WO2018209848A1 - Sirna molecule for inhibiting hbv and use thereof - Google Patents

Sirna molecule for inhibiting hbv and use thereof Download PDF

Info

Publication number
WO2018209848A1
WO2018209848A1 PCT/CN2017/101022 CN2017101022W WO2018209848A1 WO 2018209848 A1 WO2018209848 A1 WO 2018209848A1 CN 2017101022 W CN2017101022 W CN 2017101022W WO 2018209848 A1 WO2018209848 A1 WO 2018209848A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
strand seq
sense strand
antisense strand
antisense
Prior art date
Application number
PCT/CN2017/101022
Other languages
French (fr)
Chinese (zh)
Inventor
朱远源
李铁军
刘永红
刘刚
陈建新
彭薇
Original Assignee
百奥迈科生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 百奥迈科生物技术有限公司 filed Critical 百奥迈科生物技术有限公司
Publication of WO2018209848A1 publication Critical patent/WO2018209848A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1131Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications

Definitions

  • the present invention belongs to the field of molecular biology, and in particular to an siRNA molecule which inhibits hepatitis B virus HBV and its use in the preparation of an anti-HBV drug.
  • Hepatitis B is an infectious disease caused by Hepatitis B virus (HBV) infection and the most serious type of viral hepatitis. It can cause chronic liver disease, leading to an increased risk of liver cirrhosis and hepatocellular carcinoma in patients. Serious threat to human health.
  • HBV Hepatitis B virus
  • HBV is a hepadnavirus that belongs to the hepadnaviridae family.
  • the whole genome is about 3.2 kb in length and is a partially double-stranded circular DNA.
  • the genome has four open reading frames (ORF).
  • the encoded protein includes a surface antigen (S gene), a core antigen (C gene), a polymerase protein (P gene), and an X protein (C gene).
  • HBV chronic hepatitis B infections. It is estimated that 600,000 people die each year from HBV-related liver diseases or hepatocellular carcinoma. HBV can cause acute inflammation, vomiting, and jaundice in the liver, causing severe fulminant disease and death in a few cases. HBV can also cause chronic liver infections, which may later develop into cirrhosis or liver cancer.
  • HBV human immunodeficiency virus
  • hepatitis B vaccine is mainly used to prevent the occurrence of hepatitis B, but it cannot be used for treatment.
  • Several drugs currently inhibit HBV replication by blocking HBV polymerase such as lamivudine, adefovir, entecavir, and telbivudine.
  • the recurrence rate is high after stopping the drug, and long-term use can lead to virus variability. It is easy to produce drug resistance after a period of administration, which makes the clinical anti-viral treatment face great challenges.
  • RNA interference RNA interference
  • some RNA drugs have entered the clinical trial stage, opening up a new therapeutic approach for intractable diseases, especially multi-factor diseases such as cancer and viral infection.
  • the US Food and Drug Administration approved the FDA.
  • the first application for the RNA drug Spinraza (Nusinersen) for the treatment of spinal muscular atrophy marks the official entry of RNA drugs into the drug army, becoming the third largest new drug type after chemical drugs and biological protein drugs.
  • RNAi technology is used to treat diseases by interfering with the expression of specific target gene messenger RNA (mRNA) by small interfering RNA (siRNA), which is an important part of gene therapy.
  • mRNA target gene messenger RNA
  • siRNA small interfering RNA
  • the present invention provides a method of inhibiting HBV using RNAi technology.
  • siRNA targeting HBV gene is used as a targeted drug to interfere with the transcription of HBV genome, effectively inhibiting the expression of HBV protein, thereby inhibiting viral replication.
  • This method is specific, efficient, and has few side effects. Sustainable use of drugs, and can make up for the shortcomings of current hepatitis B treatment drugs, may become a new means of treating hepatitis B in the near future.
  • the present invention designs and screens a series of RNA molecules having HBV activity, which can specifically target HBV genome transcripts and achieve the purpose of inhibiting HBV.
  • the siRNA molecule of the present invention is a double-stranded RNA molecule consisting of a sense strand and an antisense strand selected from the group consisting of: sense strand SEQ ID NO: 1, antisense strand SEQ ID NO: 2; sense strand SEQ ID NO: 3, antisense strand SEQ ID NO: 4; sense strand SEQ ID NO: 5, antisense strand SEQ ID NO: 6; sense strand SEQ ID NO: 7, antisense strand SEQ ID NO: 8; ID NO: 9, antisense strand SEQ ID NO: 10; sense strand SEQ ID NO: 11, antisense strand SEQ ID NO: 12; sense strand SEQ ID NO: 13, antisense strand SEQ ID NO: 14; SEQ ID NO: 15, antisense strand SEQ ID NO: 16; sense strand SEQ ID NO: 17, antisense strand SEQ ID NO: 18; sense strand SEQ ID NO: 19, antisense strand SEQ ID NO: 20; Chain SEQ ID NO:
  • the siRNA molecule of the present invention is a double-stranded RNA molecule consisting of a sense strand and an antisense strand selected from the group consisting of: sense strand SEQ ID NO: 25, antisense strand SEQ ID NO: 26; sense strand SEQ ID NO :41, antisense strand SEQ ID NO: 42; sense strand SEQ ID NO: 43, antisense strand SEQ ID NO: 44; sense strand SEQ ID NO: 53, antisense strand SEQ ID NO: 54; sense strand SEQ ID NO: 65, antisense strand SEQ ID NO: 66; sense strand SEQ ID NO: 67, antisense strand SEQ ID NO: 68; sense strand SEQ ID NO: 85, antisense strand SEQ ID NO: 86; ID NO: 113, antisense strand SEQ ID NO: 114; or sense strand SEQ ID NO: 157, antisense strand SEQ ID NO: 158.
  • the 3' end of the sense strand of the siRNA molecule provided by the present invention and/or the 3' end of the antisense strand contains 0-2 prominent bases "NN", wherein the two Ns are the same or different, and are each independently Adenine deoxynucleotide (dA), thymidine deoxynucleotide (dT), cytosine deoxynucleotide (dC), guanylate deoxynucleotide (dG), adenine nucleotide (A), Any of uracil nucleotide (U), cytosine nucleotide (C) or guanylate nucleotide (G).
  • N Adenine deoxynucleotide
  • dT thymidine deoxynucleotide
  • dC cytosine deoxynucleotide
  • dG guanylate deoxynucleotide
  • A Any of uracil nucleotide
  • the 3' end of the sense strand of the siRNA molecule provided by the present invention and/or the 3' end of the antisense strand contains 2 thymine deoxynucleotides dTdT.
  • the above siRNA molecules may be combined into two or more, such as two, three, or four, to form a double-stranded RNA molecule (dsRNA molecule), which respectively target different regions of the HBV genome transcript.
  • dsRNA molecule double-stranded RNA molecule
  • the purpose of inhibiting the expression of HBV gene is achieved.
  • dsRNA molecule in order to distinguish it from the aforementioned siRNA molecule, it is referred to herein as "combined dsRNA (molecule)".
  • the combined dsRNA of the present invention is composed of a sense strand and an antisense strand, wherein the sense strand comprises a sense strand 1 and a sense strand 2, a sense strand 1 is SEQ ID NO: 3, sense strand 2 is SEQ ID NO: 71; the antisense strand complementary to sense strand comprises antisense strand 1 and antisense strand 2, and antisense strand 1 is antisense strand SEQ ID NO: 4 , antisense strand 2 is SEQ ID NO:72. And so on.
  • the combined dsRNA of the present invention is composed of a sense strand and an antisense strand, wherein the sense strand contains the sense strand 1 Chain 2 and sense strand 3, sense strand 1 is SEQ ID NO: 3, sense strand 2 is SEQ ID NO: 71, sense strand 3 is SEQ ID NO: 149; antisense strand complementary to sense strand contains antisense strand 1
  • the antisense strand 2 and the antisense strand 3 the antisense strand 1 is the antisense strand SEQ ID NO: 4
  • the antisense strand 2 is SEQ ID NO: 72
  • the antisense strand 3 is the antisense strand SEQ ID NO: 150. And so on.
  • the sense strand 1, the sense strand 2 and the sense strand 3 in the above sense strand may be provided with a spacer sequence which is linked to each other; correspondingly, complementary to the sense strand
  • the antisense strand 1, the antisense strand 2 and the antisense strand 3 in the antisense strand may be provided with a spacer sequence which is linked to each other, and these spacer sequences are different from the target gene sequence.
  • the 3' end of the sense strand and/or the 3' end of the antisense strand of the combined dsRNA molecule provided by the present invention contain 0 to 2 overhanging bases "NN", wherein the two Ns are the same or different and are independent Adenine deoxynucleotide (dA), thymidine (dT), cytosine deoxynucleotide (dC), guanylate deoxynucleotide (dG), adenine nucleotide (A Any one of uracil nucleotide (U), cytosine nucleotide (C) or guanylate nucleotide (G).
  • N Adenine deoxynucleotide
  • dT thymidine
  • dC cytosine deoxynucleotide
  • dG guanylate deoxynucleotide
  • A Any one of uracil nucleotide (U), cytosine nucleot
  • the 3' end of the sense strand and/or the 3' end of the antisense strand of the combined dsRNA molecule provided herein comprises 2 thymine deoxynucleotides dTdT.
  • the siRNA molecule or the combined dsRNA molecule described above may be presented in the form of an RNA expression cassette. Accordingly, a second object of the present invention is to provide an expression cassette of the above siRNA molecule or a combined dsRNA molecule which is a DNA molecule.
  • RNA polymerase type III promoter such as U6 promoter
  • RNA transcription template - RNA polymerase type III promoter such as H1 promoter
  • RNA polymerase type II promoter - RNA sense strand transcription template - circular sequence - RNA antisense strand
  • RNA polymerase type III RNA promoter - RNA sense strand transcription template - circular sequence - RNA counter
  • the sense strand patent template-RNA polymerase type III promoter transcription termination signal (or PolyA tail).
  • the siRNA molecule of the invention can be prepared as the siRNA expression described below Box: RNA polymerase type III promoter (eg U6 promoter) - siRNA transcription template - RNA polymerase type III promoter (eg H1 promoter); RNA polymerase type II promoter - siRNA sense strand transcription template - loop Sequence-siRNA antisense strand patent template-RNA polymerase type II promoter transcription termination signal; or RNA polymerase type III RNA promoter-siRNA sense strand transcription template-loop sequence-siRNA antisense strand patent template-RNA polymerase Type III promoter transcription termination signal (or PolyA tail).
  • the siRNA molecule can be prepared into the following siRNA expression cassette: U6 promoter-siRNA transcription template-H1 promoter.
  • RNA polymerase type III promoter such as the U6 promoter
  • RNA polymerase type II promoter such as H1 promoter
  • RNA polymerase type II promoter-dsRNA sense strand transcription template-loop sequence-dsRNA antisense strand patent template-RNA polymerase type II promoter transcription termination signal
  • a dsRNA molecule can be prepared into the dsRNA expression cassette: U6 promoter-dsRNA transcription template-H1 promoter.
  • the siRNA molecule of the present invention a combined dsRNA molecule, an RNA expression cassette, or a plasmid containing an RNA expression cassette can be used as an active ingredient of an anti-HBV drug.
  • the anti-HBV drug comprises one of the above siRNA molecules or a mixture of two or more siRNA molecules. More preferably, one of the above siRNA molecules is contained in the anti-HBV drug.
  • siRNA molecules When two or more siRNA molecules are contained in an anti-HBV drug, a mixture of these siRNA molecules targets different sites of the HBV genome such as the polymerase protein P gene, and thus may be referred to as “multi-target siRNA” or “multi-target siRNA combination”.
  • the siRNA molecule forming a multi-target siRNA combination is a double-stranded RNA molecule consisting of a sense strand and an antisense strand selected from the group consisting of: sense strand SEQ ID NO: 25, anti-sense strand SEQ ID NO: 26; sense strand SEQ ID NO: 41, antisense strand SEQ ID NO: 42; sense strand SEQ ID NO: 43, antisense strand SEQ ID NO: 44; sense strand SEQ ID NO: 53, antisense strand SEQ ID NO: 54, sense strand SEQ ID NO: 65, antisense strand SEQ ID NO: 66; sense strand SEQ ID NO: 67, antisense strand SEQ ID NO: 68; sense strand SEQ ID NO: 85, antisense strand SEQ ID NO: 86; Chain SEQ ID NO: 113, antisense strand SEQ ID NO: 114; or sense strand SEQ ID NO: 157, antisense strand SEQ ID NO:
  • the siRNA molecule forming the multi-target siRNA combination is a double-stranded RNA molecule consisting of a sense strand and an antisense strand selected from the group consisting of: sense strand SEQ ID NO: 25, anti-sense strand SEQ ID NO: 26; sense strand SEQ ID NO:43, antisense strand SEQ ID NO:44; The sense strand SEQ ID NO: 53, the antisense strand SEQ ID NO: 54; the sense strand SEQ ID NO: 67, the antisense strand SEQ ID NO: 68.
  • the above anti-HBV drug comprises one of the above-described combined dsRNA molecules.
  • the anti-HBV drug comprises one of the above siRNA expression cassettes or a mixture of two or more siRNA expression cassettes. More preferably, the anti-HBV drug comprises one of the above siRNA expression cassettes.
  • the anti-HBV drug comprises an expression cassette of one of the above-described combined dsRNA molecules.
  • the above medicament is an injectable or oral dosage form.
  • the antisense strand of the siRNA molecule or the combined dsRNA molecule provided by the present invention can specifically bind to the HBV genome transcript, thereby degrading, thereby interfering with the post-transcriptional translation process, inhibiting HBV protein translation and viral replication, and achieving The purpose of treating hepatitis B.
  • siRNA is a double-stranded structure formed by annealing the sense strand and the antisense strand.
  • dsRNA As used herein, the terms “dsRNA”, “dsRNA sequence”, “dsRNA molecule”, “double-stranded RNA”, or “double-stranded RNA molecule” are used interchangeably and mean the same meaning and scope, both sense strand and anti- A double-stranded structure formed by annealing the sense strand.
  • combined dsRNA refers to a combination of two or more siRNAs that form a new double-stranded RNA molecule in one molecule.
  • the term "(even) corresponds to the above odd number” means that the even number n+1 and the odd number n form a one-to-one correspondence, wherein the odd number n is selected from 1-159, and accordingly, the even number n+1 is selected from 2 - 160.
  • the sense strand of the odd sequence number SEQ ID NO: 1 corresponds to the antisense strand of the even sequence number SEQ ID NO: 2
  • the corresponding strand of SEQ ID NO: 159 corresponding to the odd-numbered sequence number of SEQ ID NO: 159 corresponds to the antisense strand of SEQ ID NO: 160 of the even-numbered sequence, and so on.
  • the siRNA molecule of the present invention is screened for a siRNA molecular library prepared for the functionally conserved region of the HBV genome.
  • the siRNA molecule library is prepared by the method of the invention with the patent number ZL 200710024217.6, which has the advantages that the prepared siRNA sites are randomly distributed. The length is controllable and can increase the hit rate of effective target sites.
  • the preferred siRNAs screened from the siRNA molecular library of the present invention have a total of 80 siRNAs with a molecular length of 16-31 base pairs (bp). Their sense and antisense strands are odd sequence numbers SEQ ID NO: 1-159 and even sequence numbers SEQ ID NO: 2-160, respectively, the specific sequences of which are listed in Table 1.
  • the siRNA molecule of the present invention for the purpose of treating hepatitis B, the siRNA molecule of the present invention, the expression cassette expressing the siRNA molecule, or the plasmid comprising the siRNA expression cassette, the combined dsRNA molecule, the expression cassette expressing the combined dsRNA, or the combination thereof may be used.
  • the plasmid of the dsRNA expression cassette is directly administered as a pharmaceutical active ingredient to a specific part of the subject, such as a lesion tissue.
  • the dosage form of the medicament of the present invention may be in various forms as long as it is suitable for administration of the corresponding disease, and appropriately maintains the activity of the siRNA molecule and/or the combined dsRNA molecule, and the DNA (including the expression cassette and the plasmid) expressing the RNA molecule.
  • the dosage form can be a lyophilized powder.
  • the ointment may be selected from ointments or lotions.
  • RNA molecules and primer sequences herein are synthesized by BioMico Biotechnology Co., Ltd.; Subcloning of Biomax Biotech Co., Ltd.
  • HepG2 2.2.15 cells contain 2 copies of HBV genome, which can stably secrete HBsAg, HBeAg, HBcAg and Dane particles, and can detect the DNA and RNA of HBV in the cell.
  • a replicating body containing a serum subtype of HBV is ayw (GenBank Accession number: U95551), and a siRNA molecular library of the HBV genome was constructed according to the method of the patent (CN100570022C).
  • U6-siRNA transcription template-H1 expression cassette Screening from the siRNA molecular library of the HBV genome prepared in Example 1, using 80 siRNA positive clone plasmids as templates, using Pfu DNA polymerase (Bai DNA) The U6-siRNA transcription template-H1 expression cassette was amplified by PCR.
  • Each PCR reaction system was 50 ⁇ l of reaction system: 0.5 ⁇ l of template DNA (10-50 ng), 1 ⁇ l of 5'U6 primer (10 ⁇ M), 1 ⁇ l of 3'H1 primer (10 ⁇ M), 1 ⁇ l of dNTP (10 mM), 0.5 ⁇ l of Pfu DNA polymerase, Make up to 50 ⁇ l with ddH 2 O.
  • the reaction conditions were: pre-denaturation at 95 ° C for 1 min, denaturation at 95 ° C for 15 sec, annealing at 58 ° C for 30 sec, extension at 72 ° C for 30 sec, 20 cycles.
  • the mixture of PCR products was detected by 1.0% agarose gel electrophoresis, and the fragment size was in accordance with the experimental requirements (not shown).
  • 3'H1 primer 5'-TATTTGCATGTCGCTATGTGTTCT-3'.
  • HepG2 2.2.15 cells were cultured in DMEM medium (Thermo) containing 10% FBS in a 37 ° C, 5% CO 2 incubator.
  • the cells were seeded at a rate of 2.5 ⁇ 10 5 /ml into a 96-well cell culture plate, and cultured overnight at 37 ° C in a 5% CO 2 incubator to a confluence of about 50%.
  • 2.3 mRNA expression level detection Real-time quantitative PCR was used to detect the mRNA level expression level of HBV polymerase gene in each experimental group, and 4 ⁇ l RNA was used as a template for real-time quantitative PCR reaction.
  • the gene-specific primers were used to detect the expression level of HBV polymerase mRNA in the sample, and the housekeeping gene GAPDH was amplified as an internal reference control.
  • Three parallel experiments were performed for each reaction. The following 10 ⁇ l reaction system was established: 2 ⁇ l of template RNA, 5 ⁇ l of 2 ⁇ One-Step qPCR Mix, 0.2 ⁇ l of forward primer (10 ⁇ M), 0.2 ⁇ l of reverse primer (10 ⁇ M), and the system was supplemented to 10 ⁇ l with RNase-free water. Reaction conditions: reverse transcription at 42 ° C for 30 min, pre-denaturation at 95 ° C for 10 min, denaturation at 95 ° C for 20 sec, annealing at 60 ° C for 30 sec, and 35 cycles.
  • HBV reverse primer 5'-GCGTCAGCAAACACTTGG-3';
  • GAPDH forward primer 5'-GAAGGTGAAGGTCGGAGTC-3';
  • GAPDH reverse primer 5'-GAAGATGGTGATGGGATTTC-3'.
  • Table 1 Inhibition of HBV genome transcript expression levels by siRNA sequences and their transcriptional templates
  • HepG2 2.2.15 cells were cultured in DMEM medium (Thermo) containing 10% FBS in a 37 ° C, 5% CO 2 incubator.
  • Cell plating and transfection The cells were seeded at 2.5 ⁇ 10 5 /ml into 96-well cell culture plates, and cultured overnight at 37 ° C in a 5% CO 2 incubator to a confluence of about 50%.
  • siRNA was transfected into the cells according to the instructions, and the negative control (NC) selected siRNAs with no homology to the human gene.
  • the specific sequence is:
  • Antisense strand 5'-ACGUGACACGUUCGGAGAAdTdT-3’
  • RNA extraction 48 hours after transfection, the cells were washed several times with cold PBS, centrifuged to remove the supernatant, and the RNA in the cells was extracted with RISO RNA extraction reagent (Byomacco) and operated according to the reagent instructions.
  • mRNA expression level detection Real-time quantitative PCR was used to detect the mRNA level of HBV polymerase gene (P gene) in each experimental group, and 4 ⁇ l RNA was used as a template for real-time quantitative PCR reaction.
  • the gene-specific primers were used to detect the expression level of HBV polymerase mRNA in the sample, and the housekeeping gene GAPDH was amplified as an internal reference control.
  • Three parallel experiments were performed for each reaction.
  • the following 10 ⁇ l reaction system was established: 2 ⁇ l of template RNA, 5 ⁇ l of 2 ⁇ One-Step qPCR Mix, 0.2 ⁇ l of forward primer (10 ⁇ M), 0.2 ⁇ l of reverse primer (10 ⁇ M), and the system was supplemented to 10 ⁇ l with RNase-free water. Reaction conditions: reverse transcription at 42 ° C for 30 min, pre-denaturation at 95 ° C 10 min, denaturation at 95 ° C for 20 sec, annealing at 60 ° C for 30 sec, cycle 35 times.
  • HBV polymerase gene transcripts HBV polymerase gene transcripts (HBV mRNA) after transfection of each siRNA were analyzed by 2- ⁇ Ct method. The experimental results are shown in Table 1.
  • siRNAs resulted in a relative expression level of HBV mRNA ⁇ 0.4, ie, a silencing effect ⁇ 60%.
  • 12 siRNA molecules lead to the relative expression level of HBV mRNA ⁇ 0.2, that is, the silencing effect ⁇ 80%, which includes: the sense strand is SEQ ID NO: 3, the opposite The sense strand is HBV1602 of SEQ ID NO: 4; the sense strand is SEQ ID NO: 25, the antisense strand is HBV1613 of SEQ ID NO: 26; the sense strand is SEQ ID NO: 27, and the antisense strand is SEQ ID NO: 28.
  • sense strand is SEQ ID NO:43, antisense strand is HBV1622 of SEQ ID NO:44; sense strand is SEQ ID NO:49, antisense strand is SEQ ID NO:50, HBV1625; sense strand is SEQ ID NO:71, the antisense strand is HBV1636 of SEQ ID NO:72; the sense strand is SEQ ID NO:81, the antisense strand is HBV1641 of SEQ ID NO:82; the sense strand is SEQ ID NO:93, and the antisense strand is HBV1647 of SEQ ID NO: 94; sense strand is SEQ ID NO: 99, antisense strand is HBV1650 of SEQ ID NO: 100; sense strand is SEQ ID NO: 109, antisense strand is SEQ ID NO: 110 of HBV1655; The sense strand is SEQ ID NO: 149, the antisense strand is HBV1675 of SEQ ID NO: 150; and the sense strand is SEQ ID NO:
  • siRNA molecules screened by the present invention can cause the relative expression level of HBV mRNA ⁇ 0.2, and the transcription template thereof results in the relative expression level of HBV mRNA ⁇ 0.4, which includes: the sense strand is SEQ ID NO: 3
  • the antisense strand is HBV1602 of SEQ ID NO: 4; the sense strand is SEQ ID NO: 71, the antisense strand is HBV1636 of SEQ ID NO: 72; the sense strand is SEQ ID NO: 93, and the antisense strand is SEQ ID NO: HBV1647 of 94; or HBV1675 of SEQ ID NO: 149 and the antisense strand of SEQ ID NO: 150.
  • Experiments have shown that their silencing effect on the HBV gene is outstanding.
  • HepG2 2.2.15 cells were cultured in DMEM medium (Thermo) containing 10% FBS in a 37 ° C, 5% CO 2 incubator.
  • Cell plating and transfection The cells were seeded at 2.5 ⁇ 10 5 /ml into 96-well cell culture plates, and cultured overnight at 37 ° C in a 5% CO 2 incubator to a confluence of about 50%.
  • NC Negative control
  • RNA extraction 48 hours after transfection, the cells were washed several times with cold PBS, centrifuged to remove the supernatant, and the RNA in the cells was extracted with RISO RNA extraction reagent (Byomacco) and operated according to the reagent instructions.
  • mRNA expression level detection Real-time quantitative PCR was used to detect the mRNA level of HBV polymerase gene (P gene) in each experimental group, and 4 ⁇ l RNA was used as a template for real-time quantitative PCR reaction.
  • HBV polymerase gene transcripts HBV polymerase gene transcripts (HBV mRNA) after transfection of each siRNA mixture were analyzed by 2- ⁇ Ct method. The experimental results are shown in Table 3.
  • Multi-target siRNA combination Relative expression level of mRNA HBV1622+HBV1627 0.16 HBV1622+HBV1634 0.24 HBV1627+HBV1634 0.14 HBV1622+HBV1627+HBV1634 0.18 HBV1613+HBV1627+HBV1634 0.15

Abstract

Provided is a siRNA molecule for inhibiting HBV, which is composed of a sense strand and an antisense strand, the sense strand being selected from those having an odd number sequence number n in SEQ ID NOs: 1-159, while the antisense strand being selected from those having an even number n+1 sequence number corresponding to the odd number n above in SEQ ID NOs: 2-160. The siRNA molecule or an expression frame thereof can be used for preparing a anti-HBV medicament.

Description

抑制HBV的siRNA分子及其应用siRNA molecule inhibiting HBV and its application 技术领域Technical field
本发明属于分子生物学领域,具体地说,涉及抑制乙型肝炎病毒HBV的siRNA分子、及其在制备抗HBV药物中的用途。The present invention belongs to the field of molecular biology, and in particular to an siRNA molecule which inhibits hepatitis B virus HBV and its use in the preparation of an anti-HBV drug.
背景技术Background technique
乙型肝炎是由乙型肝炎病毒(Hepatitis B virus,HBV)感染导致的传染性疾病,也是最严重类型的病毒性肝炎,它可造成慢性肝病,导致患者发生肝硬化和肝细胞肝癌的风险增高,严重威胁人类健康。Hepatitis B is an infectious disease caused by Hepatitis B virus (HBV) infection and the most serious type of viral hepatitis. It can cause chronic liver disease, leading to an increased risk of liver cirrhosis and hepatocellular carcinoma in patients. Serious threat to human health.
HBV是一种嗜肝性DNA病毒,属嗜肝DNA病毒科(hepadnaviridae),全基因组长约3.2kb,为部分双链环状DNA,其基因组共有四个开放阅读框(Open Reading Frame,ORF),编码蛋白包括表面抗原(S基因)、核心抗原(C基因)、聚合酶蛋白(P基因)和X蛋白(C基因)。HBV is a hepadnavirus that belongs to the hepadnaviridae family. The whole genome is about 3.2 kb in length and is a partially double-stranded circular DNA. The genome has four open reading frames (ORF). The encoded protein includes a surface antigen (S gene), a core antigen (C gene), a polymerase protein (P gene), and an X protein (C gene).
据世界卫生组织报道,全球大约有20亿人感染HBV,其中约有2.5-3.5亿的人为慢性乙肝感染者,估计每年有60万人死于HBV相关的肝脏疾病或肝细胞肝癌。HBV可急性引起肝脏炎症、呕吐、黄疸,在少数情况下引起严重的爆发性疾病和死亡。HBV也会造成慢性肝脏感染,以后可能发展成肝硬化或肝癌。According to the World Health Organization, about 2 billion people worldwide are infected with HBV, of which about 2.5-350 million people are chronic hepatitis B infections. It is estimated that 600,000 people die each year from HBV-related liver diseases or hepatocellular carcinoma. HBV can cause acute inflammation, vomiting, and jaundice in the liver, causing severe fulminant disease and death in a few cases. HBV can also cause chronic liver infections, which may later develop into cirrhosis or liver cancer.
HBV的传播主要是通过母婴传染、未经保护的性传播、输血和注射毒品造成的感染,传播途径与人类免疫缺陷病毒(艾滋病毒)相同。HBV的传染性比艾滋病毒强50-100倍,HBV在体外可存活至少7天以上。The spread of HBV is mainly caused by mother-to-child transmission, unprotected sexual transmission, blood transfusion and injecting drugs, and the transmission route is the same as that of human immunodeficiency virus (HIV). HBV is 50-100 times more infectious than HIV, and HBV can survive for at least 7 days in vitro.
目前主要是通过接种乙型肝炎疫苗来预防乙型肝炎的发生,但不能用于治疗。目前有数种药物通过阻断HBV聚合酶来抑制HBV的复制,如拉米夫定、阿德福韦、恩替卡韦和替比夫定等。但是停药后复发率高,长期服用则可导致病毒变异,在用药一段时间后容易产生耐药性,使得临床抗病毒治疗面临极大的挑战。At present, hepatitis B vaccine is mainly used to prevent the occurrence of hepatitis B, but it cannot be used for treatment. Several drugs currently inhibit HBV replication by blocking HBV polymerase, such as lamivudine, adefovir, entecavir, and telbivudine. However, the recurrence rate is high after stopping the drug, and long-term use can lead to virus variability. It is easy to produce drug resistance after a period of administration, which makes the clinical anti-viral treatment face great challenges.
近几年,RNA干扰(RNA interfering,RNAi)技术的迅速发展,部分RNA药物已进入临床试验阶段,为疑难杂症尤其是多因素的疾病如癌症、病毒感染开辟了全新的治疗途径。2016年12月23日,美国食品和药物管理局FDA批准了 首个用于治疗脊髓性肌萎缩的RNA药物Spinraza(Nusinersen)的上市申请,标志着RNA药物正式加入药物大军,成为继化学药物、生物蛋白药物之后的第三大新药类型。RNAi技术是通过小干扰RNA(small interfering RNA,siRNA)干扰特定靶基因信使RNA(mRNA)的表达,来达到治疗疾病的目的,是基因治疗的重要组成部分。RNAi是由双链RNA(double-stranded RNA,dsRNA)引发的转录后基因沉默,作用机制是:核糖核酸酶III家族的Dicer酶,与dsRNA结合,将其剪切成21-23nt及3'端突出的siRNA,随后siRNA与RNA诱导沉默复合物(RNA-induced silencing complex,RISC)结合,解旋成单链,活化的RISC受已成单链的siRNA引导,序列特异性地结合到靶基因的mRNA上并将其切断,引发靶mRNA的特异性分解,从而阻断其表达。RNAi已作为一种简单有效的基因敲除的技术,广泛地应用于功能基因组学研究以及抗病毒、抗肿瘤治疗的研究中。In recent years, the rapid development of RNA interference (RNAi) technology, some RNA drugs have entered the clinical trial stage, opening up a new therapeutic approach for intractable diseases, especially multi-factor diseases such as cancer and viral infection. On December 23, 2016, the US Food and Drug Administration approved the FDA. The first application for the RNA drug Spinraza (Nusinersen) for the treatment of spinal muscular atrophy marks the official entry of RNA drugs into the drug army, becoming the third largest new drug type after chemical drugs and biological protein drugs. RNAi technology is used to treat diseases by interfering with the expression of specific target gene messenger RNA (mRNA) by small interfering RNA (siRNA), which is an important part of gene therapy. RNAi is a post-transcriptional gene silencing triggered by double-stranded RNA (dsRNA). The mechanism of action is: Dicer enzyme of the ribonuclease III family, which binds to dsRNA and is cleaved into 21-23 nt and 3' ends. Prominent siRNA, followed by siRNA binding to RNA-induced silencing complex (RISC), unwinding into a single strand, activated RISC is guided by a single-stranded siRNA, sequence-specifically binds to the target gene The mRNA is cleaved and cleaves to specifically decompose the target mRNA, thereby blocking its expression. RNAi has been widely used as a simple and effective gene knockout technique in functional genomics research and in antiviral and antitumor therapy research.
本发明提供了一种用RNAi技术来抑制HBV的方法。应用RNA干扰技术,用靶向至HBV基因的siRNA作为靶向药物,在HBV基因组的转录后进行干扰,有效抑制HBV的蛋白表达,从而抑制病毒复制,该方法特异性强、效率高、副作用小、可持续用药,且能弥补目前乙型肝炎治疗药物的不足,在不久的将来可能成为一种新的治疗乙型肝炎的手段。The present invention provides a method of inhibiting HBV using RNAi technology. Using RNA interference technology, siRNA targeting HBV gene is used as a targeted drug to interfere with the transcription of HBV genome, effectively inhibiting the expression of HBV protein, thereby inhibiting viral replication. This method is specific, efficient, and has few side effects. Sustainable use of drugs, and can make up for the shortcomings of current hepatitis B treatment drugs, may become a new means of treating hepatitis B in the near future.
发明内容Summary of the invention
为了提供有效地治疗乙型肝炎的新途径,本发明设计并筛选出一系列具有抑制HBV活性的RNA分子,可以特异性靶向HBV基因组转录本,达到抑制HBV的目的。In order to provide a new way to effectively treat hepatitis B, the present invention designs and screens a series of RNA molecules having HBV activity, which can specifically target HBV genome transcripts and achieve the purpose of inhibiting HBV.
因此,本发明的第一个目的在于提供一种抑制HBV的siRNA分子,其由正义链和反义链组成,其中正义链选自奇数n(n=1-159)序列号的SEQ ID NO:1-159,反义链选自与上述奇数n相对应的偶数n+1(2-160)序列号的SEQ ID NO:2-160。Accordingly, a first object of the present invention is to provide an HBV-inhibiting siRNA molecule consisting of a sense strand and an antisense strand, wherein the sense strand is selected from the SEQ ID NO of an odd number n (n = 1 - 159). 1-159, the antisense strand is selected from SEQ ID NO: 2-160 of the even n+1 (2-160) sequence number corresponding to the above odd n.
具体而言,本发明的siRNA分子是由选自下组的正义链和反义链组成的双链RNA分子:正义链SEQ ID NO:1、反义链SEQ ID NO:2;正义链SEQ ID NO:3、反义链SEQ ID NO:4;正义链SEQ ID NO:5、反义链SEQ ID NO:6;正义链SEQ ID NO:7、反义链SEQ ID NO:8;正义链SEQ ID NO:9、反义链SEQ ID NO:10;正义链SEQ ID NO:11、反义链SEQ ID NO:12;正义链SEQ ID NO:13、反义链SEQ ID NO:14;正义链SEQ ID NO:15、反义链SEQ ID NO:16;正义链SEQ ID NO:17、反义链SEQ ID NO:18;正义链SEQ ID NO:19、反义链SEQ ID NO:20;正义链SEQ ID NO:21、反义链 SEQ ID NO:22;正义链SEQ ID NO:23、反义链SEQ ID NO:24;正义链SEQ ID NO:25、反义链SEQ ID NO:26;正义链SEQ ID NO:27、反义链SEQ ID NO:28;正义链SEQ ID NO 29:、反义链SEQ ID NO:30;正义链SEQ ID NO:31、反义链SEQ ID NO:32;正义链SEQ ID NO:33、反义链SEQ ID NO:34;正义链SEQ ID NO:35、反义链SEQ ID NO:36;正义链SEQ ID NO:37、反义链SEQ ID NO:38;正义链SEQ ID NO:39、反义链SEQ ID NO:40;正义链SEQ ID NO:41、反义链SEQ ID NO:42;正义链SEQ ID NO:43、反义链SEQ ID NO:44;正义链SEQ ID NO:45、反义链SEQ ID NO:46;正义链SEQ ID NO:47、反义链SEQ ID NO:48;正义链SEQ ID NO:49、反义链SEQ ID NO:50;正义链SEQ ID NO:51、反义链SEQ ID NO:52;正义链SEQ ID NO:53、反义链SEQ ID NO:54;正义链SEQ ID NO:55、反义链SEQ ID NO:56;正义链SEQ ID NO:57、反义链SEQ ID NO:58;正义链SEQ ID NO:59、反义链SEQ ID NO:60;正义链SEQ ID NO:61、反义链SEQ ID NO:62;正义链SEQ ID NO:63、反义链SEQ ID NO:64;正义链SEQ ID NO:65、反义链SEQ ID NO:66;正义链SEQ ID NO:67、反义链SEQ ID NO:68;正义链SEQ ID NO:69、反义链SEQ ID NO:70;正义链SEQ ID NO:71、反义链SEQ ID NO:72;正义链SEQ ID NO:73、反义链SEQ ID NO:74;正义链SEQ ID NO:75、反义链SEQ ID NO:76;正义链SEQ ID NO:77、反义链SEQ ID NO:78;正义链SEQ ID NO:79、反义链SEQ ID NO:80;正义链SEQ ID NO:81、反义链SEQ ID NO:82;正义链SEQ ID NO:83、反义链SEQ ID NO:84;正义链SEQ ID NO:85、反义链SEQ ID NO:86;正义链SEQ ID NO:87、反义链SEQ ID NO:88;正义链SEQ ID NO:89、反义链SEQ ID NO:90;正义链SEQ ID NO:91、反义链SEQ ID NO:92;正义链SEQ ID NO:93、反义链SEQ ID NO:94;正义链SEQ ID NO:95、反义链SEQ ID NO:96;正义链SEQ ID NO:97、反义链SEQ ID NO:98;正义链SEQ ID NO:99、反义链SEQ ID NO:100;正义链SEQ ID NO:101、反义链SEQ ID NO:102;正义链SEQ ID NO:103、反义链SEQ ID NO:104;正义链SEQ ID NO:105、反义链SEQ ID NO:106;正义链SEQ ID NO:107、反义链SEQ ID NO:108;正义链SEQ ID NO:109、反义链SEQ ID NO:110;正义链SEQ ID NO:111、反义链SEQ ID NO:112;正义链SEQ ID NO:113、反义链SEQ ID NO:114;正义链SEQ ID NO:115、反义链SEQ ID NO:116;正义链SEQ ID NO:117、反义链SEQ ID NO:118;正义链SEQ ID NO:119、反义链SEQ ID NO:120;正义链SEQ ID NO:121、反义链SEQ ID NO:122;正义链SEQ ID NO:123、反义链SEQ ID NO:124;正义链SEQ ID NO:125、反义链SEQ ID NO:126;正义链SEQ  ID NO:127、反义链SEQ ID NO:128;正义链SEQ ID NO 129:、反义链SEQ ID NO:130;正义链SEQ ID NO:131、反义链SEQ ID NO:132;正义链SEQ ID NO:133、反义链SEQ ID NO:134;正义链SEQ ID NO:135、反义链SEQ ID NO:136;正义链SEQ ID NO:137、反义链SEQ ID NO:138;正义链SEQ ID NO:139、反义链SEQ ID NO:140;正义链SEQ ID NO:141、反义链SEQ ID NO:142;正义链SEQ ID NO:143、反义链SEQ ID NO:144;正义链SEQ ID NO:145、反义链SEQ ID NO:146;正义链SEQ ID NO:147、反义链SEQ ID NO:148;正义链SEQ ID NO:149、反义链SEQ ID NO:150;正义链SEQ ID NO:151、反义链SEQ ID NO:152;正义链SEQ ID NO:153、反义链SEQ ID NO:154;正义链SEQ ID NO:155、反义链SEQ ID NO:156;正义链SEQ ID NO:157、反义链SEQ ID NO:158;或者正义链SEQ ID NO:159、反义链SEQ ID NO:160。Specifically, the siRNA molecule of the present invention is a double-stranded RNA molecule consisting of a sense strand and an antisense strand selected from the group consisting of: sense strand SEQ ID NO: 1, antisense strand SEQ ID NO: 2; sense strand SEQ ID NO: 3, antisense strand SEQ ID NO: 4; sense strand SEQ ID NO: 5, antisense strand SEQ ID NO: 6; sense strand SEQ ID NO: 7, antisense strand SEQ ID NO: 8; ID NO: 9, antisense strand SEQ ID NO: 10; sense strand SEQ ID NO: 11, antisense strand SEQ ID NO: 12; sense strand SEQ ID NO: 13, antisense strand SEQ ID NO: 14; SEQ ID NO: 15, antisense strand SEQ ID NO: 16; sense strand SEQ ID NO: 17, antisense strand SEQ ID NO: 18; sense strand SEQ ID NO: 19, antisense strand SEQ ID NO: 20; Chain SEQ ID NO: 21, antisense strand SEQ ID NO: 22; sense strand SEQ ID NO: 23, antisense strand SEQ ID NO: 24; sense strand SEQ ID NO: 25, anti-sense strand SEQ ID NO: 26; sense strand SEQ ID NO: 27, antisense Chain SEQ ID NO: 28; sense strand SEQ ID NO 29:, antisense strand SEQ ID NO: 30; sense strand SEQ ID NO: 31, antisense strand SEQ ID NO: 32; sense strand SEQ ID NO: 33, SEQ ID NO: 34; sense strand SEQ ID NO: 35, antisense strand SEQ ID NO: 36; sense strand SEQ ID NO: 37, antisense strand SEQ ID NO: 38; sense strand SEQ ID NO: 39, Antisense strand SEQ ID NO: 40; sense strand SEQ ID NO: 41, antisense strand SEQ ID NO: 42; sense strand SEQ ID NO: 43, antisense strand SEQ ID NO: 44; sense strand SEQ ID NO: 45 , antisense strand SEQ ID NO: 46; sense strand SEQ ID NO: 47, antisense strand SEQ ID NO: 48; sense strand SEQ ID NO: 49, anti-sense strand SEQ ID NO: 50; sense strand SEQ ID NO: 51, antisense strand SEQ ID NO: 52; sense strand SEQ ID NO: 53, antisense strand SEQ ID NO: 54; sense strand SEQ ID NO: 55, antisense strand SEQ ID NO: 56; sense strand SEQ ID NO :57, antisense strand SEQ ID NO: 58; sense strand SEQ ID NO: 59, anti-sense strand SEQ ID N O:60; sense strand SEQ ID NO: 61, antisense strand SEQ ID NO: 62; sense strand SEQ ID NO: 63, antisense strand SEQ ID NO: 64; sense strand SEQ ID NO: 65, anti-sense strand SEQ ID NO: 66; sense strand SEQ ID NO: 67, antisense strand SEQ ID NO: 68; sense strand SEQ ID NO: 69, antisense strand SEQ ID NO: 70; sense strand SEQ ID NO: 71, anti-sense strand SEQ ID NO: 72; sense strand SEQ ID NO: 73, antisense strand SEQ ID NO: 74; sense strand SEQ ID NO: 75, anti-sense strand SEQ ID NO: 76; sense strand SEQ ID NO: 77, antisense SEQ ID NO: 78; sense strand SEQ ID NO: 79, antisense strand SEQ ID NO: 80; sense strand SEQ ID NO: 81, antisense strand SEQ ID NO: 82; sense strand SEQ ID NO: 83, reverse SEQ ID NO: 84; sense strand SEQ ID NO: 85, antisense strand SEQ ID NO: 86; sense strand SEQ ID NO: 87, antisense strand SEQ ID NO: 88; sense strand SEQ ID NO: 89, Antisense strand SEQ ID NO: 90; sense strand SEQ ID NO: 91, antisense strand SEQ ID NO: 92; sense strand SEQ ID NO: 93, antisense strand SEQ ID NO: 94; sense strand SEQ ID NO: 95 , antisense strand SEQ ID NO: 96; sense strand SEQ ID NO: 97, anti-sense strand SEQ ID NO: 98; SEQ ID NO: 99, antisense strand SEQ ID NO: 100; sense strand SEQ ID NO: 101, antisense strand SEQ ID NO: 102; sense strand SEQ ID NO: 103, antisense strand SEQ ID NO: 104; SEQ ID NO: 105, antisense strand SEQ ID NO: 106; sense strand SEQ ID NO: 107, antisense strand SEQ ID NO: 108; sense strand SEQ ID NO: 109, antisense strand SEQ ID NO: 110 ; sense strand SEQ ID NO: 111, antisense strand SEQ ID NO: 112; sense strand SEQ ID NO: 113, antisense strand SEQ ID NO: 114; sense strand SEQ ID NO: 115, antisense strand SEQ ID NO: 116; sense strand SEQ ID NO: 117, antisense strand SEQ ID NO: 118; sense strand SEQ ID NO: 119, antisense strand SEQ ID NO: 120; sense strand SEQ ID NO: 121, antisense strand SEQ ID NO :122; sense strand SEQ ID NO: 123, antisense strand SEQ ID NO: 124; sense strand SEQ ID NO: 125, anti-sense strand SEQ ID NO: 126; sense strand SEQ ID NO: 127, antisense strand SEQ ID NO: 128; sense strand SEQ ID NO 129:, antisense strand SEQ ID NO: 130; sense strand SEQ ID NO: 131, antisense strand SEQ ID NO: 132; SEQ ID NO: 133, antisense strand SEQ ID NO: 134; sense strand SEQ ID NO: 135, antisense strand SEQ ID NO: 136; sense strand SEQ ID NO: 137, antisense strand SEQ ID NO: 138; SEQ ID NO: 139, antisense strand SEQ ID NO: 140; sense strand SEQ ID NO: 141, antisense strand SEQ ID NO: 142; sense strand SEQ ID NO: 143, antisense strand SEQ ID NO: 144; SEQ ID NO: 145, antisense strand SEQ ID NO: 146; sense strand SEQ ID NO: 147, antisense strand SEQ ID NO: 148; sense strand SEQ ID NO: 149, antisense strand SEQ ID NO: 150 ; sense strand SEQ ID NO: 151, antisense strand SEQ ID NO: 152; sense strand SEQ ID NO: 153, antisense strand SEQ ID NO: 154; sense strand SEQ ID NO: 155, anti-sense strand SEQ ID NO: 156; sense strand SEQ ID NO: 157, antisense strand SEQ ID NO: 158; or sense strand SEQ ID NO: 159, antisense strand SEQ ID NO: 160.
优选地,本发明的siRNA分子是由选自下组的正义链和反义链组成的双链RNA分子:正义链SEQ ID NO:25、反义链SEQ ID NO:26;正义链SEQ ID NO:41、反义链SEQ ID NO:42;正义链SEQ ID NO:43、反义链SEQ ID NO:44;正义链SEQ ID NO:53、反义链SEQ ID NO:54;正义链SEQ ID NO:65、反义链SEQ ID NO:66;正义链SEQ ID NO:67、反义链SEQ ID NO:68;正义链SEQ ID NO:85、反义链SEQ ID NO:86;正义链SEQ ID NO:113、反义链SEQ ID NO:114;或者正义链SEQ ID NO:157、反义链SEQ ID NO:158。Preferably, the siRNA molecule of the present invention is a double-stranded RNA molecule consisting of a sense strand and an antisense strand selected from the group consisting of: sense strand SEQ ID NO: 25, antisense strand SEQ ID NO: 26; sense strand SEQ ID NO :41, antisense strand SEQ ID NO: 42; sense strand SEQ ID NO: 43, antisense strand SEQ ID NO: 44; sense strand SEQ ID NO: 53, antisense strand SEQ ID NO: 54; sense strand SEQ ID NO: 65, antisense strand SEQ ID NO: 66; sense strand SEQ ID NO: 67, antisense strand SEQ ID NO: 68; sense strand SEQ ID NO: 85, antisense strand SEQ ID NO: 86; ID NO: 113, antisense strand SEQ ID NO: 114; or sense strand SEQ ID NO: 157, antisense strand SEQ ID NO: 158.
可选地,本发明提供的siRNA分子的正义链3’端和/或反义链3’端含有0~2个突出碱基“NN”,其中两个N相同或者不同,并且各自独立地是腺嘌呤脱氧核苷酸(dA)、胸腺嘧啶脱氧核苷酸(dT)、胞嘧啶脱氧核苷酸(dC)、鸟苷酸脱氧核苷酸(dG)、腺嘌呤核苷酸(A)、尿嘧啶核苷酸(U)、胞嘧啶核苷酸(C)或鸟苷酸核苷酸(G)的任何一种。Alternatively, the 3' end of the sense strand of the siRNA molecule provided by the present invention and/or the 3' end of the antisense strand contains 0-2 prominent bases "NN", wherein the two Ns are the same or different, and are each independently Adenine deoxynucleotide (dA), thymidine deoxynucleotide (dT), cytosine deoxynucleotide (dC), guanylate deoxynucleotide (dG), adenine nucleotide (A), Any of uracil nucleotide (U), cytosine nucleotide (C) or guanylate nucleotide (G).
优选地,本发明提供的siRNA分子的正义链3’端和/或反义链3’端含有2个胸腺嘧啶脱氧核苷酸dTdT。Preferably, the 3' end of the sense strand of the siRNA molecule provided by the present invention and/or the 3' end of the antisense strand contains 2 thymine deoxynucleotides dTdT.
在一种优选的实施方式中,上述siRNA分子可以两种以上比如两个、三个、或四个组合在一起形成双链RNA分子(dsRNA分子),分别靶向HBV基因组转录本的不同区域,达到抑制HBV基因表达的目的。对于该新的双链RNA分子(dsRNA分子,为了与前述的siRNA分子相区别,本文中将其命名为“组合式dsRNA(分子)”。In a preferred embodiment, the above siRNA molecules may be combined into two or more, such as two, three, or four, to form a double-stranded RNA molecule (dsRNA molecule), which respectively target different regions of the HBV genome transcript. The purpose of inhibiting the expression of HBV gene is achieved. For this new double-stranded RNA molecule (dsRNA molecule, in order to distinguish it from the aforementioned siRNA molecule, it is referred to herein as "combined dsRNA (molecule)".
本发明的组合式dsRNA由正义链和反义链组成,其中正义链包含两种以上选自奇数序列号的正义链SEQ ID NO:1-159,相对应地,与正义链互补的反义链包含两种以 上选自与上述奇数相对应的偶数序列号的反义链SEQ ID NO:2-160。以其中正义链包含两种正义链1和正义链2的组合式dsRNA为例,本发明的组合式dsRNA由正义链和反义链组成,其中正义链包含正义链1和正义链2,正义链1为SEQ ID NO:3,正义链2为SEQ ID NO:71;与正义链互补的反义链包含反义链1和反义链2,反义链1为反义链SEQ ID NO:4,反义链2为SEQ ID NO:72。以此类推。再以其中正义链包含三种正义链1、正义链2和正义链3的组合式dsRNA为例,本发明的组合式dsRNA由正义链和反义链组成,其中正义链包含正义链1、正义链2和正义链3,正义链1为SEQ ID NO:3,正义链2为SEQ ID NO:71,正义链3为SEQ ID NO:149;与正义链互补的反义链包含反义链1、反义链2和反义链3,反义链1为反义链SEQ ID NO:4,反义链2为SEQ ID NO:72,反义链3为反义链SEQ ID NO:150。以此类推。The combinatorial dsRNA of the present invention consists of a sense strand comprising two or more sense strands selected from odd sequence numbers SEQ ID NO: 1-159, and correspondingly, an antisense strand complementary to the sense strand. Contains two The antisense strand selected from the even-numbered sequences corresponding to the above odd number is SEQ ID NO: 2-160. Taking a combined dsRNA in which the sense strand comprises two sense strands 1 and sense strand 2, the combined dsRNA of the present invention is composed of a sense strand and an antisense strand, wherein the sense strand comprises a sense strand 1 and a sense strand 2, a sense strand 1 is SEQ ID NO: 3, sense strand 2 is SEQ ID NO: 71; the antisense strand complementary to sense strand comprises antisense strand 1 and antisense strand 2, and antisense strand 1 is antisense strand SEQ ID NO: 4 , antisense strand 2 is SEQ ID NO:72. And so on. Taking the combined dsRNA in which the sense strand contains three sense strands 1, sense strand 2 and sense strand 3 as an example, the combined dsRNA of the present invention is composed of a sense strand and an antisense strand, wherein the sense strand contains the sense strand 1 Chain 2 and sense strand 3, sense strand 1 is SEQ ID NO: 3, sense strand 2 is SEQ ID NO: 71, sense strand 3 is SEQ ID NO: 149; antisense strand complementary to sense strand contains antisense strand 1 The antisense strand 2 and the antisense strand 3, the antisense strand 1 is the antisense strand SEQ ID NO: 4, the antisense strand 2 is SEQ ID NO: 72, and the antisense strand 3 is the antisense strand SEQ ID NO: 150. And so on.
可选地,本发明的组合式dsRNA中,上述正义链中的正义链1、正义链2和正义链3彼此之间可以设有起连接作用的间隔序列;相对应地,与正义链互补的反义链中的反义链1、反义链2和反义链3彼此之间可以设有起连接作用的间隔序列,这些间隔序列与靶基因序列不同源。Alternatively, in the combined dsRNA of the present invention, the sense strand 1, the sense strand 2 and the sense strand 3 in the above sense strand may be provided with a spacer sequence which is linked to each other; correspondingly, complementary to the sense strand The antisense strand 1, the antisense strand 2 and the antisense strand 3 in the antisense strand may be provided with a spacer sequence which is linked to each other, and these spacer sequences are different from the target gene sequence.
可选地,本发明提供的组合式dsRNA分子的正义链3’端和/或反义链3’端含有0~2个突出碱基“NN”,其中两个N相同或者不同,并且各自独立地是腺嘌呤脱氧核苷酸(dA)、胸腺嘧啶脱氧核苷酸(dT)、胞嘧啶脱氧核苷酸(dC)、鸟苷酸脱氧核苷酸(dG)、腺嘌呤核苷酸(A)、尿嘧啶核苷酸(U)、胞嘧啶核苷酸(C)或鸟苷酸核苷酸(G)的任何一种。Alternatively, the 3' end of the sense strand and/or the 3' end of the antisense strand of the combined dsRNA molecule provided by the present invention contain 0 to 2 overhanging bases "NN", wherein the two Ns are the same or different and are independent Adenine deoxynucleotide (dA), thymidine (dT), cytosine deoxynucleotide (dC), guanylate deoxynucleotide (dG), adenine nucleotide (A Any one of uracil nucleotide (U), cytosine nucleotide (C) or guanylate nucleotide (G).
优选地,本发明提供的组合式dsRNA分子的正义链3’端和/或反义链3’端含有2个胸腺嘧啶脱氧核苷酸dTdT。Preferably, the 3' end of the sense strand and/or the 3' end of the antisense strand of the combined dsRNA molecule provided herein comprises 2 thymine deoxynucleotides dTdT.
在一种实施方式中,上述siRNA分子或者组合式dsRNA分子可以呈现为RNA表达框形式。因此,本发明的第二个目的在于提供上述siRNA分子或者组合式dsRNA分子的表达框,这种RNA表达框是一种DNA分子。所述RNA表达框的分子结构为:RNA聚合酶III型启动子(比如U6启动子)-RNA转录模板-RNA聚合酶III型启动子(比如H1启动子);RNA聚合酶II型启动子-RNA正义链转录模板-环状序列-RNA反义链专利模板-RNA聚合酶II型启动子转录终止信号;或者RNA聚合酶III型RNA启动子-RNA正义链转录模板-环状序列-RNA反义链专利模板-RNA聚合酶III型启动子转录终止信号(或PolyA尾)。In one embodiment, the siRNA molecule or the combined dsRNA molecule described above may be presented in the form of an RNA expression cassette. Accordingly, a second object of the present invention is to provide an expression cassette of the above siRNA molecule or a combined dsRNA molecule which is a DNA molecule. The molecular structure of the RNA expression cassette is: RNA polymerase type III promoter (such as U6 promoter) - RNA transcription template - RNA polymerase type III promoter (such as H1 promoter); RNA polymerase type II promoter - RNA sense strand transcription template - circular sequence - RNA antisense strand patent template - RNA polymerase type II promoter transcription termination signal; or RNA polymerase type III RNA promoter - RNA sense strand transcription template - circular sequence - RNA counter The sense strand patent template-RNA polymerase type III promoter transcription termination signal (or PolyA tail).
在一种实施方式中,对于本发明的siRNA分子,可将其制备成下述的siRNA表达 框:RNA聚合酶III型启动子(比如U6启动子)-siRNA转录模板-RNA聚合酶III型启动子(比如H1启动子);RNA聚合酶II型启动子-siRNA正义链转录模板-环状序列-siRNA反义链专利模板-RNA聚合酶II型启动子转录终止信号;或者RNA聚合酶III型RNA启动子-siRNA正义链转录模板-环状序列-siRNA反义链专利模板-RNA聚合酶III型启动子转录终止信号(或PolyA尾)。比如可将siRNA分子制备成下述的siRNA表达框:U6启动子-siRNA转录模板-H1启动子。In one embodiment, the siRNA molecule of the invention can be prepared as the siRNA expression described below Box: RNA polymerase type III promoter (eg U6 promoter) - siRNA transcription template - RNA polymerase type III promoter (eg H1 promoter); RNA polymerase type II promoter - siRNA sense strand transcription template - loop Sequence-siRNA antisense strand patent template-RNA polymerase type II promoter transcription termination signal; or RNA polymerase type III RNA promoter-siRNA sense strand transcription template-loop sequence-siRNA antisense strand patent template-RNA polymerase Type III promoter transcription termination signal (or PolyA tail). For example, the siRNA molecule can be prepared into the following siRNA expression cassette: U6 promoter-siRNA transcription template-H1 promoter.
类似地,对于本发明的组合式dsRNA分子,可将其制备成下述的RNA表达框:RNA聚合酶III型启动子(比如U6启动子)-dsRNA转录模板-RNA聚合酶III型启动子如H1启动子,或RNA聚合酶II型启动子-dsRNA正义链转录模板-环状序列-dsRNA反义链专利模板-RNA聚合酶II型启动子转录终止信号;或RNA聚合酶III型RNA启动子-dsRNA正义链转录模板-环状序列-dsRNA反义链专利模板-RNA聚合酶III型启动子转录终止信号(或PolyA尾)。比如可将dsRNA分子制备成下述的dsRNA表达框:U6启动子-dsRNA转录模板-H1启动子。Similarly, for a combined dsRNA molecule of the invention, it can be prepared into the following RNA expression cassette: RNA polymerase type III promoter (such as the U6 promoter) - dsRNA transcription template - RNA polymerase type III promoter such as H1 promoter, or RNA polymerase type II promoter-dsRNA sense strand transcription template-loop sequence-dsRNA antisense strand patent template-RNA polymerase type II promoter transcription termination signal; or RNA polymerase type III RNA promoter -dsRNA sense strand transcriptional template - circular sequence - dsRNA antisense strand patent template - RNA polymerase type III promoter transcription termination signal (or PolyA tail). For example, a dsRNA molecule can be prepared into the dsRNA expression cassette: U6 promoter-dsRNA transcription template-H1 promoter.
本发明的第二个目的在于提供上述siRNA分子或者组合式dsRNA分子、RNA表达框在制备抗HBV药物中的用途。A second object of the present invention is to provide the use of the above siRNA molecule or a combined dsRNA molecule and an RNA expression cassette for the preparation of an anti-HBV drug.
其中,本发明的siRNA分子、组合式dsRNA分子、RNA表达框、或者包含RNA表达框的质粒可以作为抗HBV药物的有效成分。Among them, the siRNA molecule of the present invention, a combined dsRNA molecule, an RNA expression cassette, or a plasmid containing an RNA expression cassette can be used as an active ingredient of an anti-HBV drug.
在一种优选的实施方式中,上述抗HBV药物中包含一种上述siRNA分子、或者两种以上siRNA分子的混合物。更优选抗HBV药物中包含一种上述siRNA分子。In a preferred embodiment, the anti-HBV drug comprises one of the above siRNA molecules or a mixture of two or more siRNA molecules. More preferably, one of the above siRNA molecules is contained in the anti-HBV drug.
当抗HBV药物中包含两种以上siRNA分子时,这些siRNA分子的混合物靶向HBV基因组比如聚合酶蛋白P基因的不同位点,故可称为“多靶siRNA”或“多靶siRNA组合”。比如,形成多靶siRNA组合的siRNA分子是由选自下组的正义链和反义链组成的双链RNA分子:正义链SEQ ID NO:25、反义链SEQ ID NO:26;正义链SEQ ID NO:41、反义链SEQ ID NO:42;正义链SEQ ID NO:43、反义链SEQ ID NO:44;正义链SEQ ID NO:53、反义链SEQ ID NO:54、正义链SEQ ID NO:65、反义链SEQ ID NO:66;正义链SEQ ID NO:67、反义链SEQ ID NO:68;正义链SEQ ID NO:85、反义链SEQ ID NO:86;正义链SEQ ID NO:113、反义链SEQ ID NO:114;或者正义链SEQ ID NO:157、反义链SEQ ID NO:158。优选地,形成多靶siRNA组合的siRNA分子是由选自下组的正义链和反义链组成的双链RNA分子:正义链SEQ ID NO:25、反义链SEQ ID NO:26;正义链SEQ ID NO:43、反义链SEQ ID NO:44;正 义链SEQ ID NO:53、反义链SEQ ID NO:54;正义链SEQ ID NO:67、反义链SEQ ID NO:68。When two or more siRNA molecules are contained in an anti-HBV drug, a mixture of these siRNA molecules targets different sites of the HBV genome such as the polymerase protein P gene, and thus may be referred to as "multi-target siRNA" or "multi-target siRNA combination". For example, the siRNA molecule forming a multi-target siRNA combination is a double-stranded RNA molecule consisting of a sense strand and an antisense strand selected from the group consisting of: sense strand SEQ ID NO: 25, anti-sense strand SEQ ID NO: 26; sense strand SEQ ID NO: 41, antisense strand SEQ ID NO: 42; sense strand SEQ ID NO: 43, antisense strand SEQ ID NO: 44; sense strand SEQ ID NO: 53, antisense strand SEQ ID NO: 54, sense strand SEQ ID NO: 65, antisense strand SEQ ID NO: 66; sense strand SEQ ID NO: 67, antisense strand SEQ ID NO: 68; sense strand SEQ ID NO: 85, antisense strand SEQ ID NO: 86; Chain SEQ ID NO: 113, antisense strand SEQ ID NO: 114; or sense strand SEQ ID NO: 157, antisense strand SEQ ID NO: 158. Preferably, the siRNA molecule forming the multi-target siRNA combination is a double-stranded RNA molecule consisting of a sense strand and an antisense strand selected from the group consisting of: sense strand SEQ ID NO: 25, anti-sense strand SEQ ID NO: 26; sense strand SEQ ID NO:43, antisense strand SEQ ID NO:44; The sense strand SEQ ID NO: 53, the antisense strand SEQ ID NO: 54; the sense strand SEQ ID NO: 67, the antisense strand SEQ ID NO: 68.
在另一种优选的实施方式中,上述抗HBV药物中包含一种上述组合式dsRNA分子。In another preferred embodiment, the above anti-HBV drug comprises one of the above-described combined dsRNA molecules.
在另一种优选的实施方式中,上述抗HBV药物中包含一种上述siRNA表达框、或者两种以上siRNA表达框的混合物。更优选抗HBV药物中包含一种上述siRNA表达框。In another preferred embodiment, the anti-HBV drug comprises one of the above siRNA expression cassettes or a mixture of two or more siRNA expression cassettes. More preferably, the anti-HBV drug comprises one of the above siRNA expression cassettes.
在另一种优选的实施方式中,上述抗HBV药物中包含一种上述组合式dsRNA分子的表达框。In another preferred embodiment, the anti-HBV drug comprises an expression cassette of one of the above-described combined dsRNA molecules.
优选地,上述药物是注射剂型或口服剂型。Preferably, the above medicament is an injectable or oral dosage form.
优选地,上述药物还包含必要的佐剂。Preferably, the above medicament further comprises an essential adjuvant.
体外实验证明,本发明提供的siRNA分子或者组合式dsRNA分子的反义链可特异性地与HBV基因组转录本结合,使其降解,从而干扰转录后翻译过程,抑制HBV蛋白质翻译和病毒复制,达到治疗乙型肝炎的目的。In vitro experiments have demonstrated that the antisense strand of the siRNA molecule or the combined dsRNA molecule provided by the present invention can specifically bind to the HBV genome transcript, thereby degrading, thereby interfering with the post-transcriptional translation process, inhibiting HBV protein translation and viral replication, and achieving The purpose of treating hepatitis B.
具体实施方式detailed description
以下结合具体实施例对本发明做进一步详细说明。应理解,以下实施例仅用于说明本发明而非用于限定本发明的范围。The present invention will be further described in detail below in conjunction with specific embodiments. It is understood that the following examples are merely illustrative of the invention and are not intended to limit the scope of the invention.
在本文中,术语“siRNA”、“siRNA序列”、“siRNA分子”、“双链siRNA”、或“双链siRNA分子”可以互换,它们表示的意思和范围相同。其中,siRNA是正义链和反义链退火形成的双链结构。As used herein, the terms "siRNA", "siRNA sequence", "siRNA molecule", "double-stranded siRNA", or "double-stranded siRNA molecule" are used interchangeably and mean the same meaning and scope. Among them, siRNA is a double-stranded structure formed by annealing the sense strand and the antisense strand.
在本文中,术语“dsRNA”、“dsRNA序列”、“dsRNA分子”、“双链RNA”、或“双链RNA分子”可以互换,它们表示的意思和范围相同,都是正义链和反义链退火形成的双链结构。术语“组合式dsRNA”是指两种以上siRNA组合在一个分子中形成新的双链RNA分子。As used herein, the terms "dsRNA", "dsRNA sequence", "dsRNA molecule", "double-stranded RNA", or "double-stranded RNA molecule" are used interchangeably and mean the same meaning and scope, both sense strand and anti- A double-stranded structure formed by annealing the sense strand. The term "combined dsRNA" refers to a combination of two or more siRNAs that form a new double-stranded RNA molecule in one molecule.
本文中,术语“(偶数)与上述奇数相对应”是指偶数n+1与奇数n形成一一对应的关系,其中奇数n选自1-159,相应地,偶数n+1选自2-160。比如奇数序列号的正义链SEQ ID NO:1与偶数序列号的反义链SEQ ID NO:2相对应、奇数序列号的正义链SEQ ID NO:3与偶数序列号的反义链SEQ ID NO:4相对应、奇数序列号的正义链SEQ ID NO:159与偶数序列号的反义链SEQ ID NO:160相对应,依次类推。 Herein, the term "(even) corresponds to the above odd number" means that the even number n+1 and the odd number n form a one-to-one correspondence, wherein the odd number n is selected from 1-159, and accordingly, the even number n+1 is selected from 2 - 160. For example, the sense strand of the odd sequence number SEQ ID NO: 1 corresponds to the antisense strand of the even sequence number SEQ ID NO: 2, the sense strand of the odd sequence number SEQ ID NO: 3 and the antisense strand of the even sequence number SEQ ID NO The corresponding strand of SEQ ID NO: 159 corresponding to the odd-numbered sequence number of SEQ ID NO: 159 corresponds to the antisense strand of SEQ ID NO: 160 of the even-numbered sequence, and so on.
本文中,术语“RNA表达框”包括siRNA表达框和组合式dsRNA表达框。为方便起见,对于本发明的RNA表达框,在本文中可将“U6启动子-siRNA转录模板-H1启动子”简写为“U6-siRNA转录模板-H1”或“U6-siRNA-H1”或“siRNA表达框”,它们表示的意思和范围相同。类似地,可将“U6启动子-dsRNA转录模板-H1启动子”简写为“U6-dsRNA转录模板-H1”或“U6-dsRNA-H1”或“dsRNA表达框”,它们表示的意思和范围相同。As used herein, the term "RNA expression cassette" includes both siRNA expression cassettes and combinatorial dsRNA expression cassettes. For convenience, for the RNA expression cassette of the present invention, the "U6 promoter-siRNA transcription template-H1 promoter" may be abbreviated herein as "U6-siRNA transcription template-H1" or "U6-siRNA-H1" or "siRNA expression cassettes", which represent the same meaning and scope. Similarly, the "U6 promoter-dsRNA transcription template-H1 promoter" can be abbreviated as "U6-dsRNA transcription template-H1" or "U6-dsRNA-H1" or "dsRNA expression cassette", which means meaning and range the same.
本发明的siRNA分子筛选于针对HBV基因组的功能保守区而制备的siRNA分子库,本发明采用专利号为ZL 200710024217.6的方法制备了siRNA分子库,其优点在于所制备得到的siRNA位点随机分布,长度可控,可以提高有效靶位点的命中率。The siRNA molecule of the present invention is screened for a siRNA molecular library prepared for the functionally conserved region of the HBV genome. The siRNA molecule library is prepared by the method of the invention with the patent number ZL 200710024217.6, which has the advantages that the prepared siRNA sites are randomly distributed. The length is controllable and can increase the hit rate of effective target sites.
siRNA的制备可采用多种方法,比如:化学合成法、体外转录、酶切长链dsRNA、载体表达siRNA、PCR合成siRNA表达元件等,这些方法的出现为研究者提供了可选择的空间,可以更好地获得基因沉默效率。The preparation of siRNA can be carried out by various methods, such as: chemical synthesis, in vitro transcription, enzymatic cleavage of long-chain dsRNA, vector expression of siRNA, PCR synthesis of siRNA expression elements, etc., and the emergence of these methods provides researchers with an alternative space. Better access to gene silencing efficiency.
本发明从siRNA分子库中筛选出来的较为理想的siRNA共有80个,分子长度为16-31个碱基对(bp)。它们的正义链和反义链分别为奇数序列号SEQ ID NO:1-159和偶数序列号SEQ ID NO:2-160,具体序列已列于表1中。The preferred siRNAs screened from the siRNA molecular library of the present invention have a total of 80 siRNAs with a molecular length of 16-31 base pairs (bp). Their sense and antisense strands are odd sequence numbers SEQ ID NO: 1-159 and even sequence numbers SEQ ID NO: 2-160, respectively, the specific sequences of which are listed in Table 1.
出于治疗乙型肝炎的应用目的,可将本发明的siRNA分子、表达siRNA分子的表达框、或者包含siRNA表达框的质粒、组合式dsRNA分子、表达组合式dsRNA的表达框、或者包含组合式dsRNA表达框的质粒作为药物有效成分直接给药于受药者身上特定部位,比如病灶组织。For the purpose of treating hepatitis B, the siRNA molecule of the present invention, the expression cassette expressing the siRNA molecule, or the plasmid comprising the siRNA expression cassette, the combined dsRNA molecule, the expression cassette expressing the combined dsRNA, or the combination thereof may be used. The plasmid of the dsRNA expression cassette is directly administered as a pharmaceutical active ingredient to a specific part of the subject, such as a lesion tissue.
本发明的药物的剂型可以为多种形式,只要适合于相应疾病的给药、并且恰当地保持siRNA分子和/或组合式dsRNA分子、以及表达RNA分子的DNA(包括表达框和质粒)的活性。比如,对于注射用给药系统,剂型可以是冻干粉。对于皮肤给药,剂型可以选择软膏或涂液。The dosage form of the medicament of the present invention may be in various forms as long as it is suitable for administration of the corresponding disease, and appropriately maintains the activity of the siRNA molecule and/or the combined dsRNA molecule, and the DNA (including the expression cassette and the plasmid) expressing the RNA molecule. . For example, for an injectable delivery system, the dosage form can be a lyophilized powder. For dermal administration, the ointment may be selected from ointments or lotions.
任选地,上述药物剂型中可以包含任何药学可接受的辅助剂(佐剂),只要其适合于相应的给药体系、并且恰当地保持siRNA分子和/或组合式dsRNA分子、以及表达RNA分子的DNA(包括表达框和质粒)的活性。Optionally, any pharmaceutically acceptable adjuvant (adjuvant) may be included in the above pharmaceutical dosage form as long as it is suitable for the corresponding administration system, and properly maintains the siRNA molecule and/or the combined dsRNA molecule, and the expressed RNA molecule. The activity of the DNA (including the expression cassette and plasmid).
实施例Example
材料和方法Materials and Method
本文中的RNA分子和引物序列由百奥迈科生物技术有限公司合成;表达载体由 百奥迈科生物技术有限公司亚克隆制备。The RNA molecules and primer sequences herein are synthesized by BioMico Biotechnology Co., Ltd.; Subcloning of Biomax Biotech Co., Ltd.
实施例1 HBV基因组全位点siRNA分子库的制备Example 1 Preparation of HBV genome full-site siRNA molecular library
从HepG2 2.2.15细胞中获取HBV基因组DNA,HepG2 2.2.15细胞含2个拷贝的HBV基因组,能稳定分泌HBsAg、HBeAg、HBcAg及Dane颗粒,并可检测到细胞内HBV的DNA和RNA等中间复制体,其含有HBV的血清亚型为ayw(GenBank Accession number:U95551),按照专利(CN100570022C)的方法构建HBV基因组的siRNA分子库。Obtaining HBV genomic DNA from HepG2 2.2.15 cells, HepG2 2.2.15 cells contain 2 copies of HBV genome, which can stably secrete HBsAg, HBeAg, HBcAg and Dane particles, and can detect the DNA and RNA of HBV in the cell. A replicating body containing a serum subtype of HBV is ayw (GenBank Accession number: U95551), and a siRNA molecular library of the HBV genome was constructed according to the method of the patent (CN100570022C).
实施例2 siRNA表达框的制备与siRNA靶点筛选Example 2 Preparation of siRNA expression cassette and screening of siRNA target
1.siRNA表达框的制备1. Preparation of siRNA expression cassette
1.1PCR扩增制备U6-siRNA转录模板-H1表达框:从实施例1制备的HBV基因组的siRNA分子库中进行筛选,取80个siRNA阳性克隆质粒为模板,用Pfu DNA聚合酶(百奥迈科)通过PCR的方法扩增制备U6-siRNA转录模板-H1表达框。1.1 PCR amplification to prepare U6-siRNA transcription template-H1 expression cassette: Screening from the siRNA molecular library of the HBV genome prepared in Example 1, using 80 siRNA positive clone plasmids as templates, using Pfu DNA polymerase (Bai DNA) The U6-siRNA transcription template-H1 expression cassette was amplified by PCR.
各PCR反应体系为50μl反应体系:0.5μl模板DNA(10-50ng),1μl 5’U6引物(10μM),1μl 3’H1引物(10μM),1μl dNTP(10mM),0.5μl Pfu DNA聚合酶,用ddH2O补足到50μl。反应条件为:95℃1min预变性,95℃15sec变性,58℃30sec退火,72℃30sec延伸,20个循环。1.0%琼脂凝胶电泳检测,PCR产物条带单一,片段大小符合实验要求(未图示)。Each PCR reaction system was 50 μl of reaction system: 0.5 μl of template DNA (10-50 ng), 1 μl of 5'U6 primer (10 μM), 1 μl of 3'H1 primer (10 μM), 1 μl of dNTP (10 mM), 0.5 μl of Pfu DNA polymerase, Make up to 50 μl with ddH 2 O. The reaction conditions were: pre-denaturation at 95 ° C for 1 min, denaturation at 95 ° C for 15 sec, annealing at 58 ° C for 30 sec, extension at 72 ° C for 30 sec, 20 cycles. The mixture of PCR products was detected by 1.0% agarose gel electrophoresis, and the fragment size was in accordance with the experimental requirements (not shown).
所用引物序列:Primer sequence used:
5’U6引物:5’-AAGGTCGGGCAGGAAGAGGGC-3’;5'U6 primer: 5'-AAGGTCGGGCAGGAAGAGGGC-3';
3’H1引物:5’-TATTTGCATGTCGCTATGTGTTCT-3’。3'H1 primer: 5'-TATTTGCATGTCGCTATGTGTTCT-3'.
1.2表达框PCR产物纯化:1.0%琼脂糖凝胶电泳分离PCR扩增得到的表达框,并用琼脂糖凝胶纯化试剂盒纯化凝胶产物。纯化后的DNA再次进行1.0%琼脂糖凝胶电泳检测,纯化后的U6-siRNA转录模板-H1表达框纯度和浓度符合要求,用紫外分光光度计测得制备后的表达框浓度约为200ng/μl。1.2 Expression cassette PCR product purification: The expression cassette obtained by PCR amplification was separated by 1.0% agarose gel electrophoresis, and the gel product was purified by an agarose gel purification kit. The purified DNA was again subjected to 1.0% agarose gel electrophoresis. The purity and concentration of the purified U6-siRNA transcription template-H1 expression frame were in accordance with the requirements. The concentration of the prepared frame was determined to be about 200 ng by UV spectrophotometer. Ll.
2.siRNA靶点筛选2. siRNA target screening
2.1细胞培养:HepG2 2.2.15细胞在含10%FBS的DMEM培养基(Thermo公司)中,37℃、5%CO2培养箱培养。2.1 Cell culture: HepG2 2.2.15 cells were cultured in DMEM medium (Thermo) containing 10% FBS in a 37 ° C, 5% CO 2 incubator.
2.2细胞铺板并转染:将细胞按2.5×105个/ml接种到96孔细胞培养板中,37℃、 5%CO2培养箱培养过夜至汇合度约50%。2.2 Cell plating and transfection: The cells were seeded at a rate of 2.5 × 10 5 /ml into a 96-well cell culture plate, and cultured overnight at 37 ° C in a 5% CO 2 incubator to a confluence of about 50%.
Figure PCTCN2017101022-appb-000001
2000转染试剂(Thermo公司),按说明书将0.2μg/孔的“U6-siRNA转录模板-H1表达框DNA”转染至细胞中。未转染的细胞作为阴性对照(NC)。
use
Figure PCTCN2017101022-appb-000001
2000 transfection reagent (Thermo), 0.2 μg/well of "U6-siRNA transcription template-H1 expression cassette DNA" was transfected into the cells according to the instructions. Untransfected cells served as a negative control (NC).
2.3mRNA表达水平检测:用实时定量PCR检测各实验组中HBV聚合酶基因的mRNA水平表达水平,取4μl RNA为模板进行实时定量PCR反应。2.3 mRNA expression level detection: Real-time quantitative PCR was used to detect the mRNA level expression level of HBV polymerase gene in each experimental group, and 4 μl RNA was used as a template for real-time quantitative PCR reaction.
用基因特异性引物检测样本中HBV聚合酶mRNA表达水平,同时扩增看家基因GAPDH作为内参对照。每个反应做3个平行实验。建立如下10μl反应体系:2μl模板RNA,5μl 2×One-Step qPCR Mix,0.2μl正向引物(10μM),0.2μl反向引物(10μM),用无RNase水补足体系至10μl。反应条件:42℃反转录30min,95℃预变性10min,95℃变性20sec,60℃退火30sec,循环35次。The gene-specific primers were used to detect the expression level of HBV polymerase mRNA in the sample, and the housekeeping gene GAPDH was amplified as an internal reference control. Three parallel experiments were performed for each reaction. The following 10 μl reaction system was established: 2 μl of template RNA, 5 μl of 2×One-Step qPCR Mix, 0.2 μl of forward primer (10 μM), 0.2 μl of reverse primer (10 μM), and the system was supplemented to 10 μl with RNase-free water. Reaction conditions: reverse transcription at 42 ° C for 30 min, pre-denaturation at 95 ° C for 10 min, denaturation at 95 ° C for 20 sec, annealing at 60 ° C for 30 sec, and 35 cycles.
实时定量PCR引物序列:Real-time quantitative PCR primer sequences:
HBV正向引物:5’-TGTGGTTATCCTGCGTTAATG-3’;HBV forward primer: 5'-TGTGGTTATCCTGCGTTAATG-3';
HBV反向引物:5’-GCGTCAGCAAACACTTGG-3’;HBV reverse primer: 5'-GCGTCAGCAAACACTTGG-3';
GAPDH正向引物:5’-GAAGGTGAAGGTCGGAGTC-3’;GAPDH forward primer: 5'-GAAGGTGAAGGTCGGAGTC-3';
GAPDH反向引物:5’-GAAGATGGTGATGGGATTTC-3’。GAPDH reverse primer: 5'-GAAGATGGTGATGGGATTTC-3'.
2.4结果分析:用2-ΔΔct法分析各siRNA转录模板转染的细胞中HBV基因组转录本(mRNA)的相对表达水平,实验结果如表1中所示。2.4 Analysis of results: The relative expression levels of HBV genomic transcripts (mRNA) in cells transfected with each siRNA transcription template were analyzed by 2- ΔΔct method. The experimental results are shown in Table 1.
表1:各siRNA序列及其转录模板对HBV基因组转录本表达水平的抑制作用Table 1: Inhibition of HBV genome transcript expression levels by siRNA sequences and their transcriptional templates
Figure PCTCN2017101022-appb-000002
Figure PCTCN2017101022-appb-000002
Figure PCTCN2017101022-appb-000003
Figure PCTCN2017101022-appb-000003
Figure PCTCN2017101022-appb-000004
Figure PCTCN2017101022-appb-000004
Figure PCTCN2017101022-appb-000005
Figure PCTCN2017101022-appb-000005
Figure PCTCN2017101022-appb-000006
Figure PCTCN2017101022-appb-000006
表中“S”代表正义链(Sense strand),“As”代表反义链(Antisense strand)。In the table, "S" stands for Sense strand and "As" stands for Antisense strand.
由表1中数据可见,各siRNA转录模板转染细胞后,HBV基因组转录本(HBV mRNA)的相对表达水平≤0.5,即这80种siRNA的转录模板的沉默效果≥50%。It can be seen from the data in Table 1 that the relative expression level of the HBV genome transcript (HBV mRNA) is ≤0.5 after transfection of each siRNA transcription template, that is, the silencing effect of the transcription templates of the 80 siRNAs is ≥50%.
实施例3体外筛选siRNAExample 3 in vitro screening of siRNA
1.细胞培养:HepG2 2.2.15细胞在含10%FBS的DMEM培养基(Thermo公司)中,37℃、5%CO2培养箱培养。1. Cell culture: HepG2 2.2.15 cells were cultured in DMEM medium (Thermo) containing 10% FBS in a 37 ° C, 5% CO 2 incubator.
2.细胞铺板并转染:将细胞按2.5×105个/ml接种到96孔细胞培养板中,37℃、5%CO2培养箱培养过夜至汇合度约50%。2. Cell plating and transfection: The cells were seeded at 2.5 × 10 5 /ml into 96-well cell culture plates, and cultured overnight at 37 ° C in a 5% CO 2 incubator to a confluence of about 50%.
Figure PCTCN2017101022-appb-000007
2000转染试剂(Thermo公司),按说明书将50nM的siRNA转染至细胞中,阴性对照(negative control,NC)选取与人基因无同源性的siRNA,其具体序列是:
use
Figure PCTCN2017101022-appb-000007
2000 transfection reagent (Thermo), 50nM siRNA was transfected into the cells according to the instructions, and the negative control (NC) selected siRNAs with no homology to the human gene. The specific sequence is:
正义链:5’-UUCUCCGAACGUGUCACGUdTdT-3’;Justice chain: 5'-UUCUCCGAACGUGUCACGUdTdT-3';
反义链:5’-ACGUGACACGUUCGGAGAAdTdT-3’Antisense strand: 5'-ACGUGACACGUUCGGAGAAdTdT-3’
3.RNA提取:转染后48h,用冷的PBS洗涤细胞数次,离心去上清后,用RISO RNA提取试剂(百奥迈科)提取细胞中的RNA,按试剂说明书操作。3. RNA extraction: 48 hours after transfection, the cells were washed several times with cold PBS, centrifuged to remove the supernatant, and the RNA in the cells was extracted with RISO RNA extraction reagent (Byomacco) and operated according to the reagent instructions.
4.mRNA表达水平检测:用实时定量PCR检测各实验组中HBV聚合酶基因(P基因)的mRNA水平表达水平,取4μl RNA为模板进行实时定量PCR反应。4. mRNA expression level detection: Real-time quantitative PCR was used to detect the mRNA level of HBV polymerase gene (P gene) in each experimental group, and 4 μl RNA was used as a template for real-time quantitative PCR reaction.
用基因特异性引物检测样本中HBV聚合酶mRNA表达水平,同时扩增看家基因GAPDH作为内参对照。每个反应做3个平行实验。建立如下10μl反应体系:2μl模板RNA,5μl 2×One-Step qPCR Mix,0.2μl正向引物(10μM),0.2μl反向引物(10μM),用无RNase水补足体系至10μl。反应条件:42℃反转录30min,95℃预变性 10min,95℃变性20sec,60℃退火30sec,循环35次。The gene-specific primers were used to detect the expression level of HBV polymerase mRNA in the sample, and the housekeeping gene GAPDH was amplified as an internal reference control. Three parallel experiments were performed for each reaction. The following 10 μl reaction system was established: 2 μl of template RNA, 5 μl of 2×One-Step qPCR Mix, 0.2 μl of forward primer (10 μM), 0.2 μl of reverse primer (10 μM), and the system was supplemented to 10 μl with RNase-free water. Reaction conditions: reverse transcription at 42 ° C for 30 min, pre-denaturation at 95 ° C 10 min, denaturation at 95 ° C for 20 sec, annealing at 60 ° C for 30 sec, cycle 35 times.
5.结果分析:用2-ΔΔCt法分析各siRNA转染细胞后HBV聚合酶基因转录本(HBV mRNA)的相对表达水平,实验结果如表1中所示。5. Analysis of results: The relative expression levels of HBV polymerase gene transcripts (HBV mRNA) after transfection of each siRNA were analyzed by 2- ΔΔCt method. The experimental results are shown in Table 1.
表2:siRNA分子对HBV聚合酶基因转录本表达水平的抑制作用Table 2: Inhibition of siRNA molecules on the expression level of HBV polymerase gene transcripts
Figure PCTCN2017101022-appb-000008
Figure PCTCN2017101022-appb-000008
Figure PCTCN2017101022-appb-000009
Figure PCTCN2017101022-appb-000009
表中“S”代表正义链(Sense strand),“As”代表反义链(Antisense strand)。In the table, "S" stands for Sense strand and "As" stands for Antisense strand.
由表2中数据可见,各siRNA转染细胞后,有38种siRNA导致HBV mRNA的相对表达水平≤0.4,即沉默效果≥60%。其中,有12个siRNA分子导致HBV mRNA的相对表达水平≤0.2,即沉默效果≥80%,它们包括:正义链为SEQ ID NO:3、反 义链为SEQ ID NO:4的HBV1602;正义链为SEQ ID NO:25、反义链为SEQ ID NO:26的HBV1613;正义链为SEQ ID NO:27、反义链为SEQ ID NO:28的HBV1614;正义链为SEQ ID NO:43、反义链为SEQ ID NO:44的HBV1622;正义链为SEQ ID NO:49、反义链为SEQ ID NO:50的HBV1625;正义链为SEQ ID NO:71、反义链为SEQ ID NO:72的HBV1636;正义链为SEQ ID NO:81、反义链为SEQ ID NO:82的HBV1641;正义链为SEQ ID NO:93、反义链为SEQ ID NO:94的HBV1647;正义链为SEQ ID NO:99、反义链为SEQ ID NO:100的HBV1650;正义链为SEQ ID NO:109、反义链为SEQ ID NO:110的HBV1655;正义链为SEQ ID NO:149、反义链为SEQ ID NO:150的HBV1675;以及正义链为SEQ ID NO:151、反义链为SEQ ID NO:152的HBV1676。It can be seen from the data in Table 2 that after transfection of cells with each siRNA, 38 siRNAs resulted in a relative expression level of HBV mRNA ≤ 0.4, ie, a silencing effect ≥ 60%. Among them, 12 siRNA molecules lead to the relative expression level of HBV mRNA ≤ 0.2, that is, the silencing effect ≥ 80%, which includes: the sense strand is SEQ ID NO: 3, the opposite The sense strand is HBV1602 of SEQ ID NO: 4; the sense strand is SEQ ID NO: 25, the antisense strand is HBV1613 of SEQ ID NO: 26; the sense strand is SEQ ID NO: 27, and the antisense strand is SEQ ID NO: 28. HBV1614; sense strand is SEQ ID NO:43, antisense strand is HBV1622 of SEQ ID NO:44; sense strand is SEQ ID NO:49, antisense strand is SEQ ID NO:50, HBV1625; sense strand is SEQ ID NO:71, the antisense strand is HBV1636 of SEQ ID NO:72; the sense strand is SEQ ID NO:81, the antisense strand is HBV1641 of SEQ ID NO:82; the sense strand is SEQ ID NO:93, and the antisense strand is HBV1647 of SEQ ID NO: 94; sense strand is SEQ ID NO: 99, antisense strand is HBV1650 of SEQ ID NO: 100; sense strand is SEQ ID NO: 109, antisense strand is SEQ ID NO: 110 of HBV1655; The sense strand is SEQ ID NO: 149, the antisense strand is HBV1675 of SEQ ID NO: 150; and the sense strand is SEQ ID NO: 151 and the antisense strand is SEQ ID NO: 152 of HBV1676.
本发明筛选出的siRNA分子中,有4个siRNA分子可导致HBV mRNA的相对表达水平≤0.2,并且其转录模板导致HBV mRNA的相对表达水平≤0.4,它们包括:正义链为SEQ ID NO:3、反义链为SEQ ID NO:4的HBV1602;正义链为SEQ ID NO:71、反义链为SEQ ID NO:72的HBV1636;正义链为SEQ ID NO:93、反义链为SEQ ID NO:94的HBV1647;或者正义链为SEQ ID NO:149、反义链为SEQ ID NO:150的HBV1675。实验表明它们对于HBV基因的沉默效果突出。Among the siRNA molecules screened by the present invention, 4 siRNA molecules can cause the relative expression level of HBV mRNA ≤ 0.2, and the transcription template thereof results in the relative expression level of HBV mRNA ≤ 0.4, which includes: the sense strand is SEQ ID NO: 3 The antisense strand is HBV1602 of SEQ ID NO: 4; the sense strand is SEQ ID NO: 71, the antisense strand is HBV1636 of SEQ ID NO: 72; the sense strand is SEQ ID NO: 93, and the antisense strand is SEQ ID NO: HBV1647 of 94; or HBV1675 of SEQ ID NO: 149 and the antisense strand of SEQ ID NO: 150. Experiments have shown that their silencing effect on the HBV gene is outstanding.
实施例4多靶siRNA组合Example 4 Multi-target siRNA combination
1.细胞培养:HepG2 2.2.15细胞在含10%FBS的DMEM培养基(Thermo公司)中,37℃、5%CO2培养箱培养。1. Cell culture: HepG2 2.2.15 cells were cultured in DMEM medium (Thermo) containing 10% FBS in a 37 ° C, 5% CO 2 incubator.
2.细胞铺板并转染:将细胞按2.5×105个/ml接种到96孔细胞培养板中,37℃、5%CO2培养箱培养过夜至汇合度约50%。2. Cell plating and transfection: The cells were seeded at 2.5 × 10 5 /ml into 96-well cell culture plates, and cultured overnight at 37 ° C in a 5% CO 2 incubator to a confluence of about 50%.
Figure PCTCN2017101022-appb-000010
2000转染试剂(Thermo公司),按说明书将50nM的siRNA混合物(两种siRNA分子的摩尔浓度比为1:1。三种siRNA分子摩尔浓度比为1:1:1)转染至细胞中,阴性对照(negative control,NC)选取与人基因无同源性的siRNA。
use
Figure PCTCN2017101022-appb-000010
2000 transfection reagent (Thermo), 50 nM siRNA mixture (molar concentration ratio of two siRNA molecules was 1:1. The molar ratio of three siRNA molecules was 1:1:1) was transfected into the cells according to the instructions. Negative control (NC) selects siRNAs that have no homology to human genes.
3.RNA提取:转染后48h,用冷的PBS洗涤细胞数次,离心去上清后,用RISO RNA提取试剂(百奥迈科)提取细胞中的RNA,按试剂说明书操作。3. RNA extraction: 48 hours after transfection, the cells were washed several times with cold PBS, centrifuged to remove the supernatant, and the RNA in the cells was extracted with RISO RNA extraction reagent (Byomacco) and operated according to the reagent instructions.
4.mRNA表达水平检测:用实时定量PCR检测各实验组中HBV聚合酶基因(P基因)的mRNA水平表达水平,取4μl RNA为模板进行实时定量PCR反应。4. mRNA expression level detection: Real-time quantitative PCR was used to detect the mRNA level of HBV polymerase gene (P gene) in each experimental group, and 4 μl RNA was used as a template for real-time quantitative PCR reaction.
用基因特异性引物检测样本中HBV聚合酶mRNA表达水平,同时扩增看家基因 GAPDH作为内参对照。每个反应做3个平行实验。建立如下10μl反应体系:2μl模板RNA,5μl 2×One-Step qPCR Mix,0.2μl正向引物(10μM),0.2μl反向引物(10μM),用无RNase水补足体系至10μl。反应条件:42℃反转录30min,95℃预变性10min,95℃变性20sec,60℃退火30sec,循环35次。Detection of HBV polymerase mRNA expression levels in samples using gene-specific primers, and amplification of housekeeping genes GAPDH was used as an internal control. Three parallel experiments were performed for each reaction. The following 10 μl reaction system was established: 2 μl of template RNA, 5 μl of 2×One-Step qPCR Mix, 0.2 μl of forward primer (10 μM), 0.2 μl of reverse primer (10 μM), and the system was supplemented to 10 μl with RNase-free water. Reaction conditions: reverse transcription at 42 ° C for 30 min, pre-denaturation at 95 ° C for 10 min, denaturation at 95 ° C for 20 sec, annealing at 60 ° C for 30 sec, and 35 cycles.
5.结果分析:用2-ΔΔCt法分析各siRNA混合物转染细胞后HBV聚合酶基因转录本(HBV mRNA)的相对表达水平,实验结果如表3中所示。5. Analysis of results: The relative expression levels of HBV polymerase gene transcripts (HBV mRNA) after transfection of each siRNA mixture were analyzed by 2- ΔΔCt method. The experimental results are shown in Table 3.
表3多靶siRNA组合对HBV聚合酶基因转录本表达水平的抑制作用Table 3 Inhibition of HBV polymerase gene transcript expression levels by multi-target siRNA combination
多靶siRNA组合Multi-target siRNA combination mRNA相对表达水平Relative expression level of mRNA
HBV1622+HBV1627HBV1622+HBV1627 0.160.16
HBV1622+HBV1634HBV1622+HBV1634 0.240.24
HBV1627+HBV1634HBV1627+HBV1634 0.140.14
HBV1622+HBV1627+HBV1634HBV1622+HBV1627+HBV1634 0.180.18
HBV1613+HBV1627+HBV1634HBV1613+HBV1627+HBV1634 0.150.15
由表3中数据可见,采用HBV1613、HBV1622、HBV1627和HBV1634这四种靶向HBV基因组不同位点的siRNA形成5种组合,各组合的siRNA混合物在转染细胞后都会导致HBV mRNA的相对表达水平≤0.24,即沉默效果≥76%,表明这四种siRNA分子形成的5种组合都能够有效地抑制HBV聚合酶基因,具有联合给药的应用前景。 It can be seen from the data in Table 3 that four combinations of HBV1613, HBV1622, HBV1627 and HBV1634 targeting different sites of HBV genome form 5 combinations, and the siRNA mixture of each combination will result in the relative expression level of HBV mRNA after transfecting cells. ≤ 0.24, that is, the silencing effect ≥ 76%, indicating that the five combinations formed by the four siRNA molecules can effectively inhibit the HBV polymerase gene, and have the application prospect of co-administration.

Claims (10)

  1. 一种抑制HBV的siRNA分子,其由正义链和反义链组成,其中正义链选自奇数n序列号的SEQ ID NO:1-159,反义链选自与上述奇数n相对应的偶数n+1序列号的SEQ ID NO:2-160。An HBV-inhibiting siRNA molecule consisting of a sense strand and an antisense strand, wherein the sense strand is selected from the SEQ ID NOs: 1-159 of the odd-numbered n-SEQ ID NO: 1-159, and the antisense strand is selected from the even-numbered n corresponding to the odd-numbered n above SEQ ID NO: 2-160 of the +1 sequence number.
  2. 如权利要求1所述的siRNA分子,其特征在于,所述siRNA分子是由选自下组的正义链和反义链组成的双链RNA分子:正义链SEQ ID NO:1、反义链SEQ ID NO:2;正义链SEQ ID NO:3、反义链SEQ ID NO:4;正义链SEQ ID NO:25、反义链SEQ ID NO:26;正义链SEQ ID NO:27、反义链SEQ ID NO:28;正义链SEQ ID NO:39、反义链SEQ ID NO:40;正义链SEQ ID NO:41、反义链SEQ ID NO:42;正义链SEQ ID NO:43、反义链SEQ ID NO:44;正义链SEQ ID NO:45、反义链SEQ ID NO:46;正义链SEQ ID NO:49、反义链SEQ ID NO:50;正义链SEQ ID NO:53、反义链SEQ ID NO:54;正义链SEQ ID NO:63、反义链SEQ ID NO:64;正义链SEQ ID NO:65、反义链SEQ ID NO:66;正义链SEQ ID NO:67、反义链SEQ ID NO:68;正义链SEQ ID NO:71、反义链SEQ ID NO:72;正义链SEQ ID NO:75、反义链SEQ ID NO:76;正义链SEQ ID NO:77、反义链SEQ ID NO:78;正义链SEQ ID NO:79、反义链SEQ ID NO:80;正义链SEQ ID NO:81、反义链SEQ ID NO:82;正义链SEQ ID NO:83、反义链SEQ ID NO:84;正义链SEQ ID NO:85、反义链SEQ ID NO:86;正义链SEQ ID NO:87、反义链SEQ ID NO:88;正义链SEQ ID NO:91、反义链SEQ ID NO:92;正义链SEQ ID NO:93、反义链SEQ ID NO:94;正义链SEQ ID NO:97、反义链SEQ ID NO:98;正义链SEQ ID NO:99、反义链SEQ ID NO:100;正义链SEQ ID NO:103、反义链SEQ ID NO:104;正义链SEQ ID NO:109、反义链SEQ ID NO:110;正义链SEQ ID NO:111、反义链SEQ ID NO:112;正义链SEQ ID NO:113、反义链SEQ ID NO:114;正义链SEQ ID NO:115、反义链SEQ ID NO:116;正义链SEQ ID NO:125、反义链SEQ ID NO:126;正义链SEQ ID NO:127、反义链SEQ ID NO:128;正义链SEQ ID NO:133、反义链SEQ ID NO:134;正义链SEQ ID NO:145、反义链SEQ ID NO:146;正义链SEQ ID NO:147、反义链SEQ ID NO:148;正义链SEQ ID NO:149、反义链SEQ ID NO:150;正义链SEQ ID NO:151、反义链SEQ ID NO:152;或者正义链SEQ ID NO:157、反义链SEQ ID NO:158。The siRNA molecule according to claim 1, wherein the siRNA molecule is a double-stranded RNA molecule consisting of a sense strand and an antisense strand selected from the group consisting of: sense strand SEQ ID NO: 1, anti-sense strand SEQ ID NO: 2; sense strand SEQ ID NO: 3, antisense strand SEQ ID NO: 4; sense strand SEQ ID NO: 25, antisense strand SEQ ID NO: 26; sense strand SEQ ID NO: 27, antisense strand SEQ ID NO:28; sense strand SEQ ID NO:39, antisense strand SEQ ID NO:40; sense strand SEQ ID NO:41, antisense strand SEQ ID NO:42; sense strand SEQ ID NO:43, antisense SEQ ID NO: 44; sense strand SEQ ID NO: 45, antisense strand SEQ ID NO: 46; sense strand SEQ ID NO: 49, antisense strand SEQ ID NO: 50; sense strand SEQ ID NO: 53, reverse SEQ ID NO: 54; sense strand SEQ ID NO: 63, antisense strand SEQ ID NO: 64; sense strand SEQ ID NO: 65, antisense strand SEQ ID NO: 66; sense strand SEQ ID NO: 67, Antisense strand SEQ ID NO: 68; sense strand SEQ ID NO: 71, anti-sense strand SEQ ID NO: 72; sense strand SEQ ID NO: 75, anti-sense strand SEQ ID NO: 76; sense strand SEQ ID NO: 77 , antisense strand SEQ ID NO: 78; sense strand SEQ ID NO: 79, anti SEQ ID NO: 80; sense strand SEQ ID NO: 81, antisense strand SEQ ID NO: 82; sense strand SEQ ID NO: 83, antisense strand SEQ ID NO: 84; sense strand SEQ ID NO: 85, Antisense strand SEQ ID NO: 86; sense strand SEQ ID NO: 87, antisense strand SEQ ID NO: 88; sense strand SEQ ID NO: 91, antisense strand SEQ ID NO: 92; sense strand SEQ ID NO: 93 , antisense strand SEQ ID NO: 94; sense strand SEQ ID NO: 97, antisense strand SEQ ID NO: 98; sense strand SEQ ID NO: 99, anti-sense strand SEQ ID NO: 100; sense strand SEQ ID NO: 103, antisense strand SEQ ID NO: 104; sense strand SEQ ID NO: 109, antisense strand SEQ ID NO: 110; sense strand SEQ ID NO: 111, antisense strand SEQ ID NO: 112; sense strand SEQ ID NO : 113, antisense strand SEQ ID NO: 114; sense strand SEQ ID NO: 115, antisense strand SEQ ID NO: 116; sense strand SEQ ID NO: 125, anti-sense strand SEQ ID NO: 126; sense strand SEQ ID NO: 127, antisense strand SEQ ID NO: 128; sense strand SEQ ID NO: 133, antisense strand SEQ ID NO: 134; sense strand SEQ ID NO: 145, antisense strand SEQ ID NO: 146; ID NO: 147, antisense strand SEQ ID NO: 148; sense strand SEQ ID NO 149, antisense strand SEQ ID NO: 150; sense strand SEQ ID NO: 151, antisense strand SEQ ID NO: 152; or sense strand SEQ ID NO: 157, antisense strand SEQ ID NO: 158.
  3. 如权利要求1所述的siRNA分子,其特征在于,所述siRNA分子是由选自 下组的正义链和反义链组成的双链RNA分子:正义链SEQ ID NO:25、反义链SEQ ID NO:26;正义链SEQ ID NO:41、反义链SEQ ID NO:42;正义链SEQ ID NO:43、反义链SEQ ID NO:44;正义链SEQ ID NO:53、反义链SEQ ID NO:54;正义链SEQ ID NO:65、反义链SEQ ID NO:66;正义链SEQ ID NO:67、反义链SEQ ID NO:68;正义链SEQ ID NO:85、反义链SEQ ID NO:86;正义链SEQ ID NO:113、反义链SEQ ID NO:114;或者正义链SEQ ID NO:157、反义链SEQ ID NO:158。The siRNA molecule according to claim 1, wherein said siRNA molecule is selected from the group consisting of a double-stranded RNA molecule consisting of the sense strand and the antisense strand of the lower group: sense strand SEQ ID NO: 25, antisense strand SEQ ID NO: 26; sense strand SEQ ID NO: 41, antisense strand SEQ ID NO: 42; The sense strand SEQ ID NO: 43, the antisense strand SEQ ID NO: 44; the sense strand SEQ ID NO: 53, the anti-sense strand SEQ ID NO: 54; the sense strand SEQ ID NO: 65, the anti-sense strand SEQ ID NO: 66 ; sense strand SEQ ID NO: 67, antisense strand SEQ ID NO: 68; sense strand SEQ ID NO: 85, antisense strand SEQ ID NO: 86; sense strand SEQ ID NO: 113, anti-sense strand SEQ ID NO: 114; or sense strand SEQ ID NO: 157, antisense strand SEQ ID NO: 158.
  4. 如权利要求1所述的siRNA分子,其特征在于,所述siRNA分子的正义链3’端和/或反义链3’端含有0~2个突出碱基“NN”,其中两个N相同或者不同,并且各自独立地是腺嘌呤脱氧核苷酸(dA)、胸腺嘧啶脱氧核苷酸(dT)、胞嘧啶脱氧核苷酸(dC)、鸟苷酸脱氧核苷酸(dG)、腺嘌呤核苷酸(A)、尿嘧啶核苷酸(U)、胞嘧啶核苷酸(C)或鸟苷酸核苷酸(G)的任何一种。The siRNA molecule according to claim 1, wherein the 3' end of the sense strand of the siRNA molecule and/or the 3' end of the antisense strand contains 0 to 2 overhanging bases "NN", wherein the two N are the same Or different, and each independently is adenine deoxynucleotide (dA), thymidine (dT), cytosine deoxynucleotide (dC), guanylate deoxynucleotide (dG), gland Any one of purine nucleotide (A), uracil nucleotide (U), cytosine nucleotide (C) or guanylate nucleotide (G).
  5. 如权利要求4所述的siRNA分子,其特征在于,所述siRNA分子的正义链3’端和/或反义链3’端含有2个胸腺嘧啶脱氧核苷酸dTdT。The siRNA molecule according to claim 4, wherein the 3' end of the sense strand of the siRNA molecule and/or the 3' end of the antisense strand contains two thymine deoxynucleotides dTdT.
  6. 一种双链RNA分子,其包括两种以上如权利要求1中所述的siRNA分子,该两种以上siRNA分子分别靶向HBV基因组转录本的不同区域。A double-stranded RNA molecule comprising two or more siRNA molecules as claimed in claim 1, each of which targets a different region of a HBV genomic transcript.
  7. 一种用于在细胞中表达如权利要求1所述的siRNA分子或者如权利要求6所述的双链RNA分子的RNA表达框。An RNA expression cassette for expressing the siRNA molecule of claim 1 or the double-stranded RNA molecule of claim 6 in a cell.
  8. 如权利要求7所述的RNA表达框,其特征在于,其形式为:U6启动子-RNA转录模板-H1启动子。The RNA expression cassette according to claim 7, which is in the form of a U6 promoter-RNA transcription template-H1 promoter.
  9. 如权利要求1-5中任一项所述的siRNA分子、如权利要求6所述的双链RNA分子和如权利要求7所述的RNA表达框在制备抗HBV药物中的应用。Use of the siRNA molecule according to any one of claims 1 to 5, the double-stranded RNA molecule of claim 6, and the RNA expression cassette of claim 7 for the preparation of an anti-HBV drug.
  10. 如权利要求9所述的应用,其特征在于,所述药物中包含两种以上如权利要求1-5中任一项所述的siRNA分子。 The use according to claim 9, wherein the medicament comprises two or more siRNA molecules according to any one of claims 1 to 5.
PCT/CN2017/101022 2017-05-19 2017-09-08 Sirna molecule for inhibiting hbv and use thereof WO2018209848A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710355294.3 2017-05-19
CN201710355294.3A CN108929870B (en) 2017-05-19 2017-05-19 siRNA molecule for inhibiting HBV and application thereof

Publications (1)

Publication Number Publication Date
WO2018209848A1 true WO2018209848A1 (en) 2018-11-22

Family

ID=64273402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101022 WO2018209848A1 (en) 2017-05-19 2017-09-08 Sirna molecule for inhibiting hbv and use thereof

Country Status (2)

Country Link
CN (1) CN108929870B (en)
WO (1) WO2018209848A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492620B2 (en) 2017-12-01 2022-11-08 Suzhou Ribo Life Science Co., Ltd. Double-stranded oligonucleotide, composition and conjugate comprising double-stranded oligonucleotide, preparation method thereof and use thereof
US11633482B2 (en) 2017-12-29 2023-04-25 Suzhou Ribo Life Science Co., Ltd. Conjugates and preparation and use thereof
US11660347B2 (en) 2017-12-01 2023-05-30 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate containing same, preparation method, and use thereof
US11896674B2 (en) 2018-09-30 2024-02-13 Suzhou Ribo Life Science Co., Ltd. SiRNA conjugate, preparation method therefor and use thereof
US11918600B2 (en) 2018-08-21 2024-03-05 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, pharmaceutical composition and conjugate containing nucleic acid, and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126176A (en) * 2007-07-23 2008-02-20 百奥生物技术(南通)有限公司 Preparation method for PCR high flux construction siRNA whole site molecule library
CN103370415A (en) * 2010-10-28 2013-10-23 本尼特生物制药有限公司 HBV treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126176A (en) * 2007-07-23 2008-02-20 百奥生物技术(南通)有限公司 Preparation method for PCR high flux construction siRNA whole site molecule library
CN103370415A (en) * 2010-10-28 2013-10-23 本尼特生物制药有限公司 HBV treatment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492620B2 (en) 2017-12-01 2022-11-08 Suzhou Ribo Life Science Co., Ltd. Double-stranded oligonucleotide, composition and conjugate comprising double-stranded oligonucleotide, preparation method thereof and use thereof
US11660347B2 (en) 2017-12-01 2023-05-30 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate containing same, preparation method, and use thereof
US11633482B2 (en) 2017-12-29 2023-04-25 Suzhou Ribo Life Science Co., Ltd. Conjugates and preparation and use thereof
US11918600B2 (en) 2018-08-21 2024-03-05 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, pharmaceutical composition and conjugate containing nucleic acid, and use thereof
US11896674B2 (en) 2018-09-30 2024-02-13 Suzhou Ribo Life Science Co., Ltd. SiRNA conjugate, preparation method therefor and use thereof

Also Published As

Publication number Publication date
CN108929870B (en) 2020-01-24
CN108929870A (en) 2018-12-04

Similar Documents

Publication Publication Date Title
WO2018209848A1 (en) Sirna molecule for inhibiting hbv and use thereof
AU2016296592B2 (en) Compositions and agents against Hepatitis B virus and uses thereof
JP4709545B2 (en) Modified small interfering RNA molecules and methods of use
KR101012595B1 (en) Small interfering rna and pharmaceutical composition for treatment of hepatitis b comprising the same
WO2010012244A1 (en) Small rna interference target site sequences of hepatitis b virus and small interference rnas and the compositions and uses thereof
CN101948834B (en) siRNA for treating HBV
RU2014121304A (en) INHIBITION OF EXPRESSION OF VIRAL GENES
US20060128617A1 (en) Oligoribonucleotide or peptidic nucleic acid inhibiting function of hepatitis c virus
US20230129651A1 (en) Hairpin structure nucleic acid molecules capable of modulating target gene expression and uses thereof
CN101979556B (en) Small interfering ribose nucleic acid (siRNA) targeting molecule and application thereof
EP2031059A1 (en) siDNA against hepatites C virus (HCV)
CN102533768B (en) siRNA for treating HBV
Zhou et al. Establishment of a screening system for selection of siRNA target sites directed against hepatitis B virus surface gene
CN101979553B (en) siRNA molecule for interfering HBV gene and antiviral application thereof
CN102161991B (en) Single-strand multi-target interfering nucleic acid molecule and application thereof
CN112375758B (en) Anti-hantavirus antisense nucleic acid sequence and application thereof
CN101979555B (en) Small interference RNA molecule and application thereof
US20170130229A1 (en) Methods and compositions for inhibiting infection by influenza and viruses
US20220016155A1 (en) Composition for Inhibiting Replication of Hepatitis B Virus
CN101979557B (en) SiRNA molecule and application thereof to antiviral medicaments
CN101979558B (en) A kind of siRNA molecule of target hepatitis B virogene and application thereof
CN101979554B (en) A kind of siRNA molecule and application thereof disturbing HBV gene
CN102021170B (en) Small interfering ribonucleic acid (siRNA) molecule of interfering hepatitis B virus gene and application thereof
Noorali et al. Human microRNA-602 inhibits Hepatitis C virus genotype 1b infection and promotes tumor suppressor gene expression in a hepatoma cell line
Ely et al. 799. Expressed Long Hairpin RNA Sequences Inhibit HBV Replication In Vivo without Inducing an Interferon Response

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909895

Country of ref document: EP

Kind code of ref document: A1