction apparatus
JP2009246080A (en) Stationary induction machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304