WO2018214710A1 - 充电电路的充电管理方法及充电电路 - Google Patents

充电电路的充电管理方法及充电电路 Download PDF

Info

Publication number
WO2018214710A1
WO2018214710A1 PCT/CN2018/085322 CN2018085322W WO2018214710A1 WO 2018214710 A1 WO2018214710 A1 WO 2018214710A1 CN 2018085322 W CN2018085322 W CN 2018085322W WO 2018214710 A1 WO2018214710 A1 WO 2018214710A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
current
voltage
scheme
terminal
Prior art date
Application number
PCT/CN2018/085322
Other languages
English (en)
French (fr)
Inventor
吴阿新
杨小兵
Original Assignee
深圳市美好创亿医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市美好创亿医疗科技有限公司 filed Critical 深圳市美好创亿医疗科技有限公司
Publication of WO2018214710A1 publication Critical patent/WO2018214710A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient

Definitions

  • the present invention relates to the field of charging technologies, and in particular, to a charging management method and a charging circuit for a charging circuit.
  • the charging process of the battery is generally divided into four stages: a trickle charging phase, a constant current charging phase, a constant voltage charging phase, and a charging termination phase.
  • the trickle charge phase usually refers to the stage of restorative charging of a fully discharged battery, that is, charging the battery with a smaller current; the constant current charging phase is realized by increasing the charging current after the trickle charging phase is completed.
  • the fast charging phase when the voltage of the battery rises to near saturation, the constant voltage charging phase is started, that is, the charging current is reduced to a smaller value to realize the charging phase of the battery; when the voltage of the battery reaches saturation, the charging is terminated.
  • the battery is stopped.
  • the charging scheme is determined by detecting the charging voltage of the input battery by the relationship between the voltage and the battery parameters.
  • the voltage of the input battery detected during the charging process does not truly reflect the battery voltage; thus, the charging scheme is unreasonable, the battery charging is saturated, and the like, which in turn affects the battery life.
  • An object of the present invention is to provide a charging management method and a charging circuit for a charging circuit, so as to solve the problem that the charging scheme of the prior art is unreasonable, thereby reducing the service life of the charging end.
  • An object of the present invention is to provide a charging management method for a charging circuit, the charging circuit comprising a power supply end and a charging end, wherein the charging circuit includes a plurality of cycles, each cycle including a charging pause phase and a charging operation
  • the charging management method includes the following steps:
  • the charging scheme includes a trickle charging scheme, a constant current charging scheme, a constant voltage charging scheme, and a charging termination scheme;
  • step S2 is:
  • the charging end protection voltage ⁇ the charging end voltage ⁇ the charging end near saturation voltage, determining that the charging scheme is a constant current charging scheme
  • the charging suspension phase period is t seconds
  • the charging operation phase period is T seconds
  • the t is 0.5 to 3
  • the T is 120 to 600.
  • the charging scheme is implemented by adjusting a PWM pulse output to the charging circuit.
  • step S3 is: turning off the output PWM pulse, and returning to step S1.
  • the step S3 includes the following steps:
  • the first current threshold minimum charging current+current tolerance value
  • the second current threshold minimum charging current-current tolerance value
  • the minimum charging current is 0.05C to 0.08C
  • the current tolerance value Not more than 0.005 C
  • the magnitude of the reduced or raised PWM duty cycle is 1% to 5%. or
  • the step S3 includes the following steps:
  • step S322 when the charging current reaches the third current threshold, reduce the output PWM duty cycle, returning to step S321; when the charging current is lower than the third current threshold, collecting the output voltage of the power supply terminal, proceeds to step S323;
  • step S323 when the output voltage reaches the voltage threshold, increase the output PWM duty cycle, and return to step S321; when the output voltage is less than the voltage threshold, charge and charge according to the current charging current until the charging operation phase ends;
  • the third current threshold is a protection current of the charging circuit; the voltage threshold is a protection voltage of the power supply terminal; and the reduced or raised PWM duty ratio ranges from 1% to 5%.
  • the step S3 includes the following steps:
  • step S322' when the charging current reaches the third current threshold, the output PWM duty is decreased, and the process returns to step S321'; when the charging current is lower than the third current threshold, the output voltage of the power supply terminal is collected, and the process proceeds to step S323'. ;
  • step S323' when the output voltage reaches the voltage threshold, the output PWM duty cycle is raised, and the process returns to step S321'; when the output voltage is less than the voltage threshold, the current charging current is charged for m seconds, then proceeds to step S324';
  • step S324' reducing the output PWM duty cycle, proceeds to step S325';
  • step S325' when the current charging current reaches the minimum charging current, the input voltage is raised, and the process returns to step S323'; when the current charging current is higher than the minimum charging current, the process proceeds to step S326';
  • step S326' when the number of times of reducing the PWM duty ratio reaches N, the input voltage is raised, and the process returns to step S323'; when the number of times of reducing the PWM duty ratio is less than N, the current charging current is charged for m seconds, and Go to step S324' until the end of the charging operation phase;
  • the third current threshold is a protection current of the charging circuit; the voltage threshold is a protection voltage of the power supply terminal; and the amplitude of the reduced or raised PWM duty ratio is 1% to 5%; 0.5 to 2; the minimum charging current is 0.05C to 0.08C; the magnitude of the boosted input voltage is 0.3V to 0.8V; and the N is 3 to 5.
  • a second object of the present invention is to provide a charging circuit including a power supply end, a charging end, a processor, and a storage medium;
  • the processor is respectively connected to the power supply end and the charging end, and outputs a PWM pulse to the charging circuit;
  • Storing a plurality of instructions in the storage medium the instructions being executed by the processor to cause the processor to receive an output voltage and a charging terminal voltage of the power supply end, and according to the charging management method of any one of the charging circuits
  • the step controls the PWM pulse output to the charging circuit.
  • the processor is connected to the power supply terminal through a circuit and adjusts a size of an input voltage of the power supply terminal.
  • the invention can truly reflect the charging condition of the charging end by setting the charging suspension phase during the charging process and collecting the voltage value of the charging terminal during the charging suspension phase. It avoids the situation that the charging scheme is unreasonable due to the unrealistic voltage value, which in turn affects the service life of the battery.
  • FIG. 1 is a schematic block diagram of a charging management method in a first embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a trickle charging scheme in a first embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of a constant current charging scheme in the first embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a constant current charging scheme in accordance with an alternative embodiment of the present invention.
  • FIG. 5 is a block diagram of a charging circuit in a second embodiment of the present invention.
  • a first embodiment of the present invention provides a charging management method for a charging circuit, the charging circuit includes a power supply end and a charging end, and the charging process of the charging circuit includes a plurality of cycles, each cycle including a charging suspension phase and a In the charging operation phase, the charging management method includes the following steps:
  • the charging scheme includes a trickle charging scheme, a constant current charging scheme, a constant voltage charging scheme, and a charging termination scheme;
  • the charging suspension phase is set.
  • the charging state of the charging terminal can be more truly reflected compared with the scheme of collecting the charging terminal voltage value during the charging operation phase. This embodiment avoids the situation that the charging scheme is unreasonable due to the unrealistic voltage value, thereby affecting the service life of the battery.
  • the charging scheme is determined according to the charging terminal voltage, as follows:
  • the charging end protection voltage ⁇ the charging end voltage ⁇ the charging end near saturation voltage, determining that the charging scheme is a constant current charging scheme
  • the charging terminal saturation voltage refers to a voltage value that the charging terminal can actually allow charging;
  • the charging terminal near saturation voltage refers to the charging terminal voltage is close to the charging terminal saturation voltage, under normal circumstances,
  • the charging terminal near saturation voltage charging terminal saturation voltage - tolerance value, wherein the tolerance value is not greater than 0.1V;
  • the charging terminal protection voltage is the lowest voltage that maintains stable performance of the charging terminal.
  • both the trickle charging scheme and the constant voltage charging scheme refer to charging the charging terminal with a smaller charging current.
  • the trickle charging scheme and the constant voltage are used.
  • the charging current of the charging scheme is 0.05C to 0.08C;
  • the constant current charging scheme refers to a process of rapidly charging the charging terminal with a larger charging current.
  • the charging current of the constant current charging scheme is 0.5C to 0.8C; the charging termination scheme stops charging the charging terminal.
  • the charging suspension phase period is 0.5 seconds to 3 seconds, and the solution does not affect the total duration of the charging process because the charging suspension phase is too long, and can also Obtaining relatively stable charging terminal voltage data; the charging operation phase period is 2 minutes to 10 minutes. After the charging operation phase, the solution returns to the charging suspension phase to adjust the current charging scheme, thereby improving the rationality of the charging scheme selection.
  • the charging terminal voltage data may be collected at any time during the charging suspension phase, or may be continuous acquisition.
  • the charging terminal voltage is collected continuously at a certain time interval during the charging suspension phase, and the charging terminal voltage data is used to filter and denoise all the charging terminal voltage data. Obtained after calculating the average value.
  • the execution of the charging scheme is accomplished by adjusting the output of PWM pulses to the charging circuit.
  • the scheme has simple control of charging current and is easy to operate.
  • 1 is a charging management method in a first embodiment of the present invention.
  • step S11 the charging circuit is set to be in the charging suspension phase, and the charging suspension time t in this embodiment is 2 seconds.
  • This scheme can be implemented by turning off the PWM pulse output to the charging circuit.
  • step S12 in the charging suspension phase, the charging terminal voltage is collected once every 10 milliseconds, and the collected 50 charging terminal voltage data is filtered and denoised every 500 milliseconds to calculate an average value; 2 seconds after the charging is suspended. A total of four charging terminal voltage averages are obtained, and an average value of four charging terminal voltage average values is taken to obtain a charging terminal voltage in the period.
  • step S13 it is determined in real time whether or not the charging suspension phase waiting time reaches 2 seconds.
  • the charging time is less than 2 seconds, that is, the charging suspension phase has not ended
  • the process proceeds to step S0, that is, the PWM pulse output to the charging circuit is continuously turned off; when the charging time reaches 2 seconds, the charging suspension phase ends, and the process proceeds to step S21. .
  • step S21 the charging scheme is determined based on the charging terminal voltage obtained in step S12, and the charging scheme is executed in the charging operation phase.
  • the charging end protection voltage ⁇ the charging end voltage ⁇ the charging end near saturation voltage, determining that the charging scheme is a constant current charging scheme
  • the charging scheme is a trickle charging scheme.
  • the charging termination technical scheme is adopted, that is, after the charging suspension phase ends, the PWM pulse outputted to the charging circuit is still in the off state.
  • the charging scheme is a trickle charging scheme, a constant current charging scheme, or a constant voltage charging scheme
  • a PWM pulse is output to the charging circuit.
  • step S21 the process proceeds to step S22 to determine whether to adopt the charging termination scheme.
  • the process proceeds to step S0; when the charging termination scheme is not adopted, the process proceeds to step S3, and the charging circuit is applied according to the charging scheme.
  • the output PWM pulse the charging circuit enters the charging state.
  • step S4 it is determined whether the charging operation phase is ended.
  • the charging operation phase is set to 5 minutes, when the charging operation phase waits less than 5 minutes, the process returns to step S3; when the charging operation phase reaches 5 minutes, Proceeding to step S0, the output PWM pulse is turned off, and the charging pause phase of the next cycle is entered.
  • the step S3 includes the following steps:
  • step S312 the current charging current is greater than the first current threshold, proceeds to step S3121, reduces the output PWM duty cycle, and returns to step S311; when the current charging current is not greater than the first current threshold, proceeds to step S313;
  • step S313 when the current charging current is less than the second current threshold, proceeding to step S3131, raising the output PWM duty cycle, and returning to step S311; when the current charging current is not less than the second current threshold, proceeding to step S3132, pressing current Charging current charging;
  • step S4 When the waiting time of the charging operation phase does not reach 5 minutes, the process returns to step S3132; when the waiting time of the charging operation phase reaches 5 minutes, the charging operation phase ends, the process proceeds to step S0, the output PWM pulse is turned off, and the charging of the next cycle is entered. Suspension phase.
  • the first current threshold minimum charging current+current tolerance value
  • the second current threshold minimum charging current-current tolerance value
  • the minimum charging current is 0.05C to 0.08C
  • the current capacity The difference is no more than 0.005 C; the magnitude of the reduced or raised PWM duty cycle is 1% to 5%.
  • the solution controls the charging current between the first current threshold and the second current threshold.
  • the charging process is the same as the trickle charging scheme, and will not be described herein.
  • the step S3 includes the following steps:
  • step S322 when the charging current reaches the third current threshold, the process proceeds to step S3221, the output PWM duty cycle is decreased, and the process returns to step S321; when the charging current is lower than the third current threshold, the process proceeds to step S3222, and the output voltage of the power supply terminal is collected. Then proceeds to step S323;
  • step S323 the output voltage reaches the voltage threshold, proceeds to step S3231, raises the output PWM duty cycle, and returns to step S321; when the output voltage is less than the voltage threshold, proceeds to step S3232 to charge according to the current charging current;
  • step S4 When the waiting period of the charging operation phase is less than 5 minutes, the current charging current is continuously charged; when the charging operation phase waiting time reaches 5 minutes, the charging operation phase ends, the process proceeds to step S0, the output PWM pulse is turned off, and the next step is entered. Cycle charge suspension phase.
  • the third current threshold is a protection current of the charging circuit; the voltage threshold is a protection voltage of the power supply end; and the reduced or raised PWM duty ratio ranges from 1% to 5%.
  • the first current charging current is controlled in the range of 0.5C to 0.8C.
  • the charging current is larger and the charging time is shorter.
  • the components in the charging circuit usually have a certain limit on the current. Therefore, it is still necessary to control the charging current of the constant current charging scheme. This scheme can effectively shorten the constant. Charging time of the stream charging phase.
  • the step S3 includes the following steps:
  • step S322' when the charging current reaches the third current threshold, the process proceeds to step S3211', the output PWM duty cycle is decreased, and the process returns to step S321'; when the charging current is lower than the third current threshold, the process proceeds to step S3212'. Collecting the output voltage of the power supply terminal, and proceeding to step S323';
  • step S323' when the output voltage reaches the voltage threshold, the process proceeds to step S3231', the output PWM duty cycle is raised, and the process returns to step S321'; when the output voltage is less than the voltage threshold, the current charging current is charged for m seconds, and then proceeds to the step. S324';
  • step S324' reducing the output PWM duty cycle, proceeds to step S325';
  • step S325' when the current charging current reaches the minimum charging current, proceeds to step S3251', raises the input voltage, and returns to step S323'; when the current charging current is higher than the minimum charging current, proceeds to step S326';
  • step S326' when the number of times of reducing the PWM duty ratio reaches N, the process proceeds to step S3251', the input voltage is raised, and the process returns to step S323'; when the number of times of reducing the PWM duty ratio is less than N, the process returns to step S3232' until The charging operation phase ends;
  • the output voltage of the power supply end and the charging terminal voltage are collected once every m seconds, and the charging current is adjusted in real time through the collected data.
  • the present invention further includes a step S4 of determining whether the charging operation phase is completed in real time.
  • the step S3232 is performed to further include the step S4, and determining that when the charging operation phase waiting time does not reach 5 minutes, repeating the subsequent steps.
  • the waiting period of the charging operation phase reaches 5 minutes, the charging operation phase ends, and proceeds to step S0, the output PWM pulse is turned off, and the next cycle is entered.
  • the third current threshold is a protection current of the charging circuit; the voltage threshold is a protection voltage of the power supply terminal; and the amplitude of the reduced or raised PWM duty ratio is 1% to 10%; 0.5 to 2; the minimum charging current is 0.05C to 0.08C; the magnitude of the boosted input voltage is 0.3V to 0.8V; and the N is 3 to 5.
  • the first current charging current is controlled in the range of 0.5C to 0.8C.
  • the charging current is larger and the charging time is shorter.
  • the components in the charging circuit usually have a certain limit on the current. Therefore, it is still necessary to control the charging current of the constant current charging scheme. This scheme can effectively shorten the constant. Charging time of the stream charging phase.
  • the solution can adjust the charging current in real time according to the circuit parameters, and effectively shorten the charging time while ensuring the safe operation of the charging circuit.
  • the second embodiment of the present invention further provides a charging circuit, as shown in FIG. 5, including a power supply end, a charging end, a processor, and a storage medium;
  • the processor is respectively connected to the power supply end and the charging end, and outputs a PWM pulse to the charging circuit;
  • the charging circuit of the embodiment has a simple structure, and the detected charging terminal voltage can truly reflect the charging condition of the charging end, so that a reasonable charging scheme can be selected according to the charging terminal voltage, the charging management process is optimized, and the service life of the battery is prolonged.
  • the charging circuit further includes an adjustment circuit that transmits a charging current from the power supply terminal to the charging terminal, and the processor adjusts the charging current by controlling the output of the PWM pulse to the adjusting circuit.
  • the output voltage of the power supply terminal needs to be adjusted according to the actual situation of the detection.
  • the adjustment of the output voltage of the power supply terminal can be manually adjusted or automatically adjusted by the processor.
  • the processor is connected to the power supply end through a circuit, and automatically adjusts the output voltage of the power supply end through a circuit.
  • the solution can automatically adjust the output voltage of the power supply terminal according to the actual situation of the circuit, and further optimize the charging management process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种充电电路的充电管理方法,所述充电电路包括供电端和充电端,所述充电电路的充电过程包括多个周期,每个周期包括一个充电暂停阶段和一个充电运行阶段,所述充电管理方法包括以下步骤:S1、在充电暂停阶段采集充电端电压;S2、根据所述充电端电压确定充电方案;所述充电方案包括涓流充电方案、恒流充电方案、恒压充电方案和充电终止方案;S3、在充电运行阶段执行所述充电方案。本发明还提供了一种能够实现上述充电管理方法的充电电路。本发明通过在充电过程中设置充电暂停阶段采集充电端的电压,能够真实地反映充电端的充电情况。避免了因电压值不真实导致充电方案选择不合理,进而影响电池的使用寿命的情况。

Description

充电电路的充电管理方法及充电电路 技术领域
本发明涉及充电技术领域,具体涉及一种充电电路的充电管理方法及充电电路。
背景技术
目前,电池的充电过程通常分为四个阶段:涓流充电阶段、恒流充电阶段、恒压充电阶段以及充电终止阶段。涓流充电阶段通常是指对完全放电的电池进行恢复性充电的阶段,即采用较小的电流对电池进行充电;恒流充电阶段是在涓流充电阶段完成后,通过提高充电电流来实现电池的快速充电的阶段;当电池的电压上升到接近饱和时,开始恒压充电阶段,即将充电电流又降低至较小值实现对电池的充电的阶段;当电池的电压达到饱和时,进入充电终止阶段,即停止对电池进行充电。
现有技术对电池的充电过程进行管理时,通常是在充电过程中,通过检测输入电池的充电电压,由该电压与电池参数的关系确定充电方案。但在充电过程中检测的输入电池的电压并不能真实的反映电池电压;从而会造成充电方案选择不合理,电池充电虚饱和等的情况,继而影响电池使用寿命。
因此,需要提供一种新的充电电路的充电管理方法及充电电路,在电池充电过程中设置短暂的充电暂停阶段,在充电暂停时采集电池电压,并根据电池电压确定充电过程中的充电方案,从而优化充电管理过程,延长电池使用寿命的。
发明内容
本发明的目的在于提供一种充电电路的充电管理方法及充电电路,以解决现有技术充电方案选择不合理,从而降低充电端使用寿命的问题。
本发明一个目的在于提供一种充电电路的充电管理方法,所述充电电路包括供电端和充电端,所述充电电路的充电过程包括多个周期,每个周期包括一个充电暂停阶段和一个充电运行阶段,所述充电管理方法包括以下步骤:
S1、在充电暂停阶段采集充电端电压;
S2、根据所述充电端电压确定充电方案;所述充电方案包括涓流充电方案、恒流充电方案、恒压充电方案和充电终止方案;
S3、在充电运行阶段执行所述充电方案。
进一步地,所述步骤S2为:
所述充电端电压≥充电端饱和电压时,确定所述充电方案为充电终止方案;
充电端近饱和电压≤充电端电压<充电端饱和电压时,确定所述充电方案为恒压充电方案;
充电端保护电压<充电端电压<充电端近饱和电压时,确定所述充电方案为恒流充电方案;
所述充电端电压≤充电端保护电压时,确定所述充电方案为涓流充电方案;
所述充电端近饱和电压=充电端饱和电压-容差值,所述容差值不大于0.1V。
进一步地,所述充电暂停阶段周期为t秒,所述充电运行阶段周期为T秒;所述t为0.5至3,所述T为120至600。
进一步地,所述充电方案的执行是通过调整向所述充电电路输出PWM脉冲实现的。
进一步地,所述充电运行阶段执行所述充电终止方案时,所述步骤S3为:关闭输出PWM脉冲,返回步骤S1。
进一步地,所述充电运行阶段执行所述涓流充电方案时,所述步骤S3包括以下步骤:
S311、向所述充电电路输出PWM脉冲,获取当前充电电流;
S312、所述当前充电电流大于第一电流阈值时,降低输出PWM占空比,返回步骤S311;所述当前充电电流不大于第一电流阈值时,进入步骤S313;
S313、所述当前充电电流小于第二电流阈值时,升高输出PWM占空比,返回步骤S311;所述当前充电电流不小于第二电流阈值时,按当前充电电流充电,直至充电运行阶段结束;
所述第一电流阈值=最小充电电流+电流容差值,所述第二电流阈值=最小充电电流-电流容差值,所述最小充电电流为0.05C至0.08C,所述电流容差值不大于0.005C;所述降低或升高PWM占空比的幅度为1%至5%。或,
所述充电运行阶段执行所述恒流充电方案时,所述步骤S3包括以下步骤:
S321、向所述充电电路输出PWM脉冲,获取当前充电电流;
S322、所述充电电流达到第三电流阈值时,降低输出PWM占空比,返回步骤S321;所述充电电流低于第三电流阈值时,采集供电端的输出电压,进入步骤S323;
S323、所述输出电压达到电压阈值时,升高输出PWM占空比,返回步骤S321;所述输出电压小于电压阈值时,按所述当前充电电流充电充电,直至充电运行阶段结束;
所述第三电流阈值为所述充电电路的保护电流;所述电压阈值为所述供电端的保护电压;所述降低或升高PWM占空比的幅度为1%至5%。
进一步地,所述充电运行阶段执行所述恒流充电方案时,所述步骤S3包括以下步骤:
S321’、向所述充电电路输出调节PWM脉冲,获取当前充电电流;
S322’、所述充电电流达到第三电流阈值时,降低所述输出PWM占空比,返回步骤S321’; 所述充电电流低于第三电流阈值时,采集供电端的输出电压,进入步骤S323’;
S323’、所述输出电压达到电压阈值时,升高输出PWM占空比,返回步骤S321’;所述输出电压小于电压阈值时,按当前充电电流充电m秒后,进入步骤S324’;
S324’、降低输出PWM占空比,进入步骤S325’;
S325’、所述当前充电电流达到最小充电电流时,升高输入电压,返回步骤S323’;所述当前充电电流高于最小充电电流时,进入步骤S326’;
S326’、所述降低PWM占空比的次数达到N时,升高输入电压,返回步骤S323’;所述降低PWM占空比的次数小于N时,按所述当前充电电流充电m秒,并进入步骤S324’,直至充电运行阶段结束;
所述第三电流阈值为所述充电电路的保护电流;所述电压阈值为所述供电端的保护电压;所述降低或升高PWM占空比的幅度为1%至5%;所述m为0.5至2;所述最小充电电流为0.05C至0.08C;所述升高输入电压的幅度为0.3V至0.8V;所述N为3至5。
本发明的第二个目的在于提供一种充电电路,包括供电端、充电端、处理器以及存储介质;
所述处理器分别与供电端、充电端连接,并向所述充电电路输出PWM脉冲;
所述存储介质中储存有多条指令,所述指令由所述处理器执行时使所述处理器接收所述供电端的输出电压和充电端电压,并根据上述任一充电电路的充电管理方法的步骤控制向所述充电电路输出的PWM脉冲。
进一步地,所述处理器通过电路与所述供电端连接并调节所述供电端输入电压的大小。
本发明通过在充电过程中设置充电暂停阶段,并在充电暂停阶段采集充电端的电压值,能够真实地反映充电端的充电情况。避免了因电压值不真实导致充电方案选择不合理,进而影响电池的使用寿命的情况。
附图说明
图1为本发明第一实施例中充电管理方法的原理框图。
图2为本发明第一实施例中涓流充电方案的原理框图。
图3为本发明第一实施例中恒流充电方案的原理框图。
图4为本发明一替代实施例中恒流充电方案的原理框图。
图5为本发明第二实施例中充电电路的框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施方式,对本 发明进行进一步详细说明。
本发明第一实施方式提供了一种充电电路的充电管理方法,所述充电电路包括供电端和充电端,所述充电电路的充电过程包括多个周期,每个周期包括一个充电暂停阶段和一个充电运行阶段,所述充电管理方法包括以下步骤:
S1、在充电暂停阶段采集充电端电压;
S2、根据所述充电端电压数据确定充电方案;所述充电方案包括涓流充电方案、恒流充电方案、恒压充电方案和充电终止方案;
S3、在充电运行阶段执行所述充电方案。
本实施例在充电过程中设置充电暂停阶段,通过在充电暂停阶段采集充电端的电压值,与在充电运行阶段采集充电端电压值的方案相比,能够更真实地反映充电端的充电情况。本实施例避免了因电压值不真实导致充电方案选择不合理,进而影响电池的使用寿命的情况。
进一步地,根据充电端电压确定充电方案,具体如下:
所述充电端电压≥充电端饱和电压时,确定所述充电方案为充电终止方案;
充电端近饱和电压≤充电端电压<充电端饱和电压时,确定所述充电方案为恒压充电方案;
充电端保护电压<充电端电压<充电端近饱和电压时,确定所述充电方案为恒流充电方案;
所述充电端电压≤充电端保护电压时,确定所述充电方案为涓流充电方案;
需要说明的是,本实施例中,充电端饱和电压是指充电端实际能够允许充到的电压值;所述充电端近饱和电压是指充电端电压接近充电端饱和电压,通常情况下,所述充电端近饱和电压=充电端饱和电压-容差值,其中,所述容差值不大于0.1V;所述充电端保护电压为维持充电端性能稳定的最低电压。
针对不同的充电方案,需要说明的是:所述涓流充电方案和恒压充电方案均是指以较小的充电电流对充电端进行充电,较佳的,所述涓流充电方案和恒压充电方案的充电电流为0.05C至0.08C;所述恒流充电方案是指以一个较大的充电电流对充电端进行快速充电的过程,较佳的,所述恒流充电方案的充电电流为0.5C至0.8C;所述充电终止方案即停止对充电端进行充电。
针对充电暂停阶段和充电运行阶段的周期,较佳地,所述充电暂停阶段周期为0.5秒至3秒,本方案不会因为充电暂停阶段时间过长而影响充电过程的总时长,同时还能够获得较稳定的充电端电压数据;所述充电运行阶段周期为2分钟至10分钟,本方案经过充电运行阶段后重新返回充电暂停阶段对当前充电方案进行调整,提高了充电方案选择的合理性。
需要说明的是,本实施例中在充电暂停阶段对充电端电压数据的采集可以是任意时刻进 行一次采集,也可以是连续采集。较佳的,本实施方式中,对所述充电端电压的采集方法是在充电暂停阶段按一定时间间隔连续采集,所述充电端电压数据是将采集的所有充电端电压数据进行滤波去噪处理后计算平均值后获得。
所述充电方案的执行是通过调整向所述充电电路输出PWM脉冲实现的。本方案对充电电流的控制简单,易于操作。
图1为本发明第一具体实施例中的充电管理方法。
最初,在步骤S11中,设置充电电路处于充电暂停阶段,本实施例充电暂停时间t为2秒。本方案可以通过关闭向充电电路中输出的PWM脉冲实现。
在步骤S12中,在充电暂停阶段,以每10毫秒的周期采集一次充电端电压,每500毫秒对采集的50个充电端电压数据进行滤波去噪处理后计算平均值;在充电暂停的2秒内共获得4个充电端电压平均值,再取4个充电端电压平均值的平均值,获得该周期内的充电端电压。
在步骤S13中,实时确定充电暂停阶段等待时间是否达到2秒。当充电时间未达2秒时,即充电暂停阶段还未结束,此时进入步骤S0,即持续关闭向充电电路输出的PWM脉冲;当充电时间达2秒时,充电暂停阶段结束,进入步骤S21。
在步骤S21中,根据步骤S12中获得的充电端电压确定充电方案,并在充电运行阶段执行充电方案。
所述充电端电压≥充电端饱和电压时,确定所述充电方案为充电终止方案;
充电端近饱和电压≤充电端电压<充电端饱和电压时,确定所述充电方案为恒压充电方案;
充电端保护电压<充电端电压<充电端近饱和电压时,确定所述充电方案为恒流充电方案;
所述充电端电压≤充电端保护电压时,确定所述充电方案为涓流充电方案。
当充电端电压达到饱和电压时,确定采用充电终止技术方案,即充电暂停阶段结束后,其向充电电路输出的PWM脉冲依然处于关闭状态。当确定充电方案为涓流充电方案、恒流充电方案或恒压充电方案时,则向充电电路输出PWM脉冲。
本实施例中,步骤S21结束后,先进入步骤S22判断是否采用充电终止方案,当采用充电终止方案时,进入步骤S0;当不采用充电终止方案时,进入步骤S3,根据充电方案向充电电路输出的PWM脉冲,充电电路进入充电状态。
在步骤S4中,确定充电运行阶段是否结束,本实施例中,设置充电运行阶段周期为5分钟,当充电运行阶段等待未达到5分钟时,返回步骤S3;当充电运行阶段达到5分钟时,进入步骤S0,关闭输出的PWM脉冲,并进入下一个周期的充电暂停阶段。
针对充电方案,进一步地,如图2所示,所述充电运行阶段执行所述涓流充电方案时, 所述步骤S3包括以下步骤:
S311、向所述充电电路输出PWM脉冲,获取当前充电电流;
S312、所述当前充电电流大于第一电流阈值时,进入步骤S3121,降低输出PWM占空比,并返回步骤S311;所述当前充电电流不大于第一电流阈值时,进入步骤S313;
S313、所述当前充电电流小于第二电流阈值时,进入步骤S3131,升高输出PWM占空比,并返回步骤S311;所述当前充电电流不小于第二电流阈值时,进入步骤S3132,按当前充电电流充电;
S4、当充电运行阶段等待时间未达到5分钟时,返回步骤S3132;当充电运行阶段等待时间达到5分钟时,充电运行阶段结束,进入步骤S0,关闭输出PWM脉冲,并进入下一个周期的充电暂停阶段。
其中,所述第一电流阈值=最小充电电流+电流容差值,所述第二电流阈值=最小充电电流-电流容差值,所述最小充电电流为0.05C至0.08C,所述电流容差值不大于0.005C;所述降低或升高PWM占空比的幅度为1%至5%。本方案将充电电流控制在第一电流阈值和第二电流阈值之间,是由于当充电端电压≤充电端保护电压时,充电端性能通常不稳定,因此在涓流充电方案的充电过程中,通常需要使用较小的电流来激活充电端。
针对恒压充电方案,其充电过程与涓流充电方案相同,在此不再赘述。
进一步地,如图3所示,所述充电运行阶段执行所述恒流充电方案时,所述步骤S3包括以下步骤:
S321、向所述充电电路输出PWM脉冲,获取当前充电电流;
S322、所述充电电流达到第三电流阈值时,进入步骤S3221,降低输出PWM占空比,并返回步骤S321;所述充电电流低于第三电流阈值时,进入步骤S3222,采集供电端的输出电压后进入步骤S323;
S323、所述输出电压达到电压阈值时,进入步骤S3231,升高输出PWM占空比,并返回步骤S321;所述输出电压小于电压阈值时,进入步骤S3232,按当前充电电流充电;
S4、当充电运行阶段等待时间未达5分钟时,持续按当前充电电流充电;当充电运行阶段等待时间达到5分钟时,充电运行阶段结束,进入步骤S0,关闭输出PWM脉冲,并进入下一个周期的充电暂停阶段。
其中,所述第三电流阈值为所述充电电路的保护电流;所述电压阈值为所述供电端的保护电压;所述降低或升高PWM占空比的幅度为1%至5%。
较佳的,第一次当前充电电流控制在0.5C至0.8C范围内。由于进入恒流充电阶段,充电电流越大,充电时间越短,但充电电路中的元件通常还会对电流产生一定限制,因此仍需 要控制恒流充电方案的充电电流,本方案能够有效缩短恒流充电阶段的充电时间。
针对恒流充电方案,本发明还提供了一替代实施例,如图4所示,所述步骤S3包括以下步骤:
S321’、向所述充电电路输出调节PWM脉冲,获取当前充电电流;
S322’、所述充电电流达到第三电流阈值时,进入步骤S3211’,降低所述输出PWM占空比,返回步骤S321’;所述充电电流低于第三电流阈值时,进入步骤S3212’,采集供电端的输出电压,并进入步骤S323’;
S323’、所述输出电压达到电压阈值时,进入步骤S3231’,升高输出PWM占空比,返回步骤S321’;所述输出电压小于电压阈值时,按当前充电电流充电m秒后,进入步骤S324’;
S324’、降低输出PWM占空比,进入步骤S325’;
S325’、所述当前充电电流达到最小充电电流时,进入步骤S3251’,升高输入电压,返回步骤S323’;所述当前充电电流高于最小充电电流时,进入步骤S326’;
S326’、所述降低PWM占空比的次数达到N时,进入步骤S3251’,升高输入电压,返回步骤S323’;所述降低PWM占空比的次数小于N时,返回步骤S3232’,直至充电运行阶段结束;
需要说明的是,本实施例中,在所述充电运行阶段,对所述供电端的输出电压和所述充电端电压的采集均是间隔m秒采集一次,并通过采集的数据实时调整充电电流。
此外,本发明还包括实时确定充电运行阶段是否结束的步骤S4,本实施例中,在步骤S3232’进行的同时还包括步骤S4,确定当充电运行阶段等待时间未达到5分钟时,重复后续步骤;当充电运行阶段等待时间达到5分钟时,充电运行阶段结束,进入步骤S0,关闭输出PWM脉冲,并进入下一个周期。
所述第三电流阈值为所述充电电路的保护电流;所述电压阈值为所述供电端的保护电压;所述降低或升高PWM占空比的幅度为1%至10%;所述m为0.5至2;所述最小充电电流为0.05C至0.08C;所述升高输入电压的幅度为0.3V至0.8V;所述N为3至5。
较佳的,第一次当前充电电流控制在0.5C至0.8C范围内。由于进入恒流充电阶段,充电电流越大,充电时间越短,但充电电路中的元件通常还会对电流产生一定限制,因此仍需要控制恒流充电方案的充电电流,本方案能够有效缩短恒流充电阶段的充电时间。
本方案与上一方案相比,本方案能够根据电路参数实时调整充电电流,在保证充电电路安全运行的同时,有效缩短了充电时间。
本发明第二实施例还提供了一种充电电路,如图5所示,包括供电端、充电端、处理器以及存储介质;
所述处理器分别与供电端、充电端连接,并向所述充电电路输出PWM脉冲;
所述存储介质中储存有多条指令,所述指令由所述处理器执行时使所述处理器接收所述供电端的输出电压和充电端电压,并根据上述任一实施例所述的充电电路的充电管理方法的步骤控制向所述充电电路输出的PWM脉冲。
本实施例的充电电路结构简单,所检测的充电端电压能够真实反应充电端的充电情况,从而能够根据充电端电压选择合理的充电方案,优化了充电管理过程,延长了电池的使用寿命。
进一步地,如图5所示,所述充电电路还包括将充电电流从供电终端输送至充电终端的调节电路,所述处理器通过控制向所述调节电路输出PWM脉冲实现对充电电流的调整。
本实施例的充电电路在恒流充电过程中,需要根据检测的实际情况调整供电端的输出电压。针对供电端输出电压的调节,可以是手动调节,也可以通过处理器自动调节。
较佳的,所述处理器通过电路与所述供电端连接,并通过电路自动调节所述供电端输出电压的大小。本方案能够根据电路实际情况自动调整供电端的输出电压,进一步优化了充电管理过程。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种充电电路的充电管理方法,所述充电电路包括供电端和充电端,其特征在于,所述充电电路的充电过程包括多个周期,每个周期包括一个充电暂停阶段和一个充电运行阶段,所述充电管理方法包括以下步骤:
    S1、在充电暂停阶段采集充电端电压;
    S2、根据所述充电端电压确定充电方案;所述充电方案包括涓流充电方案、恒流充电方案、恒压充电方案和充电终止方案;
    S3、在充电运行阶段执行所述充电方案。
  2. 根据权利要求1所述的充电电路的充电管理方法,其特征在于,所述步骤S2为:
    所述充电端电压≥充电端饱和电压时,确定所述充电方案为充电终止方案;
    充电端近饱和电压≤充电端电压<充电端饱和电压时,确定所述充电方案为恒压充电方案;
    充电端保护电压<充电端电压<充电端近饱和电压时,确定所述充电方案为恒流充电方案;
    所述充电端电压≤充电端保护电压时,确定所述充电方案为涓流充电方案;
    所述充电端近饱和电压=充电端饱和电压-容差值,所述容差值不大于0.1V。
  3. 根据权利要求2所述的充电电路的充电管理方法,其特征在于,所述充电暂停阶段周期为t秒,所述充电运行阶段周期为T秒;所述t为0.5至3,所述T为120至600。
  4. 根据权利要求3所述的充电管理方法,其特征在于,所述充电方案的执行是通过调整向所述充电电路输出PWM脉冲实现的。
  5. 根据权利要求4所述的充电电路的充电管理方法,其特征在于,所述充电运行阶段执行所述充电终止方案时,所述步骤S3为:关闭输出PWM脉冲,返回步骤S1。
  6. 根据权利要求4所述的充电电路的充电管理方法,其特征在于,所述充电运行阶段执行所述涓流充电方案时,所述步骤S3包括以下步骤:
    S311、向所述充电电路输出PWM脉冲,获取当前充电电流;
    S312、所述当前充电电流大于第一电流阈值时,降低输出PWM占空比,返回步骤S311;所述当前充电电流不大于第一电流阈值时,进入步骤S313;
    S313、所述当前充电电流小于第二电流阈值时,升高输出PWM占空比,返回步骤S311;所述当前充电电流不小于第二电流阈值时,按当前充电电流充电,直至充电运行阶段结束;
    所述第一电流阈值=最小充电电流+电流容差值,所述第二电流阈值=最小充电电流-电流容差值,所述最小充电电流为0.05C至0.08C,所述电流容差值不大于0.005C;所述降低或升高PWM占空比的幅度为1%至5%。
  7. 根据权利要求4所述的充电电路的充电管理方法,其特征在于,所述充电运行阶段执 行所述恒流充电方案时,所述步骤S3包括以下步骤:
    S321、向所述充电电路输出PWM脉冲,获取当前充电电流;
    S322、所述充电电流达到第三电流阈值时,降低输出PWM占空比,返回步骤S321;所述充电电流低于第三电流阈值时,采集供电端的输出电压,进入步骤S323;
    S323、所述输出电压达到电压阈值时,升高输出PWM占空比,返回步骤S321;所述输出电压小于电压阈值时,按所述当前充电电流充电充电,直至充电运行阶段结束;
    所述第三电流阈值为所述充电电路的保护电流;所述电压阈值为所述供电端的保护电压;所述降低或升高PWM占空比的幅度为1%至5%。
  8. 根据权利要求4所述的充电电路的充电管理方法,其特征在于,所述充电运行阶段执行所述恒流充电方案时,所述步骤S3包括以下步骤:
    S321’、向所述充电电路输出调节PWM脉冲,获取当前充电电流;
    S322’、所述充电电流达到第三电流阈值时,降低所述输出PWM占空比,返回步骤S321’;所述充电电流低于第三电流阈值时,采集供电端的输出电压,进入步骤S323’;
    S323’、所述输出电压达到电压阈值时,升高输出PWM占空比,返回步骤S321’;所述输出电压小于电压阈值时,按当前充电电流充电m秒后,进入步骤S324’;
    S324’、降低输出PWM占空比,进入步骤S325’;
    S325’、所述当前充电电流达到最小充电电流时,升高输入电压,返回步骤S323’;所述当前充电电流高于最小充电电流时,进入步骤S326’;
    S326’、所述降低PWM占空比的次数达到N时,升高输入电压,返回步骤S323’;所述降低PWM占空比的次数小于N时,按所述当前充电电流充电m秒,并进入步骤S324’,直至充电运行阶段结束;
    所述第三电流阈值为所述充电电路的保护电流;所述电压阈值为所述供电端的保护电压;所述降低或升高PWM占空比的幅度为1%至5%;所述m为0.5至2;所述最小充电电流为0.05C至0.08C;所述升高输入电压的幅度为0.3V至0.8V;所述N为3至5。
  9. 一种充电电路,其特征在于,包括供电端、充电端、处理器以及存储介质;
    所述处理器分别与供电端、充电端连接,并向所述充电电路输出PWM脉冲;
    所述存储介质中储存有多条指令,所述指令由所述处理器执行时使所述处理器接收所述供电端的输出电压和充电端电压,并根据权利要求1至8中任一项所述的充电电路的充电管理方法的步骤控制向所述充电电路输出的PWM脉冲。
  10. 根据权利要求9所述的充电电路,其特征在于,所述处理器通过电路与所述供电端连接并调节所述供电端输入电压的大小。
PCT/CN2018/085322 2017-05-23 2018-05-02 充电电路的充电管理方法及充电电路 WO2018214710A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710367475.8A CN108964161B (zh) 2017-05-23 2017-05-23 充电电路的充电管理方法及充电电路
CN201710367475.8 2017-05-23

Publications (1)

Publication Number Publication Date
WO2018214710A1 true WO2018214710A1 (zh) 2018-11-29

Family

ID=64396224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085322 WO2018214710A1 (zh) 2017-05-23 2018-05-02 充电电路的充电管理方法及充电电路

Country Status (2)

Country Link
CN (1) CN108964161B (zh)
WO (1) WO2018214710A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888897B (zh) * 2019-02-21 2021-08-31 深圳市电将军科技有限公司 充电控制方法、充电控制装置及电源适配器
CN112018463B (zh) * 2019-05-28 2022-05-20 东莞新能德科技有限公司 电池充电方法、装置、设备及介质
CN112234909A (zh) * 2020-10-15 2021-01-15 宝能(广州)汽车研究院有限公司 电动车辆的电机控制电路、电机保护控制方法及电动车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189468A (ja) * 1992-12-18 1994-07-08 Sony Corp 充電機能付きアダプター
CN103683357A (zh) * 2012-09-20 2014-03-26 炬力集成电路设计有限公司 充电控制电路和充电装置以及充电控制方法和充电方法
CN106602159A (zh) * 2016-12-02 2017-04-26 奇酷互联网络科技(深圳)有限公司 充电方法和充电装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189468A (ja) * 1992-12-18 1994-07-08 Sony Corp 充電機能付きアダプター
CN103683357A (zh) * 2012-09-20 2014-03-26 炬力集成电路设计有限公司 充电控制电路和充电装置以及充电控制方法和充电方法
CN106602159A (zh) * 2016-12-02 2017-04-26 奇酷互联网络科技(深圳)有限公司 充电方法和充电装置

Also Published As

Publication number Publication date
CN108964161A (zh) 2018-12-07
CN108964161B (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2018214710A1 (zh) 充电电路的充电管理方法及充电电路
CN102255484B (zh) 突发模式控制器和方法
CN110199452A (zh) 用于对锂离子电池进行快速充电的方法
CN109888897B (zh) 充电控制方法、充电控制装置及电源适配器
JP3213401B2 (ja) 非水系二次電池の充電方法
DE60216486T2 (de) Hörgerät mit leistungsoptimiertem stromverbrauch für variablen takt, variable versorgungsspannung und variable dsp-verarbeitungsparameter
JP6462905B2 (ja) 位相シフトフルブリッジ充電器の制御システムおよび制御方法
JP4727562B2 (ja) 充電方法および充電回路
US9991715B1 (en) Maximum power point tracking method and apparatus
CN109687704A (zh) 三电平降压变换器的电容控制方法、装置及降压变换系统
JP2007020299A (ja) 充電器
CN108988412A (zh) 一种蓄电池充放电控制方法
JP6531501B2 (ja) 蓄電池制御装置
CN110620417A (zh) 一种反激式电流模式pwm控制充电系统及充电方法
CN106374609B (zh) 应用于太阳能充电器的稳压器电路
CN111786474B (zh) 一种异物检测方法、异物检测装置、无线充电基座
US10491018B2 (en) Power output management apparatus of battery and managment method thereof
WO2020034389A1 (zh) 快速充电方法、装置、设备及存储介质
WO2022217857A1 (zh) 充电控制方法和系统
EP3474407B1 (en) Power management integrated circuit for energy harvesting with multi power mode selection
CN110971126B (zh) 开关电源及其控制装置和环路补偿方法及存储介质
CN114618082A (zh) 用于电刺激和电场治疗的设备及其电路
CN114602062A (zh) 用于电刺激和电场治疗设备的控制方法及电子设备
CN113138328A (zh) 一种测试mos管soa特性的系统及方法
TWI773522B (zh) 充電電路及充電控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806623

Country of ref document: EP

Kind code of ref document: A1