EP3231035B1 - Vorrichtung zur übertragung von signalen aus einem metallgehäuse - Google Patents

Vorrichtung zur übertragung von signalen aus einem metallgehäuse Download PDF

Info

Publication number
EP3231035B1
EP3231035B1 EP15791280.9A EP15791280A EP3231035B1 EP 3231035 B1 EP3231035 B1 EP 3231035B1 EP 15791280 A EP15791280 A EP 15791280A EP 3231035 B1 EP3231035 B1 EP 3231035B1
Authority
EP
European Patent Office
Prior art keywords
housing
secondary antenna
antenna
electromagnetic waves
designed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15791280.9A
Other languages
English (en)
French (fr)
Other versions
EP3231035A1 (de
Inventor
Thomas Blödt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Publication of EP3231035A1 publication Critical patent/EP3231035A1/de
Application granted granted Critical
Publication of EP3231035B1 publication Critical patent/EP3231035B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2233Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in consumption-meter devices, e.g. electricity, gas or water meters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/225Supports; Mounting means by structural association with other equipment or articles used in level-measurement devices, e.g. for level gauge measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • H01Q9/36Vertical arrangement of element with top loading
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1207Supports; Mounting means for fastening a rigid aerial element
    • H01Q1/1214Supports; Mounting means for fastening a rigid aerial element through a wall

Definitions

  • the invention relates to a device according to the preamble in claim 1.
  • field devices are often used that are used to determine, optimize and / or influence process variables.
  • Sensors such as level measuring devices, flow measuring devices, pressure and temperature measuring devices, conductivity measuring devices, etc., which detect the corresponding process variables level, flow rate, pressure, temperature or conductivity, are used to record process variables.
  • Actuators such as valves or pumps, via which the flow of a liquid in a pipe section or the level in a container can be changed, are used to influence process variables.
  • field devices In principle, all devices that are used close to the process and that supply or process process-relevant information are referred to as field devices.
  • field devices are also understood to mean remote I / Os (electrical interfaces), radio adapters or, in general, devices that are arranged on the field level.
  • I / Os electrical interfaces
  • radio adapters or, in general, devices that are arranged on the field level.
  • a large number of such field devices are manufactured and sold by Endress + Hauser.
  • RFID systems are used, for example, to identify field devices.
  • An RFID system consists of a transponder, which is located in a housing and contains an identifying code, and a reader for reading out this identifier.
  • An NFC system also enables an opposite information path and, for example, the transmission of one or more measured values from one or an interconnection of several field devices.
  • the disadvantage of RFID and NFC transponders is that the conductive housing of the field devices is essentially not permeable to electromagnetic waves in the area required for RFID.
  • U.S. Patent 5,453,755 describes a flat antenna system for transmitting and receiving RF signals, which consists of a large number of individual antennas.
  • the individual antennas are designed to be circular in order to transmit the signals in a circularly polarized manner.
  • US publication specification US2005 / 206530 A1 describes a sensor system for measuring electrical parameters, which can transmit data wirelessly via RF from an optionally metallic housing. A repeater must be preinstalled in the housing for this.
  • a device for the transmission of RF signals from hermetically sealed housings is in the translation of the European patent DE 699 23 805 T2 disclosed. There, a metal pin is fitted into a ceramic-based, hermetically sealed housing opening for transmission.
  • the US patent US5453755 describes a closed radial waveguide from which signals are coupled out into the free space at several points by means of wire-shaped probes in order to form a circularly polarized group antenna.
  • the invention is based on the object of creating a device which can be subsequently installed and which improves the transmission of RFID or NFC signals from a metallic housing.
  • the object is achieved according to the invention by the subject matter of the invention.
  • the subject of the invention is a device according to claim 1.
  • the electromagnetic waves emitted by the primary antenna couple to the first secondary antenna inside the housing and then transmitted from the first secondary antenna to the second secondary antenna outside the housing and decoupled from the second secondary antenna.
  • the transmission from the inside of the housing to the outside of the housing is carried out by means of guided shafts, the losses of which are lower than free shafts.
  • the dielectric filling material shields the electromagnetic waves radiated from the first or second secondary antenna, thereby reducing the losses. Furthermore, the filling material ensures a tightness of the housing, for example as a design with glass in a pressure-resistant field device.
  • first and second secondary antennas are held by the filler material within the cable gland, no holding means are required for the first and second secondary antennas.
  • the antenna base if the reflection point is designed as a common, plate-shaped antenna base, defines a first plane, a wall of the housing having the housing opening defining a second plane, and the first plane and the second plane being identical.
  • the distributions of the electromagnetic fields of the first and second secondary antennas only interfere with one another to a minimal extent.
  • the first and / or second secondary antenna have a length that corresponds to an integral multiple of a quarter of at least one specific wavelength. This leads to a low-loss transmission from the first to the second secondary antenna and vice versa.
  • the first and / or second secondary antenna have a length that corresponds to a quarter of at least one specific wavelength. This leads to a low-loss transmission from the first to the second secondary antenna and vice versa.
  • the first and second secondary antenna electromagnetic waves of several wavelengths are received and transmitted, which can also lie in different frequency bands. For this, the wavelengths must have an even ratio to one another.
  • the first and / or second secondary antenna are / is each rounded at an open end opposite the reflection point. In this way it is possible to generate the wavelengths of a frequency band that fit into the first and / or second secondary antenna and thereby achieve broadband capability.
  • Fig. 1 shows a longitudinal section of a device 1 for the transmission of electromagnetic waves from a metallic housing (not shown).
  • a wall 13 of the housing has a housing opening 2 on, in which a cable gland 10 is arranged.
  • the screwed cable gland 10 is designed in the shape of a hollow cylinder and is largely arranged outside the housing.
  • a rubber seal 16 seals the cable screw connection 10 against the wall 13 in a waterproof manner.
  • a plate-shaped antenna base 12, which has a first and a second side surface, is arranged within the cable gland 10.
  • a first side surface facing outside of the housing defines a first plane 14.
  • An outer surface of the housing defines a second plane 15.
  • the first and second planes 14, 15 can be identical.
  • the filling material 11 comprises a dielectric material such as plastic, glass or ceramic.
  • a first rod-shaped secondary antenna 7 (diameter approx. 1.5 mm) is arranged on the first side surface of the antenna base 12 and points in the direction of the interior of the housing.
  • a second rod-shaped secondary antenna 8 is arranged on the second side surface of the antenna base 12 and points in the direction of the exterior of the housing.
  • the first and second secondary antennas 7, 8 have the antenna base 12 as a common antenna base 12.
  • the antenna base 12 functions as a reflection point between the first and second secondary antennas 7, 8, so that an impedance jump occurs between the first and second secondary antennas 7, 8.
  • the lengths of the first and second secondary antennas 7, 8 are chosen so that the lengths correspond to a multiple of a quarter of a wavelength of the electromagnetic waves to be transmitted (eg 2.44 GHz with Bluetooth 4.0 low energy).
  • the length of the first and second secondary antenna 7, 8 can, however, be exactly a quarter of the electromagnetic wavelength by means of which the signals are to be transmitted from the metallic housing. This is for Electromagnetic waves with a wavelength in a range of 2.4 GHz (ANT, ANT +, Bluetooth, WLAN) are particularly favorable.
  • the common antenna base 12 of the first and second antennas 7, 8 achieves a pronounced narrow-band nature of the electromagnetic wave to be transmitted. This can prevent malfunctions.
  • a good impedance matching of the first secondary antenna 7 to the second secondary antenna 8 is achieved by using a thick bolt as the first or second secondary antenna 7, 8.
  • the open ends of the first or second secondary antenna are rounded off, the result is an enlarged surface and thus an improved separation of the electric field.
  • Fig. 2 shows a schematic longitudinal section of a first or second secondary antenna 7 at a rounded open end. If the open ends of the first and second secondary antenna are rounded off, different lengths result for the distance between the reflection point and the open ends of the first and second secondary antenna. This means that not only electromagnetic waves of a certain wavelength fit into the respective secondary antenna, but also electromagnetic waves with wavelengths that define a flowing area of a frequency band. This results in a broadband nature of the electromagnetic waves.
  • Fig. 3 shows a side view of a cable gland 10, which is designed as a PG cable gland, once in the exploded view and once in the assembled view.
  • the screwed cable connection 10 has prongs 17 at an outer end which, together with a fastening nut 18, lead to a secure hold of a cable to be guided in the screwed cable connection 10 (“strain relief”).
  • a second rubber seal 19 leads to a watertight cable screw connection 10.
  • a cable bushing 10 made of plastic is attached to a housing made of metal, this represents a transmission option for waves if no cable is screwed into such a cable bushing 10.
  • the housings of field measuring devices usually have at least one housing opening in order to mount PG cable bushings.
  • Several openings in the housing offer the advantage that there are several options for introducing the cables into the field device. This is particularly important for installations in the USA, since the cabling usually has to be laid in a metal pipe (armored pipe) and these are very inflexible. It is also possible to cascade field measuring devices. This reduces the amount of cabling required.
  • Suitable bus systems are provided in the devices, for example, in order to transfer measurement data across other devices. For this purpose, the devices have connections for at least two cables.
  • One of the unused cable bushings is advantageously used for the transmission of electromagnetic waves. This has the advantage that the housing openings are already present in the existing housings and the housings do not have to be changed. Unused cable bushings can be sealed watertight with a so-called blind plug.
  • Fig. 4 shows a side view of a metallic housing of a field device with three different types of dummy plugs 20 made of plastic.
  • the dummy plugs 20 are each mounted on a metallic housing of the device or product series with the trade name Micropilot of the applicant.
  • the housing opening for electromagnetic waves is a circular waveguide.
  • the lower cutoff frequency of the electromagnetic waves transmitted through the housing opening is included approx. 79 GHz, ie lower frequencies cannot pass through the housing opening.
  • Usual frequencies for close-range communication are usually 2.4 GHz (WLAN, Bluetooth, ANT) or around 433 MHz, 5.6 GHz ... Frequencies that are significantly lower (e.g. NFC / RFID at 13.6 MHz) cannot pass through the housing opening.
  • a cable increases the lower transmission frequency by a factor of 2 ... 4 (significantly more with shielded cables).
  • Electromagnetic waves with frequencies above the lower transmission frequency can pass through the housing opening, but are generally strongly damped and only permeable from a frequency approx. 6 ... 10 times higher (with a housing opening with a diameter of 19 mm from 600 GHz) .
  • Fig. 5 shows a schematic longitudinal section of a housing 9 with exiting and entering field lines 21 of an electric field.
  • a field distribution of the electric field lines 21 explains the effect of how the signals can be transmitted to a side of the housing 9 opposite the housing opening 2 by means of the electromagnetic waves.
  • Fig. 6 shows a sketched longitudinal section of a first and second secondary antenna 7, 8 with a reflection point 9 in between.
  • the first and second secondary antenna 7, 8 only transmit electromagnetic waves which form a standing wave in the first and second secondary antenna 7, 8. This means that an integral multiple of a quarter of the wavelength of the electromagnetic wave to be transmitted must correspond to the lengths I1 and I2 of the first and second secondary antennas 7, 8.
  • the first and second secondary antennas 7, 8 can have different lengths I1 and I2.

Landscapes

  • Details Of Aerials (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

  • Die Erfindung bezieht sich auf eine Vorrichtung gemäß dem Oberbegriff in Anspruch 1.
  • In der Automatisierungstechnik, insbesondere in der Prozessautomatisierungstechnik, werden vielfach Feldgeräte eingesetzt, die zur Bestimmung, Optimierung und/oder Beeinflussung von Prozessvariablen dienen. Zur Erfassung von Prozessvariablen dienen Sensoren, wie beispielsweise Füllstandsmessgeräte, Durchflussmessgeräte, Druck- und Temperaturmessgeräte, Leitfähigkeitsmessgeräte, usw., welche die entsprechenden Prozessvariablen Füllstand, Durchfluss, Druck, Temperatur bzw. Leitfähigkeit erfassen. Zur Beeinflussung von Prozessvariablen dienen Aktoren, wie zum Beispiel Ventile oder Pumpen, über die der Durchfluss einer Flüssigkeit in einem Rohrleitungsabschnitt bzw. der Füllstand in einem Behälter geändert werden kann. Als Feldgeräte werden im Prinzip alle Geräte bezeichnet, die prozessnah eingesetzt werden und die prozessrelevante Informationen liefern oder verarbeiten. Im Zusammenhang mit der Erfindung werden unter Feldgeräten also auch Remote I/Os (elektrische Schnittstellen), Funkadapter bzw. allgemein Geräte verstanden, die auf der Feldebene angeordnet sind. Eine Vielzahl solcher Feldgeräte wird von der Firma Endress + Hauser hergestellt und vertrieben. RFID-Systeme werden beispielsweise verwendet, um Feldgeräte zu identifizieren.
  • Ein RFID-System besteht aus einem Transponder, der sich in einem Gehäuse befindet und einen kennzeichnenden Code enthält, sowie einem Lesegerät zum Auslesen dieser Kennung. Ein NFC-System ermöglicht zusätzlich einen entgegengesetzten Informationsweg und beispielsweise die Übertragung eines oder mehreren Messwerte eines oder einer Zusammenschaltung von mehreren Feldgeräten. Nachteilig an RFID- und NFC-Transpondern ist, dass das leitfähige Gehäuse der Feldgeräte für elektromagnetische Wellen im für RFID notwendigen Bereich im Wesentlichen nicht durchlässig ist.
  • In dem US-Patent 5,453,755 ist ein flaches Antennen-System zum Aussenden und Empfang von RF-Signalen beschrieben, das aus einer Vielzahl an Einzel-Antennen besteht. Dabei sind die Einzel-Antennen kreisförmig ausgestaltet, um die Signale zirkular polarisiert auszusenden.
  • Die US-Veröffentlichungsschrift US2005/206530 A1 beschreibt ein Sensorsystem zur Messung elektrischer Parameter, welches Daten per RF kabellos aus einem gegebenenfalls metallischen Gehäuse heraus übermitteln kann. Hierzu muss im Gehäuse ein Repeater vorinstalliert sein.
  • Eine Vorrichtung zur Übertragung von RF-Signalen aus hermetisch dichtenden Gehäusen ist in der Übersetzung der europäischen Patentschrift DE 699 23 805 T2 offenbart. Dort ist zur Übertragung ein Metallstift in eine Keramik-basierte, hermetisch dichtende Gehäuseöffnung eingepasst.
  • Auch die Veröffentlichungsschrift US 2014/1016665 A1 beschreibt eine Vorrichtung zur RF-Übertragung durch Metallgehäuse hindurch. In diesem Fall wird hierzu ein Wellenleiter durch das Gehäuse hindurch geführt, wobei beidseitig des Gehäuses Antennen an den Wellenleiter angeschlossen sind.
  • Das US-Patent US5453755 beschreibt einen geschlossenen radialen Wellenleiter, aus dem an mehreren Stellen Signale mittels drahtförmiger Sonden in den Freiraum ausgekoppelt werden, um eine zirkular polarisierte Gruppenantenne zu bilden.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zu schaffen welche nachträglich installierbar ist und die Übertragung von RFID- oder NFC-Signalen aus einem metallischen Gehäuse verbessert.
  • Die Aufgabe wird erfindungsgemäß durch den Gegenstand der Erfindung gelöst. Gegenstand der Erfindung ist eine Vorrichtung gemäß Anspruch 1. Die von der Primärantenne ausgesendeten elektromagnetischen Wellen koppeln an die erste Sekundärantenne innerhalb des Gehäuses und anschließend von der ersten Sekundärantenne zu der zweiten Sekundärantenne außerhalb des Gehäuses übertragen und von der zweiten Sekundärantenne ausgekoppelt. Die Übertragung vom Gehäuseinneren nach dem Gehäuseäußeren erfolgt mittels geführten Wellen, deren Verluste geringer sind als freie Wellen.
  • Das dielektrische Füllmaterial schirmt die von der ersten oder zweiten Sekundärantenne ausgestrahlten elektromagnetischen Wellen ab, wodurch die Verluste verringert werden. Ferner sorgt das Füllmaterial für eine Dichtigkeit des Gehäuses, beispielsweise als Ausführung mit Glas bei einem druckfesten Feldgerät.
  • Da die erste und zweite Sekundärantenne innerhalb der Kabelverschraubung von dem Füllmaterial gehalten werden, sind keine Haltemittel für die erste und zweite Sekundärantenne nötig.
  • Gemäß einer vorteilhaften Variante definiert der Antennenfuß, sofern die Reflexionsstelle als gemeinsamer, plattenförmiger Antennenfuß ausgestaltet ist, eine erste Ebene, wobei eine die Gehäuseöffnung aufweisende Wandung des Gehäuses eine zweite Ebene definiert, und wobei die erste Ebene und die zweite Ebene identisch sind. Auf diese stören sich die Verteilungen der elektromagnetischen Felder der ersten und zweiten Sekundärantenne lediglich minimal.
  • Gemäß einer vorteilhaften Ausführungsform weisen/weist die erste und/oder zweite Sekundärantenne eine Länge auf, die ein ganzzahliges Vielfaches von ein Viertel mindestens einer bestimmten Wellenlänge entspricht. Dies führt zu einer verlustarmen Übertragung von der ersten zur zweiten Sekundärantenne und umgekehrt.
  • Gemäß einer vorteilhaften Ausgestaltung weisen/weist die erste und/oder zweite Sekundärantenne eine Länge auf, die ein Viertel mindestens einer bestimmten Wellenlänge entspricht. Dies führt zu einer verlustarmen Übertragung von der ersten zur zweiten Sekundärantenne und umgekehrt. Auf diese Weise können von der ersten bzw. zweiten Sekundärantenne elektromagnetische Wellen mehrerer Wellenlängen empfangen und ausgesendet werden, die auch in verschiedenen Frequenzbändern liegen können. Hierfür müssen die Wellenlängen in einem geradzahligen Verhältnis zueinander stehen.
  • Gemäß einer vorteilhaften Ausgestaltung sind/ist die erste und/oder zweite Sekundärantenne jeweils an einem der Reflexionsstelle gegenüberliegendes offenes Ende abgerundet. Auf diese Weise ist es möglich die Wellenlängen eines Frequenzbandes, die in die erste und/oder zweite Sekundärantenne passen zu erzeugen und dadurch eine Breitbandigkeit zu erreichen.
  • Die Erfindung wird anhand der nachfolgenden Zeichnungen näher erläutert. Es zeigt:
    • Fig. 1: zeigt einen Längsschnitt einer Vorrichtung zur Übertragung von Signalen aus einem metallischen Gehäuse,
    • Fig. 2: einen schematischen Längsschnitt einer ersten oder zweiten Sekundärantenne an einem abgerundeten offenen Ende,
    • Fig. 3: eine Seitenansicht einer PG-Kabelverschraubung in der Explosionsdarstellung und in der zusammengesetzten Darstellung,
    • Fig. 4: eine Seitenansicht eines Gehäuses eines Feldgeräts mit drei verschiedenen Arten von Blindstopfen, und
    • Fig. 5: einen schematischen Längsschnitt eines Gehäuses mit aus- und eintretenden Feldlinien eines elektrischen Feldes.
  • Fig. 1 zeigt einen Längsschnitt einer Vorrichtung 1 zur Übertragung von elektromagnetischen Wellen aus einem metallischen Gehäuse (nicht dargestellt). Eine Wandung 13 des Gehäuses weist eine Gehäuseöffnung 2 auf, in der eine Kabelverschraubung 10 angeordnet ist. Die Kabelverschraubung 10 ist hohlzylinderförmig ausgestaltet und ist zu einem größeren Teil außerhalb des Gehäuses angeordnet. Eine Gummidichtung 16 dichtet die Kabelverschraubung 10 gegen die Wandung 13 wasserfest ab. Innerhalb der Kabelverschraubung 10 ist ein plattenförmiger Antennenfuß 12 angeordnet, der eine erste und zweite Seitenfläche aufweist. Eine erste Seitenfläche, die nach außerhalb des Gehäuses weist, definiert eine erste Ebene 14. Eine Außenfläche des Gehäuses definiert eine zweite Ebene 15. Die erste und zweite Ebene 14, 15 können identisch sein. Dies wird mittels eines Füllmaterials 11 erreicht, welches einen Innenraum der Kabelverschraubung 10 füllt und den Antennenfuß 12 in einer Position hält, in dem die erste und zweite Ebene 14, 15 identisch sind. Ferner verschließt das Füllmaterial 11 die Gehäuseöffnung 2 wasserdicht. Das Füllmaterial 11 umfasst ein dielektrisches Material, wie beispielsweise Kunststoff, Glas oder Keramik.
  • Eine erste stabförmige Sekundärantenne 7 (Durchmesser ca. 1,5 mm) ist auf der ersten Seitenfläche des Antennenfußes 12 angeordnet und weist in Richtung des Gehäuseinnerern. Eine zweite stabförmige Sekundärantenne 8 ist auf der zweiten Seitenfläche des Antennenfußes 12 angeordnet und weist in Richtung des Gehäuseäußeren. Auf diese Weise, weisen die erste und zweite Sekundärantenne 7, 8 den Antennenfuß 12 als einen gemeinsamen Antennenfuß 12 auf. Der Antennenfuß 12 fungiert als eine Reflexionsstelle zwischen der ersten und zweiten Sekundärantenne 7, 8, so dass ein Impedanzsprung zwischen der ersten und zweiten Sekundärantenne 7, 8 entsteht.
  • Die Längen der ersten und zweiten Sekundärantenne 7, 8 sind dermaßen gewählt, dass die Längen einen Vielfachen von einem Viertel einer Wellenlänge der zu übertragenen elektromagnetischen Wellen entspricht (z.B. 2.44 GHz bei Bluetooth 4.0 low energy). Die Länge der ersten und zweiten Sekundärantenne 7, 8 können jedoch exakt ein Viertel der elektromagnetischen Wellenlänge betragen, mittels deren die Signale aus dem metallischen Gehäuse übertragen werden sollen. Dies ist für elektromagnetische Wellen der Wellenlänge in einem Bereich 2.4 GHz (ANT, ANT+, Bluetooth, WLAN) besonders günstig.
  • Durch den gemeinsamen Antennenfuß 12 der ersten und zweiten Antenne 7, 8 wird eine ausgeprägte Schmalbandigkeit der zu übertragenden elektromagnetischen Welle erreicht. Dadurch können Störungen vorgebeugt werden. Eine gute Impedanzanpassung der ersten Sekundärantenne 7 an die zweite Sekundärantenne 8 wird durch die Verwendung eines dicken Bolzens als erste bzw. zweite Sekundärantenne 7, 8 erreicht.
  • Werden die offenen Enden der ersten bzw. zweiten Sekundärantenne abgerundet, ergibt sich eine vergrößerte Oberfläche und somit eine verbesserte Ablösung des elektrischen Feldes.
  • Fig. 2 zeigt einen schematischen Längsschnitt einer ersten oder zweiten Sekundärantenne 7 an einem abgerundeten offenen Ende. Werden die offenen Enden der ersten bzw. zweiten Sekundärantenne abgerundet, ergeben sich für den Abstand zwischen der Reflexionsstelle und den offenen Enden der ersten und zweiten Sekundärantenne verschiedene Längen. Dies führt dazu, dass nicht nur elektromagnetische Wellen einer bestimmten Wellenlänge in die jeweilige Sekundärantenne passen, sondern elektromagnetische Wellen mit Wellenlängen, die einen fließenden Bereich eines Frequenzbandes definieren. Dies ergibt eine Breitbandigkeit der elektromagnetischen Wellen.
  • Fig. 3 zeigt eine Seitenansicht einer Kabelverschraubung 10, die als PG-Kabelverschraubung ausgestaltet ist, einmal in der Explosionsdarstellung und einmal in der zusammengesetzten Darstellung. Die Kabelverschraubung 10 weist an einem äußeren Ende Zinken 17 auf, die zusammen mit einer Befestigungsmutter 18 zu einem sicheren Halt eines in der Kabelverschraubung 10 zu führenden Kabels führen ("Zugentlastung"). Eine zweite Gummidichtung 19 führt zu einer wasserdichten Kabelverschraubung 10.
  • Wird eine Kabeldurchführung 10 aus Kunststoff an einem Gehäuse aus Metall angebracht, so stellt diese eine Transmissionsmöglichkeit für Wellen dar, falls in solch einer Kabeldurchführung 10 kein Kabel eingeschraubt ist. Gehäuse von Feldmessgeräten weisen üblicherweise mindestens eine Gehäuseöffnung auf, um PG-Kabeldurchführungen zu montieren. Mehrere Gehäuseöffnungen bieten den Vorteil, dass es mehrere Möglichkeiten gibt die Kabel in das Feldgerät einzuführen. Dies ist insbesondere bei Installationen in den USA wichtig, da die Verkabelung üblicherweise in einem Metallrohr (Panzerrohr) verlegt werden muss und diese sehr unflexibel sind. Weiterhin ist hiermit eine Kaskadierung von Feldmessgeräten möglich. Dies verringert den notwendigen Verkabelungsaufwand. In den Geräten sind beispielsweise geeignete Bussysteme vorgesehen, um Messdaten über andere Geräte hinweg zu übertragen. Hierzu weisen die Geräte Anschlüsse für mindestens zwei Kabel auf.
  • Vorteilhafterweise wird eine der ungenutzten Kabeldurchführungen zur Transmission von elektromagnetischen Wellen verwendet. Dies hat den Vorteil, dass die Gehäuseöffnungen in den bestehenden Gehäusen bereits vorhanden sind und die Gehäuse nicht verändert werden müssen. Nicht genutzte Kabeldurchführungen können mit einem sog. Blindstopfen wasserfest geschlossen werden.
  • Fig. 4 zeigt eine Seitenansicht eines metallischen Gehäuses eines Feldgeräts mit drei verschiedenen Arten von Blindstopfen 20 aus Kunststoff dargestellt. Die Blindstopfen 20 sind jeweils auf einem metallischen Gehäuse der Geräte- bzw. Produktserie mit dem Handelsname Micropilot des Anmelders montiert.
  • Wird ein Blindstopfen 20 aus dielektrischem Kunststoff in eine Gehäuseöffnung eines metallischen Gehäuses angeordnet, so stellt die Gehäuseöffnung für elektromagnetische Wellen einen Rundhohlleiter dar. Bei einem Blindstopfens 20 mit einem Durchmesser von 19 mm liegt die untere Cutoff-Frequenz der durch die Gehäuseöffnung übertragenen elektromagnetischen Wellen bei ca. 79 GHz, d.h. niedrigere Frequenzen können die Gehäuseöffnung nicht passieren. Übliche Frequenzen für Nah-Kommunikation liegen üblicherweise bei 2.4 GHz (WLAN, Bluetooth, ANT) oder in der Größenordnung 433 MHz, 5.6 GHz... Frequenzen, die deutlich drunter liegen (z.B. NFC / RFID bei 13.6 MHz), können die Gehäuseöffnung nicht passieren. Durch ein Kabel erhöht sich die untere Transmissionsfrequenz um einen Faktor 2...4 (bei geschirmten Kabeln deutlich mehr). Für elektromagnetische Wellen mit Frequenzen oberhalb der unteren Transmissionsfrequenz ist ein Durchlass durch die Gehäuseöffnung möglich, jedoch im Allgemeinen stark gedämpft und erst ab einer ca. 6...10 Mal höheren Frequenz (bei einer Gehäuseöffnung mit 19 mm Durchmesser ab 600 GHz) gut durchlässig.
  • Fig. 5 zeigt einen schematischen Längsschnitt eines Gehäuses 9 mit aus- und eintretenden Feldlinien 21 eines elektrischen Feldes. Eine Feldverteilung der elektrischen Feldlinien 21 erklärt den Effekt, wie die Signale mittels der elektromagnetischen Wellen an eine der Gehäuseöffnung 2 gegenüberliegende Seite des Gehäuses 9 übertragen werden können.
  • Fig. 6 zeigt einen skizzierten Längsschnitt einer ersten und zweiten Sekundärantenne 7, 8 mit einer dazwischenliegenden Reflexionsstelle 9. Durch die erste und zweite Sekundärantenne 7, 8 werden lediglich elektromagnetische Wellen übertragen, die in der ersten und zweiten Sekundärantenne 7, 8 eine stehende Welle bilden. Das heißt ein ganzzahliges Vielfaches von ein Viertel der Wellenlänge der zu übertragenden elektromagnetischen Welle muss den Länge I1 und I2 der ersten und zweiten Sekundärantenne 7, 8 entsprechen. Dabei können die erste und zweite Sekundärantenne 7, 8 unterschiedliche Längen I1 und I2 aufweisen.
  • Bezugszeichenliste
  • 1
    Vorrichtung
    2
    Gehäuseöffnung
    3
    Gehäuse
    7
    Erste Sekundärantenne
    8
    Zweite Sekundärantenne
    9
    Reflexionsstelle
    10
    Kabelverschraubung
    11
    Dielektrisches Füllmaterial
    12
    Antennenfuß
    13
    Wandung des Gehäuses
    14
    Erste Ebene
    15
    Zweite Ebene
    16
    Gummidichtung
    17
    Zinken
    18
    Befestigungsmutter
    19
    Zweite Gummidichtung
    20
    Blindstopfen
    21
    Feldlinien
    22
    Wellenlänge

Claims (4)

  1. Vorrichtung zur Übertragung von Signalen aus mindestens einer Gehäuseöffnung (2) eines zumindest teilweise metallischen Gehäuses (3) mit Hilfe elektromagnetischer Wellen (4) mindestens einer bestimmten Wellenlänge, umfassend:
    - Eine in der Gehäuseöffnung (2) angeordnete Kabelverschraubung (10), mittels welcher über eine Befestigungsmutter (18) ein zu führendes Kabel fixierbar ist,
    - eine in dem Gehäuse (3) angeordnete Sende-/Empfangseinheit (5) zum Erzeugen und Empfangen der elektromagnetischen Wellen (4),
    - mindestens eine in dem Gehäuse (3) angeordnete Primärantenne zum Auskoppeln der erzeugten elektromagnetischen Wellen (4) der Sende-/Empfangseinheit (5) und zum Einkoppeln und Übertragen von empfangenen elektromagnetischen Wellen (4) an die Sende-/Empfangseinheit (5),
    - eine erste Sekundärantenne (8) zum Empfangen der von der Primärantenne ausgekoppelten elektromagnetischen Wellen, wobei die erste Sekundärantenne derart innerhalb des Gehäuses (3) in der Kabelverschraubung (10) angeordnet ist, dass die erste Sekundärantenne (8) in Richtung des Gehäuseinneren weist,
    - eine zweite Sekundärantenne (7) zum Empfangen der von außerhalb des Gehäuses (3) übertragenen elektromagnetischen Wellen (4), wobei die zweite Sekundärantenne (7) derart außerhalb des Gehäuses (3) in der Kabelverschraubung (10) angeordnet ist, dass die zweite Sekundärantenne (7) in Richtung des Gehäuseäußeren weist,
    wobei zwischen der ersten und zweiten Sekundärantenne (7, 8) eine Reflexionsstelle (9) angeordnet ist, so dass zwischen der ersten und zweiten Sekundärantenne (7, 8) ein Impedanzsprung zustande kommt, wobei die Reflexionsstelle (9) entweder als eine sprunghafte Änderung vom Durchmesser der ersten zum Durchmesser der zweiten Sekundärantenne (7, 8) oder als ein gemeinsamer, plattenförmiger Antennenfuß (12) der ersten und zweiten Sekundärantenne (7, 8) ausgestaltet ist, und wobei die Kabelverschraubung (10) derart zumindest teilweise mit einem dielektrischen Füllmaterial (11) gefüllt ist, dass die erste und zweite Sekundärantenne (7, 8) innerhalb der Kabelverschraubung (10) von dem Füllmaterial (11) gehalten werden.
  2. Vorrichtung nach Anspruch 1, wobei für den Fall, dass die Reflexionsstelle (9) als gemeinsamer, plattenförmiger Antennenfuß (12) ausgestaltet ist, der Antennenfuß (12) eine erste Ebene definiert, wobei eine die Gehäuseöffnung (2) aufweisende Wandung (13) des Gehäuses eine zweite Ebene definiert, und wobei die erste Ebene und die zweite Ebene identisch sind.
  3. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche, wobei die erste und/oder zweite Sekundärantenne (7, 8) eine Länge aufweist/aufweisen, die ein ganzzahliges Vielfaches von ein Viertel der mindestens einen bestimmten Wellenlänge entspricht.
  4. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche, wobei die erste und/oder zweite Sekundärantenne (7, 8) jeweils an einem der Reflexionsstelle (9) gegenüberliegenden offenen Ende abgerundet sind/ist.
EP15791280.9A 2014-12-11 2015-11-03 Vorrichtung zur übertragung von signalen aus einem metallgehäuse Active EP3231035B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014118391.6A DE102014118391A1 (de) 2014-12-11 2014-12-11 Vorrichtung zur Übertragung von Signalen aus einem Metall-Gehäuse
PCT/EP2015/075542 WO2016091481A1 (de) 2014-12-11 2015-11-03 Vorrichtung zur übertragung von signalen aus einem metall-gehäuse

Publications (2)

Publication Number Publication Date
EP3231035A1 EP3231035A1 (de) 2017-10-18
EP3231035B1 true EP3231035B1 (de) 2021-08-11

Family

ID=54478016

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15791280.9A Active EP3231035B1 (de) 2014-12-11 2015-11-03 Vorrichtung zur übertragung von signalen aus einem metallgehäuse

Country Status (5)

Country Link
US (1) US10236555B2 (de)
EP (1) EP3231035B1 (de)
CN (1) CN107004941B (de)
DE (1) DE102014118391A1 (de)
WO (1) WO2016091481A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017345352B2 (en) * 2016-10-18 2021-04-01 CAPE Industries, LLC Cable gland and method and apparatus for earthing a cable
US11011896B2 (en) 2016-10-18 2021-05-18 CAPE Industries, LLC Cable gland for grounding a cable
US11600976B2 (en) 2016-10-18 2023-03-07 CAPE Industries, LLC Cable gland for grounding a cable and method of use
DE102016120678A1 (de) * 2016-10-28 2018-05-03 Endress+Hauser SE+Co. KG Verfahren zum Herstellen eines Druckmittlersystems
DE102017110597A1 (de) 2017-05-16 2018-11-22 Endress+Hauser SE+Co. KG Feldgerät der Automatisierungstechnik
DE102017121036A1 (de) 2017-09-12 2019-03-14 Endress+Hauser SE+Co. KG Feldgerät mit drahtloser Sende-/Empfangseinheit
DE102018105903A1 (de) * 2018-03-14 2019-09-19 Vega Grieshaber Kg Feldgerät mit einem Metallgehäuse, einer durch eine Kabeldurchführung geführten Anschlussleitung und einem Funkmodul mit einer Antenne
DE102018122423A1 (de) * 2018-09-13 2020-03-19 Endress+Hauser SE+Co. KG Vorrichtung zur Übertragung von Signalen aus einem zumindest teilweise metallischen Gehäuse
DE102019108359A1 (de) * 2019-03-30 2020-10-01 Endress+Hauser SE+Co. KG Vorrichtung zur Übertragung von Signalen aus einem zumindest teilweise metallischen für den Einsatz in einem explosionsgefährdeten Bereich ausgebildeten Gehäuse
DE102019124704A1 (de) * 2019-09-13 2021-03-18 Endress+Hauser SE+Co. KG Feldgerät der Automatisierungstechnik
CN110761782B (zh) * 2019-11-13 2024-02-09 中国石油天然气集团有限公司 一种用于地质导向的方位随钻核磁共振测井装置
DE102022124256A1 (de) 2022-09-21 2024-03-21 Endress+Hauser SE+Co. KG System der Automatisierungstechnik

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453755A (en) * 1992-01-23 1995-09-26 Kabushiki Kaisha Yokowo Circularly-polarized-wave flat antenna
DE69923805T2 (de) * 1998-04-28 2005-07-14 Northrop Grumman Corp., Los Angeles Keramik-Metall Durchführungen für Millimeterwellen
US20050206530A1 (en) * 2004-03-18 2005-09-22 Cumming Daniel A Solar powered radio frequency device within an energy sensor system
US20140106665A1 (en) * 2012-10-11 2014-04-17 Rolls-Royce Plc Wireless signal propagation apparatus

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576578A (en) * 1967-11-30 1971-04-27 Sylvania Electric Prod Dipole antenna in which one radiating element is formed by outer conductors of two distinct transmission lines having different characteristic impedances
US5982327A (en) * 1998-01-12 1999-11-09 Motorola, Inc. Adaptive array method, device, base station and subscriber unit
DE19922606B4 (de) * 1999-05-17 2004-07-22 Vega Grieshaber Kg Anordnung aus einem Hohlleiter und einer Antenne
US6822611B1 (en) * 2003-05-08 2004-11-23 Motorola, Inc. Wideband internal antenna for communication device
US6995715B2 (en) * 2003-07-30 2006-02-07 Sony Ericsson Mobile Communications Ab Antennas integrated with acoustic guide channels and wireless terminals incorporating the same
JP2005075301A (ja) * 2003-09-03 2005-03-24 Mitsubishi Electric Corp 情報処理装置
US7482981B2 (en) * 2004-07-29 2009-01-27 Interdigital Technology Corporation Corona wind antennas and related methods
US7277058B2 (en) * 2004-12-30 2007-10-02 Motorola, Inc. Wireless communication device antenna for improved communication with a satellite
US7453393B2 (en) * 2005-01-18 2008-11-18 Siemens Milltronics Process Instruments Inc. Coupler with waveguide transition for an antenna in a radar-based level measurement system
US7481672B2 (en) * 2005-07-21 2009-01-27 Rosemount Tank Radar Ab Dielectric connector, DC-insulating through-connection and electronic system
US7479927B2 (en) * 2005-12-30 2009-01-20 Motorola, Inc. Radio frequency antenna system
US7548208B2 (en) * 2006-02-24 2009-06-16 Palm, Inc. Internal diversity antenna architecture
DE102006030965A1 (de) * 2006-07-03 2008-01-10 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Ermittlung und/oder Überwachung des Füllstandes eines Mediums
US7453406B2 (en) * 2006-12-29 2008-11-18 Motorola, Inc. Low interference internal antenna system for wireless devices
US8064960B2 (en) * 2008-12-29 2011-11-22 General Motors Llc Method of managing multiple vehicle antennas
JP2011133030A (ja) * 2009-12-24 2011-07-07 Neomax Material:Kk 電波受信機器用のねじ、その製造方法及び電波受信機器
US8937550B2 (en) * 2010-04-14 2015-01-20 Eagile, Inc. Container seal with radio frequency identification tag, and method of making same
US8800363B2 (en) * 2010-12-02 2014-08-12 Rosemount Tank Radar Ab Radar level gauge with dielectric rod connection
DE102010063167B4 (de) 2010-12-15 2022-02-24 Endress+Hauser SE+Co. KG Mit hochfrequenten Mikrowellen arbeitendes Füllstandsmessgerät
DE102011081517A1 (de) * 2011-08-24 2013-02-28 Endress + Hauser Gmbh + Co. Kg Feldgerät für die Automatisierungstechnik

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453755A (en) * 1992-01-23 1995-09-26 Kabushiki Kaisha Yokowo Circularly-polarized-wave flat antenna
DE69923805T2 (de) * 1998-04-28 2005-07-14 Northrop Grumman Corp., Los Angeles Keramik-Metall Durchführungen für Millimeterwellen
US20050206530A1 (en) * 2004-03-18 2005-09-22 Cumming Daniel A Solar powered radio frequency device within an energy sensor system
US20140106665A1 (en) * 2012-10-11 2014-04-17 Rolls-Royce Plc Wireless signal propagation apparatus

Also Published As

Publication number Publication date
DE102014118391A1 (de) 2016-06-16
CN107004941B (zh) 2019-11-22
EP3231035A1 (de) 2017-10-18
US10236555B2 (en) 2019-03-19
US20180034129A1 (en) 2018-02-01
WO2016091481A1 (de) 2016-06-16
CN107004941A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
EP3231035B1 (de) Vorrichtung zur übertragung von signalen aus einem metallgehäuse
DE102010063167A1 (de) Mit Mikrowellen arbeitendes Messgerät
DE102017110597A1 (de) Feldgerät der Automatisierungstechnik
EP2565596B1 (de) Mikrowellensendegerät mit Verguss
WO2016082958A1 (de) Vorrichtung zur übertragung von signalen aus einer gehäuseöffnung eines metallischen gehäuses
EP3511684B1 (de) Füllstandmessgerät
DE102013104699A1 (de) Vorrichtung zur Bestimmung des Füllstandes mittels einer Helixantenne
EP2904549B1 (de) Vorrichtung zur übertragung von signalen aus einem metallgehäuse
DE102012112218A1 (de) Füllstandsmessgerät
DE102020133194A1 (de) Füllstandsmessgerät
DE102018122423A1 (de) Vorrichtung zur Übertragung von Signalen aus einem zumindest teilweise metallischen Gehäuse
DE102016124981A1 (de) Feldgerät mit Antenne
EP2618425B1 (de) Antennenabdeckung
DE102011084592A1 (de) Kombination eines Radar- und Antennenkopfes
EP3948819B1 (de) Vorrichtung zur übertragung von signalen aus einem zumindest teilweise metallischen für den einsatz in einem explosionsgefährdeten bereich ausgebildeten gehäuse
EP2364908B1 (de) Bojenschleppantenne
DE102014118617A1 (de) Erweiterungsgerät für eine drahtlose Antenne
DE10026033C2 (de) Messumformer mit einem druckfest gekapselten Messumformergehäuse
DE102020108104A1 (de) Vorrichtung zur Übertragung von Signalen aus einem zumindest teilweise metallischen Gehäuse
EP3001515B1 (de) Hf-gehäuse mit koaxialer hf-steckverbindung
DE102016201978B4 (de) Antennenvorrichtung und Antennengruppenvorrichtung für Millimeterwellen
WO2022246485A1 (de) Vorrichtung zur langzeittemperaturmessung von temperaturen oberhalb von 200 °c
WO2008043119A2 (de) Saw-identifikationseinheit, sensor mit saw-element, anschlusskabel, sowie messanordnung
EP3813188A1 (de) Hohlleiteranordnung und antenne
DE102017203513A1 (de) Dual-Band-Antenne sowie Vorrichtung mit solch einer Dual-Band-Antenne

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170517

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ENDRESS+HAUSER SE+CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200706

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H04B 7/145 20060101ALI20210308BHEP

Ipc: H01Q 9/36 20060101ALI20210308BHEP

Ipc: H01Q 1/40 20060101ALI20210308BHEP

Ipc: H01Q 1/22 20060101AFI20210308BHEP

INTG Intention to grant announced

Effective date: 20210325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015015057

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1420338

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211213

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015015057

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20220512

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211111

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1420338

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 9

Ref country code: FR

Payment date: 20231120

Year of fee payment: 9

Ref country code: DE

Payment date: 20231121

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811