WO2018214529A1 - 一种肌电信号采集方法及装置 - Google Patents

一种肌电信号采集方法及装置 Download PDF

Info

Publication number
WO2018214529A1
WO2018214529A1 PCT/CN2018/072337 CN2018072337W WO2018214529A1 WO 2018214529 A1 WO2018214529 A1 WO 2018214529A1 CN 2018072337 W CN2018072337 W CN 2018072337W WO 2018214529 A1 WO2018214529 A1 WO 2018214529A1
Authority
WO
WIPO (PCT)
Prior art keywords
acquisition
signal
intensity
preset
acquisition frequency
Prior art date
Application number
PCT/CN2018/072337
Other languages
English (en)
French (fr)
Inventor
包磊
Original Assignee
深圳市前海未来无限投资管理有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市前海未来无限投资管理有限公司 filed Critical 深圳市前海未来无限投资管理有限公司
Publication of WO2018214529A1 publication Critical patent/WO2018214529A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items

Definitions

  • the invention belongs to the technical field of wearable electronic devices, and in particular relates to a method and device for collecting myoelectric signals.
  • the surface EMG signal (hereinafter referred to as the EMG signal) is a bioelectrical signal generated during muscle contraction. It is a superposition of the movement unit action potential (MUAP) in many muscle fibers in time and space. It is used to evaluate the movement of the neuromuscular system. An important biological information carrier for function. At present, myoelectric signals have a wide range of application scenarios in medical research, clinical diagnosis and rehabilitation.
  • MUAP movement unit action potential
  • the embodiment of the invention provides a method and a device for collecting an electromyogram signal, which aims to solve the problem that the collection efficiency of the myoelectric signal is relatively low in the prior art.
  • a method for collecting an electromyogram signal includes:
  • the collecting module When the strength is less than the first preset threshold, the collecting module is controlled to operate in the energy saving mode, and the collecting module is configured to measure the electromyographic signal of the preset human body position by using the second collecting frequency corresponding to the energy saving mode.
  • the second acquisition frequency is lower than the first acquisition frequency.
  • Another object of the embodiments of the present invention is to provide an electromyography signal collection device, including:
  • a first control unit configured to control an acquisition module in the wearable device to measure a myoelectric signal of the preset human body position at a first acquisition frequency corresponding to the normal mode
  • a first determining unit configured to acquire an intensity of the myoelectric signal, and determine whether the intensity is less than a first preset threshold
  • the energy saving unit is configured to control the collecting module to operate in the energy saving mode when the intensity is less than the first preset threshold, and control the collecting module to measure the preset human body by using the second collecting frequency corresponding to the energy saving mode a myoelectric signal at the location, the second acquisition frequency being lower than the first acquisition frequency.
  • the wearable device since the intensity of the myoelectric signal generated by the unintended behavior of the user is low, the wearable device can be automatically recognized by acquiring the strength of the myoelectric signal and determining whether the intensity is less than a preset threshold.
  • the user's unconscious behavior can be distinguished from the normal training action; when the intensity is less than the preset threshold, since the user's activity state at this time should correspond to the non-exercise training state, the generated electromyogram
  • the signal belongs to the invalid myoelectric signal, so the electromyography signal is measured by the acquisition module corresponding to the acquisition frequency corresponding to the energy-saving mode, the acquisition frequency is reduced, and the collection amount of the invalid myoelectric signal is reduced, and the muscle is improved compared with the prior art.
  • the effectiveness of the collection of electrical signals is possible.
  • FIG. 1 is a flowchart of implementing an electromyography signal acquisition method according to an embodiment of the present invention
  • FIG. 2 is a specific implementation flowchart of an electromyography signal collection method S101 according to an embodiment of the present invention
  • FIG. 3 is a flowchart of implementing an electromyography signal collection method according to another embodiment of the present invention.
  • FIG. 5 is a flowchart of implementing an electromyography signal collection method according to another embodiment of the present invention.
  • FIG. 6 is a structural block diagram of an electromyogram signal collecting apparatus according to an embodiment of the present invention.
  • the wearable device may be a wearable smart fitness garment, or may be a collection of one or more collection modules that are wearable and attachable.
  • the wearable device when the wearable device is a wearable smart fitness garment, it may be a garment or pants made of a flexible fabric, and a plurality of collection modules are embedded on the side of the flexible fabric close to the human skin. Each collection module is fixed at different points of the smart fitness garment so that after the user wears the smart fitness garment, each collection module can be attached to each muscle of the user's body.
  • at least one control module is also embedded, and each of the acquisition modules is separately connected to the control module.
  • a wire and a circuit board may be disposed in the wearable device, wherein the circuit board is used to fix various communication buses and the acquisition module.
  • the circuit board and its various solder joints are wrapped with a waterproof glue.
  • the wearable device can be washed by fixing a waterproof trace on the laundry.
  • each acquisition module may include only an acquisition electrode having a somatosensory sensor function, or an integrated circuit having an acquisition function.
  • the above collection electrodes include, but are not limited to, fabric electrodes, rubber electrodes, gel electrodes, and the like.
  • each acquisition module is an integrated circuit having an acquisition function and a wireless transmission function, and the integrated circuit includes the above-mentioned acquisition electrode having a somatosensory sensor function.
  • the EMG signal collected by the acquisition module is transmitted to the remote control module through the wireless network, and the control module is located in the remote terminal device or the remote control box used in conjunction with the acquisition module.
  • FIG. 1 is a flowchart showing an implementation process of an electromyogram signal collection method according to an embodiment of the present invention. As shown in FIG. 1 , the method includes steps S101 to S103, which are described in detail as follows:
  • S101 Control an acquisition module in the wearable device to measure a myoelectric signal of the preset human body position at a first acquisition frequency corresponding to the normal mode.
  • the acquisition module performs the operation in the working mode in the initial state.
  • the working modes of the above collection module include a normal mode and a power saving mode.
  • the working mode corresponding to the initial state is the normal mode.
  • the EMG signals of the user in the state of exercise training are collected based on different acquisition frequencies, and the wearable device automatically analyzes and guides the user's exercise training effect, and determines that the analysis guidance effect is achieved.
  • the acquisition frequency corresponding to the target effect is set to the first acquisition frequency of the acquisition module in the normal mode.
  • the control module controls each of the acquisition modules on the wearable device to collect the myoelectric signals from the preset human body position according to the acquisition frequency in the normal mode. Specifically, when the acquisition module is in communication with the control module and the acquisition module only includes the collection electrode, the control module outputs a plurality of high-level pulse signals corresponding to the acquisition frequency in a unit time to turn on the respective acquisition module and the control module. the connection between. By controlling the conduction frequency of the control module and the acquisition module, the acquisition and control of the myoelectric signal is realized.
  • the control module sends a control data packet carrying the acquisition frequency corresponding to the normal mode to the collection module, so that the collection module connected to the control data packet can be based on the acquisition frequency in the control data packet. Perform the acquisition of myoelectric signals in normal mode.
  • the preset human body position refers to a human body position contacted by the acquisition module
  • the collection module is disposed on the wearable device, and the different human body positions contacted by the different acquisition modules are different, that is, the corresponding sports muscle groups are different, therefore, the control module can
  • the EMG signals from different sports muscle groups are collected by the acquisition module, and the collected EMG signals are transmitted to the terminal device for subsequent exercise training effect analysis.
  • S102 Acquire an intensity of the myoelectric signal, and determine whether the intensity is less than a first preset threshold.
  • the motor neurons of the muscle produce electrical impulses that travel along the axons to the muscle fibers and cause pulse sequences on all muscle fibers that propagate along the muscle fibers.
  • the electric pulse in the propagation causes a current field in the soft tissue of the human body, causing a potential difference between the collecting electrodes. Therefore, the myoelectric signal collected through each acquisition module exhibits a specific potential difference or voltage.
  • the control module automatically recognizes the voltage magnitude of the acquired myoelectric signal, and extracts the voltage amplitude corresponding to the current electromyogram signal, and the voltage amplitude is the intensity of the myoelectric signal.
  • the first preset threshold is preset in the control module when the wearable device is shipped, and the minimum intensity of the myoelectric signal generated by the statistically obtained moving muscle group when the user is in the exercise state. .
  • the intensity of the EMG signals generated by different sports muscle groups is different, so each acquisition module corresponds to a first preset threshold.
  • the intensity of the myoelectric signal collected from the sports muscle group A is at least 2000 microvolts, and then the first pre-corresponding to the acquisition module of the moving muscle group A is attached in the control module. Let the threshold be set to 2000 microvolts.
  • the user in order to improve the recognition sensitivity of the wearable device to the user's exercise training action, the user is still recognized as a non-exercise training state by the wearable device in the exercise training state, thereby causing a decrease in the effective collection of the EMG signal.
  • the first preset threshold can be personalized.
  • the application client supporting the wearable device transmits the updated first preset threshold to the control module according to the received first preset threshold adjustment instruction of the user input, so that the control module can be in the subsequent process
  • the intensity of the myoelectric signal is judged by the adjusted first preset threshold value.
  • the collecting module When the strength is less than the first preset threshold, the collecting module is controlled to run in the energy saving mode, and the collecting module is configured to measure the muscle of the preset human body position by using the second collecting frequency corresponding to the energy saving mode. An electrical signal, the second acquisition frequency being lower than the first acquisition frequency.
  • the control module performs switching control on the working mode of the collecting module, so that the normal mode of the collecting module in the initial state is switched to the energy saving mode.
  • the collection frequency corresponding to the energy-saving mode is the factory preset value, and the acquisition frequency corresponding to the energy-saving mode is lower than the acquisition frequency of the normal mode. Therefore, by collecting the working mode of the acquisition module, the acquisition module is based on the low-frequency acquisition frequency corresponding to the energy-saving mode.
  • the myoelectric signal of the same human body position is used, the collection amount and the transmission amount of the invalid myoelectric signal can be reduced.
  • the wearable device since the intensity of the myoelectric signal generated by the unintended behavior of the user is low, the wearable device can be automatically recognized by acquiring the strength of the myoelectric signal and determining whether the intensity is less than a preset threshold.
  • the user's unconscious behavior can be distinguished from the normal training action; when the intensity is less than the preset threshold, since the user's activity state at this time should correspond to the non-exercise training state, the generated electromyogram
  • the signal belongs to the invalid myoelectric signal, so the electromyography signal is measured by the acquisition module corresponding to the acquisition frequency corresponding to the energy-saving mode, the acquisition frequency is reduced, and the collection amount of the invalid myoelectric signal is reduced, and the muscle is improved compared with the prior art.
  • the effectiveness of the collection of electrical signals is possible.
  • the above S101 specifically includes steps S201 to S204, which are described in detail as follows:
  • the user usually performs warm-up exercises first, such as performing repeated actions to perform preliminary tests on the upcoming exercise training actions. Then, after analyzing the collected myoelectric signals in a short preset period corresponding to the repeated action, extracting features in the myoelectric signal and matching the characteristics from the stored electromyographic signals The one with the highest degree of feature fitting can be used to identify the motion motion corresponding to the EMG signal feature as the motion training action tested by the user within the preset duration.
  • a muscle group identification combination corresponding to the motion action is matched.
  • Each muscle group identification combination includes one or more muscle group identifiers, each muscle group identifier being used to identify one or more motor muscle groups in the human body. Therefore, based on the determined combination of the muscle group identification, the muscle group identification of the M sports muscle groups corresponding to the motion action can be acquired. M is the number of muscle groups included in the muscle group identification combination.
  • the biceps, the anterior serratus, and the diaphragm are the biceps, deltoid anterior bundles.
  • the anterior serratus and the diaphragm will collectively act as a combination of muscle groups, preset in the control module, and the muscle group identification combination corresponds to the push-ups.
  • S202 Determine, among the N collection modules in the wearable device, M acquisition modules respectively corresponding to the M muscle group identifiers.
  • the position of the collection module when the wearable device is shipped from the factory it can be known which group of sports muscles attached by the acquisition module when the user uses the wearable device. Based on the correspondence between the acquisition module and the sports muscle group, as shown in FIG. 1 , a correspondence table between the acquisition module and the muscle group identifier is pre-set in the control module.
  • the control module After determining each muscle group identifier in S201, the control module searches for the corresponding correspondence table, thereby obtaining an acquisition module corresponding to each muscle group identifier. For example, if the muscle group is identified as a triceps, the acquisition module for collecting the myoelectric signals generated by the triceps is the acquisition module A.
  • S203 Control the M acquisition modules to operate in a normal mode, and measure the myoelectric signals of the M moving muscle groups at the first acquisition frequency.
  • M muscle group identifiers correspond to M acquisition modules.
  • the preset duration is the duration of the user performing the warm-up test action. Therefore, the time after the preset duration is the starting moment of the user's formal fitness exercise, so the exercise muscle group in the exercise state at the fitness start time should be the same as the preset Set the exercise muscles in the exercise state within the same time period. Moreover, since the sports muscle group represented by the M muscle group identifiers has been determined to be in the exercise training state within the preset time period, the sports muscle group corresponding to the exercise training state corresponding to the fitness start time is also determined as The M sports muscle groups. Therefore, in the embodiment of the present invention, the M acquisition modules corresponding to the M sports muscle groups are operated in the normal mode, and the myoelectric signals to be generated by the M sports muscle groups are acquired at the high frequency acquisition frequency corresponding to the normal mode.
  • S204 Control the N-M acquisition modules to operate in the energy-saving mode, and measure the electromyogram signals of the other sports muscle groups except the M moving muscle groups at the second acquisition frequency.
  • the control module causes the remaining N-M collecting modules on the wearable device to respectively collect the myoelectric signals of the respective attached sports muscle groups at a low acquisition frequency.
  • the working mode of the collection module at the fitness start time can be accurately determined, and can start from the fitness start time. Maximize the collection efficiency of EMG signals.
  • the high acquisition frequency to collect the myoelectric signals of the sports muscles under exercise and using the low acquisition frequency to collect the myoelectric signals of the sports muscles in the non-exercise exercise state, most of the acquired EMG signals are ensured. Both are effective EMG signals, and at the same time, it is also ensured that according to the myoelectric signal of the sports muscle group under non-exercise exercise state, it is still possible to determine when the exercise muscle group changes its active state, and then its corresponding acquisition module.
  • the working mode for accurate switching provides the basis for judgment.
  • the method further includes:
  • the acquisition module attached to the moving muscle group is controlled to operate in the normal mode. under. Moreover, the myoelectric signal collected at the time is buffered in the electromyogram storage list of the control module.
  • S105 Determine whether the electromyogram storage list has a continuous update within a first preset duration before the current moment.
  • the presence update of the myoelectric signal storage list indicates that new data is added to the list, and the update of the myoelectric signal storage list does not include the case where the data in the list is removed.
  • Each acquisition module corresponds to a list of myoelectric signal storages, and the myoelectric signals collected based on the same acquisition module are stored in the same electromyographic signal storage list when the intensity is greater than or equal to the first preset threshold.
  • T 2 is the current time and T 2 -T 1 is the first preset time length.
  • the myoelectric signal storage list is always in the updated state, that is, in the time T 1 to the time T 2 , all the myoelectric signals collected from the same moving muscle group are added to the myoelectric signal storage list, then it is determined that The EMG signal storage list is continuously updated within a first preset time period before the current time.
  • the EMG signal storage list is not always in the updated state, that is, in the time T 1 to the time T 2 , the EMG signals collected from the same exercise muscle group are not all added to the EMG signal storage list, then it is determined that The EMG signal storage list does not appear to be continuously updated within the first preset time period before the current time.
  • the acquisition module in the wearable device measures the preset by using the first acquisition frequency corresponding to the normal mode.
  • EMG signal of human body position That is, at time T T. 1 to time at any one time between the two, when the myoelectric signal storage list updating does not occur, the process returns S101, and subsequent operations are performed sequentially.
  • each EMG signal is sequentially recorded according to the sequence of the EMG signal storage list.
  • Strength of. A trend of intensity variation within the first predetermined duration is determined based on a difference in intensity between adjacent electromyogram signals.
  • a difference operation is performed on the intensity values of any two adjacent EMG signals, and it is determined whether the difference between the intensity of the latter EMG signal and the intensity of the previous EMG signal is a negative value. If the difference obtained by each difference operation is negative, it means that the intensity of the myoelectric signal decreases with time in the time period [T 1 , T 2 ]. In this case, it is determined that the intensity change trend in [T 1 , T 2 ] is that the intensity continues to decrease.
  • the intensity of each EMG signal is [ 20 , 18 , 16 , 14 , 12 ], respectively. If the adjacent intensity values are grouped, 4 will be obtained. Group data are [20, 18], [18, 16], [16, 14], and [14, 12]. Performing a difference operation on each set of data, the resulting four differences are both -2, both of which are negative values. Therefore, it can be concluded that the intensity change trend in [T 1 , T 2 ] is that the intensity continues to decrease.
  • the difference between the intensity maximum value and the intensity minimum value of the myoelectric signal is the intensity change amplitude. Since the intensity for small, therefore, the intensity is substantially equal to the magnitude of change in time difference T 1 of the electrical signal strength intensity EMG muscle time T 2.
  • the intensity variation amplitude ⁇ V is input to the data analysis model, and the corresponding acquisition frequency reduction amount ⁇ f is output. Among them, when the input intensity change amplitude ⁇ V is larger, the output acquisition frequency decrease amount ⁇ f is also larger.
  • the adjusted acquisition frequency is a difference between the first acquisition frequency and the acquisition frequency reduction amount.
  • time T to time T 2 between the operation mode is a normal mode acquisition module, is constant and thus its acquisition frequency f.
  • time T 2 since time T to time T 2 between the operation mode is a normal mode acquisition module, is constant and thus its acquisition frequency f.
  • the minimum value that f- ⁇ f can reach is greater than the acquisition frequency corresponding to the energy-saving mode.
  • the acquisition frequency corresponding to the magnitude of the intensity change adjusts the acquisition frequency of the current time, and can gradually reduce the acquisition frequency of the invalid myoelectric signal.
  • the intensity variation amplitude is larger, the acquisition frequency is lower, so even if Controlling the operation of the acquisition module in the energy-saving mode according to the first preset threshold can also maximize the effectiveness of the collection of the EMG signal.
  • FIG. 4 shows a specific implementation flow of the electromyography signal collection method S102 provided by the embodiment of the present invention, which is described in detail as follows:
  • S401 Acquire an electromyogram signal measured by the acquisition module from the human body position within a second preset duration.
  • each acquisition module measures the myoelectric signal of the attached exercise muscle group multiple times, and reads the myoelectric signal collected within a preset period of time before the current time.
  • S402 Determine whether the strength of the myoelectric signal in the second preset duration is always less than a first preset threshold.
  • the intensity of each EMG signal is included in [t, t'], and it is determined whether each intensity is less than The first preset threshold.
  • the intensity of each EMG signal in the time period [t, t'] is [16, 18, 16, 14, 15]
  • the first preset threshold is 17, because the intensity of one of the EMG signals is 18, which is greater than the first preset threshold, and thus can determine that the intensity of the myoelectric signal in the second preset duration [t, t'] is not always less than the first preset threshold.
  • S103 is executed only when the intensity of the myoelectric signal in the second preset duration [t, t'] is always less than the first preset threshold, otherwise the process returns to S101.
  • the acquisition module does not immediately run under the energy-saving mode, thereby avoiding the movement muscle group due to noise interference of the myoelectric signal.
  • the activity state has been misjudged. Only when the intensity of the myoelectric signal continues to be less than the first preset threshold, the acquisition module is controlled to operate in the energy-saving mode, which improves the control accuracy of the working mode of the acquisition module.
  • the process returns to S102; after S102, the method further includes:
  • the acquisition module in the control wearable device maintains the measurement of the myoelectric signal of the preset human body position at the first acquisition frequency corresponding to the normal mode.
  • the embodiment of the present invention is particularly applicable to the case where the current working mode of the collecting module is the energy saving mode.
  • the current time is the collecting module.
  • the attached sports muscle group has changed from the non-exercise exercise state to the exercise exercise state. Therefore, it is necessary to switch the working mode of the acquisition module again, so that the acquisition module can measure the exercise muscle group at a high acquisition frequency corresponding to the normal mode.
  • the myoelectric signal generated during exercise exercise increases the amount of effective myoelectric signal acquisition, which ensures that the subsequent exercise effect analysis can be more accurate.
  • the process After the EMG signal of the current time is obtained for each measurement, the process returns to S102, and the intensity of the EMG signal measured in real time is used as a determination object, and the activity state of the sports muscle group is re-determined, thereby being able to be used throughout the user.
  • the working mode of the acquisition module and the acquisition frequency are dynamically adjusted.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the execution order of each process should be determined by its function and internal logic, and should not be implemented in the embodiment of the present invention. Form any limit.
  • FIG. 6 is a structural block diagram of the EMG signal acquisition apparatus provided by the embodiment of the present invention. For the convenience of description, only the embodiment related to the embodiment of the present invention is shown. section.
  • the apparatus includes:
  • the first control unit 61 is configured to control the acquisition module of the wearable device to measure the myoelectric signal of the preset human body position at the first acquisition frequency corresponding to the normal mode.
  • the first determining unit 62 is configured to acquire the strength of the myoelectric signal, and determine whether the intensity is less than a first preset threshold.
  • the energy-saving unit 63 is configured to control the collection module to operate in the energy-saving mode when the intensity is less than the first preset threshold, and control the collection module to measure the preset by using the second acquisition frequency corresponding to the energy-saving mode.
  • the myoelectric signal of the human body position, the second acquisition frequency being lower than the first acquisition frequency.
  • the first control unit 61 includes:
  • the first acquiring subunit is configured to respectively acquire the muscle group identifiers of the M moving muscle groups corresponding to the motion actions.
  • a first determining subunit configured to determine, in the N collection modules in the wearable device, M acquisition modules respectively corresponding to the M muscle group identifiers.
  • a first control subunit configured to control the M acquisition modules to operate in a normal mode, and measure the myoelectric signals of the M moving muscle groups at the first acquisition frequency.
  • a second control subunit configured to control the NM acquisition modules to operate in the energy saving mode, and measure an electromyogram signal of the other sports muscle groups except the M moving muscle groups by using the second acquisition frequency .
  • the N is an integer greater than zero and less than or equal to N, and the second acquisition frequency is lower than the first acquisition frequency.
  • the EMG signal acquisition device further includes:
  • a storage unit configured to save the myoelectric signal to update the myoelectric signal storage list when the intensity is greater than or equal to a first preset threshold.
  • the second determining unit is configured to determine whether the electromyogram storage list has a continuous update within a first preset time period before the current time.
  • a first acquiring unit configured to acquire a trend of intensity change of the myoelectric signal in the first preset duration if the electromyographic signal storage list appears to be continuously updated within a first preset duration before the current moment.
  • a second acquiring unit configured to acquire an intensity change amplitude of the myoelectric signal in the first preset duration when the intensity change trend is that the intensity continues to decrease.
  • the second determining unit is configured to determine an acquisition frequency reduction amount corresponding to the intensity variation amplitude.
  • a second control unit configured to: after controlling the acquisition module to measure the electromyogram signal of the preset human body position with the adjusted acquisition frequency, returning to performing the acquiring the strength of the myoelectric signal, and determining whether the intensity is Less than the first preset threshold.
  • the adjusted acquisition frequency is a difference between the first acquisition frequency and the acquisition frequency reduction amount.
  • the first determining unit 62 includes:
  • a second acquiring subunit configured to acquire a myoelectric signal measured by the collecting module from the human body position within a second preset time period.
  • the determining subunit is configured to determine whether the strength of the myoelectric signal in the second preset duration is constant less than a first preset threshold.
  • the EMG signal acquisition device further includes:
  • a returning unit configured to: when the intensity is greater than or equal to the first preset threshold, control the acquisition module in the wearable device to maintain the myoelectric signal of the preset human body position measured by the first acquisition frequency corresponding to the normal mode.
  • the disclosed apparatus and method may be implemented in other manners.
  • the system embodiment described above is merely illustrative.
  • the division of the module or unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种适用于可穿戴电子设备技术领域的肌电信号采集方法及装置,肌电信号采集方法包括:控制可穿戴装置中的采集模块以正常模式对应的第一采集频率测量预设的人体位置的肌电信号(S101);获取肌电信号的强度,并判断强度是否小于第一预设阈值(S102);若是,则控制采集模块运行在节能模式下,并控制采集模块以节能模式对应的第二采集频率测量预设的人体位置的肌电信号,其中,第二采集频率低于第一采集频率(S103)。这样的肌电信号采集方法及装置使得可穿戴装置能够将用户的无意识行为动作与正常训练动作进行区分,在非运动训练状态下,通过控制采集模块以节能模式对应的采集频率测量肌电信号,降低了采集频率,减少了无效肌电信号的采集量,提高了肌电信号的采集有效性。

Description

一种肌电信号采集方法及装置 技术领域
本发明属于可穿戴电子设备技术领域,尤其涉及一种肌电信号采集方法及装置。
背景技术
表面肌电信号(以下简称肌电信号)是肌肉收缩时产生的一种生物电信号,是众多肌纤维中运动单元动作电位(MUAP)在时间和空间上的叠加,是用来评估神经肌肉系统运动功能的重要生物信息载体。目前,肌电信号在医学研究、临床诊断及康复医疗等领域都有着非常广泛的应用场景。
近年来,肌电信号开始应用于运动生物力学领域。具体地,在用户执行运动训练的过程中,可对人体特定部位的肌电信号进行采集,从而基于肌电信号的分析结果,对用户的运动效果进行分析及指导。然而,在肌电信号的采集过程中,用户并非无时无刻都处于运动训练状态,因此,在大部分时间之下,获取到的肌电信号将会是因为用户的无意识行为而产生的,属于无效肌电信号,大量无效肌电信号的存在使得肌电信号的采集有效性较为低下。
发明内容
本发明实施例提供一种肌电信号采集方法及装置,旨在解决现有技术中存在肌电信号的采集有效性较为低下的问题。
本发明实施例是这样实现的,一种肌电信号采集方法,包括:
控制可穿戴装置中的采集模块以正常模式对应的第一采集频率测量预设的人体位置的肌电信号;
获取所述肌电信号的强度,并判断所述强度是否小于第一预设阈值;
当所述强度小于第一预设阈值时,控制所述采集模块运行在节能模式下,并控制所述采集模块以所述节能模式对应的第二采集频率测量预设的人体位置的肌电信号,所述第二采集频率低于所述第一采集频率。
本发明实施例的另一目的在于提供一种肌电信号采集装置,包括:
第一控制单元,用于控制可穿戴装置中的采集模块以正常模式对应的第一采集频率测量预设的人体位置的肌电信号;
第一判断单元,用于获取所述肌电信号的强度,并判断所述强度是否小于第一预设阈值;
节能单元,用于当所述强度小于第一预设阈值时,控制所述采集模块运行在节能模式下,并控制所述采集模块以所述节能模式对应的第二采集频率测量预设的人体位置的肌电信号,所述第二采集频率低于所述第一采集频率。
本发明实施例中,由于因为用户的无意识行为而产生的肌电信号的强度会较低,因此,通过获取肌电信号的强度,并判断强度是否小于预设阈值,可以使得可穿戴装置自动识别出用户是否处于运动训练状态,能够将用户的无意识行为动作与正常训练动作进行区分;在强度小于预设阈值时,由于此时的用户的活动状态应对应为非运动训练状态,产生的肌电信号属于无效肌电信号,因而通过控制采集模块以节能模式对应的采集频率测量肌电信号,降低了采集频率,减少了无效肌电信号的采集量,相对于现有技术而言,提高了肌电信号的采集有效性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的肌电信号采集方法的实现流程图;
图2是本发明实施例提供的肌电信号采集方法S101的具体实现流程图;
图3是本发明另一实施例提供的肌电信号采集方法的实现流程图;
图4是本发明实施例提供的肌电信号采集方法S102的具体实现流程图;
图5是本发明又一实施例提供的肌电信号采集方法的实现流程图;
图6是本发明实施例提供的肌电信号采集装置的结构框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
首先,对本发明实施例中提及的可穿戴装置进行解释说明。在本发明实施例中,可穿戴装置可以是可穿戴式的智能健身衣,也可以是可穿戴、可贴附式的一个或多个采集模块的集合。
其中,当可穿戴装置为可穿戴式的智能健身衣时,其可以是由柔性面料制成的衣服或裤子,且在柔性面料贴近人体皮肤的一侧镶嵌有多个采集模块。每个采集模块固定于智能健身衣的不同位置点,以使得用户穿上该智能健身衣之后,各个采集模块能够贴附于用户身体的各块肌肉。在可穿戴装置中,还镶嵌有至少一个控制模块,每个采集模块分别与该控制模块通信相连。
在具体实现中,示例性地,可穿戴装置中还可以安置有电线及电路板,其中,电路板用于固定各类通讯总线以及采集模块。此外,电路板及其各个焊接处都包裹有防水胶,作为一种具体的实现方式,通过在衣物上固定防水的走线,使得该可穿戴装置能够被洗涤。
特别地,当采集模块与控制模块通信相连时,每个采集模块中可以仅包含具有体感传感器功能的采集电极,也可以包含具有采集功能的集成电路。上述采集电极包括但不限于织物电极、橡胶电极以及凝胶电极等。
当可穿戴装置为可穿戴、可贴附式的一个或多个采集模块的集合时,用户 可将各个采集模块灵活地固定于用户所指定的身体位置点,使得各个采集模块能够分别贴附于用户身体的指定肌肉。此时,每个采集模块为具有采集功能以及具有无线传输功能的集成电路,且该集成电路中包含上述具有体感传感器功能的采集电极。采集模块所采集到的肌电信号通过无线网络传输至远程的控制模块,该控制模块位于与采集模块配套使用的远程终端设备或远程控制盒子中。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
图1示出了本发明实施例提供的肌电信号采集方法的实现流程,如图1所示,该方法包括步骤S101至步骤S103,详述如下:
S101:控制可穿戴装置中的采集模块以正常模式对应的第一采集频率测量预设的人体位置的肌电信号。
本发明实施例中,在可穿戴装置启动后,采集模块以初始状态下的工作模式执行运作。上述采集模块的工作模式包括正常模式以及节能模式。初始状态对应的工作模式为正常模式。
在可穿戴装置的生产测试过程中,基于不同采集频率采集用户在运动训练状态下的肌电信号,可穿戴装置对用户的运动训练效果进行了自动分析及指导,并从中确定出分析指导效果达到目标效果时所对应的采集频率,则将该采集频率设为采集模块在正常模式下的第一采集频率。
在可穿戴装置启动后,控制模块根据正常模式下的采集频率,控制可穿戴装置上的各个采集模块以从预设的人体位置采集肌电信号。具体地,当采集模块与控制模块通信相连且采集模块仅包含采集电极时,控制模块在单位时间内输出与采集频率对应的多个高电平脉冲信号,用以导通各个采集模块与控制模块之间的连接。通过控制控制模块与采集模块的导通频率,实现了对肌电信号的采集控制。
当采集模块与控制模块通过无线相连时,控制模块向采集模块发送携带正常模式对应的采集频率的控制数据包,以使接到该控制数据包的采集模块能够根据控制数据包中的采集频率,执行正常模式下肌电信号的采集。
其中,上述预设的人体位置指采集模块所接触的人体位置,采集模块设置在可穿戴装置上,不同的采集模块所接触的人体位置不同,即对应的运动肌群不同,因此,控制模块能够通过采集模块采集到来自于不同运动肌群的肌电信号,并将采集到的肌电信号传输至终端设备,以进行后续的运动训练效果分析。
S102:获取所述肌电信号的强度,并判断所述强度是否小于第一预设阈值。
在用户的中枢神经控制下,肌肉的运动神经元产生电脉冲,沿轴突传导到肌纤维,并在所有肌纤维上引起脉冲序列,沿肌纤维进行传播。传播中的电脉冲在人体软组织中引起电流场,在采集电极间引起电位差,因此,经由每个采集模块采集得到的肌电信号表现为具体的电位差或电压。
控制模块对采集得到的肌电信号的电压大小进行自动识别,进而提取出当前时刻肌电信号对应的电压幅值,则该电压幅值为肌电信号的强度。
本发明实施例中,第一预设阈值在可穿戴装置出厂时预设于控制模块中,为用户处于运动锻炼状态时,经由统计得出的运动肌群所产生的肌电信号的强度最小值。不同运动肌群所产生的肌电信号的强度最小值不同,因而每个采集模块对应一个第一预设阈值。在判断强度是否小于第一预设阈值时,需要判断肌电信号的强度是否小于该肌电信号的来源采集模块所对应的第一预设阈值。
例如,在运动训练状态下,从运动肌群A所采集到的肌电信号的强度至少为2000微伏,则在控制模块中将贴附在运动肌群A的采集模块所对应的第一预设阈值设置为2000微伏。
特别地,为了提高可穿戴装置对用户运动训练动作的识别灵敏度,避免用户在运动训练状态下依然被可穿戴装置识别为非运动训练状态,从而导致有效肌电信号的采集量降低的情况发生,可对第一预设阈值进行个性化调整。
与可穿戴装置配套的应用程序客户端中,根据接收到的用户输入的第一预设阈值调整指令,将更新后的第一预设阈值传输至控制模块,以使控制模块在后续过程中能够以调整后的第一预设阈值为标准对肌电信号的强度进行判断。
S103:当所述强度小于第一预设阈值时,控制所述采集模块运行在节能模 式下,并控制所述采集模块以所述节能模式对应的第二采集频率测量预设的人体位置的肌电信号,所述第二采集频率低于所述第一采集频率。
由于在用户处于运动训练状态时,经过科学统计分析得出的肌电信号的强度最小值为第一预设阈值,因此,若当前时刻采集到的肌电信号的强度小于第一预设阈值,则判断为用户处于非运动训练状态,并确定当前肌电信号的产生原因是由于用户的无意识活动造成的,属于无效肌电信号。此时,控制模块对采集模块的工作模式进行切换控制,令初始状态下采集模块的正常模式切换为节能模式。节能模式对应的采集频率为出厂预设值,且节能模式对应的采集频率低于正常模式的采集频率,因而通过对采集模块的工作模式进行切换,令采集模块基于节能模式对应的低频采集频率测量同一人体位置的肌电信号时,能够减少无效肌电信号的采集量以及传输量。
本发明实施例中,由于因为用户的无意识行为而产生的肌电信号的强度会较低,因此,通过获取肌电信号的强度,并判断强度是否小于预设阈值,可以使得可穿戴装置自动识别出用户是否处于运动训练状态,能够将用户的无意识行为动作与正常训练动作进行区分;在强度小于预设阈值时,由于此时的用户的活动状态应对应为非运动训练状态,产生的肌电信号属于无效肌电信号,因而通过控制采集模块以节能模式对应的采集频率测量肌电信号,降低了采集频率,减少了无效肌电信号的采集量,相对于现有技术而言,提高了肌电信号的采集有效性。
作为本发明的一个实施例,如图2所示,上述S101具体包括步骤S201至S204,详述如下:
S201:分别获取与运动动作对应的M个运动肌群的肌群标识。
在健身过程中,用户通常会先进行热身运动,例如执行重复的动作以对即将要执行的运动训练动作进行初步试验。则在该重复动作所对应的一段较短的预设时长内,经过对采集到的肌电信号进行分析,提取肌电信号中的特征,并从与存储的肌电信号特征中匹配出与该特征拟合程度最高的一种,从而能够将 该肌电信号特征对应的运动动作识别为该预设时长内用户所试验的运动训练动作。
在控制模块所预存储的多个肌群标识组合中,匹配出与运动动作对应的一个肌群标识组合。每个肌群标识组合包含一个或多个肌群标识,每个肌群标识用于标识人体中的一个或多个运动肌群。从而基于确定出的肌群标识组合形式,能够获取与运动动作对应的M个运动肌群的肌群标识。M为该肌群标识组合所包含的肌群标识数量。
例如,若识别出的运动动作为俯卧撑,由于该动作所能锻炼的运动肌群为肱三头肌、三角肌前束、前锯肌以及喙肱肌,因此肱三头肌、三角肌前束、前锯肌以及喙肱肌将共同作为一个肌群标识组合,预设于控制模块中,并且该肌群标识组合与俯卧撑对应。
S202:在所述可穿戴装置中的N个采集模块中,确定与所述M个肌群标识分别对应的M个采集模块。
根据可穿戴装置出厂时采集模块所分布的位置,可得知用户使用该可穿戴装置时采集模块所贴附的运动肌群是哪些。基于采集模块与运动肌群的对应关系,如图1所示,控制模块中预设有采集模块与肌群标识的对应关系表。
图1
采集模块 肌群标识
A 肱三头肌
B 三角肌前束
C 前锯肌
D 喙肱肌
在S201确定出各个肌群标识后,控制模块查找上述对应表,从而得到每个肌群标识对应的采集模块。例如,若肌群标识为肱三头肌,则用于采集肱三头肌所产生的肌电信号的采集模块则为采集模块A。
S203:控制所述M个采集模块运行在正常模式下,以所述第一采集频率测量所述M个运动肌群的肌电信号。
由于一个肌群标识对应一个采集模块,因此,M个肌群标识对应M个采集 模块。
预设时长为用户执行热身测试动作的时长,因此,该预设时长之后的时刻才是用户正式健身锻炼的起始时刻,故健身起始时刻下处于运动锻炼状态的运动肌群应当与该预设时长内处于运动锻炼状态的运动肌群相同。又由于上述M个肌群标识所表示的运动肌群在该预设时长内已经被确定为处于运动训练状态,因此,健身起始时刻所对应的处于运动训练状态的运动肌群同样被确定为该M个运动肌群。因而本发明实施例中,令上述M个运动肌群对应的M个采集模块运行在正常模式下,以正常模式对应的高频采集频率获取这M个运动肌群即将要产生的肌电信号。
S204:控制所述N-M个采集模块运行在所述节能模式下,以所述第二采集频率测量除所述M个运动肌群之外的其他运动肌群的肌电信号。
健身起始时刻起,用户将有较大的概率执行与预设时长内相同的运动动作,因此,从当前时刻起,处于非运动训练状态的运动肌群也应当与预设时长内处于非运动训练状态的运动肌群相同,即处于非运动训练状态的运动肌群为除了上述M个运动肌群外的其他运动肌群。由于其他运动肌群上同样贴附有各自对应的一个采集模块,因而控制模块令可穿戴装置上剩余的N-M个采集模块分别以低采集频率采集各自所贴附的运动肌群的肌电信号。
本发明实施例中,通过对健身起始时刻所对应的处于运动锻炼状态的运动肌群进行预判,能够准确地确定采集模块在健身起始时刻的工作模式,能够从健身起始时刻起,最大限度地提高肌电信号的采集有效性。通过利用高采集频率采集处于运动锻炼状态下的运动肌群的肌电信号,利用低采集频率采集处于非运动锻炼状态下的运动肌群的肌电信号,保证了采集得到的大部分肌电信号都是有效肌电信号,同时也保证了根据处于非运动锻炼状态下的运动肌群的肌电信号,依然能够判断出该运动肌群何时发生活动状态的变化,进而为其对应的采集模块的工作模式进行准确的切换提供了判断基础。
作为本发明的另一实施例,如图3所示,在上述S102之后,所述方法还 包括:
S104:当所述强度大于或等于第一预设阈值时,对所述肌电信号进行保存,以更新肌电信号存储列表。
对于当前时刻所采集到的任一运动肌群所对应的肌电信号,若该肌电信号的强度不小于第一预设阈值,则控制贴附于该运动肌群的采集模块运行在正常模式之下。并且,将该时刻采集到的肌电信号缓存于控制模块的肌电信号存储列表中。
S105:判断所述肌电信号存储列表在当前时刻之前的第一预设时长内是否出现持续更新。
本发明实施例中,肌电信号存储列表出现更新表示有新数据添加至该列表,肌电信号存储列表出现更新不包括列表中有数据被移除的情况。每个采集模块对应一个肌电信号存储列表,基于同一采集模块采集得到的肌电信号,在其强度大于或等于第一预设阈值时,将被存储于相同的一个肌电信号存储列表中。
在时刻T 1至时刻T 2这一段时间内,判断肌电信号存储列表是否一直处于更新状态,即判断在时刻T 1至时刻T 2内,从同一运动肌群采集得到的肌电信号是否都全部添加至该肌电信号存储列表中。其中,T 2为当前时刻,T 2-T 1为第一预设时长。
若肌电信号存储列表一直处于更新状态,即在时刻T 1至时刻T 2内,从同一运动肌群采集得到的肌电信号都全部添加至该肌电信号存储列表中,则确定为所述肌电信号存储列表在当前时刻之前的第一预设时长内出现持续更新。
若肌电信号存储列表并非一直处于更新状态,即在时刻T 1至时刻T 2内,从同一运动肌群采集得到的肌电信号没有全部添加至该肌电信号存储列表中,则确定为所述肌电信号存储列表在当前时刻之前的第一预设时长内未出现持续更新。
若所述肌电信号存储列表在当前时刻之前的第一预设时长内未出现持续更新,则返回执行所述控制可穿戴装置中的采集模块以正常模式对应的第一采集 频率测量预设的人体位置的肌电信号。即,在时刻T 1至时刻T 2之间的任一时刻,若肌电信号存储列表未出现更新,则返回S101,并依次执行后续操作。
若所述肌电信号存储列表在当前时刻之前的第一预设时长内出现持续更新,则执行S106。
S106:获取所述第一预设时长内肌电信号的强度变化趋势。
本发明实施例中,若肌电信号存储列表在当前时刻之前的第一预设时长内出现持续更新,则按照各个肌电信号进入肌电信号存储列表的先后顺序,依次记录下各肌电信号的强度。根据各个相邻肌电信号之间的强度差值来确定该第一预设时长内的强度变化趋势。
具体地,分别对相邻的任意两个肌电信号的强度值进行一次差值运算,并判断后一肌电信号的强度与前一肌电信号的强度的差值是否为负值。若每一次差值运算得到的差值均为负,则代表在时间段[T 1,T 2]内,肌电信号的强度随着时间增大而减小。这种情况下,则确定[T 1,T 2]内的强度变化趋势为强度持续变小。
例如,在时间段[T 1,T 2]内,各个肌电信号的强度分别为[20,18,16,14,12],若将相邻的强度值作为一组,则将会得到4组数据,分别为[20,18]、[18,16]、[16,14]以及[14,12]。对每一组数据执行一次差值运算,得到的四个差值均为-2,均为负值,因此,可得出[T 1,T 2]内的强度变化趋势为强度持续变小。
S107:当所述强度变化趋势为强度持续变小时,获取所述第一预设时长内肌电信号的强度变化幅值。
在第一预设时长所对应的时间段[T 1,T 2]内,肌电信号的强度最大值以及强度最小值的差值即为强度变化幅值。由于强度持续变小,因此,强度变化幅值实际上等于时刻T 1的肌电信号强度与时刻T 2的肌电信号强度的差值。
S108:确定所述强度变化幅值对应的采集频率减小量。
将强度变化幅值ΔV输入数据分析模型,输出相应的采集频率减小量Δf。其 中,当输入的强度变化幅值ΔV越大时,输出的采集频率减小量Δf也会越大。
S109:在控制所述采集模块以调整后的采集频率测量预设的人体位置的肌电信号后。其中,所述调整后的采集频率为所述第一采集频率与所述采集频率减小量的差值。
由于时刻T 1至时刻T 2之间采集模块的工作模式为正常模式,因而其采集频率为恒量f。从时刻T 2起,将该采集频率f调整至f-Δf,返回S102,并依次执行后续操作。
其中,f-Δf所可能达到的最小值大于节能模式所对应的采集频率。
本发明实施例中,在采集模块所采集到的肌电信号的强度持续出现减小的情况下,表示该采集模块所贴附的运动肌群逐渐趋近于非运动锻炼状态,因此,通过以强度变化幅值对应的采集频率减小量来对当前时刻的采集频率进行调整,能逐步降低无效肌电信号的采集频率,当强度变化幅值越大时,采集频率越低,因此,即使无法根据第一预设阈值来控制采集模块运行于节能模式,也能最大程度地提高肌电信号的采集有效性。
作为本发明的一个实施例,图4示出了本发明实施例提供的肌电信号采集方法S102的具体实现流程,详述如下:
S401:获取所述采集模块在第二预设时长内从所述人体位置测量得到的肌电信号。
在S101中,各个采集模块多次测量其贴附的运动肌群的肌电信号,并读取当前时刻之前的一段预设时长内所采集到的肌电信号。
S402:判断所述第二预设时长内的肌电信号的强度是否恒小于第一预设阈值。
若第二预设时长所对应的时间段为[t,t′],t′为当前时刻,则在[t,t′]内包含有各个肌电信号的强度,判断每一个强度是否都小于第一预设阈值。
例如,在时间段[t,t′]内各个肌电信号的强度分别为[16,18,16,14,15],第一预设阈值为17,则因其中一肌电信号的强度为18,大于第一预设阈值,因而可 确定第二预设时长[t,t′]内肌电信号的强度没有恒小于第一预设阈值。
仅当第二预设时长[t,t′]内肌电信号的强度恒小于第一预设阈值时,才执行S103,否则返回执行S101。
对于本发明所公开的所有实施例中的内容,在本发明实施例中也同样适用,本发明实施例中未提到的步骤原理与图1至图3中所描述的肌电信号采集方法的实现原理相一致,因此不一一赘述。
本发明实施例中,即使实时采集得到的肌电信号的强度小于第一预设阈值,采集模块也不会马上运行于节能模式之下,避免因肌电信号出现噪声干扰时,对运动肌群的活动状态出现了误判,只有当肌电信号的强度持续小于第一预设阈值时,才控制采集模块运行于节能模式,提高了对采集模块工作模式的控制准确率。
作为本发明的又一实施例,如图5所示,在上述S103之后,返回执行S102;在S102之后,所述方法还包括:
当所述强度大于或等于第一预设阈值时,控制可穿戴装置中的采集模块维持以正常模式对应的第一采集频率测量预设的人体位置的肌电信号。
本发明实施例尤其适用于采集模块的当前工作模式为节能模式的情况之下,例如,当基于低采集频率采集到的肌电信号的强度大于第一预设阈值时,表示当前时刻该采集模块所贴附的运动肌群已从非运动锻炼状态变更为运动锻炼状态,因此,需要重新对采集模块的工作模式进行切换,使采集模块能够以正常模式对应的高采集频率测量该运动肌群在运动锻炼状态下所产生的肌电信号,增大有效肌电信号的采集量,保证后续的运动效果分析能够更加准确。
在每次测量得到当前时刻的肌电信号后,返回执行上述S102,并以实时测得的肌电信号的强度为判断对象,对运动肌群的活动状态重新进行确定,从而能够在用户的整个健身锻炼过程中,动态地对采集模块的工作模式以及采集频率进行调整。
应理解,在本发明实施例中,上述各过程的序号的大小并不意味着执行顺 序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
对应于上文实施例所述的肌电信号采集方法,图6示出了本发明实施例提供的肌电信号采集装置的结构框图,为了便于说明,仅示出了与本发明实施例相关的部分。
参照图6,该装置包括:
第一控制单元61,用于控制可穿戴装置中的采集模块以正常模式对应的第一采集频率测量预设的人体位置的肌电信号。
第一判断单元62,用于获取所述肌电信号的强度,并判断所述强度是否小于第一预设阈值。
节能单元63,用于当所述强度小于第一预设阈值时,控制所述采集模块运行在节能模式下,并控制所述采集模块以所述节能模式对应的第二采集频率测量预设的人体位置的肌电信号,所述第二采集频率低于所述第一采集频率。
可选地,所述第一控制单元61包括:
第一获取子单元,用于分别获取与运动动作对应的M个运动肌群的肌群标识。
第一确定子单元,用于在所述可穿戴装置中的N个采集模块中,确定与所述M个肌群标识分别对应的M个采集模块。
第一控制子单元,用于控制所述M个采集模块运行在正常模式下,以所述第一采集频率测量所述M个运动肌群的肌电信号。
第二控制子单元,用于控制所述N-M个采集模块运行在所述节能模式下,以所述第二采集频率测量除所述M个运动肌群之外的其他运动肌群的肌电信号。
其中,所述N为大于零的整数,所述M为大于零且小于或等于N的整数,所述第二采集频率低于所述第一采集频率。
可选地,所述肌电信号采集装置还包括:
存储单元,用于当所述强度大于或等于第一预设阈值时,对所述肌电信号进行保存,以更新肌电信号存储列表。
第二判断单元,用于判断所述肌电信号存储列表在当前时刻之前的第一预设时长内是否出现持续更新。
第一获取单元,用于若所述肌电信号存储列表在当前时刻之前的第一预设时长内出现持续更新,则获取所述第一预设时长内肌电信号的强度变化趋势。
第二获取单元,用于当所述强度变化趋势为强度持续变小时,获取所述第一预设时长内肌电信号的强度变化幅值。
第二确定单元,用于确定所述强度变化幅值对应的采集频率减小量。
第二控制单元,用于在控制所述采集模块以调整后的采集频率测量预设的人体位置的肌电信号后,返回执行所述获取所述肌电信号的强度,并判断所述强度是否小于第一预设阈值。
其中,所述调整后的采集频率为所述第一采集频率与所述采集频率减小量的差值。
可选地,所述第一判断单元62包括:
第二获取子单元,用于获取所述采集模块在第二预设时长内从所述人体位置测量得到的肌电信号。
判断子单元,用于判断所述第二预设时长内的肌电信号的强度是否恒小于第一预设阈值。
可选地,所述肌电信号采集装置还包括:
返回单元,用于当所述强度大于或等于第一预设阈值时,控制可穿戴装置中的采集模块维持以正常模式对应的第一采集频率测量预设的人体位置的肌电信号。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用 和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的系统实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器 (RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种肌电信号采集方法,其特征在于,包括:
    控制可穿戴装置中的采集模块以正常模式对应的第一采集频率测量预设的人体位置的肌电信号;
    获取所述肌电信号的强度,并判断所述强度是否小于第一预设阈值;
    当所述强度小于第一预设阈值时,控制所述采集模块运行在节能模式下,并控制所述采集模块以所述节能模式对应的第二采集频率测量预设的人体位置的肌电信号,所述第二采集频率低于所述第一采集频率。
  2. 如权利要求1所述的肌电信号采集方法,其特征在于,所述控制可穿戴装置中的采集模块以正常模式对应的第一采集频率测量预设的人体位置的肌电信号,包括:
    分别获取与运动动作对应的M个运动肌群的肌群标识;
    在所述可穿戴装置中的N个采集模块中,确定与所述M个肌群标识分别对应的M个采集模块;
    控制所述M个采集模块运行在正常模式下,以所述第一采集频率测量所述M个运动肌群的肌电信号;
    控制所述N-M个采集模块运行在所述节能模式下,以所述第二采集频率测量除所述M个运动肌群之外的其他运动肌群的肌电信号;
    其中,所述N为大于零的整数,所述M为大于零且小于或等于N的整数。
  3. 如权利要求1所述的肌电信号采集方法,其特征在于,还包括:
    当所述强度大于或等于第一预设阈值时,对所述肌电信号进行保存,以更新肌电信号存储列表;
    判断所述肌电信号存储列表在当前时刻之前的第一预设时长内是否出现持续更新;
    若所述肌电信号存储列表在当前时刻之前的第一预设时长内出现持续更新,则获取所述第一预设时长内肌电信号的强度变化趋势;
    当所述强度变化趋势为强度持续变小时,获取所述第一预设时长内肌电信号的强度变化幅值;
    确定所述强度变化幅值对应的采集频率减小量;
    在控制所述采集模块以调整后的采集频率测量预设的人体位置的肌电信号后,返回执行所述获取所述肌电信号的强度,并判断所述强度是否小于第一预设阈值;
    其中,所述调整后的采集频率为所述第一采集频率与所述采集频率减小量的差值。
  4. 如权利要求1所述的肌电信号采集方法,其特征在于,所述获取所述肌电信号的强度,并判断所述强度是否小于第一预设阈值,包括:
    获取所述采集模块在第二预设时长内从所述人体位置测量得到的肌电信号;
    判断所述第二预设时长内的肌电信号的强度是否恒小于第一预设阈值。
  5. 如权利要求1所述的肌电信号采集方法,其特征在于,还包括:
    当所述强度大于或等于第一预设阈值时,控制可穿戴装置中的采集模块维持以正常模式对应的第一采集频率测量预设的人体位置的肌电信号。
  6. 一种肌电信号采集装置,其特征在于,包括:
    第一控制单元,用于控制可穿戴装置中的采集模块以正常模式对应的第一采集频率测量预设的人体位置的肌电信号;
    第一判断单元,用于获取所述肌电信号的强度,并判断所述强度是否小于第一预设阈值;
    节能单元,用于当所述强度小于第一预设阈值时,控制所述采集模块运行在节能模式下,并控制所述采集模块以所述节能模式对应的第二采集频率测量预设的人体位置的肌电信号,所述第二采集频率低于所述第一采集频率。
  7. 如权利要求6所述的肌电信号采集装置,其特征在于,所述第一控制单元包括:
    第一获取子单元,用于分别获取与运动动作对应的M个运动肌群的肌群标 识;
    第一确定子单元,用于在所述可穿戴装置中的N个采集模块中,确定与所述M个肌群标识分别对应的M个采集模块;
    第一控制子单元,用于控制所述M个采集模块运行在正常模式下,以所述第一采集频率测量所述M个运动肌群的肌电信号;
    第二控制子单元,用于控制所述N-M个采集模块运行在所述节能模式下,以所述第二采集频率测量除所述M个运动肌群之外的其他运动肌群的肌电信号;
    其中,所述N为大于零的整数,所述M为大于零且小于或等于N的整数。
  8. 如权利要求6所述的肌电信号采集装置,其特征在于,还包括:
    存储单元,用于当所述强度大于或等于第一预设阈值时,对所述肌电信号进行保存,以更新肌电信号存储列表;
    第二判断单元,用于判断所述肌电信号存储列表在当前时刻之前的第一预设时长内是否出现持续更新;
    第一获取单元,用于若所述肌电信号存储列表在当前时刻之前的第一预设时长内出现持续更新,则获取所述第一预设时长内肌电信号的强度变化趋势;
    第二获取单元,用于当所述强度变化趋势为强度持续变小时,获取所述第一预设时长内肌电信号的强度变化幅值;
    第二确定单元,用于确定所述强度变化幅值对应的采集频率减小量;
    第二控制单元,用于在控制所述采集模块以调整后的采集频率测量预设的人体位置的肌电信号后,返回执行所述获取所述肌电信号的强度,并判断所述强度是否小于第一预设阈值;
    其中,所述调整后的采集频率为所述第一采集频率与所述采集频率减小量的差值。
  9. 如权利要求6所述的肌电信号采集装置,其特征在于,所述第一判断单元包括:
    第二获取子单元,用于获取所述采集模块在第二预设时长内从所述人体位置测量得到的肌电信号;
    判断子单元,用于判断所述第二预设时长内的肌电信号的强度是否恒小于第一预设阈值。
  10. 如权利要求6所述的肌电信号采集装置,其特征在于,还包括:
    返回单元,用于当所述强度大于或等于第一预设阈值时,控制可穿戴装置中的采集模块维持以正常模式对应的第一采集频率测量预设的人体位置的肌电信号。
PCT/CN2018/072337 2017-05-25 2018-01-12 一种肌电信号采集方法及装置 WO2018214529A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710377790.9A CN108209911B (zh) 2017-05-25 2017-05-25 一种肌电信号采集方法及装置
CN201710377790.9 2017-05-25

Publications (1)

Publication Number Publication Date
WO2018214529A1 true WO2018214529A1 (zh) 2018-11-29

Family

ID=62656618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072337 WO2018214529A1 (zh) 2017-05-25 2018-01-12 一种肌电信号采集方法及装置

Country Status (2)

Country Link
CN (1) CN108209911B (zh)
WO (1) WO2018214529A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110232976B (zh) * 2019-07-01 2023-05-02 上海电机学院 一种基于腰肩表面肌电测量的行为识别方法
CN111387978B (zh) * 2020-03-02 2023-09-26 京东科技信息技术有限公司 一种表面肌电信号的动作段检测方法、装置、设备及介质
CN114452054A (zh) * 2022-02-23 2022-05-10 深圳市心流科技有限公司 智能假肢的控制方法、装置、智能假肢及存储介质
CN114652493B (zh) * 2022-05-25 2022-08-30 深圳市心流科技有限公司 一种肌电信号控制方法、装置、肌电设备、存储介质
CN114668564B (zh) * 2022-05-26 2022-09-20 深圳市心流科技有限公司 一种基于肌电信号数据对采样频率进行动态调整的方法
CN114668563B (zh) * 2022-05-26 2022-09-23 深圳市心流科技有限公司 一种肌电信号的采样频率的多层级调节方法
CN114676737B (zh) * 2022-05-26 2022-09-27 深圳市心流科技有限公司 一种肌电信号的采样频率的动态调节方法
CN114683292B (zh) * 2022-06-01 2022-08-30 深圳市心流科技有限公司 肌电设备的采样频率控制方法、智能仿生手及存储介质
CN114947870A (zh) * 2022-06-16 2022-08-30 武汉衷华脑机融合科技发展有限公司 一种带有包络检测器的神经接口电路及其控制方法
CN114783585B (zh) * 2022-06-17 2022-09-02 苏州景昱医疗器械有限公司 程控设备、程控系统、电子设备和计算机可读存储介质
CN115381469A (zh) * 2022-08-12 2022-11-25 歌尔股份有限公司 肌电信号采集装置及控制方法、电子设备
CN115049526B (zh) * 2022-08-15 2022-11-01 联通(广东)产业互联网有限公司 一种基于肌群的智能体育数据管理方法及系统
CN116449967A (zh) * 2023-06-20 2023-07-18 浙江强脑科技有限公司 仿生手教具及其控制方法、主控设备
CN117379690B (zh) * 2023-12-11 2024-03-15 中国科学院自动化研究所 基于多通道阵列电极的电刺激系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440067B1 (en) * 2000-02-28 2002-08-27 Altec, Inc. System and method for remotely monitoring functional activities
JP2004073386A (ja) * 2002-08-13 2004-03-11 Japan Science & Technology Corp インピーダンス測定装置及び運動学習支援装置
CN101862189A (zh) * 2010-06-13 2010-10-20 天津大学 一种肌电功能性电刺激干扰滤除方法
CN103054585A (zh) * 2013-01-21 2013-04-24 杭州电子科技大学 基于生物运动信息的上肢肩肘腕关节运动功能评价方法
CN103632055A (zh) * 2013-11-29 2014-03-12 华为技术有限公司 数据采集方法和装置
CN104706359A (zh) * 2015-04-01 2015-06-17 深圳柔微传感科技有限公司 一种实现运动实时监测的方法和智能服装

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361775A (en) * 1993-04-06 1994-11-08 Mega Elektroniikka Oy Pl. Method for determining muscle endurance and sensitivity to fatigue
US5349963A (en) * 1993-08-06 1994-09-27 Sanhill Oy Method and apparatus for measuring muscle fatigue
KR100624424B1 (ko) * 2004-06-10 2006-09-19 삼성전자주식회사 전기자극을 이용한 건강 훈련/모니터링 장치 및 방법
DE102006027372B4 (de) * 2006-06-13 2009-04-09 Alexander Sokolnitzky Elektromyographie-Biofeedbackgerät für Entspannungstraining
US9844697B2 (en) * 2012-04-27 2017-12-19 Fibrux Oy Method and device for measuring muscle signals
CN102961203B (zh) * 2012-12-10 2015-04-22 杭州电子科技大学 基于emd样本熵的表面肌电信号识别方法
CN103519820A (zh) * 2013-09-29 2014-01-22 上海致趣网络科技有限公司 穿戴式设备运动检测方法
CN204654942U (zh) * 2015-04-01 2015-09-23 深圳柔微传感科技有限公司 一种实现运动实时监测的智能服装
CN106264541B (zh) * 2015-05-12 2020-12-04 腾讯科技(深圳)有限公司 运动传感器控制方法、装置和移动终端
CN105361880B (zh) * 2015-11-30 2018-06-26 上海乃欣电子科技有限公司 肌肉运动事件的识别系统及其方法
CN105597298A (zh) * 2016-04-05 2016-05-25 哈尔滨工业大学 基于肌电信号及肢体动作检测的健身效果评价系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440067B1 (en) * 2000-02-28 2002-08-27 Altec, Inc. System and method for remotely monitoring functional activities
JP2004073386A (ja) * 2002-08-13 2004-03-11 Japan Science & Technology Corp インピーダンス測定装置及び運動学習支援装置
CN101862189A (zh) * 2010-06-13 2010-10-20 天津大学 一种肌电功能性电刺激干扰滤除方法
CN103054585A (zh) * 2013-01-21 2013-04-24 杭州电子科技大学 基于生物运动信息的上肢肩肘腕关节运动功能评价方法
CN103632055A (zh) * 2013-11-29 2014-03-12 华为技术有限公司 数据采集方法和装置
CN104706359A (zh) * 2015-04-01 2015-06-17 深圳柔微传感科技有限公司 一种实现运动实时监测的方法和智能服装

Also Published As

Publication number Publication date
CN108209911B (zh) 2020-02-07
CN108209911A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2018214529A1 (zh) 一种肌电信号采集方法及装置
CN104107134B (zh) 基于肌电反馈的上肢训练方法及系统
Xie et al. Classification of the mechanomyogram signal using a wavelet packet transform and singular value decomposition for multifunction prosthesis control
CN108209912B (zh) 一种肌电信号采集方法及装置
US11911604B2 (en) Neurosleeve for assessment of pathological tremors
CN110974212A (zh) 一种融合心电和肌电特征的康复训练运动状态监测方法及系统
US10912512B2 (en) System and method for muscle movements detection
Cecchi et al. Physical stimuli and emotions: EDA features analysis from a wrist-worn measurement sensor
WO2018214522A1 (zh) 肌电信号采集方法及装置
CN114569144B (zh) 一种基于肌电-惯性传感的膝关节腱反射状态评估方法
US20240024674A1 (en) A system comprising a controller and an electrical stimulation system
KR101349748B1 (ko) 두부경락활성 측정장치
CN116831874A (zh) 一种基于肌电信号的下肢康复器控制方法
CN105326482B (zh) 记录生理信号的方法和装置
CN113520409B (zh) Ssvep信号识别方法、装置、电子装置和存储介质
CN102068264A (zh) 挥击动作的肌能状态分析系统及方法
WO2022217358A1 (en) Point-of-care prediction of muscle responsiveness to therapy during neurorehabilitation
GB2605351A (en) System and method for monitoring muscle performance and providing real-time dynamic advice
CN107411734A (zh) 一种根据人体生物电磁波获取用户特征的装置
Chopra Ultra-Low latency in Human-machine Interfacing using EMG Onset Detection and Pattern Recognition
Vavrinský et al. Application of single wireless holter to simultaneous EMG, MMG and EIM measurement of human muscles activity
Esposito et al. Improvements of a simple piezoresistive array armband for gesture recognition
RU223369U1 (ru) Устройство в виде предмета одежды для регистрации и коррекции активности мышц
KR101613055B1 (ko) 노이즈를 이용하여 생체신호를 교정하고 동작을 추론하는 방법 및 이를 위한 동작추론장치
Zimara Towards an Electromyographic Armband with dry electrodes for Hand Gesture Recognition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805340

Country of ref document: EP

Kind code of ref document: A1