WO2018211690A1 - Tea beverage - Google Patents

Tea beverage Download PDF

Info

Publication number
WO2018211690A1
WO2018211690A1 PCT/JP2017/018851 JP2017018851W WO2018211690A1 WO 2018211690 A1 WO2018211690 A1 WO 2018211690A1 JP 2017018851 W JP2017018851 W JP 2017018851W WO 2018211690 A1 WO2018211690 A1 WO 2018211690A1
Authority
WO
WIPO (PCT)
Prior art keywords
tea
mass
tea beverage
component
hesperidin
Prior art date
Application number
PCT/JP2017/018851
Other languages
French (fr)
Japanese (ja)
Inventor
小林 由典
裕子 内田
祐一 霜田
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to JP2017553452A priority Critical patent/JP6289773B1/en
Priority to PCT/JP2017/018851 priority patent/WO2018211690A1/en
Publication of WO2018211690A1 publication Critical patent/WO2018211690A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F3/00Tea; Tea substitutes; Preparations thereof
    • A23F3/16Tea extraction; Tea extracts; Treating tea extract; Making instant tea

Definitions

  • the present invention relates to a tea beverage.
  • Hesperidin is a kind of flavonoid contained in citrus fruits, and has been reported to have physiological effects such as strengthening of capillaries, prevention of bleeding, and degradation of blood neutral fat.
  • tea beverages containing hesperidin have been proposed (Patent Documents 1 and 2).
  • Patent Document 2 it is reported that the odor peculiar to hesperidin can be removed by heat-processing hesperidin aqueous solution.
  • vanillin is a main component of vanilla fragrance, and is generally used as a flavor for imparting a sweet fragrance specific to ice cream, chocolate, candy, cake, liqueur and the like in the field of food and drink.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2009-55905
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2017-12069
  • the present invention includes the following components (A) and (B): (A) vanillin 13-200 mass ppb, and (B) at least one selected from hesperidin and hesperidin sugar adduct, and the mass ratio of component (A) to component (B) [(B) / ( A)] is 1000 to 200,000.
  • the present inventor examined the flavor of a tea beverage containing at least one selected from hesperidin and hesperidin sugar adduct (hereinafter also referred to as “hesperidin etc.”). It has an alkaline taste and is inferior to ordinary tea beverages, and therefore, it has been found to be an obstacle to daily drinking.
  • alkaline taste in this specification refers to “a sensation caused in the mouth by a substance typified by sodium hydrogencarbonate” defined in JIS Z 8144: 2004.
  • the present invention relates to a tea beverage having a mature taste that reduces the slimy feeling and alkaline taste derived from at least one selected from hesperidin and hesperidin sugar adducts.
  • the inventor unexpectedly includes a tea beverage containing hesperidin and the like by containing a specific amount of vanillin known as a sweet scent component and controlling the quantitative ratio of hesperidin and vanillin within a specific range. It has been found that a tea beverage having not only a slimy feeling derived from hesperidin and the like and a reduced alkaline taste but also a mature taste can be obtained. Furthermore, it has been found that when a certain amount of a specific aldehyde is present together with vanillin, a slimy feeling and an alkaline taste are further reduced, while a matured taste is enhanced and a sharp aftertaste tea beverage is obtained.
  • round-ripened taste refers to the rich and fragrant flavor of brewed brewed tea
  • kurazu-cha refers to the storage of new tea picked in spring at low temperature. Aged tea.
  • aftertaste refers to “feeling remaining in the mouth” described in JIS Z 8144: 2004, and “good aftertaste sharpness” refers to a feeling that the aftertaste quickly disappears.
  • a tea beverage that not only reduces the slimy feeling derived from hesperidin and the like, but also reduces the alkaline taste, and also has the matured feeling that aged brewed tea has.
  • tea beverage refers to tea leaves of the genus Camellia, for example, tea leaves selected from C. sinensis. Var. Sinensis (including Yabuta species), C. sinensis. Var. Assamica, and hybrids thereof ( A beverage containing Camellia sinensis) as a raw material.
  • the tea leaves can be classified into non-fermented tea, semi-fermented tea, and fermented tea according to the processing method, and one or more kinds can be used.
  • the tea varieties and collection times of tea leaves are not particularly limited, and the tea leaves may be subjected to a burning process.
  • non-fermented tea examples include green tea such as sencha, deep-steamed sencha, roasted tea,nadoha, gyokuro, kabusecha, mochi tea, kettle tea, stem tea, stick tea, and bud tea.
  • semi-fermented tea examples include oolong tea such as iron kannon, color type, golden katsura, and martial arts tea.
  • fermented tea examples include black teas such as Darjeeling, Assam, Sri Lanka and the like.
  • beverages containing grains or leaves other than Camellia as raw materials are also included in the tea beverage of the present invention.
  • grains include barley, wheat, pigeons, rye, buckwheat, and bare wheat; rice such as brown rice; soybeans, black soybeans, broad beans, kidney beans, red beans, shrimp, peas, peanuts, peas, mungbeans, etc. Beans; minor grains such as buckwheat, corn, white sesame, black sesame, persimmon, persimmon, persimmon, and kinuwa.
  • leaves other than the Camellia genus for example, ginkgo leaves, bamboo leaves, loquat leaves, mulberry leaves, wolfberry leaves, bamboo leaves, komatsuna, rooibos, kumazasa, dokudami, amacha eel, honeysuckle, primrose, Kakidooshi, Kawaraketsumei, Gymnema sylvestre, twilight tea (walnut family), persimmon tea (rose family), kidachi aloe and the like.
  • herbs such as chamomile, hibiscus, peppermint, lemongrass, lemon peel, lemon balm, rosehip and rosemary can also be used.
  • One or two or more raw materials such as leaves and grains other than Camellia can be used.
  • tea beverages according to the present invention examples include green tea beverages, semi-fermented tea beverages, fermented tea beverages, roasted tea beverages, and blended tea beverages.
  • green tea drinks are preferable because the effects of the present invention can be easily enjoyed.
  • the “blend tea beverage” refers to a beverage using a plurality of tea ingredients.
  • the tea beverage of the present invention contains vanillin as the component (A).
  • the origin of vanillin is not particularly limited as long as it is commonly used in the field of food and drink. For example, it may be extracted from vanilla beans, chemically synthesized, commercially available, or derived from raw materials. Examples of commercially available vanillin include vanillin (manufactured by Wako Pure Chemical Industries, Ltd., Wako Special Grade).
  • the content of the component (A) in the tea beverage of the present invention is 13 to 200 mass ppb, but from the viewpoint of slimy feeling, reduction of alkalinity, and enhancement of ripeness, it is preferably 14 mass ppb or more, and 17 mass ppb or more. More preferably, 20 mass ppb or more is further preferred, 22 mass ppb or more is particularly preferred, and from the viewpoint of enhancing ripeness, 180 mass ppb or less is preferred, 150 mass ppb or less is more preferred, 100 mass ppb or less is more preferred, 80 mass ppb or less is especially preferable, and 60 mass ppb or less is still more preferable.
  • the content range of the component (A) is preferably 14 to 180 mass ppb, more preferably 17 to 150 mass ppb, still more preferably 20 to 100 mass ppb in the tea beverage of the present invention. More preferably, it is 20 to 80 mass ppb, and further preferably 22 to 60 mass ppb.
  • content of a component (A) can be measured with the analysis method suitable for the condition of the measurement sample among the analysis methods generally known, for example, GC / MS method. Specifically, the methods described in the examples described later can be mentioned.
  • the sample is freeze-dried, or impurities in the sample are removed to adapt to the separation performance of the device. You may give it.
  • the tea beverage of the present invention contains at least one selected from hesperidin and hesperidin sugar adduct as the component (B).
  • hesperidin is a glycoside in which hesperetin is aglycone and a sugar is bound to this
  • hesperidin sugar adduct is a glucose residue in the rutinose unit of this hesperidin.
  • the hesperidin sugar adduct includes monoglucoside hesperidin in which one glucose is added to hesperidin and one in which one or more glucose is further added to the monoglucoside hesperidin, and may be a mixture thereof.
  • the number (n) of glucose added per mole of hesperidin is preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 5, still more preferably 1 to 3, and still more preferably 1.
  • the hesperidin sugar adduct can be obtained by a known method such as a method of allowing glycosyltransferase to act on hesperidin in the presence of a glucose source (sugar donor).
  • a glucose source include starch partial hydrolysates such as amylose, dextrin, cyclodextrin and maltooligosaccharide, liquefied starch, gelatinized starch and the like.
  • glycosyltransferase for example, ⁇ -glycosidase (EC ⁇ ⁇ 3.2.1.20), cyclomaltodextrin glucanotransferase (EC 2.4.1.19), ⁇ -amylase (EC 3.2.1.1) and the like are appropriately selected according to the glucose source. Can be used. For the specific production method, for example, the description in Japanese Patent No. 3060227 can be referred to.
  • component (A) commercially available products may be used, and examples thereof include hesperidin S, ⁇ G hesperidin H, ⁇ G hesperidin PA-T and the like.
  • the tea beverage of the present invention contains component (B) at a specific quantitative ratio with respect to component (A).
  • the mass ratio [(B) / (A)] of the component (A) to the component (B) is 1,000 to 200,000.
  • 2000 The above is preferable, 4000 or more is more preferable, 6000 or more is further preferable, 6800 or more is more preferable, and 170000 or less is preferable, 140000 or less is more preferable, 120,000 or less is further preferable, 90000 or less is further preferable, and 70000 or less is preferable. More preferably, it is more preferably 45,000 or less, and particularly preferably 18000 or less.
  • the range of the mass ratio [(B) / (A)] is preferably 2000 to 170000, more preferably 4000 to 140000, still more preferably 6000 to 120,000, and even more preferably 6800 to 90000. More preferably, it is 6800 to 70000, still more preferably 6800 to 45000, and still more preferably 6800 to 18000.
  • the mass of a component (B) here is a monoglucoside hesperidin conversion value.
  • “monoglucoside hesperidin converted value” in this specification means the amount of monoglucoside hesperidin contained in tea beverage, assuming that hesperidin and hesperidin sugar adduct in tea beverage are all monoglucoside hesperidin. To do.
  • the content of the component (B) in the tea beverage of the present invention is preferably 100 ppm by mass or more, more preferably 180 ppm by mass or more from the viewpoint of sliminess, reduction of alkalinity, and enhancement of ripeness as a monoglucoside hesperidin conversion value.
  • 250 mass ppm or more is more preferable
  • 300 mass ppm or more is more preferable
  • 5000 mass ppm or less is preferable
  • 4000 mass ppm or less is more preferable
  • 3500 mass ppm or less is further preferable
  • 2800 mass ppm or less is more preferable.
  • 1300 mass ppm or less is still more preferred, and 800 mass ppm or less is even more preferred.
  • the range of the content of the component (B) is preferably 100 to 5000 ppm by mass, more preferably 180 to 4000 ppm by mass, in terms of monoglucoside hesperidin, in the tea beverage of the present invention.
  • the amount is preferably 250 to 3500 ppm by mass, more preferably 300 to 2800 ppm by mass, still more preferably 300 to 1300 ppm by mass, and even more preferably 300 to 800 ppm by mass.
  • content of a component (B) can be measured with the analysis method suitable for the condition of the measurement sample among the analysis methods generally known, for example, a high performance liquid chromatograph method. For example, the method described in the below-mentioned Example is mentioned.
  • the sample is freeze-dried, or impurities in the sample are removed to adapt to the separation performance of the device. You may give it.
  • the tea beverage of the present invention can contain non-polymer catechins as the component (C).
  • non-polymer catechins refers to non-epimeric catechins such as catechin, gallocatechin, catechin gallate and gallocatechin gallate, and epicatechin, epigallocatechin, epicatechin gallate and epigallocatechin. It is a collective term for epi-catechins such as gallate.
  • at least one of the above eight types may be contained, but all eight types are preferably contained.
  • the content of the component (C) in the tea beverage of the present invention is preferably 200 mass ppm or more, more preferably 300 mass ppm or more, and more preferably 400 mass ppm or more, from the viewpoints of physiological effects, slimy feeling and alkaline taste reduction. More preferably, 600 mass ppm or more is particularly preferable, and from the viewpoint of enhancing ripeness, 8000 mass ppm or less is preferable, 5000 mass ppm or less is more preferable, 3000 mass ppm or less is further preferable, and 1900 mass ppm or less is more preferable, 1400 mass ppm or less is still more preferred, and 900 mass ppm or less is even more preferred.
  • the content range of the component (C) is preferably 200 to 8000 ppm by mass, more preferably 300 to 5000 ppm by mass, and still more preferably 400 to 3000 ppm by mass in the tea beverage of the present invention. More preferably, it is 600 to 1900 mass ppm, still more preferably 600 to 1400 mass ppm, and still more preferably 600 to 900 mass ppm.
  • the content of component (C) is defined on the basis of the total amount of the above eight types, and is an analysis method suitable for the state of the measurement sample among the commonly known analysis methods, for example, high-performance liquid chromatography. Can be measured. Specifically, the methods described in the examples described later can be mentioned.
  • the sample is freeze-dried, or impurities in the sample are removed to adapt to the separation performance of the device. You may give it.
  • the tea beverage of the present invention may further contain one or two kinds selected from (D 1 ) 2-methylbutanal and (D 2 ) 3-methylbutanal as component (D).
  • the component (D) may be derived from a blending component or newly added.
  • the content of the component (D) in the tea beverage of the present invention is preferably 10 mass ppb or more, more preferably 15 mass ppb or more, still more preferably 20 mass ppb or more, and a mature taste from the viewpoint of enhancing the aftertaste sharpness.
  • the content range of the component (D) is preferably 10 to 100 mass ppb, more preferably 15 to 80 mass ppb, still more preferably 20 to 70 mass ppb in the tea beverage of the present invention. More preferably, it is 20 to 60 mass ppb, and still more preferably 20 to 50 mass ppb.
  • the content of component (D) is defined based on the total amount of (D 1 ) 2-methylbutanal and (D 2 ) 3-methylbutanal, and is a measurement sample among the commonly known analytical methods. It can be measured by an analysis method suitable for the present situation, for example, the GC / MS method. Specifically, the methods described in the examples described later can be mentioned.
  • the sample is freeze-dried, or impurities in the sample are removed to adapt to the separation performance of the device. You may give it.
  • the total content of the component (A) and the component (D) in the tea beverage of the present invention is preferably 20 mass ppb or more, more preferably 30 mass ppb or more, from the viewpoint of enhancing the sharpness of the aftertaste, 35
  • the mass is more preferably ppb or more, particularly preferably 40 mass ppb or more, and is preferably 200 mass ppb or less, more preferably 150 mass ppb or less, and even more preferably 110 mass ppb or less, from the viewpoint of enhancing the ripening and aftertaste sharpness.
  • 100 mass ppb or less is further preferred, 80 mass ppb or less is more preferred, and 70 mass ppb or less is even more preferred.
  • the range of the total content of the component (A) and the component (D) is preferably 20 to 200 mass ppb, more preferably 30 to 150 mass ppb in the tea beverage of the present invention.
  • the amount is preferably 35 to 110 mass ppb, more preferably 40 to 100 mass ppb, still more preferably 40 to 80 mass ppb, and still more preferably 40 to 70 mass ppb.
  • the mass ratio [(D) / (A)] of the component (A) and the component (D) in the tea beverage of the present invention is preferably 0.1 or more from the viewpoint of enhancing the sharpness of the aftertaste. 15 or more is more preferable, 0.2 or more is still more preferable, 0.3 or more is more preferable, 0.5 or more is more preferable, 0.7 or more is more preferable, 1 or more is still more preferable, and ripeness From the viewpoint of enhancing the sharpness of the aftertaste, it is preferably 5 or less, more preferably 4 or less, still more preferably 3 or less, still more preferably 2.5 or less, and even more preferably 2 or less.
  • the range of the mass ratio [(D) / (A)] is preferably 0.1 to 5, more preferably 0.15 to 4, still more preferably 0.2 to 3, More preferably, it is 0.3 to 3, particularly preferably 0.5 to 3, even more preferably 0.7 to 2.5, and still more preferably 1 to 2.
  • the tea beverage of the present invention is within the range not impairing the object of the present invention
  • One or more additives such as nectar extract and quality stabilizer can be contained.
  • the content of these additives can be appropriately set within a range that does not impair the object of the present invention.
  • the pH (20 ° C.) of the tea beverage of the present invention is preferably 4.8 or higher, more preferably 5.1 or higher, further preferably 5.3 or higher, from the viewpoint of enhancing the mature taste and reducing the feeling of sliminess. 5 or less is preferable, 6.3 or less is more preferable, and 6.1 or less is still more preferable.
  • the pH range is preferably 4.8 to 6.5, more preferably 5.1 to 6.3, and still more preferably 5.3 to 6.1.
  • the pH is measured by measuring about 100 mL of tea beverage in a 300 mL beaker and adjusting the temperature to 20 ° C.
  • the Brix (20 ° C.) of the tea beverage of the present invention is preferably 0.1 or more, more preferably 0.12 or more, still more preferably 0.15 or more, further preferably 0.2 or more, from the viewpoint of enhancing ripeness. 0.25 or more is still more preferred, 0.3 or more is particularly preferred, 2 or less is preferred, 1.8 or less is more preferred, 1.6 or less is more preferred, 1.4 or less is still more preferred. 3 or less is more preferred, and 1 or less is even more preferred.
  • the range of Brix is preferably 0.1 to 2, more preferably 0.12 to 1.8, still more preferably 0.15 to 1.6, and further preferably 0.2 to 1.4, more preferably 0.2 to 1.3, even more preferably 0.25 to 1.3, and even more preferably 0.3 to 1.
  • “Brix” in the present specification is a value measured using a refractometer for sugar, and is a value corresponding to a mass percentage of an aqueous sucrose solution at 20 ° C. Further, it means the soluble solid content concentration calculated from the refractive index of the sample with reference to the refractive index of the aqueous sucrose solution at 20 ° C. Specifically, it can be measured by the method described in Examples below.
  • the form of the tea beverage of the present invention is not particularly limited, and may take the form of a concentrated liquid tea beverage, a powdered tea beverage, a packaged tea beverage, or the like.
  • concentrated liquid tea beverages and powdered tea beverages when the reduced beverage is prepared so that the non-polymer catechins concentration is the optimum concentration, the content of the component (A) in the reduced beverage, and The mass ratio [(B) / (A)] only needs to satisfy predetermined requirements.
  • the container is not particularly limited as long as it is a normal packaging container.
  • a molded container mainly composed of polyethylene terephthalate (so-called PET bottle), a metal can, a paper container combined with a metal foil or a plastic film, a bottle, etc. Can be mentioned.
  • the tea beverage of the present invention may be heat sterilized.
  • the sterilization method is not particularly limited as long as it conforms to the conditions stipulated by applicable laws and regulations (the Food Sanitation Law in Japan). Examples thereof include a retort sterilization method, a high temperature short time sterilization method (HTST method), an ultra high temperature sterilization method (UHT method), and a post-filling sterilization method (pastration). It is also possible to appropriately select the heat sterilization method according to the type of the container of the packaged tea beverage, for example, when the container can be heated and sterilized after filling the container, such as a metal can and a bottle. In that case, retort sterilization or post-fill sterilization (pasting) can be employed.
  • a heat-sterilized tea beverage generally has a low tea aroma, but if it is a tea beverage of the present invention, a rich roasted incense of tea is felt even if heat-sterilized.
  • the tea beverage of the present invention can be produced by an appropriate method.
  • 13 to 200 mass ppb of component (A) and component (B) with respect to tea extract containing Camellia tea leaves as tea ingredients Can be prepared so that the mass ratio [(B) / (A)] of the two becomes 1000 to 200000.
  • the order of blending the components (A) and (B) is not particularly limited as long as the components (A) and (B) coexist in the tea beverage at a predetermined quantitative ratio.
  • the tea extract can be produced by subjecting tea materials containing Camellia genus tea leaves to known extraction methods, but when using multiple tea materials, they can be extracted separately or mixed and extracted. May be.
  • the extraction method include stirring extraction, column extraction, drip extraction, and the like.
  • the extraction conditions can be appropriately selected depending on the extraction method.
  • the tea raw material and the tea extract can be separated by known solid-liquid separation means such as filtration, centrifugation, membrane treatment and the like.
  • the tea extract thus obtained may be used as it is or after being dried and concentrated.
  • the purchased reagent was dissolved in ethanol and serially diluted to prepare a standard.
  • a sample with a predetermined concentration was added to the sample, and the sample was adsorbed on the SPME fiber in the same manner as the sample alone, and GC / MS measurement was performed.
  • the peak area of ions at m / z 151 was used for quantification.
  • Hesperidin and its sugar adduct were analyzed using a high performance liquid chromatograph (model SCL-10AVP, manufactured by Shimadzu Corp.), and a packed column for liquid chromatography using an octadecyl group (L-column TM ODS). 4.6 mm ⁇ ⁇ 250 mm: manufactured by Chemical Substances Research Institute, Inc.), and measured by a gradient method at a column temperature of 35 ° C.
  • the mobile phase C solution is a distilled aqueous solution containing 0.1 mol / L of acetic acid
  • the D solution is an acetonitrile solution containing 0.1 mol / L of acetic acid
  • the flow rate is 1 mL / min
  • the sample injection amount is 10 ⁇ L
  • the UV detector wavelength is The measurement was performed under the condition of 280 nm.
  • the gradient conditions are as follows.
  • Sample injection volume is 10 ⁇ L, and detection is quantified by absorbance at a wavelength of 283 nm.
  • the mobile phase A solution is a distilled aqueous solution containing 0.1 mol / L of acetic acid
  • the B solution is an acetonitrile solution containing 0.1 mol / L of acetic acid
  • the flow rate is 1 mL / min
  • the sample injection amount is 10 ⁇ L
  • the UV detector wavelength is The measurement was performed under the condition of 280 nm.
  • the gradient conditions are as follows.
  • Concentration gradient condition (volume%) Time Liquid A concentration Liquid B concentration 0 min 97% 3% 5 minutes 97% 3% 37 minutes 80% 20% 43 minutes 80% 20% 43.5 minutes 0% 100% 48.5 minutes 0% 100% 49 minutes 97% 3% 60 minutes 97% 3%
  • a sample was prepared by dissolving the purchased reagent in acetone and serially diluting it. A sample with a predetermined concentration was added to the sample, and the sample was adsorbed on the SPME fiber in the same manner as the sample alone, and GC / MS measurement was performed. For determination, the peak area of ions of m / z 44 for 3-methylbutanal and m / z 57 for 2-methylbutanal was used.
  • Green tea extract I 6 g of green tea leaves (Nibansencha) were extracted with 400 g of ion-exchanged water at 90 ° C. for 3 minutes, and then filtered through a wire mesh to remove the tea husk. Next, this extract was suction filtered through No. 2 filter paper to obtain a green tea extract I. Green tea extract I had a non-polymer catechin content of 0.125% by mass.
  • Green tea extract II 1,000 g of a commercially available catechin preparation (polyphenone HG, manufactured by Mitsui Norin Co., Ltd.) was suspended in 9,000 g of a 95% by mass ethanol aqueous solution under stirring conditions of 25 ° C. and 200 r / min, and activated carbon (Kuraray Coal GLC, 200 g of Kuraray Chemical Co., Ltd.) and 500 g of acid clay (Mizuka Ace # 600, Mizusawa Chemical Co., Ltd.) were added and stirring was continued for about 10 minutes. Subsequently, the stirring process was continued for about 30 minutes at 25 ° C. Subsequently, the activated carbon, the acid clay, and the precipitate were filtered with No.
  • activated carbon Karl Coal GLC, 200 g of Kuraray Chemical Co., Ltd.
  • acid clay Mizusawa Chemical Co., Ltd.
  • Examples 1 to 10, 12 to 16, and Comparative Examples 1 to 2 To 20% by mass of green tea extract I, vanillin and hesperidin preparation A (manufactured by Toyo Seika Co., Ltd., monoglucoside hesperidin converted value 21%) are blended, and then adjusted to the pH shown in Table 1 with citric acid. The total amount was adjusted to 100% by mass with ion-exchanged water, heat sterilized, and then filled into a PET bottle to obtain a container-packed tea beverage. Each container-packed tea beverage obtained was analyzed and sensory evaluated. The results are also shown in Table 1.
  • Example 11 In Example 10, in place of hesperidin preparation A, hesperidin preparation B (manufactured by Hayashibara Co., Ltd., monoglucoside hesperidin converted value: 75%) was mixed to obtain a packaged tea beverage by the same operation as in example 10. . Each container-packed tea beverage obtained was analyzed and sensory evaluated. The results are also shown in Table 1.
  • Green tea extract I 20% by mass, vanillin, hesperidin preparation A (manufactured by Toyo Seika Co., Ltd., monoglucoside hesperidin converted value 21%) and green tea extract II are mixed as appropriate, and then adjusted to pH 5.8 with sodium bicarbonate. Then, the total amount was adjusted to 100% by mass with ion-exchanged water and subjected to heat sterilization treatment, and then filled into a PET bottle to obtain a container-packed tea beverage. Each container-packed tea beverage obtained was analyzed and sensory evaluated. The results are shown in Table 3 together with the results of Example 6.
  • tea beverages must be made to coexist with a specific amount of (A) vanillin and (B) hesperidin, etc. so that the mass ratio [(B) / (A)] of the two is within a specific range.

Abstract

A tea beverage containing the following components (A) and (B): (A) 13-200 ppb (by mass) of vanillin and (B) at least one selected from hesperidin and hesperidin sugar adducts, the mass ratio [(B)/(A)] of component (A) and component (B) being 1000-200,000.

Description

茶飲料Tea drink
 本発明は、茶飲料に関する。 The present invention relates to a tea beverage.
  ヘスペリジンは、柑橘類に多く含まれるフラボノイドの一種であり、毛細血管の強化、出血予防、血中中性脂肪の分解等の生理作用を有することが報告されている。近年、ヘスペリジンの生理活性機能に着目し、ヘスペリジンを含有する茶飲料が提案されている(特許文献1、2)。そして、特許文献2では、ヘスペリジン水溶液を加熱処理することにより、ヘスペリジン特有の臭気を除去できることが報告されている。 Hesperidin is a kind of flavonoid contained in citrus fruits, and has been reported to have physiological effects such as strengthening of capillaries, prevention of bleeding, and degradation of blood neutral fat. In recent years, paying attention to the physiologically active function of hesperidin, tea beverages containing hesperidin have been proposed (Patent Documents 1 and 2). And in patent document 2, it is reported that the odor peculiar to hesperidin can be removed by heat-processing hesperidin aqueous solution.
 一方、バニリンはバニラの香りの主要成分であり、飲食品の分野においてアイスクリーム、チョコレート、キャンディ、ケーキ、リキュール等に特有の甘い香りを付与するためのフレーバーとして一般に使用されている。 On the other hand, vanillin is a main component of vanilla fragrance, and is generally used as a flavor for imparting a sweet fragrance specific to ice cream, chocolate, candy, cake, liqueur and the like in the field of food and drink.
  (特許文献1)特開2009-55905号公報
  (特許文献2)特開2017-12069号公報
(Patent Document 1) Japanese Unexamined Patent Application Publication No. 2009-55905 (Patent Document 2) Japanese Unexamined Patent Application Publication No. 2017-12069
 本発明は、以下の成分(A)及び(B);
(A)バニリン    13~200質量ppb、及び
(B)ヘスペリジン及びヘスペリジン糖付加物から選択される少なくとも1種
を含有し、成分(A)と成分(B)との質量比[(B)/(A)]が1000~200000である、茶飲料を提供するものである。
The present invention includes the following components (A) and (B):
(A) vanillin 13-200 mass ppb, and (B) at least one selected from hesperidin and hesperidin sugar adduct, and the mass ratio of component (A) to component (B) [(B) / ( A)] is 1000 to 200,000.
発明の詳細な説明Detailed Description of the Invention
 本発明者は、ヘスペリジン及びヘスペリジン糖付加物から選択される少なくとも1種(以下、「ヘスペリジン等」とも称する)を含有する茶飲料の風味について検討したところ、口に含んだときに特有のぬめり感やアルカリ味を有しており、通常の茶飲料に比して嗜好性に劣るため、日常的に飲用するうえで障害となりやすいことを見出した。ここで、本明細書において「アルカリ味」とは、JIS Z 8144:2004に規定される「炭酸水素ナトリウムなどを代表とする物質によって口内に引き起こされる感覚」をいう。
 本発明は、ヘスペリジン及びヘスペリジン糖付加物から選択される少なくとも1種に由来のぬめり感やアルカリ味を低減し、円熟味を有する茶飲料に関する。
The present inventor examined the flavor of a tea beverage containing at least one selected from hesperidin and hesperidin sugar adduct (hereinafter also referred to as “hesperidin etc.”). It has an alkaline taste and is inferior to ordinary tea beverages, and therefore, it has been found to be an obstacle to daily drinking. Here, “alkaline taste” in this specification refers to “a sensation caused in the mouth by a substance typified by sodium hydrogencarbonate” defined in JIS Z 8144: 2004.
The present invention relates to a tea beverage having a mature taste that reduces the slimy feeling and alkaline taste derived from at least one selected from hesperidin and hesperidin sugar adducts.
 本発明者は、ヘスペリジン等を含有する茶飲料に、甘い香り成分として知られるバニリンを特定量含有させ、ヘスぺリジン等とバニリンとの量比を特定範囲内に制御することにより、意外にも、ヘスぺリジン等に由来のぬめり感や、アルカリ味を低減できるだけでなく、円熟味を有する茶飲料が得られることを見出した。更に、バニリンとともに特定のアルデヒドが一定量共存すると、より一層ぬめり感、アルカリ味が低減される一方で、円熟味が増強されるとともに、後味のキレのよい茶飲料が得られることを見出した。ここで、本明細書において「円熟味」とは、熟成した蔵出し茶が有する、旨味が増し深みのある香り豊かな味わいをいい、「蔵出し茶」とは、春に摘まれた新茶を低温貯蔵し熟成させたお茶をいう。また、本明細書において「後味」とは、JIS Z 8144:2004に記載の「口内に残る感覚」をいい、「後味のキレのよい」とは、後味が速やかに消えてしまう感覚をいう。 The inventor unexpectedly includes a tea beverage containing hesperidin and the like by containing a specific amount of vanillin known as a sweet scent component and controlling the quantitative ratio of hesperidin and vanillin within a specific range. It has been found that a tea beverage having not only a slimy feeling derived from hesperidin and the like and a reduced alkaline taste but also a mature taste can be obtained. Furthermore, it has been found that when a certain amount of a specific aldehyde is present together with vanillin, a slimy feeling and an alkaline taste are further reduced, while a matured taste is enhanced and a sharp aftertaste tea beverage is obtained. As used herein, “round-ripened taste” refers to the rich and fragrant flavor of brewed brewed tea, and “kurazu-cha” refers to the storage of new tea picked in spring at low temperature. Aged tea. Further, in this specification, “aftertaste” refers to “feeling remaining in the mouth” described in JIS Z 8144: 2004, and “good aftertaste sharpness” refers to a feeling that the aftertaste quickly disappears.
 本発明によれば、ヘスぺリジン等に由来のぬめり感や、アルカリ味を低減できるだけでなく、熟成した蔵出し茶が有する円熟感を有する茶飲料を提供することができる。 According to the present invention, it is possible to provide a tea beverage that not only reduces the slimy feeling derived from hesperidin and the like, but also reduces the alkaline taste, and also has the matured feeling that aged brewed tea has.
 本明細書において「茶飲料」とは、Camellia属の茶葉、例えば、C.sinensis.var.sinensis(やぶきた種を含む)、C.sinensis.var.assamica及びそれらの雑種から選択される茶葉(Camellia sinensis)を原料として含む飲料をいう。茶葉は、その加工方法により、不発酵茶、半発酵茶、発酵茶に分類することができ、1種又は2種以上を使用することができる。なお、茶葉の茶品種及び採取時期は特に限定されず、また茶葉は火入れ加工が施されていてもよい。
 不発酵茶としては、例えば、煎茶、深蒸し煎茶、焙じ茶、番茶、玉露、かぶせ茶、碾茶、釜入り茶、茎茶、棒茶、芽茶等の緑茶が挙げられる。また、半発酵茶としては、例えば、鉄観音、色種、黄金桂、武夷岩茶等の烏龍茶が挙げられる。更に、発酵茶としては、ダージリン、アッサム、スリランカ等の紅茶が挙げられる。
As used herein, the term “tea beverage” refers to tea leaves of the genus Camellia, for example, tea leaves selected from C. sinensis. Var. Sinensis (including Yabuta species), C. sinensis. Var. Assamica, and hybrids thereof ( A beverage containing Camellia sinensis) as a raw material. The tea leaves can be classified into non-fermented tea, semi-fermented tea, and fermented tea according to the processing method, and one or more kinds can be used. In addition, the tea varieties and collection times of tea leaves are not particularly limited, and the tea leaves may be subjected to a burning process.
Examples of the non-fermented tea include green tea such as sencha, deep-steamed sencha, roasted tea, bancha, gyokuro, kabusecha, mochi tea, kettle tea, stem tea, stick tea, and bud tea. Examples of the semi-fermented tea include oolong tea such as iron kannon, color type, golden katsura, and martial arts tea. Further, examples of fermented tea include black teas such as Darjeeling, Assam, Sri Lanka and the like.
 また、原料として穀物やCamellia属以外の葉を含む飲料も本発明の茶飲料に包含される。穀物としては、例えば、大麦、小麦、ハト麦、ライ麦、燕麦、裸麦等の麦;玄米等の米;大豆、黒大豆、ソラマメ、インゲン豆、小豆、エビスクサ、ササゲ、ラッカセイ、エンドウ、リョクトウ等の豆;ソバ、トウモロコシ、白ゴマ、黒ゴマ、粟、稗、黍、キヌワ等の雑穀を挙げることができる。また、Camellia属以外の葉としては、例えば、イチョウの葉、柿の葉、ビワの葉、桑の葉、クコの葉、杜仲の葉、小松菜、ルイボス、クマザサ、ドクダミ、アマチャヅル、スイカズラ、ツキミソウ、カキドオシ、カワラケツメイ、ギムネマ・シルベスタ、黄杞茶(クルミ科)、甜茶(バラ科)、キダチアロエ等が挙げられる。更に、カモミール、ハイビスカス、ペパーミント、レモングラス、レモンピール、レモンバーム、ローズヒップ、ローズマリー等のハーブも用いることができる。Camellia属以外の葉及び穀物等の原料は、それぞれ1種又は2種以上を使用することができる。 In addition, beverages containing grains or leaves other than Camellia as raw materials are also included in the tea beverage of the present invention. Examples of grains include barley, wheat, pigeons, rye, buckwheat, and bare wheat; rice such as brown rice; soybeans, black soybeans, broad beans, kidney beans, red beans, shrimp, peas, peanuts, peas, mungbeans, etc. Beans; minor grains such as buckwheat, corn, white sesame, black sesame, persimmon, persimmon, persimmon, and kinuwa. In addition, as leaves other than the Camellia genus, for example, ginkgo leaves, bamboo leaves, loquat leaves, mulberry leaves, wolfberry leaves, bamboo leaves, komatsuna, rooibos, kumazasa, dokudami, amacha eel, honeysuckle, primrose, Kakidooshi, Kawaraketsumei, Gymnema sylvestre, twilight tea (walnut family), persimmon tea (rose family), kidachi aloe and the like. Furthermore, herbs such as chamomile, hibiscus, peppermint, lemongrass, lemon peel, lemon balm, rosehip and rosemary can also be used. One or two or more raw materials such as leaves and grains other than Camellia can be used.
 本発明の茶飲料の種類としては、例えば、緑茶飲料、半発酵茶飲料、発酵茶飲料、焙じ茶飲料、ブレンド茶飲料等を挙げることができる。中でも、本発明の効果を享受しやすい点から、緑茶飲料が好ましい。ここで、本明細書において「ブレンド茶飲料」とは、複数の茶原料を使用する飲料をいう。 Examples of the types of tea beverages according to the present invention include green tea beverages, semi-fermented tea beverages, fermented tea beverages, roasted tea beverages, and blended tea beverages. Among these, green tea drinks are preferable because the effects of the present invention can be easily enjoyed. Here, in this specification, the “blend tea beverage” refers to a beverage using a plurality of tea ingredients.
 本発明の茶飲料は、成分(A)としてバニリンを含有する。
 バニリンとしては飲食品の分野において通常使用されているものであれば由来は特に限定されず、例えば、バニラ豆より抽出したものでも、化学合成品でも、市販品でも、原料由来のものでもよい。バニリンの市販品としては、例えば、バニリン(和光純薬工業(株)製、和光特級)等を挙げることができる。
The tea beverage of the present invention contains vanillin as the component (A).
The origin of vanillin is not particularly limited as long as it is commonly used in the field of food and drink. For example, it may be extracted from vanilla beans, chemically synthesized, commercially available, or derived from raw materials. Examples of commercially available vanillin include vanillin (manufactured by Wako Pure Chemical Industries, Ltd., Wako Special Grade).
 本発明の茶飲料中の成分(A)の含有量は13~200質量ppbであるが、ぬめり感及びアルカリ味の低減、円熟味増強の観点から、14質量ppb以上が好ましく、17質量ppb以上がより好ましく、20質量ppb以上が更に好ましく、22質量ppb以上が殊更に好ましく、また円熟味増強の観点から、180質量ppb以下が好ましく、150質量ppb以下がより好ましく、100質量ppb以下が更に好ましく、80質量ppb以下が殊更に好ましく、60質量ppb以下が更に好ましい。かかる成分(A)の含有量の範囲としては、本発明の茶飲料中に、好ましくは14~180質量ppbであり、より好ましくは17~150質量ppbであり、更に好ましくは20~100質量ppbであり、殊更に好ましくは20~80質量ppbであり、更に好ましくは22~60質量ppbである。なお、成分(A)の含有量は、通常知られている分析法のうち測定試料の状況に適した分析法、例えば、GC/MS法により測定することができる。具体的には、後掲の実施例に記載の方法が挙げられる。なお、測定の際には装置の検出域に適合させるため、試料を凍結乾燥したり、装置の分離能に適合させるため試料中の夾雑物を除去したりする等、必要に応じて適宜処理を施してもよい。 The content of the component (A) in the tea beverage of the present invention is 13 to 200 mass ppb, but from the viewpoint of slimy feeling, reduction of alkalinity, and enhancement of ripeness, it is preferably 14 mass ppb or more, and 17 mass ppb or more. More preferably, 20 mass ppb or more is further preferred, 22 mass ppb or more is particularly preferred, and from the viewpoint of enhancing ripeness, 180 mass ppb or less is preferred, 150 mass ppb or less is more preferred, 100 mass ppb or less is more preferred, 80 mass ppb or less is especially preferable, and 60 mass ppb or less is still more preferable. The content range of the component (A) is preferably 14 to 180 mass ppb, more preferably 17 to 150 mass ppb, still more preferably 20 to 100 mass ppb in the tea beverage of the present invention. More preferably, it is 20 to 80 mass ppb, and further preferably 22 to 60 mass ppb. In addition, content of a component (A) can be measured with the analysis method suitable for the condition of the measurement sample among the analysis methods generally known, for example, GC / MS method. Specifically, the methods described in the examples described later can be mentioned. In addition, in order to adapt to the detection range of the device at the time of measurement, the sample is freeze-dried, or impurities in the sample are removed to adapt to the separation performance of the device. You may give it.
 本発明の茶飲料は、成分(B)としてヘスペリジン及びヘスペリジン糖付加物から選択される少なくとも1種を含有する。
 ここで、本明細書において「ヘスペリジン」とは、ヘスペレチンをアグリコンとし、これに糖が結合した配糖体であり、「ヘスペリジン糖付加物」とは、このヘスペリジンのルチノース単位中のグルコース残基に、1個以上のグルコースがα-1,4結合した化合物である。ヘスペリジン糖付加物には、ヘスペリジンにグルコースが1個付加したモノグルコシドヘスペリジンと、該モノグルコシドヘスペリジンに更に1以上のグルコースが付加したものがあり、これらの混合物であってよい。ヘスペリジン1モルに対するグルコースの付加数(n)は、1~20が好ましく、1~10がより好ましく、1~5が更に好ましく、1~3がより更に好ましく、1が殊更に好ましい。
The tea beverage of the present invention contains at least one selected from hesperidin and hesperidin sugar adduct as the component (B).
Here, in this specification, “hesperidin” is a glycoside in which hesperetin is aglycone and a sugar is bound to this, and “hesperidin sugar adduct” is a glucose residue in the rutinose unit of this hesperidin. A compound in which one or more glucoses are α-1,4 linked. The hesperidin sugar adduct includes monoglucoside hesperidin in which one glucose is added to hesperidin and one in which one or more glucose is further added to the monoglucoside hesperidin, and may be a mixture thereof. The number (n) of glucose added per mole of hesperidin is preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 5, still more preferably 1 to 3, and still more preferably 1.
 ヘスペリジン糖付加物は、例えば、ヘスペリジンにグルコース源(糖供与体)の存在下、糖転移酵素を作用させる方法等の公知の方法により得ることができる。グルコース源としては、例えば、アミロース、デキストリン、シクロデキストリン、マルトオリゴ糖等の澱粉部分加水分解物、液化澱粉、糊化澱粉等を挙げることができる。糖転移酵素は、例えば、α-グリコシダーゼ(EC 3.2.1.20)、シクロマルトデキストリン グルカノトランスフェラーゼ(EC 2.4.1.19)、α-アミラーゼ(EC 3.2.1.1)等を、グルコース源に応じて適宜選択して使用することができる。具体的な製造方法は、例えば、特許第3060227号明細書等の記載を参照することができる。成分(A)としては商業的に入手したものを使用してもよく、例えば、ヘスペリジンS、αGヘスペリジンH、αGヘスペリジンPA-T等を挙げることができる。 The hesperidin sugar adduct can be obtained by a known method such as a method of allowing glycosyltransferase to act on hesperidin in the presence of a glucose source (sugar donor). Examples of the glucose source include starch partial hydrolysates such as amylose, dextrin, cyclodextrin and maltooligosaccharide, liquefied starch, gelatinized starch and the like. As the glycosyltransferase, for example, α-glycosidase (EC マ ル 3.2.1.20), cyclomaltodextrin glucanotransferase (EC 2.4.1.19), α-amylase (EC 3.2.1.1) and the like are appropriately selected according to the glucose source. Can be used. For the specific production method, for example, the description in Japanese Patent No. 3060227 can be referred to. As the component (A), commercially available products may be used, and examples thereof include hesperidin S, αG hesperidin H, αG hesperidin PA-T and the like.
 本発明の茶飲料は、成分(B)を成分(A)に対して特定の量比で含有する。具体的には、成分(A)と成分(B)との質量比[(B)/(A)]は1000~200000であるが、ぬめり感及びアルカリ味の低減、円熟味増強の観点から、2000以上が好ましく、4000以上がより好ましく、6000以上が更に好ましく、6800以上が殊更に好ましく、そして170000以下が好ましく、140000以下がより好ましく、120000以下が更に好ましく、90000以下が更に好ましく、70000以下が更に好ましく、45000以下がより更に好ましく、18000以下が殊更に好ましい。かかる質量比[(B)/(A)]の範囲としては、好ましくは2000~170000であり、より好ましくは4000~140000であり、更に好ましくは6000~120000であり、殊更に好ましくは6800~90000であり、殊更に好ましくは6800~70000であり、殊更に好ましくは6800~45000であり、殊更に好ましくは6800~18000である。なお、ここでいう成分(B)の質量は、モノグルコシドヘスペリジン換算値である。ここで、本明細書において「モノグルコシドヘスペリジン換算値」とは、茶飲料中のヘスペリジン及びヘスペリジン糖付加物がすべてモノグルコシドヘスペリジンであったと仮定し、茶飲料中に含まれるモノグルコシドヘスペリジン量を意味する。 The tea beverage of the present invention contains component (B) at a specific quantitative ratio with respect to component (A). Specifically, the mass ratio [(B) / (A)] of the component (A) to the component (B) is 1,000 to 200,000. However, from the viewpoints of reducing the feeling of slimness and alkalinity, and enhancing the ripeness, 2000 The above is preferable, 4000 or more is more preferable, 6000 or more is further preferable, 6800 or more is more preferable, and 170000 or less is preferable, 140000 or less is more preferable, 120,000 or less is further preferable, 90000 or less is further preferable, and 70000 or less is preferable. More preferably, it is more preferably 45,000 or less, and particularly preferably 18000 or less. The range of the mass ratio [(B) / (A)] is preferably 2000 to 170000, more preferably 4000 to 140000, still more preferably 6000 to 120,000, and even more preferably 6800 to 90000. More preferably, it is 6800 to 70000, still more preferably 6800 to 45000, and still more preferably 6800 to 18000. In addition, the mass of a component (B) here is a monoglucoside hesperidin conversion value. Here, “monoglucoside hesperidin converted value” in this specification means the amount of monoglucoside hesperidin contained in tea beverage, assuming that hesperidin and hesperidin sugar adduct in tea beverage are all monoglucoside hesperidin. To do.
 本発明の茶飲料中の成分(B)の含有量は、モノグルコシドヘスペリジン換算値として、ぬめり感及びアルカリ味の低減、円熟味増強の観点から、100質量ppm以上が好ましく、180質量ppm以上がより好ましく、250質量ppm以上が更に好ましく、300質量ppm以上が殊更に好ましく、そして5000質量ppm以下が好ましく、4000質量ppm以下がより好ましく、3500質量ppm以下が更に好ましく、2800質量ppm以下が更に好ましく、1300質量ppm以下がより更に好ましく、800質量ppm以下が殊更に好ましい。かかる成分(B)の含有量の範囲としては、本発明の茶飲料中に、モノグルコシドヘスペリジン換算値として、好ましくは100~5000質量ppmであり、より好ましくは180~4000質量ppmであり、更に好ましくは250~3500質量ppmであり、更に好ましくは300~2800質量ppmであり、より更に好ましくは300~1300質量ppmであり、殊更に好ましくは300~800質量ppmである。なお、成分(B)の含有量は、通常知られている分析法のうち測定試料の状況に適した分析法、例えば、高速液体クロマトグラフ法により測定することができる。例えば、後掲の実施例に記載の方法が挙げられる。なお、測定の際には装置の検出域に適合させるため、試料を凍結乾燥したり、装置の分離能に適合させるため試料中の夾雑物を除去したりする等、必要に応じて適宜処理を施してもよい。 The content of the component (B) in the tea beverage of the present invention is preferably 100 ppm by mass or more, more preferably 180 ppm by mass or more from the viewpoint of sliminess, reduction of alkalinity, and enhancement of ripeness as a monoglucoside hesperidin conversion value. Preferably, 250 mass ppm or more is more preferable, 300 mass ppm or more is more preferable, 5000 mass ppm or less is preferable, 4000 mass ppm or less is more preferable, 3500 mass ppm or less is further preferable, and 2800 mass ppm or less is more preferable. 1300 mass ppm or less is still more preferred, and 800 mass ppm or less is even more preferred. The range of the content of the component (B) is preferably 100 to 5000 ppm by mass, more preferably 180 to 4000 ppm by mass, in terms of monoglucoside hesperidin, in the tea beverage of the present invention. The amount is preferably 250 to 3500 ppm by mass, more preferably 300 to 2800 ppm by mass, still more preferably 300 to 1300 ppm by mass, and even more preferably 300 to 800 ppm by mass. In addition, content of a component (B) can be measured with the analysis method suitable for the condition of the measurement sample among the analysis methods generally known, for example, a high performance liquid chromatograph method. For example, the method described in the below-mentioned Example is mentioned. In addition, in order to adapt to the detection range of the device at the time of measurement, the sample is freeze-dried, or impurities in the sample are removed to adapt to the separation performance of the device. You may give it.
 本発明の茶飲料は、成分(C)として非重合体カテキン類を含有することができる。
 ここで、本明細書において「非重合体カテキン類」とは、カテキン、ガロカテキン、カテキンガレート及びガロカテキンガレート等の非エピ体カテキン類、並びにエピカテキン、エピガロカテキン、エピカテキンガレート及びエピガロカテキンガレート等のエピ体カテキン類を併せての総称であり、本発明においては上記8種のうち少なくとも1種を含有すればよいが、8種すべてを含有することが好ましい。
The tea beverage of the present invention can contain non-polymer catechins as the component (C).
As used herein, “non-polymer catechins” refers to non-epimeric catechins such as catechin, gallocatechin, catechin gallate and gallocatechin gallate, and epicatechin, epigallocatechin, epicatechin gallate and epigallocatechin. It is a collective term for epi-catechins such as gallate. In the present invention, at least one of the above eight types may be contained, but all eight types are preferably contained.
 本発明の茶飲料中の成分(C)の含有量は、生理効果、ぬめり感及びアルカリ味の低減の観点から、200質量ppm以上が好ましく、300質量ppm以上がより好ましく、400質量ppm以上が更に好ましく、600質量ppm以上が殊更に好ましく、また円熟味増強の観点から、8000質量ppm以下が好ましく、5000質量ppm以下がより好ましく、3000質量ppm以下が更に好ましく、1900質量ppm以下が更に好ましく、1400質量ppm以下がより更に好ましく、900質量ppm以下が殊更に好ましい。かかる成分(C)の含有量の範囲としては、本発明の茶飲料中に、好ましくは200~8000質量ppmであり、より好ましくは300~5000質量ppmであり、更に好ましくは400~3000質量ppmであり、更に好ましくは600~1900質量ppmであり、より更に好ましくは600~1400質量ppmであり、殊更に好ましくは600~900質量ppmである。なお、成分(C)の含有量は、上記8種の合計量に基づいて定義され、通常知られている分析法のうち測定試料の状況に適した分析法、例えば、高速液体クロマトグラフ法により測定することができる。具体的には、後掲の実施例に記載の方法が挙げられる。なお、測定の際には装置の検出域に適合させるため、試料を凍結乾燥したり、装置の分離能に適合させるため試料中の夾雑物を除去したりする等、必要に応じて適宜処理を施してもよい。 The content of the component (C) in the tea beverage of the present invention is preferably 200 mass ppm or more, more preferably 300 mass ppm or more, and more preferably 400 mass ppm or more, from the viewpoints of physiological effects, slimy feeling and alkaline taste reduction. More preferably, 600 mass ppm or more is particularly preferable, and from the viewpoint of enhancing ripeness, 8000 mass ppm or less is preferable, 5000 mass ppm or less is more preferable, 3000 mass ppm or less is further preferable, and 1900 mass ppm or less is more preferable, 1400 mass ppm or less is still more preferred, and 900 mass ppm or less is even more preferred. The content range of the component (C) is preferably 200 to 8000 ppm by mass, more preferably 300 to 5000 ppm by mass, and still more preferably 400 to 3000 ppm by mass in the tea beverage of the present invention. More preferably, it is 600 to 1900 mass ppm, still more preferably 600 to 1400 mass ppm, and still more preferably 600 to 900 mass ppm. The content of component (C) is defined on the basis of the total amount of the above eight types, and is an analysis method suitable for the state of the measurement sample among the commonly known analysis methods, for example, high-performance liquid chromatography. Can be measured. Specifically, the methods described in the examples described later can be mentioned. In addition, in order to adapt to the detection range of the device at the time of measurement, the sample is freeze-dried, or impurities in the sample are removed to adapt to the separation performance of the device. You may give it.
 本発明の茶飲料は、更に成分(D)として(D1)2-メチルブタナール及び(D2)3-メチルブタナールから選択される1種又は2種を含有することができる。なお、成分(D)は、配合成分に由来するものでも、新たに加えられたものでもよい。
 本発明の茶飲料中の成分(D)の含有量は、後味のキレの増強の観点から、10質量ppb以上が好ましく、15質量ppb以上がより好ましく、20質量ppb以上が更に好ましく、また円熟味及び後味のキレの増強の観点から、100質量ppb以下が好ましく、80質量ppb以下がより好ましく、70質量ppb以下が更に好ましく、60質量ppm以下がより更に好ましく、50質量ppb以下が殊更に好ましい。かかる成分(D)の含有量の範囲としては、本発明の茶飲料中に、好ましくは10~100質量ppbであり、より好ましくは15~80質量ppbであり、更に好ましくは20~70質量ppbであり、より更に好ましくは20~60質量ppbであり、殊更に好ましくは20~50質量ppbである。なお、成分(D)の含有量は、(D1)2-メチルブタナール及び(D2)3-メチルブタナールの合計量に基づいて定義され、通常知られている分析法のうち測定試料の状況に適した分析法、例えば、GC/MS法により測定することができる。具体的には、後掲の実施例に記載の方法が挙げられる。なお、測定の際には装置の検出域に適合させるため、試料を凍結乾燥したり、装置の分離能に適合させるため試料中の夾雑物を除去したりする等、必要に応じて適宜処理を施してもよい。
The tea beverage of the present invention may further contain one or two kinds selected from (D 1 ) 2-methylbutanal and (D 2 ) 3-methylbutanal as component (D). In addition, the component (D) may be derived from a blending component or newly added.
The content of the component (D) in the tea beverage of the present invention is preferably 10 mass ppb or more, more preferably 15 mass ppb or more, still more preferably 20 mass ppb or more, and a mature taste from the viewpoint of enhancing the aftertaste sharpness. And from the viewpoint of enhancing the sharpness of the aftertaste, it is preferably 100 mass ppb or less, more preferably 80 mass ppb or less, still more preferably 70 mass ppb or less, still more preferably 60 mass ppm or less, and even more preferably 50 mass ppb or less. . The content range of the component (D) is preferably 10 to 100 mass ppb, more preferably 15 to 80 mass ppb, still more preferably 20 to 70 mass ppb in the tea beverage of the present invention. More preferably, it is 20 to 60 mass ppb, and still more preferably 20 to 50 mass ppb. The content of component (D) is defined based on the total amount of (D 1 ) 2-methylbutanal and (D 2 ) 3-methylbutanal, and is a measurement sample among the commonly known analytical methods. It can be measured by an analysis method suitable for the present situation, for example, the GC / MS method. Specifically, the methods described in the examples described later can be mentioned. In addition, in order to adapt to the detection range of the device at the time of measurement, the sample is freeze-dried, or impurities in the sample are removed to adapt to the separation performance of the device. You may give it.
 また、本発明の茶飲料中の成分(A)と成分(D)との合計含有量は、後味のキレの増強の観点から、20質量ppb以上が好ましく、30質量ppb以上がより好ましく、35質量ppb以上が更に好ましく、40質量ppb以上が殊更に好ましく、また円熟味及び後味のキレの増強の観点から、200質量ppb以下が好ましく、150質量ppb以下がより好ましく、110質量ppb以下が更に好ましく、100質量ppb以下が更に好ましく、80質量ppb以下がより更に好ましく、70質量ppb以下が殊更に好ましい。かかる成分(A)と成分(D)との合計含有量の範囲としては、本発明の茶飲料中に、好ましくは20~200質量ppbであり、より好ましくは30~150質量ppbであり、更に好ましくは35~110質量ppbであり、更に好ましくは40~100質量ppbであり、より更に好ましくは40~80質量ppbであり、殊更に好ましくは40~70質量ppbである。 Further, the total content of the component (A) and the component (D) in the tea beverage of the present invention is preferably 20 mass ppb or more, more preferably 30 mass ppb or more, from the viewpoint of enhancing the sharpness of the aftertaste, 35 The mass is more preferably ppb or more, particularly preferably 40 mass ppb or more, and is preferably 200 mass ppb or less, more preferably 150 mass ppb or less, and even more preferably 110 mass ppb or less, from the viewpoint of enhancing the ripening and aftertaste sharpness. 100 mass ppb or less is further preferred, 80 mass ppb or less is more preferred, and 70 mass ppb or less is even more preferred. The range of the total content of the component (A) and the component (D) is preferably 20 to 200 mass ppb, more preferably 30 to 150 mass ppb in the tea beverage of the present invention. The amount is preferably 35 to 110 mass ppb, more preferably 40 to 100 mass ppb, still more preferably 40 to 80 mass ppb, and still more preferably 40 to 70 mass ppb.
 更に、本発明の茶飲料中の成分(A)と成分(D)との質量比[(D)/(A)]は、後味のキレ増強の観点から、0.1以上が好ましく、0.15以上がより好ましく、0.2以上が更に好ましく、0.3以上がより更に好ましく、0.5以上が殊更に好ましく、0.7以上がより更に好ましく、1以上が殊更に好ましく、また円熟味及び後味のキレ増強の観点から、5以下が好ましく、4以下がより好ましく、3以下が更に好ましく、2.5以下がより更に好ましく、2以下が殊更に好ましい。かかる質量比[(D)/(A)]の範囲としては、好ましくは0.1~5であり、より好ましくは0.15~4であり、更に好ましくは0.2~3であり、より更に好ましくは0.3~3であり、殊更に好ましくは0.5~3であり、より更に好ましくは0.7~2.5であり、殊更に好ましくは1~2である。 Furthermore, the mass ratio [(D) / (A)] of the component (A) and the component (D) in the tea beverage of the present invention is preferably 0.1 or more from the viewpoint of enhancing the sharpness of the aftertaste. 15 or more is more preferable, 0.2 or more is still more preferable, 0.3 or more is more preferable, 0.5 or more is more preferable, 0.7 or more is more preferable, 1 or more is still more preferable, and ripeness From the viewpoint of enhancing the sharpness of the aftertaste, it is preferably 5 or less, more preferably 4 or less, still more preferably 3 or less, still more preferably 2.5 or less, and even more preferably 2 or less. The range of the mass ratio [(D) / (A)] is preferably 0.1 to 5, more preferably 0.15 to 4, still more preferably 0.2 to 3, More preferably, it is 0.3 to 3, particularly preferably 0.5 to 3, even more preferably 0.7 to 2.5, and still more preferably 1 to 2.
 更に、本発明の茶飲料は、本発明の目的を損なわない範囲内で、ビタミン、ミネラル、酸化防止剤、各種エステル、色素、乳化剤、保存料、調味料、酸味料、果汁エキス、野菜エキス、花蜜エキス、品質安定剤等の添加剤を1種又は2種以上を含有することができる。これら添加剤の含有量は、本発明の目的を損なわない範囲内で適宜設定することができる。 Furthermore, the tea beverage of the present invention is within the range not impairing the object of the present invention, vitamins, minerals, antioxidants, various esters, pigments, emulsifiers, preservatives, seasonings, acidulants, fruit juice extracts, vegetable extracts, One or more additives such as nectar extract and quality stabilizer can be contained. The content of these additives can be appropriately set within a range that does not impair the object of the present invention.
 本発明の茶飲料のpH(20℃)は、円熟味増強及びぬめり感の低減の観点から、4.8以上が好ましく、5.1以上がより好ましく、5.3以上が更に好ましく、そして6.5以下が好ましく、6.3以下がより好ましく、6.1以下が更に好ましい。かかるpHの範囲としては、好ましくは4.8~6.5であり、より好ましくは5.1~6.3であり、更に好ましくは5.3~6.1である。なお、pHは、茶飲料約100mLを300mLのビーカーに量り取り、20℃に温度調整をして測定するものとする。 The pH (20 ° C.) of the tea beverage of the present invention is preferably 4.8 or higher, more preferably 5.1 or higher, further preferably 5.3 or higher, from the viewpoint of enhancing the mature taste and reducing the feeling of sliminess. 5 or less is preferable, 6.3 or less is more preferable, and 6.1 or less is still more preferable. The pH range is preferably 4.8 to 6.5, more preferably 5.1 to 6.3, and still more preferably 5.3 to 6.1. The pH is measured by measuring about 100 mL of tea beverage in a 300 mL beaker and adjusting the temperature to 20 ° C.
 本発明の茶飲料のBrix(20℃)は、円熟味増強の観点から、0.1以上が好ましく、0.12以上がより好ましく、0.15以上が更に好ましく、0.2以上が更に好ましく、0.25以上がより更に好ましく、0.3以上が殊更に好ましく、そして2以下が好ましく、1.8以下がより好ましく、1.6以下が更に好ましく、1.4以下が更に好ましく、1.3以下がより更に好ましく、1以下が殊更に好ましい。かかるBrixの範囲としては、好ましくは0.1~2であり、より好ましくは0.12~1.8であり、更に好ましくは0.15~1.6であり、更に好ましくは0.2~1.4であり、更に好ましくは0.2~1.3であり、より更に好ましくは0.25~1.3であり、殊更に好ましくは0.3~1である。ここで、本明細書において「Brix」とは、糖用屈折計を利用して測定した値であり、20℃のショ糖水溶液の質量百分率に相当する値である。また、20℃におけるショ糖水溶液の屈折率を基準して、試料の屈折率より算出される可溶性固形分濃度を意味する。具体的には後掲の実施例に記載の方法により測定することができる。 The Brix (20 ° C.) of the tea beverage of the present invention is preferably 0.1 or more, more preferably 0.12 or more, still more preferably 0.15 or more, further preferably 0.2 or more, from the viewpoint of enhancing ripeness. 0.25 or more is still more preferred, 0.3 or more is particularly preferred, 2 or less is preferred, 1.8 or less is more preferred, 1.6 or less is more preferred, 1.4 or less is still more preferred. 3 or less is more preferred, and 1 or less is even more preferred. The range of Brix is preferably 0.1 to 2, more preferably 0.12 to 1.8, still more preferably 0.15 to 1.6, and further preferably 0.2 to 1.4, more preferably 0.2 to 1.3, even more preferably 0.25 to 1.3, and even more preferably 0.3 to 1. Here, “Brix” in the present specification is a value measured using a refractometer for sugar, and is a value corresponding to a mass percentage of an aqueous sucrose solution at 20 ° C. Further, it means the soluble solid content concentration calculated from the refractive index of the sample with reference to the refractive index of the aqueous sucrose solution at 20 ° C. Specifically, it can be measured by the method described in Examples below.
 本発明の茶飲料の形態は特に限定されず、濃縮液状茶飲料、粉末状茶飲料、容器詰茶飲料等の形態を採り得る。なお、濃縮液状茶飲料や粉末状茶飲料の場合は、非重合体カテキン類濃度が至適濃度となるように還元飲料を調製したときに、還元飲料中の成分(A)の含有量、及び質量比[(B)/(A)]が所定の要件を満たすものであればよい。容器としては通常の包装容器であれば特に限定されず、例えば、ポリエチレンテレフタレートを主成分とする成形容器(いわゆるPETボトル)、金属缶、金属箔やプラスチックフィルムと複合された紙容器、瓶等が挙げられる。 The form of the tea beverage of the present invention is not particularly limited, and may take the form of a concentrated liquid tea beverage, a powdered tea beverage, a packaged tea beverage, or the like. In the case of concentrated liquid tea beverages and powdered tea beverages, when the reduced beverage is prepared so that the non-polymer catechins concentration is the optimum concentration, the content of the component (A) in the reduced beverage, and The mass ratio [(B) / (A)] only needs to satisfy predetermined requirements. The container is not particularly limited as long as it is a normal packaging container. For example, a molded container mainly composed of polyethylene terephthalate (so-called PET bottle), a metal can, a paper container combined with a metal foil or a plastic film, a bottle, etc. Can be mentioned.
 本発明の茶飲料は、加熱殺菌済でもよい。殺菌方法としては、適用されるべき法規(日本にあっては食品衛生法)に定められた条件に適合するものであれば特に限定されるものではない。例えば、レトルト殺菌法、高温短時間殺菌法(HTST法)、超高温殺菌法(UHT法)、充填後殺菌法(パストリゼーション)等を挙げることができる。また、容器詰茶飲料の容器の種類に応じて加熱殺菌法を適宜選択することも可能であり、例えば、金属缶、瓶のように、飲料を容器に充填後、容器ごと加熱殺菌できる場合にあってはレトルト殺菌や充填後殺菌法(パストリゼーション)を採用することができる。また、PETボトルのようにレトルト殺菌できないものについては、飲料をあらかじめ上記と同等の殺菌条件で加熱殺菌し、無菌環境下で殺菌処理した容器に充填するアセプティック充填や、ホットパック充填等を採用することができる。加熱殺菌済の茶飲料は、一般的に、茶本来の香りが低くなるものの、本発明の茶飲料であれば、加熱殺菌済であっても、茶の豊かな焙じ香が感じられる。 The tea beverage of the present invention may be heat sterilized. The sterilization method is not particularly limited as long as it conforms to the conditions stipulated by applicable laws and regulations (the Food Sanitation Law in Japan). Examples thereof include a retort sterilization method, a high temperature short time sterilization method (HTST method), an ultra high temperature sterilization method (UHT method), and a post-filling sterilization method (pastration). It is also possible to appropriately select the heat sterilization method according to the type of the container of the packaged tea beverage, for example, when the container can be heated and sterilized after filling the container, such as a metal can and a bottle. In that case, retort sterilization or post-fill sterilization (pasting) can be employed. As for PET bottles that cannot be sterilized by retort, aseptic filling, hot-pack filling, etc., in which beverages are pre-sterilized under the same sterilization conditions as above and sterilized in an aseptic environment, are adopted. be able to. In general, a heat-sterilized tea beverage generally has a low tea aroma, but if it is a tea beverage of the present invention, a rich roasted incense of tea is felt even if heat-sterilized.
 本発明の茶飲料は適宜の方法により製造することができるが、例えば、茶原料としてCamellia属の茶葉を含む茶抽出物に対して、13~200質量ppbの成分(A)と成分(B)とを、両者の質量比[(B)/(A)]が1000~200000となるように配合して製造することができる。本発明においては、最終的に茶飲料中に成分(A)及び(B)が所定の量比で共存した状態にあれば、成分(A)及び(B)の配合順序は特に限定されない。 The tea beverage of the present invention can be produced by an appropriate method. For example, 13 to 200 mass ppb of component (A) and component (B) with respect to tea extract containing Camellia tea leaves as tea ingredients Can be prepared so that the mass ratio [(B) / (A)] of the two becomes 1000 to 200000. In the present invention, the order of blending the components (A) and (B) is not particularly limited as long as the components (A) and (B) coexist in the tea beverage at a predetermined quantitative ratio.
 茶抽出物は、Camellia属の茶葉を含む茶原料を公知の抽出方法に供することで製造することができるが、複数の茶原料を使用する場合、別個に抽出しても、混合して抽出してもよい。抽出方法としては、例えば、撹拌抽出、カラム抽出、ドリップ抽出等が挙げられる。抽出条件は、抽出方法により適宜選択することができる。
 抽出後、濾過、遠心分離、膜処理等の公知の固液分離手段により、茶原料と茶抽出物とを分離することができる。このようにして得られた茶抽出物は、そのままでも、乾燥、濃縮して使用してもよい。
The tea extract can be produced by subjecting tea materials containing Camellia genus tea leaves to known extraction methods, but when using multiple tea materials, they can be extracted separately or mixed and extracted. May be. Examples of the extraction method include stirring extraction, column extraction, drip extraction, and the like. The extraction conditions can be appropriately selected depending on the extraction method.
After the extraction, the tea raw material and the tea extract can be separated by known solid-liquid separation means such as filtration, centrifugation, membrane treatment and the like. The tea extract thus obtained may be used as it is or after being dried and concentrated.
1.バニリンの分析
 試料10mLをGC用ヘッドスペースバイアル(20mL)に採取し、塩化ナトリウム3gを添加した。バイアルに攪拌子を入れて密栓し、スターラーで30分間撹拌しながら、SPMEファイバー(シグマアルドリッチ社製,50/30μm、DVB/CAR/PDMS)に含有成分を吸着させた。吸着後、SPMEファイバーを注入口で加熱脱着し、GC/MS測定を行った。分析機器は、Agilent 7890A/5975Cinert(アジレント・テクノロジー社製)を使用した。
1. Analysis of vanillin A 10 mL sample was taken in a GC headspace vial (20 mL) and 3 g sodium chloride was added. The stirring bar was put in the vial and sealed up, and the components were adsorbed on SPME fibers (Sigma Aldrich, 50/30 μm, DVB / CAR / PDMS) while stirring with a stirrer for 30 minutes. After adsorption, the SPME fiber was heated and desorbed at the injection port, and GC / MS measurement was performed. The analytical instrument used was Agilent 7890A / 5975Cinert (manufactured by Agilent Technologies).
 分析条件は次のとおりである。
・カラム   :TC―WAX(30m(長さ)、0.25mm(内径)、0.25μm(膜厚))
・カラム温度 :40℃ (3min)→ 20℃ /min→ 250℃
・カラム圧力 :定流量モード(31kPa)
・カラム流量 :lmL/min(He)
・注入口温度 :260℃
・注入方式  :スプリットレス
・検出器   :MS
・イオン源温度:230℃
・イオン化方法:EI(70eV)
・スキャン範囲:SCAN
・ゲイン   :1729V
The analysis conditions are as follows.
Column: TC-WAX (30m (length), 0.25mm (inner diameter), 0.25μm (film thickness))
Column temperature: 40 ° C. (3 min) → 20 ° C./min→250° C.
・ Column pressure: Constant flow rate mode (31kPa)
-Column flow rate: 1 mL / min (He)
・ Inlet temperature: 260 ° C
・ Injection method: Splitless ・ Detector: MS
-Ion source temperature: 230 ° C
・ Ionization method: EI (70eV)
・ Scan range: SCAN
・ Gain: 1729V
 購入試薬をエタノールで溶解し、段階希釈して標品を調製した。所定濃度の標品を試料に添加し、試料単体と同様にSPMEファイバーに吸着させ、GC/MS測定を行った。なお、定量にはm/z151のイオンのピーク面積を用いた。 The purchased reagent was dissolved in ethanol and serially diluted to prepare a standard. A sample with a predetermined concentration was added to the sample, and the sample was adsorbed on the SPME fiber in the same manner as the sample alone, and GC / MS measurement was performed. The peak area of ions at m / z 151 was used for quantification.
2.ヘスペリジン及びその糖付加物の分析
 ヘスペリジン及びその糖付加物の分析は、高速液体クロマトグラフ(型式SCL-10AVP、島津製作所製)を用い、オクタデシル基導入液体クロマトグラフ用パックドカラム(L-カラムTM ODS、4.6mmφ×250mm:財団法人 化学物質評価研究機構製)を装着し、カラム温度35℃でグラジエント法により測定した。移動相C液は酢酸を0.1mol/L含有する蒸留水溶液、D液は酢酸を0.1mol/L含有するアセトニトリル溶液とし、流速は1mL/分、試料注入量は10μL、UV検出器波長は280nmの条件で行った。なお、グラジエント条件は以下の通りである。
2. Analysis of hesperidin and its sugar adduct Hesperidin and its sugar adduct were analyzed using a high performance liquid chromatograph (model SCL-10AVP, manufactured by Shimadzu Corp.), and a packed column for liquid chromatography using an octadecyl group (L-column TM ODS). 4.6 mmφ × 250 mm: manufactured by Chemical Substances Research Institute, Inc.), and measured by a gradient method at a column temperature of 35 ° C. The mobile phase C solution is a distilled aqueous solution containing 0.1 mol / L of acetic acid, the D solution is an acetonitrile solution containing 0.1 mol / L of acetic acid, the flow rate is 1 mL / min, the sample injection amount is 10 μL, and the UV detector wavelength is The measurement was performed under the condition of 280 nm. The gradient conditions are as follows.
 濃度勾配条件(体積%)
    時間      移動相C    移動相D
    0.0分    97%            3%
    5.0分    97%           3%
   37.0分    80%        20%
   43.0分    80%       20%
   48.0分     0%     100%
   53.0分     0%     100%
   53.1分    97%            3%
   63.0分    97%      3%
Concentration gradient condition (volume%)
Time Mobile phase C Mobile phase D
0.0 minutes 97% 3%
5.0 minutes 97% 3%
37.0 minutes 80% 20%
43.0 minutes 80% 20%
48.0 minutes 0% 100%
53.0 minutes 0% 100%
53.1 minutes 97% 3%
63.0 minutes 97% 3%
 試料注入量は10μL、検出は波長283nmの吸光度により定量する。 Sample injection volume is 10 μL, and detection is quantified by absorbance at a wavelength of 283 nm.
3.非重合体カテキン類の分析
 純水で溶解希釈した試料を、高速液体クロマトグラフ(型式SCL-10AVP、島津製作所製)を用い、オクタデシル基導入液体クロマトグラフ用パックドカラム(L-カラムTM ODS、4.6mmφ×250mm:財団法人 化学物質評価研究機構製)を装着し、カラム温度35℃でグラジエント法により測定した。移動相A液は酢酸を0.1mol/L含有する蒸留水溶液、B液は酢酸を0.1mol/L含有するアセトニトリル溶液とし、流速は1mL/分、試料注入量は10μL、UV検出器波長は280nmの条件で行った。なお、グラジエント条件は以下の通りである。
3. Analysis of non-polymer catechins Using a high performance liquid chromatograph (model SCL-10AVP, manufactured by Shimadzu Corp.), a sample dissolved and diluted with pure water is used to prepare a packed column for an octadecyl group-introduced liquid chromatograph (L-column TM ODS, 4 .6 mmφ × 250 mm: manufactured by Chemical Substances Research Institute), and measured by a gradient method at a column temperature of 35 ° C. The mobile phase A solution is a distilled aqueous solution containing 0.1 mol / L of acetic acid, the B solution is an acetonitrile solution containing 0.1 mol / L of acetic acid, the flow rate is 1 mL / min, the sample injection amount is 10 μL, and the UV detector wavelength is The measurement was performed under the condition of 280 nm. The gradient conditions are as follows.
  濃度勾配条件(体積%)
        時間        A液濃度        B液濃度
        0分          97%            3%
        5分          97%            3%
      37分          80%          20%
      43分          80%          20%
      43.5分        0%        100%
      48.5分        0%        100%
      49分          97%            3%
      60分          97%            3%
Concentration gradient condition (volume%)
Time Liquid A concentration Liquid B concentration 0 min 97% 3%
5 minutes 97% 3%
37 minutes 80% 20%
43 minutes 80% 20%
43.5 minutes 0% 100%
48.5 minutes 0% 100%
49 minutes 97% 3%
60 minutes 97% 3%
4.2-メチルブタナール及び3-メチルブタナールの分析
 試料10mLをGC用ヘッドスペースバイアル(20mL)に採取し、塩化ナトリウム3gを添加した。バイアルに攪拌子を入れて密栓し、スターラーで30分間撹拌しながら、SPMEファイバー(シグマアルドリッチ社製,50/30μm、DVB/CAR/PDMS)に含有成分を吸着させた。吸着後、SPMEファイバーを注入口で加熱脱着し、GC/MS測定を行った。分析機器は、Agilent 7890A/5975Cinert(アジレント・テクノロジー社製)を使用した。
4.2 Analysis of 2-methylbutanal and 3-methylbutanal A 10 mL sample was taken into a GC headspace vial (20 mL) and 3 g sodium chloride was added. The stirring bar was put in the vial and sealed up, and the components were adsorbed on SPME fibers (Sigma Aldrich, 50/30 μm, DVB / CAR / PDMS) while stirring with a stirrer for 30 minutes. After adsorption, the SPME fiber was heated and desorbed at the injection port, and GC / MS measurement was performed. The analytical instrument used was Agilent 7890A / 5975Cinert (manufactured by Agilent Technologies).
 分析条件は次のとおりである。
・カラム   :HP-1(30m(長さ)、0.25mm(内径)、1.0μm(膜厚))
・カラム温度 :35℃ (3min)→ 5℃/min→ 80℃→ 20℃/min→ 300℃
・カラム圧力 :定流量モード(49kPa)
・カラム流量 :lmL/min(He)
・注入口温度 :250℃
・注入方式  :スプリットレス
・検出器   :MS
・イオン源温度:230℃
・イオン化方法:EI(70eV)
・スキャン範囲:m/z10~500
・ゲイン   :1682V
The analysis conditions are as follows.
Column: HP-1 (30 m (length), 0.25 mm (inner diameter), 1.0 μm (film thickness))
Column temperature: 35 ° C (3 min) → 5 ° C / min → 80 ° C → 20 ° C / min → 300 ° C
・ Column pressure: Constant flow rate mode (49kPa)
-Column flow rate: 1 mL / min (He)
・ Inlet temperature: 250 ° C
・ Injection method: Splitless ・ Detector: MS
-Ion source temperature: 230 ° C
・ Ionization method: EI (70eV)
・ Scanning range: m / z 10 to 500
・ Gain: 1682V
 購入試薬をアセトンで溶解し、段階希釈して標品を調製した。所定濃度の標品を試料に添加し、試料単体と同様にSPMEファイバーに吸着させ、GC/MS測定を行った。なお、定量には3-メチルブタナールはm/z44、2-メチルブタナールはm/z57のイオンのピーク面積を用いた。 A sample was prepared by dissolving the purchased reagent in acetone and serially diluting it. A sample with a predetermined concentration was added to the sample, and the sample was adsorbed on the SPME fiber in the same manner as the sample alone, and GC / MS measurement was performed. For determination, the peak area of ions of m / z 44 for 3-methylbutanal and m / z 57 for 2-methylbutanal was used.
5.pHの測定
 茶飲料100mLを300mLのビーカーに量り取り、pHメータ(HORIBA コンパクトpHメータ、堀場製作所製)を用いて、20℃に温度調整をして測定した。
5). Measurement of pH 100 mL of a tea beverage was weighed into a 300 mL beaker and measured by adjusting the temperature to 20 ° C. using a pH meter (HORIBA compact pH meter, manufactured by HORIBA, Ltd.).
6.Brixの測定
 20℃における茶飲料のBrixを、糖度計(Atago RX-5000、Atago社製)を用いて測定した。
6). Measurement of Brix Brix of a tea beverage at 20 ° C. was measured using a sugar content meter (Atago RX-5000, manufactured by Atago).
7.官能評価
 各容器詰茶飲料の「ぬめり感」、「アルカリ味」、「円熟味」及び「後味のキレ」について専門パネル3名が官能試験を行った。官能試験では、各容器詰茶飲料について下記の評価基準にて評価し、その後協議により最終スコアを決定した。
7). Sensory evaluation Three expert panels conducted a sensory test on the “feel of slimy”, “alkaline taste”, “ripe taste” and “crisp of aftertaste” of each packaged tea beverage. In the sensory test, each packaged tea beverage was evaluated according to the following evaluation criteria, and then the final score was determined through consultation.
(1)ぬめり感の評価基準
 実施例3の容器詰茶飲料のぬめり感を評点5とし、比較例1の容器詰茶飲料のぬめり感を評点1として、下記の5段階により評価した。
  1:ぬめりを非常に強く感じる
  2:ぬめりを強く感じる
  3:ぬめりを感じる
  4:ぬめりをやや感じる
  5:ぬめりを感じない
(1) Evaluation criteria for slimy feeling The slimy feeling of the packaged tea beverage of Example 3 was rated 5 and the slimy feeling of the packaged tea beverage of Comparative Example 1 was rated 1, and was evaluated according to the following five stages.
1: Feels slimy very strongly 2: Feels slimy 3: Feels slimy 4: Feels slightly slimy 5: Does not feel slimy
(2)アルカリ味の評価基準
 実施例3の容器詰茶飲料のアルカリ味を評点5とし、比較例1の容器詰茶飲料のアルカリ味を評点1として、下記の5段階により評価した。
  1:アルカリ味を非常に強く感じる
  2:アルカリ味を強く感じる
  3:アルカリ味を感じる
  4:アルカリ味をやや感じる
  5:アルカリ味を感じない
(2) Evaluation Criteria for Alkali Taste The alkaline taste of the packaged tea beverage of Example 3 was rated 5 and the alkaline taste of the packaged tea beverage of Comparative Example 1 was rated 1, and was evaluated according to the following five stages.
1: Feel the alkalinity very strongly 2: Feel the alkalinity strongly 3: Feel the alkalinity 4: Feel a little alkalinity 5: Do not feel the alkalinity
(3)円熟味の評価基準
 実施例3の容器詰茶飲料の円熟味を評点5とし、比較例1の容器詰茶飲料の円熟味を評点1として、下記の5段階により評価した。
  1:円熟味を感じない
  2:円熟味をあまり感じない
  3:円熟味を少し感じない
  4:円熟味を感じる
  5:円熟味を強く感じる
(3) Evaluation Criteria for Ripeness The ripeness of the canned tea beverage of Example 3 was rated as 5, and the ripeness of the canned tea beverage of Comparative Example 1 was rated as 1, which was evaluated according to the following five stages.
1: I do not feel ripeness 2: I do not feel much ripeness 3: I do not feel a little ripeness 4: I feel ripeness 5: I strongly feel ripeness
(4)後味のキレの評価基準
 実施例24の容器詰茶飲料の後味のキレを評点5とし、実施例6の容器詰茶飲料の後味のキレを評点3として、下記の5段階により評価した。
  1:後味のキレを感じない
  2:後味のキレをあまり感じない
  3:後味のキレを少し感じない
  4:後味のキレを感じる
  5:後味のキレを強く感じる
(4) Evaluation Criteria of Aftertaste Clearness The aftertaste cleanliness of the containerized tea beverage of Example 24 was rated 5 and the aftertaste cleanliness of the containerized tea beverage of Example 6 was rated 3, which was evaluated according to the following five stages. .
1: I do not feel the sharpness of the aftertaste 2: I do not feel the sharpness of the aftertaste 3: I do not feel the sharpness of the aftertaste 4: I feel the sharpness of the aftertaste 5: I strongly feel the sharpness of the aftertaste
製造例1
緑茶抽出物I
 緑茶葉(二番煎茶)6gを90℃のイオン交換水400gで3分間抽出し、その後金網により濾過して、茶殻を取り除いた。次に、この抽出液を2号濾紙で吸引濾過して、緑茶抽出物Iを得た。緑茶抽出物Iは、非重合体カテキン類の含有量が0.125質量%であった。
Production Example 1
Green tea extract I
6 g of green tea leaves (Nibansencha) were extracted with 400 g of ion-exchanged water at 90 ° C. for 3 minutes, and then filtered through a wire mesh to remove the tea husk. Next, this extract was suction filtered through No. 2 filter paper to obtain a green tea extract I. Green tea extract I had a non-polymer catechin content of 0.125% by mass.
製造例2
緑茶抽出物II
 市販のカテキン製剤(ポリフェノンHG、三井農林社製)1,000gを、25℃、200r/minの攪拌条件下で、95質量%エタノール水溶液9,000g中に懸濁させ、活性炭(クラレコールGLC、クラレケミカル社製)200gと酸性白土(ミズカエース#600、水澤化学社製)500gを投入後、約10分間攪拌を続けた。次いで、25℃のまま約30分間の攪拌処理を続けた。次いで、2号濾紙で活性炭、酸性白土、及び沈殿物を濾過した後、0.2μmのメンブランフィルターによって再濾過を行った。最後にイオン交換水200gを濾過液に添加し、40℃、3.3kPaでエタノールを留去し、減圧濃縮を行った。このうち750gをステンレス容器に投入し、イオン交換水で全量を10,000gとし、5質量%重炭酸ナトリウム水溶液30gを添加してpH5.5に調整した。次いで、22℃、150r/minの攪拌条件下で、イオン交換水10.7g中にタンナーゼKTFH(Industrial Grade、500U/g以上、キッコーマン社製)2.7gを溶解した液を添加し、30分後にpHが4.24に低下した時点で酵素反応を終了した。次いで、95℃の温浴にステンレス容器を浸漬し、90℃、10分間保持して酵素活性を完全に失活させた。次いで、25℃まで冷却した後に濃縮処理を行い、緑茶抽出物IIを得た。緑茶抽出物IIは、非重合体カテキン類の含有量が15質量%であった。
Production Example 2
Green tea extract II
1,000 g of a commercially available catechin preparation (polyphenone HG, manufactured by Mitsui Norin Co., Ltd.) was suspended in 9,000 g of a 95% by mass ethanol aqueous solution under stirring conditions of 25 ° C. and 200 r / min, and activated carbon (Kuraray Coal GLC, 200 g of Kuraray Chemical Co., Ltd.) and 500 g of acid clay (Mizuka Ace # 600, Mizusawa Chemical Co., Ltd.) were added and stirring was continued for about 10 minutes. Subsequently, the stirring process was continued for about 30 minutes at 25 ° C. Subsequently, the activated carbon, the acid clay, and the precipitate were filtered with No. 2 filter paper, and then re-filtered with a 0.2 μm membrane filter. Finally, 200 g of ion-exchanged water was added to the filtrate, and ethanol was distilled off at 40 ° C. and 3.3 kPa, followed by concentration under reduced pressure. Of this, 750 g was put into a stainless steel container, and the total amount was adjusted to 10,000 g with ion-exchanged water, and adjusted to pH 5.5 by adding 30 g of a 5% by mass aqueous sodium bicarbonate solution. Subsequently, under a stirring condition of 22 ° C. and 150 r / min, a solution in which 2.7 g of tannase KTFH (Industrial Grade, 500 U / g or more, manufactured by Kikkoman) was dissolved in 10.7 g of ion-exchanged water was added for 30 minutes. The enzyme reaction was terminated when the pH later dropped to 4.24. Next, the stainless steel container was immersed in a 95 ° C. warm bath and maintained at 90 ° C. for 10 minutes to completely deactivate the enzyme activity. Subsequently, after cooling to 25 degreeC, the concentration process was performed and the green tea extract II was obtained. Green tea extract II had a non-polymer catechin content of 15% by mass.
実施例1~10、12~16及び比較例1~2
 緑茶抽出物I 20質量%に、バニリンと、ヘスペリジン製剤A(東洋精糖社製、モノグルコシドヘスペリジン換算値21%)とを配合し、次いでクエン酸で表1に示すpHとなるように調整し、イオン交換水で全量を100質量%に調整し、加熱殺菌処理を行った後、PETボトルに充填し容器詰茶飲料を得た。得られた各容器詰茶飲料について分析及び官能評価を行った。その結果を表1に併せて示す。
Examples 1 to 10, 12 to 16, and Comparative Examples 1 to 2
To 20% by mass of green tea extract I, vanillin and hesperidin preparation A (manufactured by Toyo Seika Co., Ltd., monoglucoside hesperidin converted value 21%) are blended, and then adjusted to the pH shown in Table 1 with citric acid. The total amount was adjusted to 100% by mass with ion-exchanged water, heat sterilized, and then filled into a PET bottle to obtain a container-packed tea beverage. Each container-packed tea beverage obtained was analyzed and sensory evaluated. The results are also shown in Table 1.
実施例11
 実施例10において、ヘスペリジン製剤Aに代えて、ヘスペリジン製剤B(林原社製、モノグルコシドヘスペリジン換算値75%)を配合したこと以外は、実施例10と同様の操作により容器詰茶飲料を得た。得られた各容器詰茶飲料について分析及び官能評価を行った。その結果を表1に併せて示す。
Example 11
In Example 10, in place of hesperidin preparation A, hesperidin preparation B (manufactured by Hayashibara Co., Ltd., monoglucoside hesperidin converted value: 75%) was mixed to obtain a packaged tea beverage by the same operation as in example 10. . Each container-packed tea beverage obtained was analyzed and sensory evaluated. The results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例17~19
 緑茶抽出物I 20質量%に、バニリンと、ヘスペリジン製剤A(東洋精糖社製、モノグルコシドヘスペリジン換算値21%)とを配合し、次いでクエン酸で表2に示すpHとなるように調整し、イオン交換水にて全量を100質量%に調整し、加熱殺菌処理を行った後、PETボトルに充填し容器詰茶飲料を得た。得られた各容器詰茶飲料について分析及び官能評価を行った。その結果を、実施例7の結果とともに表2に併せて示す。
Examples 17-19
To 20% by mass of green tea extract I, vanillin and hesperidin preparation A (manufactured by Toyo Seika Co., Ltd., monoglucoside hesperidin converted value 21%) are blended, and then adjusted to the pH shown in Table 2 with citric acid. The total amount was adjusted to 100% by mass with ion-exchanged water, heat sterilized, and then filled into a PET bottle to obtain a container-packed tea beverage. Each container-packed tea beverage obtained was analyzed and sensory evaluated. The results are shown in Table 2 together with the results of Example 7.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例20~23
 緑茶抽出物I 20質量%に、バニリンと、ヘスペリジン製剤A(東洋精糖社製、モノグルコシドヘスペリジン換算値21%)と、緑茶抽出物IIを適宜配合し、次いで重曹でpHを5.8に調整し、イオン交換水にて全量を100質量%に調整し、加熱殺菌処理を行った後、PETボトルに充填し容器詰茶飲料を得た。得られた各容器詰茶飲料について分析及び官能評価を行った。その結果を、実施例6の結果とともに表3に併せて示す。
Examples 20-23
Green tea extract I 20% by mass, vanillin, hesperidin preparation A (manufactured by Toyo Seika Co., Ltd., monoglucoside hesperidin converted value 21%) and green tea extract II are mixed as appropriate, and then adjusted to pH 5.8 with sodium bicarbonate. Then, the total amount was adjusted to 100% by mass with ion-exchanged water and subjected to heat sterilization treatment, and then filled into a PET bottle to obtain a container-packed tea beverage. Each container-packed tea beverage obtained was analyzed and sensory evaluated. The results are shown in Table 3 together with the results of Example 6.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例24~28
 緑茶抽出物I 20質量%に、バニリンと、ヘスペリジン製剤A(東洋精糖社製、モノグルコシドヘスペリジン換算値21%)と、2メチルブタナール及び/又は3-メチルブタナールとを適宜配合し、次いでクエン酸でpHを5.8に調整し、イオン交換水にて全量を100質量%に調整し、加熱殺菌処理を行った後、PETボトルに充填し容器詰茶飲料を得た。得られた各容器詰茶飲料について分析及び官能評価を行った。その結果を、実施例6の結果とともに表4に併せて示す。
Examples 24-28
Green tea extract I 20% by mass, vanillin, hesperidin preparation A (manufactured by Toyo Seika Co., Ltd., monoglucoside hesperidin converted value 21%), 2-methylbutanal and / or 3-methylbutanal are appropriately blended, The pH was adjusted to 5.8 with citric acid, the total amount was adjusted to 100% by mass with ion-exchanged water, heat-sterilized, and then filled into a PET bottle to obtain a packaged tea beverage. Each container-packed tea beverage obtained was analyzed and sensory evaluated. The results are shown in Table 4 together with the results of Example 6.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~4から、茶飲料に、特定量の(A)バニリンと(B)ヘスペリジン等とを、両者の質量比[(B)/(A)]が特定範囲内となるように共存させることにより、ヘスペリジン等に由来のぬめり感やアルカリ味を低減できるだけでなく、熟成した蔵出し茶が有する円熟感を有する茶飲料が得られることがわかる。 From Tables 1 to 4, tea beverages must be made to coexist with a specific amount of (A) vanillin and (B) hesperidin, etc. so that the mass ratio [(B) / (A)] of the two is within a specific range. Thus, it can be seen that not only the slimy feeling and alkalinity derived from hesperidin and the like can be reduced, but also a tea beverage having a mature feeling that aged brewed tea has.

Claims (9)

  1.  以下の成分(A)及び(B);
    (A)バニリン    13~200質量ppb、及び
    (B)ヘスペリジン及びヘスペリジン糖付加物から選択される少なくとも1種
    を含有し、
     成分(A)と成分(B)との質量比[(B)/(A)]が1000~200000である、茶飲料。
    The following components (A) and (B);
    (A) vanillin 13-200 mass ppb, and (B) at least one selected from hesperidin and hesperidin sugar adduct,
    A tea beverage having a mass ratio [(B) / (A)] of the component (A) to the component (B) of 1,000 to 200,000.
  2.  成分(C)として非重合体カテキン類を200質量ppm以上含有する、請求項1記載の茶飲料。 The tea beverage according to claim 1, comprising 200 mass ppm or more of non-polymer catechins as component (C).
  3.  成分(D)として(D1)2-メチルブタナール及び(D2)3-メチルブタナールから選択される1種又は2種を含有する、請求項1又は2記載の茶飲料。 The tea drink according to claim 1 or 2, comprising one or two selected from (D 1 ) 2-methylbutanal and (D 2 ) 3-methylbutanal as component (D).
  4.  成分(D)の含有量が10~100質量ppbである、請求項3に記載の茶飲料。 The tea beverage according to claim 3, wherein the content of component (D) is 10 to 100 mass ppb.
  5.  成分(D)として(D1)2-メチルブタナール及び(D2)3-メチルブタナールから選択される1種又は2種を含有し、該成分(D)と成分(A)との合計含有量が20~200質量ppbである、請求項1~4のいずれか1項に記載の茶飲料。 Component (D) contains one or two selected from (D 1 ) 2-methylbutanal and (D 2 ) 3-methylbutanal, and the sum of component (D) and component (A) The tea beverage according to any one of claims 1 to 4, wherein the content is 20 to 200 mass ppb.
  6.  成分(D)として(D1)2-メチルブタナール及び(D2)3-メチルブタナールから選択される1種又は2種を含有し、該成分(D)と成分(A)との質量比[(D)/(A)]が0.15~5である、請求項1~5のいずれか1項に記載の茶飲料。 Component (D) contains one or two selected from (D 1 ) 2-methylbutanal and (D 2 ) 3-methylbutanal, and the mass of component (D) and component (A) The tea beverage according to any one of claims 1 to 5, wherein the ratio [(D) / (A)] is 0.15 to 5.
  7.  pHが4.8~6.5である、請求項1~6のいずれか1項に記載の茶飲料。 The tea beverage according to any one of claims 1 to 6, having a pH of 4.8 to 6.5.
  8.  容器詰茶飲料である、請求項1~7のいずれか1項に記載の茶飲料。 The tea beverage according to any one of claims 1 to 7, which is a packaged tea beverage.
  9.  成分(B)の含有量がモノグルコシドヘスペリジン換算値として100~5000質量ppmである、請求項1~8のいずれか1項に記載の茶飲料。 The tea beverage according to any one of claims 1 to 8, wherein the content of the component (B) is 100 to 5000 ppm by mass in terms of monoglucoside hesperidin.
PCT/JP2017/018851 2017-05-19 2017-05-19 Tea beverage WO2018211690A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017553452A JP6289773B1 (en) 2017-05-19 2017-05-19 Tea drink
PCT/JP2017/018851 WO2018211690A1 (en) 2017-05-19 2017-05-19 Tea beverage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018851 WO2018211690A1 (en) 2017-05-19 2017-05-19 Tea beverage

Publications (1)

Publication Number Publication Date
WO2018211690A1 true WO2018211690A1 (en) 2018-11-22

Family

ID=61557987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018851 WO2018211690A1 (en) 2017-05-19 2017-05-19 Tea beverage

Country Status (2)

Country Link
JP (1) JP6289773B1 (en)
WO (1) WO2018211690A1 (en)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423851A (en) * 1987-06-16 1989-01-26 Warner Lambert Co Edible oil composition whose taste and smell are masked
JPS6423849A (en) * 1987-06-16 1989-01-26 Warner Lambert Co Palatable edible oil composition
WO2004039936A1 (en) * 2002-10-30 2004-05-13 Suntory Limited Method of manufacturing plant finished product
JP2006067946A (en) * 2004-09-03 2006-03-16 Ito En Ltd Hesperidin-containing beverage
WO2006062174A1 (en) * 2004-12-08 2006-06-15 San-Ei Gen F.F.I., Inc. Masking agent for livestock meat odor
JP2008295370A (en) * 2007-05-31 2008-12-11 Kao Corp Packaged beverage
JP2009055905A (en) * 2007-08-03 2009-03-19 Kao Corp Packaged beverage
JP2010131008A (en) * 2008-11-10 2010-06-17 Kao Corp Purified tea extract
JP2011126849A (en) * 2009-12-21 2011-06-30 Ito En Ltd Hesperidin-containing beverage
JP2011250738A (en) * 2010-06-02 2011-12-15 Terada Seisakusho Co Ltd Method of collecting aroma component of raw tea leaves and device of collecting aroma component of raw tea leaves for tea manufacturing steamer
WO2012111820A1 (en) * 2011-02-17 2012-08-23 サントリーホールディングス株式会社 Method for manufacturing ingredient for tea drink
JP2013169152A (en) * 2012-02-17 2013-09-02 Suntory Beverage & Food Ltd Tea beverage
JP2014125484A (en) * 2012-12-27 2014-07-07 Kao Corp Oral composition
JP2014168437A (en) * 2013-03-05 2014-09-18 Ito En Ltd Hesperidin-containing beverage, manufacturing method thereof, and method for preventing flavor deterioration of hesperidin-containing beverage
JP2015012819A (en) * 2013-07-04 2015-01-22 キリン株式会社 Method for masking strange flavor derived from ornithine or its salt
JP2016036318A (en) * 2014-08-11 2016-03-22 サントリーホールディングス株式会社 Alcoholic beverage
JP2016149943A (en) * 2015-02-16 2016-08-22 カゴメ株式会社 Tomato-containing beverage, method for producing the same, method for masking bitterness in tomato-containing beverage, and bitterness masking agent for tomato-containing beverage
JP2017012069A (en) * 2015-06-30 2017-01-19 株式会社 伊藤園 Process for producing hesperidin-containing tea beverage composition
WO2017030187A1 (en) * 2015-08-20 2017-02-23 味の素ゼネラルフーヅ株式会社 Instant fermented tea beverage composition and production method therefor
WO2017033850A1 (en) * 2015-08-26 2017-03-02 小川香料株式会社 Powdered green tea flavor improving agent
JP2017112968A (en) * 2015-12-25 2017-06-29 花王株式会社 Container-packed beverage

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009062174A1 (en) * 2007-11-08 2009-05-14 University Of Utah Research Foundation Use of angiogenesis antagonists in conditions of abnormal venous proliferation
JP2013110989A (en) * 2011-11-28 2013-06-10 Sanei Gen Ffi Inc Catechin-rich beverage

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423851A (en) * 1987-06-16 1989-01-26 Warner Lambert Co Edible oil composition whose taste and smell are masked
JPS6423849A (en) * 1987-06-16 1989-01-26 Warner Lambert Co Palatable edible oil composition
WO2004039936A1 (en) * 2002-10-30 2004-05-13 Suntory Limited Method of manufacturing plant finished product
JP2006067946A (en) * 2004-09-03 2006-03-16 Ito En Ltd Hesperidin-containing beverage
WO2006062174A1 (en) * 2004-12-08 2006-06-15 San-Ei Gen F.F.I., Inc. Masking agent for livestock meat odor
JP2008295370A (en) * 2007-05-31 2008-12-11 Kao Corp Packaged beverage
JP2009055905A (en) * 2007-08-03 2009-03-19 Kao Corp Packaged beverage
JP2010131008A (en) * 2008-11-10 2010-06-17 Kao Corp Purified tea extract
JP2011126849A (en) * 2009-12-21 2011-06-30 Ito En Ltd Hesperidin-containing beverage
JP2011250738A (en) * 2010-06-02 2011-12-15 Terada Seisakusho Co Ltd Method of collecting aroma component of raw tea leaves and device of collecting aroma component of raw tea leaves for tea manufacturing steamer
WO2012111820A1 (en) * 2011-02-17 2012-08-23 サントリーホールディングス株式会社 Method for manufacturing ingredient for tea drink
JP2013169152A (en) * 2012-02-17 2013-09-02 Suntory Beverage & Food Ltd Tea beverage
JP2014125484A (en) * 2012-12-27 2014-07-07 Kao Corp Oral composition
JP2014168437A (en) * 2013-03-05 2014-09-18 Ito En Ltd Hesperidin-containing beverage, manufacturing method thereof, and method for preventing flavor deterioration of hesperidin-containing beverage
JP2015012819A (en) * 2013-07-04 2015-01-22 キリン株式会社 Method for masking strange flavor derived from ornithine or its salt
JP2016036318A (en) * 2014-08-11 2016-03-22 サントリーホールディングス株式会社 Alcoholic beverage
JP2016149943A (en) * 2015-02-16 2016-08-22 カゴメ株式会社 Tomato-containing beverage, method for producing the same, method for masking bitterness in tomato-containing beverage, and bitterness masking agent for tomato-containing beverage
JP2017012069A (en) * 2015-06-30 2017-01-19 株式会社 伊藤園 Process for producing hesperidin-containing tea beverage composition
WO2017030187A1 (en) * 2015-08-20 2017-02-23 味の素ゼネラルフーヅ株式会社 Instant fermented tea beverage composition and production method therefor
WO2017033850A1 (en) * 2015-08-26 2017-03-02 小川香料株式会社 Powdered green tea flavor improving agent
JP2017112968A (en) * 2015-12-25 2017-06-29 花王株式会社 Container-packed beverage

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BABA R ET AL.: "Characterization of the Potent Odorants Contributing to the Characteristic Aroma of Chinese Green Tea Infusions by Aroma Extract Dilution Analysis", J. AGRIC. FOOD CHEM., vol. 62, no. 33, 2014, pages 8308 - 8313, XP055537533, DOI: 10.1021/jf502308a *
MATSUBARA, HIDETAKA ET AL.: "Rapid method for the identification of volatile odorants in Sencha by gel permeation chromatography", JOURNAL OF JAPAN ASSOCIATION ON ODOR ENVIRONMENT, vol. 47, no. 3, 2016, pages 207 - 221 *
PEKAL A ET AL.: "Evaluation of the antioxidant properties of fruit and flavoured black teas", EUR. J. NUTR., vol. 50, no. 8, 2011, pages 681 - 688, XP019977037, DOI: 10.1007/s00394-011-0179-2 *
SCHUH C ET AL.: "Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: quantitative differences between tea leaves and infusion", J. AGRIC. FOOD CHEM., vol. 54, no. 3, 2006, pages 916 - 924, XP055364876, DOI: 10.1021/jf052495n *
SCHULZE A. E. ET AL.: "Honeybush herbal teas (Cyclopia spp.) contribute to high levels of dietary exposure to xanthones, benzophenones, dihydrochalcones and other bioactive phenolics", JOURNAL OF FOOD COMPOSITION AND ANALYSIS, vol. 44, 2015, pages 139 - 148, XP055612149, DOI: 10.1016/j.jfca.2015.08.002 *

Also Published As

Publication number Publication date
JP6289773B1 (en) 2018-03-07
JPWO2018211690A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP5399864B2 (en) Purified tea extract
JP5216629B2 (en) Container drink
JP2009247215A (en) Bottled drink
JP2018113990A (en) Packed beverage
JP6777572B2 (en) Tea beverage
JP4383337B2 (en) High concentration catechin-containing container-packed oolong tea drink
JP6212675B1 (en) Tea drink
JP6496373B2 (en) Beverage composition
JP5547939B2 (en) Container drink
JP6289773B1 (en) Tea drink
JP6629483B1 (en) Drink with reduced bitterness derived from gallate-type catechin
JP6162668B2 (en) Container drink
JP6630020B1 (en) Drinks with reduced bitterness derived from catechins
JPWO2019049264A1 (en) Containerized green tea beverage
WO2012086709A1 (en) Method for suppressing bitterness
JP6719436B2 (en) Heat-sterilized bottled tea beverage
JP4119829B2 (en) Green tea bottled beverage
KR102400684B1 (en) tea drink in container
KR102400682B1 (en) beverage composition
JP7300847B2 (en) Beverage with reduced bitterness derived from gallated catechins
JP5744471B2 (en) Bitter taste inhibitor
JP6648333B1 (en) Drinks with reduced bitterness derived from gallate catechin
JP6336172B2 (en) Container drink
JP2018134069A (en) Tea beverage
JP2020145970A (en) Container-packed tea beverage

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017553452

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909973

Country of ref document: EP

Kind code of ref document: A1