WO2018211474A1 - Positive expiratory pressure device - Google Patents

Positive expiratory pressure device Download PDF

Info

Publication number
WO2018211474A1
WO2018211474A1 PCT/IB2018/053527 IB2018053527W WO2018211474A1 WO 2018211474 A1 WO2018211474 A1 WO 2018211474A1 IB 2018053527 W IB2018053527 W IB 2018053527W WO 2018211474 A1 WO2018211474 A1 WO 2018211474A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure device
expiratory pressure
positive expiratory
valve
flow
Prior art date
Application number
PCT/IB2018/053527
Other languages
French (fr)
Inventor
Stephen COSTELLA
Martin Foley
Alanna KIRCHNER
Robert Morton
Jason Collins
Jerry Grychowski
Original Assignee
Trudell Medical International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trudell Medical International filed Critical Trudell Medical International
Priority to CA3063524A priority Critical patent/CA3063524A1/en
Priority to EP18801926.9A priority patent/EP3624885A4/en
Publication of WO2018211474A1 publication Critical patent/WO2018211474A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/18Exercising apparatus specially adapted for particular parts of the body for improving respiratory function
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M16/0006Accessories therefor, e.g. sensors, vibrators, negative pressure with means for creating vibrations in patients' airways
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/208Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0488Mouthpieces; Means for guiding, securing or introducing the tubes
    • A61M16/049Mouthpieces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0605Means for improving the adaptation of the mask to the patient
    • A61M16/0627Means for improving the adaptation of the mask to the patient with sealing means on a part of the body other than the face, e.g. helmets, hoods or domes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0683Holding devices therefor
    • A61M16/0688Holding devices therefor by means of an adhesive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1045Devices for humidifying or heating the inspired gas by using recovered moisture or heat from the expired gas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0216Materials providing elastic properties, e.g. for facilitating deformation and avoid breaking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0272Electro-active or magneto-active materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3303Using a biosensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3375Acoustical, e.g. ultrasonic, measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0625Mouth
    • A61M2210/0637Teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • A61M2230/202Blood composition characteristics partial carbon oxide pressure, e.g. partial dioxide pressure (P-CO2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • A61M2230/205Blood composition characteristics partial oxygen pressure (P-O2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/30Blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/42Rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/50Temperature
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/17Counting, e.g. counting periodical movements, revolutions or cycles, or including further data processing to determine distances or speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/20Distances or displacements
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/50Wireless data transmission, e.g. by radio transmitters or telemetry
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/04Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations
    • A63B2230/06Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations heartbeat rate only
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/20Measuring physiological parameters of the user blood composition characteristics
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/40Measuring physiological parameters of the user respiratory characteristics
    • A63B2230/43Composition of exhaled air
    • A63B2230/436Composition of exhaled air partial O2 value
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/50Measuring physiological parameters of the user temperature
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/75Measuring physiological parameters of the user calorie expenditure

Abstract

A positive exhalation pressure device to increase the pressure gradient in the airways through the use of a valve housing coupled to a mouthpiece and having a flow passageway communicating between the ambient environment and the oral cavity, and a valve disposed in the housing, wherein the valve is moveable between first and second positions during inhalation and exhalation respectively, wherein the flow passageway is more restricted during exhalation than during inhalation.

Description

POSITIVE EXPIRATORY PRESSURE DEVICE
[0001] This application claims the benefit of U.S. Provisional Application No. 62/643,557, filed March 15, 2018, U.S. Provisional Application No. 62/633,460, filed February 21 , 2018, U.S. Provisional Application No. 62/572,946, filed October 16, 2017, U.S. Provisional Application No. 62/541 ,479, filed August 4, 201 7, and U.S. Provisional Application No. 62/508,671 , filed May 19, 2017, the entire disclosures of which are hereb incorporated herein by reference.
BACKGROUND
[0Q02J Oxygen plays a critical role in breathing and metabolism of living organisms. When sufficient oxygen is present in cells, approximately 34 adenosine triphosphate (ATP) molecules are produced via aerobic respiration to use as energy within the body. In the absence of oxygen, cells are forced to produce energy through anaerobic processes, yielding significantly less energy (approximately 2 ATP molecules). Oxygen reaches the lungs via ventilation, diffuses into capillaries and binds to hemoglobin in the blood, where it is transported to tissues through the circulatory system. The amount of oxygen- bound hemoglobin relative to the total amount of hemoglobin in the blood is referred to as oxygen saturation.
[0003] Oxygen saturation levels are often referenced as the fifth vital sign, providing valuable insight on the health of an individual. In healthy individuals at sea level, the body maintains a relatively stable level of oxygen saturation around 97-99%. When the body does not have enough oxygen, hypoxemia (low oxygen in the blood) and hypoxia (low oxygen in tissues) will occur. Causes of hypoxia include, but are not limited to, lung diseases such as chronic obstructive pulmonary disease, emphysema, bronchitis, interstitial lung disease, fibrosing alveolitis, acute respiratory distress syndrome, pneumonia, pulmonary edema and acute asthma attacks, strong pain medications that alter ventilation (i.e. certain narcotics . and anesthetics), lung abscess, tuberculosis, lymphoma, sarcoidosis, anemia, cyanide poisoning, congenital heart defects, congenital heart disease, pneumothorax, pulmonary edema, pulmonary embolism, extreme obesity, suppressed respiratory signaling due to drug/alcohol toxicity or a brain injury, extreme exercise, sleep apnea, hypoventilation and high altitude.
[0004] Hikers, skiers, mountaineers and other adventure travelers who visit high altitudes have an increased risk of developing acute mountain sickness (AMS) as altitude increases and the amount of oxygen available to the body decreases. Onset of AMS symptoms may occur at approximately 2,500m
(8,000ft), at which roughly 25% of people will develop symptoms of AMS. As altitude increases, the risk of developing AMS increases, with 100% of people acquiring symptoms above 5,000m (16,000ft). Current prevention methods for AMS, such as acetazolamide, staged ascent profiles or intermittent hypoxia training, pre-acclimatization, Ginkgo Biloba, supplemental oxygen, allowing time to rest and minimize activities, pursed lip breathing and adequate hydration, aim to increase oxygen saturation levels in some form. These methods and devices have various drawbacks, including for example and without limitation, pre-ascent planning and training, portaging of supplemental oxygen containers and administration devices, and/or acquisition and ingestion of various supplements and/or medications. The disclosed devices address these various limitations in current practices for increasing oxygen saturation levels.
[0005] Positive airway pressure (PAP) such as continuous positive airway pressure (CPAP), variable or bi-!evel positive airway pressure (VPAP or BPAP), automatic positive airway pressure (APAP) or expiratory positive airway pressure (EPAP, also referred to as positive exhalation/expiratory pressure or PEP), are often used as a treatment for sleep apnea and respiratory diseases such as chronic obstructive pulmonary disease and asthma. Positive airway pressure can be used for individuals not acclimatized to altitude to improve oxygen saturation levels and decrease the risk of AMS. Current limitations on portability, comfort and energy requirements warrant the need for an improved solution for high altitude travelers, which may transferrable to other applications warranting an increase in oxygen saturation.
SUMMARY
[ΟΟΟ63 A device provides positive exhalation/expiratory pressure (PEP) to increase the pressure gradient in the airways, thereby increasing oxygen saturation levels and decreasing the severity of hypoxia. The device improves upon limitations associated with current methods for preventing acute mountain Sickness (AMS), which may include but are not limited to side effects associated with pharmaceuticals, increased time spent at incremental altitudes (slower ascent profiles), resources spent prior to travel to acclimatize in simulated environment, lack of evidence to support effectiveness, lack of portability and supply of supplemental oxygen, technique and thought required to practice pursed lip breathing and requirement to minimize exertion. For applications where oxygen saturation levels are decreased, the disclosed device improves portability, effectiveness and efficiencies to decrease hypoxia.
[0007] The disclosed devices provide PEP by adding resistance in series with the nasal and/or oral passageways, and combinations thereof, to provide an exhalation resistance greater than inhalation resistance. In one embodiment. the device includes a valve biased to inhalation and a restricted orifice or positive end-expiratory pressure (PEEP) valve for exhalation. The device may include multiple settings and allow for incremental resistances on exhalation to .
accommodate various individuals and allow for flexibility and improvements in technique. Another embodiment of the device may block exhalation through the mouth almost entirely, forcing exhalation through the nose with a portion of the device acting as a clip on the outside of the nose to decrease the available nostril size
[0008] Embodiments intended for oral breathing include a portion of the device that fits snugly over a portion of the teeth, with the resistive load residing internal or external to the mouth. Embodiments intended for nasal breathing include a portion of the device that secures and seals within each nostril, or across the front of the nostril openings, with the resistive load residing internal or external to the nasal passage. Embodiments intended for oral and nasal breathing may include a combination of both oral and nasal breathing
embodiments discussed above. In one alternate embodiment, the desired resistance may be provided by an electronically controlled resistive load, with programmed settings or utilizing an algorithm to provide a suitable resistance dependent on the user's breathing profile,
[0009] Pursed lip breathing (PLB) is a technique commonly used to help improve oxygen saturation, as it involves an individual consciously exhaling through tightly pressed lips to increase pressure o exhalation, effectively providing PEP when done properly. PLB effectiveness may be limited as it requires conscious effort and well understood technique. In one embodiment, the device promotes PLB by monitoring breathing patterns and informing the user when their technique is insufficient via some form of notification, for example a smart phone, watch or other communication device. The communication device may be worn on the body and ma be adhered via an adhesive, band, chain, hook, or other fastening component. Notifications may be audible, visual, haptic or a combination thereof.
[0010] Aside from the value of PEP in increasing oxygen saturation levels, embodiments of the device may include additional features that add value to users. Such features may include any one of the following or any combination thereof.
[0011] Integrated monitoring capabilities with the ability to keep track of the individual wearing, or otherwise associated with, the device and share data with others, for example with sensors that collect data such as oxygen saturation levels (i.e. pulse oximeter), respiration rate, inhalation/exhalation pressure, inhalation/exhalation flow, pulse rate, blood pressure, temperature, number of steps, calories, distance travelled, position (i.e. GPS), altitude, barometric pressure, hydration level, nutrition level, quality of sleep, blood lactate" levels, supplemental oxygen usage, exhaled C02 content, etc.
[00 2] Reminders to do common tasks associated with activity, such as hydrate, intake nutrition, apply sunscreen, monitor for AMS, take medications, take moments to fe!ax, weather updates, directions, alarms, etc.
[0013] Integrated communication component, with audible (i.e. whistle) or visual component used to deter wildlife, communicate with others in group, send out distress call, etc.
[0014] Integrated camera to document and take photos, with or without image processing capabilities to perform algorithms including but not limited to facial recognition to determine health status of other individuals, some form of template matching to determine species of plants or animals, location identification, medication identification etc.
[0015] Powered via solar energy, energy from user's breath, lactate in user's sweat, movement of user o r other form of sustainable energy .
[0016] Designed in a material that has a pleasant taste or smell, to enhance comfort and experience wearing the device.
[0017] Adapter to connect with supplemental oxygen to further improve oxygen saturation levels.
[0018] Combined with sunglasses to protect eyes from UV rays at altitude and aid in securing device to nose.
[0019] Portion of device infused wit or producing substance that deters insects or other pests without harm to the user, such as eitronella, lemon eucalyptus, neem oil, bog-myrtle, etc.
[0020] Designed in a material that when disposed of with other waste (i.e. sanitary products, feces, etc.), the material adds a more pleasant aroma or aims to eliminate unpleasant odors.
[0021] Designed and integrated in a neck warmer or balaclava used to keep warm and apply PEP with restrictive load as described herein or with a load created with the same material as the neck warmer.
[0022] The foregoing paragraphs have been provided by way of general introduction, and are not intended to limit the scope of the following claims. The various preferred embodiments, together with further advantages, will be best understood by reference to the following detailed description taken in conjunction with the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS
[0023] FIGS. 1A-E are top, isometric, front, cross-sectional views of one embodiment of the device, shown together with one embodiment of a valve used therein.
[0024] FIGS. 2A and B are partial cross-sectional views of the device shown in Figure 1 B during inhalation and exhalation respectively.
[0025] FIG. 3A-D are top, isometric, front, and cross-sectional views of another embodiment of the device.
[0026] FIGS. 4A and B are partial cross-sectional views of the device shown in Figure 3B during inhalation and exhalation respectively.
[0027] FIGS. 5A-D are front views of the device shown in Figure 3C with a variable resistance dial shown in different positions ranging from a lowest to highest pressure setting.
[0028] FIGS. 6A-D are top, isometric and front views of another embodiment of the device, shown together with an inhalation valve and variable exhalation valve used therein.
[0029] FIGS. 7A and B are isometric views of the device shown in Figure 6B during inhalation and exhalation respectively.
[0030] FIGS. 8A-C are bottom isometric views of the device shown in Figure 6B with the variable exhalation valve shown in different positions ranging from a highest to lowest pressure setting.
[0031] FIGS. 9A-C are a top, exploded isometric and rear view of another embodiment of a device.
[0032] FIGS. 10A and B are isometric view of the device shown in Figure 9B during inhalation and exhalation respectively. [0033] FIGS. 11 A-D are rear, isometric, bottom and cross-sectional views of another embodiment of a device .
[0034] FIGS. 12A and B are isometric side views of the device shown in Figure 1 B during inhalation and exhalation respectively.
[0035] FIGS. 13A-C are front, isometric and bottom views of another embodiment of the device.
[0036] FIGS. 14A-D are isometric views of the device shown in FIG. 13B during nasal and oral inhalation and nasal and oral exhalation respectively.
[0037] FIGS. 15A-D are top, isometric, rear and side views of another embodiment of the device.
[0038] FIGS. 16A and B are isometric views of pairs of the device shown in FIG. 1 5B during inhalation and exhalation respectively.
[0039] FIGS. 17A-D are top, isometric, front and cross-sectional views of another embodiment of the device .
[0040] FIGS. 18A and B are isometric views of the device shown in FIG. 17B during Inhalation and exhalation respectively.
[0041] FIGS. 19A-C are isometric views of the device shown in FIG. 17B with a variable resistance dial shown in different positions ranging from a lowest to highest pressure setting.
[0042] FIGS. 20A-D are top, exploded isometric, front and cross-sectional views of another embodiment of a device.
[0043] FIGS. 21 A and B are partial cross-sectional isometric views of the device shown in FIGS. 20B during inhalation and exhalation respectively.
[0044] FIGS. 22A-E are top, front, exploded isometric, and bottom views of another embodiment of the device , together with a rotated view of a housing. [0045] FIGS. 23A and B are cross-sectional isometric views of the device shown in FIG. 22C during inhalation and exhalation respectively.
[0046] FIGS. 24A-D are front, isometric, top and side views of another em odiment of a device .
[0047] FIGS. 25A and B are isometric views of the device shown in FIG. 24B during inhalation and exhalation.
[0048] FIGS. 26A-D are top, isometric, front and side iews of another embodiment of a device.
[0049] FIGS. 27A and B are cross-sectional views of the device shown in FIG. 26B during inhalation and exhalation respectively.
[0050] FIGS. 28A-C are top, side and bottom views of another embodiment of a device.
[0051] FIGS. 29A and B are cross-sectional views of the device shown In F IG. 28B during inhalation and exhalation respectively.
[0052] FIGS. 30A and B are front views of another embodiment of a device applied to a user in a non-PEP and PEP configuration respectively.
[0053] FIGS. 31 A-C are top, front and side views of another embodiment of a device.
[0054] FIGS. 32A and B are isometric views of the device shown in FIGS, 31 A-G during exhalation and inhalation respectively.
[0055] FIGS. 33A-C are isometric, front and side views of another
embodiment of a device.
[0058] FIGS. 34A and B are front views of the device shown in FIGS. 33A-C during inhalation and exhalation respectively.
[0057] FIGS. 35A and B are isometric views of other embodiments of the device shown in FIGS. 33A-C. [0058] FIGS. 36A-D are top, isometric, front and side views of another embodiment of a device.
[0059] FIGS. 37 A and B are isometric views of the device shown in F IG. 36B during inhalation and exhalation respectively.
[0060] FIGS. 38A-D are top, isometric, front and side views of another embodiment of a device.
[0061] FIGS. 39A and B are isometric views of the device shown in FIG. 36B during inhalation and exhalation respectively.
[0062] FIGS. 40A-D are top, section, front and side views of another embodiment of a device.
[0063] FIGS. 41 A and B are front views of a dial.
[0064] FIGS. 42 A and B are isometric views of the device shown in FIGS. 40A-D during inhalation and exhalation respectively.
[0065] FIG. 43 is a flow chart for the operation of another embodiment of a device.
[0066] FIG. 44 is a top and isometric views of another embodiment of a device.
[0067] FIG. 45 is a table showing sensor variables with associated calculations and thresholds.
[0068] FIG. 46 is a table showing average values of different parameters at different altitudes.
[0069] FIG. 47 is a front perspective view of a mask embodiment.
[0070] FIG. 48 is a rear perspective view of the mask embodiment shown in
Figure 47.
[0071] FIG. 49 is a front perspective view of the mask embodiment shown in Figure 47 with a neck tube applied thereto. [0072] FIG, 50 is a rear perspective view of the mask embodiment shown in Figure 48 with a neck tube applied thereto,
[0073] FIG, 51 is a front view of the mask embodiment shown in Figure 47.
[0074] FIG. 52 is a cross-sectional view of the mask embodiment shown in Figure 51 taken along line 52-52.
[007S] FIG, 53 is enlarged view of a portion of the mask embodiment shown in Figure 51 taken alon detail line 53.
FIG. 54 is a cross-sectional vie of the mask embodiment shown in Figure 51 taken along line 54-54.
FIG. 55 is a partial cut-away review of a portion of the mask embodiment.
FIGS. 56A and B show a cross-section of the mask during exhalation and inhalation respe ct i ye ly .
FIGS. 57 A and B are enlarged cross-sectional views of the mask during exhalation and inhalation respectively.
[0076] FIG. 58 is a front perspective view of a mask embodiment shown in Figure 47 with a neck tube applied thereto.
DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS
[0077] Referring to the drawings, various nasal inserts, nasal insert assemblies and nasal plugs are shown. The phrase "nasal insert," "nasal insert assembly" and "nasal plug" refer to a nasal insert configured to interface with or cover one or both nasal cavities of the user, or in a cavity formed in the user's tracheotomy.
[0078] The terms "longitudinal" and "axial" as used herein relates to a length or lengthwise direction , including for example generally the direction of flow of fluids through the nasal inserts and assemblies. The term "lateral" and variations thereof refer to a sideways direction. The terms "top" and "bottom" are intended to indicate directions when viewing the nasal insert when positioned for insertion into the nasal cavity of the user, with the "top" end thereof being inserted first. However, it should be understood that a user can use the nasal insert and assembly when the user is in any number of positions, including but not limited to an upright position (seated or standing) or horizontal position (whether lying sideways, prone or supine).
[0079] It should be understood that the term "plurality," as used herein, means two or more. The term "coupled" means connected to or engaged with, whether directly or indirectly, for example with an intervening member, and does not require the engagement to be fixed or permanent, although it ma be fixed or permanent. The term "transverse" means extending across an axis, including without limitation substantially perpendicular to an axis. It should be understood that the use of numerical terms "first," "second," "third," etc., as used herein does not refer to any particular sequence or order of components; for example "first" and "second" members may refer to any sequence of such members, and is not limited to the first and second members of a particular configuration unless otherwise specified,
[0080] The device disclosed in FIGS. 1 A-E is intended to be inserted in a person's nostril, with the nasal plug 1 securing and sealing within each nostril. The nasal plug 1 is a rigid housing with an opening on either end creating a channel between atmosphere and the nasal cavity. In one embodiment, the rigid housing is cylindrical, with an annular side wall defining a central
passageway/channel having a longitudinal axis. Th opposite ends of the annular side wall have an outer curved shoulder or chamfer. In betwee the openings at each end of the housing on the nasal plug 1 is a frame, configured as a plurality of ribs 2, that create a housing or support structure for the valve 3, which is held i n place by a valve post 4 e ngaging a central hub of the frame . The ribs/frame define a valve seat for the valve and extend across the central passageway. The valve type may be but is not limited to an umbrella valve, ball cheek valve, duckbill valve, butterfly valve, flap valve, or any other valve reasonably assumed to be used for limiting flow to one direction with low resistance. FIGS . 2A and B show the mechanics of the device d uring inhalation (FIG. 2A), with the valve 3 open away from the frame and valve seat to allow flow through the channel into a person's nasal passage during inhalation. During exhalation (FIG. 2B), the valve 3 closes or seats against the ribs 2 and flexes slightly in the opposing direction between ribs 2 to create small channels for resisted exhalation flow. During use, the device includes two nasal plugs 1 , one for each nostril, as shown for the embodiment of FIGS. 16A and B. The individual nasal plugs 1 may be fastened together with some form of a rigid or flexible connector or tether. Additionally , the nasal plugs 1 may be encased with a flexible material that conforms to a person's nostril shape to improve comfort and obtain a more reliable seal. Various features of a nasal cannula, including a housing, valves and tether, are disclosed in U.S. Pub. No. 2013/0081637 and U.S. Patent No. 9,615,962, the entire disclosures of which are hereby
incorporated herein by reference.
[0081] The device disclosed in FIGS. 3A-D is a mouthpiece 5 intended to be inserted in a person's oral cavity, with teeth 101 resting and securing over the bite plate 6 and the tooth cover 7 extending upwardly and downwardly from the bite plate and residing in front of the user's teeth 101 . The bite plate 6 includes an interior flange extending upwardly and downwardly from the bite plate in one embodiment, with the flanges and cover define upper and lower channels for the user's teeth. The mouthpiece includes a housing portion extending forwardly from the bite plate and tooth cover. The housing portion, having a generally cylindrical shape, defines a central passageway or opening having a longitudinal axis. Within the mouthpiece 5 central passageway or opening, a valve housing 8 is fitted to accommodate PEP function in the device. The valve housing 8 has a generally cylindrical shape that mates with the central passageway of the mouthpiece housing portion, and may be removably secured or disposed therein. The valve housing has a transverse frame extending across a central
passageway of the valve housing. The valve housing 8 hosts an inhalation valve 9, which may be any one of the valves shown in FIGS. 1 A-D, secured by a valve post 10 engaging the frame. Within the valve housing 8, positioned for example in the frame, are exhalation ports 11 , which may be exposed or covered by a variable resistance dial 12 to achieve various pressure settings on exhalation. The dial 105, configured as an annulus segment in one embodiment, is rotatable mounted to the frame about a longitudinal axis 103 defined by the central passageway. A plurality of longitudinally extending flanges 107 engage the dial 105 and define a track therefore. There may be up to six (6), or more, exhalation ports 1 1 to accommodate a varying number of settings required for different breathing capabilities. FIGS. 4A and B show the mouthpiece 5 in use, with the inhalation valve 9 open during inhalation (FIG. 4A), and the inhalation valve 9 closed during exhalation, with flow limited to the exhalation ports 11 (FIG. 4B). FIGS. 5A-D show the variable resistance dial 2 in each of four (4) exemplary positions, from a lowest pressure setting (FIG. 5A), wherein the dial leaves uncovered four openings, to a highest pressure setting (FIG. 5D), wherein the dial leave uncovered only one opening. In one embodiment, the number of
13 positions relating to pressure settings is preferably equivalent to the number of exhalation ports 11.
[0082] FIGS. 6A - D discloses a device intended to fit and seal inside a person's nostrils 109 via two nostril ports 3. The device includes a mixing chamber 14 coupled to the nostril ports in fluid communication therewith. The mixing chamber has a pair of arms, each having an end port. One port houses an inhalation valve housing 5, while an opposite port houses a variable exhalation resistance dial 16. The mixing chamber 14 also includes an exhalation port 17 and a safety port 18. The exhalation port 17 and safety port 18 are located opposite to the nostril ports 13, but may be exchanged with the ports housing the inhalation valve housing 5 and variable exhalation resistance dial 16. The inhalation valve housing 15 has an end portion, or head, that includes inhalation ports 19, which may consist of one large port or multiple smaller ports. The housing 15 further includes an insert portion, configured as a stem, inserted into the port of the mixing chamber and an inhalation valve 20 coupled to the insert portion. The inhalation valve 20 may be configured as any of the valve types outlined herein with respect to this or other embodiments. The variable exhalation resistance dial 16 includes an end portion, or head, and an insert portion, configured in one embodiment as a cylindrical member having a partial cutout at an end distal to the head. The dial 16 may be rotated about a longitudinal axis 111 to move between a lowest resistance setting, where a first (large) hole 21 is open to (aligned with) the exhalation port 17, a middle resistance setting, where a second (small) hole 22, having a smaller area than the first opening, is open to (aligned with) the exhalation port 17, and a highest resistance setting, where no hole is positioned over or aligned with the exhalation port 17, but rather the annular wall of dial 16 covers the exhalation port, wherein the exhalation path is limited to the safety port 18. It should be understood that additional openings with differential areas may also be provided.
[0083] FIGS. 7A and B show the device in use, with air moving primarily through the inhalation ports 19 on inhalation (FIG, 7A) as the valve 20 is opened, and air moving through the exhalation port 17, or safety port 18 on exhalation (FIG. 7B) as the valve 20 is closed. During inhalation (FIG. 7A), air may also move through the exhalation port 17 and safety port 18. The device may be reconfigured to different Settings (shown as three (3) in FIGS. 8A-C), achieved by rotating the exhalation resistance dial 16 about a longitudinal axis to move between a high resistance (no hole as shown in FIG. 8A), a small hole/second opening (FIG. 8B) and a large hole/first opening (FIG. 8C). It should be understood that the variable resistance device is not limited to three settings but rather may be configured as a continuously adjustable device, or with some number greater than three, which number may be required to achieve proper functionality for the entire target population.
[0084] FIGS. 9A-C disclose a mouthpiece 23 intended to be worn in a person's oral cavity to provide PEP. The mouthpiece 23 consists of a flexible upper teeth housing 24 and a rigid or semi-rigid valve geometry case 25, which snap together via a locking mechanism, for example a plurality of posts 26 engaging openings in a snap-fit or interference fit, to create a Tesla valve 27 with no moving parts. The mouthpiece 23 has two breathing channels 28 that join to form a single i nhalation/exhalation port 29 in the ante rior position of the device. FIGS. 10A and B show the device in use for inhalation and exhalation, respectively, with an understanding that the device is inserted into the user's oral cavity with upper teeth 1 13 disposed in a channel defined by the housing, and lower teeth 115 engaging a bottom of the case 25. The Tesla valve 27 is designed so that resistance to flow is minimal on inhalation (FIG. 1 DA) and increased exponentially on exhalation (FIG. 10B). The upper teeth housing 24 has an anterior barrier 30, posterior barrier 31 and bottom bite plate that define the channel, which together form a securing channel 32 where a person's teeth sit 1 13 and secure the mouthpiece 23 over the upper teeth 1 13.
[D08S3 The device in FIGS. 1 1 A-D includes a mouthpiece 33 worn in a person's oral cavity to provide PEP. The mouthpiece 33 has an anterior barrier 34 and a posterior barrier 35, which together with a bite plate form a securing channel 36 that secures the mouthpiece 33 over a person's upper teeth 1 1 3. At the back of the mouthpiece 33 and attached to the bottom is a flow blockade 37. FIGS. 12A and B discloses the use of the device during inhalation and exhalation, respectively. The flow blockade 37 moves from a position
substantially parallel to the bottom of the mouthpiece 33 during inhalation (FIG. 12A), to a position substantially perpendicula r to the bottom of the mouthpiece 33 during exhalation (FIG. 12B), where the flow blockade 37 interferes with a person's teeth and limits exhalation flow. In other words, the flow blockade deforms or deflects during inhalation, for example by bending about end portion coupled to the posterior barrier 35. The flow blockade defines a greater angle areiative to the plane of the bite plate when in the inhalation position as compared with the angle in the exhalation position. The flow blockade 37 may include one large movable barrier, or multiple smaller barriers, for example a plurality of spaced apart fingers (shown in one embodiment as four), that move independently and/or simultaneously with an inhalation flow.
[0086] FIGS. 13A-C discloses a device intended to fit into a person's oral and/or nasal cavity to provide PEP regardless of the method of breathing. The nasal plugs 38 secure and seal within a person's nostrils and are connected to a mouthpiece 39 via a flexible connecting chamber 40. The mouthpiece 39 consists of an anterior barrier 41 and posterior barrier 42 that together with a bite plate form a securing channel 43 that secure over a person's teeth 1 13 to hold the device in place. Coupled to the connecting chamber 40 is a valve housing 44 that secures an inhalation valve 45 (e.g., flap valve) and exhalation valve 46, with the exhalation valve 46 having a much greater resistance than that of the inhalation valve 45. The mechanics of the device are depicted in FIGS. 14A-D, although it should be understood that the connecting chamber 40, which is flexible, may be bent or curved to accommodate the positioning of the nose relative to the mouth . The housing 44 and valves 45, 46 are in fluid
communication with both the nasal plugs and mouthpiece, with those
components defining flow passageways extending through the nasal plugs and mouthpiece as shown in FIGS. 13A.
[0087] The embodiment in FIGS. 15A-D includes a pair of nasal inserts 47 intended to fit into a person's nostrils. Each of the nasal inserts 47 is made of a flexible material, and has a cup shape, such that it fits comfortably within a person's nose and is able to flex dependent on the air flow. On the inside of the nasal insert 47 are ribs 48 that engage supports engaging an inner surface of the cup shaped inserts are aligned along an axis 121 for added support along the axis while permitting movement or flexing of the cup on both sides of the cup. The device is intended to fit with the large opening 49 furthest in the nostril and the restricted orifice 50 protruding or resting flush with the end of a person's nostril. Intended positioning within the nose is disclosed in FIGS. 16A and B, with inhalation shown in FIG. T6A, and exhalation shown in FIG. 16B. The nasal inserts 47 flex in a concave manner, with the sides of the cup deflecting or deforming inwardly toward the axis, on inhalation, allowing air to travel through the restricted orifice 50 as well as around the sides of the nasal insert 47. Upon exhalation, the nasal inserts 47 flex in a convex manner, with the sides of the cup moving away from the axis to limit flow to the restricted orifice 50.
[00$8] The embodiment disclosed i FIGS 17A-D is a device that provides PEP and is intended as an add-on to a nasal mask, nasal pillow, full mask, mouthpiece or any other nasal or oral interface device. The device attaches to an interface device via an adapter 51 to create a complete PEP device. The adapter
51 and resistance dial 52 attach to form a small chamber 53. On the anterior surface of the resistance dial 52 is a valve housing 54 equipped with an inhalation valve 55. The valve may be any variety of valve biased to inhalation flow as disclosed herein with respect to other embodiments. The resistance dial
52 includes a cut out that creates an exhalation port 56 on an outer cylindrical side wall of the dial 52, which aligns with a window 57 on the adapter 51 , which has a cylindrical shape with a side wall mating with the side wall of the dial to provide a restricted flow path for exhalation. The flow paths for inhalation and exhalation are shown in FIGS. 1 8A and B, respectively. As shown in FIGS. 19A-C, the exhalation flow path narrows as the dial 52 and exhalation port 56 are rotated about a central axis 123 on the adapter 51 and misalign wit the window 57, thereby closing or reducing the amount of overlapping of the port 56 and window 57.
[0089] FIGS. 20A-D disclose a nostril insert 58 that is intended to provide PEP for nasal breathing. The device includes three main parts: a nostril insert 58 having a cup shape, a dual valve 59 and a valve housing 60. In other
embodiments, these parts may be combined (e.g., integrally formed) or separated further to represent similar function with a different number of components. The dual valve 59 secures within the valve housing 60, such that the inhalation valve 61 rests on a frame having or defining an inhalation window 62 and the exhalation valve 63 rests on or extends through the frame having or defining an exhalation window 64. Single or multiple windows may be present to make up the inhalation window 62 and/or exhalation window 64 elements. The area of the exhalation window(s) 64 is less than that of the inhalation wind0w(s) 62, unless material properties or the nature of the valve types are the main contributing factor to the increased resistance on exhalation . Valve types for both the inhalation valve 61 and exhalation valve 63 may be but are not limited to those disclosed herein with respect to other embodiments. In one embodiment, the valve includes a combined duckbill and umbrella valve, with the duckbill valve closed and the umbrella valve open during inhalation, and the duckbill valve open and the umbrella valve closed during exhalation. To maintain a seal and adequately secure the nostril insert 58 in a person's nostril, valv flanges 65 are located on the end of the nostril insert 58 that protrudes furthest into the nostril. The valve flanges 65 may be made up of one or several flanges . Movement of the dual valve 59 during inhalation and exhalation is shown in FIGS. 21 A and B respectively. In one embodiment (FIGS. 16A and B), the device comprises two nostril inserts 58, one for each nostril. A pair of inserts may be connected with a tether or other connector, or may be integrall molded.
[0090] The disclosed device shown in FIGS. 22A-E is inserted in a person's nostrils via the nasal plugs 66 to provide PEP. The device consists of two nasal plugs 66, a nasal setting adapter 67, an inhalation valve 68 and a valve housing 69. The nasal plugs 66, having a generally cylindrical shape, fit over two circular nasal adapters 70, also having a generally cylindrical shape, on the nasal setting adapter 67, which releasably fits with the valve housing 69 by way of a fastening mechanism, for example with a snap fit, interference/press fit, detent, meGhanical fastener or combinations thereof . On the bottom of the valve housing 69 is an inhalation valve 68 which may be of any type disclosed herein with respect to other embodiments. The valve is secured to the housing by way of an opening secured over a post. The valve housing 69 may be rotated such that a setting dial 71 may accommodate a low setting exhalation port 72 and a high setting exhalation port 73. The area of the low setting exhalation port 72 is greater than that of the high setting exhalation port 73 to provide less resistance on exhalation, while still maintaining a resistance higher than inhalation. A grip 74 is easily visible on the valv housing 69 to allow for easy manipulation between settings, for example by disengaging the adapter 67 from the housing 69 and rotating one component relative to the other by 180 degrees and reengaging the housing with the adapter. The number of settings may increase or decrease depending on the requirements for the target population and is not limited to the number of settings disclosed in this embodiment FIGS. 23A and B disclose the intended function of the device during inhalation (FIG. 23A) and exhalation (FIG. 23B).
[0091] The disclosed device of FIGS. 24A-D fits securely over the columella portion of a person's nose via a nasal clip 75 having a pair of side walls defining a channel receiving the columella. The clip secures the device to align flow control members extending outwardly from each of the side walls. The flow control members include exhalation ports 76 aligned within each of the nasal passages. The device includes two exhalation ports 76 to interface with both nostrils 109. The exhalation ports 76 may be centered within each nasal passage or slightly skewed from the center, aligned to accommodate the region of maximum flow velocity on exhalation. The flow control member further includes a valve member attached to each exhalation port 76. The valve member is configured as a balloon valve 77 in one embodiment, such that a pair of balloon valves 77 is provided to accommodate both nasal passages. On a posterior side of the device inside the nasal clip 75" are compression ribs 78 that press gently against the nasal septum to secure the device within the nasal passages.
[0092] The nasal clip 75 may be made from a material with flexible properties to allow for flexing of the nasal clip 75 during positioning of the device and/or in the resting position within the nasal passages. The flexible material may be a thermoplastic, a flexible rubber/silicone material or metal. Magnetic properties may be incorporated in the compression ribs 78 to further secure the device within the nasal passages, with the magnetic force between the ribs 78 attracting each other through the septum. The balloon valves 77 are designed such that they deflate on inhalation, and define a flow passageway in the nasal
passageway having a first cross sectional area perpendicular to a longitudinal axis 125, and inflate on exhalation, and define a second cross sectional area of the flow passagewa relative to the axis 124, as shown in FIGS. 25A and B, with the first cross-sectional area being greater than the second cross-sectional area. Stated another way, the cross-sectional area of the balloon valve is greater during exhalation, thereby decreasing the cross-sectional area of the flow passageway. The walls of the balloon valve 77 are thin (e.g., less than 1 mm in thickness), and the exhalation ports 76 are large enough (e.g., greater than 2mm diameter) to allow the balloon valves 77 to inflate completely within the first 500ms of exhalation. Once inflated, the balloon valves 77 block flow through the exhalation path, providing positive exhalation pressure in the airways. Upon inhalation, the balloon valves 77 deflate completely within the first 500ms of inhalation, creating a cross-sectional and surface area within the nasal passage for air to flow with minimal resistance, e.g., less than 2.4 cm^Q/L/S, created by the device. In one embodiment, the balloon valves 77 may be incorporated into a different nasal device, such as the embodiment of FIGS. 1 A-D or FIGS. 20A-D, and operated in the same way.
[0093] Referring to the embodiment shown in FIGS. 26A-D, the device provides positive expiratory pressure through the nasal passages. The device secures within the nasal passageways via porous nasal inserts 79, having a cylindrical shape defining a central passageway, with the inserts having a predetermined length L, e.g., 10 mm. For example, the inserts may be made of foam, a polymer compound, polyethylene, bamboo, tencel, wool, cotton, nylon, and/or a metal based material, or combinations thereof. The pair of nasal inserts 79 are connected to a body 80 that rests against or is in close proximity to the outside of the nasal passages. The body 80 may be made of a flexible material, such that the positions of the nasal inserts 79 may be altered, for example by manipulating the body, so as to accommodate the anatomy of the particular user's nostrils. On the anterior end of the body 80 is an inhalation channel 81 , created by an opening with a valve post 82 in the center. A oneway inhalation valve 83 is secured to the valve post 82 and rests against the inside of the inhalation channel, which defines a valve seat, in the closed position. The valve 83 may control flow to both inserts, for example by way of opposite flaps.
[0094] FIGS. 27A and B disclose the operation of the device, with the inhalation valve 83 open on inhalation and closed on exhalation. During exhalation, air flows or travels through the pores of the porous nasal inserts 79, providing an increased resistance and resulting a positive airway pressure. The level of resistance achieved is dependent on the material selection of the porous nasal inserts 79 as well as the compression required to create a seal within the nostrils, and various geometries and pore sizes may be chosen to allow for selection of the optimal resistance for each individual. The porous inserts 79 are flexible to accommodate compression and to allow the inserts to seal within each nasal passage. In one embodiment, the porous nasal inserts 79 may be removably attached to the body 80 to allow the user to customize the device and interchange inserts 79 providing various resistance levels to achieve a desired positiv airway pressure on exhalation. The porous nasal inserts 79 also have the added benefit of trapping moisture in the user's breath on exhalation, increasing the humidity of inhaled air and improving hydration levels.
[0005] FIGS. 28A-C disclose a nasal device that may be inserted and secured to the inside of the user's nostril. A tube portion 84, having a cylindrical shape, includes an open-cell, flexible foam configured to provide a resistance to flow that produces a sufficient PEP during a passive or active exhalation. A distal end of the foam contains a rigid cap 85 that may be integrally formed with the tube portion as a one-piece unit, or coupled thereto as a separate part. The cap may have a greater diameter than a diameter of the tube portion, thereby forming a shoulder along an end of the cap. The ca has an annular channel that receives a cylindrical end portion of the tube portion as shown in FIGS. 29A and B. The cap 85 has a one-way valve 86, which is located concentric to the foam tube and is configured to allow inspiratory flow while closing completely during exhalation. The valve 86 ma be formed as a flap valve by way of a C-shaped slit being formed in the cap, with a bridge portion providing a hinge for the valve. The cap forms a valve seat, which may be tapered as shown in FIG. 29A. The tube structure 84 is configured such that most of the inspiratory flow passes through the center with low resistance and a small faction passes through the foam for heat and moisture exchange. In addition to humidifying the Inspired air, the foam absorbs condensation or secretions to improve user comfort. The tube formation also prevents over compression of the foam structure which improves the consistency of the foam's resistance to flow. As shown in FIG. 29B, during inspiration, the valve 86 opens into the interior of the cap 85 and allows flow through the central passageway of the tube portion. During exhalation, as shown in FIG. 29A, the valve closes, with air flow through the foam tube portion, and optionally through a leak passage formed by the valve interface with the cap or through an orifice in the center of the valve.
[0096] In another embodiment, a foam nasal insert is configured to be inserted and secured on the inside of the user's nostril. The foam is
manufactured such that its resistance to flow during inhalation is significantly (20x to 30x) lower than the exhalation resistance.
[0097] Referring to FIGS, 30A and B, a mask 87, which may be configured as, or incorporated into and including, a balaclava, neck gaiter, neck warmer, scarf, buff or other device secured to the user and covering the mouth and nostrils. The mask 87 has a removable region 88 of increased resistance to flow on exhalation that supplies the user with PEP therapy. Inspiratory resistance of the removable region 88 is very low. The region 88 may be removed , for example by creating an opening, via a fastener 89, for example and without limitation buttons, hook loop fasteners (e.g. , VELGRO fasteners) laces, zippers, reclosable fasteners (e.g., slider) to allow for unobstructed breathing When PEP is not desired. In this way, it should be understood that the phrase removable region refers to a portion of the mask that may be removed from covering the user's face, whether by making an opening, which does not remove any actual material or component, or by removing a portion of the mask. Since humidity at higher altitudes is low, the fabric of the mask 87 may also serve as a heat and moisture exchanger to help humidify the inspired air. An optional inhalation region may be incorporated into the mask adjacent the nostrils of the user. For example, the inhalation region may include inhalation valves (e.g., flaps) incorporated into the mask, which valves allow greater inspiratory flow.
[D098] Referring to FIGS. 31 A-G, a nasal device is fastened to the user by engaging the columella (lower part of the nasal septum) of the nose with a clip 90, which may be configured with rib 78 that help grip the nasal tissue. A flap 91 extends outwardly from both side of the clip 90. A distal freed end of each flap 91 seals with an outer perimeter of the nostrils when the device is in use, or engaged with the columella. A one-way inhalation valve 92 is situated on each flap 91 such that inspiratory flow may pass through with minimal obstruction and exhalation flow is forced through small openings 93 on either side of the valve 92 to provide PEP. The valve is formed as a flap valve having an end portion with a free edge and an opposite end pivotally coupled to the flap 91 . The end portion has a greater geometry than the opening in the flap, such that the fla valve seats against a surface of the flap when closed. The flaps 91 have enough resistance to bending or pivoting such that when in use, the expiratory pressure is not sufficient to lift the flaps off the perimeter/periphery of th nostril. FIG. 32B shows the valves 92 opening during inspiration, while FIG. 32A shows the air flow through the openings during exhalation. The flaps have an extension to the valve landing on a side thereof opposite the valve to increase the sealing area of the valve and prevent the valve from blowing through during exhalation. The flaps 91 may be integrally formed with the clip, or separately formed and coupled thereto as shown in FIGS. 31 EL The flaps may be pivotally coupled to the clip, but are biased toward the clip so as to maintain a good seal with the end of the nose, or perimeter of the nostril. As shown in FIGS. 32A and B, the flaps may have a greater width than the clip.
[0099] The small openings 94 may be closed, with the flaps 91 lifting off the surface of the end of the nostril to provide an expiratory flow path. In such ah embodiment, then pressure falls below a threshold, the flaps 91 will seal back against the end of the nostrils and prevent further expiratory flow. In this embodiment, the device behaves as a threshold-based PEP device rather than a restrictive orifice type device.
[001003 FIGS. 33A-C show a nasal device that is secured to the columella of the user with a clip 90. A flap 95 extends outwardly from both sides of the clip 90. Each flap 95 extends into the nostril and seals against the nasal tissue , providing PEP. The flaps are pivotally , or hingedly coupled to the clip, for example with an integrally formed living hinge, or by way of a hinge pin (separate or integrally formed with the flap and engaging a socket in the clip).
[00101] FIG. 34A shows the flap 95, functioning as an inhalation valve, opening during inspiration by pivoting about a pivot axis, or bending about a virtual axis. The inspiratory pressure and resilient of the flaps 95 allow the flaps 95 to be drawn back towards the clip 94, allowing for a nearly unobstructed inspiratory flow path. The flaps 95 ma have a small orifice depending on the effectiveness of the seal on the internal nostril wall. FIG. 34B shows the air flow through the openings during exhalation, wherein the flaps 95 engage the nasal tissue and block the flow creating PEP.
[00102] Referring to FIGS. 35 A and B, the flaps may be customized to accommodate a wide variety of nasal shapes and sizes. For example, as shown in FIG. 35A, each flap 95 may be configured as an array or series of a plurality of spaced apart fingers 96. One or more of the fingers may be removed, for example by tearing or cutting, so to alter the fit within the nostril and/or alter the amount of PEP. The fingers may be provided with lines of weakness to facilitate the removal, for example perforations.
[00103] Referring to FIG. 35B, each flap may be provided with an array or grid of perforations in both a longitudinal and lateral direction, allowing the user to separate (e.g., tear or cut) the flap along either axis 131 , 133 and shorten the flap and/or fingers, individually or collectively, to form a plurality of flap components, for example by creating a plurality of fingers that may have different widths and/or lengths, and/or create greater or lesser spaces between fingers, etc.
[00104] Referring to FIGS. 36A-D, a nasal device, or nasal insert, is configured to be inserted in a nasal passage to provide increased resistance during exhalation. The device includes a tubular body 196, formed as a cylindrical housing having a central passageway. The body has a thread 199 extending around a periphery of the body. The thread 199 is interiorly formed, meaning it is formed as a groove extending radially inwardly from an exterior surface of the body. In other embodiments, the thread may be exteriorly formed, wherein the thread extends radially outwardly from the exterior surface of the body. In either embodiment, the thread formed on the outer surface engages the nasal tissue of the user and secures the device in the user's nasal passageway by turning or rotating the device as it is inserted into the nasal passage.
[00105J A valve seat 200, formed as an annular ring shaped member defining a opening, extends transversely across the central passageway of the body. A plurality of eircumferentialiy spaced locking tabs secure the valve seat 200 to the body. The tabs may be formed on the valve seat and are inserted into openings in an interior surface of the body defining the central passageway, or the tabs may be formed on the body and engage the valve seat, for example by being disposed in openings in the side of the valve seat, e.g., with a snap fit. The valve seat 200 has a sealing surface facing downstream In a longitudinal direction for mating with a valve 202. The valve 202 has an edge portion secured to the body or valve seat, permitting the valve 202 to pivot or rotate away from the valve seat during inhalation as shown in FIG. 37A, It should be understood that other types of connections and valves may also be suitable.
[001063 The valve 202 has an annular shape, with a central opening or orifice 203. During inhalation, as shown in FIG. 37A, the valve 202 moves; away from an at rest position, wherein the valve is seated against the sealing surface of the valve, to an open position, to an inhalation position wherein the valve is moved (e.g. pivoted or translated) off of the valve seat so as to allow air flow through the opening defined by the valve seat.
[00107] During exhalation, as shown in FIG. 37B, the valve 202 moves from the inhalation to the at-rest position (also defining an exhalation position), wherein the valve 202 seals against the sealing surface of the valve seat.
Exhalation air flow is there by limited to flow through the orifice 203. Different valves, with different sized orifices (varied area of the opening), may be removable installed in, or coupled to, the body to provide varied or different resistances to accommodate different individuals and/o environments/activities (e.g. , different elevations and/or rest v. active use). The body may be made of a rigid or flexible material, and may formed of a porous material (e.g., foam), or include a layer (e.g., cylindrical) of porous material, to aid in filtering air .and act as a heat and moisture exchange (ΉΜΕ) to humidify the inhaled air. A tool may be provided to help insert and remove the device from the nasal passage, as the device is intended in one embodiment to be inserted completely into the nasal passage of the nose. In some embodiments, it is understood that the tool may be an item commonly in the possession of a user, for example a key, whistle, eyeglass temple, etc.
[00108] It should be understood that a pair of devices may be used, with each body 198 inserted into a respective nasal passageway.
[00109] Referring to FIGS. 38A-D, a nasal insert 204 is configured to be inserted in a nasal passage to provide increased resistance during exhalation. The nasal insert 204 has a housing 205, or base, extending perpendicular to a longitudihal axis 219 of the nasal passageway. A valve 206, configured similar to the valve 202, with an annular ring-like shape and having a central orifice 207, is moveable secured to the base, for example by way of a hinge defined by a post. The base has a ring-like shape with a central opening, and defines a valve seat having a sealing surface formed on a downstream surface of the base . The valve opens, or moves off the sealing surface during inhalation as disclosed previously, and seats against the sealing surface during exhalation, with flow thereby being limited to flow through the orifice 207. Different valves with differently sized orifices may be removably coupled to the base to accommodate different users, environments and levels of activity (at-rest v. active). To anchor the device to the nasal passageway, a plurality of anchor members, configured in one embodiment as petal shaped members, have a first end pivotally coupled to the base and an opposite free end, terminating in a curved point, which engages the nasal tissue of the user. The anchors may be arranged with a plurality of cireumferentially spaced first petal shaped members 209, and a plurality of circumferentially spaced second petal shaped members 208, with the second petal shaped members offset with, and positioned in the gaps between, the first petal shaped members. In one embodiment, the first petal shaped members are longer, or extend a greater distance in a longitudinal direction 219, than the second petal shaped members. In one embodiment, the second petal shaped members are disposed radially interiorly of the first petal shaped members, with the sides of the adjacent members overlapping. The first and second petal shaped members may be hingedly, or pivotally coupled to the base- The petal shaped members may each have a base flange at the first end that overlaps with the base member. The first and second petal shaped members may be integrally formed with the base, e.g., with a living hinge providing the relative pivotal movement between the base and petal shaped members, or with a separate hinge pin. Or the base flanges may be secured to the base, with a living hinge formed between the petal shaped member and the base flanges. The first and second petal shaped members rotate , or pivot, radially away from and toward the axis 219 during operation, or insertion.
[00110] The first and second petal shaped members, or anchor members, are preferably rigid bodies. To actuate, or pivot, the petal shaped members, ah actuation member, for exampl a wire or thread, or network/web thereof, extends through adjacent openings 210, 21 1 formed in the base and petal shaped members, with the overlapping portions of the first and second petal shaped portions having aligned openings 21 1 . The various wires/threads connected to each of the petal shaped members, which are secondary members, are centrally connected as, or connected to, a central or primary cord/pull. The actuation member, and in particular the central pull member, may be pulled by the user from outside the nasal passageway to open and engage the petal shaped members 208, 209 with the nasal tissue of the user and thereby provide an adjustable fit to accommodate different users. In one embodiment, the orifice 207 may be omitted, with small air passageways being formed between adjacent and -.overlapping petal shaped members 208, 209 to restrict the flow during exhalation and increase the oxygen saturation levels.
[00111] Referring to FIGS. 40A-D, one embodiment of a PEP device covers both the nose and the mouth of the user, providing resistance on exhalation regardless of the breathing pathway. The device is configured as a mask 1 13 having a body that seals on the face of the user via a sealing surface 1 12. The mask is secured to a user's face via a band 1 14 made of a comfortable, breathable material such as wool, bamboo, tencel, cotton, nylon, polyester, Gore- Tex, etc., or a non-breathable, flexible material such as neoprene. The mask 1 13 has three ports. Two ports 302 house two inhalation valves 1 15 and one port 304 houses an exhalation dial 1 16, having a first fixed member with two openings and a second rotatable member having an hourglass dial opening 330, with an first upper lobe opening 322 that overlies one of the two openings 117, 1 18, and a second lower lobe opening 324 that overlies one of two indicia 326, 328, shown as sleeping indicia (e.g., "Z"s) and activity indicia (e.g. shoes). As shown in FIG. 40B, first and second openings are shown, with one of the openings being covered by a dial. The exhalation dial 1 16 has two settings, shown in FIG. 41 , which exposes or aligns the first lobe with either a small hole 1 17 or a large hole 1 18, with the holes having different cross-sectional areas. The small hole is to accommodate tidal breathing during sleep and the large hole is to accommodate breathing patterns typical of exercise, with both hole sizes yielding an exhalation pressure between 1 -15cm H20, preferably between 5-1 Ocm H2Q and most preferably between 5-10 cmH20. The sizing of the holes is to accommodate a relatively equivalent exhalation pressure for both sleeping and activity. As flow rates are typically higher during activity, the hole is larger to decrease the resistance and stabilize pressures. In other embodiments, the ability to adjust settings may or may not be present. The inhalation valves 1 15 open during inhalation to accommodate negligible resistance to inhalation as shown in FIG. 41 A, and close during exhalation as shown in FIG. 41 B. Flow ma occur through the exhalation dial 1 16 during inhalation, but the majority of flow will be through the opened inhalation valves 1 15. During exhalation, flow is restricted to only the small hole 1 17 or large hole 118, depending on the dial setting chosen by the user. To change settings, the exhalation dial 1 16 may be rotated upon its central axis to open and close the respective holes by aligning the first lobe with one or the other of the holes. In other embodiments, settings may be changed by a sliding member, interchangeable part, electronic setting control, or other method of adjusting the hole (orifice) size. The band 1 14 may be secured around the user's head eiasticaily, with a Velcro section, an adjustable strap, or other obvious methods of securing the device around one's head or ears. In addition to providing positive exhalation pressure, deadspace may be incorporated in the mask 1 13 to increase C02 and further improve breathing control. The deadspace and/or a filter material may be incorporated in the mask 13 to add heat and moisture exchange (HME) capabilities and improve the quality of inhaled air by warming it and utilizing moisture from exhaled breath.
[00112] The body of the mask is shaped to cover one or both of the user's mouth and nose. The dial is moveably mounted to the body and is moveable between at least first and second positions. The dial opening is aligned with the first opening when the dial is in the first position, and the dial opening is aligned with the second opening when the dial is in the second position. Conversely, the second opening is covered by the dial when the dial is in the first position, and the first opening is covered by the dial when the dial is in the second position. The viewing opening is aligned with first indicia when the dial is in the first position and the viewing opening is aligned with second indicia when the dial is in the second position. The first indicia are instructive about breathing patterns associated with the first opening and the second indicia are instructive about breathing patterns associated with the second opening.
[00113] Referring to FIGS 47, 48 and 51 -58, a mask 300 is configured to seal on the face of the user 600 and cover both the mouth and nose. As shown in FIGS. 48, 50 and 54, the mask includes a flexible sealing edge 302, formed by an inwardly curved lip of the mask, in one embodiment, the mask may be made of silicone rubber. The sealing edge forms a generally triangular shaped , or tear-drop shaped, opening 310, with curved sides. The opening has a curvilinear bottom edge 304, and curvilinear side edges 306 extending from the bottom edge and meeting at an apex 308. The apex fits over the top of the user's nose, with the user's mouth and nose communicating with the interior space of a cavity 312 defined by the mask.
[00114] The mask is intended to be worn while sleeping at altitude to combat AMS and minimize periodic breathing associated with altitude. The mask may also be worn during exercise or rest at altitude to combat AMS. The device seals on a user's face via a sealing surface 314 defined by the sealing edge 302 of the mask 300. The mask provides positive exhalation/expiratory pressure (PEP) to increase the pressure gradient in the airways, thereby increasing oxygen saturation levels and decreasing the severity of hypoxia. The device improves upon limitations associated ith current methods for preventing acute mountain sickness (AMS), which may include but are not limited to side effects associated with pharmaceuticals, increased time spent at incremental altitudes (slower ascent profiles), resources spent prior to travel to acclimatize in simulated environment, lack of evidence to support effectiveness, lack of portability and supply of supplemental oxygen, technique and thought required to practice pursed lip breathing and requirement to minimize exertion. For applications where oxygen saturation levels are decreased, the disclosed device improves portability, effectiveness and efficiencies to decrease hypoxia.
[00115] The mask may secured to a user's face via a neck tube 320, or shroud, made of a comfortable, breathable material such as wool, bamboo, tencel, nylon, polyester, Gore-Tex, etc. with moisture wieking properties and a resistance to odor. The neck tube 320 may be interchangeable with various fabrics to accommodate different climates or environments. In one embodiment, the neck tube has a continuous periphery so as to define a tubular structure with openings at each end thereof. The neck tube is installed by passing the tube over the user's head until the neck tube surrounds the user's neck and/or head. In other embodiments, the neck tube may have a reclosabie fastener, such as a zipper, snaps, Veicro, etc., allowing the tube to be opened along a portion or the entirety of the length thereof, for example to apply the tube around the neck of the user, whereinafter it may be secured by closing the reclosabie fastener(s) to form a tube.
[00116] In one embodiment, the mask 302 is removable from the neck tube 320, such that the neck tube 320 can be worn without the mask, for example during the day to protect the user from environmental and outdoor elements. The mask also is removably securable to the neck tube 320so that the neck tube 320 can be worn by itself when therapy is not desired.
[00117] The mask 3G0, shown in FIGS. 47-58, has two ports 322 that house two inhalation valves 324. The ports 322 are each defined by a raised rim portion 326 (mushroom lip) on the exterior of the mask, and a protective dome 328, having a central opening 334, extending from an interior of the mask into the interior space of the cavity. A plurality of openings 361 or windows (shown as four) are formed in the wall defining the dome. The windows allow air flow during inhalation and thereby help minimize inhalation resistance. The ports 322 each define a through opening 336 communicating between the interior space and the ambient environment. A protective grid 330 extends across the through opening so as to prevent the inhalation valve from being tampered with or removed. The grid 330 includes a back plate 332 that may be snapped into the mask, for example over an annular flange 342 formed in the through opening of the mask In other embodiments, the grid is integrally formed with the body of the mask and dome. The back plate has openings 345 defining an inhalation path and defines a sealing surface 343 for the inhalation valve on exhalation. The grid includes a central hub 344 having a through opening 348. The grid includes spokes 333 that define the openings 345 therebetween, and with the spokes being tapered outwardly so as to be thicker adjacent the outer periphery of the openings than adjacent the center of the openings. In one embodiment, the inhalation valve 350 is a center post valve having a center post 351 that may be inserted through the opening 348 in the hub, with an enlarged end portion 353 then engaging the end 346 of the hub. The inhalation valve is disposed in a cavity defined by the protective dome and moves away from the back plate during inhalation as shown in FIGS. 56B and 57B, while sealing against the sealing surface of the back plate during exhalation as shown in FIGS. 56A and 57A. In one embodiment, the valve is configured as an umbrella valve, while in other embodiments, the valve may be configured as a flap, diaphragm, duckbill or other known types of valves. The size of the opening(s) defining the inhalation path are sufficient to provide substantially unrestricted inhalation. During inhalation, air may also pass through the exhalation orifice 352 as shown in FIG. 56B.
[00118] A third port defines the exhalation orifice 352. The size of the exhalation orifice 352 creates the positive exhalation pressure and may be achieved with one orifice or a plurality of orifices, In an embodiment with a single exhalation orifice 352, the diameter of the exhalation orifice 352 is between 2mm and 10mm (area between 3.142 mm2 and 78.540 mm2), preferably between 2mm and 5mm (area between 3/142 mm2and 19,635 mm2) and most preferably between 3mm and 4mm (area between 7.069 mm2 and 12.566 mm2), It should be understood that the exhalation orifice may have other non-circular shapes, but with the area of thee opening being within the noted ranges. Likewise, it should be understood that a plurality (more than one) of exhalation orifices may also be provide, with the cumulative areas of the orifices being within the noted ranges. The size of the orifice(s) are designed to yield an exhalation pressure between 1 - 15cmH20, preferably between 5-1QcmH20 and most preferably between 8-10 emH20 at a constant flow of 20 L/min. It should be understood that in one embodiment, the exhalation orifice is not covered or blocked by any member, including a valve or other flow control member, but rather remains open during all phases of inhalation and exhalation. In other embodiments, the orifice may be fitted with a filter, which permits two-way flow, or a valve that permits only an exhalation flow,
[00119] The inhalation valves 330 open during inhalation to provide negligible resistance to inhalation, and close during exhalation. Flow may occur through the exhalation orifice 352 during inhalation, but most of the flow will be through the inhalation openings exposed by the opened inhalation valves 350, The
exhalation orifice and inhalation openings 345, as well as the dome openings 334, 361 and overall through openings 336 of the ports, define the inhalation path. Valving used for the inhalation valves 350 may be any of the valves previously disclosed, with umbrella valves utilized in one embodiment. During exhalation, flow is restricted to only the exhalation orifice 352, which defines an exhalation path. In other embodiments, various sizes of exhalation orifices 352 may be included to create various settings. These settings may be changed by a rotary dial, sliding member, interchangeable part, electronic setting control, or other method of adjusting the size of the orifice(s), as shown above with respect to other embodiments,
[00120] The neck tube 320 is elastically secured around the user's head and/or neck with an elastic band, which may be adjusted with a drawstring mechanism 356 to customize the fit. In other embodiments, the neck tube fabric may be integrally configured with elastic properties, such as mechanical stretch exhibited for example by polyester or other similar materials, or additive stretch exhibited for example by spandex or similar materials. In other embodiments, the neck tube may have integral elastic properties, in combination with a separate elastic member, such as a band, and/or drawstring. In one embodiment, the drawstring adjustment mechanism 356 includes a cord 358 and cord lock 362. To prevent barotrauma and minimize discomfort during heavy breathing, coughing, or as a safety feature if the exhalation orifice (s) 352 is/are blocked, the sealing surface 314 will lift off the user's face and effectively break the seal below 25cmH20, and preferably below 20cmH2O, while in Other embodiments, the seal will be broken between 20cmH2O and 25cmH20, or between 23cmH20 and 25 crnH20.
[00121] To secure and create a seal on the user's face, the neck tube 320 tightens using a drawstring mechanism, including the cord 358, cord end 359, cord lock 362 and cord loops 363. The cord 358 is secured to the neck tube by multiple cord loops 363, which create tension points as the mechanism is tightened by pulling on the cords downstream of the cord lock, or by pulling on the cord end 359. The cord lock 362 is used to secure the cord 358 such that once the desired tightness is achieved, the neck tube 320 stays secure. A cord end 359 may be used to secure the two ends of the cord 358 as well as act as a holding point for the user to pull on the cord 358 when tightening the cord by drawing the cord through the loops 363.
[00122] The drawstring mechanism is aligned with the front, center of the mask, creating tension in the neck tube 320 directly over the mask and effectively creating a seal on the user's face. An additional benefit of the drawstring mechanism in front of the user's face is the ease of use due to the ability to see and feel the mechanism in front of the face and it does not create a pressure point on a surface of the head that the user will likely be sleeping on (i.e. either side of the head or the back of the head). In other embodiments, they drawstring mechanism may be on the side or back of the neck tube and may be replaced with an alternative tightening mechanism such as hook and loop (i.e. Velcro®), button holes, a clasp mechanism, etc.
[00123] The number of cord loops 363 may be between 2-1 1 , preferably between 5-9. The cord 358 is preferably non-elastic but may have elastic properties in an alternative embodiment. Referring to FIG. 58, the cord loops are coupled to the neck tube, for example by sewing, adhesives, snaps, or other suitable components, and are disposed on an exterior Surface thereof. Each loop may have a fixed end fixed to the neck tube, with an opposite loop free end not being attached. The loops are arranged such that a tensile force is applied by the cord against the loop fre end, putting the loop in tension against the anchored fixed end. For example, on each side of a vertically extending centerline, a first upper loop 371 is disposed inboard on one side of the centerline 381 and has a free end extending downwardly from th fixed end. A second upper loop 373 is spaced outboard from the first upper loop and has a free end extending downwardly and slightly inwardly from the fixed end thereof. A first lower loop 375 is spaced downwardly and slightly outboard of the first upper loop, with a free end extending downwardly from a fixed end. A second loop 377 is spaced outwardly from the first lower loop and downwardly from the second upper loop, but with a free end extending upwardly from a fixed end. The cord is threaded through the loops to form a bow-tie shape, with a left and right cord loop 393. Specifically, the cord extends upwardly from opposite free ends (which may be captured by the cord end 359) along the centerline 381 . One cord length passes to the left side, while the other cord length passes to the right, both through a corresponding first upper loop, then through the second upper loop, the second lower loop and finally the first lower loop where they are joined as the cross the centerline between the first lower loops. Pulling on the cord end creates tension in the cord as it pulls the loops and shortens the cord loop 393 formed on each side of th mask.
[001241 The cord lock 362 is made of plastic and may or ma not have a metal spring that rests in tension and compresses when the button 365 on the cord lock 362 is pressed to slide the cord 358 and tighten or loosen the neck tube 320. The surface area of the button 365 is between 50-500mm2, preferabl between 100- 150mm2, allowing for ease of use when dexterity is compromised (i.e. from the cold or from wearing gloves).
[00125] In the embodiment shown in FIG- 47-54, the mask 300 attaches to the neck tube 320 via one or more magnets 360, or other releasable fasteners. A positioning hole 366 in the neck tube 320 aligns with the raised rim portions 326, which are undercut as shown in FIGS. 54 and 55 so as provide a lip feature 370 that function as fabric catches on the mask 300 so as to align and locate the mask such that the user is not breathing through the fabric of the neck tube, or such that the fabric is prevented from covering the ports and interfering with the inhalation and exhalation paths, The catches also help hold the neck tube on the mask. One or a plurality of magnets may also be used to properly position and secure the mask 300 in the neck tube 320. In one embodiment, magnets 360, or a magnetically attractive receiver, such as ferromagnetic material (e.g. , metal plate), are in-molded in the mask at upper and lower locations, for exampl adjacent the apex and below the inhalation valves across from the user's mouth. Mating magnets, or ferromagnetic materials, are likewise sewn into, or attached to the neck tube 320. Exemplary suitable magnets are shown in Table 1 , with Applied Magnets also offering a suitable magnet meeting the C specification of Table 1 .
[00126] TABLE 1 : MAGNET SPEGIFlCATiONS
Figure imgf000042_0001
[00127] Alternatively, other fastening mechanisms such as traditional hook and loop (i.e. Velcro®), silicone "key and hole" (abbreviation of hook and loop), buttons, zippers or a press fit mechanism may be used to secure the mask 300 to the neck tube 320. In a similar embodiment, the neck tube 320 may be free of a positioning hole, and the neck tube 320 covers the entire mask 300, allowing the user to breathe through the fabric. [00128] In addition to providing positive exhalation pressure, dead space is incorporated in, or created by the interior space of, the mask 300 to increase CO. and reduce periodic breathing while sleeping. The amount of dead space is between 50mL and 500mL, preferably between 50m L and 200mL and most preferably between 1 QQmL and 150mL.
[00129] The dead space incorporated in the mask 300 and properties of the neck tube 320 fabric covering the inhalation and exhalation ports (if applicable in the given embodiment) add heat and moisture exchange (H.M.E) capabilities and improve the quality of inhaled air by warming it and utilizing moisture from exhaled breath. This further helps with coughing, sore throat and congestion caused by exposure to high altitude environments.. When not in use, the mask 300 or both the mask 300 and neck tube 320 may be stored in a conformable carrying case.
[001303 Due to the nature and environment for use, the material of the mask is preferably comfortable for the user to wear in, on and/or over the nose, mouth or both for extended periods of time. In the preferred embodiment, components involved in sealing or contacting the oral or nasal passage are made from a flexible material such as silicone, TPU, polyurethane, neoprene or polyisoprene, or an easily formable material such as polyurethane foam, ethyl vinyl acetate (EVA) or acrylic. In one embodiment, the disposable portion of the device may be completely biodegradable to allow for friendly disposal in high altitude
environments where waste is a growing Concern. In embodiments with integrated electronics, parts must be sealed to withstand the harsh weather associated with high altitudes, i.e. encapsulation, ultrasonic welding or potting with a material designed to withstand and protect electronic components from extreme high/low temperatures, moisture, and shock. In embodiments including a neck tube or neck warmer, the material is lightweight, breathable, moisture wicking, odor resistant and quick-drying.
[00131] It should be understood that the mask may be used without the neck tube in some embodiments, with straps, ear loops or one or more bands being used to secure the mask to the user.
[00132] FIG. 43 discloses an algorithm for an embodiment that utilizes sensors and an electronic circuit for monitoring. In this embodiment, the feedback from the sensors may control the valve configuration to achieve various pressure settings. In other embodiments, feedback may be solely in the form of alerts to the user or accessible data for later review. The electronic module 119 is located in the flow path of the device, and may be incorporated in any of the previously disclosed embodiments.
[00133] FIG. 44 shows an exemplary embodiment of the electronic module 1 19. Sensors 120 in the electronic module may include but are not limited to those capable of measuring oxygen saturation levels (pulse oximeter, such as the commercially available MAX30100 sensor from Maxim Integrated), respiration rate (pressure sensor, flow sensor, position sensor, or combination thereof), inhalation and exhalation pressure (pressure sensor),
inhalation/exhalation flow (differential pressure flow sensor, flow sensor, turbine flow sensor, electromagnetic flow sensor, thermal mass flow sensor, velocity flow sensor, mass flow sensor, venturi tube, rotameter, pilot tube, ultrasonic doppler flowmeter, positive displacement flowmeter, or combination thereof), pulse rate (commercially available sensor such as the MAX3010Q from Maxim Integrated, or LED and detector at desired wavelength), blood pressure (ultrasonic doppler or pulse wave velocity), temperature (thermocouple, thermistor, semiconductor- based temperature sensor or resistance temperature detector), number of steps (accelerometer or commercially available pedometer such as MMA9553L from NXP), calories, distance travelled (GPS, altimeter), position (GPS,
accelerometer, gyroscope), altitude (barometric pressure sensor), hydration level (capacitor for measuring skin impedance, moisture sensor for sweat
measurements, etc.), nutrition level (spectrometer), quality of sleep (pressure sensor, flow sensor, position sensor, accelerometer, or combination thereof), blood lactate levels (LED and detector), supplemental oxygen usage (oxygen sensor, flow sensor, or combination thereof), cerebral blood flow (blood flow sensor, such as those commercially available from Kyocera Corporation), EtC02 (commercially available capnograph such as those available from COZIR, or LED and detector), Et02 (oxygen sensor) and breathing sounds (microphone). For variables referring to blood characteristics, a portion of the electronic module 1 19 is in contact with the skin or mucous membrane in an area such as the nose, where blood circulation is abundant. The electronic module 1 19 may be powered with a battery 1 20 that is disposable or rechargeable via the grid, solar, wind, sweat, the user's breath, or any other sustainable energy source. The electronic module 1 19 is connected to a user's phone via Bluetooth or Wi-Fi in a preferred embodiment, but may also be connected to another handheld device with computing capabilities in other embodiments. The electronic module 1 19 may be turned on by the user prior to use, or may incorporate sensors to wake up the control unit when the device is properly secured on the user. The electronic module 1 19 may be a standalone component which can be purchased separately and inserted into previously disclosed embodiments to create an upgraded version of the device with monitoring capabilities, or may be fitted with an adapter to hook up directly to an already existing oxygen mask, scarf, sleeping bag, or hood of a jacket. Alternatively, the electronic module 1 19 may be fully integrated in any of the previously disclosed embodiments with modifications to the valving system to accommodate differences for various embodiments. The algorithm in FIG. 43 shows the loop that starts once the power is on. Upon startup, a variable is selected, with variables being the data stored from the sensors 121 . Once the variables are set, thresholds are applied automatically, or may be overridden by input from the user if they wish to customize the thresholds. Data is captured from sensors 121 and various calculations are made either on the control unit 1 2 or the user's phone, which serves as a control unit. At least one sensor is capable of measuring one or more body functions and/or parameters, and the control unit is operable to determine at least one threshold based on data collected from the at least one sensor.
[00134] FIG. 45 includes a chart that represents thresholds for various calculations included in the algorithm. For oxygen saturation levels (Sp02), the average value is obtained for the user's reference as well as the risk of AMS and HAPE. For risk of AMS, these values are based on a decrease of 4.9% within 30 mins or compared to the average at that altitude, as shown in FIG. 46. For risk of HAPE, these values are based on a decrease of 10-20% compared to the average at that altitude. For end-tidal oxygen (Et02), the average value is obtained for the user's reference. In combination with the end-tidal carbon dioxide (EtC02), the Et02 may provide insight into breathing patterns and change over time. For EtC02, the average value is obtained for the user's reference and the arterial partial pressure of carbon dioxide (PaC02) is estimated for feedback on acclimatization based on average values at a given altitude. The Apnea-Hypopnea Index (AHI) is also calculated while the user is sleeping, and greater than 5 apneas/hr is indicative of the threshold. Pressure values are used to determine the risk of barotrauma (if pressure during exhalation is greater than 10cmH2O) as well as aid in calculating the AHI. They may also be used to determine the respiration rate. For flow, the minute ventilation, alveolar ventilation and respiratory rate are calculated to determine if the user's breathing patterns are optimized for acclimatizing at high altitude, encouraging slow, deep breaths. The pulse rate is monitored to calculate the average and determine if it is approaching or above the individual's maximum heart rate, often calculated by subtracting one's age from the value of 220. With blood pressure, the average is monitored to determine if values go outside of the recommended range of less than 120 mm Hg (systolic) and 80 mmHg (diastolic). For body temperature, the average is monitored to determine if values are outside of the normal range and if the user is approaching hypothermia (< 35 °C or 95 °F), fever or hyperthermia (> 37.5 CC or 99.5 °F), or hyperpyrexia (> 40 °G or 104 °F). Cerebral blood flow (CBF) averages may be used to provide indication of the level of acclimatization, as CBF peaks within 2-3 days at altitude and returns to near sea level in 1 -3 weeks.
[00135] The device may be connected to a user's oxygen tank to further improve oxygenation at altitude, and a dedicated sensor may monitor its usage to alert the user when the tank is getting low .(i.e.. <10% remaining). Barometric pressure is used to calculate the altitude for the user's reference as well as to relay the risk/incidence of AMS at the given altitude or if the person ascends more than 500m in a given day.
[00136] Barometric pressure may also be used to determine the time that the user spends at a given altitude, which may aid in determining the cause of symptoms, which should not be attributed to AMS if they onset after 3 days at altitude. A list of various altitudes and average values for barometric pressure, Pa02, Sa02 and PaC02 is shown in FIG. 46. Variables such as lactic acid levels, calories, distance travelled, GPS, number of steps, hydration level, nutrition level, and quality of sleep are mainly for the user's reference -though user-defined thresholds may be applied to reach desired goals or accommodate individual needs. If the upper end of the threshold for a given variable is reached, an alert will be sent to the user's phone to warn them that they have gone above of the recommended value range . If the lower end of the threshold for a given variable is reached, an alert will be sent to the user's phone to warn them that they have gone below the recommended value range. If either the upper or lower threshold are reached, the electronic module 1 19 may also change the resistance setting of the device without requiring user input to optimize breathing and aid in returning the value to the recommended range. The depicted embodiment achieves this by an electronically actuated valve 123. The valve 123 is reconfigurable in response to the at least one threshold determined by the control unit. For example, the valve 123 may be actuated (e.g., moved, stiffened or relaxed) to provide more or less resistance based on the determined thresholds. Values for all variables are stored on the user's phone and can be accessed individually or displayed as a trend over a given period of time . Data may also be shared with guides or physicians when values are lower/higher than the norms or as the user desires.
[00137] Due to the interface of the device(s) with the user's oral and nasal cavities, the material of the device must be comfortable for the user to wear in the nose, mouth or both for extended periods of time. In one embodiment, components involved in sealing or contacting the oral or nasal passage are made from a flexible material such as silicone, TPU, polyurethane, neoprene or polyisoprene, or an easily forma ble material such as polyurethane foam, ethyl vinyl acetate (EVA) or acrylic. In one embodiment, the disposable portion of the device may be completely biodegradable to allow for friendly disposal in high altitude environments where waste is a growing concern. In embodiments with integrated electronics, parts must be sealed to withstand the harsh weather associated with high altitudes, i.e., encapsulation, ultrasonic welding or potting with a material designed to withstand and protect electronic components from extreme high/low temperatures, moisture, and shock. The various positive airway pressure devices can be used for individuals not acclimatized to altitude to improve oxygen saturation levels and decrease the risk of A S, Specifically, the user may apply the device at high altitudes, for example when sleeping or when awake, without the need to have performed prior simulation training or use of the device at lower altitudes.
[00138J Although the present invention has been described with reference to preferred embodiments, those skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. As such, it is intended that the foregoing detailed description be regarded as illustrative rather than limitin and that it is the appended claims, including all equivalents thereof, which are intended to define the scope of the invention.

Claims

CLAIMS What is claimed is:
1 . A positive expiratory pressure device comprising: a mouthpiece shaped to be received in a user's oral cavity; a valve housing coupled to the mouthpiece and having a flow passageway communicating between the ambient environment and the oral cavity; and a valve disposed in the housing, wherein the valve is moveable between first and second positions during inhalation and exhalation respectively, wherein the flow passageway is more restricted during exhalation than during inhalation.
2. The positive expiratory pressure device of claim 1 further comprising a variable resistance actuator coupled to the valve housing, wherein the variable resistance actuator is moveable to vary the size of the flow passageway.
3. The positive expiratory pressure device of claim 3 wherein the variable resistance actuator comprises a dial rotatably mounted to the valve housing, wherein the dial is rotatable between various positions to variably close portions of the flow passageway.
4. The positive expiratory pressure device of claim 1 further comprising a pair of nasal plugs coupled to the mouthpiece and in flow communication with the flow passageway.
5. A positive expiratory pressure device comprising: a mouthpiece shaped to be received in a user's oral cavity, wherein the mouthpiece comprises a tesla valve defining a flow passageway communicating between a first port communicating with the ambient environment and a second port communicating with the oral cavity, wherein the tesla valve provides a first resistance to flow between the first and second ports and a second resistance to flow between the second and first ports, wherein the second resistance is greater than the first resistance.
6. The positive expiratory pressure device of claim 5 wherein the tesla valve is fixed and free of any moving parts.
7. A positive expiratory pressure device comprising: a pair of nasal plugs defining first and second flow passageways; a mixing chamber coupled to the pair of nasal plugs, wherein the mixing chamber comprises first and second ports in flow communication with the first and second flow passageways; an inhalation valve disposed in the first port; and an exhalation resistance component disposed in the second port, wherein the exhalation resistance component is moveable to vary the size of the second flow passageway.
8. A positive expiratory pressure device comprising: a mouthpiece shaped to be received in a user's oral cavity, wherein the mouthpiece comprises a securing channel shaped and adapted to receive the user's upper or lower teeth; and a flow blockade coupled to and extending downwardly from the
mouthpiece, wherein the flow blockade is moveable between an inhalation position and an exhalation position.
9. The positive expiratory pressure device of claim 8 wherein the flow blockade is substantially parallel to the mouthpiece in the inhalation position, and wherein the flow blockade is substantially perpendicular to the mouthpiece when in the exhalation position.
10. The positive expiratory pressure device of claim 8 wherein the flow blockade comprises a plurality of spaced apart flexible flanges.
1 1 . The positive expiratory pressure device of claim 8 wherein the
mouthpiece and flow blockade are integrally formed as a single homogenous unit.
12. A positive expiratory pressure device comprising: a nasal plug having a flexible bowl and a stiffening member coupled to the bowl, the bowl having a convex exterior surface and a concave interior surface and an orifice communicating between the exterior and interior surfaces, wherein portions of the bowl on opposite sides of the stiffening member are moveable inwardly in response to an inhalation flow directed against the exterior surface and wherein portions of the bowl on opposite sides of the stiffening member are moveable outwardly in response to an exhalation flow directed against the interior surface.
13. A positive expiratory pressure device comprising: a nasal plug defining first and second flow passageways; an inhalation valve disposed in the plug and moveable to open the first flow passageway during inhalation; and an exhalation resistance component disposed in the plug, wherein the exhalation resistance component is moveable to vary the size of the second flow passageway.
14. A positive expiratory pressure device comprising: a nasal plug defining a flow passageway; an inhalation valve disposed in the plug and moveable to create a first flow passageway during inhalation; and an exhalation valve disposed in the plug and moveable to create a second flow passageway during exhalation, wherein the second flow passageway is more restrictive than the first flow passageway.
15. The positive expiratory pressure device of claim 14 wherein the inhalation valve comprises an umbrella valve and the exhalation valve comprises a duckbill valve.
16. A positive expiratory pressure device comprising: a pair of nasal plugs defining first and second flow passageways; a base coupled to the nasal plugs and defining a first opening; a valve housing comprising second and third openings, wherein the valve housing is removably coupled to the base in a first position, wherein the first and second openings are aligned, and a second position, wherein the first and third openings are aligned, wherein the second opening is larger than the third opening such that valve housing has a greater flow resistance in the second position as compared with the first position; and an inhalation valve coupled to the valve housing, the inhalation valve moveable to an open position in response to an inhalation flow.
17. A positive expiratory pressure device comprising: a clip portion having a pair of side walls defining a channel shaped to receive a columella portion of a user's nose; a flow control member extending from each side wall, each flow control member comprises a valve member configured to provide a flow passageway having a first cross sectional area during inhalation and a second cross sectional area during exhalation, wherein the first cross-sectional area is greater than the second cross sectional.
18. The positive expiratory pressure device of claim 17 wherein the flow control member comprises a balloon valve.
19. The positive expiratory pressure device of claim 17 wherein the flow control member comprises a flap, and further comprising a one-way inhalation valve disposed on the flap, wherein the flap is shaped and configured to engage an end of the user's nose.
20. The positive expiratory pressure device of claim 17 wherein the flow control member comprises a flap adapted to be disposed in the user's nostril cavity, wherein the flap is deflectable relative to the clip from an at rest position to an inspiratory position.
21 . A positive expiratory pressure device comprising: a mask shaped to cover the user's mouth and nose ; and a removable region reconfigurable between a first condition wherein the region restricts inspiratory and expiratory flow through the user's mouth and a second condition wherein the region does not restrict inspiratory and expiratory flow through the user's mouth.
22. The positive expiratory pressure device of claim 21 wherein said removable region comprises a reclosable fastener moveable between a closed position, wherein the removable region is in the first condition and an open position, wherein the removable region is in the second condition.
23. The positive expiratory pressure device of claim 22 wherein the mask further comprises an inhalation valve positioned above the removable region.
24. A positive expiratory pressure device comprising: a nasal insert comprising an annular walls made of a porous material permitting expiratory flow there through, the annular wall defining a central passageway; and a one-way inhalation valve disposed at one end of the central
passageway.
25. The positive expiratory pressure device of claim 24 further comprising a cap member coupled to and overlying one end of the nasal insert, wherein the cap member comprises the one-way inhalation valve.
26. The positive expiratory pressure device of claim 25 wherein the one-way inhalation valve comprises a flap.
27. The positive expiratory pressure device of claim 24 wherein the nasal insert comprises a first nasal insert, and further comprising a second nasal insert spaced apart from the first nasal insert, the first and second nasal inserts coupled to a body.
28. The positive expiratory pressure device of claim 27 wherein the one-way inhalation valve controls flow to both the first and second nasal inserts.
29. A positive expiratory pressure device comprising: a clip portion having a pair of side walls defining a channel shaped to receive a columella portion of a user's nose; and a flow control member extending from each side wall, wherein the flow control member comprises a flap adapted to be disposed in the user's nostril cavity, wherein the flap is deflectable relative to the clip from an at rest position to an inspiratory position, and wherein the flap comprises a plurality of spaced apart fingers.
30. A positive expiratory pressure device comprising: a clip portion having a pair of side walls defining a channel shaped to receive a columella portion of a user's nose; and a flow control member extending from each side wall, wherein the flow control member comprises a flap adapted to be disposed in the user's nostril cavity, wherein the flap is deflectable relative to the clip from an at rest position to an inspiratory position, and wherein the flap comprises a grid of perforations defining a plurality of lines of weakness, wherein the flap may be separated into a plurality of separate flap components.
31 . A method of configuring a positive expiratory pressure device comprising: providing a clip portion having a pair of side walls defining a channel shaped to receive a columella portion of a user's nose, and a flap extending from each side wall, wherein the flap comprises a grid of perforations defining a plurality of lines of weakness; and separating the flap along at least some of the perforations and forming a plurality of separate flap components.
32. A positive expiratory pressure device comprising: a nasal plug defining a central flow passageway, the nasal plug having a ring shaped valve seat having a central opening and a sealing surface, and wherein the nasal plug comprises an anchor system adapted to engage the nasal tissue of the user; and an inhalation valve disposed in the plug and moveable between a first position wherein the inhalation valve is seated on the sealing surface of the valve seat, and a second position wherein at least portion of the inhalation valve is moved off of the sealing surface to open the central opening, wherein the inhalation valve comprises an orifice aligned with the central opening .
33. The positive expiratory pressure device of claim 32 wherein the nasal plug comprises a tubular body, and wherein the anchor system comprises a thread formed on the exterior surface of the tubular body.
34. The positive expiratory pressure device of claim 32 wherein the anchor system comprises a plurality of petal shaped members arranged circumferentially around the valve seat, wherein the petal shaped members are radially pivotal relative to the valve seat.
35. The positive expiratory pressure device of claim 34 wherein the plurality of petal shaped member comprises a plurality of circumferentially spaced first petal shaped members and a plurality of circumferentially spaced second petal shaped members, wherein the second petal shaped members are positioned between and overlap with the first petal shaped members.
36. The positive expiratory pressure device of claim 35 wherein the first petal shaped members are longer than the second petal shaped members.
37. The positive expiratory pressure device of claim 34 further comprising an actuation member coupled to and configured to pivot the petal shaped members.
38. A positive expiratory pressure device comprising: a mask comprising a body shaped to cover one or both of the user's mouth and nose, wherein the mask is configured with a first port configured with an inhalation valve, and a second port configured with first and second openings having different first and second cross-sectional areas, and wherein the mask comprises a dial moveably mounted to the body, wherein the dial comprises a dial opening, and wherein the dial is moveable between at least first and second positions, wherein the dial opening is aligned with the first opening when the dial is in the first position, and wherein the dial is opening is aligned with the second opening when the dial is in the second position.
39. The positive expiratory pressure device of claim 38 wherein the second opening is covered by the dial when the dial is in the first position, and wherein the first opening is covered by the dial when the dial is in the second position.
40. The positive expiratory pressure device of claim 38 wherein the dial has a viewing opening, wherein the viewing opening is aligned with first indicia when the dial is in the first position and wherein the viewing opening is aligned with second indicia when the dial is in the second position.
41 . The positive expiratory pressure device of claim 40 wherein the first indicia are instructive about breathing patterns associated with the first opening and the second indicia are instructive about breathing patterns associated with the second opening.
42. The positive expiratory pressure device of claim 38 wherein the dial is rotatably coupled to the body.
43. The positive expiratory pressure device of claim 38 wherein the body defines a deadspace external to the user.
44. A positive expiratory pressure device comprising: a mask comprising a body shaped to cover the user's mouth and nose, wherein the mask is configured with a first port configured with an inhalation valve, and a second exhalation port sized to produce an exhalation pressure between 1 -15cmH20; and a neck tube coupled to the mask and extending downwardly therefrom.
45. The positive expiratory pressure device of claim 44 wherein the neck tube is releasably coupled to the mask.
46. The positive expiratory pressure device of claim 45 wherein the neck tube is releasably coupled to the mask with a magnet.
47. The positive expiratory pressure device of claim 44 wherein the neck tube does not cover the first or second ports.
48. The positive expiratory pressure device of claim 47 wherein the mask comprises fabric catches for aligning one or more openings in the neck tube with the first and second ports on the mask.
49. The positive expiratory pressure device of claim 44 wherein the neck tube comprises an elastic member configured to engage the user.
50. The positive expiratory pressure device of claim 49 further comprising a drawstring mechanism for adjusting the elastic member.
51 . The positive expiratory pressure device of claim 44 wherein the neck tube is the only feature for securing the mask to the user.
52. The positive expiratory pressure device of claim 44 wherein the body defines a dead space external to the user.
53. The positive expiratory pressure device of claim 44 wherein the expiratory port comprise a single orifice having an area of between 3.142 mm2 and 78.540 mm2.
54. A method of using a positive expiratory pressure device comprising: positioning a body of a mask to cover a user's mouth and nose, wherein the mask is configured with a first port configured with an inhalation valve, and a second exhalation port; positioning a neck tube around a neck of the user, wherein the neck tube is coupled to the mask and holds the mask on the user; inhaling through the first port and thereby opening the inhalation valve; and exhaling through the second port and creating an exhalation pressure between 1 -15cmH20.
55. The method of claim 54 further comprising decoupling the mask from the neck tube.
56. The method of claim 55 wherein said decoupling comprises releasing a magnetic force between the mask and neck tube.
57. The method of claim 54 further comprising positioning the neck tube on the user without the mask being positioned on the user.
58. The method of claim 54 wherein the neck tube does not cover the first or second ports.
59. The method of claim 54 wherein the second port comprise a single orifice having an area of between 3.142 mm2 and 78.540 mm2
60. The positive expiratory pressure device of any preceding claim
comprising an electronic module comprising at least one sensor capable of measuring one or more body functions and/or parameters, and a control unit operable to determine at least one threshold based on data collected from the at least one sensor.
61 . A positive expiratory pressure device comprising: an electronic module comprising at least one sensor capable of measuring one or more body functions and/or parameters, and a control unit operable to determine at least one threshold based on data collected from the at least one sensor.
62. The positive expiratory pressure device of claim 61 further comprising a valve reconfigurable in response to the at least one threshold determined by the control unit.
63. The positive expiratory pressure device of claim 61 wherein the electronic module further comprises a power source.
PCT/IB2018/053527 2017-05-19 2018-05-18 Positive expiratory pressure device WO2018211474A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3063524A CA3063524A1 (en) 2017-05-19 2018-05-18 Positive expiratory pressure device
EP18801926.9A EP3624885A4 (en) 2017-05-19 2018-05-18 Positive expiratory pressure device

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201762508671P 2017-05-19 2017-05-19
US62/508,671 2017-05-19
US201762541479P 2017-08-04 2017-08-04
US62/541,479 2017-08-04
US201762572946P 2017-10-16 2017-10-16
US62/572,946 2017-10-16
US201862633460P 2018-02-21 2018-02-21
US62/633,460 2018-02-21
US201862643557P 2018-03-15 2018-03-15
US62/643,557 2018-03-15

Publications (1)

Publication Number Publication Date
WO2018211474A1 true WO2018211474A1 (en) 2018-11-22

Family

ID=64273642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/053527 WO2018211474A1 (en) 2017-05-19 2018-05-18 Positive expiratory pressure device

Country Status (4)

Country Link
US (2) US11439869B2 (en)
EP (1) EP3624885A4 (en)
CA (1) CA3063524A1 (en)
WO (1) WO2018211474A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD868235S1 (en) * 2016-05-06 2019-11-26 Atos Medical Ab Heat and moisture exchanger component
US11400245B2 (en) * 2018-10-08 2022-08-02 Breathe 99 Corporation Respirator mask
US10780318B1 (en) * 2019-04-18 2020-09-22 Firas Kasem Ghazzawi Breathing device with exhale and inhale valve to create resistance
US20210128037A1 (en) * 2019-10-30 2021-05-06 Becton, Dickinson And Company Blood collection system with user-adjusted pressure management and related methods
CN112023364A (en) * 2020-07-31 2020-12-04 南通市第二人民医院 Breathe recovered adjustable training device that breathes in with
CN114617417A (en) * 2020-12-14 2022-06-14 杭州九阳小家电有限公司 Anti-overflow electric rice cooker
CN112933549B (en) * 2021-02-03 2022-04-29 川北医学院附属医院 Intelligent system and method for lung function rehabilitation training for respiratory medicine
CN113181606B (en) * 2021-05-17 2022-03-29 蒋庆贺 Expiration training device for chronic obstructive pulmonary disease
US11930875B2 (en) 2021-07-12 2024-03-19 John Hooman Kasraei Impact reduction system for personal protective devices
CN113952643B (en) * 2021-11-23 2023-05-26 吉林大学 Bionic Wen Jianshi mask

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598839A (en) * 1994-04-20 1997-02-04 Diemolding Corporation Positive expiratory pressure device
US5645049A (en) * 1992-11-09 1997-07-08 Trudell Medical Limited Exhalation valve for face mask with spacer chamber connection
US8327849B2 (en) * 2008-10-28 2012-12-11 Trudell Medical International Oscillating positive expiratory pressure device
CN103405836A (en) * 2013-07-25 2013-11-27 山东大学 Ventilation nasal plug with positive expiratory pressure
US20150231443A1 (en) * 2012-08-13 2015-08-20 Christopher I. Halliday Pulmonary system resistance training apparatus and methods

Family Cites Families (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US511780A (en) 1894-01-02 Coffee-flask
US669098A (en) 1900-05-26 1901-03-05 Timothy Taylor Overshiner Inhaler.
US3097642A (en) 1956-08-21 1963-07-16 Allan M Russell Face mask
US2888012A (en) 1956-10-29 1959-05-26 Glen M Larson Respirator valve assembly
US3850171A (en) 1973-05-16 1974-11-26 Vickers Ltd Medical face masks
US3889671A (en) 1974-02-19 1975-06-17 Alfred Baker Nasal adapter for administering analgesic gas
US3884223A (en) 1974-06-26 1975-05-20 Lawrence Peska Ass Inc Nasal filter
US4601465A (en) * 1984-03-22 1986-07-22 Roy Jean Yves Device for stimulating the human respiratory system
US4974829A (en) 1985-06-10 1990-12-04 Portable Hyperbarics, Inc. Hyperbaric chamber
GB2211098B (en) 1987-10-13 1991-02-27 Sabre Safety Ltd Respiratory protective apparatus
US5065756A (en) 1987-12-22 1991-11-19 New York University Method and apparatus for the treatment of obstructive sleep apnea
US4881540A (en) 1988-02-05 1989-11-21 Vigilia Larry P Device and method for assisting in artificial respiration
US5056756A (en) 1991-04-24 1991-10-15 U.S. Plastics Corporation Fluid connector
US5101819A (en) 1991-07-11 1992-04-07 Lane John C Method for inducing hypoxia at low simulated altitudes
US5647345A (en) 1992-05-12 1997-07-15 Saul; Gilbert D. Respiratory stimulator & methods of use
US5628308A (en) 1994-01-19 1997-05-13 Harges, Jr.; Cordell F. Heat and fire resistant respiratory filtration mask
US6932084B2 (en) * 1994-06-03 2005-08-23 Ric Investments, Inc. Method and apparatus for providing positive airway pressure to a patient
US5425359A (en) 1994-08-29 1995-06-20 Liou; Nan-Tien Nose plug structure with filter
WO1998008523A1 (en) 1996-08-27 1998-03-05 Messer Griesheim Gmbh Hydrogenous medicament
US5730122A (en) 1996-11-12 1998-03-24 Cprx, Inc. Heart failure mask and methods for increasing negative intrathoracic pressures
US5848589A (en) 1997-09-18 1998-12-15 Welnetz; Robert J. Altitude mask simulator
US6199550B1 (en) * 1998-08-14 2001-03-13 Bioasyst, L.L.C. Integrated physiologic sensor system
WO2000051625A1 (en) 1999-03-05 2000-09-08 The Trustees Of University Technology Corporation Inhibitors of serine protease activity, methods and compositions for treatment of herpes viruses
US6478026B1 (en) 1999-03-13 2002-11-12 Thomas J. Wood Nasal ventilation interface
US6511964B2 (en) 1999-09-24 2003-01-28 Bioenergy, Inc. Method for treating acute mountain sickness
US6338340B1 (en) 1999-11-02 2002-01-15 Xcaper Industries Llc Filter mask
US6964638B2 (en) 2000-01-31 2005-11-15 Pan Medix, Inc. Measuring cognitive impairment
US6557549B2 (en) 2000-04-11 2003-05-06 Trudell Medical International Aerosol delivery apparatus with positive expiratory pressure capacity
WO2001095786A2 (en) 2000-06-16 2001-12-20 Rajiv Doshi Methods and devices for improving breathing in patients with pulmonary disease
US6626179B1 (en) 2000-09-29 2003-09-30 Philip Pedley Breathing valve for improving oxygen absorption
EP1247525A1 (en) 2001-04-02 2002-10-09 Bioenergy Inc. Use of a monosaccharide in the manufacture of a medicament against acute mountain sickness
US7013896B2 (en) 2001-05-08 2006-03-21 Trudell Medical International Mask with inhalation valve
WO2002092170A2 (en) 2001-05-11 2002-11-21 Mine Safety Appliances Company Respirator facepieces
US20030100594A1 (en) 2001-08-10 2003-05-29 Pharmacia Corporation Carbonic anhydrase inhibitor
US20030121520A1 (en) 2001-12-27 2003-07-03 Parker Lisa M. Mouthpiece to prevent air leakage and method for using the same
US20030170377A1 (en) 2002-03-05 2003-09-11 Hammel Harold T. Method for minimizing high altitude pulmonary edema
WO2003092700A1 (en) 2002-04-29 2003-11-13 Gmp Oxycell, Inc. Inositol pyrophosphates, and methods of use thereof
GB0300875D0 (en) 2003-01-15 2003-02-12 Smiths Group Plc Face masks
US8985116B2 (en) 2006-06-07 2015-03-24 Theravent, Inc. Layered nasal devices
KR20070106995A (en) 2004-12-08 2007-11-06 벤투스 메디컬, 인코포레이티드 Respiratory devices and methods of use
US10610228B2 (en) 2004-12-08 2020-04-07 Theravent, Inc. Passive nasal peep devices
US9833354B2 (en) 2004-12-08 2017-12-05 Theravent, Inc. Nasal respiratory devices
US20060254592A1 (en) 2005-01-28 2006-11-16 Bruce Anders Respiratory mask
US7559327B2 (en) 2005-05-31 2009-07-14 Respcare, Inc. Ventilation interface
JP3787636B1 (en) 2005-08-26 2006-06-21 国立大学法人 岡山大学 Nostril plug for improving articulation disorder
US8025052B2 (en) * 2005-11-21 2011-09-27 Ric Investments, Llc System and method of monitoring respiratory events
ATE509671T1 (en) * 2005-11-23 2011-06-15 Filippo Pavesi BREATHING MASK, ESPECIALLY FOR SPORTS
US20080142015A1 (en) 2006-01-27 2008-06-19 David Groll Apparatus to provide continuous positive airway pressure
GB0610171D0 (en) 2006-05-23 2006-06-28 Robitaille Jean Pierre Valved nasal canula
US7856979B2 (en) 2006-05-23 2010-12-28 Ventus Medical, Inc. Nasal respiratory devices
WO2007146189A2 (en) 2006-06-07 2007-12-21 Ventus Medical, Inc. Nasal respiratory devices for positive end-expiratory pressure
JP2009542394A (en) * 2006-07-12 2009-12-03 インターテクニーク Breathing gas supply circuit for supplying oxygen to aircraft crew and passengers
US20080083410A1 (en) 2006-10-10 2008-04-10 Resnick Todd A Compact Respiratory Protective Hood
US8240309B2 (en) 2006-11-16 2012-08-14 Ventus Medical, Inc. Adjustable nasal devices
US8614236B2 (en) 2006-12-12 2013-12-24 University Of Washington Methods of treating pulmonary disease using acetazolamide and structurally related derivatives
WO2008077115A2 (en) * 2006-12-19 2008-06-26 Talus Outdoor Technologies, Limited Liability Company Cold or inclement weather exposure mask
WO2008092095A2 (en) 2007-01-25 2008-07-31 Madden Kathleen S Protein kinase c gamma as a biomarker for neuropsychological and cognitive functions in the central nervous system
WO2008097569A1 (en) 2007-02-06 2008-08-14 Avox Systems, Inc. Oxygen mask with rebreather bag for use with pulse oxygen delivery system
KR100878072B1 (en) 2007-03-13 2009-01-13 김종화 mask of dustproof
EP2187890A4 (en) 2007-07-19 2011-09-07 Adelaide Res & Innovation Pty Method for reducing intracranial pressure
US8475340B2 (en) 2007-07-25 2013-07-02 Montefiore Medical Center Hypoxic conditioning in patients with exercise limiting conditions
GB0722247D0 (en) 2007-11-13 2007-12-27 Intersurgical Ag Improvements relating to anti-asphyxiation valves
US8020700B2 (en) 2007-12-05 2011-09-20 Ventus Medical, Inc. Packaging and dispensing nasal devices
WO2009117012A1 (en) 2008-03-17 2009-09-24 Ventus Medical, Inc. Adhesive nasal respiratory devices
US20090286799A1 (en) 2008-05-16 2009-11-19 Zhi-Gang Jiang Methods for the treatment of brain edema
WO2010004446A1 (en) 2008-06-15 2010-01-14 Liang Zhang Nasal device for obesity prevention and treatment
US10780241B2 (en) 2008-08-21 2020-09-22 Vero Biotech LLC Devices and methods for minimizing and treating high-altitude sickness
TW201102068A (en) 2009-06-02 2011-01-16 Novartis Ag Treatment of ophthalmologic disorders mediated by alpha-carbonic anhydrase isoforms
US20100326433A1 (en) 2009-06-30 2010-12-30 Williams Michael D Oral appliance for altitude sickness
US20120201906A1 (en) 2009-09-08 2012-08-09 Reynolds James D Novel medical uses for no and no donor compounds
CN105561456A (en) * 2009-12-23 2016-05-11 费雪派克医疗保健有限公司 Interface
WO2011104635A1 (en) * 2010-02-26 2011-09-01 Intertechnique Method for determining partial pressure of a gaseous constituent and regulator of breathing mask for aircraft occupant
CA2796268A1 (en) 2010-04-13 2011-10-20 Johns Hopkins University Methods for treatment of sleep-related breathing disorders
US8690750B2 (en) 2010-05-14 2014-04-08 Wesley W. O. Krueger System and method for measuring and minimizing the effects of vertigo, motion sickness, motion intolerance, and/or spatial disorientation
US8875711B2 (en) 2010-05-27 2014-11-04 Theravent, Inc. Layered nasal respiratory devices
CN102946933B (en) * 2010-06-22 2016-09-14 皇家飞利浦电子股份有限公司 Respiratory interface device
US20120000472A1 (en) 2010-06-30 2012-01-05 Martucci Michael J Athletic mouth guard and breathing trainer
US8590533B2 (en) 2010-10-14 2013-11-26 Casey Danford Adjustable inhalation resistence exercise device
RU2491062C2 (en) 2011-03-16 2013-08-27 Общество С Ограниченной Ответственностью "Биотехнологии Пущино" Compositions of protectors against acute and chronic hepatic encephalopathies and method of treating acute and chronic hepatic encephalopathies
US9555108B2 (en) 2011-03-24 2017-01-31 Texas Tech University System TCR mimic antibodies as vascular targeting tools
US9067086B2 (en) * 2011-06-07 2015-06-30 Casey J. Danford High performance ventilatory training mask incorporating multiple and adjustable air admittance valves for replicating various encountered altitude resistances
WO2013025861A1 (en) 2011-08-17 2013-02-21 Tufts Medical Center Compounds and methods for augmenting permeability barriers
CA2849448C (en) 2011-09-06 2020-03-24 Bing Lou Wong Oral delivery for hemoglobin based oxygen carriers
US9730830B2 (en) 2011-09-29 2017-08-15 Trudell Medical International Nasal insert and cannula and methods for the use thereof
WO2013064888A1 (en) * 2011-11-03 2013-05-10 Trudell Medical International Breathing apparatus and method for the use thereof
CN105012313B (en) 2014-04-25 2018-03-16 广州市赛普特医药科技股份有限公司 The application of the β of 5 α androstanes 3,5,6 β triols and the like in preventing or treating altitude sickness caused by hypobaric hypoxia
US20130152930A1 (en) * 2011-12-20 2013-06-20 Thomas Votel Cold climate air exchanger
PT2797416T (en) 2011-12-28 2017-10-23 Global Blood Therapeutics Inc Substituted benzaldehyde compounds and methods for their use in increasing tissue oxygenation
US20140345623A1 (en) 2012-01-20 2014-11-27 Ventus Medical, Inc. Nasal devices with variable leak paths, nasal devices with aligners, and nasal devices with flap valve protectors
US9333318B2 (en) * 2012-04-13 2016-05-10 Fresca Medical, Inc. Sleep apnea device
US10307562B2 (en) 2012-04-13 2019-06-04 Fresca Medical, Inc. Auto-feedback valve for a sleep apnea device
US20150059758A1 (en) * 2012-03-26 2015-03-05 Koninklijke Philips N.V. Selectable exhaust port assembly
US10272226B2 (en) 2012-04-13 2019-04-30 Fresca Medical, Inc. Auto-feedback valve for a sleep apnea device
EP2847175A4 (en) 2012-05-08 2016-04-20 Cellix Bio Private Ltd Compositions and methods for suppression of carbonic anhydrase activity
US9403826B2 (en) 2012-05-08 2016-08-02 Cellix Bio Private Limited Compositions and methods for the treatment of inflammatory disorders
JP6238969B2 (en) 2012-05-08 2017-11-29 エアロミクス・インコーポレイテッドAeromics,Inc. New method
WO2013168013A2 (en) 2012-05-10 2013-11-14 Mahesh Kandula Compositions and methods for the treatment of chronic diseases and inflammatory disorders
US20130325498A1 (en) 2012-06-05 2013-12-05 United States Of America, As Represented By The Secretary Of The Army Health Outcome Prediction and Management System and Method
EP2679239A1 (en) 2012-06-28 2014-01-01 Apeptico Forschung und Entwicklung GmbH Pharmaceutical compound for treating the pulmonary form of altitude sickness caused by oxygen deprivation and reduced air pressure
CN202920765U (en) 2012-10-08 2013-05-08 崇仁(厦门)医疗器械有限公司 Breathing mask
US9192796B2 (en) 2012-10-25 2015-11-24 Honeywell International Inc. Method of donning and testing abrasive blast respirator
US20150351468A9 (en) * 2013-03-01 2015-12-10 Bruce Chinquee Face Mask
US9878121B2 (en) * 2013-03-13 2018-01-30 Breathe Technologies, Inc. Ventilation mask with heat and moisture exchange device
US9700688B2 (en) 2013-03-15 2017-07-11 Trudell Medical International Delivery device and kit, and method of use
US20140283837A1 (en) 2013-03-19 2014-09-25 Carmelo Thomas Turrisi High Concentration Nasal Oxygen Mask
CN104138377A (en) 2013-05-06 2014-11-12 常州高新技术产业开发区三维工业技术研究所有限公司 A pharmaceutical composition treating severe high-altitude diseases
CN103768072A (en) 2014-01-17 2014-05-07 中山大学 Application of progesterone in prevention or treatment of altitude sickness caused by hypobaric hypoxia
US10344753B2 (en) 2014-02-28 2019-07-09 Encite Llc Micro pump systems
CA2940351A1 (en) 2014-03-18 2015-09-24 Apeptico Forschung Und Entwicklung Gmbh Dry-powder peptide medicament
EP2937089A1 (en) 2014-04-23 2015-10-28 Linde AG Device for the treatment of, treatment of complications arising from, and/or prevention of respiratory disorders
US20160051396A1 (en) 2014-08-21 2016-02-25 Eliezer Nussbaum Sleep apnea device to positively block exhaling and method of use
US9956439B2 (en) * 2014-09-30 2018-05-01 Blast Mask, LLC Breathing equipment training
US9284287B1 (en) 2014-11-05 2016-03-15 Cellix Bio Private Limited Compositions and methods for the suppression of carbonic anhydrase activity
US20160129286A1 (en) 2014-11-07 2016-05-12 Training Mask, LLC Breathing Mask With Variable Airflow Resistance Insert
US20160129287A1 (en) 2014-11-10 2016-05-12 Training Mask, LLC Scent Suppression Mask
US10195071B2 (en) 2014-11-21 2019-02-05 William Karl Vezina Device and method for the treatment of bruxism
WO2016134032A1 (en) 2015-02-17 2016-08-25 Snutch Terrance P Methods of treating brain edema
US9661884B2 (en) * 2015-04-30 2017-05-30 Shireen Noelle Yarahmadi Fashionable versatile mask garment retains a filter element in a concealed state
AU2015397594B2 (en) 2015-06-05 2021-01-28 Asap Breatheassist Pty Ltd Nasal dilators
CA2988374A1 (en) 2015-06-15 2016-12-22 Glaxosmithkline Intellectual Property Development Limited Nrf2 regulators
RU2018101077A (en) 2015-06-15 2019-07-15 Глэксосмитклайн Интеллекчуал Проперти Дивелопмент Лимитед REGULATORS NRF2
AU2016302387B2 (en) 2015-07-31 2020-12-24 Asap Breatheassist Pty Ltd Nasal devices
US20170144000A1 (en) * 2015-11-25 2017-05-25 TrainingMask L.L.C. Resistance and filtration breathing device
US9579540B1 (en) * 2016-01-06 2017-02-28 Trainingmask, L.L.C. Resistance breathing device
FR3046937B1 (en) 2016-01-25 2019-08-09 Universite Grenoble Alpes ALTITUDE ACCLIMATING DEVICE AND METHOD OF OPERATING THE SAME.
US9707444B1 (en) 2016-03-22 2017-07-18 Trainingmask Llc Resistance breathing device
RU2661272C2 (en) 2016-09-09 2018-07-13 Трейнингмаск Л.Л.К. Device for breathing with resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645049A (en) * 1992-11-09 1997-07-08 Trudell Medical Limited Exhalation valve for face mask with spacer chamber connection
US5598839A (en) * 1994-04-20 1997-02-04 Diemolding Corporation Positive expiratory pressure device
US8327849B2 (en) * 2008-10-28 2012-12-11 Trudell Medical International Oscillating positive expiratory pressure device
US20150231443A1 (en) * 2012-08-13 2015-08-20 Christopher I. Halliday Pulmonary system resistance training apparatus and methods
CN103405836A (en) * 2013-07-25 2013-11-27 山东大学 Ventilation nasal plug with positive expiratory pressure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3624885A4 *

Also Published As

Publication number Publication date
US20230077634A1 (en) 2023-03-16
US11439869B2 (en) 2022-09-13
EP3624885A4 (en) 2021-03-10
US20190001187A1 (en) 2019-01-03
CA3063524A1 (en) 2018-11-22
EP3624885A1 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
US20230077634A1 (en) Positive expiratory pressure device
CN114404764B (en) Adjustable headgear tube for patient interface
JP7302042B2 (en) Conduit headgear connector for patient interface
US8590533B2 (en) Adjustable inhalation resistence exercise device
US7823590B2 (en) Devices, for preventing collapse of the upper airway, methods for use thereof and systems and articles of manufacture including same
US10926051B2 (en) Respiratory interface
CN214435768U (en) Patient interface and CPAP system comprising same
JP2024032733A (en) Headgear tubing for patient interface
CN111918688B (en) Connector assembly
JP7200388B2 (en) Headgear tubing for patient interface
EP1629859A1 (en) Face mask
JP3059270U (en) Snoring nose plug with ventilation valve
JP7436521B2 (en) Positioning and stabilizing structures for patient interfaces
JP2023532515A (en) Patient Interfaces and Positioning and Stabilizing Structures for Patient Interfaces
WO2013043504A1 (en) Pulsated oxygen delivery for medical applications
JP2022538369A (en) Patient Interfaces and Positioning and Stabilizing Structures for Patient Interfaces
JP2023086765A (en) Patient interface with foam cushion
CN215608552U (en) Seal-forming structure for a patient interface comprising a textile sealing member
CN217908836U (en) Novel face guard is used in oxygen training hinders
CN115226394B (en) Nasal mask and associated filter
US20210170132A1 (en) Respiratory interface
CN211157910U (en) Mask type medicine suction device
CN117355349A (en) Ventilation arrangement for a patient interface
AU2013100058A4 (en) NOSE BREATHING MASK The mask seals the mouth and promotes natural breathing through the nose, most healthy and effective method of breathing as air is: i) moisturized, ii) humidified, and iii) filtered. Benefits and effectiveness of nose breathing are not questionable. Feature of the mask is the development of a mouth seal. Mask allows for breathing of air at an atmospheric pressure, and atmospheric air quality improves quality of life, does not require electricity, and is not currently available on the market.
KR20230062538A (en) Inflatable headgear and patient interface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801926

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3063524

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018801926

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018801926

Country of ref document: EP

Effective date: 20191219