WO2018210490A1 - Feldgerät der automatisierungstechnik - Google Patents

Feldgerät der automatisierungstechnik Download PDF

Info

Publication number
WO2018210490A1
WO2018210490A1 PCT/EP2018/059110 EP2018059110W WO2018210490A1 WO 2018210490 A1 WO2018210490 A1 WO 2018210490A1 EP 2018059110 W EP2018059110 W EP 2018059110W WO 2018210490 A1 WO2018210490 A1 WO 2018210490A1
Authority
WO
WIPO (PCT)
Prior art keywords
field device
antenna
cable
cable gland
housing
Prior art date
Application number
PCT/EP2018/059110
Other languages
English (en)
French (fr)
Inventor
Harald SCHÄUBLE
Max Bauer
Marc SCHLEDERER
Armend Zenuni
Original Assignee
Endress+Hauser SE+Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress+Hauser SE+Co. KG filed Critical Endress+Hauser SE+Co. KG
Priority to CN201880025512.XA priority Critical patent/CN110574229B/zh
Priority to US16/614,610 priority patent/US11011823B2/en
Priority to EP18717032.9A priority patent/EP3625848A1/de
Publication of WO2018210490A1 publication Critical patent/WO2018210490A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2233Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in consumption-meter devices, e.g. electricity, gas or water meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0471Non-planar, stepped or wedge-shaped patch
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/15Plc structure of the system
    • G05B2219/15117Radio link, wireless
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25428Field device

Definitions

  • the invention relates to a field device of automation technology and a cable gland for a field device.
  • Process automation technology field devices are often used, which serve for the determination, optimization and / or influencing of process variables.
  • sensors such as
  • level gauges For example, level gauges, flow meters, pressure and temperature measuring devices, conductivity meters, etc., which record the corresponding process variables level, flow, pressure, temperature and conductivity.
  • actuators such as valves or pumps, on the flow of a liquid in a pipe section or the level in one
  • field devices are all devices that are used close to the process and that provide or process process-relevant information.
  • field devices are thus also understood as remote I / Os (electrical interfaces), radio adapters or in general devices which are arranged on the field level.
  • I / Os electrical interfaces
  • radio adapters or in general devices which are arranged on the field level.
  • a variety of such field devices is manufactured and sold by the company Endress + Hauser.
  • the higher-level units are control systems or control units, such as a PLC (Programmable Logic Controller) or PLC (Programmable Logic Controller).
  • the higher-level units serve, among other things, for process control, process visualization, process monitoring and commissioning of the field devices.
  • the process variables or data acquired by the field devices, in particular by sensors, are transmitted via the connected fieldbus to one or possibly also to a plurality of higher-level unit (s).
  • data transmission from the higher-level unit via the bus system to the field devices is required; this can serve, for example, for diagnostic purposes.
  • the field device is operated via the field bus from the higher-level unit.
  • field devices it is also increasingly possible for field devices to transmit data wirelessly (also referred to as “wireless” in the following), whether to transmit process data, that is to say substantially measured values, to the higher-level unit or even to one
  • the field devices must be equipped with a corresponding radio antenna which is set up for the purpose of emitting and receiving electromagnetic waves.
  • the equipment of field devices with radio antennas has the
  • the field device housing usually made of a conductive material, in particular metal, are formed, which ensure that the electromagnetic waves only greatly attenuated or possibly. not to be let through either. This in turn means that the range of the radio signal for wireless data transmission with the field device is very low.
  • a field device is proposed, for example in DE 10 2014 1 18 391 A1, in which electromagnetic waves emitted by a primary antenna arranged inside the field device are coupled to a first secondary antenna within the housing and then from the first secondary antenna are transmitted to a second secondary antenna outside the housing so as to be decoupled from the second secondary antenna.
  • a cable gland which is introduced into the housing opening, wherein at least one cable is inserted through the cable gland in the housing and connected to the field device electronics, so that can be communicated via the cable wired to the field device electronics;
  • an antenna for transmitting or receiving electromagnetic waves having at least one specific wavelength wherein the antenna is inserted in the cable gland in such a way that the
  • Antenna surrounds the cable at least partially and the antenna is connected via a coaxial conductor with the field device electronics, so that can be communicated wirelessly via the antenna with the field device electronics.
  • the antenna is such
  • the antenna is designed such that it is tuned for a predetermined frequency or wavelength. Common frequencies for, for example, a near field communication are usually at 2.4 GHz (WLAN, Bluetooth, ANT).
  • the antenna can be embodied by corresponding antenna structures such that it serves to transmit data in accordance with the Bluetooth standard IEEE 802.15 or a variant modified therefrom, for example Bluetooth LE (English for "low energy").
  • the antenna is formed on the basis of a flexible substrate, in particular a flexible printed circuit board, and is inserted into the cable gland such that the flexible substrate rests against an inner wall of the cable gland or is introduced into the inner wall ,
  • the development can provide that the flexible substrate comprises polyimide.
  • the antenna is formed on the basis of a metallic, in particular flexible wire and is inserted into the cable gland in such a way that the metallic wire rests against an inner wall of the cable gland or is introduced into the inner wall.
  • Cable gland includes a PG cable gland, in particular an M20 PG cable gland.
  • FIG 1 shows an embodiment of the field device according to the invention.
  • Figure 1 shows an embodiment of the field device 1 according to the invention, which comprises a metallic housing 2, in which a
  • Field device electronics 4 is arranged.
  • the field device electronics 4 is designed such that it has terminals, via which a cable 6, for example.
  • a two-wire cable 12 or a four-wire cable 12 can be connected.
  • the cable 6 may be formed either as a two-wire line 12, so that both the data and energy for power supply over a total of two
  • Wires of the field device electronics are supplied, or as a four-wire line 12, so that the data and energy over a total of four wires
  • Field device electronics 4 are supplied. To the cable 6 coming from outside the housing 2 to the in the
  • the metallic housing 2 arranged terminals 13 to be able to lead, the metallic housing 2 has a housing opening 3.
  • a cable gland 5 is introduced, so that the cable 6 can be introduced through the cable gland 5 in the housing 2.
  • the cable gland 5 can be designed in such a way that a cable 6 in the form of a two-wire line 1 2 or a four-wire line 12 can be inserted into the housing 2.
  • the cable gland 5 preferably has a plastic.
  • the cable gland 5 can, for example, as M20, i. having an outer diameter of 20 mm, PG cable gland be formed.
  • an antenna 7 for receiving and transmitting electromagnetic waves having a predetermined wavelength or frequency according to the invention introduced such that the antenna 7, the cable 6 in the region of the cable gland 5 at least partially surrounds.
  • the antenna 7 may be formed, for example, based on a flexible substrate or substrate 9 with antenna structures 14 so that it can be wound around the cable 6 and the cable 6 with the wrapped antenna 7 in the cable gland 5 can be introduced. So that the antenna 7, the
  • the thickness of the carrier material 9 on which the antenna structures 14 are formed is selected such that the
  • Carrier material 9 of the antenna 7 for insertion into the cable gland 5 to the cable 6 can be wound.
  • the antenna 7 may be formed, for example in the form of a flexible printed circuit board, in which a flexible substrate the antenna or the antenna structures are applied.
  • the flexible substrate forming the base for the antenna preferably comprises polyimide.
  • the formed on the basis of a flexible substrate antenna 7 can either surround the cable 6 and to an inner wall 10 of
  • the latter can be realized, for example, by introducing the antenna 7 into the cable gland 5 during its production, for example by injecting it.
  • the inner wall 10 has a recess 15 for receiving the antenna 7.
  • the antenna 7 can be fixed in the cable gland 5 and prevented so that this, for example, during insertion or passage of the cable 6 through the cable gland 5, slips.
  • the antenna 7 may also be formed on the basis of a metallic wire, which can be wound around the cable 6 and then inserted together with the cable into the cable gland 5. Also, the metallic wire can also in the inner
  • Wall 10 of the cable gland 5 be introduced, for example. In the manufacture of the cable gland. 5
  • the antenna 7 further has at least one connection region in the form of a coaxial conductor connection 11. Via the connection region, the antenna 7 introduced into the cable gland 5 is connected to the field device electronics 4 via a coaxial conductor 8.
  • the coaxial conductor 8 and the coaxial conductor connection 11 can be realized, for example, in the form of a plug-socket connection. Via the antenna 7, in particular between the field device electronics 4 and a mobile operating unit not shown separately in FIG. 1, which is provided with an antenna corresponding to the antenna, in particular
  • the field device electronics 4 with the higher-level unit, in particular measured values communicates.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Insertion, Bundling And Securing Of Wires For Electric Apparatuses (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

Feldgerät der Automatisierungstechnik (1) zumindest aufweisend: - ein zumindest teilweise metallisches Gehäuse (2) mit zumindest einer Gehäuseöffnung (3); - eine innerhalb des Gehäuses angeordnete Feldgerätelektronik (4); - eine Kabelverschraubung (5), die in der Gehäuseöffnung (3) eingebracht ist, wobei durch die Kabelverschraubung (5) zumindest ein Kabel (6) in das Gehäuse (2) eingeführt und mit der Feldgerätelektronik (4) verbunden ist, so dass über das Kabel (6) drahtgebunden mit der Feldgeräteelektronik (4) kommuniziert werden kann; - eine Antenne (7) zum Senden bzw. Empfangen von elektromagnetischen Wellen mit zumindest einer bestimmten Wellenlänge, wobei die Antenne (7) in die Kabelverschraubung (5) derartig eingebracht ist, dass die Antenne (7) das Kabel (6) zumindest teilweise umgibt und die Antenne (7) über einen Koaxialleiter (8) mit der Feldgeräteelektronik (4) verbunden ist, so dass über die Antenne (7) drahtlos mit der Feldgeräteelektronik (4) kommuniziert werden kann.

Description

Feldgerät der Automatisierungstechnik
Die Erfindung bezieht sich auf ein Feldgerät der Automatisierungstechnik sowie eine Kabelverschraubung für ein Feldgerät.
In der Automatisierungstechnik, insbesondere in der
Prozessautomatisierungstechnik, werden vielfach Feldgeräte eingesetzt, die zur Bestimmung, Optimierung und/oder Beeinflussung von Prozessvariablen dienen. Zur Erfassung von Prozessvariablen dienen Sensoren, wie
beispielsweise Füllstandsmessgeräte, Durchflussmessgeräte, Druck- und Temperaturmessgeräte, Leitfähigkeitsmessgeräte, usw., welche die entsprechenden Prozessvariablen Füllstand, Durchfluss, Druck, Temperatur bzw. Leitfähigkeit erfassen. Zur Beeinflussung von Prozessvariablen dienen Aktoren, wie zum Beispiel Ventile oder Pumpen, über die der Durchfluss einer Flüssigkeit in einem Rohrleitungsabschnitt bzw. der Füllstand in einem
Behälter geändert werden kann. Als Feldgeräte werden im Prinzip alle Geräte bezeichnet, die prozessnah eingesetzt werden und die prozessrelevante Informationen liefern oder verarbeiten. Im Zusammenhang mit der Erfindung werden unter Feldgeräten also auch Remote I/Os (elektrische Schnittstellen), Funkadapter bzw. allgemein Geräte verstanden, die auf der Feldebene angeordnet sind. Eine Vielzahl solcher Feldgeräte wird von der Firma Endress + Hauser hergestellt und vertrieben.
In modernen Industrieanlagen sind Feldgeräte in der Regel über Feldbusse mit übergeordneten Einheiten verbunden. Normalerweise handelt es sich bei den übergeordneten Einheiten um Leitsysteme bzw. Steuereinheiten, wie beispielsweise eine SPS (speicherprogrammierbare Steuerung) bzw. PLC (Programmable Logic Controller). Die übergeordneten Einheiten dienen unter anderem zur Prozesssteuerung, Prozessvisualisierung, Prozessüberwachung sowie zur Inbetriebnahme der Feldgeräte. Die von den Feldgeräten, insbesondere von Sensoren, erfassten Prozessvariablen bzw. -daten werden über den angeschlossenen Feldbus an eine oder gegebenenfalls auch an mehrere übergeordnete Einheit(en) übermittelt. Daneben ist auch eine Datenübertragung von der übergeordneten Einheit über das Bussystem an die Feldgeräte erforderlich; diese kann bspw. zu Diagnosezwecken dienen. Allgemein gesprochen, wird das Feldgerät über den Feldbus von der übergeordneten Einheit her bedient.
Neben einer drahtgebundenen Datenübertragung muss bei derartigen
Feldgeräten auch Zunehmens die Möglichkeit geschaffen werden, dass Daten drahtlose (im Folgenden auch als„wireless" bezeichnet) übertragen werden können. Sei es um Prozessdaten, d.h. im Wesentlichen Messwerte, zu der übergeordneten Einheit zu übertragen oder aber auch um eine
Parametrierung des Feldgerätes durch eine mobile Einheit, bspw. ein Tablet, Smartphone, etc. zu ermöglichen. Damit eine drahtlose Datenübertragung realisiert werden kann, müssen die Feldgeräte mit einer entsprechenden Funkantenne ausgestattet sein, die zur Abstrahlung und zum Empfang elektromagnetischer Wellen eingerichtet sind. Die Ausstattung der Feldgeräte mit Funkantennen weist jedoch die
Problematik auf, dass die Feldgerätegehäuse zumeist aus einem leitfähigen Material, insbesondere Metall, ausgebildet sind, welche dafür sorgen, dass die elektromagnetischen Wellen nur stark abgeschwächt oder evtl . auch gar nicht durchgelassen werden. Dies führt wiederum dazu, dass die Reichweite des Funksignals zur drahtlosen Datenübertragung mit dem Feldgerät sehr gering ist.
Um eine größere Reichweite des Funksignals zu erreichen, wird, bspw. in der DE 10 2014 1 18 391 A1 , ein Feldgerät vorgeschlagen, bei dem von einer innerhalb des Feldgerätes angeordneten Primärantenne ausgesendete elektromagnetische Wellen an eine erste Sekundärantenne innerhalb des Gehäuses koppeln und anschließend von der ersten Sekundärantenne zu einer zweiten Sekundärantenne außerhalb des Gehäuses übertragen werden, umso von der zweiten Sekundärantenne ausgekoppelt zu werden . Die
Übertragung vom Gehäuseinneren nach dem Gehäuseäußeren erfolgt hierbei mittels geführten Wellen, deren Verluste geringer sind als freie Wellen. Die Sekundärantennen sind hierbei in eine Kabelverschraubung eingebracht. Nachteilig an der in der DE 10 2014 1 18 391 A1 beschriebenen Lösung ist, der komplexe Aufbau bestehend aus mehreren einzelnen Antennen, die aufeinander abgestimmt sein müssen, und dass die Kabelverschraubung, in die die Sekundärantenne integriert ist, lediglich als Blindstopfen und nicht mehr für den eigentlich vorgesehen Einsatz, des Durchführens eines Kabels, verwendet werden kann. Dementsprechend besteht die Aufgabe der Erfindung darin, hier Abhilfe zu leisten.
Die Aufgabe wird erfindungsgemäß durch ein Feldgerät der
Automatisierungstechnik gelöst, welches zumindest folgendes aufweist:
- ein zumindest teilweise metallisches Gehäuse mit zumindest einer
Gehäuseöffnung;
- eine innerhalb des Gehäuses angeordnete Feldgerätelektronik;
- eine Kabelverschraubung, die in der Gehäuseöffnung eingebracht ist, wobei durch die Kabelverschraubung zumindest ein Kabel in das Gehäuse eingeführt und mit der Feldgerätelektronik verbunden ist, so dass über das Kabel drahtgebunden mit der Feldgeräteelektronik kommuniziert werden kann;
- eine Antenne zum Senden bzw. Empfangen von elektromagnetischen Wellen mit zumindest einer bestimmten Wellenlänge, wobei die Antenne in die Kabelverschraubung derartig eingebracht ist, dass die
Antenne das Kabel zumindest teilweise umgibt und die Antenne über einen Koaxialleiter mit der Feldgeräteelektronik verbunden ist, so dass über die Antenne drahtlos mit der Feldgeräteelektronik kommuniziert werden kann.
Erfindungsgemäß wird also vorgeschlagen, die Antenne derartig
auszugestalten und in die Kabelverschraubung einzubringen, dass diese zumindest teilweise das Kabel umgibt. Die Antenne ist dabei derartig ausgebildet, dass sie für eine vorherbestimmte Frequenz bzw. Wellenlänge abgestimmt ist. Übliche Frequenzen für bspw. eine Nahfeldkommunikation liegen für gewöhnlich bei 2,4 GHz (WLAN, Bluetooth, ANT). So kann die Antenne bspw. durch entsprechende Antennenstrukturen derartig ausgebildet sein, dass diese zur Übertragung von Daten gemäß dem Bluetooth-Standard IEEE 802.15 oder einer davon abgewandelten Variante, bspw. Bluetooth LE (engl, für„Low Energy") dient. Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Antenne auf Basis eines flexiblen Substrates, insbesondere einer flexiblen Leiterplatte, ausgebildet ist und derartig in die Kabelverschraubung eingebracht ist, dass das flexible Substrat an einer inneren Wandung der Kabelverschraubung anliegt oder in die innere Wandung eingebracht ist. Insbesondere kann die Weiterbildung vorsehen, dass das flexible Substrat Polyimid umfasst.
Eine alternative Weiterbildung der Erfindung sieht vor, dass die Antenne auf Basis eines metallischen, insbesondere flexiblen Drahtes ausgebildet ist und derartig in die Kabelverschraubung eingebracht ist, dass der metallische Draht an einer inneren Wandung der Kabelverschraubung anliegt oder in die innere Wandung eingebracht ist.
Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass die innere Wandung der Kabelverschraubung eine Ausnehmung aufweist, die derartig ausgebildet ist, dass die Antenne durch die Ausnehmung zumindest teilweise aufgenommen und fixiert ist, wenn die Antenne an der inneren Wandung anliegt. Wiederum eine weitere vorteilhafte Weiterbildung sieht vor, dass die
Kabelverschraubung eine PG-Kabelverschraubung, insbesondere eine M20 PG-Kabelverschraubung, umfasst.
Die Erfindung wird anhand der nachfolgenden Zeichnung näher erläutert. Es zeigt:
Fig. 1 : eine Ausgestaltung des erfindungsgemäßen Feldgerätes.
Figur 1 zeigt eine Ausgestaltung des erfindungsgemäßen Feldgerätes 1 , welches ein metallisches Gehäuse 2 umfasst, in dem eine
Feldgeräteelektronik 4 angeordnet ist. Die Feldgeräteelektronik 4 ist derartig ausgebildet, dass diese Anschlussklemmen aufweist, über die ein Kabel 6, bspw. ein Zweidrahtkabel 12 oder auch ein Vierdrahtkabel 12 angeschlossen werden kann. Über das Kabel 6 wird die Feldgeräteelektronik 4 und somit das Feldgerät 1 an eine in Fig. 1 nicht gesondert dargestellte übergeordnete Einheit angeschlossen, um mit der übergeordneten Einheit Daten,
insbesondere Daten bezogen auf Messwerte, drahtgebunden zu
kommunizieren. Je nach konkreter Ausgestaltung des Feldgerätes 1 , kann das Kabel 6 entweder als Zweidrahtleitung 12 ausgebildet sein, so dass sowohl die Daten als auch Energie zur Energieversorgung über insgesamt zwei
Drähte der Feldgeräteelektronik zugeführt werden, oder als Vierdrahtleitung 12, so dass die Daten und Energie über insgesamt vier Drähte der
Feldgeräteelektronik 4 zugeführt werden. Um das von außerhalb des Gehäuses 2 kommende Kabel 6 an die im
Gehäuse 2 angeordneten Anschlussklemmen 13 führen zu können, weist das metallische Gehäuse 2 eine Gehäuseöffnung 3 auf. In die Gehäuseöffnung 3 ist eine Kabelverschraubung 5 eingebracht, so dass das Kabel 6 durch die Kabelverschraubung 5 in das Gehäuse 2 einbringbar ist. Wie bereits angedeutet, kann die Kabelverschraubung 5 dabei derartig ausgebildet sein, dass ein Kabel 6 in Form einer Zweidrahtleitung 1 2 oder einer Vierdrahtleitung 12 in das Gehäuse 2 einführbar ist. Die Kabelverschraubung 5 weist vorzugsweise ein Kunststoff auf. Die Kabelverschraubung 5 kann bspw. als M20, d.h. einen Außendurchmesser von 20 mm aufweisend, PG- Kabelverschraubung ausgebildet sein.
In die Kabelverschraubung 5 ist eine Antenne 7 zum Empfangen und Senden von elektromagnetischen Wellen mit einer vorbestimmten Wellenlänge bzw. Frequenz erfindungsgemäß derartig eingebracht, dass die Antenne 7 das Kabel 6 im Bereich der Kabelverschraubung 5 zumindest teilweise umgibt.
Die Antenne 7 kann beispielsweise auf Basis eines flexiblen Trägermaterials bzw. Substrates 9 mit Antennenstrukturen 14 ausgebildet sein, so dass diese um das Kabel 6 wickelbar und das Kabel 6 mit der umwickelten Antenne 7 in die Kabelverschraubung 5 einbringbar ist. Damit die Antenne 7 die
erforderliche Elastizität aufweist, ist die Stärke des Trägermaterials 9 auf dem die Antennenstrukturen 14 ausgebildet sind, so gewählt, dass das
Trägermaterial 9 der Antenne 7 zum Einbringen in die Kabelverschraubung 5 um das Kabel 6 wickelbar ist. Die Antenne 7 kann beispielsweise in Form einer flexiblen Leiterplatte ausgebildet sein, bei der auf ein flexibles Substrat die Antenne bzw. die Antennenstrukturen aufgebracht sind. Das flexible Substrat, welches die Basis für die Antenne bildet, umfasst vorzugsweise Polyimid. Die auf Basis eines flexiblen Substrates ausgebildete Antenne 7 kann entweder das Kabel 6 umgeben und an eine innere Wandung 10 der
Kabelverschraubung 5 angelegt sein oder in die innere Wandung 10 der Kabelverschraubung 5 eingebracht bzw. integriert sein. Letzteres lässt sich bspw. dadurch realisieren, dass die Antenne 7 in die Kabelverschraubung 5 bei deren Herstellung eingebracht, bspw. eingespritzt wird.
In dem Fall, dass die Antenne 7 das Kabel 6 umgibt und an die innere
Wandung 10 angelegt ist, kann es von Vorteil sein, wenn die innere Wandung 10 eine Ausnehmung 15 zur Aufnahme der Antenne 7 aufweist. Durch die Ausnehmung 15 kann die Antenne 7 in der Kabelverschraubung 5 fixiert und so verhindert werden, dass diese, bspw. beim Einführen bzw. Durchführen des Kabels 6 durch die Kabelverschraubung 5, verrutscht.
Alternativ kann die Antenne 7 statt auf Basis eines flexiblen Trägermaterials 9 auch auf Basis eines metallischen Drahtes ausgebildet sein, der um das Kabel 6 wickelbar und dann mit dem Kabel zusammen in die Kabelverschraubung 5 einbringbar ist. Ebenfalls kann der metallische Draht auch in die innere
Wandung 10 der Kabelverschraubung 5 eingebracht sein, bspw. bei der Herstellung der Kabelverschraubung 5.
Die Antenne 7 weist ferner zumindest einen Anschlussbereich in Form eines Koaxialleiteranschlusses 1 1 auf. Über den Anschlussbereich ist die in die Kabelverschraubung 5 eingebracht Antenne 7 mit der Feldgeräteelektronik 4 über ein Koaxialleiter 8 verbunden. Die Anbindung des Koaxialleiters 8 an den Koaxialleiteranschlusses 1 1 kann hierbei sowohl festverdrahtet als auch lösbar erfolgen. Bei einer festverdrahteten Verbindung zwischen Koaxialleiter 8 und Koaxialleiteranschluss 1 1 sind diese vorzugsweise verlötet oder verklebt. Bei der lösbaren Anbindung können der Koaxialleiter 8 und der Koaxialleiteranschluss 1 1 bspw. in Form einer Stecker-Buchse-Verbindung realisiert sein. Uber die Antenne 7, können zwischen der Feldgeräteelektronik 4 und einer in Fig. 1 nicht gesondert dargestellten mobilen Bedieneinheit, die mit einer zu der Antenne korrespondierenden Antenne versehen ist, insbesondere
Parameterwerte kommuniziert werden, umso eine Parametrierung des
Feldgerätes 1 vorzunehmen, wohingegen über das Kabel 6, welches durch die Kabelverschraubung 5 geführt ist, die Feldgeräteelektronik 4 mit der übergeordneten Einheit, insbesondere Messwerte, kommuniziert. Als mobile Bedieneinheit kommen im Prinzip alle Geräte in Betracht, die eine zu der in der Kabelverschraubung 5 integrierten Antenne entsprechende Funkantenne aufweisen, bspw. Smartphones, Tablets oder dergleichen.
Bezugszeichenliste Feldgerät der Automatisierungstechnik
Gehäuse
Gehäuseöffnung
Feldgeräteelektronik
Kabelverschraubung
Kabel zum Anschließen der Feldgeräteelektronik Antenne
Koaxialleiter
Flexibles Substrat
innere Wandung der Kabelverschraubung Koaxialleiteranschluss
Zweileiterkabel
Anschlussklemmen
Antennenstrukturen
Ausnehmung

Claims

Patentansprüche
1 . Feldgerät der Automatisierungstechnik (1 ) zumindest aufweisend:
- ein zumindest teilweise metallisches Gehäuse (2) mit zumindest einer Gehäuseöffnung (3);
- eine innerhalb des Gehäuses angeordnete Feldgerätelektronik (4);
- eine Kabelverschraubung (5), die in der Gehäuseöffnung (3)
eingebracht ist, wobei durch die Kabelverschraubung (5) zumindest ein Kabel (6) in das Gehäuse (2) eingeführt und mit der Feldgerätelektronik (4) verbunden ist, so dass über das Kabel (6) drahtgebunden mit der
Feldgeräteelektronik (4) kommuniziert werden kann;
- eine Antenne (7) zum Senden bzw. Empfangen von
elektromagnetischen Wellen mit zumindest einer bestimmten
Wellenlänge, wobei die Antenne (7) in die Kabelverschraubung (5) derartig eingebracht ist, dass die Antenne (7) das Kabel (6) zumindest teilweise umgibt und die Antenne (7) über einen Koaxialleiter (8) mit der Feldgeräteelektronik (4) verbunden ist, so dass über die Antenne (7) drahtlos mit der Feldgeräteelektronik (4) kommuniziert werden kann.
2. Feldgerät nach Anspruch 1 , wobei die Antenne auf Basis eines flexiblen Substrates (9), insbesondere einer flexiblen Leiterplatte, ausgebildet ist und derartig in die Kabelverschraubung (5) eingebracht ist, dass das flexible Substrat (9) an einer inneren Wandung (10) der Kabelverschraubung (5) anliegt oder in die innere Wandung (10) eingebracht ist.
3. Feldgerät nach dem vorhergehenden Anspruch, wobei das flexible
Substrat (9) Polyimid umfasst.
4. Feldgerät nach Anspruch 1 , wobei die Antenne (7) auf Basis eines metallischen Drahtes ausgebildet ist und derartig in die Kabelverschraubung (5) eingebracht ist, dass der metallische Draht an einer inneren Wandung (10) der Kabelverschraubung (5) anliegt oder in die innere Wandung (10) eingebracht ist.
5. Feldgerät nach Anspruch 2 oder 4, wobei die innere Wandung (10) der Kabelverschraubung (5) eine Ausnehmung aufweist, die derartig ausgebildet ist, dass die Antenne (7) durch die Ausnehmung zumindest teilweise aufgenommen und fixiert ist, wenn die Antenne (7) an der inneren Wandung (10) anliegt.
6. Feldgerät nach zumindest einem der vorhergehenden Ansprüche, wobei die Kabelverschraubung (5) eine PG-Kabelverschraubung, insbesondere eine M20 PG-Kabelverschraubung, umfasst.
7. Feldgerät nach zumindest einem der vorhergehenden Ansprüche, wobei die Kabelverschraubung dazu eingerichtet ist, ein Zweileiterkabel oder ein Vierleiterkabel in das Gehäuse (2) einzuführen und wobei die
Feldgerätelektronik (4) mit dem Zweileiterkabel oder dem Vierleiterkabel verbunden ist, so dass über das Zweileiterkabel oder das Vierleiterkabel drahtgebunden mit der Feldgeräteelektronik (4) kommuniziert werden kann.
8. Feldgerät nach zumindest einem der vorhergehenden Ansprüche, wobei die Feldgerätelektronik (4) ferner dazu eingerichtet ist, dass Parameterwerte, die zum Einstellen eines Parameters des Feldgerätes (1 ) dienen, drahtlos über die Antenne (7) mit der Feldgeräteelektronik (4) kommuniziert werden können.
9. Kabelverschraubung (5), insbesondere PG-Kabelverschraubung, für ein Feldgerät der Automatisierungstechnik, zumindest aufweisend eine Antenne
(7) zum Senden bzw. Empfangen von elektromagnetischen Wellen mit zumindest einer bestimmten Wellenlänge, wobei die Antenne (7) in die Kabelverschraubung (5) derartig eingebracht ist, dass die Antenne (7) ein Kabel (6), welches in die Kabelverschraubung (5) einführbar bzw.
durchführbar ist, zumindest teilweise umgibt und wobei die Antenne (7) ferner einen Koaxialleiteranschluss (1 1 ) zum elektrischen Kontaktieren der Antenne (7) aufweist.
10. Kabelverschraubung nach dem vorhergehenden Anspruch, wobei der Koaxialleiteranschluss (1 1 ) in Form einer Lötfläche ausgebildet ist, so dass die Antenne (7) durch Anlöten des Koaxialleiteranschlusses (1 1 ), bspw. an eine Feldgeräteelektronik, elektrisch kontaktierbar ist, nachdem die
Kabelverschraubung (5), bspw. an einem Gehäuse eines Feldgerätes, angebracht wurde.
1 1 . Kabelverschraubung nach Anspruch 9, wobei der Koaxialleiteranschluss (1 1 ) in Form eines Steckers ausgebildet ist, so dass die Antenne (7) durch Stecken des Koaxialleiteranschlusses (1 1 ), bspw. an eine entsprechende Buchse einer Feldgeräteelektronik (4), elektrisch kontaktierbar ist, nachdem die Kabelverschraubung (5), bspw. an einem Gehäuse eines Feldgerätes, angebracht wurde.
PCT/EP2018/059110 2017-05-16 2018-04-10 Feldgerät der automatisierungstechnik WO2018210490A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880025512.XA CN110574229B (zh) 2017-05-16 2018-04-10 自动化现场设备
US16/614,610 US11011823B2 (en) 2017-05-16 2018-04-10 Automation field device
EP18717032.9A EP3625848A1 (de) 2017-05-16 2018-04-10 Feldgerät der automatisierungstechnik

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017110597.2 2017-05-16
DE102017110597.2A DE102017110597A1 (de) 2017-05-16 2017-05-16 Feldgerät der Automatisierungstechnik

Publications (1)

Publication Number Publication Date
WO2018210490A1 true WO2018210490A1 (de) 2018-11-22

Family

ID=61952717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/059110 WO2018210490A1 (de) 2017-05-16 2018-04-10 Feldgerät der automatisierungstechnik

Country Status (5)

Country Link
US (1) US11011823B2 (de)
EP (1) EP3625848A1 (de)
CN (1) CN110574229B (de)
DE (1) DE102017110597A1 (de)
WO (1) WO2018210490A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3992587A1 (de) * 2020-10-30 2022-05-04 Yokogawa Electric Corporation Feldvorrichtungsgehäuse und feldvorrichtung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018105903A1 (de) * 2018-03-14 2019-09-19 Vega Grieshaber Kg Feldgerät mit einem Metallgehäuse, einer durch eine Kabeldurchführung geführten Anschlussleitung und einem Funkmodul mit einer Antenne
DE102019124704A1 (de) 2019-09-13 2021-03-18 Endress+Hauser SE+Co. KG Feldgerät der Automatisierungstechnik
EP3910298B1 (de) * 2020-05-15 2022-05-04 VEGA Grieshaber KG Abnehmbares anzeige- und bedienmodul für ein feldgerät
DE102022124256A1 (de) 2022-09-21 2024-03-21 Endress+Hauser SE+Co. KG System der Automatisierungstechnik

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449088A1 (de) * 1990-03-26 1991-10-02 ABB CEAG Licht- und Stromversorgungstechnik GmbH Kabeldurchführung
US20100026515A1 (en) * 2008-07-29 2010-02-04 Mark Lazar Utility Metering System With Compact And Robust Antenna For Subsurface Installation
US20120126949A1 (en) * 2006-10-31 2012-05-24 Corning Incorporated Radio Frequency Identification (RFID) Connected Tag Communications Protocol And Related Systems And Methods
CN103457023A (zh) * 2013-09-06 2013-12-18 南京理工大学 Uhf频段紧凑型共形pifa阵列天线
DE102014118391A1 (de) 2014-12-11 2016-06-16 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Übertragung von Signalen aus einem Metall-Gehäuse

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2079306B1 (es) * 1993-10-21 1998-02-01 Cobra Instalaciones Y Servicio Sistema de comunicacion para la transmision-recepcion de informacion a traves de la red de distribucion electrica de media tension, por medio de acoplamiento iductivo.
DE69906958T2 (de) * 1999-07-13 2003-12-04 Nec Tokin Corp Antenne mit einem Wendelantennenelement entlang einem zylindrischen flexiblen Substrat
US8538560B2 (en) * 2004-04-29 2013-09-17 Rosemount Inc. Wireless power and communication unit for process field devices
US7453393B2 (en) * 2005-01-18 2008-11-18 Siemens Milltronics Process Instruments Inc. Coupler with waveguide transition for an antenna in a radar-based level measurement system
DE102006030965A1 (de) * 2006-07-03 2008-01-10 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Ermittlung und/oder Überwachung des Füllstandes eines Mediums
CN201160115Y (zh) * 2007-12-25 2008-12-03 乐清市荣科电气有限公司 一种隐藏式天线
US8929948B2 (en) * 2008-06-17 2015-01-06 Rosemount Inc. Wireless communication adapter for field devices
CN101726335B (zh) * 2009-12-08 2011-05-11 太原理工大学 一种水流量远程监测装置
DE102010040866A1 (de) * 2010-09-16 2012-03-22 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung und/oder Überwachung einer chemischen oder physikalischen Prozessgröße in der Automatisierungstechnik
DE102010040865A1 (de) * 2010-09-16 2012-03-22 Endress + Hauser Gmbh + Co. Kg System mit zumindest einer Energie-Sendeantenne und zumindest einem Feldgerät
DE102011081517A1 (de) * 2011-08-24 2013-02-28 Endress + Hauser Gmbh + Co. Kg Feldgerät für die Automatisierungstechnik
DE102011087588A1 (de) * 2011-12-01 2013-06-06 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Feldgerät für die Automatisierungstechnik
CN104365113A (zh) * 2012-02-01 2015-02-18 康宁股份有限公司 射频标识(rfid)连接的标签通信协议及相关系统和方法
US9518852B2 (en) * 2012-09-27 2016-12-13 Rosemount Inc. Hybrid power module with fault detection
DE102012109539A1 (de) * 2012-10-08 2014-06-12 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Übertragung von Signalen aus einem Metallgehäuse
CN203258379U (zh) * 2013-05-24 2013-10-30 烟台东方英达康自动化技术有限公司 燃气阀井监测告警装置
CN103682556B (zh) * 2013-11-13 2015-12-30 南京航空航天大学 一种机载遥控天线安装装置
US9810568B2 (en) * 2014-10-13 2017-11-07 Honeywell International Inc. Use of resilient seals for high temperature and/or high pressure sealing in a guided wave radar level measurement device
KR20170008400A (ko) * 2015-07-14 2017-01-24 주식회사 유피오 배터리 내장 또는 외부 전원 연결이 가능한 방폭형 데이터 트랜스미터 함체
US9722364B1 (en) * 2016-12-24 2017-08-01 Grand-Tek Technology Co., Ltd. Outdoor external lightning arrestor
CN110692286B (zh) * 2017-06-09 2022-02-11 昕诺飞控股有限公司 部件套件、模块化壳体、街杆和安装方法
DE102018129437B3 (de) * 2018-11-22 2020-04-23 Krohne Messtechnik Gmbh Transmitter und Feldgerät

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449088A1 (de) * 1990-03-26 1991-10-02 ABB CEAG Licht- und Stromversorgungstechnik GmbH Kabeldurchführung
US20120126949A1 (en) * 2006-10-31 2012-05-24 Corning Incorporated Radio Frequency Identification (RFID) Connected Tag Communications Protocol And Related Systems And Methods
US20100026515A1 (en) * 2008-07-29 2010-02-04 Mark Lazar Utility Metering System With Compact And Robust Antenna For Subsurface Installation
CN103457023A (zh) * 2013-09-06 2013-12-18 南京理工大学 Uhf频段紧凑型共形pifa阵列天线
DE102014118391A1 (de) 2014-12-11 2016-06-16 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Übertragung von Signalen aus einem Metall-Gehäuse

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3992587A1 (de) * 2020-10-30 2022-05-04 Yokogawa Electric Corporation Feldvorrichtungsgehäuse und feldvorrichtung
US11867543B2 (en) 2020-10-30 2024-01-09 Yokogawa Electric Corporation Field device case and field device

Also Published As

Publication number Publication date
US11011823B2 (en) 2021-05-18
US20200185812A1 (en) 2020-06-11
CN110574229B (zh) 2021-06-08
EP3625848A1 (de) 2020-03-25
DE102017110597A1 (de) 2018-11-22
CN110574229A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2018210490A1 (de) Feldgerät der automatisierungstechnik
EP3231035B1 (de) Vorrichtung zur übertragung von signalen aus einem metallgehäuse
DE102013113258A1 (de) Sensor und Messanordnung
EP2984530B1 (de) Messumformerspeisegerät mit abschaltbarer funkschnittstelle
DE102006055897A1 (de) Anschlussbox
DE102013111714A1 (de) Verfahren zur Funktionseinstellung einer Messstelle und Messstelle
EP2407776A1 (de) Sensor zur Flüssigkeits- oder / und Gasanalyse
DE102009055247A1 (de) Anordnung mit einer übergeordneten Steuereinheit und zumindest einem mit der Steuereinheit verbindbaren intelligenten Feldgerät
DE102010040866A1 (de) Feldgerät zur Bestimmung und/oder Überwachung einer chemischen oder physikalischen Prozessgröße in der Automatisierungstechnik
EP3649631B1 (de) Feldgeräteadapter zur drahtlosen datenübertragung
DE102017123821A1 (de) Anzeige- und/oder Bedienmodul
WO2018114185A1 (de) Feldgerät mit antenne
DE102016105362A1 (de) Gehäusedeckel für ein Feldgerät der Automatisierungstechnik zum drahtlosen Übermitteln von Informationen
DE102019217410A1 (de) Konfiguration einer Hardwarekomponente zur industriellen Steuerung eines Feldgeräts
WO2017202675A1 (de) Funkadapter für ein feldgerät mit einer antenne für zwei kommunikationsstandards
WO2018153790A1 (de) Frontadapter zum verbinden mit einer steuerungseinrichtung und automatisierungssystem
WO2021047885A1 (de) Feldgerät der automatisierungstechnik
DE102010043031A1 (de) Funk-Feldgerät
EP3232218B1 (de) Inline kalibriermodul, programm-gesteuerte einrichtung und kalibrier- und mess-system
WO2019175051A1 (de) Feldgerät mit einem metallgehäuse, einer durch eine kabeldurchführung geführten anschlussleitung und einem funkmodul mit einer antenne
DE10032866A1 (de) System, insbesondere Automatisierungssystem, mit software-implementierter Steuerung und Basisstation hierzu
DE102017121036A1 (de) Feldgerät mit drahtloser Sende-/Empfangseinheit
DE102022124256A1 (de) System der Automatisierungstechnik
EP3864477B1 (de) Feldgeräteadapter zur drahtlosen datenübertragung
WO2023285191A1 (de) Sensorsystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18717032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018717032

Country of ref document: EP

Effective date: 20191216