WO2018214923A1 - 一种磁能芯片储存电能的方法 - Google Patents

一种磁能芯片储存电能的方法 Download PDF

Info

Publication number
WO2018214923A1
WO2018214923A1 PCT/CN2018/088106 CN2018088106W WO2018214923A1 WO 2018214923 A1 WO2018214923 A1 WO 2018214923A1 CN 2018088106 W CN2018088106 W CN 2018088106W WO 2018214923 A1 WO2018214923 A1 WO 2018214923A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
activation
slots
pins
chip according
Prior art date
Application number
PCT/CN2018/088106
Other languages
English (en)
French (fr)
Inventor
王裕春
王渤渤
殷立纬
王玉龙
盛钰
燕品儒
Original Assignee
卓磁(上海)实业发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卓磁(上海)实业发展有限公司 filed Critical 卓磁(上海)实业发展有限公司
Priority to EP18806799.5A priority Critical patent/EP3633821A1/en
Publication of WO2018214923A1 publication Critical patent/WO2018214923A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to the field of electrical energy storage technologies, and in particular, to a method for storing electrical energy by a magnetic energy chip.
  • the giant magnetic effect is a quantum physical effect that can be observed in structures with thin magnetic or thin non-magnetic regions.
  • the giant magnetoresistance effect shows a significant change in the response of the resistor to the applied electric field from a zero-field high-impedance state to a high-field, low-impedance state.
  • Chinese Patent Application No. 200710151597.X entitled “Electrical Energy Storage Device and Method, discloses a device for storing electrical energy by using a giant magnetic effect.
  • white-collar workers use mobile phones for up to 15 hours per day. Therefore, it must be It is very inconvenient to charge the mobile phone or carry a "charge treasure" backup energy battery.
  • an embodiment of the present invention provides a method for storing electrical energy by a magnetic energy chip.
  • the activation of the magnetic capacitor by the activation device solves the charging problem of the electrical energy storage device and is not suitable for mass production.
  • the magnetic energy chip includes a magnetic capacitor
  • the magnetic capacitor includes: a substrate and a second conductive region sequentially disposed on the substrate, a second magnetic region, a dielectric region, and a first a magnetic region and a first conductive region
  • the first conductive region includes a first conductive metal layer and a first set of leads
  • the first conductive metal layer is in communication with the first set of pins
  • the second conductive region includes a second conductive metal layer and A second set of pins, a second conductive metal layer and a second set of pins are connected, the method comprising:
  • the activation device includes: a DC voltage source, at least two slots and a control unit, and the slot includes a first group slot and a second group slot;
  • the first set of pins of the magnetic capacitance includes at least one first pin and the second set of pins of the magnetic capacitance includes at least one second pin.
  • the number of first set of pins of the magnetic capacitance is the same as the number of second set of pins of the magnetic capacitance.
  • the first set of slots of the activation device includes at least one first slot and the second set of slots of the activation device includes at least one second slot.
  • the first set of slots of the activation device and the second set of slots of the activation device are the same.
  • control unit includes a voltage setting.
  • control unit further includes a current setting unit and a time setting unit.
  • the DC voltage source includes at least 2 output gears, and the output voltage of the output gear is 0 to 500V.
  • the first set of slots of the activation device is coupled to the positive terminal of the DC voltage source and the second set of slots is coupled to the negative terminal of the DC voltage source.
  • the activation parameter includes an activation voltage.
  • the activation parameters further include an activation current and an activation time.
  • the activation voltage is between 1.5 and 400V.
  • the activation time is between 10 ms and 10 min.
  • the activating operation includes testing a voltage between a first set of pins of the magnetic capacitance and a second set of pins of the magnetic capacitance.
  • the invention activates the magnetic capacitor by activating the device, which is short in time, and the obtained magnetic energy chip can meet the energy requirement of the user in a certain period of time without charging, and in addition, the storage mode of the magnetic energy chip does not involve the redox reaction, and does not contain chemical electrolysis. Liquid, it is not easy to cause a decline in the concentration of the electrolyte in the chemical battery.
  • FIG. 1 is a schematic diagram showing a cross section of a magnetic capacitor according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an activation device according to an embodiment of the present invention.
  • FIG. 3 is a flow chart showing a magnetic capacitor activation process according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a cross section of a magnetic capacitor according to an embodiment of the present invention.
  • the magnetic capacitor 10 shown in FIG. 1 includes a substrate 8 and a second conductive region 7, a second magnetic region 5, a dielectric region 4, a first magnetic region 3, and a first conductive region 6, which are sequentially disposed on the substrate 8.
  • the first conductive region 6 includes a first conductive metal layer 61 and a first set of leads 1 , wherein the first conductive metal layer 61 is in communication with the first set of leads 1
  • the second conductive region 7 includes a second conductive metal layer 71 and a second set of pins 2, wherein the second conductive metal layer 71 is in communication with the second set of pins 2.
  • the first set of pins 1 includes at least one first pin, and the second set of pins 2 Including at least one second pin, preferably, the number of the first pins is the same as the number of the second pins, the dielectric region 4 has the function of storing electrical energy, and the first magnetic region 3 and the second magnetic region 5 have electrical energy prevention The role of the leak.
  • the dielectric region 4 is a film having a thickness of not more than 250 nm and is composed of a dielectric material such as barium titanate or titanium dioxide. Since the dielectric material is not an ideal insulator, a small amount of current can still pass through the dielectric region. Effectively preventing current from flowing through the dielectric region 4, studies have shown that setting the magnetic pole directions of the first magnetic region 3 and the second magnetic region 5 to be reversed can effectively prevent leakage of electric energy.
  • the first magnetic region 3 and the second magnetic region 5 are both magnetic thin films, and both have two magnetic poles. As shown in FIG. 1, " ⁇ " and “ ⁇ ” indicate the first magnetic region 3 and the second magnetic body of the magnetic capacitor 10. The magnetic poles of the region 5 are opposite in direction.
  • FIG. 2 is a schematic diagram of an activation device according to an embodiment of the present invention.
  • the activation device 20 shown in FIG. 2 includes a DC voltage source 30, a first group of slots 21, a second group of slots 22, and a control unit 40.
  • the first group of slots 21 is in communication with the positive pole of the DC voltage source 30, and the second
  • the group slot 22 is in communication with the negative pole of the DC voltage source 30, and the first set of slots 21 and the second set of slots 22 of the activation device 20 and the first set of pins 1 and 2 of the magnetic capacitor 10 are matched.
  • the control unit 40 includes a voltage setting unit 41, a current setting unit 42, and a time setting unit 43, the DC voltage source 30 has at least two output gears, and the output voltage of the output gear is 0 to 500V.
  • FIG. 3 is a flow chart showing a magnetic capacitor activation process according to an embodiment of the present invention.
  • the activation process of the magnetic energy chip is as follows.
  • S1 providing an activation device 20, including a DC voltage source 30, a first group of slots 21, a second group of slots 22, and a control unit 40, the first group of slots 21 being in communication with the positive pole of the DC voltage source 30, the second group
  • the slot 22 is in communication with the negative pole of the DC voltage source 30, and the first set of slots 21 and the second set of slots 22 of the activation device 20 and the first set of pins 1 and the second set of pins 2 of the magnetic capacitor 10 are matched,
  • the first group of slots 21 includes at least one first slot
  • the second group of slots 22 includes at least one second slot.
  • the first slot and the second slot have the same number of slots.
  • the control unit 40 includes a voltage setting unit 41, a current setting unit 42, and a time setting unit 43;
  • the activation voltage is set by the voltage setting unit 41 of the control unit 40.
  • the activation voltage of the embodiment of the present invention is 1.5 to 400 V, and the activation time is set by the time setting unit 43 of the control unit 40, and the activation of the embodiment of the present invention is performed.
  • the time is from 10ms to 10min;
  • step S4 After completing the step S3, the magnetic capacitor 10 is activated, and the environmental condition during the activation process is -50 to 150 ° C;
  • the step of testing the voltage between the two sets of pins of the magnetic capacitor 10 can be increased.
  • the specific operation is: decoupling the magnetic capacitor 10 from the activation device, and determining the voltage between the first group of pins 1 and the second group of pins 2, if the voltage between the first group of pins 1 and the second group of pins 2 is A stable value, the activation ends, preferably, the stable voltage value and the activation voltage are the same.
  • the activation in the embodiment of the present invention is substantially different from the ordinary charging.
  • the magnetic capacitor 10 is excited by the DC electric field, and the magnetic thin film in the magnetic film of the first magnetic region 3 and the magnetic film of the second magnetic region 5 are moved.
  • An electric field is formed in the magnetic capacitor 10.
  • the main energy stored in the magnetic energy chip is derived from the magnetoelectric conversion inside the magnetic capacitor 10 instead of the external energy source. This activation process can be completed in a short time, and the magnetic after the activation is completed.
  • Capacitor 10 can output much more energy than the input energy of the active device.
  • the mobile phone for 10 hours every day. For example, the magnetic energy stored in this specification can be provided for the mobile phone. It uses at least one month of electricity.
  • the energy storage mode of the magnetic capacitor is based on the physical structure of the magnetoelectric conversion during the whole activation process, it does not involve the redox reaction, and does not contain the chemical electrolyte, and it is difficult to cause the degradation of the electrolyte concentration in the chemical battery to be reduced.
  • the magnetic capacitance is almost zero leakage.
  • the magnetic energy of the first magnetic region 3 and the second magnetic region 5 is converted into electrical energy, and the magnetic capacitor stores electrical energy to become a magnetic energy chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供了一种磁能芯片存储电能的方法,该方法包括:提供一激活设备,激活设备包括:直流电压源、插槽和控制单元,插槽包括第一组插槽和第二组插槽;将磁电容的第一组引脚与激活设备的第一组插槽匹配,将磁电容的第二组引脚与激活设备的第二组插槽匹配;设定激活参数;进行激活操作。本发明通过激活设备激活磁电容,耗时短,得到的磁能芯片可以满足用户在一定时间内的能源需求。

Description

一种磁能芯片储存电能的方法
本申请要求2017年5月26日提交的申请号为No.201710387767.8的中国申请的优先权,通过引用将其全部内容并入本文。
技术领域
本发明涉及电能存储技术领域,具体涉及一种磁能芯片储存电能的方法。
发明背景
现代社会中,能源存储部件随处可见,例如电路中的电容以及用于可携带式装置的电池类的组件,然而,现有的能源存储部件存在一些问题,例如:电容原件会因为漏电流而降低整体效能,而电池则因为部分充/放电的记忆效应而降低整体效能的问题。
巨磁效应(GMR)是一种能够在具有薄磁性或薄非磁性区的结构中所观测到的量子物理效应。巨磁阻效应显现出了电阻对外加电场产生的反应,从零场高阻抗状态至高场低阻抗状态时的显著变化。
申请号200710151597.X、发明名称为电能储存装置及方法的中国专利公开了一种利用巨磁效应存储电能的装置,电能储存装置在储存电能的过程中需要藕接电源,充电过程较为复杂,因为如果按照充电的概念,以3000mAh的手机为例,折合成能量为3000mAh×3.75V=11.25Wh,其实际使用时间不到10小时,一般白领每天使用手机时间长达15小时,因此,每天必须为手机充电,或者携带“充电宝”备用能源电池,非常不方便。
发明内容
有鉴于此,本发明实施例提供了一种磁能芯片储存电能的方法,通过激活设备激活磁电容,解决了上述电能储存装置存在的充电问题,以及不适用于批量化生产问题。
本发明一实施例提供的一种磁能芯片存储电能的方法,磁能芯片包括一磁电容,磁电容包括:基板和顺序设置在基板上的第二导电区、第二磁性、介电区、第一磁性区和第一导电区,第一导电区包括第一导电金属层和第一组引脚,第一导电金属层和第一组引脚相连通,第二导电区包括第二导电金属层和第二组引脚,第二导电金属层和第二组引脚相连通,该方法包括:
提供一激活设备,激活设备包括:直流电压源、至少两个插槽和控制单元,插槽包括第一组插槽和第二组插槽;
将磁电容的第一组引脚与激活设备的第一组插槽匹配,将磁电容的第二组引脚与激活设备的第二组插槽匹配;
设定激活参数;
进行激活操作。
在一个实施例中,磁电容的第一组引脚包括至少一个第一引脚,磁电容的第二组引脚包括至少一个第二引脚。
在一个实施例中,磁电容的第一组引脚的数量和磁电容的第二组引脚的数量相同。
在一个实施例中,激活设备的第一组插槽包括至少一个第一插槽,激活设备的第二组插槽包括至少一个第二插槽。
在一个实施例中,激活设备的第一组插槽和激活设备的第二组插槽的数量相同。
在一个实施例中,控制单元包括电压设定部。
在一个实施例中,控制单元还包括电流设定部和时间设定部。
在一个实施例中,直流电压源包括至少2个输出挡位,输出挡位的输出电压为0~500V。
在一个实施例中,激活设备的第一组插槽连接直流电压源的正极,第二组插槽连接直流电压源的负极。
在一个实施例中,激活参数包括激活电压。
在一个实施例中,激活参数还包括激活电流和激活时间。
在一个实施例中,激活电压为1.5~400V。
在一个实施例中,激活时间为10ms~10min。
在一个实施例中,激活操作包括测试磁电容的第一组引脚和磁电容的第二组引脚之间的电压。
本发明通过激活设备激活磁电容,耗时短,得到的磁能芯片可以满足用户在一定时间内的能源需求,无需充电,此外,磁能芯片的储电方式不涉及氧化还原反应,且不含化学电解液,不易产生化学电池中的电解液浓度降低的衰退现象。
附图简要说明
图1所示为本发明一实施例提供的磁电容的截面的示意图。
图2所示为本发明一实施例提供的激活设备的示意图。
图3所示为本发明一实施例提供的磁电容激活过程的流程图。
实施本发明的方式
为使本发明的目的、技术手段和优点更加清楚明白,以下结合附图对本发明作进一步详细说明。
图1所示为本发明一实施例提供的磁电容的截面的示意图。
如图1所示的磁电容10包括基板8和顺序设置在基板8上的第二导电区7、第二磁性区5、介电区4、第一磁性区3和第一导电区6。第一导电区6包括第一导电金属层61和第一组引脚1,其中第一导电金属层61和第一组引脚1相连通,第二导电区7包括第二导电金属层71和第二组引脚2,其中第二导电金属层71和第二组引脚2相连通,本发明实施例中,第一组引脚1包括至少一个第一引脚,第二组引脚2包括至少一个第二引脚,优选的,第一引脚的数量和第二引脚的数量相同,介电区4具有存储电能的作用,第一磁性区3和第二磁性区5具有防止电能泄漏的作用。
介电区4为厚度不超过250nm的一层薄膜,由介电材料构成,如钛酸钡或二氧化钛,由于介电材料并非是理想的绝缘体,因此,少量的电流仍然可以经过介电区,为了有效防止电流流经介电区4,研究表明,将第一磁性区3和第二磁性区5的磁极方向设置为如反向可以有效的防止电能的泄漏。
第一磁性区3和第二磁性区5均为磁性薄膜,并且都具有两个磁极,如图1所示,“→”和“←”表示磁电容10的第一磁性区3和第二磁性区5的磁极方向相反。
图2所示为本发明一实施例提供的激活设备的示意图。
如图2所示的激活设备20包括直流电压源30、第一组插槽21、第二组插槽22和控制单元40,第一组插槽21与直流电压源30的正极相通,第二组插槽22与直流电压源30的负极相通,激活设备20的第一组插槽21和第二组插槽22和磁电容10的第一组引脚1和第二组引脚2相匹配。控制单元40包括电压设定部41、电流设定部42和时间设定部43,直流电压源30至少2个输出挡位,输出挡位的输出电压为0~500V。
图3所示为本发明一实施例提供的磁电容激活过程的流程图。
如图3所示,磁能芯片的激活过程如下。
S1:提供一激活设备20,包括直流电压源30、第一组插槽21、第二组插槽22和控制单元40,第一组插槽21与直流电压源30的正极相通,第二组插槽22与直流电压源30的负极相通,激活设备20的第一组插槽21和第二组插槽22和磁电容10的第一组引脚1和第二组引脚2相匹配,本发明实施例中,第一组插槽21包括至少一个第一插槽,第二组插槽22包括至少一个第二插槽,优选的,第一插槽和第二插槽额数量相同,控制单元40包括电压设定部41、 电流设定部42和时间设定部43;
S2:将磁电容10的第一组引脚1与激活设备20的第一组插槽21匹配,将磁电容10的第二组引脚2与激活设备20的第二组插槽22匹配;
S3:通过控制单元40的电压设定部41设定激活电压,本发明实施例的激活电压为1.5~400V,通过控制单元40的时间设定部43设定激活时间,本发明实施例的激活时间为10ms~10min;
S4:完成S3步骤后,开始对磁电容10进行激活,激活过程中的环境条件为-50~150℃;
S5:结束激活。
完成S4步骤后,可以增加测试磁电容10的两组引脚间的电压的步骤。具体操作是:使磁电容10脱离激活设备,测定第一组引脚1和第二组引脚2之间的电压,如果第一组引脚1和第二组引脚2之间的电压为一稳定值,则激活结束,优选的,稳定的电压值和激活电压相同。
本发明实施例中的激活和普通的充电有本质的区别,磁电容10在直流电场的激励下,第一磁性区3的磁性薄膜和第二磁性区5的磁性薄膜中的磁极子会发生移动,在磁电容10中形成电场,磁能芯片中的存储的主要能量来源于磁电容10内部的磁电转换,而非外部能源,这一激活过程在短时间内就可以完成,激活完成后的磁电容10可输出的能量要远大于激活设备的输入能量。
以4mm×5mm见方、GMC为10的11次方的磁电容为例,使用12V的直流电压激活,激活完成后,磁电容可以存储10Wh的能量,倘若改用72V的直流电压激活,不到一分钟就可完成激活,激活结束后,磁电容储存的能量为:10Wh×(72/12) 2=360Wh,以手机每天使用10小时为例,此种规格的磁电容存储的电能可以为手机提供其使用至少一个月的电量。
由于整个激活过程中,磁电容的储能方式是基于物理结构的磁电转换,不涉及氧化还原反应,且不含化学电解液,不易产生化学电池中的电解液浓度降低的衰退现象,完成后的磁电容几乎是零泄漏。
激活过程完成后,第一磁性区3和第二磁性区5的磁能转换成电能,磁电容储存电能,成为磁能芯片。
以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种磁能芯片存储电能的方法,其特征在于,所述磁能芯片包括一磁电容,所述磁电容包括:基板和顺序设置在所述基板上的第二导电区、第二磁性、介电区、第一磁性区和第一导电区,所述第一导电区包括第一导电金属层和第一组引脚,所述第一导电金属层和所述第一组引脚相连通,所述第二导电区包括第二导电金属层和第二组引脚,所述第二导电金属层和所述第二组引脚相连通;所述方法包括:
    提供激活设备,所述激活设备包括直流电压源、第一组插槽、第二组插槽和控制单元;
    将所述磁电容的所述第一组引脚与所述激活设备的所述第一组插槽匹配,将所述磁电容的所述第二组引脚与所述激活设备的所述第二组插槽匹配;
    设定激活参数;
    进行激活操作。
  2. 如权利要求1所述的磁能芯片的制备方法,其特征在于,所述磁电容的所述第一组引脚包括至少一个第一引脚,所述磁电容的所述第二组引脚包括至少一个第二引脚。
  3. 如权利要求1或2所述的磁能芯片的制备方法,其特征在于,所述磁电容的所述第一组引脚的数量和所述磁电容的所述第二组引脚的数量相同。
  4. 如权利要求1至3任一所述的磁能芯片的制备方法,其特征在于,所述激活设备的所述第一组插槽包括至少一个第一插槽,所述激活设备的所述第二组插槽包括至少一个第二插槽。
  5. 如权利要求1至4任一所述的磁能芯片的制备方法,其特征在于,所述激活设备的所述第一组插槽和所述激活设备的所述第二组插槽的数量相同。
  6. 如权利要求1至5任一所述的磁能芯片的制备方法,其特征在于,所述控制单元包括电压设定部。
  7. 如权利要求1至6任一所述的磁能芯片的制备方法,其特征在于,所述控制单元还包括电流设定部和时间设定部。
  8. 如权利要求1至7任一所述的磁能芯片的制备方法,其特征在于,所述直流电压源包括至少两个输出挡位,所述至少两个输出挡位的输出电压为0~500V。
  9. 如权利要求1至8任一所述的磁能芯片的制备方法,其特征在于,所述激活设备的所述第一组插槽连接所述直流电压源的正极,所述第二组插槽连接所述直流电压源的负极。
  10. 如权利要求1至9任一所述的磁能芯片存储电能的方法,其特征在于,所述激活参数包括激活电压。
  11. 如权利要求1至10任一所述的磁能芯片存储电能的方法,其特征在于,所述激活参数还包括激活电流和激活时间。
  12. 如权利要求10所述的磁能芯片存储电能的方法,其特征在于,所述激活电压为1.5~400V。
  13. 如权利要求11所述的磁能芯片存储电能的方法,其特征在于,所述激活时间为10ms~10min。
  14. 如权利要求1至13任一所述的磁能芯片存储电能的方法,其特征在于,所述激活操作包括测试所述磁电容的所述第一组引脚和所述磁电容的所述第二组引脚之间的电压。
PCT/CN2018/088106 2017-05-26 2018-05-24 一种磁能芯片储存电能的方法 WO2018214923A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18806799.5A EP3633821A1 (en) 2017-05-26 2018-05-24 Method using magnetic energy chip to store electric energy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710387767.8 2017-05-26
CN201710387767.8A CN107332355B (zh) 2017-05-26 2017-05-26 一种磁能芯片储存电能的方法

Publications (1)

Publication Number Publication Date
WO2018214923A1 true WO2018214923A1 (zh) 2018-11-29

Family

ID=60193083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088106 WO2018214923A1 (zh) 2017-05-26 2018-05-24 一种磁能芯片储存电能的方法

Country Status (3)

Country Link
EP (1) EP3633821A1 (zh)
CN (1) CN107332355B (zh)
WO (1) WO2018214923A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107332355B (zh) * 2017-05-26 2018-09-07 卓磁(上海)实业发展有限公司 一种磁能芯片储存电能的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020027803A1 (en) * 2000-07-27 2002-03-07 Noriyuki Matsui Magnetic memory device and method of reading data in magnetic memory device
CN101336379A (zh) * 2005-11-29 2008-12-31 霍尼韦尔国际公司 巨磁阻的保护性导电层
CN101800445A (zh) * 2009-02-05 2010-08-11 北极光股份有限公司 一种电子元件具有以磁电容作为能量储存单元的电源
CN105071545A (zh) * 2015-08-05 2015-11-18 国润金华(北京)国际能源投资有限公司 一种量子物理蓄电池及其制备方法
CN107332355A (zh) * 2017-05-26 2017-11-07 卓磁(上海)实业发展有限公司 一种磁能芯片储存电能的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090050999A1 (en) * 2007-08-21 2009-02-26 Western Lights Semiconductor Corp. Apparatus for storing electrical energy
CN101656433A (zh) * 2008-08-19 2010-02-24 光宝科技股份有限公司 故障保护装置
CN103890885A (zh) * 2011-08-18 2014-06-25 Enzo设计株式会社 薄膜电容器装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020027803A1 (en) * 2000-07-27 2002-03-07 Noriyuki Matsui Magnetic memory device and method of reading data in magnetic memory device
CN101336379A (zh) * 2005-11-29 2008-12-31 霍尼韦尔国际公司 巨磁阻的保护性导电层
CN101800445A (zh) * 2009-02-05 2010-08-11 北极光股份有限公司 一种电子元件具有以磁电容作为能量储存单元的电源
CN105071545A (zh) * 2015-08-05 2015-11-18 国润金华(北京)国际能源投资有限公司 一种量子物理蓄电池及其制备方法
CN107332355A (zh) * 2017-05-26 2017-11-07 卓磁(上海)实业发展有限公司 一种磁能芯片储存电能的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633821A4

Also Published As

Publication number Publication date
EP3633821A4 (en) 2020-04-08
CN107332355B (zh) 2018-09-07
EP3633821A1 (en) 2020-04-08
CN107332355A (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
TWI395241B (zh) 可儲存電能之磁電容裝置
JP2006287174A (ja) 高電圧電気二重層キャパシタ
Haspert et al. Perspective: hybrid systems combining electrostatic and electrochemical nanostructures for ultrahigh power energy storage
WO2018214923A1 (zh) 一种磁能芯片储存电能的方法
Brousse et al. Capacitive and pseudocapacitive electrodes for electrochemical capacitors and hybrid devices
JP2015207558A (ja) 高エネルギー密度および高出力密度を有するバッテリ装置
WO2020233383A1 (zh) 一种高能效开关电容电源转换器
TW200919898A (en) Charge circuit and error compensation method thereof
CN103779906B (zh) 充电管理装置和系统
Sayago et al. TransCap: a monolithically integrated supercapacitor and electrolyte-gated transistor
TW201803242A (zh) 具電能回充之電池內阻偵測裝置及其應用方法
US9859734B2 (en) Power supply circuit and power supply method
US20180366420A1 (en) Solid Oxide Battery
CN210007431U (zh) 一种电路
Rizoiu et al. A fundamental study of supercapacitive cells
TW201019566A (en) Balance module for power and method thereof
CN206498234U (zh) 一种结合蓄电池与超级电容器的复合型移动电源
WO2019015606A1 (zh) 无源磁能电源及其应用设备
CN219978487U (zh) 一种检测锂亚硫酰氯电池电量耗尽的电路
US20200064899A1 (en) Battery pack control system
CN103033754A (zh) 蓄电池老化程度监测装置
CN209786860U (zh) 超级电容移动供电装置和超级电容移动设备
CN215580452U (zh) 一种锂氩电池串联使用安全电路系统
CN209844839U (zh) 电源装置
CN218333938U (zh) 一种钛酸锂电池组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018806799

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018806799

Country of ref document: EP

Effective date: 20200102

ENP Entry into the national phase

Ref document number: 2018806799

Country of ref document: EP

Effective date: 20200102