JP2010226882A - End plate for rotor, permanent magnet support member and rotor - Google Patents

End plate for rotor, permanent magnet support member and rotor Download PDF

Info

Publication number
JP2010226882A
JP2010226882A JP2009072016A JP2009072016A JP2010226882A JP 2010226882 A JP2010226882 A JP 2010226882A JP 2009072016 A JP2009072016 A JP 2009072016A JP 2009072016 A JP2009072016 A JP 2009072016A JP 2010226882 A JP2010226882 A JP 2010226882A
Authority
JP
Japan
Prior art keywords
rotor
outer peripheral
core
permanent magnet
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009072016A
Other languages
Japanese (ja)
Inventor
Yoshihito Sanko
義仁 三箇
Akio Yamagiwa
昭雄 山際
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009072016A priority Critical patent/JP2010226882A/en
Publication of JP2010226882A publication Critical patent/JP2010226882A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an end plate for a rotor capable of reducing the stress generated in a coupling section. <P>SOLUTION: A storage hole 20, in which a permanent magnet 30 is stored, is bored in a core 10 for the rotor. The end plate for the rotor includes a member provided on one side with respect to the core 10 for the rotor, and the member 52 existing from the member in the axial direction along a rotating shaft P. The member 52 is separated from an outer peripheral part 12, located on a side opposite to the rotating shaft P, with respect to the storage hole 20 of the core 10 for the rotor. The member 52 also pinches the permanent magnets 30, together with an inner peripheral part 11 located on the rotating shaft P side, with respect to the storage hole 20 of the core 10 for the rotor. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、回転子用端板、永久磁石支持部材及び回転子に関し、特に回転子用コアに生じる応力を低減する技術に関する。   The present invention relates to a rotor end plate, a permanent magnet support member, and a rotor, and more particularly to a technique for reducing stress generated in a rotor core.

特許文献1には埋め込み磁石型の界磁子用コアが記載されている。かかる界磁子用コアには複数の永久磁石が貫挿される格納孔が設けられている。この格納孔に永久磁石が貫挿された状態で、界磁子用コア及び永久磁石が相まって界磁子として機能する。特許文献1における界磁子は回転子として機能する。特許文献1では12個の永久磁石が例示され、回転軸を中心とした周方向で隣り合う2つの永久磁石が一つの界磁磁極を形成している。即ち、特許文献1では6極の界磁子が例示される。   Patent Document 1 describes an embedded magnet type field element core. The field element core is provided with a storage hole through which a plurality of permanent magnets are inserted. With the permanent magnet inserted through the storage hole, the field element core and the permanent magnet work together to function as a field element. The field element in Patent Document 1 functions as a rotor. In Patent Document 1, twelve permanent magnets are exemplified, and two permanent magnets adjacent in the circumferential direction around the rotation axis form one field magnetic pole. That is, Patent Document 1 exemplifies a six-pole field element.

また、同じ界磁磁極に属する永久磁石の組の両端から、界磁子用コアの外周縁へと延在する空隙が形成されている。かかる空隙は界磁子用コアの外周縁近傍まで延在する。かかる空隙によって、周方向で隣り合う界磁磁極同士が短絡することを抑制している。空隙と外周縁とで挟まれた部位のコアを、(特許文献1とは異なり)本明細書では連結部と呼ぶ。言い換えると、界磁子用コアは、永久磁石に対して回転軸側にある内周部と、永久磁石に対して回転軸とは反対側にある外周部と、外周部同士を相互に連結する連結部とを有していると把握できる。   In addition, a gap is formed extending from both ends of the set of permanent magnets belonging to the same field magnetic pole to the outer peripheral edge of the field element core. The air gap extends to the vicinity of the outer peripheral edge of the field element core. Such a gap prevents the field poles adjacent in the circumferential direction from being short-circuited. The core at the part sandwiched between the gap and the outer peripheral edge is referred to as a connecting portion in the present specification (unlike Patent Document 1). In other words, the field element core connects the inner peripheral portion on the rotating shaft side with respect to the permanent magnet, the outer peripheral portion on the side opposite to the rotating shaft with respect to the permanent magnet, and the outer peripheral portions. It can be grasped as having a connecting part.

なお、本発明に関連する技術として特許文献2乃至8が開示されている。   Patent Documents 2 to 8 are disclosed as techniques related to the present invention.

特開2007−31880号公報JP 2007-31880 A 特開2000−156946号公報JP 2000-156946 A 特開2000−152535号公報JP 2000-152535 A 特開2001−169485号公報JP 2001-169485 A 実開平6−2976号公報Japanese Utility Model Publication No. 6-2976 特開2003−74472号公報JP 2003-74472 A 特開2006−166543号公報JP 2006-166543 A 特開2007−159196号公報JP 2007-159196 A

特許文献1に記載の技術では、永久磁石は内周部と外周部によって挟まれるので、その径方向における位置が固定される。よって、埋め込み磁石型の界磁子用コアは、永久磁石を径方向に固定するという観点で、外周部及び内周部以外の構成要素を必要としない。   In the technique described in Patent Document 1, since the permanent magnet is sandwiched between the inner peripheral portion and the outer peripheral portion, the position in the radial direction is fixed. Therefore, the embedded magnet type field element core does not require components other than the outer peripheral portion and the inner peripheral portion from the viewpoint of fixing the permanent magnet in the radial direction.

また、径方向における連結部の厚みは薄いことが望ましい。これによって、異なる界磁磁極に属する永久磁石同士が連結部を介して短絡することを抑制できるからである。   Moreover, it is desirable that the thickness of the connecting portion in the radial direction is thin. This is because it is possible to suppress the permanent magnets belonging to different field magnetic poles from being short-circuited via the connecting portion.

しかしながら、連結部の径方向における厚みを低減すると、回転軸を中心として界磁子が回転動作を行った場合に、永久磁石に作用する遠心力が外周部へと伝達されて連結部に応力が集中する。よって、連結部の径方向における厚みを低減させにくかった。   However, when the thickness of the connecting portion in the radial direction is reduced, when the field element rotates around the rotation axis, the centrifugal force acting on the permanent magnet is transmitted to the outer peripheral portion and stress is applied to the connecting portion. concentrate. Therefore, it was difficult to reduce the thickness of the connecting portion in the radial direction.

そこで、本発明は、連結部における応力を低減できる回転子用端板及び回転子を提供することを目的とする。   Therefore, an object of the present invention is to provide an end plate for a rotor and a rotor that can reduce stress in the connecting portion.

本発明にかかる回転子用端板の第1の態様は、回転軸(P)の周りで環状に配置される複数の永久磁石(30〜32)と、少なくとも一つの前記永久磁石を格納するための格納孔(20)の複数が穿たれ、前記格納孔に対して前記回転軸側に存する内周部(11)と、前記格納孔に対して前記回転軸とは反対側に存する外周部(12)の複数と、前記回転軸を中心にした周方向で前記外周部同士を相互に連結する連結部(13)とを有する回転子用コアとを備える回転子に対して、前記回転軸に沿う軸方向における少なくとも一方の側に設けられる端板(50)であって、前記回転子に対して前記軸方向の前記一方の側に設けられる第1部材(51)と、前記第1部材から延在し、前記外周部と離間しつつ、前記内周部と共に前記複数の永久磁石をそれぞれ挟む複数の第2部材(52)とを備える。   In the first aspect of the rotor end plate according to the present invention, a plurality of permanent magnets (30 to 32) arranged in a ring around the rotation axis (P) and at least one permanent magnet are stored. A plurality of storage holes (20) are bored, and an inner peripheral part (11) existing on the rotating shaft side with respect to the storing hole, and an outer peripheral part (on the opposite side to the rotating shaft with respect to the storing hole) 12) and a rotor core having a connecting portion (13) for connecting the outer peripheral portions to each other in a circumferential direction centered on the rotary shaft, An end plate (50) provided on at least one side in the axial direction along the first member (51) provided on the one side in the axial direction with respect to the rotor, and the first member The plurality of permanents together with the inner peripheral part while extending and separating from the outer peripheral part And a plurality of second members that sandwich each (52) of the stone.

本発明にかかる回転子用端板の第2の態様は、第1の態様にかかる回転子用端板であって、前記第2部材(52)は、前記回転軸(P)を中心とした周方向における前記永久磁石(30〜32)の両側でのみ、前記内周部(11)とともに前記永久磁石を挟み、一の前記格納孔(20)には複数の前記永久磁石が前記周方向で並んで格納される。   A second aspect of the rotor end plate according to the present invention is the rotor end plate according to the first aspect, wherein the second member (52) is centered on the rotation axis (P). The permanent magnet is sandwiched with the inner peripheral portion (11) only on both sides of the permanent magnet (30 to 32) in the circumferential direction, and a plurality of the permanent magnets are placed in the circumferential direction in one storage hole (20). Stored side by side.

本発明にかかる回転子用端板の第3の態様は、第1の態様にかかる回転子用端板であって、前記第2部材(52)は前記永久磁石を覆う。   A third aspect of the rotor end plate according to the present invention is the rotor end plate according to the first aspect, wherein the second member (52) covers the permanent magnet.

本発明にかかる回転子用端板の第4の態様は、第1乃至第3の何れか一つの態様にかかる回転子用端板であって、前記第1部材(51)及び前記第2部材(52)の少なくとも何れか一方は非磁性である。   A fourth aspect of the rotor end plate according to the present invention is the rotor end plate according to any one of the first to third aspects, the first member (51) and the second member. At least one of (52) is non-magnetic.

本発明にかかる回転子の第1の態様は、前記複数の永久磁石(30〜32)と、少なくとも一つの前記永久磁石を格納するための格納孔(20)の複数が穿たれ、前記格納孔に対して前記回転軸側に存する内周部(11)と、前記格納孔に対して前記回転軸とは反対側に存する外周部(12)の複数と、前記回転軸を中心にした周方向で前記外周部同士を相互に連結する連結部(13)とを有する前記回転子用コア(10)と、第1ないし第4の何れか一つの態様にかかる前記回転子用端板(50)と、前記軸方向において前記回転子用端板とは反対側に設けられる第2の回転子用端板とを備え、前記第2部材(52)は前記第1部材(51)と前記第2の回転子用端板とを相互に連結して固定する。   According to a first aspect of the rotor of the present invention, the plurality of permanent magnets (30 to 32) and a plurality of storage holes (20) for storing at least one permanent magnet are formed, and the storage holes An inner peripheral portion (11) existing on the rotating shaft side, a plurality of outer peripheral portions (12) existing on the opposite side to the rotating shaft with respect to the storage hole, and a circumferential direction around the rotating shaft The rotor core (10) having a connecting portion (13) for connecting the outer peripheral portions to each other, and the rotor end plate (50) according to any one of the first to fourth aspects. And a second rotor end plate provided on the opposite side of the rotor end plate in the axial direction, wherein the second member (52) is the first member (51) and the second member. The rotor end plates are connected together and fixed.

本発明にかかる回転子の第2の態様は、前記複数の永久磁石(30〜32)と、少なくとも一つの前記永久磁石を格納するための格納孔(20)の複数が穿たれ、前記格納孔に対して前記回転軸側に存する内周部(11)と、前記格納孔に対して前記回転軸とは反対側に存する外周部(12)の複数と、前記回転軸を中心にした周方向で前記外周部同士を相互に連結する連結部(13)とを有する前記回転子用コア(10)と、第1ないし第4の何れか一つの態様にかかる前記回転子用端板(50)とを備え、前記外周部(12)とい前記永久磁石(30)との間には間隙が生じている。   According to a second aspect of the rotor of the present invention, the plurality of permanent magnets (30 to 32) and a plurality of storage holes (20) for storing at least one of the permanent magnets are formed, and the storage holes An inner peripheral portion (11) existing on the rotating shaft side, a plurality of outer peripheral portions (12) existing on the opposite side to the rotating shaft with respect to the storage hole, and a circumferential direction around the rotating shaft The rotor core (10) having a connecting portion (13) for connecting the outer peripheral portions to each other, and the rotor end plate (50) according to any one of the first to fourth aspects. And a gap is formed between the outer peripheral portion (12) and the permanent magnet (30).

本発明にかかる回転子の第3の態様は、前記複数の永久磁石(30〜32)と、少なくとも一つの前記永久磁石を格納するための格納孔(20)の複数が穿たれ、前記格納孔に対して前記回転軸側に存する内周部(11)と、前記格納孔に対して前記回転軸とは反対側に存する外周部(12)の複数と、前記回転軸を中心にした周方向で前記外周部同士を相互に連結する連結部(13)とを含むコア部(10A,10B)の複数を有し、前記複数のコア部が前記軸方向で相互に対面し、前記複数のコア部が前記周方向で互いにずれて配置される、前記回転子用コア(10)と、第1ないし第4の何れか一つの態様にかかる前記回転子用端板(50,70)の複数とを備え、前記コア部のそれぞれにおいて、前記軸方向の一方側に一の前記第1部材が隣接し、前記一の前記第1部材から延在する一の前記第2部材は、前記一の前記第1部材と前記軸方向の他方側で隣接する一の前記コア部(10A)が有する前記外周部と離間しつつ、前記一の前記コア部が有する内周部とともに、前記一の前記コア部が有する前記複数の永久磁石を挟む。   According to a third aspect of the rotor of the present invention, the plurality of permanent magnets (30 to 32) and a plurality of storage holes (20) for storing at least one permanent magnet are formed, and the storage holes An inner peripheral portion (11) existing on the rotating shaft side, a plurality of outer peripheral portions (12) existing on the opposite side to the rotating shaft with respect to the storage hole, and a circumferential direction around the rotating shaft And a plurality of core portions (10A, 10B) including a connecting portion (13) for mutually connecting the outer peripheral portions, and the plurality of core portions face each other in the axial direction, and the plurality of cores A plurality of the rotor core plates (50, 70) according to any one of the first to fourth aspects, wherein the rotor cores (10) are arranged so as to be offset from each other in the circumferential direction; Each of the core portions, and the first one on one side in the axial direction. One of the second members that are adjacent to each other and extend from the one of the first members has one core portion (10A) that is adjacent to the one first member on the other side in the axial direction. The plurality of permanent magnets included in the one core part are sandwiched together with the inner peripheral part included in the one core part while being separated from the outer peripheral part.

本発明にかかる回転子の第4の態様は、前記複数の永久磁石(30〜32)と、少なくとも一つの前記永久磁石を格納するための格納孔(20)の複数が穿たれ、前記格納孔に対して前記回転軸側に存する内周部(11)と、前記格納孔に対して前記回転軸とは反対側に存する外周部(12)の複数と、前記回転軸を中心にした周方向で前記外周部同士を相互に連結する連結部(13)とを有する前記回転子用コア(10)と、第1ないし第4の何れか一つの態様にかかる前記回転子用端板(50)とを備え、前記永久磁石(30)と前記外周部(12)との一組の質量をm、前記永久磁石と前記外周部との一組の質量中心と、前記回転軸(P)との間の距離をR、前記回転子用コアの最高回転数における角速度をω、前記連結部(13)から、前記質量中心を通り前記回転軸を中心とした径方向に平行な直線までの距離をL、前記連結部(13)の前記軸方向及び前記径方向がなす断面における断面係数をZ、安全率をFs,補正係数をσ、前記連結部の降伏点をYPとすると、σ・Fs・L・mRω2/(2Z)>YPを満たす。   According to a fourth aspect of the rotor of the present invention, the plurality of permanent magnets (30 to 32) and a plurality of storage holes (20) for storing at least one of the permanent magnets are formed, and the storage holes An inner peripheral portion (11) existing on the rotating shaft side, a plurality of outer peripheral portions (12) existing on the opposite side to the rotating shaft with respect to the storage hole, and a circumferential direction around the rotating shaft The rotor core (10) having a connecting portion (13) for connecting the outer peripheral portions to each other, and the rotor end plate (50) according to any one of the first to fourth aspects. A set of masses of the permanent magnet (30) and the outer peripheral portion (12) is m, a set of mass centers of the permanent magnet and the outer peripheral portion, and the rotating shaft (P). R is the distance between them, ω is the angular velocity at the maximum rotational speed of the rotor core, and the connection part (13) , L is the distance from the center of mass to a straight line parallel to the radial direction centered on the rotation axis, Z is the sectional modulus in the cross section formed by the axial direction and the radial direction of the connecting portion (13), Is Fs, the correction coefficient is σ, and the yield point of the connecting portion is YP, σ · Fs · L · mRω2 / (2Z)> YP is satisfied.

本発明にかかる永久磁石支持部材の第1の態様は、前記複数の永久磁石(30〜32)と、少なくとも一つの前記永久磁石を格納するための格納孔(20)の複数が穿たれ、前記格納孔に対して前記回転軸側に存する内周部(11)と、前記格納孔に対して前記回転軸とは反対側に存する外周部(12)の複数と、前記回転軸を中心にした周方向で前記外周部同士を相互に連結する連結部(13)とを含むコア部(10A,10B)の2つを有し、前記2つのコア部が前記軸方向で相互に対面する前記回転子用コア(10)とを備える回転子について、前記永久磁石を支持する支持部材(70;71,72,52)であって、前記コア部の間に設けられる第1部材(71)と、前記第1部材から延在し、一の前記コア部が有する前記外周部と離間しつつ、前記一の前記コア部が有する前記内周部と共に、前記一の前記コア部が有する前記複数の永久磁石をそれぞれ挟む複数の第2部材(52)と前記第1部材から延在し、二の前記コア部が有する前記外周部と離間しつつ、前記二の前記コア部が有する前記内周部と共に、前記二の前記コア部が有する前記複数の永久磁石をそれぞれ挟む複数の第3部材(72)とを備える。   According to a first aspect of the permanent magnet support member of the present invention, the plurality of permanent magnets (30 to 32) and a plurality of storage holes (20) for storing at least one of the permanent magnets are formed, An inner peripheral portion (11) existing on the rotation shaft side with respect to the storage hole, a plurality of outer peripheral portions (12) existing on the opposite side to the rotation shaft with respect to the storage hole, and the rotation shaft as a center The rotation that includes two core portions (10A, 10B) including a connecting portion (13) that connects the outer peripheral portions to each other in the circumferential direction, and the two core portions face each other in the axial direction A rotor including a child core (10), a support member (70; 71, 72, 52) for supporting the permanent magnet, and a first member (71) provided between the core portions; The outer peripheral portion extending from the first member and having one core portion; The plurality of second members (52) and the first member that sandwich the plurality of permanent magnets of the one core portion together with the inner peripheral portion of the one core portion, while And a plurality of second magnets sandwiching the plurality of permanent magnets of the second core part together with the inner peripheral part of the second core part while being separated from the outer peripheral part of the second core part. And three members (72).

本発明にかかる回転子用端板の第1の態様によれば、永久磁石が格納された回転子用コアに対して回転子用端板を設けることで回転子を実現できる。   According to the 1st aspect of the end plate for rotors concerning this invention, a rotor is realizable by providing the end plate for rotors with respect to the core for rotors in which the permanent magnet was stored.

このような回転子が回転軸を中心として回転した場合、永久磁石は第2部材によって支持されるので、永久磁石に作用する遠心力が外周部へと伝達されにくい。これにより連結部に加えられる応力を低減できるので、連結部として径方向において厚みの薄いブリッジを採用できる。よって、当該連結部を介した永久磁石同士の短絡を低減できる。   When such a rotor rotates around the rotation axis, the permanent magnet is supported by the second member, so that the centrifugal force acting on the permanent magnet is difficult to be transmitted to the outer peripheral portion. As a result, the stress applied to the connecting portion can be reduced, so that a thin bridge in the radial direction can be employed as the connecting portion. Therefore, a short circuit between the permanent magnets via the connecting portion can be reduced.

本発明にかかる回転子用端板の第2の態様によれば、一の格納孔に複数の永久磁石が周方向で並んで格納される。よって、一の格納孔に一つの永久磁石が格納される場合に比べて、永久磁石の各々について周方向における長さが短い。したがって、永久磁石に対して遠心力が作用したときに、当該永久磁石がたわんで変形する量を低減でき、永久磁石と外周部との接触を回避しやすい。よって永久磁石に作用する遠心力が外周部へと伝達されにくい。   According to the second aspect of the rotor end plate of the present invention, a plurality of permanent magnets are stored side by side in the circumferential direction in one storage hole. Therefore, compared with the case where one permanent magnet is stored in one storage hole, the length of each permanent magnet in the circumferential direction is short. Therefore, when a centrifugal force is applied to the permanent magnet, the amount of deformation of the permanent magnet can be reduced, and contact between the permanent magnet and the outer peripheral portion can be easily avoided. Therefore, the centrifugal force acting on the permanent magnet is difficult to be transmitted to the outer peripheral portion.

本発明にかかる回転子用端板の第3の態様によれば、回転軸を中心とした周方向にける永久磁石の端のみを、第2部材及び内周部が互いに反対から挟む態様に比べて、永久磁石に生じる応力を低減することができる。   According to the 3rd aspect of the end plate for rotors concerning this invention, compared with the aspect which only the edge of the permanent magnet in the circumferential direction centering on a rotating shaft pinches | interposes a 2nd member and an inner peripheral part from the other mutually Thus, the stress generated in the permanent magnet can be reduced.

本発明にかかる回転子用端板の第4の態様によれば、第1部材が内周部と接していることによって、回転子用端板と内周部とが、外周部側に呈した永久磁石の磁極面と、内周部側に呈した永久磁石の磁極面との間を構造的に連結していたとしても、当該磁極面同士の間で磁束が短絡することも抑制できる。   According to the 4th aspect of the end plate for rotors concerning this invention, when the 1st member was contacting the inner peripheral part, the end plate for rotors and the inner peripheral part were exhibited to the outer peripheral part side. Even if the magnetic pole surface of the permanent magnet and the magnetic pole surface of the permanent magnet presented on the inner peripheral side are structurally connected, it is possible to suppress a short circuit of the magnetic flux between the magnetic pole surfaces.

本発明にかかる回転子の第1の態様によれば、第2部材が軸方向の両端で回転子用端板と第2の回転子用端板とによって固定されるので、第2部材の強度を高めることができる。よって、回転子の回転に伴って、第2部材に遠心力が作用しても、第2部材の変形を抑制できる。また、第2部材として既存の締結部材(例えばリベットやボルト)を用いると、製造コストを低減できる。   According to the first aspect of the rotor according to the present invention, since the second member is fixed by the rotor end plate and the second rotor end plate at both axial ends, the strength of the second member Can be increased. Therefore, even if a centrifugal force acts on the second member as the rotor rotates, deformation of the second member can be suppressed. Further, when an existing fastening member (for example, a rivet or a bolt) is used as the second member, the manufacturing cost can be reduced.

本発明にかかる回転子の第2の態様によれば、永久磁石に作用する遠心力のうち外周部に対して作用する力をさらに抑制できる。   According to the 2nd aspect of the rotor concerning this invention, the force which acts on an outer peripheral part among the centrifugal forces which act on a permanent magnet can further be suppressed.

本発明にかかる回転子の第3の態様によれば、コア部が周方向にずれて配置されるので、コア部同士がいわゆるスキュー角を形成する。よって回転子の振動を低減できる。また、スキュー角が形成された回転子であっても、第2部材が外周部と離間しつつ、内周部とともに永久磁石を挟んでいるので、連結部に生じる応力を低減できる。   According to the 3rd aspect of the rotor concerning this invention, since a core part is shifted | deviated and arrange | positioned in the circumferential direction, core parts form what is called a skew angle. Therefore, the vibration of the rotor can be reduced. Further, even in a rotor having a skew angle, the second member is spaced apart from the outer peripheral portion, and the permanent magnet is sandwiched with the inner peripheral portion, so that the stress generated in the connecting portion can be reduced.

本発明にかかる回転子の第4の態様によれば、回転子がσ・Fs・L・mRω2/(2Z)>YPを満たす範囲に属していても、連結部の破損を抑制できる。   According to the 4th aspect of the rotor concerning this invention, even if a rotor belongs to the range with which (sigma) * Fs * L * mR (omega) 2 / (2Z)> YP, damage to a connection part can be suppressed.

本発明にかかる永久磁石支持部材の第1の態様によれば、回転子の軸方向における端に設けられる回転子用端板に対して、第2部材及び第3部材を設ける必要がない。よって、既存の回転子用端板を用いることができる。   According to the 1st aspect of the permanent magnet support member concerning this invention, it is not necessary to provide a 2nd member and a 3rd member with respect to the end plate for rotors provided in the end in the axial direction of a rotor. Therefore, the existing rotor end plate can be used.

回転子の概念的な構成の一例を示す斜視図である。It is a perspective view which shows an example of a notional structure of a rotor. 回転軸に垂直な断面における回転子の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of the rotor in a cross section perpendicular | vertical to a rotating shaft. 回転子用端板の概念的な構成の一例を示す斜視図である。It is a perspective view which shows an example of a notional structure of the end plate for rotors. 回転軸に垂直な断面における従来の回転子の概念的な構成を示す図である。It is a figure which shows the notional structure of the conventional rotor in the cross section perpendicular | vertical to a rotating shaft. 回転軸を含む断面における、電動機の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of the electric motor in the cross section containing a rotating shaft. 回転軸に垂直な断面における回転子の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of the rotor in a cross section perpendicular | vertical to a rotating shaft. 回転子用端板の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of the end plate for rotors. 回転軸に垂直な断面における回転子の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of the rotor in a cross section perpendicular | vertical to a rotating shaft. 回転軸に垂直な断面における回転子の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of the rotor in a cross section perpendicular | vertical to a rotating shaft. 回転子の概念的な構成の一例を示す斜視図である。It is a perspective view which shows an example of a notional structure of a rotor. コア部同士の位置関係を説明するための図である。It is a figure for demonstrating the positional relationship between core parts. コア部同士の位置関係を説明するための図である。It is a figure for demonstrating the positional relationship between core parts. 回転子用端板の概念的な構成の一例を示す斜視図である。It is a perspective view which shows an example of a notional structure of the end plate for rotors.

第1の実施の形態.
図1は第1の実施の形態にかかる回転子の概念的な構成の一例を示す斜視図である。本回転子はラジアルギャップ型の回転子であって、回転子用コア10と、回転子用端板(以下、単に端板と呼ぶ)50,60とを備えている。
First embodiment.
FIG. 1 is a perspective view showing an example of a conceptual configuration of the rotor according to the first embodiment. This rotor is a radial gap type rotor, and includes a rotor core 10 and end plates (hereinafter simply referred to as end plates) 50 and 60 for the rotor.

回転子用コア10は軟磁性体(例えば鉄)である。図1の例示では、回転子用コア10は例えば回転軸Pを中心とした円柱状の外形形状を有している。但し必ずしも円柱状である必要はなく、例えば回転軸Pに垂直な断面が楕円を呈する柱状の外形形状を有していてもよい。   The rotor core 10 is a soft magnetic material (for example, iron). In the illustration of FIG. 1, the rotor core 10 has, for example, a cylindrical outer shape centered on the rotation axis P. However, it is not always necessary to have a cylindrical shape, and for example, it may have a columnar outer shape in which a cross section perpendicular to the rotation axis P is an ellipse.

端板50は回転軸Pに沿う軸方向(以下、単に軸方向と呼ぶ)において回転子用コア10の一端に設けられている。端板60は回転子用コア10の軸方向における他端に設けられている。換言すれば、端板50,60は回転子用コア10を軸方向で互いに反対側から挟んでいる。   The end plate 50 is provided at one end of the rotor core 10 in the axial direction along the rotational axis P (hereinafter simply referred to as the axial direction). The end plate 60 is provided at the other end in the axial direction of the rotor core 10. In other words, the end plates 50 and 60 sandwich the rotor core 10 from opposite sides in the axial direction.

また、図1の例示では、回転子用コア10、端板50,60には、回転軸Pを含んで軸方向に沿って回転子を貫通するシャフト孔40が設けられている。シャフト孔40には図示せぬシャフトが貫挿配置される。回転子用コア10はシャフトに対して、例えば焼き嵌め、圧入、溶接、ボルト締め等によって固定される。なお、シャフト孔40は必須要件ではない。例えば端板50,60からそれぞれ回転子用コア10とは反対側に延在するように、シャフトを端板50,60にそれぞれ設けてもよい。この場合シャフト孔40は不要である。   In the illustration of FIG. 1, the rotor core 10 and the end plates 50 and 60 are provided with a shaft hole 40 that includes the rotation axis P and penetrates the rotor along the axial direction. A shaft (not shown) is inserted through the shaft hole 40. The rotor core 10 is fixed to the shaft, for example, by shrink fitting, press fitting, welding, bolting or the like. The shaft hole 40 is not an essential requirement. For example, shafts may be provided on the end plates 50 and 60 so as to extend from the end plates 50 and 60 to the side opposite to the rotor core 10, respectively. In this case, the shaft hole 40 is unnecessary.

図2は回転子用コア10を通る位置での、回転軸Pに垂直な断面における回転子の概念的な構成の一例を示している。   FIG. 2 shows an example of a conceptual configuration of the rotor in a cross section perpendicular to the rotation axis P at a position passing through the rotor core 10.

回転子用コア10には複数の永久磁石30をそれぞれ格納するための複数の格納孔20が穿たれている。複数の格納孔20は回転軸Pの周りで環状に配置され、軸方向に沿って延在している。なお、格納孔20は必ずしも軸方向に沿って延在している必要はない。格納孔20は例えばスキューを形成すべく、軸方向に対して傾斜して延在していてもよい。格納孔20には少なくとも一つ以上の永久磁石30が格納される。図2の例示では、一つの格納孔20に一つの永久磁石30が格納されている。なお図2の例示では、4つの永久磁石30をそれぞれ格納するための4つの格納孔20が示されているが、6個以上あってもよい。   The rotor core 10 is provided with a plurality of storage holes 20 for storing a plurality of permanent magnets 30 respectively. The plurality of storage holes 20 are annularly arranged around the rotation axis P and extend along the axial direction. Note that the storage hole 20 does not necessarily have to extend along the axial direction. The storage hole 20 may be inclined with respect to the axial direction so as to form a skew, for example. At least one permanent magnet 30 is stored in the storage hole 20. In the example of FIG. 2, one permanent magnet 30 is stored in one storage hole 20. In the illustration of FIG. 2, four storage holes 20 for storing the four permanent magnets 30 are shown, but there may be six or more.

また回転子用コア10は軸方向に積層された複数の電磁鋼板によって構成されていてもよい。電磁鋼板1枚の軸方向における厚みは例えば0.1mmから0.5mmである。そして、これらの複数の電磁鋼板が例えばカシメ又は溶接によって相互に固定される。軸方向に積層された電磁鋼板によって、回転軸Pに垂直な断面に沿って回転子用コア10を流れる磁束に起因して、回転子用コア10に生じる渦電流を低減することができる。   Moreover, the core 10 for rotors may be comprised by the some electromagnetic steel plate laminated | stacked on the axial direction. The thickness of one electromagnetic steel sheet in the axial direction is, for example, 0.1 mm to 0.5 mm. And these several electromagnetic steel plates are mutually fixed by caulking or welding, for example. The electromagnetic steel plates laminated in the axial direction can reduce eddy currents generated in the rotor core 10 due to the magnetic flux flowing through the rotor core 10 along the cross section perpendicular to the rotation axis P.

また、回転子用コア10は圧粉磁心であってもよい。圧粉磁心は意図的に絶縁物を含んで成型されるので、その電気抵抗は高い。よって、回転子用コア10に生じる渦電流を低減できる。   The rotor core 10 may be a dust core. Since the dust core is intentionally molded including an insulator, its electrical resistance is high. Therefore, the eddy current generated in the rotor core 10 can be reduced.

永久磁石30は例えばネオジム、鉄、ホウ素を主成分とした希土類磁石であって、格納孔20に格納される。永久磁石30は例えば板状の直方体形状を有しており、その厚み方向が永久磁石30の径方向に沿うように配置されている。図2で例示された形状についてより正確に言えば、永久磁石30の厚み方向が、回転軸Pに垂直な断面における永久磁石30の中心の位置での径方向と一致する。また永久磁石30は径方向(以下、構成要素について径方向に言及する場合、当該構成要素が配置された位置での径方向を、単に径方向と呼ぶ)に着磁される。ここでは永久磁石30の厚み方向に着磁される。回転軸Pを中心とした周方向(以下、単に周方向と呼ぶ)で隣り合う永久磁石30が径方向の外周側に呈する磁極面30aは周方向で互いに異なっている。   The permanent magnet 30 is a rare-earth magnet mainly composed of neodymium, iron, or boron, for example, and is stored in the storage hole 20. The permanent magnet 30 has, for example, a plate-like rectangular parallelepiped shape, and is arranged so that the thickness direction thereof is along the radial direction of the permanent magnet 30. Speaking more precisely with respect to the shape illustrated in FIG. 2, the thickness direction of the permanent magnet 30 coincides with the radial direction at the center position of the permanent magnet 30 in the cross section perpendicular to the rotation axis P. The permanent magnet 30 is magnetized in the radial direction (hereinafter, when referring to the radial direction of the component, the radial direction at the position where the component is arranged is simply referred to as the radial direction). Here, the permanent magnet 30 is magnetized in the thickness direction. The magnetic pole surfaces 30a that the permanent magnets 30 adjacent to each other in the circumferential direction around the rotation axis P (hereinafter simply referred to as the circumferential direction) present on the outer circumferential side in the radial direction are different from each other in the circumferential direction.

永久磁石30は、本回転子に対して、回転軸Pとは反対側に固定子を配置した場合に、固定子へと界磁磁束を供給する界磁子として機能する。図2の例示では、一つの永久磁石30が一つの界磁磁極として機能する。   The permanent magnet 30 functions as a field element for supplying a field magnetic flux to the stator when the stator is disposed on the opposite side of the rotation axis P with respect to the main rotor. In the illustration of FIG. 2, one permanent magnet 30 functions as one field magnetic pole.

なお、格納孔20の径方向における厚みは、自身に格納される永久磁石30の径方向における厚みよりも2から7%大きく設定するとよい。これによって、永久磁石30の格納孔20への挿入を容易としつつも、永久磁石30と回転子用コア10との間の間隙を低減している。   The radial thickness of the storage hole 20 may be set to be 2 to 7% larger than the radial thickness of the permanent magnet 30 stored in itself. Accordingly, the gap between the permanent magnet 30 and the rotor core 10 is reduced while facilitating the insertion of the permanent magnet 30 into the storage hole 20.

また永久磁石30の表面がアルミニウム等の金属でコーティングされていたり、樹脂等で塗装されていてもよい。これによって、永久磁石30を保護することができる。   The surface of the permanent magnet 30 may be coated with a metal such as aluminum, or may be painted with a resin or the like. Thereby, the permanent magnet 30 can be protected.

ここで、回転子用コア10のうち、格納孔20の各々に対して回転軸P側(以下、内周側とも呼ぶ)に存する部分を内周部11と、格納孔20の各々に対して回転軸Pとは反対側(以下、外周側とも呼ぶ)に存する部分を外周部12と呼ぶ。   Here, in the rotor core 10, a portion existing on the rotation axis P side (hereinafter also referred to as an inner peripheral side) with respect to each of the storage holes 20 is defined with respect to the inner peripheral portion 11 and each of the storage holes 20. A portion existing on the side opposite to the rotation axis P (hereinafter also referred to as the outer peripheral side) is referred to as the outer peripheral portion 12.

周方向で隣り合う複数の外周部12同士はそれぞれ連結部13(以下、ブリッジ部13とも呼ぶ)によって相互に連結されている。ブリッジ部13は外周部12とともに回転子用コア10の外周縁を呈する。   A plurality of outer peripheral portions 12 adjacent in the circumferential direction are connected to each other by a connecting portion 13 (hereinafter also referred to as a bridge portion 13). The bridge portion 13 presents the outer peripheral edge of the rotor core 10 together with the outer peripheral portion 12.

また図2の例示では、回転子用コア10にはリブ部14が設けられている。リブ部14は周方向で隣り合う格納孔20の相互間で、内周部11から径方向に沿って外周側へと延在している。ブリッジ部13とリブ部14とは外周側で相互に連結されている。リブ部14はq軸インダクタンスを向上することができるので、回転子に対して外周側から固定子を設けて電動機を構成した場合に、リラクタンストルクを有効に利用できる。   In the illustration of FIG. 2, the rotor core 10 is provided with a rib portion 14. The rib portion 14 extends from the inner peripheral portion 11 to the outer peripheral side along the radial direction between the storage holes 20 adjacent in the circumferential direction. The bridge portion 13 and the rib portion 14 are connected to each other on the outer peripheral side. Since the rib portion 14 can improve the q-axis inductance, the reluctance torque can be effectively used when a motor is configured by providing a stator from the outer peripheral side with respect to the rotor.

またリブ部14は、周方向で隣り合う2つの外周部12の間で、これら2つの外周部12の各々に対して空隙22を介して対面している。リブ部14と外周部12との間には空隙22が介在しているので、リブ部14を介して隣り合う外周部12同士、あるいは内周部11と外周部12との間で磁束の短絡を招来しない。また、リブ部14と、これと周方向で隣り合う永久磁石30とは、空隙22を介して相互に対面している。言い換えると、空隙22は永久磁石30の周方向における両端から、リブ部14と外周部12とに沿って外周側へと延在している。永久磁石30の周方向における両側に空隙22が存在しているので、永久磁石30の径方向における一方の磁極面30aと他方の磁極面30bとの間で発生する磁束の短絡を抑制することができる。   Moreover, the rib part 14 is facing each of these two outer peripheral parts 12 via the space | gap 22 between the two outer peripheral parts 12 adjacent in the circumferential direction. Since the gap 22 is interposed between the rib portion 14 and the outer peripheral portion 12, the magnetic flux is short-circuited between the outer peripheral portions 12 adjacent to each other via the rib portion 14 or between the inner peripheral portion 11 and the outer peripheral portion 12. Do not invite. Further, the rib portion 14 and the permanent magnet 30 adjacent to the rib portion 14 in the circumferential direction face each other through the gap 22. In other words, the air gap 22 extends from both ends in the circumferential direction of the permanent magnet 30 along the rib portion 14 and the outer peripheral portion 12 to the outer peripheral side. Since the air gaps 22 exist on both sides in the circumferential direction of the permanent magnet 30, it is possible to suppress a short circuit of magnetic flux generated between the one magnetic pole surface 30 a and the other magnetic pole surface 30 b in the radial direction of the permanent magnet 30. it can.

なお、永久磁石30が回転子用コア10に埋め込まれる永久磁石埋込型の回転子において、上述したリラクタンストルクの有効利用という観点ではリブ部14は設けられることが望ましい。しかし、これは必須の要件ではなく、仮にリブ部14が設けられていなくても構わない。リブ部14が設けられていない場合、ブリッジ部13は内周部11と離間しつつ周方向で外周部12同士を連結する。   In the permanent magnet embedded rotor in which the permanent magnet 30 is embedded in the rotor core 10, it is desirable that the rib portion 14 be provided from the viewpoint of effective use of the reluctance torque described above. However, this is not an essential requirement, and the rib portion 14 may not be provided. When the rib portion 14 is not provided, the bridge portion 13 connects the outer peripheral portions 12 to each other in the circumferential direction while being separated from the inner peripheral portion 11.

部材52は例えば端板50の構成要素である。図3は端板50の概念的な構成の一例を示す斜視図である。端板50は部材51,52を備えている。部材51は回転子用コア10に対して軸方向で対面して設けられる。なお、図1において符号50が付記された部分が部材51に相当する。   The member 52 is a component of the end plate 50, for example. FIG. 3 is a perspective view showing an example of a conceptual configuration of the end plate 50. The end plate 50 includes members 51 and 52. The member 51 is provided facing the rotor core 10 in the axial direction. 1 corresponds to the member 51.

部材52は部材51から延在している。図3の例示では、部材52は格納孔20の延在方向(ここでは軸方向)に沿って延在している。そして、永久磁石30が格納された回転子用コア10に対して、端板50が取り付けられた状態で、部材52は外周部12と離間しつつ、内周部11と共に永久磁石30をその厚み方向で挟む(図2も参照)。   The member 52 extends from the member 51. In the illustration of FIG. 3, the member 52 extends along the extending direction (here, the axial direction) of the storage hole 20. The member 52 is separated from the outer peripheral portion 12 while the end plate 50 is attached to the rotor core 10 in which the permanent magnet 30 is stored. (See also FIG. 2).

図2,3の例示では、一つの格納孔20に対して2つの部材52が挿入されている。この2つの部材52は永久磁石30の周方向における両端に位置している。本回転子において、永久磁石30の周方向における端から固定子へと供給する界磁磁束は、永久磁石30の中央(極中心)から固定子へと供給する界磁磁束よりも小さい。従って、部材52が永久磁石30の端に位置することによって、たとえ部材52が非磁性で構成されていたとしても回転子から固定子へと供給する界磁磁束を阻害しにくい。   2 and 3, two members 52 are inserted into one storage hole 20. The two members 52 are located at both ends in the circumferential direction of the permanent magnet 30. In this rotor, the field magnetic flux supplied from the end in the circumferential direction of the permanent magnet 30 to the stator is smaller than the field magnetic flux supplied from the center (pole center) of the permanent magnet 30 to the stator. Therefore, when the member 52 is positioned at the end of the permanent magnet 30, the field magnetic flux supplied from the rotor to the stator is hardly hindered even if the member 52 is configured to be non-magnetic.

また、図2,3の例示では、永久磁石30の両端に位置する2つの部材52は永久磁石30を互いに反対側から周方向で挟んでいる。図2の例示では、部材52は、回転軸Pに垂直な断面がL字状となる形状を有している。そして、2つの部材52が永久磁石30の周方向における両側の角に嵌まっている。このように、部材52が永久磁石30を周方向で互いに反対側から挟んでいるので、永久磁石30を周方向で固定できる。   2 and 3, the two members 52 located at both ends of the permanent magnet 30 sandwich the permanent magnet 30 in the circumferential direction from the opposite sides. In the illustration of FIG. 2, the member 52 has a shape in which a cross section perpendicular to the rotation axis P is L-shaped. The two members 52 are fitted at the corners on both sides in the circumferential direction of the permanent magnet 30. Thus, since the member 52 has pinched the permanent magnet 30 from the opposite side in the circumferential direction, the permanent magnet 30 can be fixed in the circumferential direction.

部材52は内周部11と離間していることが望ましい。これによって、たとえ部材52が磁性体で構成されていたとしても、永久磁石30の周方向における両側において、外周側に呈する永久磁石30の磁極面30aと内周側に呈する永久磁石30の磁極面30bとの間で、部材52及び内周部11を介して磁束が短絡することを抑制することができる。   The member 52 is preferably separated from the inner peripheral portion 11. Thereby, even if the member 52 is comprised with the magnetic body, the magnetic pole surface 30a of the permanent magnet 30 presented on the outer peripheral side and the magnetic pole surface of the permanent magnet 30 presented on the inner peripheral side on both sides in the circumferential direction of the permanent magnet 30 It is possible to prevent the magnetic flux from being short-circuited through the member 52 and the inner peripheral portion 11 with respect to 30b.

ここで、部材52が磁性体で構成された場合に、部材52を介して磁極面30a,30bの間で短絡する磁束の流れを考慮する。当該磁束は部材52のうち磁極面30aと永久磁石30の厚み方向で対面する第1部分を周方向に沿って流れる。また、部材52のうち周方向において永久磁石30と隣り合う第2部分を、永久磁石30の厚み方向に沿って流れる。従って、第1部分及び第2部分を流れる磁束について容易に磁気飽和する程度に、第1部分については永久磁石30の厚み方向における幅を、第2部分においては周方向における幅を、小さくすることが望ましい。これによって、部材52を介して磁極面30a,30bの間で磁束が短絡することを更に抑制できる。   Here, when the member 52 is made of a magnetic material, the flow of magnetic flux that is short-circuited between the magnetic pole surfaces 30a and 30b via the member 52 is considered. The magnetic flux flows in the circumferential direction in the first portion of the member 52 that faces the magnetic pole surface 30a in the thickness direction of the permanent magnet 30. Further, the second portion of the member 52 that is adjacent to the permanent magnet 30 in the circumferential direction flows along the thickness direction of the permanent magnet 30. Accordingly, the width in the thickness direction of the permanent magnet 30 for the first portion and the width in the circumferential direction for the second portion are reduced to such an extent that the magnetic flux flowing through the first portion and the second portion is easily magnetically saturated. Is desirable. Thereby, it is possible to further suppress short-circuiting of the magnetic flux between the magnetic pole surfaces 30a and 30b via the member 52.

このような回転子に対して、外周側から回転子と径方向で対面するように固定子を配置して回転電機を構成した場合に、回転子は回転軸Pを中心に回転する。   When a rotating electrical machine is configured by arranging a stator so as to face the rotor from the outer peripheral side in the radial direction with respect to such a rotor, the rotor rotates about the rotation axis P.

この回転軸Pを中心とした回転子の回転によって、回転子には遠心力が作用する。部材52は外周部12と離間しつつ、永久磁石30を外周側から支持している(図2も参照)。よって、永久磁石30に作用する遠心力のうち、外周部12へと伝達される力を低減することができる。これによって、ブリッジ部13に加えられる応力を低減できる。従って、ブリッジ部13として径方向における厚みの薄いブリッジ部を採用しても、ブリッジ部13の変形を招きにくい。ブリッジ部13の厚みが薄いほどブリッジ部13は周方向で隣り合う永久磁石30同士の短絡を低減できる。   Centrifugal force acts on the rotor by the rotation of the rotor about the rotation axis P. The member 52 supports the permanent magnet 30 from the outer peripheral side while being separated from the outer peripheral portion 12 (see also FIG. 2). Therefore, the force transmitted to the outer peripheral part 12 among the centrifugal forces acting on the permanent magnet 30 can be reduced. Thereby, the stress applied to the bridge part 13 can be reduced. Therefore, even if a bridge portion having a small thickness in the radial direction is adopted as the bridge portion 13, the bridge portion 13 is hardly deformed. As the bridge portion 13 is thinner, the bridge portion 13 can reduce the short circuit between the permanent magnets 30 adjacent in the circumferential direction.

なお、部材52は端板60と固定されていてもよい。かかる固定方法については特に限定されないが、例えば部材52と軸方向で嵌合する凹部を端板60に設けてもよい。この場合、部材52はその軸方向における両端が端板60と部材51とによって固定される。よって、部材52が、軸方向における一端のみで固定されている場合に比べて、部材52が撓んで変形する量を低減できる。これによって、永久磁石30が外周部12と接触することを回避しやすい。よって永久磁石30が外周部12へと付勢することをより確実に抑制でき、以って永久磁石30に作用する遠心力のうち外周部12へと伝達される力を低減できる。   The member 52 may be fixed to the end plate 60. Although it does not specifically limit about this fixing method, For example, you may provide the recessed part fitted to the member 52 in an axial direction in the end plate 60. FIG. In this case, both ends of the member 52 in the axial direction are fixed by the end plate 60 and the member 51. Therefore, compared with the case where the member 52 is fixed only at one end in the axial direction, the amount of deformation of the member 52 can be reduced. Thereby, it is easy to avoid the permanent magnet 30 coming into contact with the outer peripheral portion 12. Therefore, it can suppress more reliably that the permanent magnet 30 is urged | biased to the outer peripheral part 12, Therefore The force transmitted to the outer peripheral part 12 among the centrifugal force which acts on the permanent magnet 30 can be reduced.

なお、図2の例では、永久磁石30と外周部12とが相互に離間した回転子が示されているが、例えば回転子の回転によって、永久磁石30の中央が外周側へと変形し、永久磁石30と外周部12とが接していてもよい。この場合、永久磁石30に作用する遠心力が外周部12へと伝達されるものの、当該遠心力の一部は部材52によって外周部12へと伝達されることを阻害される。よって、この場合であっても、従来の回転子に比べて、永久磁石30に作用する遠心力が外周部12へと伝達されることを抑制でき、ひいてはブリッジ部13に生じる応力を低減できる。また、永久磁石30が部材52によって保持されていれば、回転子の回転に関わらず、永久磁石30と外周部12とが接していてもよい。部材52が、永久磁石30に作用する遠心力の一部を支持し、これが外周部12へと伝達されることを防止するからである。   In the example of FIG. 2, a rotor in which the permanent magnet 30 and the outer peripheral portion 12 are separated from each other is shown. However, for example, the rotation of the rotor causes the center of the permanent magnet 30 to be deformed to the outer peripheral side. The permanent magnet 30 and the outer peripheral portion 12 may be in contact with each other. In this case, although the centrifugal force acting on the permanent magnet 30 is transmitted to the outer peripheral portion 12, a part of the centrifugal force is inhibited from being transmitted to the outer peripheral portion 12 by the member 52. Therefore, even in this case, it is possible to suppress the centrifugal force acting on the permanent magnet 30 from being transmitted to the outer peripheral portion 12 and to reduce the stress generated in the bridge portion 13 as compared with the conventional rotor. Further, as long as the permanent magnet 30 is held by the member 52, the permanent magnet 30 and the outer peripheral portion 12 may be in contact with each other regardless of the rotation of the rotor. This is because the member 52 supports a part of the centrifugal force acting on the permanent magnet 30 and prevents this from being transmitted to the outer peripheral portion 12.

但し、回転子の回転も含めて永久磁石30と外周部12が離間していれば、換言すると永久磁石30と外周部12との間に間隙が生じていれば、永久磁石30に生じる遠心力が外周部12へと伝達されることを防止できる。よって、ブリッジ部13に生じる応力をより低減できる。   However, if the permanent magnet 30 and the outer peripheral portion 12 are separated from each other including the rotation of the rotor, in other words, if there is a gap between the permanent magnet 30 and the outer peripheral portion 12, the centrifugal force generated in the permanent magnet 30 Can be prevented from being transmitted to the outer peripheral portion 12. Therefore, the stress generated in the bridge portion 13 can be further reduced.

なお、部材51と内周部11とが接触している場合、端板50と内周部11とが相まって、外周側に呈した永久磁石30の磁極面30aと、内周側に呈した永久磁石30の磁極面30bとを構造的に連結する。このような場合、部材51,52の少なくとも何れか一方が非磁性体であるとよい。これによって、磁極面30a,30b同士の間で端板50と内周部11とを介して磁束が短絡することを抑制できる。   In addition, when the member 51 and the inner peripheral part 11 are contacting, the end plate 50 and the inner peripheral part 11 couple | bond together, the magnetic pole surface 30a of the permanent magnet 30 exhibited on the outer peripheral side, and the permanent exhibited on the inner peripheral side. The magnetic pole surface 30b of the magnet 30 is structurally connected. In such a case, it is preferable that at least one of the members 51 and 52 is a nonmagnetic material. Thereby, it is possible to prevent the magnetic flux from being short-circuited between the magnetic pole surfaces 30 a and 30 b via the end plate 50 and the inner peripheral portion 11.

また、図2の例示では、一つの永久磁石30に対して設けられる2つの部材52のいずれもが外周部12と離間している。しかし、2つの部材52のうち少なくとも何れか一方が外周部12と離間していればよい。永久磁石30に作用する遠心力は、外周部12と接する部材52を介して外周部12へと伝達され得るものの、外周部12と離間した部材52を介しては伝達されない。よって、部材52が設けられない回転子に比べて、外周部12へと伝達される遠心力を低減でき、以ってブリッジ部13に生じる応力を低減することができる。また、永久磁石30が部材52によって保持されていれば、回転子の回転に関わらず、永久磁石30と外周部12とが接していてもよい。部材52が、永久磁石30に作用する遠心力の一部を支持し、これが外周部12へと伝達されることを防止するからである。   In the illustration of FIG. 2, both of the two members 52 provided for one permanent magnet 30 are separated from the outer peripheral portion 12. However, at least one of the two members 52 only needs to be separated from the outer peripheral portion 12. Although the centrifugal force acting on the permanent magnet 30 can be transmitted to the outer peripheral portion 12 through the member 52 in contact with the outer peripheral portion 12, it is not transmitted through the member 52 separated from the outer peripheral portion 12. Therefore, the centrifugal force transmitted to the outer peripheral portion 12 can be reduced as compared with the rotor in which the member 52 is not provided, and thus the stress generated in the bridge portion 13 can be reduced. Further, as long as the permanent magnet 30 is held by the member 52, the permanent magnet 30 and the outer peripheral portion 12 may be in contact with each other regardless of the rotation of the rotor. This is because the member 52 supports a part of the centrifugal force acting on the permanent magnet 30 and prevents this from being transmitted to the outer peripheral portion 12.

ここで、従来の回転子のブリッジ部13に生じる応力について考慮する。図4は回転軸Pに垂直な断面における従来の回転子の概念的な構成の一例を示している。図4においては、6個の界磁磁極が設けられた回転子が示されている。図2に示す回転子と比較して、部材52が設けられていない。また、回転子の軸方向の両側に設けられる端板同士を固定するリベット又はボルトが貫挿される貫挿孔15が、回転子用コア10に設けられている。貫挿孔15は例えば内周部11に設けられている。   Here, the stress which arises in the bridge part 13 of the conventional rotor is considered. FIG. 4 shows an example of a conceptual configuration of a conventional rotor in a cross section perpendicular to the rotation axis P. In FIG. 4, a rotor provided with six field magnetic poles is shown. Compared with the rotor shown in FIG. 2, the member 52 is not provided. Further, through-holes 15 through which rivets or bolts for fixing end plates provided on both sides in the axial direction of the rotor are inserted are provided in the rotor core 10. The through hole 15 is provided in the inner peripheral portion 11, for example.

永久磁石30と外周部12との一組の質量をm、永久磁石30と外周部12の一組についての質量中心MPと、回転軸Pとの間の距離をR、回転子の最高回転数における角速度をω、とすると、回転子に生じる遠心力Fは次式で表される。   The mass of a set of the permanent magnet 30 and the outer peripheral portion 12 is m, the distance between the center of mass MP of the permanent magnet 30 and the outer peripheral portion 12 and the rotation axis P is R, and the maximum rotational speed of the rotor If the angular velocity at is ω, the centrifugal force F generated in the rotor is expressed by the following equation.

F=mRω2 ・・・(1) F = mRω 2 (1)

ブリッジ部13とリブ部14との境界のうち外周部12側の点から、質量中心MPを通り径方向に平行な直線までの距離をLとすると、ブリッジ部13に生じる曲げモーメントMは次式で表される。   Assuming that the distance from the point on the outer peripheral part 12 side to the straight line passing through the center of mass MP and parallel to the radial direction in the boundary between the bridge part 13 and the rib part 14 is L, the bending moment M generated in the bridge part 13 is: It is represented by

M=LF/2 ・・・(2)   M = LF / 2 (2)

またブリッジ部13の径方向における幅をh、軸方向における回転子用コア10の高さをbとすると、ブリッジ部13の断面係数Zは次式で表される。   Further, when the width in the radial direction of the bridge portion 13 is h and the height of the rotor core 10 in the axial direction is b, the section coefficient Z of the bridge portion 13 is expressed by the following equation.

Z=bh2/6 ・・・(3) Z = bh 2/6 ··· ( 3)

最大曲げ応力σmaxは次式で表される。   The maximum bending stress σmax is expressed by the following equation.

σmax=M/Z ・・・(4)   σmax = M / Z (4)

ただし、上述した式変形では、ブリッジ部13における主応力のみを考慮し、相当応力については無視している。図4に示す従来の回転子において、相当応力をも考慮した最大曲げ応力は、主応力のみを考慮した最大曲げ応力の約2倍である。但し、この関係は2という数字に必ずしも限定されるものではなく、回転子の形状に応じて変更され得る。そして、式(4)に示す最大曲げ応力σmaxに補正係数σ(ここでは2)を乗じて最大曲げ応力σmaxを算出する。よって、最大曲げ応力σmaxは次式で表される。   However, in the above-described formula deformation, only the main stress in the bridge portion 13 is considered and the equivalent stress is ignored. In the conventional rotor shown in FIG. 4, the maximum bending stress considering the equivalent stress is about twice the maximum bending stress considering only the main stress. However, this relationship is not necessarily limited to the number 2, and can be changed according to the shape of the rotor. Then, the maximum bending stress σmax is calculated by multiplying the maximum bending stress σmax shown in Equation (4) by the correction coefficient σ (here, 2). Therefore, the maximum bending stress σmax is expressed by the following equation.

σmax=σM/Z ・・・(5)   σmax = σM / Z (5)

そして、この最大曲げ応力σmaxがブリッジ部13に生じた場合に、回転子が破損しないようにするためには、最大曲げ応力σmaxをブリッジ部13の降伏点YPよりも小さくする必要がある。但し、通常は安全率Fs(例えば2以上の値)を導入して、次式を満たすように、回転子が設計される。   When the maximum bending stress σmax is generated in the bridge portion 13, the maximum bending stress σmax needs to be smaller than the yield point YP of the bridge portion 13 so that the rotor is not damaged. However, the rotor is usually designed so as to satisfy the following expression by introducing a safety factor Fs (for example, a value of 2 or more).

Fs・σmax≦YP ・・・(6)   Fs · σmax ≦ YP (6)

式(1)〜(5)を用いて式(6)を変形すると次式が導かれる。   When Expression (6) is transformed using Expressions (1) to (5), the following expression is derived.

Fs・L・mRω2/(2・bh2/6)≦YP ・・・(7) Fs · L · mRω 2 / ( 2 · bh 2/6) ≦ YP ··· (7)

つまり、従来の回転子が式(7)を満たす範囲に属すれば、遠心力による回転子の破損を防ぐことができる。一方、図1〜3に示す本回転子においては、永久磁石30が部材52によって保持されるので、ブリッジ部13に生じる応力が低減される。よって、本回転子が次式で表される範囲に属していてもよい。   That is, if the conventional rotor belongs to the range satisfying the equation (7), the rotor can be prevented from being damaged by centrifugal force. On the other hand, in the rotor shown in FIGS. 1 to 3, since the permanent magnet 30 is held by the member 52, the stress generated in the bridge portion 13 is reduced. Therefore, this rotor may belong to the range represented by the following formula.

Fs・L・mRω2/(2・bh2/6)>YP ・・・(8) Fs · L · mRω 2 / ( 2 · bh 2/6)> YP ··· (8)

なお、mは図1〜3に示す本回転子においても、永久磁石30と外周部12との一組の質量を示す。またLは図1〜3に示す本回転子においても、ブリッジ部13とリブ部14との境界のうち外周部12側の点から、永久磁石30と外周部12との一組の質量中心を通り径方向に平行な直線までの距離を示している。したがって、式(8)の左辺で示される値は、図2に示すブリッジ部13に生じる最大曲げ応力とは一致しない。本回転子においては、上述したように、ブリッジ部13に生じる応力を低減できるので、本回転子が式(8)を満たす範囲に属していたとしても、実際にブリッジ部13に生じる最大曲げ応力は式(8)の左辺で示される値よりも小さく、ひいては降伏点YPよりも小さくすることが容易い。なお、この内容は後述する他の実施の形態にも適用される。   Note that m represents a set of masses of the permanent magnet 30 and the outer peripheral portion 12 in the rotor shown in FIGS. In addition, L is a set of mass centers of the permanent magnet 30 and the outer peripheral portion 12 from the point on the outer peripheral portion 12 side in the boundary between the bridge portion 13 and the rib portion 14 in the rotor shown in FIGS. The distance to a straight line parallel to the radial direction is shown. Therefore, the value shown on the left side of Equation (8) does not match the maximum bending stress generated in the bridge portion 13 shown in FIG. In the present rotor, as described above, since the stress generated in the bridge portion 13 can be reduced, the maximum bending stress actually generated in the bridge portion 13 even if the present rotor belongs to the range satisfying the equation (8). Is smaller than the value shown on the left side of the equation (8), and hence it is easy to make it smaller than the yield point YP. This content is also applied to other embodiments described later.

なお、回転子用コア10が軸方向で積層された電磁鋼板である場合、電磁鋼板1枚あたりのブリッジ部13に生じる最大曲げ応力と、降伏点YPとを比較するとよい。具体的には、遠心力Fを電磁鋼板の数で除算し、ブリッジ部13の断面係数を算出するに際して回転子用コア10の軸方向における高さbを電磁鋼板の軸方向における厚みbとして置き換えればよい。   In addition, when the rotor core 10 is an electromagnetic steel plate laminated in the axial direction, the maximum bending stress generated in the bridge portion 13 per electromagnetic steel plate and the yield point YP may be compared. Specifically, when the centrifugal force F is divided by the number of electromagnetic steel sheets and the section modulus of the bridge portion 13 is calculated, the axial height b of the rotor core 10 is replaced with the thickness b in the axial direction of the electromagnetic steel sheets. That's fine.

また以下に述べる内容も他の実施の形態に適用される。本回転子に対して、回転軸Pとは反対側から固定子を配置することで電動機(例えばブラシレスDCモータ)を構成できる。図5はかかる電動機の概念的な構成の一例を示す図である。但し、図5においては、回転軸Pを含む断面における電動機のうち、回転軸Pに対して一方の側のみが示されている。電動機は、回転子用コア10と永久磁石30とを有する固定子と、シャフト41と、固定子90と、ケース80とを備えている。シャフト41は回転子用コア10のシャフト孔40に貫挿されている。回転子用コア10はシャフト41に対して、例えば焼き嵌め、圧入、溶接、ボルト締めなどによって固定されている。固定子90は回転軸Pとは反対側から回転子と対向して配置される。固定子90はケース80に対して、例えば焼き嵌め、圧入、溶接により固定される。固定子90は、例えば集中巻き方式又は分布巻き方式によって不図示のティースに巻回された不図示のコイルを有している。かかるコイルに電流が流れることで、固定子90は回転子へと回転磁界を供給する。かかる回転磁界に応じて回転子は回転軸Pを中心として回転する。   The contents described below also apply to other embodiments. An electric motor (for example, a brushless DC motor) can be configured by arranging a stator from the opposite side of the rotation axis P to the rotor. FIG. 5 is a diagram showing an example of a conceptual configuration of such an electric motor. However, in FIG. 5, only one side of the electric motor in the cross section including the rotation axis P with respect to the rotation axis P is shown. The electric motor includes a stator having a rotor core 10 and a permanent magnet 30, a shaft 41, a stator 90, and a case 80. The shaft 41 is inserted into the shaft hole 40 of the rotor core 10. The rotor core 10 is fixed to the shaft 41 by shrink fitting, press fitting, welding, bolting, or the like. The stator 90 is disposed to face the rotor from the side opposite to the rotation axis P. The stator 90 is fixed to the case 80 by, for example, shrink fitting, press fitting, or welding. The stator 90 has a coil (not shown) wound around a tooth (not shown) by, for example, a concentrated winding method or a distributed winding method. When a current flows through the coil, the stator 90 supplies a rotating magnetic field to the rotor. The rotor rotates about the rotation axis P in response to the rotating magnetic field.

この電動機は例えば比較的高速回転型のスクロール圧縮機及びターボ圧縮機に搭載されることができる。これらの圧縮機では、回転子が比較的高速に回転するために回転子に生じる遠心力は比較的大きい。よって、遠心力に起因してブリッジ部13に生じる応力を低減できる本回転子はこれらの圧縮機に適している。   This electric motor can be mounted on, for example, a relatively high-speed rotation type scroll compressor and turbo compressor. In these compressors, the centrifugal force generated in the rotor is relatively large because the rotor rotates at a relatively high speed. Therefore, the present rotor capable of reducing the stress generated in the bridge portion 13 due to the centrifugal force is suitable for these compressors.

また、この電動機はスクリュー圧縮機などの大容量圧縮機に搭載されてもよい。かかる大容量圧縮機では、回転子の直径を大きくすることが要求されるので、回転子に生じる遠心力は比較的大きい。よって、遠心力に起因してブリッジ部13に生じる応力を低減できる本回転子は大容量圧縮機に適している。   The electric motor may be mounted on a large capacity compressor such as a screw compressor. In such a large capacity compressor, since it is required to increase the diameter of the rotor, the centrifugal force generated in the rotor is relatively large. Therefore, this rotor capable of reducing the stress generated in the bridge portion 13 due to the centrifugal force is suitable for a large capacity compressor.

なお、電動機がこれらの圧縮機に搭載される場合、ケース80は圧縮機構を収納する密閉容器であってもよい。   When the electric motor is mounted on these compressors, the case 80 may be a sealed container that houses the compression mechanism.

また大容量圧縮機では、固定子から回転子へと与えられる回転磁界の強度が比較的大きいので、永久磁石30は高い減磁耐力が要求される。かかる減磁耐力を実現するために、永久磁石30の径方向における厚みを増大させる場合がある。このとき永久磁石30の体積が増大、ひいては永久磁石30の質量が増大する。従来の回転子であれば、永久磁石30の質量が遠心力としてブリッジ部13に作用するところ、本回転子では永久磁石30が部材52によって支持されて、当該遠心力がブリッジ部13へと伝達されることを抑制する。よって、永久磁石30の質量が重いほど、従来の回転子に比べてブリッジ部13に生じる応力の低減効果が高い。   In a large capacity compressor, since the strength of the rotating magnetic field applied from the stator to the rotor is relatively large, the permanent magnet 30 is required to have a high demagnetization resistance. In order to realize such a demagnetization resistance, the thickness of the permanent magnet 30 in the radial direction may be increased. At this time, the volume of the permanent magnet 30 increases, and consequently the mass of the permanent magnet 30 increases. In the case of a conventional rotor, the mass of the permanent magnet 30 acts on the bridge portion 13 as a centrifugal force. In this rotor, the permanent magnet 30 is supported by the member 52 and the centrifugal force is transmitted to the bridge portion 13. To be suppressed. Therefore, as the mass of the permanent magnet 30 is heavier, the effect of reducing the stress generated in the bridge portion 13 is higher than that of the conventional rotor.

また本回転子においては、外周部12に貫挿孔15を設けて、貫挿孔15にリベット又はボルトを貫挿させ、リベット又はボルトによって永久磁石30あるいは外周部12に作用する遠心力を支持しなくてもよい。部材52によって、永久磁石30に作用する遠心力を支持できるからである。このように、外周部12に貫挿孔15を設ける必要がないので、回転軸Pに沿って見た外周部12の面積を低減しても構わない。したがって、回転子の界磁磁極の数を増大させて外周部12の面積が低減されたとしても、遠心力に起因する応力の観点では問題が生じない。界磁磁極の数を増大させることによって、回転子と固定子90との間に作用する磁気吸引力が分散されるので、振動及び騒音を低減することができる。したがって、振動や騒音が増大する傾向にある大容量圧縮機において、本回転子用コア10を用いることは特に好適である。   Further, in the present rotor, an insertion hole 15 is provided in the outer peripheral portion 12, and a rivet or a bolt is inserted into the insertion hole 15, and the centrifugal force acting on the permanent magnet 30 or the outer peripheral portion 12 is supported by the rivet or the bolt. You don't have to. This is because the member 52 can support the centrifugal force acting on the permanent magnet 30. Thus, since it is not necessary to provide the penetration hole 15 in the outer peripheral part 12, you may reduce the area of the outer peripheral part 12 seen along the rotating shaft P. FIG. Therefore, even if the number of the field magnetic poles of the rotor is increased and the area of the outer peripheral portion 12 is reduced, there is no problem in terms of the stress caused by the centrifugal force. By increasing the number of field magnetic poles, the magnetic attractive force acting between the rotor and the stator 90 is dispersed, so that vibration and noise can be reduced. Therefore, it is particularly preferable to use the rotor core 10 in a large capacity compressor in which vibration and noise tend to increase.

第2の実施の形態.
第2の実施の形態にかかる回転子の概念的な構成の一例を示す斜視図は図1と同様である。図6は回転子用コア10を通る位置での、回転軸Pを中心とした断面における回転子の概念的な構成の一例を示している。なお、図6においては、回転子のうち、一つの格納孔20に相当する部分のみを示している。
Second embodiment.
The perspective view which shows an example of a notional structure of the rotor concerning 2nd Embodiment is the same as that of FIG. FIG. 6 shows an example of a conceptual configuration of the rotor in a cross section around the rotation axis P at a position passing through the rotor core 10. In FIG. 6, only a portion corresponding to one storage hole 20 in the rotor is shown.

本回転子では、一つの格納孔20に対して複数の永久磁石31,32が格納されている。図6の例示では、一つの格納孔20にそれぞれ2つの永久磁石31,32が周方向で並んで格納されている。一つの格納孔20に格納される永久磁石31,32は外周側へと同じ極性の磁極面30aを向けて格納される。これによって、一つの格納孔20に格納される永久磁石31,32が一つの界磁磁極として機能する。   In the present rotor, a plurality of permanent magnets 31 and 32 are stored in one storage hole 20. In the example of FIG. 6, two permanent magnets 31 and 32 are stored side by side in the circumferential direction in one storage hole 20. The permanent magnets 31 and 32 stored in one storage hole 20 are stored with the magnetic pole surface 30a having the same polarity facing the outer peripheral side. Accordingly, the permanent magnets 31 and 32 stored in one storage hole 20 function as one field magnetic pole.

一つの格納孔20には複数(ここでは3つ)の部材52が挿入される。部材52は端板50の構成要素である。図7は端板50の概念的な構成の一例を示す斜視図である。端板50は部材51,52を備え、部材52が部材51から延在している。   A plurality (three in this case) of members 52 are inserted into one storage hole 20. The member 52 is a component of the end plate 50. FIG. 7 is a perspective view showing an example of a conceptual configuration of the end plate 50. The end plate 50 includes members 51 and 52, and the member 52 extends from the member 51.

2つの永久磁石30は隣接する部材52の一対の間にそれぞれ保持される。図6の例示では、周方向における永久磁石31,32の間に位置する部材52は、内周部11と共に永久磁石31,32をその厚み方向で挟んでいる。また、3つの部材52が2つの永久磁石31,32をそれぞれ周方向で挟んでいる。図6の例示では、永久磁石31,32の間に位置する部材52は、回転軸Pに垂直な断面がT字状となる形状を有している。そして、この部材52が永久磁石31,32の互いに周方向で隣り合う角に嵌っている。永久磁石31,32の一組の両側に位置する部材52については図2を参照して説明した部材52と同一であるので、詳細な説明は省略する。一つの格納孔20に挿入される3つの部材52が永久磁石31,32をそれぞれ周方向で挟んでいるので、永久磁石31,32を周方向で固定できる。   The two permanent magnets 30 are respectively held between a pair of adjacent members 52. In the illustration of FIG. 6, the member 52 located between the permanent magnets 31 and 32 in the circumferential direction sandwiches the permanent magnets 31 and 32 in the thickness direction together with the inner peripheral portion 11. Three members 52 sandwich the two permanent magnets 31 and 32 in the circumferential direction. In the illustration of FIG. 6, the member 52 positioned between the permanent magnets 31 and 32 has a shape in which a cross section perpendicular to the rotation axis P is T-shaped. The member 52 is fitted to the corners of the permanent magnets 31 and 32 that are adjacent to each other in the circumferential direction. The members 52 located on both sides of the pair of permanent magnets 31 and 32 are the same as the members 52 described with reference to FIG. Since the three members 52 inserted into one storage hole 20 sandwich the permanent magnets 31 and 32 in the circumferential direction, the permanent magnets 31 and 32 can be fixed in the circumferential direction.

かかる回転子によれば、第1の実施の形態と同様にして、外周部12と離間した部材52によって永久磁石30に作用する遠心力が外周部12へと伝達されることを抑制できる。従って、ブリッジ部13に生じる応力を低減することができ、以って径方向における厚みの薄いブリッジ部13を採用できる。   According to such a rotor, it is possible to suppress the centrifugal force acting on the permanent magnet 30 from being transmitted to the outer peripheral portion 12 by the member 52 separated from the outer peripheral portion 12 in the same manner as in the first embodiment. Accordingly, the stress generated in the bridge portion 13 can be reduced, and thus the bridge portion 13 having a small thickness in the radial direction can be employed.

なお、図6の例示では、一つの格納孔20に挿入される3つの部材52のいずれもが外周部12と離間しているが、少なくとも何れか一つが離間していればよい。永久磁石30に作用する遠心力は外周部12と離間した部材52を介して伝達されないので、部材52が設けられない回転子に比べて、永久磁石30に作用する遠心力が外周部12へと伝達されることを抑制できる。   In the illustration of FIG. 6, all of the three members 52 inserted into one storage hole 20 are separated from the outer peripheral portion 12, but at least any one of them may be separated. Since the centrifugal force acting on the permanent magnet 30 is not transmitted through the member 52 spaced apart from the outer peripheral portion 12, the centrifugal force acting on the permanent magnet 30 is applied to the outer peripheral portion 12 as compared with the rotor not provided with the member 52. It is possible to suppress transmission.

また、一つの格納孔20に対して周方向で複数の永久磁石31,32が並んで貫挿されている。よって、一つの格納孔20に対して一つの永久磁石30が貫挿される態様(図2の態様)に比べて、永久磁石31,32の周方向における長さが短い。そして、永久磁石30〜32がそれぞれ、その周方向における両側で部材52によって支持される場合であれば、永久磁石31,32に生じる応力は永久磁石30に生じる応力に比べて小さい。これは、周方向における長さの短い永久磁石31,32に生じる曲げ応力が、周方向における長さの長い永久磁石30に生じる曲げ応力よりも低いからと考えられる。   In addition, a plurality of permanent magnets 31 and 32 are inserted side by side in the circumferential direction with respect to one storage hole 20. Therefore, the length in the circumferential direction of the permanent magnets 31 and 32 is shorter than the mode (the mode of FIG. 2) in which the single permanent magnet 30 is inserted into the single storage hole 20. If the permanent magnets 30 to 32 are respectively supported by the members 52 on both sides in the circumferential direction, the stress generated in the permanent magnets 31 and 32 is smaller than the stress generated in the permanent magnet 30. This is considered because the bending stress generated in the permanent magnets 31 and 32 having a short length in the circumferential direction is lower than the bending stress generated in the permanent magnet 30 having a long length in the circumferential direction.

従って、永久磁石31,32の変位量(たわみ量)を低減することができる。永久磁石31,32に生じる遠心力によって、永久磁石31,32は外周側へと変形するものの、その変位量を低減できるので、永久磁石31,32が外周部12と接する可能性を低減することができる。以って永久磁石31,32に作用する遠心力のうち外周部12へと伝達される力を低減でき、ひいてはブリッジ部13に生じる応力を低減することができる。   Therefore, the displacement amount (deflection amount) of the permanent magnets 31 and 32 can be reduced. Although the permanent magnets 31 and 32 are deformed to the outer peripheral side by the centrifugal force generated in the permanent magnets 31 and 32, the displacement amount can be reduced, so that the possibility that the permanent magnets 31 and 32 are in contact with the outer peripheral portion 12 is reduced. Can do. Therefore, the force transmitted to the outer peripheral part 12 among the centrifugal forces acting on the permanent magnets 31 and 32 can be reduced, and consequently the stress generated in the bridge part 13 can be reduced.

第3の実施の形態.
第3の実施の形態にかかる回転子の概念的な構成の一例を示す斜視図は図1と同様である。但し、第3の実施の形態では、端板50,60は既存の締結部材(例えばリベット又はボルト)によって相互に固定されている。ここでは、部材51,52が回転子用端板50を構成していない。端板50は第1又は第2の実施の形態で述べた部材51によって構成される。但し、端板50,60にはリベット又はボルトが貫挿される貫挿孔がそれぞれ設けられる。
Third embodiment.
The perspective view which shows an example of the notional structure of the rotor concerning 3rd Embodiment is the same as that of FIG. However, in the third embodiment, the end plates 50 and 60 are fixed to each other by existing fastening members (for example, rivets or bolts). Here, the members 51 and 52 do not constitute the rotor end plate 50. The end plate 50 is configured by the member 51 described in the first or second embodiment. However, the end plates 50 and 60 are respectively provided with through holes through which rivets or bolts are inserted.

図8は、回転子用コアを通る位置での、回転軸Pに垂直な断面における回転子の概念的な構成の一例を示している。図8に示す回転子の形状は、部材52の形状を除いて図2に示す回転子と同一の形状である。   FIG. 8 shows an example of a conceptual configuration of the rotor in a cross section perpendicular to the rotation axis P at a position passing through the rotor core. The rotor shown in FIG. 8 has the same shape as the rotor shown in FIG. 2 except for the shape of the member 52.

部材52は第1又は第2の実施の形態とは異なり、例えばリベット又はボルトなどの既存の締結部材である。図8の例示では、回転軸Pに垂直な断面において部材52は円形の形状を有している。そして、第1又は第2の実施の形態と同様に、部材52は外周部12と離間しつつ、内周部11とともに永久磁石30を挟んでいる。部材52は外周部12と離間しつつ、永久磁石30を外周側から支持しているので、永久磁石30に作用する遠心力のうち、外周部12へと伝達される力を低減することができる。これによって、ブリッジ部13に加えられる応力を低減できる。従って、ブリッジ部13として径方向における厚みの薄いブリッジ部を採用しても、ブリッジ部13の変形を招きにくい。ブリッジ部13の厚みが薄いほどブリッジ部13は周方向で隣り合う永久磁石30同士の短絡を低減できる。   Unlike the first or second embodiment, the member 52 is an existing fastening member such as a rivet or a bolt. In the illustration of FIG. 8, the member 52 has a circular shape in a cross section perpendicular to the rotation axis P. As in the first or second embodiment, the member 52 sandwiches the permanent magnet 30 together with the inner peripheral portion 11 while being separated from the outer peripheral portion 12. Since the member 52 is supporting the permanent magnet 30 from the outer peripheral side while being separated from the outer peripheral portion 12, the force transmitted to the outer peripheral portion 12 among the centrifugal force acting on the permanent magnet 30 can be reduced. . Thereby, the stress applied to the bridge part 13 can be reduced. Therefore, even if a bridge portion having a small thickness in the radial direction is adopted as the bridge portion 13, the bridge portion 13 is hardly deformed. As the bridge portion 13 is thinner, the bridge portion 13 can reduce the short circuit between the permanent magnets 30 adjacent in the circumferential direction.

部材52が非磁性体であれば、図8に例示されるように、部材52は永久磁石30の周方向における端に位置していることが望ましい。永久磁石30の周方向における中央(極中心)にて発生する界磁磁束が端に比べて大きいからである。   If the member 52 is a non-magnetic material, it is desirable that the member 52 is positioned at the end of the permanent magnet 30 in the circumferential direction as illustrated in FIG. This is because the field magnetic flux generated at the center (pole center) in the circumferential direction of the permanent magnet 30 is larger than the end.

第1又は第2の実施の形態と同様に、一つの格納孔20に貫挿される部材52の少なくとも何れか一つが外周部12と離間していればよい。また、第2の実施の形態と同様に一つの格納孔20に複数の永久磁石30が格納されていてもよい。   As in the first or second embodiment, it is only necessary that at least one of the members 52 inserted into one storage hole 20 is separated from the outer peripheral portion 12. Also, a plurality of permanent magnets 30 may be stored in one storage hole 20 as in the second embodiment.

また本回転子によれば、部材52としてリベット又はボルトなどの既存の締結部材を用いているので、製造コストを低減できる。   Moreover, according to this rotor, since the existing fastening member, such as a rivet or a bolt, is used as the member 52, the manufacturing cost can be reduced.

第4の実施の形態.
第4の実施の形態にかかる回転子の概念的な構成の一例を示す斜視図は図1と同様である。図9は、回転子用コア10を通る位置での、回転軸Pに垂直な断面における回転子の概念的な構成の一例を示している。図9に示す回転子の形状は、部材52の形状を除いて、図2に示す回転子と同様である。
Fourth embodiment.
The perspective view which shows an example of the notional structure of the rotor concerning 4th Embodiment is the same as that of FIG. FIG. 9 shows an example of a conceptual configuration of the rotor in a cross section perpendicular to the rotation axis P at a position passing through the rotor core 10. The shape of the rotor shown in FIG. 9 is the same as that of the rotor shown in FIG.

部材52は外周部12と離間しつつ、内周部11とともに永久磁石30を挟んでいる。また、部材52は外周側から永久磁石30を覆っている。換言すれば、永久磁石30の外周側の磁極面30aの全面が部材52と、永久磁石30の厚み方向で対面している。   The member 52 is sandwiching the permanent magnet 30 together with the inner peripheral portion 11 while being separated from the outer peripheral portion 12. The member 52 covers the permanent magnet 30 from the outer peripheral side. In other words, the entire magnetic pole surface 30 a on the outer peripheral side of the permanent magnet 30 faces the member 52 in the thickness direction of the permanent magnet 30.

また図9の例示では、部材52は永久磁石30の周方向における両側で厚み方向に沿って内周部11側へと延在している。換言すれば、部材52は永久磁石30を周方向で挟んでいる。これによって、永久磁石30を周方向で固定できる。   In the illustration of FIG. 9, the member 52 extends to the inner peripheral portion 11 side along the thickness direction on both sides in the circumferential direction of the permanent magnet 30. In other words, the member 52 sandwiches the permanent magnet 30 in the circumferential direction. Thereby, the permanent magnet 30 can be fixed in the circumferential direction.

回転子の回転によって、永久磁石30に遠心力が作用したとしても、外周部12と離間した部材52が永久磁石30を支持するので、当該遠心力が外周部12へと伝達されることを防止できる。ひいては連結部13に生じる応力を低減できる。   Even if a centrifugal force acts on the permanent magnet 30 due to the rotation of the rotor, the member 52 separated from the outer peripheral portion 12 supports the permanent magnet 30, thereby preventing the centrifugal force from being transmitted to the outer peripheral portion 12. it can. As a result, the stress which arises in the connection part 13 can be reduced.

また部材52は永久磁石30の磁極面30aの全面を支持している。従って、例えば第1又は第2の実施の形態のように、永久磁石30の周方向における両端で永久磁石30を支持する場合に比べて、永久磁石30に生じる応力を低減できる。これは、磁極面30aの全面で永久磁石30を支持することによって、永久磁石30に曲げ応力が生じないためであると考えられる。   The member 52 supports the entire magnetic pole surface 30 a of the permanent magnet 30. Therefore, for example, as in the first or second embodiment, the stress generated in the permanent magnet 30 can be reduced as compared with the case where the permanent magnet 30 is supported at both ends in the circumferential direction of the permanent magnet 30. This is considered to be because bending stress is not generated in the permanent magnet 30 by supporting the permanent magnet 30 on the entire surface of the magnetic pole surface 30a.

なお、部材52は軟磁性体(例えば鉄)であることが望ましい。永久磁石30の外周側の磁極面30aと外周部12との間に存在する非磁性体の径方向における厚みが厚いほど磁気抵抗が高まり、本回転子が供給する界磁磁束が弱まるからである。   The member 52 is preferably a soft magnetic material (for example, iron). This is because as the thickness in the radial direction of the nonmagnetic material existing between the magnetic pole surface 30a on the outer peripheral side of the permanent magnet 30 and the outer peripheral portion 12 increases, the magnetic resistance increases and the field magnetic flux supplied by the rotor decreases. .

部材52が軟磁性体であれば、端板50,60は非磁性体であることが望ましい。これによって、端板50,60が内周部11と接触し、端板50,60、部材52及び内周部11の一組が永久磁石30の磁極面30a,30bを構造的に連結したとしても、磁極面30a,30bの間で端板50,60、部材52及び内周部11を介して磁束が短絡することを抑制できる。   If the member 52 is a soft magnetic material, the end plates 50 and 60 are preferably non-magnetic materials. As a result, the end plates 50 and 60 are in contact with the inner peripheral portion 11, and a pair of the end plates 50 and 60, the member 52 and the inner peripheral portion 11 structurally connects the magnetic pole surfaces 30 a and 30 b of the permanent magnet 30. Moreover, it can suppress that a magnetic flux short-circuits via the end plates 50 and 60, the member 52, and the inner peripheral part 11 between magnetic pole surface 30a, 30b.

また、部材52を軸方向に流れる磁束に対して容易に磁気飽和する程度に、部材52の径方向における幅が薄いことが望ましい。これによって、永久磁石30の磁極面30a,30bの間で端板50,60、部材52及び内周部11を介して磁束が短絡することを更に抑制できる。   In addition, it is desirable that the width in the radial direction of the member 52 is thin enough that the member 52 is easily magnetically saturated with respect to the magnetic flux flowing in the axial direction. Thereby, it is possible to further suppress the magnetic flux from being short-circuited between the magnetic pole surfaces 30 a and 30 b of the permanent magnet 30 via the end plates 50 and 60, the member 52 and the inner peripheral portion 11.

第5の実施の形態.
図10は第5の実施の形態に係る回転子の概念的な構成の一例を示す斜視図である。本回転子においては、回転子用コア10が複数のコア部を備えている。図10の例示では、回転子用コア10が2つのコア部10A,10Bを備えている。コア部10A,10Bは軸方向で対向して配置される。
Fifth embodiment.
FIG. 10 is a perspective view showing an example of a conceptual configuration of a rotor according to the fifth embodiment. In the present rotor, the rotor core 10 includes a plurality of core portions. In the illustration of FIG. 10, the rotor core 10 includes two core portions 10A and 10B. The core portions 10A and 10B are arranged to face each other in the axial direction.

コア部10A,10Bをそれぞれ通る位置での回転軸Pに垂直な断面における回転子の構成は、図2,6,8,9で示した回転子のいずれかの構成と同様である。以下、一例として、コア部10A,10Bをそれぞれ通る位置での、回転軸Pに垂直な断面における回転子の構成が、図6回転子の構成と同一の場合について説明する。   The configuration of the rotor in the cross section perpendicular to the rotation axis P at the positions passing through the core portions 10A and 10B is the same as the configuration of any of the rotors shown in FIGS. Hereinafter, as an example, the case where the configuration of the rotor in the cross section perpendicular to the rotation axis P at the positions passing through the core portions 10A and 10B is the same as the configuration of the rotor in FIG. 6 will be described.

コア部10A,10Bはその周方向における位置が相互にずれて配置される。図11,12はコア部10A,10Bの位置関係について説明するための図である。なお、図11,12では、永久磁石31,32及び部材52,72のみが示されている。なお、部材72については後述する。図11では、コア部10Aにおいて、一の界磁磁極を構成する永久磁石31,32の一組同士の周方向における相互間(極間)と、回転軸Pとを結んだ直線(以下、基準線と呼ぶ)が破線で示されている。図12では、コア部10Bにおける基準線が一点破線で示されている。図12ではコア部10Aにおける基準線が破線で示されている。図12から理解できるように、コア部10A,10Bにおける基準線が回転軸Pを中心として角度x(以下、スキュー角と呼ぶ)の分、周方向にずれている。換言すると、コア部10A,10Bはその周方向における位置が相互にスキュー角xの分ずれて配置される。   The core portions 10A and 10B are arranged with their positions in the circumferential direction shifted from each other. 11 and 12 are diagrams for explaining the positional relationship between the core portions 10A and 10B. 11 and 12, only the permanent magnets 31 and 32 and the members 52 and 72 are shown. The member 72 will be described later. In FIG. 11, in the core portion 10 </ b> A, a straight line (hereinafter referred to as a reference) that connects a pair of permanent magnets 31 and 32 that constitute one field magnetic pole in the circumferential direction (between poles) and a rotation axis P. Are called dashed lines). In FIG. 12, the reference line in the core portion 10B is indicated by a one-dot broken line. In FIG. 12, the reference line in the core portion 10A is indicated by a broken line. As can be understood from FIG. 12, the reference lines in the core portions 10 </ b> A and 10 </ b> B are shifted in the circumferential direction by an angle x (hereinafter referred to as a skew angle) with the rotation axis P as the center. In other words, the core portions 10A and 10B are arranged so that their positions in the circumferential direction are shifted from each other by the skew angle x.

このスキュー角xを適宜に設定することで、本回転子を用いた回転電機において、回転子についての振動の高次調波成分を低減することができる。より具体的には、回転子の界磁磁極の対の数(極対数)Pと、低減したいn次調波成分とを用いて、スキュー角xが例えば次式を満たすように設定される。これによって、振動のn次調波成分を低減できる。   By appropriately setting the skew angle x, in a rotating electrical machine using the present rotor, it is possible to reduce high-order harmonic components of vibration of the rotor. More specifically, the skew angle x is set so as to satisfy the following equation, for example, using the number of pairs of magnetic poles (number of pole pairs) P of the rotor and the n-order harmonic component to be reduced. Thereby, the n-order harmonic component of vibration can be reduced.

x=360/(2Pn) ・・・(9)   x = 360 / (2Pn) (9)

また図10を参照して、本回転子は、回転子用端板50,60,70を備えている。回転子用端板50は例えば軸方向においてコア部10Bとは反対側でコア部10Aに設けられる。回転子用端板60は軸方向においてコア部10Aとは反対側でコア部10Bに設けられる。回転子用端板70はコア部10A,10Bの間に設けられる。回転子用端板60については第1乃至第4の実施の形態で説明したものと同一であるので説明を省略する。   Referring to FIG. 10, the rotor includes rotor end plates 50, 60 and 70. For example, the rotor end plate 50 is provided on the core portion 10A on the opposite side of the core portion 10B in the axial direction. The rotor end plate 60 is provided on the core portion 10B on the opposite side of the core portion 10A in the axial direction. The rotor end plate 70 is provided between the core portions 10A and 10B. Since the rotor end plate 60 is the same as that described in the first to fourth embodiments, the description thereof is omitted.

図13は回転子用端板50,60,70の概念的な構成の一例を示す斜視図である。回転子用端板50は図6の回転子用端板50と同一の構成を有している。但し、部材52は、コア部10Aが有する外周部12離間しつつ、コア部10Aが有する内周部11と共にコア部10Aが有する永久磁石31,32を挟む(図6、図11も参照)。   FIG. 13 is a perspective view showing an example of a conceptual configuration of the rotor end plates 50, 60, 70. The rotor end plate 50 has the same configuration as the rotor end plate 50 of FIG. However, the member 52 sandwiches the permanent magnets 31 and 32 included in the core portion 10A together with the inner peripheral portion 11 included in the core portion 10A while being separated from the outer peripheral portion 12 included in the core portion 10A (see also FIGS. 6 and 11).

回転子用端板70は部材71,72を備えている。回転子用端板70は回転子用端板50と同様の構成を有している。部材71,72は部材51,52とそれぞれ同様の形状を有している。部材71はコア部10A,10Bの相互間に設けられる。そして、部材72は部材71から延在し、コア部10Bが有する外周部12と離間しつつ、コア部10Bが有する内周部11とともにコア部10Bが有する永久磁石31,32を挟む(図6、図12も参照)。   The rotor end plate 70 includes members 71 and 72. The rotor end plate 70 has the same configuration as the rotor end plate 50. The members 71 and 72 have the same shape as the members 51 and 52, respectively. The member 71 is provided between the core portions 10A and 10B. The member 72 extends from the member 71 and sandwiches the permanent magnets 31 and 32 included in the core portion 10B together with the inner peripheral portion 11 included in the core portion 10B while being separated from the outer peripheral portion 12 included in the core portion 10B (FIG. 6). See also FIG.

なお、コア部10A,10Bはその周方向における位置が相互にスキュー角xの分ずれて配置されるので、これに伴って部材52,72も相互にスキュー角xの分、周方向にずれる。   Since the core portions 10A and 10B are disposed so that their positions in the circumferential direction are shifted from each other by the skew angle x, the members 52 and 72 are also shifted from each other in the circumferential direction by the skew angle x.

かかる回転子が回転軸Pを中心として回転した場合、コア部10A,10Bが有する永久磁石31,32は部材52,72によって支持される。よって、第2の実施の形態と同様にコア部10A,10Bが有するブリッジ部13に生じる応力を低減できる。   When the rotor rotates about the rotation axis P, the permanent magnets 31 and 32 included in the core portions 10A and 10B are supported by the members 52 and 72. Therefore, the stress which arises in the bridge part 13 which 10 A of core parts and 10B have similarly to 2nd Embodiment can be reduced.

なお、部材72は回転子用端板60から延在していてもよい。また部材52,72が部材71から延在していてもよい。この場合であれば、部材51として既存の回転子用端板を用いることができる。かかる効果の招来はスキューの存否に依らない。また、第1の実施の形態と同様に、部材52は部材71と相互に連結され、部材72は回転子用端板60と相互に連結されても良い。これによって、部材52,72の強度を向上できるので、永久磁石31,32がたわんで外周部へと接することを抑制できる。   The member 72 may extend from the rotor end plate 60. Further, the members 52 and 72 may extend from the member 71. In this case, an existing rotor end plate can be used as the member 51. The invitation of this effect does not depend on the presence or absence of skew. Further, as in the first embodiment, the member 52 may be connected to the member 71 and the member 72 may be connected to the rotor end plate 60. Thereby, since the strength of the members 52 and 72 can be improved, it is possible to suppress the permanent magnets 31 and 32 from being bent and coming into contact with the outer peripheral portion.

また、回転子が3つ以上のコア部を有し、隣り合うコア部同士の間のスキュー角を式(9)に基づいて相違せしめてもよい。これによって、回転子の振動についての異なる複数の高次調波成分を低減することができる。   Further, the rotor may have three or more core portions, and the skew angle between the adjacent core portions may be made different based on Expression (9). Thereby, a plurality of different high-order harmonic components regarding the vibration of the rotor can be reduced.

10 回転子用コア
11 内周部
12 外周部
13 連結部
20 格納孔
30〜32 永久磁石
50,60,70 回転子用端板
51,52,71,72 部材
P 回転軸
DESCRIPTION OF SYMBOLS 10 Rotor core 11 Inner peripheral part 12 Outer peripheral part 13 Connection part 20 Storage hole 30-32 Permanent magnet 50, 60, 70 End plate 51, 52, 71, 72 Member P Rotating shaft

Claims (9)

回転軸(P)の周りで環状に配置される複数の永久磁石(30〜32)と、
少なくとも一つの前記永久磁石を格納するための格納孔(20)の複数が穿たれ、前記格納孔に対して前記回転軸側に存する内周部(11)と、前記格納孔に対して前記回転軸とは反対側に存する外周部(12)の複数と、前記回転軸を中心にした周方向で前記外周部同士を相互に連結する連結部(13)とを有する回転子用コアと
を備える回転子に対して、前記回転軸に沿う軸方向における少なくとも一方の側に設けられる端板(50)であって、
前記回転子に対して前記軸方向の前記一方の側に設けられる第1部材(51)と、
前記第1部材から延在し、前記外周部と離間しつつ、前記内周部と共に前記複数の永久磁石をそれぞれ挟む複数の第2部材(52)と
を備える、回転子用端板。
A plurality of permanent magnets (30-32) arranged in a ring around the rotation axis (P);
A plurality of storage holes (20) for storing at least one of the permanent magnets are formed, and an inner peripheral portion (11) existing on the rotating shaft side with respect to the storage holes, and the rotation with respect to the storage holes A rotor core having a plurality of outer peripheral portions (12) existing on the opposite side of the shaft and a connecting portion (13) for connecting the outer peripheral portions to each other in a circumferential direction around the rotating shaft. An end plate (50) provided on at least one side in the axial direction along the rotation axis with respect to the rotor,
A first member (51) provided on the one side in the axial direction with respect to the rotor;
An end plate for a rotor, comprising: a plurality of second members (52) extending from the first member and being spaced apart from the outer peripheral portion and sandwiching the plurality of permanent magnets together with the inner peripheral portion.
前記第2部材(52)は、前記回転軸(P)を中心とした周方向における前記永久磁石(30〜32)の両側でのみ、前記内周部(11)とともに前記永久磁石を挟み、一の前記格納孔(20)には複数の前記永久磁石が前記周方向で並んで格納される、請求項1に記載の回転子用端板。   The second member (52) sandwiches the permanent magnet together with the inner peripheral portion (11) only on both sides of the permanent magnet (30 to 32) in the circumferential direction around the rotation axis (P). The rotor end plate according to claim 1, wherein a plurality of the permanent magnets are stored side by side in the circumferential direction in the storage hole. 前記第2部材(52)は前記永久磁石を覆う、請求項1に記載の回転子用端板。   The rotor end plate according to claim 1, wherein the second member (52) covers the permanent magnet. 前記第1部材(51)及び前記第2部材(52)の少なくとも何れか一方は非磁性である、請求項1乃至3の何れか一つに記載の回転子用端板。   The rotor end plate according to any one of claims 1 to 3, wherein at least one of the first member (51) and the second member (52) is nonmagnetic. 前記複数の永久磁石(30〜32)と、
少なくとも一つの前記永久磁石を格納するための格納孔(20)の複数が穿たれ、前記格納孔に対して前記回転軸側に存する内周部(11)と、前記格納孔に対して前記回転軸とは反対側に存する外周部(12)の複数と、前記回転軸を中心にした周方向で前記外周部同士を相互に連結する連結部(13)とを有する前記回転子用コア(10)と、
請求項1ないし4の何れか一つに記載の前記回転子用端板(50)と、
前記軸方向において前記回転子用端板とは反対側に設けられる第2の回転子用端板と
を備え、
前記第2部材(52)は前記第1部材(51)と前記第2の回転子用端板とを相互に連結して固定する、回転子。
The plurality of permanent magnets (30 to 32);
A plurality of storage holes (20) for storing at least one of the permanent magnets are formed, and an inner peripheral portion (11) existing on the rotating shaft side with respect to the storage holes, and the rotation with respect to the storage holes The rotor core (10) having a plurality of outer peripheral portions (12) existing on the opposite side of the shaft and a connecting portion (13) for connecting the outer peripheral portions to each other in a circumferential direction around the rotating shaft. )When,
The rotor end plate (50) according to any one of claims 1 to 4,
A second rotor end plate provided on the opposite side of the rotor end plate in the axial direction;
The second member (52) is a rotor that connects and fixes the first member (51) and the second rotor end plate to each other.
前記複数の永久磁石(30〜32)と、
少なくとも一つの前記永久磁石を格納するための格納孔(20)の複数が穿たれ、前記格納孔に対して前記回転軸側に存する内周部(11)と、前記格納孔に対して前記回転軸とは反対側に存する外周部(12)の複数と、前記回転軸を中心にした周方向で前記外周部同士を相互に連結する連結部(13)とを有する前記回転子用コア(10)と、
請求項1ないし4の何れか一つに記載の前記回転子用端板(50)と
を備え、
前記外周部(12)と前記永久磁石(30)との間には間隙が生じている、回転子。
The plurality of permanent magnets (30 to 32);
A plurality of storage holes (20) for storing at least one of the permanent magnets are formed, and an inner peripheral portion (11) existing on the rotating shaft side with respect to the storage holes, and the rotation with respect to the storage holes The rotor core (10) having a plurality of outer peripheral portions (12) existing on the opposite side of the shaft and a connecting portion (13) for connecting the outer peripheral portions to each other in a circumferential direction around the rotating shaft. )When,
The rotor end plate (50) according to any one of claims 1 to 4,
A rotor having a gap between the outer peripheral portion (12) and the permanent magnet (30).
前記複数の永久磁石(30〜32)と、
少なくとも一つの前記永久磁石を格納するための格納孔(20)の複数が穿たれ、前記格納孔に対して前記回転軸側に存する内周部(11)と、前記格納孔に対して前記回転軸とは反対側に存する外周部(12)の複数と、前記回転軸を中心にした周方向で前記外周部同士を相互に連結する連結部(13)とを含むコア部(10A,10B)の複数を有し、前記複数のコア部が前記軸方向で相互に対面し、前記複数のコア部が前記周方向で互いにずれて配置される、前記回転子用コア(10)と、
請求項1ないし4の何れか一つに記載の前記回転子用端板(50,70)の複数と
を備え、
前記コア部のそれぞれにおいて、前記軸方向の一方側に一の前記第1部材が隣接し、前記一の前記第1部材から延在する一の前記第2部材は、前記一の前記第1部材と前記軸方向の他方側で隣接する一の前記コア部(10A)が有する前記外周部と離間しつつ、前記一の前記コア部が有する内周部とともに、前記一の前記コア部が有する前記複数の永久磁石を挟む、回転子。
The plurality of permanent magnets (30 to 32);
A plurality of storage holes (20) for storing at least one of the permanent magnets are formed, and an inner peripheral portion (11) existing on the rotating shaft side with respect to the storage holes, and the rotation with respect to the storage holes A core portion (10A, 10B) including a plurality of outer peripheral portions (12) existing on the opposite side of the shaft and a connecting portion (13) for connecting the outer peripheral portions to each other in a circumferential direction centering on the rotating shaft. The rotor core (10), wherein the plurality of core portions face each other in the axial direction, and the plurality of core portions are displaced from each other in the circumferential direction;
A plurality of the rotor end plates (50, 70) according to any one of claims 1 to 4,
In each of the core portions, one of the first members is adjacent to one side in the axial direction, and one of the second members extending from the one of the first members is the one of the first members. The one core part has the inner peripheral part of the one core part while being separated from the outer peripheral part of the one core part (10A) adjacent on the other side in the axial direction. A rotor with multiple permanent magnets.
前記複数の永久磁石(30〜32)と、
少なくとも一つの前記永久磁石を格納するための格納孔(20)の複数が穿たれ、前記格納孔に対して前記回転軸側に存する内周部(11)と、前記格納孔に対して前記回転軸とは反対側に存する外周部(12)の複数と、前記回転軸を中心にした周方向で前記外周部同士を相互に連結する連結部(13)とを有する前記回転子用コア(10)と、
請求項1ないし4の何れか一つに記載の前記回転子用端板(50)と
を備え、
前記永久磁石(30)と前記外周部(12)との一組の質量をm、前記永久磁石と前記外周部との一組の質量中心と、前記回転軸(P)との間の距離をR、前記回転子用コアの最高回転数における角速度をω、前記連結部(13)から、前記質量中心を通り前記回転軸を中心とした径方向に平行な直線までの距離をL、前記連結部(13)の前記軸方向及び前記径方向がなす断面における断面係数をZ、安全率をFs,補正係数をσ、前記連結部の降伏点をYPとすると、
σ・Fs・L・mRω2/(2Z)>YP
を満たす、回転子。
The plurality of permanent magnets (30 to 32);
A plurality of storage holes (20) for storing at least one of the permanent magnets are formed, and an inner peripheral portion (11) existing on the rotating shaft side with respect to the storage holes, and the rotation with respect to the storage holes The rotor core (10) having a plurality of outer peripheral portions (12) existing on the opposite side of the shaft and a connecting portion (13) for connecting the outer peripheral portions to each other in a circumferential direction around the rotating shaft. )When,
The rotor end plate (50) according to any one of claims 1 to 4,
A set of masses of the permanent magnet (30) and the outer peripheral portion (12) is m, and a distance between the set of mass centers of the permanent magnet and the outer peripheral portion and the rotation shaft (P) is R, the angular velocity at the maximum rotational speed of the rotor core is ω, the distance from the connecting portion (13) to a straight line passing through the center of mass and parallel to the radial direction about the rotating shaft is L, the connecting When the section modulus in the cross section formed by the axial direction and the radial direction of the portion (13) is Z, the safety factor is Fs, the correction coefficient is σ, and the yield point of the connecting portion is YP,
σ · Fs · L · mRω 2 / (2Z)> YP
Meet the rotor.
前記複数の永久磁石(30〜32)と、
少なくとも一つの前記永久磁石を格納するための格納孔(20)の複数が穿たれ、前記格納孔に対して前記回転軸側に存する内周部(11)と、前記格納孔に対して前記回転軸とは反対側に存する外周部(12)の複数と、前記回転軸を中心にした周方向で前記外周部同士を相互に連結する連結部(13)とを含むコア部(10A,10B)の2つを有し、前記2つのコア部が前記軸方向で相互に対面する前記回転子用コア(10)と
を備える回転子について、前記永久磁石を支持する支持部材(70;71,72,52)であって、
前記コア部の間に設けられる第1部材(71)と、
前記第1部材から延在し、一の前記コア部が有する前記外周部と離間しつつ、前記一の前記コア部が有する前記内周部と共に、前記一の前記コア部が有する前記複数の永久磁石をそれぞれ挟む複数の第2部材(52)と
前記第1部材から延在し、二の前記コア部が有する前記外周部と離間しつつ、前記二の前記コア部が有する前記内周部と共に、前記二の前記コア部が有する前記複数の永久磁石をそれぞれ挟む複数の第3部材(72)と
を備える、永久磁石支持部材。
The plurality of permanent magnets (30 to 32);
A plurality of storage holes (20) for storing at least one of the permanent magnets are formed, and an inner peripheral portion (11) existing on the rotating shaft side with respect to the storage holes, and the rotation with respect to the storage holes A core portion (10A, 10B) including a plurality of outer peripheral portions (12) existing on the opposite side of the shaft and a connecting portion (13) for connecting the outer peripheral portions to each other in a circumferential direction centering on the rotating shaft. And a support member (70; 71, 72) that supports the permanent magnet with respect to a rotor that includes the rotor core (10) with the two core portions facing each other in the axial direction. , 52),
A first member (71) provided between the core parts;
The plurality of permanents that the one core part has together with the inner peripheral part that the one core part has while extending from the first member and being separated from the outer peripheral part that the one core part has. A plurality of second members (52) sandwiching the magnets, and the inner peripheral portion of the second core portion while being separated from the outer peripheral portion of the second core portion, extending from the first member A permanent magnet support member comprising a plurality of third members (72) sandwiching the plurality of permanent magnets of the two core portions.
JP2009072016A 2009-03-24 2009-03-24 End plate for rotor, permanent magnet support member and rotor Pending JP2010226882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009072016A JP2010226882A (en) 2009-03-24 2009-03-24 End plate for rotor, permanent magnet support member and rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009072016A JP2010226882A (en) 2009-03-24 2009-03-24 End plate for rotor, permanent magnet support member and rotor

Publications (1)

Publication Number Publication Date
JP2010226882A true JP2010226882A (en) 2010-10-07

Family

ID=43043466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009072016A Pending JP2010226882A (en) 2009-03-24 2009-03-24 End plate for rotor, permanent magnet support member and rotor

Country Status (1)

Country Link
JP (1) JP2010226882A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099038A (en) * 2011-10-28 2013-05-20 Mitsuba Corp Rotor for electric motor and brushless motor
WO2014054150A1 (en) * 2012-10-04 2014-04-10 三菱電機株式会社 Electric motor having embedded permanent magnets
JP2018157654A (en) * 2017-03-16 2018-10-04 多摩川精機株式会社 Magnet fixing structure for ipm motor
WO2019160185A1 (en) * 2018-02-14 2019-08-22 한양대학교 산학협력단 Rotor to which end plate having saliency is applied
EP3955429A4 (en) * 2019-04-11 2022-05-25 Panasonic Intellectual Property Management Co., Ltd. Motor and electric device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099038A (en) * 2011-10-28 2013-05-20 Mitsuba Corp Rotor for electric motor and brushless motor
WO2014054150A1 (en) * 2012-10-04 2014-04-10 三菱電機株式会社 Electric motor having embedded permanent magnets
WO2014054688A1 (en) * 2012-10-04 2014-04-10 三菱電機株式会社 Electric motor having embedded permanent magnets
GB2520657A (en) * 2012-10-04 2015-05-27 Mitsubishi Electric Corp Electric motor having embedded permanent magnets
JPWO2014054688A1 (en) * 2012-10-04 2016-08-25 三菱電機株式会社 Permanent magnet embedded motor
US9762098B2 (en) 2012-10-04 2017-09-12 Mitsubishi Electric Corporation Electric motor having embedded permanent magnets
GB2520657B (en) * 2012-10-04 2020-05-20 Mitsubishi Electric Corp Electric motor having embedded permanent magnets
JP2018157654A (en) * 2017-03-16 2018-10-04 多摩川精機株式会社 Magnet fixing structure for ipm motor
WO2019160185A1 (en) * 2018-02-14 2019-08-22 한양대학교 산학협력단 Rotor to which end plate having saliency is applied
EP3955429A4 (en) * 2019-04-11 2022-05-25 Panasonic Intellectual Property Management Co., Ltd. Motor and electric device

Similar Documents

Publication Publication Date Title
JP6422595B2 (en) Electric motor and air conditioner
JP6508168B2 (en) Electric rotating machine
JP5533879B2 (en) Permanent magnet type rotating electrical machine rotor
JP5889340B2 (en) Rotor of embedded permanent magnet electric motor, electric motor provided with the rotor, compressor provided with the electric motor, and air conditioner provided with the compressor
JP5370433B2 (en) Permanent magnet embedded electric motor
JP5436525B2 (en) Electric motor
JP5365074B2 (en) Axial gap type rotating electrical machine
JP2012100424A (en) Rotor for rotary electric machine
US9806569B2 (en) Hybrid excitation rotating electrical machine
JP2019054659A (en) Rotary electric machine
US9698634B2 (en) Stator core and permanent magnet motor
JP5383915B2 (en) Permanent magnet type rotating electric machine
JP4970974B2 (en) Rotating electric machine
JP2010226882A (en) End plate for rotor, permanent magnet support member and rotor
JP2013132124A (en) Core for field element
WO2013094024A1 (en) Magnetic bearing
WO2015004745A1 (en) Rotating electrical machine and elevator hoist
JP2008131742A (en) Motor
JP2008131693A (en) Field magnetic element, rotary electric machine and compressor
JP2007089304A (en) Permanent-magnet type rotating electric machine
JP2013051837A (en) Rotary electric machine
JP2010200507A (en) Core for rotor, and rotor
JP5863694B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP2017051023A (en) Rotary electric machine
JP2021175216A (en) Rotary electric machine