WO2018212054A1 - Rotor - Google Patents

Rotor Download PDF

Info

Publication number
WO2018212054A1
WO2018212054A1 PCT/JP2018/018047 JP2018018047W WO2018212054A1 WO 2018212054 A1 WO2018212054 A1 WO 2018212054A1 JP 2018018047 W JP2018018047 W JP 2018018047W WO 2018212054 A1 WO2018212054 A1 WO 2018212054A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
balance weight
block
rotor core
axial direction
Prior art date
Application number
PCT/JP2018/018047
Other languages
French (fr)
Japanese (ja)
Inventor
大澤 康彦
青田 桂治
祥司郎 中
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2018212054A1 publication Critical patent/WO2018212054A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/16Centering rotors within the stator; Balancing rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to a rotor.
  • a rotor provided in a rotating electric machine is widely known (for example, Patent Document 1).
  • the rotor of this document includes a rotor core made of a magnetic material and a plurality of permanent magnets arranged side by side in the circumferential direction of the rotor core.
  • the rotation speed of the rotor when the load to which the rotor is connected fluctuates, the rotation speed of the rotor also fluctuates, and it is conceivable to increase the inertia of the rotor in order to suppress the fluctuation of the rotation speed.
  • the point where the member for increasing the inertia is provided will normally be at one or both ends in the axial direction of the rotor.
  • the manufacturing cost of the member can be suppressed.
  • the member is made of a material having a high relative permeability, the member provided at the end in the axial direction of the rotor may form a magnetic path, and the magnetic flux of the permanent magnet may be short-circuited in the rotor.
  • the present invention has been made in view of such a point, and the object thereof is to form a short-circuit magnetic path in the rotor when a member for increasing the inertia of the rotor is made of a material having a high relative magnetic permeability. Is to deter
  • the first aspect of the present disclosure is directed to the rotor (10).
  • the rotor (10) includes a rotor core (20) made of a magnetic material, a plurality of permanent magnets (23) provided side by side in the circumferential direction of the rotor core (20), and one axial direction side of the rotor core (20)
  • a block portion (30) made of a material having a relative permeability greater than 1 and having a facing surface (32) facing the end surface of the block, and an outer shape of the facing surface (32) of the block portion (30) Is a shape that fits radially inward of the plurality of permanent magnets (23) when viewed from the axial direction of the rotor core (20).
  • the rotor (10) since the rotor (10) includes the rotor core (20) and the block portion (30), the inertia of the rotor (10) becomes larger than when the block portion (30) is not provided. Thereby, even if the load to which the rotor (10) is connected fluctuates, the rotation speed of the rotor (10) is suppressed from fluctuating greatly. Moreover, since the block part (30) is made of a material having a relative permeability larger than 1, it can be manufactured at low cost.
  • the magnetic flux generated by the permanent magnet (23) is changed to the block part (30 ) Through the same permanent magnet (23) or circumferentially adjacent permanent magnet (23) to form a short-circuit magnetic path in the rotor (10).
  • the outer shape of the facing surface (32) of the block portion (30) is within the radial direction of the plurality of permanent magnets (23) when viewed from the axial direction of the rotor core (20). Shape. For this reason, the magnetic flux generated by the permanent magnet (23) easily flows out of the rotor (10), and the formation of the short-circuit magnetic path as described above is suppressed.
  • the block portion (30) is entirely inside the radial direction of the plurality of permanent magnets (23) when viewed from the axial direction of the rotor core (20). It is characterized by being contained.
  • the block portion (30) made of a material having a relative permeability larger than 1 does not exist on the radially outer side of the plurality of permanent magnets (23) when viewed from the axial direction. For this reason, it is suppressed more reliably that the above-mentioned short circuit magnetic path is formed in a rotor (10).
  • the third aspect of the present disclosure is characterized in that, in the second aspect, the block portion (30) is composed of a plurality of electromagnetic steel sheets having the same shape.
  • a rotor (10) provided with a block part (30) can be manufactured at low cost.
  • vibration is provided on one side in the axial direction of the block portion (30) and is generated when the rotor (10) is rotated. It is characterized by having a balance weight part (50) for suppressing the above.
  • the balance weight part (50) is provided so as to sandwich the block part (30) between the rotor core (20).
  • the balance weight portion (50) suppresses vibrations generated when the rotor (10) rotates.
  • the fifth aspect of the present disclosure is characterized in that, in the fourth aspect, the balance weight part (50) is composed of a plurality of electromagnetic steel sheets having the same shape.
  • the rotor (10) provided with the balance weight part (50) can be manufactured at low cost.
  • each of the block portion (30) and the balance weight portion (50) includes an outer peripheral surface (33) that surrounds the axis of the rotor core (20). , 34, 55, 56).
  • the balance weight portion (50) may have a center of gravity eccentric from the axis of the rotor (10). For this reason, for example, it is also conceivable that the balance weight portion (50) has a horseshoe shape extending around the axis of the rotor core (20). However, such a horseshoe-shaped balance weight part (50) causes a relatively large windage loss due to resistance at both ends in the circumferential direction, particularly when the rotor (10) rotates.
  • the balance weight portion (50) and the block portion (30) in addition to the outer peripheral surface (33, 34, 55, 56) surrounding the axis of the rotor core (20).
  • the balance weight part (50) and the block part (30) having such an outer peripheral surface (33, 34, 55, 56) do not have a part that becomes a large resistance when the rotor (10) is rotated, Like the balance weight part (50), it does not cause a large windage loss. Therefore, according to the said 6th aspect, the windage loss which arises at the time of rotation of a rotor (10) is suppressed.
  • the balance weight portion (50) includes a weight portion (51) corresponding to a part of the outer peripheral surface (33, 34, 55, 56), A wall portion (52) corresponding to the remaining portion of the outer peripheral surface (33, 34, 55, 56), and the weight portion (51) and the wall portion (52) in the balance weight portion (50)
  • a through hole (54) penetrating the balance weight part (50) in the axial direction is formed between the rotor (10) and the rotor (10) is an opening on one axial side of the through hole (54).
  • a closing plate (70) for closing the cover for closing the cover.
  • the opening of the through hole (54) between the weight part (51) and the wall part (52) is exposed, the air flow is disturbed in the through hole (54) when the rotor (10) rotates. And a relatively large windage loss occurs.
  • the opening of the through hole (54) is closed by the closing plate (70), the occurrence of such air flow turbulence is suppressed, and thus the rotor (10) Windage loss that occurs during rotation is suppressed.
  • the rotational speed of the rotor (10) is increased even when the load to which the rotor (10) is connected fluctuates. Fluctuation can be suppressed.
  • the block portion (30) that increases the inertia of the rotor (10) is formed of a material having a relative magnetic permeability larger than 1, so the rotor including the block portion (30) is provided. (10) can be manufactured at low cost.
  • the block portion (30) can be prevented from forming a short-circuit magnetic path in the rotor (10).
  • the rotor (10) provided with a block part (30) can be manufactured cheaply.
  • vibration generated when the rotor (10) is rotated can be suppressed by the balance weight part (50).
  • the rotor (10) including the balance weight part (50) can be manufactured at low cost.
  • windage loss that occurs when the rotor (10) rotates can be suppressed.
  • FIG. 1 is a perspective view of a rotor according to an embodiment of the present invention, in which a closing plate is omitted.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a plan view of the rotor with the balance weight portion and the closing plate omitted.
  • FIG. 4 is a plan view of the rotor shown with the closing plate omitted.
  • FIG. 5 is a view corresponding to FIG. 2 in a modification of the embodiment of the present invention.
  • the rotor (10) of the present embodiment is provided, for example, on the radially inner side of a stator (not shown) in a rotating electric machine.
  • the rotor (10) includes a rotor core (20), a plurality (six in this example) of permanent magnets (23), two end plates (24, 26), Two block portions (30, 40), two balance weight portions (50.60), and two closing plates (70, 72) are provided.
  • the rotor core (20) is a cylindrical member made of a magnetic material.
  • the rotor core (20) is formed by, for example, laminating electromagnetic steel plates punched in an annular shape in the axial direction (vertical direction in FIG. 2).
  • the rotor core (20) may be formed of a magnetic material other than a dust core or other electromagnetic steel plate, for example.
  • a shaft hole (21) for inserting a shaft (not shown) is formed in the center of the rotor core (20) so as to penetrate the rotor core (20) in the axial direction.
  • a plurality of (six in this example) magnet slits (22) are formed in the outer circumferential portion of the rotor core (20) so as to penetrate the rotor core (20) in the axial direction.
  • the plurality of permanent magnets (23) are provided side by side in the circumferential direction of the rotor core (20), and each permanent magnet (23) is embedded one by one in the magnet slit (22). .
  • Each of the plurality of permanent magnets (23) has an elongated rectangular shape in cross section.
  • the plurality of permanent magnets (23) are magnetized so that N poles and S poles appear alternately in the circumferential direction.
  • the shape and number of permanent magnets (23) are not limited to those shown in the figure.
  • the end plates (24, 26) are disk-shaped members provided one by one at both ends in the axial direction of the rotor core (20), and are made of a nonmagnetic material. Yes.
  • a shaft hole (25, 27) is formed in the center of each end plate (24, 26) for insertion into a shaft (not shown).
  • the block part (30) (hereinafter referred to as the first block part (30)) on one axial side (the upper side in FIG. 2) has an end plate (24) on one axial side as shown in FIGS. It is a columnar member provided adjacent to one side in the axial direction of the first end plate (24).
  • the first block portion (30) is formed by laminating a plurality of electromagnetic steel plates having the same shape in the axial direction.
  • a shaft hole (31) for inserting a shaft (not shown) is formed at the center of the first block portion (30).
  • the first block part (30) has a shape such that each corner of the regular hexagon is cut out linearly in plan view. Therefore, the outer shape of the first block portion (30) (the shape shown in FIG. 3) is a shape in which six relatively long sides and six relatively short sides are alternately formed in the circumferential direction. As shown in FIG. 3, the relatively long side of the outer shape is along the long side on the radially inner side of the permanent magnet (23) in plan view. That is, the first block portion (30) is entirely contained inside the plurality of permanent magnets (23) in the radial direction when viewed from the axial direction of the rotor core (20).
  • the outer peripheral surfaces (33, 34) of the first block portion (30) are separated from the shaft center of the rotor core (20) and surround the shaft center. More specifically, the outer peripheral surface (33, 34) of the first block portion (30) includes a planar first block long side surface (33) corresponding to each side of the hexagonal shape, and the first block long side. A flat first block short side surface (34) provided between the surfaces (33) and having a shorter circumferential length than the first block long side surface (33).
  • the first block long side surface (33) is along the long side on the radially inner side of the rectangular permanent magnet (23) when viewed from the axial direction of the rotor core (20).
  • the first block long side surface (33) and the second block short side surface (44) extend in the circumferential direction as viewed from the axial direction of the rotor core (20).
  • the first block portion (30) has a first facing surface (32) facing the end surface on one axial side of the rotor core (20).
  • the first facing surface (32) is in contact with the first end plate (24).
  • the outer shape of the first facing surface (32) is the same as the outer shape described above because the first block portion (30) is composed of a plurality of laminated steel plates having the same shape. Therefore, the outer shape of the first facing surface (32) is a shape that fits inside the plurality of permanent magnets (23) in the radial direction when viewed from the axial direction of the rotor core (20).
  • the first facing surface (32) constitutes the facing surface.
  • the other axial end plate (26) on the other axial side (lower side in FIG. 2) (hereinafter referred to as the second block portion (40)) is provided.
  • the second block portion (40) is formed by laminating a plurality of electromagnetic steel plates having the same shape as the electromagnetic steel plates constituting the first block portion (30) in the axial direction.
  • a shaft hole (41) for inserting a shaft (not shown) is formed at the center of the second block portion (40).
  • the second block portion (40) is such that the long side of the hexagonal shape overlaps the long side of the hexagonal shape of the first block portion (30) when viewed from the axial direction of the rotor core (20). (That is, in the same direction as the first block portion (30)). Therefore, the entire second block portion (40) is accommodated radially inward of the plurality of permanent magnets (23) when viewed from the axial direction of the rotor core (20).
  • the outer peripheral surface (43, 44) of the second block portion (40) has the same shape as the outer peripheral surface (33, 34) of the first block portion (30) and surrounds the axis of the rotor core (20). It is out. More specifically, the outer peripheral surface (43, 44) of the second block portion (40) includes a planar second block long side surface (43) corresponding to each hexagonal side and the second block long side. A planar second block short side surface (44) provided between the surfaces (43) and having a shorter circumferential length than the second block long side surface (43). The second block long side surface (43) is along the long side on the radially inner side of the rectangular permanent magnet (23) when viewed from the axial direction of the rotor core (20). The second block long side surface (43) and the second block short side surface (44) each extend in the circumferential direction when viewed from the axial direction of the rotor core (20).
  • the second block portion (40) has a second facing surface (42) facing the end surface on the other axial side of the rotor core (20).
  • the second facing surface (42) is in contact with the second end plate (26).
  • the outer shape and orientation of the second opposing surface (42) are the same as the outer shape and orientation of the first opposing surface (32). Therefore, the outer shape of the second facing surface (42) is a shape that fits inside the plurality of permanent magnets (23) in the radial direction when viewed from the axial direction of the rotor core (20).
  • the balance weight part (50) (hereinafter referred to as the first balance weight part (50)) on one side in the axial direction (upper side in FIG. 2) of the first block part (30) as shown in FIGS. It is a member provided adjacent to one side in the axial direction.
  • the first balance weight portion (50) is formed by laminating a plurality of electromagnetic steel plates having the same shape in the axial direction.
  • the 1st balance weight part (50) is for suppressing the vibration which arises at the time of rotation of a rotor (10).
  • the electromagnetic steel sheet constitutes a material having a relative permeability larger than 1.
  • the outer shape of the first balance weight part (50) is the same as the outer shape of the first block part (30) as shown in FIGS. Then, the relatively long side of the outer shape of the first balance weight part (50) is along the long side on the radially inner side of the permanent magnet (23) in plan view, as shown in FIG. That is, the first balance weight portion (50) is entirely contained inside the plurality of permanent magnets (23) in the radial direction when viewed from the axial direction of the rotor core (20).
  • the outer peripheral surface of the first balance weight portion (50) surrounds the axis of the rotor core (20) as shown in FIGS. More specifically, the outer peripheral surface (55, 56) of the first balance weight portion (50) is a flat first balance weight long side surface (55) corresponding to each side of the hexagonal shape, and the first balance weight.
  • a flat first balance weight short side surface (56) provided between the weight long side surfaces (55) and having a shorter circumferential length than the first balance weight long side surface (55).
  • the first balance weight long side surface (55) is along the long side on the radially inner side of the rectangular permanent magnet (23) when viewed from the axial direction of the rotor core (20).
  • the first balance weight long side surface (55) and the first balance weight short side surface (56) extend in the circumferential direction as viewed from the axial direction of the rotor core (20).
  • the first balance weight part (50) includes a first weight part (51) corresponding to a part (substantially half part) of the outer peripheral surface and the outer periphery as shown in FIGS.
  • a first wall (52) corresponding to the remainder of the surface.
  • the first weight part (51) constitutes a weight part
  • the first wall part (52) constitutes a wall part.
  • first shaft attachment portion (53) for inserting a shaft is provided between the first weight portion (51) and the first wall portion (52).
  • the first balance weight portion (50) is disposed in the thickness direction (that is, in the axial direction).
  • Three first through holes (54) are formed. Between each 1st through-hole (54), the two 1st connection parts (57) which connect a 1st shaft attaching part (53) and a 1st wall part (52) are provided.
  • the first through hole (54) constitutes a through hole.
  • the balance weight part (60) (hereinafter referred to as the second balance weight part (60)) on the other side in the axial direction (the lower side in FIG. 2) is the second block part (40) as shown in FIGS. It is a member provided adjacent to the other axial direction side.
  • the second balance weight portion (60) is formed by laminating a plurality of electromagnetic steel plates having the same shape in the axial direction.
  • the second balance weight part (60) is for suppressing vibration generated when the rotor (10) rotates.
  • the electromagnetic steel sheet constitutes a material having a relative permeability larger than 1.
  • the outer shape of the second balance weight part (60) is the same as the outer shape of the second balance weight part (60).
  • the relatively long side of the outer shape of the second balance weight part (60) is along the long side on the radially inner side of the permanent magnet (23) in plan view. That is, the second balance weight part (60) is entirely contained inside the plurality of permanent magnets (23) in the radial direction when viewed from the axial direction of the rotor core (20).
  • the outer peripheral surface of the second balance weight part (60) surrounds the axis of the rotor core (20) as shown in FIGS. More specifically, the outer peripheral surface (65, 66) of the second balance weight portion (60) is a flat second balance weight long side surface (65) corresponding to each side of the hexagon, and the second balance weight.
  • a planar second balance weight short side surface (66) provided between the weight long side surfaces (65) and having a shorter circumferential length than the second balance weight long side surface (65).
  • the second balance weight long side surface (65) is along the long side on the radially inner side of the rectangular permanent magnet (23) when viewed from the axial direction of the rotor core (20).
  • the second balance weight long side surface (65) and the second balance weight short side surface (66) extend in the circumferential direction as viewed from the axial direction of the rotor core (20).
  • the second balance weight portion (60) corresponds to the second weight portion (61) corresponding to a part (substantially half) of the outer peripheral surface and the remaining portion of the outer peripheral surface. And a second wall portion (62).
  • a second shaft attachment portion (63) for inserting a shaft (not shown) is provided between the second weight portion (61) and the second wall portion (62).
  • the second balance weight portion (60) is disposed in the thickness direction (that is, in the axial direction).
  • Two second through-holes (64) are formed. Between each 2nd through-hole (64), the 2nd connection part (not shown) which connects a 2nd shaft attaching part (63) and a 2nd wall part (62) is provided.
  • the closing plate (70) on the one side in the axial direction (upper side in FIG. 2) (hereinafter referred to as the first closing plate (70)) is one side in the axial direction of the first balance weight part (50) as shown in FIG. It is the plate-shaped member provided adjacent to.
  • the first closing plate (70) is, for example, an electromagnetic steel plate having the same shape as the electromagnetic steel plate constituting the first block portion (30).
  • a shaft hole (71) for inserting a shaft (not shown) is formed at the center of the first closing plate (70).
  • the first closing plate (70) closes the opening of the first through hole (54) formed in the first balance weight part (50).
  • the first closing plate (70) constitutes a closing plate.
  • the other axial side (lower side in FIG. 2) closing plate (72) (hereinafter referred to as the second closing plate (72)) is the other axial end of the second balance weight part (60). It is the plate-shaped member provided adjacent to the side.
  • the second blocking plate (72) is, for example, an electromagnetic steel plate having the same shape as the electromagnetic steel plate constituting the second block portion (40).
  • a shaft hole (73) for inserting a shaft (not shown) is formed at the center of the second closing plate (72).
  • the second closing plate (72) closes the opening of the second through hole (64) formed in the second balance weight part (60).
  • the inertia of the rotor (10) is increased by providing the first and second block portions (30, 40) as compared to the case where the first and second block portions (30, 40) are not provided. Therefore, even when the load to which the rotor (10) is connected fluctuates, it is possible to prevent the rotation speed of the rotor (10) from fluctuating greatly.
  • the first and second block portions (30, 40) that increase the inertia of the rotor (10) are formed by laminating a plurality of electromagnetic steel sheets having the same shape.
  • the rotor (10) including the second block portion (30, 40) can be manufactured at low cost.
  • the entirety of the first and second block portions (30, 40) made of the electromagnetic steel plate is accommodated inside the plurality of permanent magnets (23) in the radial direction when viewed from the axial direction of the rotor core (20). Therefore, it is possible to reliably prevent a short-circuit magnetic path from being formed in the rotor (10) via the first and second block portions (30, 40). It can suppress that the efficiency of the provided rotating electrical machine falls.
  • the entire first and second balance weight portions (50, 60) made of electromagnetic steel sheets are radially inward of the plurality of permanent magnets (23) when viewed from the axial direction of the rotor core (20). Therefore, it is possible to reliably prevent a short-circuit magnetic path from being formed in the rotor (10) via the first and second balance weight portions (50, 60), and thus the rotor (10 ) Can be prevented from lowering the efficiency of the rotating electrical machine.
  • the 1st balance weight part (50) for suppressing the vibration produced at the time of rotation of a rotor (10) is formed by laminating
  • the outer peripheral surfaces (33, 34, 43, 44, 55, 56, 65, 66) of the respective block portions (30, 40) and the balance weight portions (50, 60) that is, the first And second block long side surfaces (33, 43), first and second block short side surfaces (34, 44), first and second balance weight long side surfaces (55, 65), and first and second balances. Since the weight short side surface (56, 66)) extends in the circumferential direction when viewed from the axial direction of the rotor core (20) and is continuous over the entire circumference, the outer circumferential surface becomes a resistance when the rotor (10) rotates. Therefore, by providing each block part (30, 40) and each balance weight part (50, 60), it is possible to avoid a significant increase in windage loss when the rotor (10) rotates.
  • the opening of the first through hole (54) of the first balance weight part (50) is formed by the first closing plate (70), and the second balance weight part (60) is formed by the second closing plate (72). ) Of the second through holes (64) are closed, so that the formation of the respective through holes (54, 64) avoids a significant increase in windage loss when the rotor (10) rotates. be able to.
  • the first and second block portions (30, 40) are configured to project outward in the radial direction as they move away from the rotor core (20).
  • the outer shape of the first facing surface (32) facing the end surface on one axial side (upper side in FIG. 5) of the rotor core (20) in the first block portion (30) is viewed from the axial direction of the rotor core (20).
  • the shape fits inside the plurality of permanent magnets (23) in the radial direction.
  • the outer shape of the first facing surface (32) is preferably the same as the outer shape of the first facing surface (32) of the above embodiment.
  • the outer shape of the second facing surface (42) facing the end surface on the other axial side (lower side in FIG. 5) of the rotor core (20) in the second block portion (40) is the axial direction of the rotor core (20).
  • the shape fits inside the plurality of permanent magnets (23) in the radial direction.
  • the outer shape of the second facing surface (42) is preferably the same as the outer shape of the second facing surface (42) of the above embodiment.
  • each block (30, 40) and each balance weight (50, 60) are formed by laminating electromagnetic steel plates, at least one of which is a dust core or other magnetic material Alternatively, it may be formed of a material having a relative permeability greater than 1, such as iron, SUS304, or carbon steel.
  • each block part (30, 40) and each balance weight part (50, 60) are both formed of a powder magnetic core, they may be integrally formed.
  • the present invention is useful for the rotor.
  • Rotor 20 Rotor core 23 Permanent magnet 30
  • First block (block) 32 First facing surface (facing surface) 33 1st block long side surface (outer peripheral surface) 34 Short side of block 1 (outer peripheral surface) 50 1st balance weight part (balance weight part) 51 1st weight part (weight part) 52 First wall (wall) 54 1st through hole (through hole) 55 1st balance weight long side surface (outer peripheral surface) 56 1st balance weight short side (outer peripheral surface) 70

Abstract

This rotor (10) is provided with: a rotor core (20); a plurality of permanent magnets (23) arranged side-by-side in the circumferential direction of the rotor core (20); and a block (30) having a facing surface (32) which faces one axial end surface of the rotor core (20), and formed from a material having relative magnetic permeability higher than 1. The contour of the facing surface (32) of the block (30) has a shape which fits radially inside the plurality of permanent magnets (23) when viewed in the axial direction of the rotor core (20). The abovementioned configuration enables to prevent the formation of a magnetic short circuit within the rotor when a material having high relative magnetic permeability is used to form a member for increasing the inertia of the rotor.

Description

ロータRotor
 本発明は、ロータに関するものである。 The present invention relates to a rotor.
 従来より、回転電気機械に設けられるロータが広く知られている(例えば、特許文献1)。同文献のロータは、磁性材料製のロータコアと、該ロータコアの周方向に並んで設けられた複数の永久磁石とを備えている。 Conventionally, a rotor provided in a rotating electric machine is widely known (for example, Patent Document 1). The rotor of this document includes a rotor core made of a magnetic material and a plurality of permanent magnets arranged side by side in the circumferential direction of the rotor core.
特開2015-42124号公報JP2015-42124A
 ところで、ロータが接続される負荷が変動すると当該ロータの回転速度も変動するところ、この回転速度の変動を抑制するためにロータのイナーシャを増大させることが考えられる。イナーシャを増大させるための部材を設ける箇所は、通常はロータの軸方向の一端または両端になるだろう。 Incidentally, when the load to which the rotor is connected fluctuates, the rotation speed of the rotor also fluctuates, and it is conceivable to increase the inertia of the rotor in order to suppress the fluctuation of the rotation speed. The point where the member for increasing the inertia is provided will normally be at one or both ends in the axial direction of the rotor.
 ここで、イナーシャを増大させるための部材の材料として、モータ材料として広く用いられている電磁鋼板のような比透磁率が大きな材料を使用すると当該部材の製造コストを抑えることができる。しかしながら、当該部材を比透磁率が大きな材料で作ると、ロータの軸方向端に設けられる当該部材が磁路を形成し、永久磁石の磁束がロータ内で短絡してしまうおそれがある。 Here, when a material having a large relative permeability such as an electromagnetic steel plate widely used as a motor material is used as a material for a member for increasing the inertia, the manufacturing cost of the member can be suppressed. However, if the member is made of a material having a high relative permeability, the member provided at the end in the axial direction of the rotor may form a magnetic path, and the magnetic flux of the permanent magnet may be short-circuited in the rotor.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、ロータのイナーシャを増大させるための部材を比透磁率が大きな材料で作る場合に、ロータ内で短絡磁路が形成されるのを抑止することにある。 The present invention has been made in view of such a point, and the object thereof is to form a short-circuit magnetic path in the rotor when a member for increasing the inertia of the rotor is made of a material having a high relative magnetic permeability. Is to deter
 本開示の第1の態様は、ロータ(10)を対象とする。このロータ(10)は、磁性材料製のロータコア(20)と、上記ロータコア(20)の周方向に並んで設けられた複数の永久磁石(23)と、上記ロータコア(20)の軸方向一方側の端面と対向する対向面(32)を有する、比透磁率が1よりも大きな材料でできたブロック部(30)とを備え、上記ブロック部(30)の上記対向面(32)の外郭形状は、上記ロータコア(20)の軸方向から見て上記複数の永久磁石(23)の径方向内側に収まる形状である。 The first aspect of the present disclosure is directed to the rotor (10). The rotor (10) includes a rotor core (20) made of a magnetic material, a plurality of permanent magnets (23) provided side by side in the circumferential direction of the rotor core (20), and one axial direction side of the rotor core (20) A block portion (30) made of a material having a relative permeability greater than 1 and having a facing surface (32) facing the end surface of the block, and an outer shape of the facing surface (32) of the block portion (30) Is a shape that fits radially inward of the plurality of permanent magnets (23) when viewed from the axial direction of the rotor core (20).
 上記第1の態様では、ロータ(10)はロータコア(20)およびブロック部(30)を備えているので、ブロック部(30)がない場合に比べてロータ(10)のイナーシャが大きくなる。これにより、ロータ(10)が接続される負荷が変動しても当該ロータ(10)の回転速度が大きく変動することが抑制される。また、ブロック部(30)は比透磁率が1よりも大きな材料でできているので安価に製造可能である。 In the first aspect, since the rotor (10) includes the rotor core (20) and the block portion (30), the inertia of the rotor (10) becomes larger than when the block portion (30) is not provided. Thereby, even if the load to which the rotor (10) is connected fluctuates, the rotation speed of the rotor (10) is suppressed from fluctuating greatly. Moreover, since the block part (30) is made of a material having a relative permeability larger than 1, it can be manufactured at low cost.
 ここで、ブロック部(30)の対向面(32)が永久磁石(23)の径方向内側から径方向外側に跨がっていると、永久磁石(23)によって生じる磁束が当該ブロック部(30)を通って同じ永久磁石(23)または周方向に隣り合う永久磁石(23)に流れ込んでロータ(10)内で短絡磁路が形成される。これに対し、上記第1の態様では、ブロック部(30)の対向面(32)の外郭形状が、ロータコア(20)の軸方向から見て複数の永久磁石(23)の径方向内側に収まる形状である。このため、永久磁石(23)によって生じる磁束がロータ(10)外へ流れ出しやすくなり、上述したような短絡磁路が形成されることが抑止される。 Here, when the opposing surface (32) of the block part (30) extends from the radially inner side to the radially outer side of the permanent magnet (23), the magnetic flux generated by the permanent magnet (23) is changed to the block part (30 ) Through the same permanent magnet (23) or circumferentially adjacent permanent magnet (23) to form a short-circuit magnetic path in the rotor (10). On the other hand, in the first aspect, the outer shape of the facing surface (32) of the block portion (30) is within the radial direction of the plurality of permanent magnets (23) when viewed from the axial direction of the rotor core (20). Shape. For this reason, the magnetic flux generated by the permanent magnet (23) easily flows out of the rotor (10), and the formation of the short-circuit magnetic path as described above is suppressed.
 本開示の第2の態様は、上記第1の態様において、上記ブロック部(30)は、全体が上記ロータコア(20)の軸方向から見て上記複数の永久磁石(23)の径方向内側に収まっていることを特徴とする。 According to a second aspect of the present disclosure, in the first aspect, the block portion (30) is entirely inside the radial direction of the plurality of permanent magnets (23) when viewed from the axial direction of the rotor core (20). It is characterized by being contained.
 上記第2の態様では、軸方向から見て、複数の永久磁石(23)の径方向外側に比透磁率が1よりも大きな材料でできたブロック部(30)が存在しない。このため、上述したような短絡磁路がロータ(10)内で形成されることがより確実に抑止される。 In the second aspect, the block portion (30) made of a material having a relative permeability larger than 1 does not exist on the radially outer side of the plurality of permanent magnets (23) when viewed from the axial direction. For this reason, it is suppressed more reliably that the above-mentioned short circuit magnetic path is formed in a rotor (10).
 本開示の第3の態様は、上記第2の態様において、上記ブロック部(30)は、互いに同形状の複数枚の電磁鋼板によって構成されていることを特徴とする。 The third aspect of the present disclosure is characterized in that, in the second aspect, the block portion (30) is composed of a plurality of electromagnetic steel sheets having the same shape.
 上記第3の態様では、ブロック部(30)を構成するために一種類の電磁鋼板を複数枚用意すれば足りる。このため、ブロック部(30)を備えるロータ(10)が低コストに製造され得る。 In the third aspect, it is sufficient to prepare a plurality of one type of electrical steel sheet to constitute the block portion (30). For this reason, a rotor (10) provided with a block part (30) can be manufactured at low cost.
 本開示の第4の態様は、上記第1~第3の態様のいずれか1つにおいて、上記ブロック部(30)の上記軸方向一方側に設けられ、上記ロータ(10)の回転時に生じる振動を抑制するためのバランスウェイト部(50)を備えていることを特徴とする。 According to a fourth aspect of the present disclosure, in any one of the first to third aspects, vibration is provided on one side in the axial direction of the block portion (30) and is generated when the rotor (10) is rotated. It is characterized by having a balance weight part (50) for suppressing the above.
 上記第4の態様では、ロータコア(20)との間にブロック部(30)を挟むようにバランスウェイト部(50)が設けられる。このバランスウェイト部(50)により、ロータ(10)の回転時に生じる振動が抑制される。 In the fourth aspect, the balance weight part (50) is provided so as to sandwich the block part (30) between the rotor core (20). The balance weight portion (50) suppresses vibrations generated when the rotor (10) rotates.
 本開示の第5の態様は、上記第4の態様において、上記バランスウェイト部(50)は、互いに同形状の複数枚の電磁鋼板によって構成されていることを特徴とする。 The fifth aspect of the present disclosure is characterized in that, in the fourth aspect, the balance weight part (50) is composed of a plurality of electromagnetic steel sheets having the same shape.
 上記第5の態様では、バランスウェイト部(50)を構成するために一種類の電磁鋼板を複数枚用意すれば足りる。このため、バランスウェイト部(50)を備えるロータ(10)が低コストに製造され得る。 In the fifth aspect, it is sufficient to prepare a plurality of one type of electrical steel sheet in order to form the balance weight portion (50). For this reason, the rotor (10) provided with the balance weight part (50) can be manufactured at low cost.
 本開示の第6の態様は、上記第4または第5の態様において、上記ブロック部(30)およびバランスウェイト部(50)の各々は、上記ロータコア(20)の軸心を取り囲む外周面(33,34,55,56)を有することを特徴とする。 According to a sixth aspect of the present disclosure, in the fourth or fifth aspect, each of the block portion (30) and the balance weight portion (50) includes an outer peripheral surface (33) that surrounds the axis of the rotor core (20). , 34, 55, 56).
 ここで、バランスウェイトとしての機能を実現するために、バランスウェイト部(50)はロータ(10)の軸心から偏心した重心を有していればよい。このため、例えばバランスウェイト部(50)をロータコア(20)の軸心周りに延びる馬蹄状とすることも考えられる。しかしながら、そのような馬蹄状のバランスウェイト部(50)は、ロータ(10)の回転時に、特にその周方向両端部が抵抗となって比較的大きな風損を生じさせる。 Here, in order to realize the function as a balance weight, the balance weight portion (50) may have a center of gravity eccentric from the axis of the rotor (10). For this reason, for example, it is also conceivable that the balance weight portion (50) has a horseshoe shape extending around the axis of the rotor core (20). However, such a horseshoe-shaped balance weight part (50) causes a relatively large windage loss due to resistance at both ends in the circumferential direction, particularly when the rotor (10) rotates.
 これに対し、上記第6の態様では、バランスウェイト部(50)、またこれに加えてブロック部(30)が、ロータコア(20)の軸心を取り囲む外周面(33,34,55,56)を有する。このような外周面(33,34,55,56)を有するバランスウェイト部(50)およびブロック部(30)は、ロータ(10)の回転時に大きな抵抗となる部分がないので、上述の馬蹄状のバランスウェイト部(50)のようには大きな風損を生じさせない。よって、上記第6の態様によると、ロータ(10)の回転時に生じる風損が抑制される。 On the other hand, in the sixth aspect, the balance weight portion (50) and the block portion (30) in addition to the outer peripheral surface (33, 34, 55, 56) surrounding the axis of the rotor core (20). Have Since the balance weight part (50) and the block part (30) having such an outer peripheral surface (33, 34, 55, 56) do not have a part that becomes a large resistance when the rotor (10) is rotated, Like the balance weight part (50), it does not cause a large windage loss. Therefore, according to the said 6th aspect, the windage loss which arises at the time of rotation of a rotor (10) is suppressed.
 本開示の第7の態様は、上記第6の態様において、上記バランスウェイト部(50)は、上記外周面(33,34,55,56)の一部に対応するウェイト部(51)と、該外周面(33,34,55,56)の残部に対応する壁部(52)とを有し、上記バランスウェイト部(50)における上記ウェイト部(51)と上記壁部(52)との間には、該バランスウェイト部(50)を上記軸方向に貫通する貫通孔(54)が形成されており、上記ロータ(10)は、上記貫通孔(54)の上記軸方向一方側の開口を閉塞する閉塞板(70)を備えていることを特徴とする。 According to a seventh aspect of the present disclosure, in the sixth aspect, the balance weight portion (50) includes a weight portion (51) corresponding to a part of the outer peripheral surface (33, 34, 55, 56), A wall portion (52) corresponding to the remaining portion of the outer peripheral surface (33, 34, 55, 56), and the weight portion (51) and the wall portion (52) in the balance weight portion (50) A through hole (54) penetrating the balance weight part (50) in the axial direction is formed between the rotor (10) and the rotor (10) is an opening on one axial side of the through hole (54). And a closing plate (70) for closing the cover.
 ここで、ウェイト部(51)と壁部(52)との間の貫通孔(54)の開口が露出していると、ロータ(10)の回転時に貫通孔(54)内で空気流れの乱れが生じて比較的大きな風損が生じる。これに対し、上記第7の態様では、貫通孔(54)の開口が閉塞板(70)によって閉塞されているので、そのような空気流れの乱れの発生が抑止され、よってロータ(10)の回転時に生じる風損が抑制される。 Here, if the opening of the through hole (54) between the weight part (51) and the wall part (52) is exposed, the air flow is disturbed in the through hole (54) when the rotor (10) rotates. And a relatively large windage loss occurs. On the other hand, in the seventh aspect, since the opening of the through hole (54) is closed by the closing plate (70), the occurrence of such air flow turbulence is suppressed, and thus the rotor (10) Windage loss that occurs during rotation is suppressed.
 上記第1の態様によれば、ブロック部(30)によってロータ(10)のイナーシャが増大するので、ロータ(10)が接続される負荷が変動した場合でも当該ロータ(10)の回転速度が大きく変動するのを抑止することができる。 According to the first aspect, since the inertia of the rotor (10) is increased by the block (30), the rotational speed of the rotor (10) is increased even when the load to which the rotor (10) is connected fluctuates. Fluctuation can be suppressed.
 また、上記第1の態様によれば、ロータ(10)のイナーシャを増大させるブロック部(30)を比透磁率が1よりも大きな材料で形成するので、当該ブロック部(30)を備えたロータ(10)を安価に製造することができる。 Further, according to the first aspect, the block portion (30) that increases the inertia of the rotor (10) is formed of a material having a relative magnetic permeability larger than 1, so the rotor including the block portion (30) is provided. (10) can be manufactured at low cost.
 また、上記第1の態様によれば、ブロック部(30)の対向面(32)が軸方向から見て複数の永久磁石(23)の径方向内側に収まっているので、このブロック部(30)を介してロータ(10)内で短絡磁路が形成されるのを抑止することができる。 Further, according to the first aspect, since the opposing surface (32) of the block portion (30) is accommodated inside the radial direction of the plurality of permanent magnets (23) when viewed from the axial direction, the block portion (30 ) Can be prevented from forming a short-circuit magnetic path in the rotor (10).
 また、上記第2の態様によれば、ブロック部(30)を介してロータ(10)内で短絡磁路が形成されるのをより確実に抑止することができる。 Further, according to the second aspect, it is possible to more reliably prevent the short-circuit magnetic path from being formed in the rotor (10) via the block portion (30).
 また、上記第3の態様によれば、ブロック部(30)を備えるロータ(10)を安価に製造することができる。 Moreover, according to the said 3rd aspect, the rotor (10) provided with a block part (30) can be manufactured cheaply.
 また、上記第4の態様によれば、バランスウェイト部(50)によってロータ(10)の回転時に生じる振動を抑制することができる。 Further, according to the fourth aspect, vibration generated when the rotor (10) is rotated can be suppressed by the balance weight part (50).
 また、上記第5の態様によれば、バランスウェイト部(50)を備えるロータ(10)を安価に製造することができる。 Further, according to the fifth aspect, the rotor (10) including the balance weight part (50) can be manufactured at low cost.
 また、上記第6および第7の態様によれば、ロータ(10)の回転時に生じる風損を抑制することができる。 Further, according to the sixth and seventh aspects, windage loss that occurs when the rotor (10) rotates can be suppressed.
図1は、本発明の実施形態のロータの斜視図であって、閉塞板を省略してある。FIG. 1 is a perspective view of a rotor according to an embodiment of the present invention, in which a closing plate is omitted. 図2は、図1のII-II線における断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 図3は、バランスウェイト部および閉塞板を省略して示すロータの平面図である。FIG. 3 is a plan view of the rotor with the balance weight portion and the closing plate omitted. 図4は、閉塞板を省略して示すロータの平面図である。FIG. 4 is a plan view of the rotor shown with the closing plate omitted. 図5は、本発明の実施形態の変形例における図2相当図である。FIG. 5 is a view corresponding to FIG. 2 in a modification of the embodiment of the present invention.
 本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
 本実施形態のロータ(10)は、例えば回転電気機械において図示しないステータの径方向内側に設けられるものである。ロータ(10)は、図1~図4に示すように、ロータコア(20)と、複数(この例では、6つ)の永久磁石(23)と、2枚の端板(24,26)と、2つのブロック部(30,40)と、2つのバランスウェイト部(50.60)と、2枚の閉塞板(70,72)とを備えている。 The rotor (10) of the present embodiment is provided, for example, on the radially inner side of a stator (not shown) in a rotating electric machine. As shown in FIGS. 1 to 4, the rotor (10) includes a rotor core (20), a plurality (six in this example) of permanent magnets (23), two end plates (24, 26), Two block portions (30, 40), two balance weight portions (50.60), and two closing plates (70, 72) are provided.
 図1および図2に示すように、ロータコア(20)は、磁性材料で構成された円筒状の部材である。ロータコア(20)は、例えば円環状に打ち抜かれた電磁鋼板を軸方向(図2における上下方向)に積層することによって形成される。なお、ロータコア(20)は、例えば圧粉磁心その他の電磁鋼板以外の磁性材料で形成されていてもよい。ロータコア(20)の中心には、図示しないシャフトを挿通するためのシャフト孔(21)が当該ロータコア(20)を軸方向に貫通して形成されている。ロータコア(20)の外周部には、周方向に並んで複数(この例では、6つ)の磁石用スリット(22)が当該ロータコア(20)を軸方向に貫通して形成されている。 As shown in FIGS. 1 and 2, the rotor core (20) is a cylindrical member made of a magnetic material. The rotor core (20) is formed by, for example, laminating electromagnetic steel plates punched in an annular shape in the axial direction (vertical direction in FIG. 2). The rotor core (20) may be formed of a magnetic material other than a dust core or other electromagnetic steel plate, for example. A shaft hole (21) for inserting a shaft (not shown) is formed in the center of the rotor core (20) so as to penetrate the rotor core (20) in the axial direction. A plurality of (six in this example) magnet slits (22) are formed in the outer circumferential portion of the rotor core (20) so as to penetrate the rotor core (20) in the axial direction.
 複数の永久磁石(23)は、図2~図4に示すように、ロータコア(20)の周方向に並んで設けられていて、それぞれが磁石用スリット(22)に1つずつ埋設されている。複数の永久磁石(23)は、それぞれの横断面が細長い長方形状になっている。複数の永久磁石(23)は、N極とS極とが周方向において交互に現れるように着磁されている。なお、永久磁石(23)の形状および数は、図示のものに限られない。 As shown in FIGS. 2 to 4, the plurality of permanent magnets (23) are provided side by side in the circumferential direction of the rotor core (20), and each permanent magnet (23) is embedded one by one in the magnet slit (22). . Each of the plurality of permanent magnets (23) has an elongated rectangular shape in cross section. The plurality of permanent magnets (23) are magnetized so that N poles and S poles appear alternately in the circumferential direction. The shape and number of permanent magnets (23) are not limited to those shown in the figure.
 端板(24,26)は、図1および図2に示すように、ロータコア(20)の軸方向両端に1枚ずつ設けられた円板状の部材であって、非磁性材料で構成されている。各端板(24,26)の中心部には、図示しないシャフトと挿通するためのシャフト孔(25,27)が形成されている。 As shown in FIG. 1 and FIG. 2, the end plates (24, 26) are disk-shaped members provided one by one at both ends in the axial direction of the rotor core (20), and are made of a nonmagnetic material. Yes. A shaft hole (25, 27) is formed in the center of each end plate (24, 26) for insertion into a shaft (not shown).
 軸方向一方側(図2で上側)のブロック部(30)(以下、第1ブロック部(30)という)は、図1~図3に示すように、軸方向一方側の端板(24)(以下、第1端板(24)という)の軸方向一方側に隣り合って設けられた柱状の部材である。第1ブロック部(30)は、互いに同形状の複数枚の電磁鋼板を軸方向に積層することによって形成されている。第1ブロック部(30)の中心には、図示しないシャフトを挿通するためのシャフト孔(31)が形成されている。 The block part (30) (hereinafter referred to as the first block part (30)) on one axial side (the upper side in FIG. 2) has an end plate (24) on one axial side as shown in FIGS. It is a columnar member provided adjacent to one side in the axial direction of the first end plate (24). The first block portion (30) is formed by laminating a plurality of electromagnetic steel plates having the same shape in the axial direction. A shaft hole (31) for inserting a shaft (not shown) is formed at the center of the first block portion (30).
 第1ブロック部(30)は、平面視で正六角形の各角部を直線状に切り欠いたような形状を有する。よって、第1ブロック部(30)の外郭形状(図3に示す形状)は、比較的長い辺と比較的短い辺とが周方向において交互に6つずつ形成された形状である。当該外郭形状のうち比較的長い辺は、図3に示すように、平面視で永久磁石(23)の径方向内側の長辺に沿っている。つまり、第1ブロック部(30)は、全体がロータコア(20)の軸方向から見て複数の永久磁石(23)の径方向内側に収まっている。 The first block part (30) has a shape such that each corner of the regular hexagon is cut out linearly in plan view. Therefore, the outer shape of the first block portion (30) (the shape shown in FIG. 3) is a shape in which six relatively long sides and six relatively short sides are alternately formed in the circumferential direction. As shown in FIG. 3, the relatively long side of the outer shape is along the long side on the radially inner side of the permanent magnet (23) in plan view. That is, the first block portion (30) is entirely contained inside the plurality of permanent magnets (23) in the radial direction when viewed from the axial direction of the rotor core (20).
 また、第1ブロック部(30)の外周面(33,34)は、図1~図3に示すように、ロータコア(20)の軸心から離間しかつ当該軸心を取り囲んでいる。より詳細には、第1ブロック部(30)の外周面(33,34)は、六角形状の各辺に対応する平面状の第1ブロック長辺面(33)と、この第1ブロック長辺面(33)の間に設けられかつ第1ブロック長辺面(33)よりも周方向長さの短い平面状の第1ブロック短辺面(34)とを有する。第1ブロック長辺面(33)は、ロータコア(20)の軸方向から見て、長方形状の永久磁石(23)の径方向内側の長辺に沿っている。第1ブロック長辺面(33)および第2ブロック短辺面(44)は、ロータコア(20)の軸方向から見てそれぞれ周方向に延びている。 Further, as shown in FIGS. 1 to 3, the outer peripheral surfaces (33, 34) of the first block portion (30) are separated from the shaft center of the rotor core (20) and surround the shaft center. More specifically, the outer peripheral surface (33, 34) of the first block portion (30) includes a planar first block long side surface (33) corresponding to each side of the hexagonal shape, and the first block long side. A flat first block short side surface (34) provided between the surfaces (33) and having a shorter circumferential length than the first block long side surface (33). The first block long side surface (33) is along the long side on the radially inner side of the rectangular permanent magnet (23) when viewed from the axial direction of the rotor core (20). The first block long side surface (33) and the second block short side surface (44) extend in the circumferential direction as viewed from the axial direction of the rotor core (20).
 また、第1ブロック部(30)は、図2に示すように、ロータコア(20)の軸方向一方側の端面と対向する第1対向面(32)を有する。この例では、当該第1対向面(32)は、第1端板(24)と接している。そして、この第1対向面(32)の外郭形状は、第1ブロック部(30)が互いに同形状の複数枚の積層鋼板によって構成されているので、上で述べた外郭形状と同じである。よって、第1対向面(32)の外郭形状は、ロータコア(20)の軸方向から見て複数の永久磁石(23)の径方向内側に収まる形状である。第1対向面(32)は対向面を構成している。 Further, as shown in FIG. 2, the first block portion (30) has a first facing surface (32) facing the end surface on one axial side of the rotor core (20). In this example, the first facing surface (32) is in contact with the first end plate (24). The outer shape of the first facing surface (32) is the same as the outer shape described above because the first block portion (30) is composed of a plurality of laminated steel plates having the same shape. Therefore, the outer shape of the first facing surface (32) is a shape that fits inside the plurality of permanent magnets (23) in the radial direction when viewed from the axial direction of the rotor core (20). The first facing surface (32) constitutes the facing surface.
 軸方向他方側(図2で下側)のブロック部(40)(以下、第2ブロック部(40)という)は、図1~図3に示すように、軸方向他方側の端板(26)(以下、第2端板(26)という)の軸方向他方側に隣り合って設けられた柱状の部材である。第2ブロック部(40)は、第1ブロック部(30)を構成する電磁鋼板と同形状の複数枚の電磁鋼板を軸方向に積層することによって形成されている。第2ブロック部(40)の中心には、図示しないシャフトを挿通するためのシャフト孔(41)が形成されている。 As shown in FIG. 1 to FIG. 3, the other axial end plate (26) on the other axial side (lower side in FIG. 2) (hereinafter referred to as the second block portion (40)) is provided. ) (Hereinafter referred to as the second end plate (26)) is a columnar member provided adjacent to the other axial side. The second block portion (40) is formed by laminating a plurality of electromagnetic steel plates having the same shape as the electromagnetic steel plates constituting the first block portion (30) in the axial direction. A shaft hole (41) for inserting a shaft (not shown) is formed at the center of the second block portion (40).
 第2ブロック部(40)は、図1からわかるように、ロータコア(20)の軸方向から見て、六角形状の長辺が第1ブロック部(30)の六角形状の長辺とそれぞれ重なるように(すなわち、第1ブロック部(30)と同じ向きで)設けられている。よって、第2ブロック部(40)は、全体がロータコア(20)の軸方向から見て複数の永久磁石(23)の径方向内側に収まっている。 As can be seen from FIG. 1, the second block portion (40) is such that the long side of the hexagonal shape overlaps the long side of the hexagonal shape of the first block portion (30) when viewed from the axial direction of the rotor core (20). (That is, in the same direction as the first block portion (30)). Therefore, the entire second block portion (40) is accommodated radially inward of the plurality of permanent magnets (23) when viewed from the axial direction of the rotor core (20).
 また、第2ブロック部(40)の外周面(43,44)は、第1ブロック部(30)の外周面(33,34)と同形状であって、ロータコア(20)の軸心を取り囲んでいる。より詳細には、第2ブロック部(40)の外周面(43,44)は、六角形状の各辺に対応する平面状の第2ブロック長辺面(43)と、この第2ブロック長辺面(43)の間に設けられかつ第2ブロック長辺面(43)よりも周方向長さの短い平面状の第2ブロック短辺面(44)とを有する。第2ブロック長辺面(43)は、ロータコア(20)の軸方向から見て、長方形状の永久磁石(23)の径方向内側の長辺に沿っている。第2ブロック長辺面(43)および第2ブロック短辺面(44)は、ロータコア(20)の軸方向から見てそれぞれ周方向に延びている。 The outer peripheral surface (43, 44) of the second block portion (40) has the same shape as the outer peripheral surface (33, 34) of the first block portion (30) and surrounds the axis of the rotor core (20). It is out. More specifically, the outer peripheral surface (43, 44) of the second block portion (40) includes a planar second block long side surface (43) corresponding to each hexagonal side and the second block long side. A planar second block short side surface (44) provided between the surfaces (43) and having a shorter circumferential length than the second block long side surface (43). The second block long side surface (43) is along the long side on the radially inner side of the rectangular permanent magnet (23) when viewed from the axial direction of the rotor core (20). The second block long side surface (43) and the second block short side surface (44) each extend in the circumferential direction when viewed from the axial direction of the rotor core (20).
 また、第2ブロック部(40)は、図2に示すように、ロータコア(20)の軸方向他方側の端面と対向する第2対向面(42)を有する。この例では、当該第2対向面(42)は、第2端板(26)と接している。そして、この第2対向面(42)の外郭形状および向きは、第1対向面(32)の外郭形状および向きと同じである。よって、第2対向面(42)の外郭形状は、ロータコア(20)の軸方向から見て複数の永久磁石(23)の径方向内側に収まる形状である。 Further, as shown in FIG. 2, the second block portion (40) has a second facing surface (42) facing the end surface on the other axial side of the rotor core (20). In this example, the second facing surface (42) is in contact with the second end plate (26). The outer shape and orientation of the second opposing surface (42) are the same as the outer shape and orientation of the first opposing surface (32). Therefore, the outer shape of the second facing surface (42) is a shape that fits inside the plurality of permanent magnets (23) in the radial direction when viewed from the axial direction of the rotor core (20).
 軸方向一方側(図2で上側)のバランスウェイト部(50)(以下、第1バランスウェイト部(50)という)は、図1および図2に示すように、第1ブロック部(30)の軸方向一方側に隣り合って設けられた部材である。第1バランスウェイト部(50)は、互いに同形状の複数枚の電磁鋼板を軸方向に積層することによって形成されている。第1バランスウェイト部(50)は、ロータ(10)の回転時に生じる振動を抑制するためのものである。電磁鋼板は、比透磁率が1よりも大きな材料を構成している。 The balance weight part (50) (hereinafter referred to as the first balance weight part (50)) on one side in the axial direction (upper side in FIG. 2) of the first block part (30) as shown in FIGS. It is a member provided adjacent to one side in the axial direction. The first balance weight portion (50) is formed by laminating a plurality of electromagnetic steel plates having the same shape in the axial direction. The 1st balance weight part (50) is for suppressing the vibration which arises at the time of rotation of a rotor (10). The electromagnetic steel sheet constitutes a material having a relative permeability larger than 1.
 第1バランスウェイト部(50)の外郭形状は、図3および図4に示すように、第1ブロック部(30)の外郭形状と同じである。そして、第1バランスウェイト部(50)の外郭形状のうち比較的長い辺は、図4に示すように、平面視で永久磁石(23)の径方向内側の長辺に沿っている。つまり、第1バランスウェイト部(50)は、全体がロータコア(20)の軸方向から見て複数の永久磁石(23)の径方向内側に収まっている。 The outer shape of the first balance weight part (50) is the same as the outer shape of the first block part (30) as shown in FIGS. Then, the relatively long side of the outer shape of the first balance weight part (50) is along the long side on the radially inner side of the permanent magnet (23) in plan view, as shown in FIG. That is, the first balance weight portion (50) is entirely contained inside the plurality of permanent magnets (23) in the radial direction when viewed from the axial direction of the rotor core (20).
 また、第1バランスウェイト部(50)の外周面は、図1、図2および図4に示すように、ロータコア(20)の軸心を取り囲んでいる。より詳細には、第1バランスウェイト部(50)の外周面(55,56)は、六角形状の各辺に対応する平面状の第1バランスウェイト長辺面(55)と、この第1バランスウェイト長辺面(55)の間に設けられかつ第1バランスウェイト長辺面(55)よりも周方向長さの短い平面状の第1バランスウェイト短辺面(56)とを有する。第1バランスウェイト長辺面(55)は、ロータコア(20)の軸方向から見て、長方形状の永久磁石(23)の径方向内側の長辺に沿っている。第1バランスウェイト長辺面(55)および第1バランスウェイト短辺面(56)は、ロータコア(20)の軸方向から見てそれぞれ周方向に延びている。 The outer peripheral surface of the first balance weight portion (50) surrounds the axis of the rotor core (20) as shown in FIGS. More specifically, the outer peripheral surface (55, 56) of the first balance weight portion (50) is a flat first balance weight long side surface (55) corresponding to each side of the hexagonal shape, and the first balance weight. A flat first balance weight short side surface (56) provided between the weight long side surfaces (55) and having a shorter circumferential length than the first balance weight long side surface (55). The first balance weight long side surface (55) is along the long side on the radially inner side of the rectangular permanent magnet (23) when viewed from the axial direction of the rotor core (20). The first balance weight long side surface (55) and the first balance weight short side surface (56) extend in the circumferential direction as viewed from the axial direction of the rotor core (20).
 また、第1バランスウェイト部(50)は、図1、図2および図4に示すように、その外周面の一部(略半部)に対応する第1ウェイト部(51)と、当該外周面の残部に対応する第1壁部(52)とを有する。第1ウェイト部(51)はウェイト部を構成し、第1壁部(52)は壁部を構成している。 Further, the first balance weight part (50) includes a first weight part (51) corresponding to a part (substantially half part) of the outer peripheral surface and the outer periphery as shown in FIGS. A first wall (52) corresponding to the remainder of the surface. The first weight part (51) constitutes a weight part, and the first wall part (52) constitutes a wall part.
 また、第1ウェイト部(51)と第1壁部(52)との間には、図示しないシャフトを挿通するための第1シャフト取付部(53)が設けられている。第1ウェイト部(51)と第1壁部(52)の間のうち第1シャフト取付部(53)の周囲には、第1バランスウェイト部(50)をその厚さ方向(すなわち、軸方向)に貫通する3つの第1貫通孔(54)が形成されている。各第1貫通孔(54)の間には、第1シャフト取付部(53)と第1壁部(52)とを連結する2つの第1連結部(57)が設けられている。第1貫通孔(54)は貫通孔を構成している。 Further, a first shaft attachment portion (53) for inserting a shaft (not shown) is provided between the first weight portion (51) and the first wall portion (52). Around the first shaft mounting portion (53) between the first weight portion (51) and the first wall portion (52), the first balance weight portion (50) is disposed in the thickness direction (that is, in the axial direction). ) Three first through holes (54) are formed. Between each 1st through-hole (54), the two 1st connection parts (57) which connect a 1st shaft attaching part (53) and a 1st wall part (52) are provided. The first through hole (54) constitutes a through hole.
 軸方向他方側(図2で下側)のバランスウェイト部(60)(以下、第2バランスウェイト部(60)という)は、図1および図2に示すように、第2ブロック部(40)の軸方向他方側に隣り合って設けられた部材である。第2バランスウェイト部(60)は、互いに同形状の複数枚の電磁鋼板を軸方向に積層することによって形成されている。第2バランスウェイト部(60)は、ロータ(10)の回転時に生じる振動を抑制するためのものである。電磁鋼板は、比透磁率が1よりも大きな材料を構成している。 The balance weight part (60) (hereinafter referred to as the second balance weight part (60)) on the other side in the axial direction (the lower side in FIG. 2) is the second block part (40) as shown in FIGS. It is a member provided adjacent to the other axial direction side. The second balance weight portion (60) is formed by laminating a plurality of electromagnetic steel plates having the same shape in the axial direction. The second balance weight part (60) is for suppressing vibration generated when the rotor (10) rotates. The electromagnetic steel sheet constitutes a material having a relative permeability larger than 1.
 第2バランスウェイト部(60)の外郭形状は、第2バランスウェイト部(60)の外郭形状と同じである。そして、第2バランスウェイト部(60)の外郭形状のうち比較的長い辺は、平面視で永久磁石(23)の径方向内側の長辺に沿っている。つまり、第2バランスウェイト部(60)は、全体がロータコア(20)の軸方向から見て複数の永久磁石(23)の径方向内側に収まっている。 The outer shape of the second balance weight part (60) is the same as the outer shape of the second balance weight part (60). The relatively long side of the outer shape of the second balance weight part (60) is along the long side on the radially inner side of the permanent magnet (23) in plan view. That is, the second balance weight part (60) is entirely contained inside the plurality of permanent magnets (23) in the radial direction when viewed from the axial direction of the rotor core (20).
 また、第2バランスウェイト部(60)の外周面は、図1および図2に示すように、ロータコア(20)の軸心を取り囲んでいる。より詳細には、第2バランスウェイト部(60)の外周面(65,66)は、六角形状の各辺に対応する平面状の第2バランスウェイト長辺面(65)と、この第2バランスウェイト長辺面(65)の間に設けられかつ第2バランスウェイト長辺面(65)よりも周方向長さの短い平面状の第2バランスウェイト短辺面(66)とを有する。第2バランスウェイト長辺面(65)は、ロータコア(20)の軸方向から見て、長方形状の永久磁石(23)の径方向内側の長辺に沿っている。第2バランスウェイト長辺面(65)および第2バランスウェイト短辺面(66)は、ロータコア(20)の軸方向から見てそれぞれ周方向に延びている。 Further, the outer peripheral surface of the second balance weight part (60) surrounds the axis of the rotor core (20) as shown in FIGS. More specifically, the outer peripheral surface (65, 66) of the second balance weight portion (60) is a flat second balance weight long side surface (65) corresponding to each side of the hexagon, and the second balance weight. A planar second balance weight short side surface (66) provided between the weight long side surfaces (65) and having a shorter circumferential length than the second balance weight long side surface (65). The second balance weight long side surface (65) is along the long side on the radially inner side of the rectangular permanent magnet (23) when viewed from the axial direction of the rotor core (20). The second balance weight long side surface (65) and the second balance weight short side surface (66) extend in the circumferential direction as viewed from the axial direction of the rotor core (20).
 また、第2バランスウェイト部(60)は、図2に示すように、その外周面の一部(略半部)に対応する第2ウェイト部(61)と、当該外周面の残部に対応する第2壁部(62)とを有する。 Further, as shown in FIG. 2, the second balance weight portion (60) corresponds to the second weight portion (61) corresponding to a part (substantially half) of the outer peripheral surface and the remaining portion of the outer peripheral surface. And a second wall portion (62).
 また、第2ウェイト部(61)と第2壁部(62)との間には、図示しないシャフトを挿通するための第2シャフト取付部(63)が設けられている。第2ウェイト部(61)と第2壁部(62)の間のうち第2シャフト取付部(63)の周囲には、第2バランスウェイト部(60)をその厚さ方向(すなわち、軸方向)に貫通する2つの第2貫通孔(64)が形成されている。各第2貫通孔(64)の間には、第2シャフト取付部(63)と第2壁部(62)とを連結する第2連結部(図示せず)が設けられている。 Further, a second shaft attachment portion (63) for inserting a shaft (not shown) is provided between the second weight portion (61) and the second wall portion (62). Around the second shaft mounting portion (63) between the second weight portion (61) and the second wall portion (62), the second balance weight portion (60) is disposed in the thickness direction (that is, in the axial direction). Two second through-holes (64) are formed. Between each 2nd through-hole (64), the 2nd connection part (not shown) which connects a 2nd shaft attaching part (63) and a 2nd wall part (62) is provided.
 軸方向一方側(図2で上側)の閉塞板(70)(以下、第1閉塞板(70)という)は、図2に示すように、第1バランスウェイト部(50)の軸方向一方側に隣り合って設けられた板状部材である。第1閉塞板(70)は、例えば、第1ブロック部(30)を構成する電磁鋼板と同形状の電磁鋼板である。第1閉塞板(70)の中心部には、図示しないシャフトを挿通するためのシャフト孔(71)が形成されている。第1閉塞板(70)は、第1バランスウェイト部(50)に形成された第1貫通孔(54)の開口を閉塞している。第1閉塞板(70)は閉塞板を構成している。 The closing plate (70) on the one side in the axial direction (upper side in FIG. 2) (hereinafter referred to as the first closing plate (70)) is one side in the axial direction of the first balance weight part (50) as shown in FIG. It is the plate-shaped member provided adjacent to. The first closing plate (70) is, for example, an electromagnetic steel plate having the same shape as the electromagnetic steel plate constituting the first block portion (30). A shaft hole (71) for inserting a shaft (not shown) is formed at the center of the first closing plate (70). The first closing plate (70) closes the opening of the first through hole (54) formed in the first balance weight part (50). The first closing plate (70) constitutes a closing plate.
 軸方向他方側(図2で下側)の閉塞板(72)(以下、第2閉塞板(72)という)は、図2に示すように、第2バランスウェイト部(60)の軸方向他方側に隣り合って設けられた板状部材である。第2閉塞板(72)は、例えば、第2ブロック部(40)を構成する電磁鋼板と同形状の電磁鋼板である。第2閉塞板(72)の中心部には、図示しないシャフトを挿通するためのシャフト孔(73)が形成されている。第2閉塞板(72)は、第2バランスウェイト部(60)に形成された第2貫通孔(64)の開口を閉塞している。 As shown in FIG. 2, the other axial side (lower side in FIG. 2) closing plate (72) (hereinafter referred to as the second closing plate (72)) is the other axial end of the second balance weight part (60). It is the plate-shaped member provided adjacent to the side. The second blocking plate (72) is, for example, an electromagnetic steel plate having the same shape as the electromagnetic steel plate constituting the second block portion (40). A shaft hole (73) for inserting a shaft (not shown) is formed at the center of the second closing plate (72). The second closing plate (72) closes the opening of the second through hole (64) formed in the second balance weight part (60).
  -実施形態の効果-
 本実施形態では、第1および第2ブロック部(30,40)を設けることによって当該第1および第2ブロック部(30,40)を設けない場合に比べてロータ(10)のイナーシャが大きくなるので、ロータ(10)が接続される負荷が変動した場合でも当該ロータ(10)の回転速度が大きく変動するのを抑止することができる。
-Effects of the embodiment-
In this embodiment, the inertia of the rotor (10) is increased by providing the first and second block portions (30, 40) as compared to the case where the first and second block portions (30, 40) are not provided. Therefore, even when the load to which the rotor (10) is connected fluctuates, it is possible to prevent the rotation speed of the rotor (10) from fluctuating greatly.
 また、本実施形態では、ロータ(10)のイナーシャを増大させる第1および第2ブロック部(30,40)を互いに同形状の電磁鋼板を複数枚積層することによって形成するので、当該第1および第2ブロック部(30,40)を備えたロータ(10)を安価に製造することができる。 In the present embodiment, the first and second block portions (30, 40) that increase the inertia of the rotor (10) are formed by laminating a plurality of electromagnetic steel sheets having the same shape. The rotor (10) including the second block portion (30, 40) can be manufactured at low cost.
 また、本実施形態では、電磁鋼板でできた第1および第2ブロック部(30,40)の全体がロータコア(20)の軸方向から見て複数の永久磁石(23)の径方向内側に収まっているので、当該第1および第2ブロック部(30,40)を介してロータ(10)内で短絡磁路が形成されるのを確実に抑止することができ、よって当該ロータ(10)を備えた回転電気機械の効率が低下するのを抑止することができる。 Further, in the present embodiment, the entirety of the first and second block portions (30, 40) made of the electromagnetic steel plate is accommodated inside the plurality of permanent magnets (23) in the radial direction when viewed from the axial direction of the rotor core (20). Therefore, it is possible to reliably prevent a short-circuit magnetic path from being formed in the rotor (10) via the first and second block portions (30, 40). It can suppress that the efficiency of the provided rotating electrical machine falls.
 また、本実施形態では、電磁鋼板でできた第1および第2バランスウェイト部(50,60)の全体がロータコア(20)の軸方向から見て複数の永久磁石(23)の径方向内側に収まっているので、当該第1および第2バランスウェイト部(50,60)を介してロータ(10)内で短絡磁路が形成されるのを確実に抑止することができ、よって当該ロータ(10)を備えた回転電気機械の効率が低下するのを抑止することができる。 Further, in the present embodiment, the entire first and second balance weight portions (50, 60) made of electromagnetic steel sheets are radially inward of the plurality of permanent magnets (23) when viewed from the axial direction of the rotor core (20). Therefore, it is possible to reliably prevent a short-circuit magnetic path from being formed in the rotor (10) via the first and second balance weight portions (50, 60), and thus the rotor (10 ) Can be prevented from lowering the efficiency of the rotating electrical machine.
 また、本実施形態では、ロータ(10)の回転時に生じる振動を抑制するための第1バランスウェイト部(50)を互いに同形状の積層鋼板を複数枚積層することによって形成するので、当該第1バランスウェイト部(50)を備えたロータ(10)を安価に製造することができる。このことは、第2バランスウェイト部(60)についても同様である。 Moreover, in this embodiment, since the 1st balance weight part (50) for suppressing the vibration produced at the time of rotation of a rotor (10) is formed by laminating | stacking several laminated steel plates of the same shape, the said 1st The rotor (10) provided with the balance weight part (50) can be manufactured at low cost. The same applies to the second balance weight part (60).
 また、本実施形態では、各ブロック部(30,40)および各バランスウェイト部(50,60)の外周面(33,34,43,44,55,56,65,66)(すなわち、第1および第2ブロック長辺面(33,43)、第1および第2ブロック短辺面(34,44)、第1および第2バランスウェイト長辺面(55,65)ならびに第1および第2バランスウェイト短辺面(56,66))が、ロータコア(20)の軸方向から見て周方向に延びかつ全周にわたって連続しているので、当該外周面がロータ(10)の回転時に抵抗になりにくく、よって各ブロック部(30,40)および各バランスウェイト部(50,60)を設けることでロータ(10)の回転時に風損が大きく増大するのを回避することができる。 In the present embodiment, the outer peripheral surfaces (33, 34, 43, 44, 55, 56, 65, 66) of the respective block portions (30, 40) and the balance weight portions (50, 60) (that is, the first And second block long side surfaces (33, 43), first and second block short side surfaces (34, 44), first and second balance weight long side surfaces (55, 65), and first and second balances. Since the weight short side surface (56, 66)) extends in the circumferential direction when viewed from the axial direction of the rotor core (20) and is continuous over the entire circumference, the outer circumferential surface becomes a resistance when the rotor (10) rotates. Therefore, by providing each block part (30, 40) and each balance weight part (50, 60), it is possible to avoid a significant increase in windage loss when the rotor (10) rotates.
 また、本実施形態では、第1閉塞板(70)によって第1バランスウェイト部(50)の第1貫通孔(54)の開口が、第2閉塞板(72)によって第2バランスウェイト部(60)の第2貫通孔(64)の開口が、それぞれ閉塞されているので、各貫通孔(54,64)を形成することでロータ(10)の回転時に風損が大きく増大するのを回避することができる。 In the present embodiment, the opening of the first through hole (54) of the first balance weight part (50) is formed by the first closing plate (70), and the second balance weight part (60) is formed by the second closing plate (72). ) Of the second through holes (64) are closed, so that the formation of the respective through holes (54, 64) avoids a significant increase in windage loss when the rotor (10) rotates. be able to.
  -実施形態の変形例-
 実施形態の変形例について、図5を参照して説明する。本変形例では、各ブロック部(30,40)の形状が上記実施形態のそれと異なる。以下、上記実施形態と異なる点について主に説明する。
-Modification of the embodiment-
A modification of the embodiment will be described with reference to FIG. In this modification, the shape of each block part (30, 40) is different from that of the above embodiment. Hereinafter, differences from the above embodiment will be mainly described.
 図5に示すように、本変形例では、第1および第2ブロック部(30,40)が、ロータコア(20)から遠ざかるにつれて径方向外側に張り出すように構成されている。 As shown in FIG. 5, in this modification, the first and second block portions (30, 40) are configured to project outward in the radial direction as they move away from the rotor core (20).
 第1ブロック部(30)におけるロータコア(20)の軸方向一方側(図5で上側)の端面と対向する第1対向面(32)の外郭形状は、ロータコア(20)の軸方向から見て複数の永久磁石(23)の径方向内側に収まる形状である。第1対向面(32)の外郭形状は、上記実施形態の第1対向面(32)の外郭形状と同じであることが好ましい。 The outer shape of the first facing surface (32) facing the end surface on one axial side (upper side in FIG. 5) of the rotor core (20) in the first block portion (30) is viewed from the axial direction of the rotor core (20). The shape fits inside the plurality of permanent magnets (23) in the radial direction. The outer shape of the first facing surface (32) is preferably the same as the outer shape of the first facing surface (32) of the above embodiment.
 また、第2ブロック部(40)におけるロータコア(20)の軸方向他方側(図5で下側)の端面と対向する第2対向面(42)の外郭形状は、ロータコア(20)の軸方向から見て複数の永久磁石(23)の径方向内側に収まる形状である。第2対向面(42)の外郭形状は、上記実施形態の第2対向面(42)の外郭形状と同じであることが好ましい。 The outer shape of the second facing surface (42) facing the end surface on the other axial side (lower side in FIG. 5) of the rotor core (20) in the second block portion (40) is the axial direction of the rotor core (20). The shape fits inside the plurality of permanent magnets (23) in the radial direction. The outer shape of the second facing surface (42) is preferably the same as the outer shape of the second facing surface (42) of the above embodiment.
 《その他の実施形態》
 上記実施形態では、各ブロック部(30,40)および各バランスウェイト部(50,60)はそれぞれ電磁鋼板を積層して形成されているが、これらのうち少なくとも一方が圧粉磁心その他の磁性材料、または、鉄、SUS304、もしくは炭素鋼などの比透磁率が1よりも大きな材料で形成されていてもよい。各ブロック部(30,40)および各バランスウェイト部(50,60)の両方を圧粉磁心で形成する場合には、両者を一体形成してもよい。
<< Other Embodiments >>
In the above embodiment, each block (30, 40) and each balance weight (50, 60) are formed by laminating electromagnetic steel plates, at least one of which is a dust core or other magnetic material Alternatively, it may be formed of a material having a relative permeability greater than 1, such as iron, SUS304, or carbon steel. When each block part (30, 40) and each balance weight part (50, 60) are both formed of a powder magnetic core, they may be integrally formed.
 以上説明したように、本発明は、ロータについて有用である。 As described above, the present invention is useful for the rotor.
 10 ロータ
 20 ロータコア
 23 永久磁石
 30 第1ブロック部(ブロック部)
 32 第1対向面(対向面)
 33 第1ブロック長辺面(外周面)
 34 第1ブロック短辺面(外周面)
 50 第1バランスウェイト部(バランスウェイト部)
 51 第1ウェイト部(ウェイト部)
 52 第1壁部(壁部)
 54 第1貫通孔(貫通孔)
 55 第1バランスウェイト長辺面(外周面)
 56 第1バランスウェイト短辺面(外周面)
 70 第1閉塞板(閉塞板)
10 Rotor 20 Rotor core 23 Permanent magnet 30 First block (block)
32 First facing surface (facing surface)
33 1st block long side surface (outer peripheral surface)
34 Short side of block 1 (outer peripheral surface)
50 1st balance weight part (balance weight part)
51 1st weight part (weight part)
52 First wall (wall)
54 1st through hole (through hole)
55 1st balance weight long side surface (outer peripheral surface)
56 1st balance weight short side (outer peripheral surface)
70 First closing plate (blocking plate)

Claims (7)

  1.  磁性材料製のロータコア(20)と、
     上記ロータコア(20)の周方向に並んで設けられた複数の永久磁石(23)と、
     上記ロータコア(20)の軸方向一方側の端面と対向する対向面(32)を有する、比透磁率が1よりも大きな材料でできたブロック部(30)とを備え、
     上記ブロック部(30)の上記対向面(32)の外郭形状は、上記ロータコア(20)の軸方向から見て上記複数の永久磁石(23)の径方向内側に収まる形状である
    ことを特徴とするロータ。
    A rotor core (20) made of magnetic material;
    A plurality of permanent magnets (23) provided side by side in the circumferential direction of the rotor core (20);
    A block portion (30) made of a material having a relative permeability greater than 1 and having a facing surface (32) facing the end surface on one axial side of the rotor core (20);
    The outer shape of the opposing surface (32) of the block portion (30) is a shape that fits inside the radial direction of the plurality of permanent magnets (23) when viewed from the axial direction of the rotor core (20). Rotor to do.
  2.  請求項1において、
     上記ブロック部(30)は、全体が上記ロータコア(20)の軸方向から見て上記複数の永久磁石(23)の径方向内側に収まっている
    ことを特徴とするロータ。
    In claim 1,
    The block part (30) is entirely accommodated in the radial direction inside of the plurality of permanent magnets (23) when viewed from the axial direction of the rotor core (20).
  3.  請求項2において、
     上記ブロック部(30)は、互いに同形状の複数枚の電磁鋼板によって構成されている
    ことを特徴とするロータ。
    In claim 2,
    The block part (30) is composed of a plurality of electromagnetic steel sheets having the same shape.
  4.  請求項1~3のいずれか1項において、
     上記ブロック部(30)の上記軸方向一方側に設けられ、上記ロータ(10)の回転時に生じる振動を抑制するためのバランスウェイト部(50)を備えている
    ことを特徴とするロータ。
    In any one of claims 1 to 3,
    A rotor provided with a balance weight part (50) provided on one side in the axial direction of the block part (30) for suppressing vibrations generated when the rotor (10) rotates.
  5.  請求項4において、
     上記バランスウェイト部(50)は、互いに同形状の複数枚の電磁鋼板によって構成されている
    ことを特徴とするロータ。
    In claim 4,
    The balance weight portion (50) is composed of a plurality of electromagnetic steel plates having the same shape.
  6.  請求項4または5において、
     上記ブロック部(30)およびバランスウェイト部(50)の各々は、上記ロータコア(20)の軸心を取り囲む外周面(33,34,55,56)を有する
    ことを特徴とするロータ。
    In claim 4 or 5,
    Each of the block part (30) and the balance weight part (50) has an outer peripheral surface (33, 34, 55, 56) surrounding the axis of the rotor core (20).
  7.  請求項6において、
     上記バランスウェイト部(50)は、上記外周面(33,34,55,56)の一部に対応するウェイト部(51)と、該外周面(33,34,55,56)の残部に対応する壁部(52)とを有し、
     上記バランスウェイト部(50)における上記ウェイト部(51)と上記壁部(52)との間には、該バランスウェイト部(50)を上記軸方向に貫通する貫通孔(54)が形成されており、
     上記ロータ(10)は、上記貫通孔(54)の上記軸方向一方側の開口を閉塞する閉塞板(70)を備えている
    ことを特徴とするロータ。
    In claim 6,
    The balance weight portion (50) corresponds to the weight portion (51) corresponding to a part of the outer peripheral surface (33,34,55,56) and the remaining portion of the outer peripheral surface (33,34,55,56). A wall portion (52) to be
    Between the weight part (51) and the wall part (52) in the balance weight part (50), a through hole (54) penetrating the balance weight part (50) in the axial direction is formed. And
    The rotor (10) includes a closing plate (70) for closing the opening on the one axial side of the through hole (54).
PCT/JP2018/018047 2017-05-16 2018-05-10 Rotor WO2018212054A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-096911 2017-05-16
JP2017096911 2017-05-16

Publications (1)

Publication Number Publication Date
WO2018212054A1 true WO2018212054A1 (en) 2018-11-22

Family

ID=64273850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018047 WO2018212054A1 (en) 2017-05-16 2018-05-10 Rotor

Country Status (2)

Country Link
JP (1) JP2018196320A (en)
WO (1) WO2018212054A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102302474B1 (en) * 2020-01-08 2021-09-16 엘지전자 주식회사 Electric motor and compressor having the same
JP7183487B1 (en) * 2022-03-01 2022-12-05 三菱電機株式会社 Rotor of synchronous reluctance motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077646A (en) * 1983-09-30 1985-05-02 Aichi Emason Denki Kk Core blank punching method of brushless motor
JP2004336831A (en) * 2003-04-30 2004-11-25 Daikin Ind Ltd Permanent magnet motor and closed type compressor
JP2009225639A (en) * 2008-03-18 2009-10-01 Toshiba Carrier Corp Permanent magnet dc motor, hermetic compressor, and refrigeration cycle system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039010A (en) * 2011-08-11 2013-02-21 Daikin Ind Ltd Motor, compressor including motor and method of taking out magnetic material
JP5875506B2 (en) * 2012-11-30 2016-03-02 三菱電機株式会社 Scroll compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077646A (en) * 1983-09-30 1985-05-02 Aichi Emason Denki Kk Core blank punching method of brushless motor
JP2004336831A (en) * 2003-04-30 2004-11-25 Daikin Ind Ltd Permanent magnet motor and closed type compressor
JP2009225639A (en) * 2008-03-18 2009-10-01 Toshiba Carrier Corp Permanent magnet dc motor, hermetic compressor, and refrigeration cycle system

Also Published As

Publication number Publication date
JP2018196320A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
EP1734645B1 (en) Axial air gap-type electric motor
JP4485225B2 (en) Permanent magnet motor, hermetic compressor and fan motor
US7528519B2 (en) Permanent magnet rotary motor
JP5418467B2 (en) Rotating electric machine
JP5533879B2 (en) Permanent magnet type rotating electrical machine rotor
JP2012120326A (en) Interior magnet rotor, motor, and method for assembling motor
JP2006158008A (en) Permanent magnet embedded rotor and dynamo-electric machine
JP2015104224A (en) Rotor of synchronous motor
EP2485371A2 (en) Rotating electrical machine
JP2014103741A (en) Magnet embedded type rotor
JP6748852B2 (en) Brushless motor
JP2012244649A (en) Rotor and rotary electric machine
TW201532368A (en) Stator core and permanent magnet motor
WO2018212054A1 (en) Rotor
JP2006304539A (en) Rotor structure of axial gap rotating electric machine
JP2009106051A (en) Rotor
JP5042184B2 (en) Synchronous motor rotor and method of manufacturing synchronous motor rotor
JP6112970B2 (en) Permanent magnet rotating electric machine
JP4005988B2 (en) Rotating electrical machine rotor
JP2010226882A (en) End plate for rotor, permanent magnet support member and rotor
JP2015047009A (en) Rotary electric machine
JP2008131742A (en) Motor
JP6190094B2 (en) Permanent magnet embedded rotor
JP2012016090A (en) Permanent magnet embedded motor
WO2021145136A1 (en) Axial gap motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801510

Country of ref document: EP

Kind code of ref document: A1