WO2018214636A1 - 一种流体机械 - Google Patents

一种流体机械 Download PDF

Info

Publication number
WO2018214636A1
WO2018214636A1 PCT/CN2018/080585 CN2018080585W WO2018214636A1 WO 2018214636 A1 WO2018214636 A1 WO 2018214636A1 CN 2018080585 W CN2018080585 W CN 2018080585W WO 2018214636 A1 WO2018214636 A1 WO 2018214636A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
transmission device
runner
rotating wheel
blades
Prior art date
Application number
PCT/CN2018/080585
Other languages
English (en)
French (fr)
Inventor
吴其兵
Original Assignee
吴其兵
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710369213.5A external-priority patent/CN107013486A/zh
Priority claimed from CN201710398976.2A external-priority patent/CN107091310A/zh
Priority claimed from CN201710460338.9A external-priority patent/CN107061309A/zh
Priority claimed from CN201710493317.7A external-priority patent/CN107264757B/zh
Priority claimed from CN201710503863.4A external-priority patent/CN107420256A/zh
Priority claimed from CN201710599401.7A external-priority patent/CN107178494A/zh
Priority claimed from CN201710612332.9A external-priority patent/CN107364571A/zh
Application filed by 吴其兵 filed Critical 吴其兵
Publication of WO2018214636A1 publication Critical patent/WO2018214636A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type

Definitions

  • the invention relates to a fluid machine, in particular to a rotary fluid machine in which a blade can rotate, including a water turbine, a pump/motor, a blower, a compressor, an expander, a cross flow fan, a hood, a vertical axis fan, and a ship.
  • Propulsion device air push device, water flow machine, etc.
  • Rotary fluid machines mainly include axial flow and cross flow, and there are many application scenarios, as shown in Table 1.
  • the flow area of the axial flow structure is usually a circle or a ring, and the flow area is mainly extended in the radial direction; the flow area of the through-flow structure is generally rectangular, and the flow area can be respectively radial and axial. extend.
  • the axial flow fluid machine based on the propeller structure has mature technical solutions in various application scenarios described in Table 1.
  • the cross flow fluid machine also needs a relatively simple structure, high energy efficiency, and A fluid machine widely used in various application scenarios described in Table 1.
  • the object of the present invention is to fully exploit the advantages that the cross-flow area of the cross-flow structure can extend in the radial direction and the axial direction, and to invent a fluid with high energy efficiency, relatively simple structure, and wide application to various application scenarios described in Table 1. mechanical.
  • the technical scheme of the invention adopts a tubular structure in which the blade can rotate, and mainly comprises a runner, one or more blades and a transmission device.
  • Rotary fluid machine usually rotates one wheel for one cycle, and the present invention adopts a technical scheme of rotating the wheel for 2 weeks as a motion cycle, as shown in FIG. 1 , 1 to 15 is the blade in 2 weeks.
  • the change of the position and direction during the rotation is indicated by 16 being the motion trajectory of the axis of the blade, and 17 being the trajectory of the edge of the blade.
  • each of the blades 1 includes a rotating shaft, and the rotating wheel 2 is radially distributed with one or more shaft holes, each of which is respectively associated with one of the blades 1
  • the rotating shaft cooperates, and each of the blades 1 rotates with the rotating wheel 2 for 2 weeks, and the blades 1 rotate one revolution under the driving of the transmission device 3.
  • the direction of the blade plane and the direction of fluid flow can always maintain an optimized angle throughout the rotation period, and the vertical plane of the blade plane along the moving direction and the fluid
  • the angle of the flow direction is always less than 90 degrees.
  • the invention also provides a technical scheme of a rail type transmission device.
  • the curved guide rail 4 and the driving claw 3 the curved rail curve of the curved guide rail 4 is a closed curve of 720 degrees, and has a self-intersection point.
  • Each of the blades 1 is respectively connected with one or more of the driving claws 3, and when the blade 1 rotates with the rotating wheel 2, the driving claws 3 are constrained and moved by the curved guide rail 4, thereby realizing While the blade 1 revolves with the reel 2, the rotor 1 rotates for 2 weeks, and the blade 1 rotates for 1 week. All the blades 1 share the curved guide rail 4, so the structure is relatively simple.
  • the distance between point A and point B to point C is R2, the distance from point C to point O is R1, and the movement point of point C is 11, when point C rotates around point O, point A and point B are synchronized around point C.
  • the angle between the line C and the point O and the X axis is T
  • the angle between the line connecting point A and point B and the Y axis is T/2
  • the movement trajectory of point A and point B is The same 720 degree closed curve 12
  • the plane coordinate value of point B is (Xb, Yb).
  • the curve that satisfies the curve equation is hereinafter referred to as a "720 degree spin line”.
  • the curved guide rail can combine a plurality of 720 degree closed curves.
  • the origin of each curve is the same, and the starting position of the corner is different, as shown in the figure.
  • Figure 5 shows a 720-degree closed-curved guide rail.
  • two 720-degree closed-curve guide rails are used. The two curve coordinate origins coincide, and the relative positions of the two curves are rotated by 180 degrees with respect to the origin.
  • the matching manner of the curved rails may be a chute structure, as shown in FIG. 3 , which is a chute structure, and the driving claws 3 are embedded in the sliding slots of the curved rails 4 , The curved guide rail 4 moves.
  • One of the 720 degree closed curves may cooperate with one or two of the driving claws on one of the blades, and when one of the blades is engaged with one of the 720 degree curves and two of the driving claws,
  • the chute can be changed to a single-sided baffle structure.
  • the present invention provides a magnetic guide rail scheme.
  • the drive claw 3 and the curved guide rail 4 are both magnetic materials, and at least one of them is magnetized. Magnetically, when the blade 1 rotates with the rotating wheel 2, the curved guide rail 4 restricts the movement of the driving claw 2 along the curved guide rail by a magnetic force, thereby avoiding mechanical friction.
  • the magnetic guide rail is a kind of soft constraint. When the fluid impact is encountered or the deceleration of the revolving speed is faster, the derailment may occur.
  • the present invention provides a combined rail technical solution.
  • the sliding guide rail is combined with the magnetic guide rail, and the bottom of the sliding slot is a magnetic guide rail, wherein the sliding slot adopts a large clearance fit, and the main purpose is to avoid derailment.
  • a conventional gear transmission technical solution can also be adopted.
  • the solution includes a sun gear 3, an intermediate gear 4, and a blade gear 5, and the center gear 3 Fixedly connected to the housing or to the steering device, the blade gear 5 is fixedly connected to the blade 1 , and the intermediate gear 4 is engaged with the shaft hole of the runner 2 through a rotating shaft, and respectively with the sun gear 3 Engaged with the vane gear 5, one of the transition gears 4 is connected to one or two of the vane gears 5, and the ratio of the gear ratio of the sun gear 3 to the vane gear 5 is 1:2.
  • the present invention provides a combined technical solution, which combines the rotating wheel with the electric motor or the generator rotor into one, ie The runner is also the rotor of the electric motor or the generator.
  • the difference is: the flow direction of the fluid relative to the runner, one is flowing in the axial direction and the other is flowing in the radial direction.
  • the technical solution of the present invention corresponds to a radial propeller, hereinafter referred to as "720-degree cross-flow paddle”.
  • a variety of axial flow applications using a propeller structure can be used to replace the propeller with the 720-degree wheel paddle and recombined into a corresponding cross-flow application, including the various application scenarios described in Table 1.
  • the present invention provides further surgical solutions for the following technical fields, and each has corresponding beneficial effects.
  • Cross-flow fan is widely used in various split-type air conditioner indoor units, mobile air conditioners, air fresheners, dehumidifiers, low static pressure duct machines, wind curtains, large summer fans, window air conditioners, household tower fans, etc. Equipment and many household appliances areas.
  • the best embodiment of applying the 720-degree cross-flow paddle to the cross-flow fan is that the transmission device adopts a single 720-degree closed-curve magnetic guide rail, and the two ends of the blade are respectively connected with the runner to improve the rigidity of the blade.
  • the fluid flow path is smooth, so the noise is low, the energy efficiency is high, and the cross-flow fan of the fixed blade can reduce the space occupied by the runner and the blade under the same flow wind pressure condition, thereby saving equipment space and reducing Small device size.
  • Embodiment 1 of the embodiment of the present invention is a cross flow fan.
  • the exhaust hood of the exhaust hood is usually rectangular, and the space structure is suitable for the cross-flow fan, but the cross-flow fan of the fixed blade has a small wind pressure and is not suitable for the use of the hood. Therefore, the existing hood is equipped. Most use centrifugal fans or axial fans.
  • a soot filter screen may be installed on the main body of the blade to reverse the relative motion relationship between the soot filter and the soot, thereby reducing the energy loss of the soot filter and further improving the overall energy efficiency.
  • the centrifugal force of the blade edge is the largest, and the oil collecting device can be arranged at the corresponding position on the casing, so that the collection of the oil filtering is efficient and simple.
  • the flow rate of the river water is low, and the 720-degree cross-flow paddle of the present invention mainly relies on the resistance to achieve energy conversion, so that the low flow rate can be well adapted.
  • the pontoon structure can be added, and the cross-flow paddle is mounted on the pontoon, and the blade is in the water.
  • Rotor helicopters can take off and land vertically, but at a slower speed.
  • the present invention employs a plurality of sets of the cross-flow fans, each set of the cross-flow fan being mounted on a corresponding wing, the wing plane and the cross-flow
  • the fan shaft is parallel, the wing can be rotated relative to the body by a certain angle; when taking off, the wing is inclined at an angle relative to the horizontal plane, and the cross-flow fan mounted on the wing rotates, and the high-speed airflow generates and the machine
  • the upwardly oblique upward thrust of the wing plane while the high velocity airflow above the wing forms a lower air pressure below the wing, the air pressure difference producing an upwardly inclined lift perpendicular to the plane of the wing, air
  • the combined force of the thrust and the lift of the wing is perpendicular to the ground, and the motive body vertically moves up and down; when the wing is parallel with respect to the horizontal plane, the air thrust generated by the rotation of the cross-flow fan drives the helicopter to advance, and the
  • a cross-flow fan for direction control may be employed at the rear of the helicopter, and the direction in which the thrust is generated may be manipulated 360 degrees to assist in controlling the flight attitude of the body.
  • the above technical solution has the advantages of high speed of the fixed-wing aircraft and vertical take-off and landing of the helicopter.
  • the embodiment 2 described in the embodiment of the present invention is a helicopter.
  • a directional control device can be added, which can be driven by the directional control device to change the angle of the blade plane at the starting position, thereby acting as a prime mover In time, it can adapt to changes in the direction of fluid flow, such as a vertical axis fan; as a working machine, it can control the propulsion direction of the flow device or propulsion device, such as a ship propulsion device.
  • the technical solution with increased direction control can be applied to the following technical fields and has corresponding beneficial effects.
  • the transmission device can be coaxially mounted and freely rotatable with the rotating wheel, and the wind wing is added to the transmission device. , so that the initial angle of the blade is synchronized with the wind direction.
  • the blade can be made of flexible cloth material and printed with various pictures and forms a unique landscape communication medium; at the same time, the installation and replacement are convenient and the cost is low, and is particularly suitable for farms and various tourist attractions.
  • the above technical solution belongs to a resistance type vertical axis fan, which has a large windward surface, a low wind speed required for starting, and is suitable for a low wind speed environment.
  • the embodiment 3 described in the embodiment of the present invention is a vertical axis fan.
  • the transmission device can be mounted coaxially with the rotating wheel and can be freely rotated, while adding a directional control drive assembly, and the directional control drive assembly and The transmission is coupled, and a 360 degree maneuver of the propulsion direction is achieved by changing the initial angle of the blade, eliminating the need for a separate steering system.
  • Embodiment 4 of the embodiment of the present invention is a ship propulsion device.
  • the present invention provides a technical solution with a flow guiding mechanism for a pipeline fluid, such as various pumps, a water turbine, a blower, a compressor, an expander, etc., as shown in FIG.
  • a pipeline fluid such as various pumps, a water turbine, a blower, a compressor, an expander, etc.
  • the inside of the rotating space envelope is provided with a flow guiding core 2, and the flow hood 3 and the shroud 4 are disposed outside the rotating space envelope of the blade 1.
  • the curved surfaces of the shroud 3 and the shroud 4 respectively form a two-stage duct with the end surface of the runner, the plane of the casing end face 5 and the curved surface of the guide core, and the blade 1 moves in the duct.
  • the edge of the blade 1 forms a clearance fit with the surface of the duct.
  • the fluid flow directions in the two ducts are opposite, and the flow difference is the working flow, thereby constituting the positive displacement pump/motor.
  • the invention is applied to a pump/motor, and has the characteristics of large flow of the axial flow structure, and the blade can be adapted to a high pressure difference due to the physical separation of the high and low pressure chambers in the duct. That is, the pressure is higher than the axial flow structure, the flow rate is larger than other structures, and the structure is relatively simple.
  • the embodiment 5 described in the embodiment of the present invention is a pump/motor.
  • the invention When the invention is applied to a water turbine, it is equivalent to directly converting the potential energy of the high water level into mechanical energy, and does not need to convert the potential energy into kinetic energy and then convert it into mechanical energy, so the energy efficiency is high, and the energy loss mainly leaks in the flow accompanying the gap. Appropriately improved processing accuracy and appropriate filtration measures, even in smaller sizes, can still be more energy efficient.
  • the closed cavity formed by the duct and the blade is a varactor process in the elastic fluid compression process
  • the closed cavity is under rated working conditions.
  • the pressure change difference is equal to the pressure difference between the two ends. This working condition has high energy efficiency and low noise.
  • the embodiment 6 described in the embodiment of the present invention is a blower/compressor/expander.
  • the blades can be designed with a frame to facilitate replacement of pictures, each The front and back sides of the blade can carry 2 independent pictures.
  • FIG. 1 is a schematic diagram of the blade motion cycle
  • Figure 2 is a schematic view of the basic structure of the cross-flow paddle
  • Figure 3 is a perspective view of the slide rail structure
  • Figure 4 is a schematic diagram of the 720-degree cyclone line equation
  • Figure 5 is a plan view of a single 720 degree closed curve guide
  • Figure 6 is a plan view of two symmetrical 720-degree closed curved guide rails.
  • Figure 7 is a perspective view of the magnetic rail structure
  • Figure 8 is a plan view of the gear transmission
  • Figure 9 is a cross-sectional view of the flow guiding structure
  • Figure 10 is a cross-sectional view of the cross-flow fan of the first embodiment
  • Figure 11 is a perspective view of the helicopter of the second embodiment
  • Figure 12 is a perspective view of the helicopter landing and landing state of the second embodiment
  • Figure 13 is a perspective view of the vertical axis fan of the third embodiment
  • Figure 14 is a perspective view of the ship propulsion device of the fourth embodiment
  • Figure 15 is a cross-sectional view of the pump/motor of the fifth embodiment
  • Figure 16 is a cross-sectional view showing the A/A axis of the pump/motor of the fifth embodiment.
  • Figure 17 is a perspective view of the pump/motor blade of the fifth embodiment.
  • Figure 18 is a cross-sectional view of the blower/compressor/expander of Example 6 taken along line A-A
  • Figure 19 is a cross-sectional view showing the B-B of the blower/compressor/expander of Example 6.
  • Figure 20 is a cross-sectional view showing the C-C of the air blower/compressor/expander of the embodiment 6.
  • Embodiment 1 cross flow fan
  • Embodiment 1 is a cross flow fan, as shown in FIG. 10, including a runner 2, 6 blades 1, 12 drive claws 3, a curved magnetic guide 4, and a housing 5.
  • Each of the two ends of the blade 1 is respectively provided with a rotating shaft and a shaft hole corresponding to the rotating wheel 2, and each of the blades 1 is symmetrically connected with two driving claws 3, and the bottom of the driving claw 3
  • the end cylindrical portion material is a permanent magnet
  • the curved magnetic guide rail 4 is a magnetic material
  • the driving claw 3 is magnetically engaged with the curved magnetic guide rail 4
  • the curved curve of the curved magnetic guide rail 4 includes one of the 720-degree rotating wheels.
  • a wire is fixedly connected to the housing 5.
  • Embodiment 2 is a helicopter, as shown in FIG. 11, including a cross flow fan 1, a wing 2, a power unit 3, and a body 4.
  • Two of the cross-flow fans are respectively mounted on two of the airfoil, the rotating shaft of the cross-flow fan is parallel to the plane of the wing, and two of the wings are symmetrically mounted on the body 4,
  • the power unit 3 is connected to the rotating shaft of the cross flow fan, respectively.
  • the wing 2 can be rotated relative to the body 4 to achieve vertical landing, as shown in FIG.
  • the cross-flow fan has the same structure as the cross-flow fan of the first embodiment, the number of blades is reduced to three, and the casing is replaced by the wing 2.
  • Embodiment 3 vertical axis fan
  • Embodiment 3 is a vertical axis fan, as shown in FIG. 13, including a blade 1, a rotor 2, a driving claw 3, a curved magnetic guide 4, a wind direction wing 5, a generator 6 and a mounting column 7.
  • Each of the blades 1 is fixedly connected with two driving claws 3, and two windward wings 5 are fixedly connected with the curved magnetic rail 4;
  • the guide rail center line of the curved magnetic rail 4 is one of the 720 degrees. a rotating wheel line;
  • the planes of the two wind direction wings 5 are parallel to the Y axis of the 720 degree rotation line curve equation coordinate system, symmetrically distributed in the Y circumference, and all located on the same side of the X axis;
  • 4 has a shaft hole centered on the origin of the 720-degree rotation circle coordinate, which is sleeved at the top end of the mounting column 7, and the central shaft hole of the runner 2 is sleeved on the mounting column 7, located at Below the curved magnetic rail 4,
  • three of the blades 1 are respectively mounted on shaft holes uniformly distributed on both end faces of the runner 2, and each of the guide claws 3 and the curved magnetic guide 4 In a magnetic fit, the generator 6 is mounted on the mounting post 7 and the power shaft is
  • Embodiment 4 ship propulsion device
  • Embodiment 4 is a ship propulsion device, as shown in FIG. 14, including a blade 1, a runner 2, a drive pawl 3, a curved magnetic guide 4, a guide steering gear 5, a steering drive gear 6, a propulsion power unit 7, and steering power.
  • Device 8 mounting deck 9.
  • Each of the blades 1 is fixedly connected with four driving claws 3, and the guide center line of the curved magnetic rail 4 includes two centrally symmetric 720-degree rotating wheel wires; one of the curved magnetic guiding rails 4 a shaft hole centered on the origin of the 720-degree rotating wheel line coordinate, forming a rotational fit on the rotating shaft of the propulsion power unit 7; the central shaft hole of the rotating wheel 2 is fixed to the rotating shaft of the propulsion power unit 7 Connected, located below the curved magnetic rail 4, three blades 1 are respectively mounted on the shaft holes uniformly distributed on both ends of the runner 2, each of the guide claws 3 and the curve
  • the magnetic guide rail 4 is magnetically fitted, and the guide rail steering gear 5 is fixedly disposed outside the curved magnetic guide rail.
  • the steering drive gear 6 is fixedly coupled to the rotating shaft of the steering power unit 8, the propulsion power unit 7 and the steering. Power units 8 are mounted on the mounting deck 9, respectively.
  • the plane blade portion of the blade 1 is below the waterline, and all other portions are above the waterline.
  • Embodiment 5 is a pump/motor, as shown in Figs. 15, 16, and 17, including a blade 1, a rotor 2, a magnetic drive pawl 3, a curved magnetic guide 4, a guide core 5, and a housing 6.
  • the rotating wheel 2 is evenly distributed with six axial holes, each of which is matched with a rotating shaft of the blade 1.
  • Each of the two ends of the blade is respectively mounted with one of the magnetic driving claws 3,
  • the driving claw 3 is magnetically engaged with the curved magnetic guide 4, which is a permanent magnet which is magnetized in the axial direction, and the curved magnetic guide 4 is made of a magnetic material.
  • the guide rail centerline of the curved magnetic rail 4 includes a 720 degree spinner line.
  • the flow guiding core 5 is fixedly mounted on the casing 6.
  • the guiding core 5 and the casing 6 respectively have a shaft hole, and the two shaft holes are concentric.
  • the rotating shafts at the two ends of the rotating wheel 2 are respectively Cooperating with the shaft hole, wherein a section of the shaft extends to the outside of the housing 6 as a power shaft.
  • the inside of the casing 6 has two curved surfaces to form a flow guiding cover, and the guiding core 5 and the rotating wheel plane and the end surface of the casing 6 form a two-stage duct, wherein a section of the wide duct cooperates with the blade 1
  • a fluid working channel is formed to realize energy conversion between the fluid pressure difference potential energy and the mechanical energy, and another narrow narrow duct is located at a curve intersection point of the curved magnetic guide rail, which is a blade return duct.
  • the width of the blade 1 is as large as possible to ensure that adjacent blades 1 do not interfere during the movement to reduce fluid leakage at the edge of the blade when the two adjacent blades are connected end to end through the narrow channel.
  • Embodiment 6 is a blower/compressor/expander, as shown in FIGS. 18, 19, and 20, including a blade 1, a runner 2, a guide core 3, a housing 4, a sun gear 5, and an intermediate gear 6 , the blade gear 7.
  • the housing 4 includes a short shroud curved surface 10 and a long shroud curved surface 11.
  • the rotating wheel 2 is uniformly distributed with six axial holes in the radial direction, each of the shaft holes is matched with a rotating shaft of the blade 1, and the bottom end of the rotating shaft of each of the blades 1 is fixedly connected with one of the blade gears 7.
  • Each of the intermediate gears 6 is coupled to a corresponding shaft hole of the runner 2 via a rotating shaft, and the sun gear 5 is fixedly coupled to the housing 4, and each of the intermediate gears 6 and the sun gear respectively 5 and 2 of the vane gears 7 are meshed, and the ratio of the number of teeth of the vane gear 7 to the number of teeth of the sun gear 5 is 2:1.
  • the shroud curved surface 10 and the shroud curved surface 11 on the inner side of the casing 4 respectively form an end face with the flow guiding core 3 and the end surface of the rotating wheel 2 and the end surface of the casing 4
  • a duct comprising a duct of the long shroud curved surface 11 and the vane 1 cooperate to form a fluid working channel to realize energy conversion of fluid pressure potential energy and mechanical energy
  • another section includes the culvert of the short shroud curved surface 10
  • the road is the blade return duct.
  • Adjacent vanes cooperate with two of the ducts to form a variable volume chamber. Under rated conditions, during the movement, the chamber changes from closed to open, and the difference in pressure within the chamber is equal to the pressure difference between the fluid inlet and outlet.
  • the blade return duct will have a certain proportion of fluid recirculation, but the reflow process is an energy recovery process, so theoretically it will reduce the displacement per rotation period, but does not affect the overall energy efficiency.
  • the assembly of parts and components involved in the technical solution adopted by the present invention can be produced, processed, installed and maintained by the existing mature processing technology, and there is no special requirement for materials, and lubrication and sealing can also be adopted. Mature technical solutions, design, installation and maintenance with reference to the corresponding technical standards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种旋转式流体机械,采用带自转叶片(1)的贯流结构,转轮(2)每旋转720度为一个循环周期,叶片(1)自转由720度曲线导轨(4)或齿轮传动装置驱动,所述720度曲线导轨(4)可为滑槽、磁性导轨或其组合等多种结构,同时,还包括实现方向控制的可旋转的传动装置,以及两种双涵道导流结构;该旋转式流体机械可广泛应用于各种贯流风扇、脱排油烟机、风力发电机、河流动力装置、船舶推进装置、水轮机、泵/马达、鼓风机、压缩机、膨胀机等。

Description

一种流体机械 技术领域
本发明涉及一种流体机械,特别是一种叶片可自转的旋转式流体机械,包括水轮机、泵/马达、鼓风机、压缩机、膨胀机、贯流风机、脱排油烟机、垂直轴风机、船舶推进装置、空气推升装置、水流动力机械等。
背景技术
旋转式流体机械主要包括轴流式和贯流式,应用场景众多,如表1所示。
表1:流体机械应用场景
其中,轴流式结构的过流面积通常为圆或圆环,过流面积主要是沿径向延伸;贯流式结构的过流面积通常为矩形,过流面积可以分别沿径向和轴向延伸。
发明概述
技术问题
以螺旋桨结构为基础的轴流式流体机械在表1所述的各种应用场景中均有成熟的技术方案,相应的,贯流式流体机械也需要一种结构相对简单、能效高、并能广泛应用于表1所述的各种应用场景的流体机械。
本发明的目的是充分发挥贯流结构过流面积可沿径向和轴向延伸的优势,发明一种能效高、结构相对简单,同时能广泛应用于表1所述的各种应用场景的流体机械。
问题的解决方案
技术解决方案
本发明的技术方案是:采用一种叶片可自转的贯流式结构,主要包括转轮、1个或多个叶片及传动装置。
旋转式流体机械通常是以转轮旋转一周为一个运动周期,本发明则采用转轮旋转2周为一个运动周期的技术方案,如图1所示,1至15为所述叶片在2周的旋转过程中位置及方向的变化示意,16为所述叶片轴心的的运动轨迹,17为所述叶 片边缘的运动轨迹。
如图2所示,每个所述叶片1包含有一段转轴,所述转轮2径向分布有1个或多个轴孔,每个所述轴孔分别与一个所述叶片1的所述转轴配合,每个所述叶片1随所述转轮2每旋转2周,所述叶片1在所述传动装置3的驱动下自转一周。
由于所述叶片随所述转轮每旋转2周为一个周期,因此在整个旋转周期中,叶片平面的方向与流体流动方向可以始终保持一个优化的角度,叶片平面沿运动方向的垂线与流体流动方向的夹角始终小于90度,当作为原动机时,流体对叶片的推力产生的转矩始终保持同一方向;当作为工作机时,叶片对流体产生的推力始终与流体流动的方向基本一致,因此,本技术方案对于作为原动机和工作机,能量转化效率都较高,流体路径流畅,流体噪声也低。
本发明同时提供了一种导轨式传动装置的技术方案,如图3所示,曲线导轨4及驱动爪3,所述曲线导轨4的导轨曲线为一个720度的封闭曲线,有一个自交叉点;每个所述叶片1分别连接有1个或多个所述驱动爪3,当所述叶片1随所述转轮2转动时,所述驱动爪3受所述曲线导轨4约束运动,实现所述叶片1随所述转轮2公转的同时,所述转轮2每旋转2周,所述叶片1自转1周,所有所述叶片1共用所述曲线导轨4,因此结构相对比较简单。
进一步的,当所述叶片相对所述转轮的转速比固定为1:2时,图3所示的曲线导轨4的曲线方程为:Xb=R1*cos(T)+R2*sin(T/2),Yb=R1*sin(T)-R2*cos(T/2),T=0~720度;该曲线方程的原理如图4所示,A点、B点为所述曲线导轨对所述驱动爪的约束点的位置,C点为所述叶片的轴心位置,O点为所述转轮的轴心位置,也是所述曲线方程的坐标原点,X、Y为平面坐标轴,A点和B点到C点的距离均为R2,C点到O点的距离为R1,C点的运动轨迹为11,当C点绕O点转动时,A点和B点绕C点同步转动,转动过程中C点到O点的连线与X轴的夹角为T,A点到B点的连线与Y轴的夹角为T/2,A点和B点的运动轨迹为同一条720度封闭曲线12;B点的平面坐标值为(Xb,Yb)。
以下将满足该曲线方程的曲线称为“720度旋轮线”。
进一步的,为了使驱动爪更顺滑的沿导轨运动,所述曲线导轨可以组合多条720度封闭曲线,当有多条曲线时,每条曲线的原点相同,转角起始位置不同,如 图5所示为一条720度封闭曲线导轨,如图6所示为两条720度封闭曲线导轨,两条曲线坐标原点重合,两条曲线的相对位置相对原点旋转了180度。
所述曲线导轨的配合方式可以为滑槽结构,如图3所示为一种滑槽结构,所述驱动爪3嵌入所述曲线导轨4的滑槽内,在所述滑槽内沿所述曲线导轨4运动。
一条所述720度封闭曲线可以与一个所述叶片上的1个或2个所述驱动爪配合,当一个所述叶片与一条所述720度曲线有2个所述驱动爪配合时,所述滑槽可以改为单侧挡板结构。
进一步的,为了减少导轨的机械摩擦,本发明提供了一种磁性导轨方案,如图7所示,所述驱动爪3与所述曲线导轨4均为磁性材料,且至少其中之一充磁具有磁性,当所述叶片1随所述转轮2转动时,所述曲线导轨4通过磁力,约束所述驱动爪2沿所述曲线导轨运动,避免了机械摩擦。
磁性导轨为一种软性约束,当遇到流体冲击或转轮加速减速较快时,有可能出现脱轨,为了克服磁性导轨软约束容易脱轨的缺陷,本发明提供了一种组合轨道技术方案,将滑槽导轨与磁性导轨结合,滑槽底部为磁性导轨,其中滑槽采用较大的间隙配合,主要目的在于避免出现脱轨。
除了曲线导轨作为传动装置外,也可以采用常规的齿轮传动技术方案,如图8所示为一种齿轮传动方案,本方案包括中心齿轮3,中间齿轮4,叶片齿轮5,所述中心齿轮3与壳体固定连接或与转向装置连接,所述叶片齿轮5与所述叶片1固定连接,所述中间齿轮4通过转轴与所述转轮2的轴孔配合,同时分别与所述中心齿轮3和所述叶片齿轮5啮合,一个所述过渡齿轮4连接1个或2个所述叶片齿轮5,所述中心齿轮3与所述叶片齿轮5的齿数比为1∶2。
为了有效使用设备空间,当动力源为电动机或动力负载为发电机时,本发明提供了一种合并技术方案,将所述转轮与所述电动机或所述发电机转子合二为一,即所述转轮同时也是所述电动机或所述发电机的转子。
发明的有益效果
有益效果
现有各种采用固定叶片的贯流式转轮,因为不具备转轮旋转方向及流体流动方向可逆、原动机与工作机工况可逆的特性,因此不能与螺旋桨类比,应用场景 受限。
本发明的技术方案与具有螺旋桨结构的轴流式流体机械对比:
共同点是:流体与叶片通过相互作用实现能量转化的方式基本一致,转轮旋转方向及流体流动方向可逆,原动机与工作机工况可逆;
差别是:流体相对转轮的流动方向,一个是沿轴向流动,一个是沿径向流动。
因此,本发明的技术方案相当于一种径向的螺旋桨,以下称为“720度贯流桨”。
各种采用螺旋桨结构的轴流式应用,均可采用所述720度贯轮桨替代螺旋桨,重新组合为一种对应的贯流式应用,包括表1所述的各种应用场景。
特别是针对以下技术领域,本发明提供了进一步的术方案,并分别具有相应的有益效果。
技术领域1:贯流风机
贯流风机广泛应用于各种分体式空调器室内机、移动空调、空气清新机、除湿机、低静压风管机、风帘机、大夏扇、窗式空调器、家用塔扇等空气设备和许多家用电器领域。
将所述720度贯流桨应用于贯流风机的最佳实施方式为:传动装置采用单条720度封闭曲线磁性导轨,叶片两端分别与转轮连接以提高叶片刚性。
采用本发明技术方案,流体流动路径流畅,因此噪音低,能效高,相对固定叶片的贯流风机,在相同流量风压条件下,可以减小转轮及叶片占用空间,进而节省设备空间,减小设备尺寸。
本发明的实施方式中所述实施例1即为一种贯流风机。
技术领域2:脱排油烟机
脱排油烟机的排风罩通常为矩形结构,空间结构适合采用贯流风机,但固定叶片的贯流风机风压小,不适应脱排油烟机的使用需求,因此,现有脱排油烟机大多使用离心风机或轴流风机。
将所述720度贯流桨应用于脱排油烟机,可以满足较高的风压。
进一步的,可以在所述叶片主体部分安装油烟过滤网,将油烟过滤网与油烟的相对运动关系颠倒,减少油烟过滤的能量损失,进一步提升了整体能效。
进一步的,在叶片平面与转轮转轴重合的位置,叶片边缘离心力最大,可在壳体上与此对应的位置设置集油装置,使滤除油污的收集高效简便。
技术领域3:河流动力装置
通常的河流中,河水流速较低,本发明所述720度贯流桨主要依靠阻力实现能量转化,因此可以很好的适应低流速。
将所述720度贯流桨应用于河流动力装置时,可以增加浮筒结构,将贯流桨安装在浮筒上,叶片在水中。
技术领域4:直升机
传统的固定翼飞机航速高,但升降需要较长的飞行跑道,旋翼直升机可以垂直起降,但航速较慢。
本发明将所述720度贯流桨应用于直升机时,采用多组所述贯流风机,每组所述贯流风机安装在一个对应的机翼上,所述机翼平面与所述贯流风机转轴平行,所述机翼可相对机体旋转一定角度;起飞时,所述机翼相对水平面倾斜一定角度,安装在所述机翼上的所述贯流风机转动,高速气流产生与所述机翼平面平行的向斜上方向的推力,同时,所述机翼上方的高速气流形成低于所述机翼下方的气压,气压差产生与所述机翼平面垂直的斜上方向的升力,空气推力及所述机翼升力的合力与地面垂直,带动机体垂直起降;当所述机翼相对水平面平行时,所述贯流风机转动产生的空气推力驱动直升机前进,所述机翼升力垂直向上与直升机重力平衡。
进一步的,可以在直升机尾部采用一个用于方向控制的所述贯流风机,产生推力的方向可360度操控,以辅助控制所述机体的飞行姿态。
以上技术方案,兼具固定翼飞机航速高和直升机可垂直起降的优点。
本发明的实施方式中所述实施例2即为一种直升机。
补充技术方案:方向控制
除以上应用之外,进一步的,为了适应开放流体空间,可以增加方向控制装置,所述传动装置可以在所述方向控制装置的驱动下改变叶片平面在起始位置的角度,从而在作为原动机时,可适应流体流动方向的变化,比如垂直轴风机;作为工作机时,可以控制造流装置或推进装置的推进方向,比如船舶推进装置 。
增加了方向控制的技术方案可应用于以下技术领域,并产生相应的有益效果。
技术领域5:垂直轴风机
将所述720度贯流桨应用于垂直轴风机时,为了适应风向的变化,可以将所述传动装置与所述转轮同轴安装并可自由转动,同时在所述传动装置上增加风向翼,使叶片的初始角随风向同步。
进一步的,所述叶片可采用柔性布质材料,并印制各种图文,成为一种独特的景观传播媒介;同时,安装更换便捷,成本低,特别适合农庄及各种旅游景点。
上述技术方案属于阻力型垂直轴风机,迎风面大,启动所需风速低,适应低风速环境。
本发明的实施方式中所述实施例3即为一种垂直轴风机。
技术领域6:船舶推进装置
将所述720度贯流桨应用于船舶推进装置时,可以将所述传动装置与所述转轮同轴安装并可自由转动,同时增加方向控制驱动组件,并将所述方向控制驱动组件与所述传动装置连接,通过改变所述叶片初始角实现推进方向的360度操控,省去了单独的舵机系统。
采用本发明技术方案,由于可以在水线以下只有平面桨叶,无任何传动部件,因此,故障率低,维护保养便捷,易于拆装。
本发明的实施方式中所述实施例4即为一种船舶推进装置。
补充技术方案:导流控制
进一步的,针对管道流体,比如各种泵、水轮机、鼓风机、压缩机、膨胀机等应用场景,本发明提供了一种带导流的技术方案,如图9所示,在所述叶片1的旋转空间包络线内侧配导流芯2,在所述叶片1的旋转空间包络线外侧配导流罩3和导流罩4。所述导流罩3及导流罩4的曲面分别与所述转轮的端面、壳体端面平面5及所述导流芯曲面共同构成两段涵道,所述叶片1在所述涵道中运动,所述叶片1的边缘与所述涵道表面构成间隙配合,在相同的运动周期中,两个涵道内的流体流动方向相反,流量差为工作流量,由此构成了容积式泵/马达。
上述带导流的技术方案,可以分别应用于泵/马达、水轮机、鼓风机/压缩机/膨胀机等技术领域。
技术领域7:泵/马达
本发明应用于泵/马达,在具备轴流式结构流量大的特点的同时,由于所述叶片在所述涵道中实现了对高低压腔的物理分隔,可以适应较高的压差。亦即比轴流结构压力高,比其他结构流量大,而且结构相对简单。
本发明的实施方式中所述实施例5即为一种泵/马达。
技术领域8:水轮机
当本发明应用于水轮机时,相当于可以直接将高水位的势能转化为机械能,不需要将势能转化为动能然后再转化为机械能,因此能效较高,能量损失主要在配合间隙的流量泄漏,当适当提高加工精度并配合适当的过滤措施后,即使在较小尺寸时,仍然能有较高能效。
技术领域9:鼓风机/压缩机/膨胀机
当本发明应用于鼓风机/压缩机/膨胀机时,由于所述涵道与所述叶片构成的封闭容腔在弹性流体压缩过程中是变容过程,在额定工况下,所述封闭容腔在运动过程中,从闭合到开启,压力变化差值等于两端压力差,此工况能效高,噪音低。
本发明的实施方式中所述实施例6即为一种鼓风机/压缩机/膨胀机。
技术领域10:摆件和玩具
除了以上应用技术领域外,基于所述720度贯轮桨独特的运动特征,还可以应用在各种装饰摆件及科普玩具等技术领域中,所述叶片可以采用镜框设计,方便更换图片,每一个叶片正反两面共可承载2张独立图片。
以上列举的各项技术领域,只是部分典型的技术领域,不构成对技术领域的限定。
对附图的简要说明
附图说明
图1为叶片运动周期原理图
图2为贯流桨基本结构轴测图
图3为滑槽导轨结构轴测图
图4为720度旋轮线方程原理图
图5为单条720度封闭曲线导轨平面图
图6为两条对称的720度封闭曲线导轨平面图
图7为磁性导轨结构轴测图
图8为齿轮传动装置平面图
图9为导流结构剖面图
图10为实施例1贯流风机轴测图
图11为实施例2直升机轴测图
图12为实施例2直升机起落状态轴测图
图13为实施例3垂直轴风机轴测图
图14为实施例4船舶推进装置轴测图
图15为实施例5泵/马达剖面图
图16为实施例5泵/马达A-A轴测剖切图
图17为实施例5泵/马达叶片轴测图
图18为实施例6鼓风机/压缩机/膨胀机的A-A剖视图
图19为实施例6鼓风机/压缩机/膨胀机的B-B剖视图
图20为实施例6鼓风机/压缩机/膨胀机的C-C剖视图
发明实施例
本发明的实施方式
实施例1,贯流风机
实施例1为一种贯流风机,如图10所示,包括转轮2、6个叶片1、12个驱动爪3、曲线磁性导轨4及壳体5。每个所述叶片1两端分别带有转轴与所述转轮2对应的轴孔转动配合,每个所述叶片1尾部对称连接有2个所述驱动爪3,所述驱动爪3的底端圆柱部分材料为永磁铁,所述曲线磁性导轨4为磁性材料,所述驱动爪3与所述曲线磁性导轨4磁性配合,所述曲线磁性导轨4的导轨曲线包含一条所述720度旋轮线,与所述壳体5固定连接。
实施例2,直升机
实施例2为一种直升机,如图11所示,包括贯流风机1,机翼2,动力装置3,机体4。
2个所述贯流风机分别安装在2个所述机翼上,所述贯流风机的转轴与所述机翼平面平行,2个所述机翼对称安装在所述机体4上,所述动力装置3分别与所述贯流风机的转轴连接。
所述机翼2可以相对所述机体4旋转,实现垂直起落,如图12所示。
所述贯流风机与实施例1所述贯流风机结构相同,叶片数量减为3个,壳体由所述机翼2代替。
实施例3,垂直轴风机
实施例3为一种垂直轴风机,如图13所示,包括叶片1,转轮2,驱动爪3,曲线磁性导轨4,风向翼5,发电机6及安装立柱7。
每个所述叶片1固定连接有2个所述驱动爪3,2片所述风向翼5与所述曲线磁性导轨4固定连接;所述曲线磁性导轨4的导轨中心线为一条所述720度旋轮线;2个所述风向翼5的平面与所述720度旋轮线曲线方程坐标系的Y轴平行,以Y周对称分布,且全部位于X轴的同一侧;所述曲线磁性导轨4上有一个以所述720度旋轮线坐标原点为圆心的轴孔,套接在所述安装立柱7的顶端,所述转轮2中心轴孔套接在所述安装立柱7上,位于所述曲线磁性导轨4的下方,3个所述叶片1分别安装在所述转轮2两端面沿径向均布的轴孔上,每一个所述导向爪3都与所述曲线磁性导轨4磁性配合,所述发电机6安装在所述安装立柱7上,且动力轴与所述转轮2连接。
实施例4,船舶推进装置
实施例4为一种船舶推进装置,如图14所示,包括叶片1,转轮2,驱动爪3,曲线磁性导轨4,导轨转向齿轮5,转向驱动齿轮6,推进动力装置7,转向动力装置8,安装甲板9。
每个所述叶片1固定连接有4个所述驱动爪3,所述曲线磁性导轨4的导轨中心线包括两条中心对称的所述720度旋轮线;所述曲线磁性导轨4上有一个以所述720度旋轮线坐标原点为圆心的轴孔,套接在所述推进动力装置7的转轴上形成转动配合;所述转轮2中心轴孔与所述推进动力装置7的转轴固定连接,位于所述曲 线磁性导轨4的下方,3个所述叶片1分别安装在所述转轮2两端沿径向均布的轴孔上,每一个所述导向爪3都与所述曲线磁性导轨4磁性配合,所述导轨转向齿轮5固定套装在所述曲线磁性导轨外侧,所述转向驱动齿轮6与所述转向动力装置8的转轴固定连接,所述推进动力装置7及所述转向动力装置8分别安装在所述安装甲板9上。
在安装有上述船舶推进装置的船舶正常航线时,所述叶片1的平面桨叶部分在水线以下,除此以外的部分全部在水线以上。
实施例5,泵/马达
实施例5为一种泵/马达,如图15、图16、图17所示,包括叶片1、转轮2、磁性驱动爪3、曲线磁性导轨4、导流芯5、壳体6。
所述转轮2沿径向均布有6个轴孔,每个轴孔与一个所述叶片1的转轴配合,每个所述叶片底部两端分别安装有一个所述磁性驱动爪3,所述驱动爪3与所述曲线磁性导轨4磁性配合,所述磁性驱动爪3为永磁铁,沿轴向充磁,所述曲线磁性导轨4为磁性材料。
所述曲线磁性导轨4的导轨中心线包括一条所述720度旋轮线。
所述导流芯5固定安装在所述壳体6上,所述导流芯5和所述壳体6上分别有一个轴孔,2个轴孔同心,所述转轮2两端的转轴分别与所述轴孔配合,其中一段转轴外伸至所述壳体6外侧,为动力轴。
所述壳体6内侧有两段曲面构成导流罩,与所述导流芯5及转轮平面和所述壳体6的端面共同构成2段涵道,其中一段宽涵道与所述叶片1配合形成流体工作通道,实现流体压差势能与机械能的能量转化,另一段窄涵道位于所述曲线磁性导轨的曲线交叉点位置,为叶片回程涵道。
所述叶片1的宽度,在保证相邻所述叶片1在运动过程中不发生干涉的前提下尽量大,以减小两相邻叶片首尾相连通过所述窄涵道时叶片边缘的流体泄漏。
实施例6,鼓风机/压缩机/膨胀机
实施例6为一种鼓风机/压缩机/膨胀机,如图18、图19、图20所示,包括叶片1、转轮2、导流芯3、壳体4、中心齿轮5、中间齿轮6、叶片齿轮7。其中,所述壳体4包含有一个短导流罩曲面10和一个是长导流罩曲面11。
所述转轮2沿径向均布有6个轴孔,每个轴孔与一个所述叶片1的转轴配合,每个所述叶片1的转轴底端与1个所述叶片齿轮7固定连接,每个所述中间齿轮6通过转轴与所述转轮2上对应的轴孔连接,所述中心齿轮5与所述壳体4固定连接,每个所述中间齿轮6分别与所述中心齿轮5及2个所述叶片齿轮7啮合,所述叶片齿轮7的齿数与所述中心齿轮5的齿数比为2∶1。
所述壳体4内侧的所述导流罩曲面10和所述导流罩曲面11,分别与所述导流芯3及所述转轮2的端面及所述壳体4的端面共同构成2段涵道,其中包含所述长导流罩曲面11的涵道与所述叶片1配合形成流体工作通道,实现流体压差势能与机械能的能量转化,另一段包含所述短导流罩曲面10的涵道为叶片回程涵道。相邻叶片与两个所述涵道配合构成变容容腔,额定工况下,该容腔在运动过程中,从闭合到开启,容腔内压力变化差值等于流体进出两端压力差。
所述叶片回程涵道会有一定比例的流体回流,但回流过程是能量回收过程,因此理论上会减小每个旋转周期的排量,但不影响整体能效。
工业实用性
本发明采用的技术方案所涉及的零部件及零部件的装配,均可采用现有成熟的加工工艺生产加工、安装、维护,不存在对材料的特殊要求,润滑及密封也都可以采用现有成熟的技术方案,并参照相应的技术标准设计、安装、维护。

Claims (30)

  1. 一种流体机械,主要包括转轮、1个或多个叶片、传动装置,其特征是:所述叶片随所述转轮转动时,所述传动装置带动所述叶片自转,所述转轮每旋转2周所述叶片同时自转1周。
  2. 根据权利要求1所述的一种流体机械,其特征是所述传动装置包含曲线导轨及驱动爪,每个所述叶片分别连接有1个或多个所述驱动爪,当所述叶片随所述转轮转动时,所述驱动爪受所述曲线导轨约束运动,所述曲线导轨包含1条或多条720度封闭曲线。
  3. 根据权利要求2所述的一种流体机械,其特征是所述720度封闭曲线的曲线方程为:X=A*cos(T)+B*sin(T/2),Y=A*sin(T)-B*cos(T/2),T=0~720度,其中曲线方程的坐标原点为所述转轮轴心,A为所述叶片轴心到所述转轮轴心的距离,B为所述曲线导轨对所述驱动爪的约束点到所述叶片轴心的距离,T为所述转轮的转角,X、Y为所述曲线导轨对所述驱动爪的约束点的坐标值,当有多条曲线时,每条曲线的原点相同,转角起始位置不同。
  4. 根据权利要求2所述的一种流体机械,其特征是所述曲线导轨为滑槽结构,所述驱动爪受所述滑槽约束沿所述曲线导轨运动。
  5. 根据权利要求2所述的一种流体机械,其特征是所述曲线导轨及所述驱动爪为磁性材料,且至少其中之一已经充磁。
  6. 根据权利要求4所述的一种流体机械,其特征是所述曲线导轨底部及所述驱动爪为磁性材料且至少其中之一已经充磁。
  7. 根据权利要求1所述的一种流体机械,其特征是所述传动装置包括中心齿轮、过渡齿轮和叶片齿轮,所述中心齿轮与壳体固定连接或与转向装置连接,所述叶片齿轮与所述叶片固定连接,所述过渡齿轮分别与所述中心齿轮和所述叶片齿轮啮合,一个所述过渡齿轮连接1个或2个所述叶片齿轮,所述中心齿轮与所述叶片齿轮的齿数比为1∶2。
  8. 根据权利要求1所述的一种流体机械,其特征是动力源为电动机或 动力负载为发电机,所述转轮同时也是所述电动机或所述发电机的转子。
  9. 根据权利要求1所述的一种流体机械,其特征是包含方向控制装置,所述传动装置可以在所述方向控制装置的驱动下改变叶片平面在起始位置的角度。
  10. 根据权利要求1所述的一种流体机械,其特征是在所述叶片旋转空间包络线内侧配有导流芯。
  11. 根据权利要求1所述的一种流体机械,其特征是在所述叶片旋转空间包络线外侧配有导流罩。
  12. 一种贯流风机,主要包括转轮、1个或多个叶片、传动装置,其特征是:所述叶片随所述转轮转动时,所述传动装置带动所述叶片自转,所述转轮每旋转2周所述叶片自转1周。
  13. 一种脱排油烟机,主要包括转轮、多个叶片、传动装置,其特征是:所述叶片随所述转轮转动时,所述传动装置带动所述叶片自转,所述转轮每旋转2周所述叶片自转1周。
  14. 根据权利要求13所述的一种脱排油烟机,其特征是所述叶片的平面部分包含过滤网。
  15. 一种垂直轴风机,主要包括转轮、1个或多个叶片、传动装置,其特征是:所述叶片随所述转轮转动时,所述传动装置带动所述叶片相对所述转轮自转,所述转轮每旋转2周所述叶片自转1周。
  16. 根据权利要求15所述的一种垂直轴风机,其特征是所述传动装置装有风向翼可以随风向转动。
  17. 根据权利要求15所述的一种垂直轴风机,其特征是所述叶片平面主要采用布质柔性材料。
  18. 根据权利要求15所述的一种垂直轴风机,其特征是所述转轮和所述传动装置均为拼装结构,可以抱合安装在已有的立杆上。
  19. 一种船舶推进装置,主要包括转轮、1个或多个叶片、传动装置,其特征是:所述叶片随所述转轮转动时,所述传动装置带动所述 叶片自转,所述转轮每旋转2周所述叶片自转1周。
  20. 根据权利要求19所述的一种船舶推进装置,其特征是包含方向控制装置,所述传动装置可以在所述方向控制装置的驱动下改变叶片平面在起始位置的角度。
  21. 一种河流动力装置,主要包括转轮、多个叶片、传动装置,其特征是:所述叶片随所述转轮转动时,所述传动装置带动所述叶片自转,所述转轮每旋转2周所述叶片自转1周。
  22. 一种泵/马达,主要包括转轮、多个叶片、导流芯、导流罩、传动装置和壳体,其特征是:所述叶片随所述转轮转动时,所述传动装置带动所述叶片自转,所述转轮每旋转2周所述叶片自转1周。
  23. 根据权利要求22所述的泵/马达,其特征是由所述导流芯曲面、所述导流罩曲面、所述转轮端面及所述壳体端面平面构成两段涵道表面分别与所述叶片回转运动的包络线空间表面形成间隙配合面。
  24. 根据权利要求23所述的泵/马达,其特征是两段所述涵道之一位于所述叶片回转空间最窄处。
  25. 根据权利要求22所述的泵/马达,其特征是所述多个叶片沿转轮径向均布,所述叶片主体为轴对称平面,所述叶片宽度为在旋转过程中相邻叶片不出现干涉的前提下的最大宽度,所述叶片与转轴平行的边缘为中心对称的双面倒角,当两相邻叶片运动至边缘最接近的位置时,两个叶片对应最接近的倒角平面平行。
  26. 一种水轮机,主要包括转轮、多个叶片、导流芯、导流罩、传动装置和壳体,其特征是:所述叶片随所述转轮转动时,所述传动装置带动所述叶片自转,所述转轮每旋转2周所述叶片自转1周,所述导流芯曲面、所述导流罩曲面、所述转轮端面及所述壳体端面平面构成两段涵道表面分别与所述叶片回转运动空间的包络线表面形成间隙配合面。
  27. 一种鼓风机/压缩机/膨胀机,主要包括转轮、多个叶片、导流芯、 导流罩和传动装置,其特征是:所述叶片随所述转轮转动时,所述传动装置带动所述叶片自转,所述转轮每旋转2周所述叶片自转1周,所述导流芯曲面、所述导流罩曲面、所述转轮端面及所述壳体端面平面构成的两段涵道表面分别与所述叶片回转运动空间的包络线表面形成间隙配合面。
  28. 一种直升机,主要包括一组或多组导流翼及贯流风机,其特征是:所述贯流风机固定安装在所述导流翼上,所述贯流风机包含转轮、多个叶片、传动装置,所述叶片随所述转轮转动时,所述传动装置带动所述叶片自转,所述转轮每旋转2周所述叶片自转1周。
  29. 一种装饰摆件,主要包括转轮、1个或多个叶片、传动装置,其特征是:所述叶片随所述转轮转动时,所述传动装置带动所述叶片自转,所述转轮每旋转2周所述叶片自转1周。
  30. 一种玩具,主要包括转轮、1个或多个叶片、传动装置,其特征是:所述叶片随所述转轮转动时,所述传动装置带动所述叶片自转,所述转轮每旋转2周所述叶片自转1周。
PCT/CN2018/080585 2017-05-24 2018-03-27 一种流体机械 WO2018214636A1 (zh)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN201710369213.5A CN107013486A (zh) 2017-05-24 2017-05-24 一种叶片联动的贯流风轮
CN201710369213.5 2017-05-24
CN201710398976.2A CN107091310A (zh) 2017-05-31 2017-05-31 一种同步联动装置
CN201710398976.2 2017-05-31
CN201710460338.9A CN107061309A (zh) 2017-06-18 2017-06-18 一种贯流风机
CN201710460338.9 2017-06-18
CN201710493317.7 2017-06-26
CN201710493317.7A CN107264757B (zh) 2017-06-26 2017-06-26 一种船舶推进装置
CN201710503863.4 2017-06-28
CN201710503863.4A CN107420256A (zh) 2017-06-28 2017-06-28 一种垂直轴风机
CN201710599401.7A CN107178494A (zh) 2017-07-21 2017-07-21 一种旋转叶片泵/马达
CN201710599401.7 2017-07-21
CN201710612332.9 2017-07-26
CN201710612332.9A CN107364571A (zh) 2017-07-26 2017-07-26 一种直升机

Publications (1)

Publication Number Publication Date
WO2018214636A1 true WO2018214636A1 (zh) 2018-11-29

Family

ID=64396184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080585 WO2018214636A1 (zh) 2017-05-24 2018-03-27 一种流体机械

Country Status (1)

Country Link
WO (1) WO2018214636A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555858A (zh) * 2009-05-22 2009-10-14 万机钢铁工业股份有限公司 太阳行星式叶片水车机构
CN102486152A (zh) * 2010-12-06 2012-06-06 白紾贻 高效能轨道式水车机构及其轨道式叶片组
CN102828900A (zh) * 2011-06-17 2012-12-19 北京银万特科技有限公司 非同向变角垂直轴风能装置
CN107013486A (zh) * 2017-05-24 2017-08-04 吴其兵 一种叶片联动的贯流风轮
CN107061309A (zh) * 2017-06-18 2017-08-18 吴其兵 一种贯流风机
CN107091310A (zh) * 2017-05-31 2017-08-25 吴其兵 一种同步联动装置
CN107178494A (zh) * 2017-07-21 2017-09-19 吴其兵 一种旋转叶片泵/马达
CN107264757A (zh) * 2017-06-26 2017-10-20 吴其兵 一种船舶推进装置
CN107364571A (zh) * 2017-07-26 2017-11-21 吴其兵 一种直升机
CN107420256A (zh) * 2017-06-28 2017-12-01 吴其兵 一种垂直轴风机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555858A (zh) * 2009-05-22 2009-10-14 万机钢铁工业股份有限公司 太阳行星式叶片水车机构
CN102486152A (zh) * 2010-12-06 2012-06-06 白紾贻 高效能轨道式水车机构及其轨道式叶片组
CN102828900A (zh) * 2011-06-17 2012-12-19 北京银万特科技有限公司 非同向变角垂直轴风能装置
CN107013486A (zh) * 2017-05-24 2017-08-04 吴其兵 一种叶片联动的贯流风轮
CN107091310A (zh) * 2017-05-31 2017-08-25 吴其兵 一种同步联动装置
CN107061309A (zh) * 2017-06-18 2017-08-18 吴其兵 一种贯流风机
CN107264757A (zh) * 2017-06-26 2017-10-20 吴其兵 一种船舶推进装置
CN107420256A (zh) * 2017-06-28 2017-12-01 吴其兵 一种垂直轴风机
CN107178494A (zh) * 2017-07-21 2017-09-19 吴其兵 一种旋转叶片泵/马达
CN107364571A (zh) * 2017-07-26 2017-11-21 吴其兵 一种直升机

Similar Documents

Publication Publication Date Title
CN109071030A (zh) 用于飞行器的推进发动机
CN206503781U (zh) 用于航空发动机的可调导流叶片结构
CN201436385U (zh) 风力发动机叶片
CN201262164Y (zh) 一种进气导叶装置
US8747070B2 (en) Spinning horizontal axis wind turbine
CN201103512Y (zh) 一种新型竖轴叶片转动式风力机和泵
WO2016078537A1 (zh) 一种动力装置以及汽车的发动机
WO2018214636A1 (zh) 一种流体机械
CN203570495U (zh) 开合式叶片水轮机
CN202851395U (zh) 一种大流量、低噪声、三元流轴向双吸入离心式鼓风机
JP2007517155A (ja) 風力タービンエンジン
CN201771809U (zh) 气动电风扇
GB2464315A (en) Wind turbine speed control
JP6312284B1 (ja) 帆装置
CN217125119U (zh) 一种磁悬浮螺旋桨及其应用的涡喷发动机
CN103225549B (zh) 一种节气门装置
CN107013486A (zh) 一种叶片联动的贯流风轮
CN104773293B (zh) 一种带风球驱动风轮的旋翼升力装置
WO2022110942A1 (zh) 一种将往复运动转换成连续转动的装置和方法及应用
KR20230038558A (ko) 유니버셜 프로펠러, 작동 방법 및 선호하는 사용
CN102032202B (zh) 一种抽排气装置
CN107061309A (zh) 一种贯流风机
CN202970951U (zh) 一种涡轮喷气发动机
CN207920905U (zh) 一种复合风机
CN206816438U (zh) 大型立轴风力发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805361

Country of ref document: EP

Kind code of ref document: A1