WO2018209633A1 - 基于视觉系统振动移位的自动校正方法、装置及视觉系统 - Google Patents

基于视觉系统振动移位的自动校正方法、装置及视觉系统 Download PDF

Info

Publication number
WO2018209633A1
WO2018209633A1 PCT/CN2017/084857 CN2017084857W WO2018209633A1 WO 2018209633 A1 WO2018209633 A1 WO 2018209633A1 CN 2017084857 W CN2017084857 W CN 2017084857W WO 2018209633 A1 WO2018209633 A1 WO 2018209633A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
image
relative relationship
calibration
detected object
Prior art date
Application number
PCT/CN2017/084857
Other languages
English (en)
French (fr)
Inventor
阳光
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to CN201780034127.7A priority Critical patent/CN109313811B/zh
Priority to PCT/CN2017/084857 priority patent/WO2018209633A1/zh
Publication of WO2018209633A1 publication Critical patent/WO2018209633A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the invention relates to the technical field of vision systems, in particular to an automatic correction method, device and vision system based on vibration displacement of a vision system.
  • Calibration refers to the use of standard measuring instruments to determine the accuracy of the instrument used in compliance with the standard.
  • the vision system works in the industrial assembly line, and sometimes it may be affected by vibration and cannot be in the same visual coordinate system as the robot system. It needs manual recalibration and automatic correction cannot be realized.
  • the present invention proposes an automatic correction method, apparatus and vision system based on vibration shift of a vision system.
  • the present invention adopts a technical solution to provide an automatic correction method based on vibration displacement of a vision system, including a calibration object and a detected object, the method comprising: acquiring an object to be detected and a calibration object.
  • the calibration is set to be in a relative relationship with the detected object; obtaining a first coordinate system defined by the calibration according to the first image, and the detected object and the a first relative relationship of the first coordinate system; acquiring a second image including the detected object and the calibration object, obtaining a second coordinate system defined by the calibration object according to the second image, and the detected object and a second relative relationship of the second coordinate system; comparing the first image and the second image to obtain a displacement of the calibration object, and using the displacement to obtain the second coordinate system and the first a conversion relationship of the coordinate system; calculating a third relative relationship between the detected object and the second coordinate system by using the first relative relationship and the conversion relationship; determining the third relative relationship Are the same or within a threshold difference of the second opposing relationship, or if they are consistent within a threshold difference, said conversion relation is corrected using the detected second relative relationship with the second object coordinate system.
  • the calibration object has at least three non-collinear calibration points.
  • the calibration point corresponds to an edge of the shooting range.
  • the first coordinate system is a first spatial plane coordinate system corresponding to the first image
  • the second coordinate system is a second spatial plane coordinate of the calibration object corresponding to the second image. system.
  • the first coordinate system defined by the vision system according to the first image and the first relative relationship between the detected object and the first coordinate system includes: the visual system Determining, by the first image, a first coordinate system defined by the calibration object and a first relative relationship between a feature point set of the detected object and the first coordinate system; the vision system is obtained according to the second image
  • the second coordinate system defined by the calibration object and the second relative relationship between the detected object and the second coordinate system include: the vision system obtains the definition defined by the calibration object according to the second image a two coordinate system and a second relative relationship between the feature point set of the detected object and the second coordinate system.
  • a vision system including: a photographing device; a processing device, connecting the photographing device, and controlling the photographing device to take a first shot to obtain, including detecting a first image of the object and the calibrator, the calibrator being set to be in a relative relationship with the object to be detected; obtaining a first coordinate system defined by the calibrator according to the first image and the detected a first relative relationship between the object and the first coordinate system; controlling the second shooting of the photographing device to acquire a second image including the detected object and the calibration object, and obtaining the calibration object according to the second image a second coordinate system defined and a second relative relationship between the detected object and the second coordinate system; comparing the first image and the second image to obtain a displacement of the calibration object, and utilizing Deriving a displacement relationship between the second coordinate system and the first coordinate system; calculating the detected object and the second sitting by the first relative relationship and the conversion relationship a third relative relationship; determining whether the third relative relationship
  • the processing device is specifically configured to: obtain a first coordinate system defined by the calibration object according to the first image, and a first relative relationship between a feature point set of the detected object and the first coordinate system Obtaining, according to the second image, a second coordinate system defined by the calibration object and a second relative relationship between the feature point set of the detected object and the second coordinate system.
  • the processing device is further configured to: determine that the third relative relationship is inconsistent with the second relative relationship, and the difference is not within the threshold, and prompts that the coordinate position of the detected object needs to be manually corrected.
  • the calibration object has at least three non-collinear calibration points.
  • the calibration point corresponds to an edge of the shooting range.
  • the first coordinate system is a first spatial plane coordinate system corresponding to the first image
  • the second coordinate system is a second spatial plane coordinate of the calibration object corresponding to the second image. system.
  • an automatic correction device based on vibration displacement of a vision system comprising: a processor and an input/output circuit; wherein the processor is connected to the input /output circuit, the processor executing a program to: control the input/output circuit to acquire a first image including the detected object and the calibrator, the calibrator being set to be in a relative relationship with the detected object
  • the first coordinate system defined by the calibration object and the first relative relationship between the detected object and the first coordinate system are obtained according to the first image; controlling the input/output interface to acquire again includes a second image of the detected object and the calibration object, according to the second image, obtaining a second coordinate system defined by the calibration object and a second relative relationship between the detected object and the second coordinate system; Comparing the first image and the second image to obtain a displacement of the calibration object, and using the displacement to obtain the second coordinate system and the first coordinate system Converting a relationship; calculating a third relative relationship between the detected object and the second
  • the calibration object has at least three non-collinear calibration points.
  • the calibration point corresponds to an edge of the shooting range.
  • the first coordinate system is a first spatial plane coordinate system corresponding to the first image
  • the second coordinate system is a second spatial plane coordinate of the calibration object corresponding to the second image. system.
  • the first coordinate system defined by the vision system according to the first image and the first relative relationship between the detected object and the first coordinate system includes: the visual system Determining, by the first image, a first coordinate system defined by the calibration object and a first relative relationship between a feature point set of the detected object and the first coordinate system; the vision system is obtained according to the second image
  • the second coordinate system defined by the calibration object and the second relative relationship between the detected object and the second coordinate system include: the vision system obtains the definition defined by the calibration object according to the second image a two coordinate system and a second relative relationship between the feature point set of the detected object and the second coordinate system.
  • the first relative relationship and the second relative relationship between the detected object and the calibration object obtained by at least two shootings are compared, and then the first image and the second image are compared.
  • the third relative relationship of the coordinate system can finally determine whether the third relative relationship and the second relative relationship are consistent or different within the threshold to determine whether the detected object is displaced or deflected, if displaced or deflected, but If the degree does not exceed the threshold, the original coordinate system of the vision system is not applicable, and the coordinate system is automatically corrected if it can be corrected, so that the vision system can continue to be used.
  • FIG. 1 is a flow chart of an embodiment of an automatic correction method based on vibration shift of a vision system according to the present invention
  • FIG. 2 is a schematic diagram showing an example of automatic correction of a vibration shift of a vision system according to the present invention by using two calibration points of a calibration object and three feature points of the detected object;
  • FIG. 3 is a schematic structural view of an embodiment of a vision system of the present invention.
  • FIG. 4 is a schematic structural view of an embodiment of an automatic correction device based on vibration shift of a vision system according to the present invention.
  • FIG. 1 is a flow chart of an embodiment of an automatic correction method based on vibration shift of a vision system according to the present invention. It should be noted that the method of the present invention is not limited to the sequence of the flow shown in FIG. 1 if substantially the same result is obtained. As shown in FIG. 1, the method includes the following steps:
  • S101 Acquire a first image including the detected object and the calibration object, the calibration object being set to have a relative relationship with the detected object.
  • the first shot of the vision system can be utilized to obtain a first image including the detected object and the calibration object
  • the visual system can be any visual system that can be photographed to obtain a first image including the detected object and the calibration object, such as a machine. Vision system, etc.
  • the calibration object is at least two calibration points, and may be a two-dimensional plane or a marker point of the 3D space.
  • the calibration object is at least three calibration points that are not collinear, and the at least three are not
  • the collinear calibration point may be composed of a specific small marker object such as a cross line, a dot, or the like having a large contrast, or may be a point light source, or a reflected light of a point source or a direct light of a point source.
  • the calibration object and the detected object are transported by a transport mechanism such as a transport belt, the calibration object may be fixed on the transport belt, and the detected object generally needs to be fixed to the transport belt.
  • the calibration point corresponds to an edge of the shooting range.
  • the calibration object is set to have a relative relationship with the object to be inspected, for example, the calibration object is placed/placed on a transport mechanism such as a conveyor belt, and is transported together by the transport mechanism.
  • the two maintain the relative relationship, such as the relative position of the two, and the relative posture of the two remains unchanged.
  • the relative position and relative posture of the two may change. If the degree of change of the relative position and the relative posture does not exceed the threshold value, the position/posture of the detected object can be corrected by the method of the embodiment of the present invention, so that other devices can accurately operate the detected object.
  • the vision system itself may also have an abnormal situation such as vibration, and the relative relationship between the vision system and the stationary object to be detected also changes.
  • the calibration can be placed at any location, such as a vision system, as long as it facilitates determining the first relative relationship between the calibration object and the object being inspected.
  • S102 Obtain a first coordinate system defined by the calibration object according to the first image, and a first relative relationship between the detected object and the first coordinate system.
  • the first coordinate system is a first spatial plane coordinate system corresponding to the first image of the calibration object, such as a plane composed of three or more calibration objects.
  • the first coordinate system defined by the calibration object according to the first image and the first relative relationship between the detected object and the first coordinate system include:
  • the first relative relationship can be defined by the relative position and relative posture of the two.
  • S103 Acquire a second image that includes the detected object and the calibration object, obtain a second coordinate system defined by the calibration object according to the second image, and a second relative relationship between the detected object and the second coordinate system.
  • a second shot of the vision system described above is used to obtain a second image comprising the object being inspected and the calibration.
  • the second coordinate system is a second spatial plane coordinate system corresponding to the calibration object corresponding to the second image, and similarly, for example, a plane composed of three or more calibration objects.
  • the second coordinate system defined by the calibration object according to the second image and the second relative relationship between the detected object and the second coordinate system include:
  • S104 Comparing the first image and the second image to obtain a displacement of the calibration object, and using the displacement to obtain a conversion relationship between the second coordinate system and the first coordinate system.
  • S105 Calculate a third relative relationship between the detected object and the second coordinate system by using the first relative relationship and the conversion relationship.
  • S106 Determine whether the third relative relationship and the second relative relationship are consistent or different within a threshold. If the consistency or the difference is within the threshold, correcting the detected object and the second coordinate system by using the conversion relationship. Relative relationship.
  • the coordinate position of the detected object in the second coordinate system is corrected by using the second relative relationship that has been corrected.
  • the method for automatically correcting the vibration shift of the visual system according to the present invention may further include:
  • the first relative relationship and the second relative relationship of the detected object and the calibration object obtained by at least two shootings are compared, and then the first image and the second image are compared.
  • the third relative relationship of the second coordinate system can finally determine whether the detected object is displaced or deflected by determining whether the third relative relationship and the second relative relationship are consistent or different within a threshold, if the shift or deflection is performed.
  • the degree does not exceed the threshold, the original coordinate system of the vision system is not applicable, and the coordinate system is automatically corrected in the case of automatic correction, so that the vision system can continue to be used.
  • FIG. 2 is an example of the automatic correction method for the vibration shift of the vision system according to the present invention, using three non-collinear calibration points of the calibration object and three feature points of the detected object for automatic correction.
  • this illustration includes:
  • points A1, A2, and A3 are three non-collinear calibration points of the calibration object, and B1, B2, and B3 are three characteristic points of the detected object.
  • the calibration object is set to be in a relative relationship with the detected object, obtaining a first coordinate system defined by the calibration object according to the first image, and the detected object
  • the first relative relationship with the first coordinate system is a first spatial plane coordinate system corresponding to the first image of the calibration object, as shown in (2a) of FIG.
  • a second image including the detected object and the calibration object is obtained, the calibration object being set to have a relative relationship with the detected object, as shown in (2b) of FIG.
  • the spatial plane coordinate system compares the first image and the second image to obtain a displacement C1 of the calibration, as shown in (2b) of FIG.
  • the displacement C1 Using the displacement C1, obtaining a conversion relationship between the second coordinate system and the first coordinate system, and calculating a third relative relationship between the detected object and the second coordinate system by using the first relative relationship and the conversion relationship, and determining the relationship Whether the third relative relationship and the second relative relationship are consistent or different within the threshold, and if the consistency or the difference is within the threshold, the conversion relationship is used to correct the second relative relationship between the detected object and the second coordinate system, and further The coordinate position of the detected object in the second coordinate system is corrected using the second relative relationship that has been corrected, as shown in (2c) of FIG.
  • FIG. 3 is a schematic structural diagram of an embodiment of a vision system according to the present invention.
  • the vision system 30 includes a photographing device 31 and a processing device 32.
  • the processing device 32 is connected to the photographing device 31, and controls the first photographing of the photographing device 31 to acquire a first image including the detected object and the calibration object, the calibration object being set to have a relative relationship with the detected object;
  • processing device 32 may be specifically configured to:
  • processing device 32 can also be used to:
  • the calibration object is at least three non-collinear calibration points corresponding to an edge of the shooting range, where the first coordinate system is a first spatial plane coordinate system corresponding to the first image of the calibration object.
  • the second coordinate system is a second spatial plane coordinate system corresponding to the calibration object.
  • the modules of the above-mentioned visual system 30 can respectively perform the corresponding steps in the foregoing method embodiments, and therefore, the modules are not described herein. For details, refer to the description of the corresponding steps.
  • FIG. 4 is a schematic structural diagram of an embodiment of an automatic correction device based on vibration shift of a vision system according to the present invention.
  • the automatic correction device 40 can perform the steps performed in the above method.
  • the automatic correction device 40 includes a processor 41 and an input/output circuit 42.
  • the input/output circuit 42 acquires a first image including the detected object and the calibrator, the calibrated object being set to have a relative relationship with the detected object.
  • the processor 41 obtains a first coordinate system defined by the calibration object according to the first image and a first relative relationship between the detected object and the first coordinate system.
  • the input/output circuit 42 acquires a second image including the detected object and the calibration object
  • the processor 41 obtains a second coordinate system defined by the calibration object and a second relative relationship between the detected object and the second coordinate system according to the second image.
  • the processor 41 compares the first image and the second image to obtain a displacement of the calibration object, and uses the displacement to obtain a conversion relationship between the second coordinate system and the first coordinate system.
  • the processor 41 calculates a third relative relationship between the detected object and the second coordinate system by using the first relative relationship and the conversion relationship.
  • the processor 41 determines whether the third relative relationship and the second relative relationship are consistent or different within a threshold. If the consistency or the difference is within the threshold, the conversion relationship is used to correct the detected object and the second coordinate system. The two relative relationships, in turn, use the second relative relationship that has been corrected to correct the coordinate position of the detected object in the second coordinate system.
  • the respective modules of the above-mentioned automatic calibration device 40 can respectively perform the corresponding steps in the foregoing method embodiments, and therefore, the modules are not described herein. For details, refer to the description of the corresponding steps.
  • the first relative relationship and the second relative relationship between the detected object and the calibration object obtained by at least two shootings are compared, and then the first image and the second image are compared.
  • the third relative relationship of the coordinate system can finally determine whether the third relative relationship and the second relative relationship are consistent or different within the threshold to determine whether the detected object is displaced or deflected, if displaced or deflected, but If the degree does not exceed the threshold, the original coordinate system of the vision system is not applicable, and the coordinate system is automatically corrected if it can be corrected, so that the vision system can continue to be used.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device implementations described above are merely illustrative.
  • the division of the module or unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the present embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the method of various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (ROM, Read-Only) Memory, random access memory (RAM), disk or optical disk, and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

一种基于视觉系统振动移位的自校正方法及视觉系统,包括标定物和被检测物件,其方法包括:获取包括被检测物件和标定物的第一图像,标定物被设置为与被检测物件相对关系不变(S101);依据第一图像获得标定物所定义的第一坐标系以及被检测物件与第一坐标系的第一相对关系(S102);获取包括被检测物件和标定物的第二图像,依据第二图像获得标定物所定义的第二坐标系及被检测物件与第二坐标系的第二相对关系(S103);对比第一图像和第二图像以获得标定物的位移,并利用位移获得第二坐标系与第一坐标系的转换关系(S104);以第一相对关系及转换关系计算被检测物件与第二坐标系的第三相对关系(S105);判断第三相对关系与第二相对关系是否一致或差异在阈值内,若一致或差异在阈值内,则利用转换关系校正被检测物件与第二坐标系的第二相对关系(S106),从而实现在视觉系统振动移位时,自动校正。

Description

基于视觉系统振动移位的自动校正方法、装置及视觉系统
【技术领域】
本发明涉及视觉系统技术领域,特别是涉及一种基于视觉系统振动移位的自动校正方法、装置及视觉系统。
【背景技术】
校正,是指使用标准的计量仪器对所使用仪器的准确度进行检测是否符合标准。视觉系统在工业流水线中工作,有时可能会受到振动影响而与机器人系统就不能在同一视觉坐标系下,需要人工重新校正,无法实现自动校正。
因此,需要有一种视觉系统,其可以实现自动校正。
【发明内容】
为了至少部分解决以上问题,本发明提出了一种基于视觉系统振动移位的自动校正方法、装置及视觉系统。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种基于视觉系统振动移位的自动校正方法,包括标定物和被检测物件,所述方法包括:获取包括被检测物件和标定物的第一图像,所述标定物被设置为与所述被检测物件相对关系不变;依据所述第一图像获得所述标定物所定义的第一坐标系以及所述被检测物件与所述第一坐标系的第一相对关系;获取包括所述被检测物件和标定物的第二图像,依据所述第二图像获得所述标定物所定义的第二坐标系及所述被检测物件与所述第二坐标系的第二相对关系;对比所述第一图像和所述第二图像以获得所述标定物的位移,并利用所述位移获得所述第二坐标系与所述第一坐标系的转换关系;以所述第一相对关系及所述转换关系计算所述被检测物件与所述第二坐标系的第三相对关系;判断所述第三相对关系与所述第二相对关系是否一致或差异在阈值内,若一致或差异在阈值内,则利用所述转换关系校正所述被检测物件与所述第二坐标系的第二相对关系。
其中,所述标定物至少为三个不共线标定点。
其中,所述标定点对应置于所述拍摄范围的边缘。
其中,若不一致且差异不在阈值内,则提示需要人工校正所述被检测物件的坐标位置。
其中,所述第一坐标系是所述标定物对应所述第一图像的第一空间平面坐标系,所述第二坐标系是所述标定物对应所述第二图像的第二空间平面坐标系。
其中,所述视觉系统依据所述第一图像获得所述标定物所定义的第一坐标系以及所述被检测物件与所述第一坐标系的第一相对关系包括:所述视觉系统依据所述第一图像获得所述标定物所定义的第一坐标系以及所述被检测物件的特征点集合与所述第一坐标系的第一相对关系;所述视觉系统依据所述第二图像获得所述标定物所定义的第二坐标系以及所述被检测物件与所述第二坐标系的第二相对关系包括:所述视觉系统依据所述第二图像获得所述标定物所定义的第二坐标系以及所述被检测物件的特征点集合与所述第二坐标系的第二相对关系。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种视觉系统,包括:拍摄设备;处理设备,连接所述拍摄设备,控制所述拍摄设备第一次拍摄以获取包括被检测物件和标定物的第一图像,所述标定物被设置为与所述被检测物件相对关系不变;依据所述第一图像获得所述标定物所定义的第一坐标系以及所述被检测物件与所述第一坐标系的第一相对关系;控制所述拍摄设备第二次拍摄以获取包括所述被检测物件和标定物的第二图像,依据所述第二图像获得所述标定物所定义的第二坐标系及所述被检测物件与所述第二坐标系的第二相对关系;对比所述第一图像和所述第二图像以获得所述标定物的位移,并利用所述位移获得所述第二坐标系与所述第一坐标系的转换关系;以所述第一相对关系及所述转换关系计算所述被检测物件与所述第二坐标系的第三相对关系;判断所述第三相对关系与所述第二相对关系是否一致或差异在阈值内,若一致或差异在阈值内,则利用所述转换关系校正所述被检测物件与所述第二坐标系的第二相对关系。
其中,所述处理设备具体用于:依据所述第一图像获得所述标定物所定义的第一坐标系以及所述被检测物件的特征点集合与所述第一坐标系的第一相对关系;依据所述第二图像获得所述标定物所定义的第二坐标系以及所述被检测物件的特征点集合与所述第二坐标系的第二相对关系。
其中,所述处理设备还用于:判断出所述第三相对关系与所述第二相对关系不一致且差异不在阈值内,则提示需要人工校正所述被检测物件的坐标位置。
其中,所述标定物至少为三个不共线标定点。
其中,所述标定点对应置于所述拍摄范围的边缘。
其中,所述第一坐标系是所述标定物对应所述第一图像的第一空间平面坐标系,所述第二坐标系是所述标定物对应所述第二图像的第二空间平面坐标系。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种基于视觉系统振动移位的自动校正装置,包括:处理器、输入/输出电路;其中,所述处理器连接所述输入/输出电路,所述处理器执行程序以实现如下动作:控制所述输入/输出电路获取包括被检测物件和标定物的第一图像,所述标定物被设置为与所述被检测物件相对关系不变;依据所述第一图像获得所述标定物所定义的第一坐标系以及所述被检测物件与所述第一坐标系的第一相对关系;控制所述输入/输出接口再次获取包括所述被检测物件和标定物的第二图像,依据所述第二图像获得所述标定物所定义的第二坐标系及所述被检测物件与所述第二坐标系的第二相对关系;对比所述第一图像和所述第二图像以获得所述标定物的位移,并利用所述位移获得所述第二坐标系与所述第一坐标系的转换关系;以所述第一相对关系及所述转换关系计算所述被检测物件与所述第二坐标系的第三相对关系;判断所述第三相对关系与所述第二相对关系是否一致或差异在阈值内,若一致或差异在阈值内,则利用所述转换关系校正所述被检测物件与所述第二坐标系的第二相对关系。
其中,所述标定物至少为三个不共线标定点。
其中,所述标定点对应置于所述拍摄范围的边缘。
其中,若不一致且差异不在阈值内,则提示需要人工校正所述被检测物件的坐标位置。
其中,所述第一坐标系是所述标定物对应所述第一图像的第一空间平面坐标系,所述第二坐标系是所述标定物对应所述第二图像的第二空间平面坐标系。
其中,所述视觉系统依据所述第一图像获得所述标定物所定义的第一坐标系以及所述被检测物件与所述第一坐标系的第一相对关系包括:所述视觉系统依据所述第一图像获得所述标定物所定义的第一坐标系以及所述被检测物件的特征点集合与所述第一坐标系的第一相对关系;所述视觉系统依据所述第二图像获得所述标定物所定义的第二坐标系以及所述被检测物件与所述第二坐标系的第二相对关系包括:所述视觉系统依据所述第二图像获得所述标定物所定义的第二坐标系以及所述被检测物件的特征点集合与所述第二坐标系的第二相对关系。
以上方案,通过在被检测物件相对位置设置标定物,利用至少两次拍摄所得到的被检测物件和标定物第一相对关系、第二相对关系,进而对比该第一图像和该第二图像以获得该标定物的位移或偏转,并利用该位移或偏转获得该第二坐标系与该第一坐标系的转换关系,以该第一相对关系及该转换关系计算该被检测物件与该第二坐标系的第三相对关系,最终能够利用判断该第三相对关系与该第二相对关系是否一致或差异在阈值内来判断被检测物件是否发生移位或偏转,若移位或偏转,但其程度未超过阈值,则视觉系统的原先坐标体系不适用,在能够校正的情况下自动校正坐标体系,使得视觉系统可以继续使用。
【附图说明】
图1是本发明基于视觉系统振动移位的自动校正方法一实施例的流程图;
图2是本发明基于视觉系统振动移位的自动校正方法采用标定物的两个标定点和被检测物件的三个特征点进行自动校正的举例示意图;
图3是本发明视觉系统一实施例的结构示意图;
图4是本发明基于视觉系统振动移位的自动校正装置一实施例的结构示意图。
【具体实施方式】
下面结合附图和实施方式对本发明进行详细说明。
请参阅图1,图1是本发明基于视觉系统振动移位的自动校正方法一实施例的流程图。需注意的是,若有实质上相同的结果,本发明的方法并不以图1所示的流程顺序为限。如图1所示,该方法包括如下步骤:
S101:获取包括被检测物件和标定物的第一图像,该标定物被设置为与该被检测物件相对关系不变。
其中,可以利用视觉系统第一次拍摄以获取包括被检测物件和标定物的第一图像,视觉系统可以为任意可拍摄以获取包括被检测物件和标定物的第一图像的视觉系统,例如机器视觉系统等。
其中,该标定物至少为两个标定点,可以是二维平面的,也可以是3D空间的标识点,例如,该标定物至少为不共线的至少三个标定点,该至少三个不共线标定点可以由特定小标识物件构成如反差较大的十字线、圆点等,也可以是点光源,或点光源的反射光或点光源的直射光等。在标定物和被检测物件采用运输机构比如传输带进行传输的应用场景中,标定物可以固定于传输带上,被检测物体一般情况下也需要固定于传输带。
可选地,该标定点对应置于该拍摄范围的边缘。该标定物被设置为与该被检测物件相对关系不变,比如为标定物与该被检测物件同样被设置/放置在运输机构比如传输带上,一起被运输机构带动。两者在没有外界影响情况下,是保持相对关系不变的,比如两者相对位置不变,且两者相对姿态不变。但若在外界影响情况下,比如运输机构或视觉系统发生振动等异常情况,两者相对位置、相对姿态可能会发生变化。若相对位置、相对姿态发生变化的程度没有超过阈值,则可以利用本发明实施例的方法对被检测物件的位置/姿态加以修正,以使得其他设备可以准确地对被检测物件进行操作。
当然,在视觉系统应用于机器人系统等的应用场景中,视觉系统本身也可能会发生振动等异常情况,此时视觉系统与静止的被检测物体之间也存在相对关系的变化,此时本发明也适用。另外,标定物可以设置在任何位置,比如视觉系统上,只要利于确定标定物与被检测物体之间的第一相对关系即可。
S102:依据该第一图像获得该标定物所定义的第一坐标系以及该被检测物件与该第一坐标系的第一相对关系。
其中,该第一坐标系是该标定物对应该第一图像的第一空间平面坐标系,比如由三个或以上的标定物所构成的平面。
其中,依据该第一图像获得该标定物所定义的第一坐标系以及该被检测物件与该第一坐标系的第一相对关系包括:
依据该第一图像获得该标定物所定义的第一坐标系以及该被检测物件的特征点集合与该第一坐标系的第一相对关系。第一相对关系可以由两者的相对位置、相对姿态进行定义。
S103:获取包括该被检测物件和标定物的第二图像,依据该第二图像获得该标定物所定义的第二坐标系及该被检测物件与该第二坐标系的第二相对关系。
比如,使用前述的视觉系统第二次拍摄,以获取包括该被检测物件和标定物的第二图像。
其中,该第二坐标系是该标定物对应该第二图像的第二空间平面坐标系,同样地,比如由三个或以上的标定物所构成的平面。
其中,依据该第二图像获得该标定物所定义的第二坐标系以及该被检测物件与该第二坐标系的第二相对关系包括:
依据该第二图像获得该标定物所定义的第二坐标系以及该被检测物件的特征点集合与该第二坐标系的第二相对关系。
S104:对比该第一图像和该第二图像以获得该标定物的位移,并利用该位移获得该第二坐标系与该第一坐标系的转换关系。
当然,如果经判断发现该标定物在图像上并未发生“位移或偏转”,则不存在转换关系。
S105:以该第一相对关系及该转换关系计算该被检测物件与该第二坐标系的第三相对关系。
此处计算得到的该被检测物件与该第二坐标系的第三相对关系,即是以标定物作为参考,通过标定物在该第一图像和该第二图像中所体现的坐标系及其转换关系,来计算经过坐标转换之后的被检测物件相对于该第二坐标系的第三相对关系。
S106:判断该第三相对关系与该第二相对关系是否一致或差异在阈值内,若一致或差异在阈值内,则利用该转换关系校正该被检测物件与所述第二坐标系的第二相对关系。
其中,利用已经校正过的第二相对关系,来校正被检测物体在第二坐标系中的坐标位置。
其中,本发明基于视觉系统振动移位的自动校正方法,还可以包括:
判断出该第三相对关系与该第二相对关系不一致且差异不在阈值内,则提示需要人工校正该被检测物件的坐标位置。
本实施例中,通过在被检测物件相对位置设置标定物,利用至少两次拍摄所得到的被检测物件和标定物第一相对关系、第二相对关系,进而对比该第一图像和该第二图像以获得该标定物的位移或偏转,并利用该位移或偏转获得该第二坐标系与该第一坐标系的转换关系,以该第第一相对关系及该转换关系计算该被检测物件与该第二坐标系的第三相对关系,最终能够利用判断该第三相对关系与该第二相对关系是否一致或差异在阈值内来判断被检测物件是否发生移位或偏转,若移位或偏转,但其程度未超过阈值,则视觉系统的原先坐标体系不适用,在能够自动校正的情况下自动校正坐标体系,使得视觉系统可以继续使用。
下面进行举例说明,请参阅图2,图2是本发明基于视觉系统振动移位的自动校正方法采用标定物的三个不共线标定点和被检测物件的三个特征点进行自动校正的举例示意图,该举例说明包括:
如图2所示,A1、A2、A3点为标定物的三个不共线标定点,B1、B2、B3为被检测物件的三个特征点。
获取包括被检测物件和标定物的第一图像,该标定物被设置为与该被检测物件相对关系不变,依据该第一图像获得该标定物所定义的第一坐标系以及该被检测物件与该第一坐标系的第一相对关系,该第一坐标系是该标定物对应该第一图像的第一空间平面坐标系,如图2中(2a)所示。
获取包括被检测物件和标定物的第二图像,该标定物被设置为与该被检测物件相对关系不变,如图2中(2b)所示。
依据该第二图像获得该标定物所定义的第二坐标系及该被检测物件与该第二坐标系的第二相对关系,该第二坐标系是该标定物对应该第二图像的第二空间平面坐标系,进而对比该第一图像和该第二图像以获得该标定物的位移C1,如图2中(2b)所示。
利用该位移C1获得该第二坐标系与该第一坐标系的转换关系,进而以该第一相对关系及该转换关系计算该被检测物件与该第二坐标系的第三相对关系,判断该第三相对关系与该第二相对关系是否一致或差异在阈值内,若一致或差异在阈值内,则利用该转换关系校正该被检测物件与所述第二坐标系的第二相对关系,进而利用已经校正过的第二相对关系,来校正被检测物体在第二坐标系中的坐标位置,如图2中(2c)所示。
请参阅图3,图3是本发明视觉系统一实施例的结构示意图。本实施例中,该视觉系统30包括拍摄设备31、处理设备32。
处理设备32,连接拍摄设备31,控制拍摄设备31的第一次拍摄以获取包括被检测物件和标定物的第一图像,该标定物被设置为与该被检测物件相对关系不变;
依据该第一图像获得该标定物所定义的第一坐标系以及该被检测物件与该第一坐标系的第一相对关系;
控制拍摄设备31的第二次拍摄以获取包括该被检测物件和标定物的第二图像,依据该第二图像获得该标定物所定义的第二坐标系及该被检测物件与该第二坐标系的第二相对关系;
对比该第一图像和该第二图像以获得该标定物的位移,并利用该位移获得该第二坐标系与该第一坐标系的转换关系;
以该第一相对关系及该转换关系计算该被检测物件与该第二坐标系的第三相对关系;
判断该第三相对关系与该第二相对关系是否一致或差异在阈值内,若一致或差异在阈值内,则利用该转换关系校正该被检测物件与所述第二坐标系的第二相对关系,进而利用已经校正过的第二相对关系,来校正被检测物体在第二坐标系中的坐标位置。
可选地,处理设备32可以具体用于:
依据该第一图像获得该标定物所定义的第一坐标系以及该被检测物件的特征点集合与该第一坐标系的第一相对关系;
依据该第二图像获得该标定物所定义的第二坐标系以及该被检测物件的特征点集合与该第二坐标系的第二相对关系。
可选地,处理设备32还可以用于:
判断出该第三相对关系与该第二相对关系不一致且差异不在阈值内,则提示需要人工校正该被检测物件的坐标位置。
可选地,该标定物至少为三个不共线标定点,该标定点对应置于该拍摄范围的边缘,该第一坐标系是该标定物对应该第一图像的第一空间平面坐标系,该第二坐标系是该标定物对应该第二图像的第二空间平面坐标系。
上述视觉系统30的各个模块可分别执行上述方法实施例中对应步骤,故在此不对各模块进行赘述,详细请参阅以上对应步骤的说明。
请参阅图4,图4是本发明基于视觉系统振动移位的自动校正装置一实施例的结构示意图。该自动校正装置40可以执行上述方法中所执行的步骤。相关内容请参见上述方法中的详细说明,在此不再赘叙。
本实施例中,该自动校正装置40包括:处理器41、输入/输出电路42。
输入/输出电路42获取包括被检测物件和标定物的第一图像,该标定物被设置为与该被检测物件相对关系不变。
处理器41依据该第一图像获得该标定物所定义的第一坐标系以及该被检测物件与该第一坐标系的第一相对关系。
输入/输出电路42获取包括该被检测物件和标定物的第二图像;
处理器41依据该第二图像获得该标定物所定义的第二坐标系及该被检测物件与该第二坐标系的第二相对关系。
处理器41对比该第一图像和该第二图像以获得该标定物的位移,并利用该位移获得该第二坐标系与该第一坐标系的转换关系。
处理器41以该第一相对关系及该转换关系计算该被检测物件与该第二坐标系的第三相对关系。
处理器41判断该第三相对关系与该第二相对关系是否一致或差异在阈值内,若一致或差异在阈值内,则利用该转换关系校正该被检测物件与所述第二坐标系的第二相对关系,进而利用已经校正过的第二相对关系,来校正被检测物体在第二坐标系中的坐标位置。
上述自动校正装置40的各个模块可分别执行上述方法实施例中对应步骤,故在此不对各模块进行赘述,详细请参阅以上对应步骤的说明。
以上方案,通过在被检测物件相对位置设置标定物,利用至少两次拍摄所得到的被检测物件和标定物第一相对关系、第二相对关系,进而对比该第一图像和该第二图像以获得该标定物的位移或偏转,并利用该位移或偏转获得该第二坐标系与该第一坐标系的转换关系,以该第一相对关系及该转换关系计算该被检测物件与该第二坐标系的第三相对关系,最终能够利用判断该第三相对关系与该第二相对关系是否一致或差异在阈值内来判断被检测物件是否发生移位或偏转,若移位或偏转,但其程度未超过阈值,则视觉系统的原先坐标体系不适用,在能够校正的情况下自动校正坐标体系,使得视觉系统可以继续使用。
在本发明所提供的几个实施方式中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,该模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本发明各个实施方式中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施方式该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (18)

  1. 一种基于视觉系统振动移位的自动校正方法,包括标定物和被检测物件,其特征在于,所述方法包括:
    获取包括被检测物件和标定物的第一图像,所述标定物被设置为与所述被检测物件相对关系不变;
    依据所述第一图像获得所述标定物所定义的第一坐标系以及所述被检测物件与所述第一坐标系的第一相对关系;
    获取包括所述被检测物件和标定物的第二图像,依据所述第二图像获得所述标定物所定义的第二坐标系及所述被检测物件与所述第二坐标系的第二相对关系;
    对比所述第一图像和所述第二图像以获得所述标定物的位移,并利用所述位移获得所述第二坐标系与所述第一坐标系的转换关系;
    以所述第一相对关系及所述转换关系计算所述被检测物件与所述第二坐标系的第三相对关系;
    判断所述第三相对关系与所述第二相对关系是否一致或差异在阈值内,若一致或差异在阈值内,则利用所述转换关系校正所述被检测物件与所述第二坐标系的第二相对关系。
  2. 根据权利要求1所述的方法,其特征在于,
    所述标定物至少为两个标定点。
  3. 根据权利要求2所述的方法,其特征在于,
    所述标定点对应置于所述拍摄范围的边缘,且数量为不共线的至少三个。
  4. 根据权利要求1所述的方法,其特征在于,
    若不一致且差异不在阈值内,则提示需要人工校正所述被检测物件的坐标位置。
  5. 根据权利要求1所述的方法,其特征在于,
    所述第一坐标系是所述标定物对应所述第一图像的第一空间平面坐标系,所述第二坐标系是所述标定物对应所述第二图像的第二空间平面坐标系。
  6. 根据权利要求1所述的方法,其特征在于,
    依据所述第一图像获得所述标定物所定义的第一坐标系以及所述被检测物件与所述第一坐标系的第一相对关系包括:
    依据所述第一图像获得所述标定物所定义的第一坐标系以及所述被检测物件的特征点集合与所述第一坐标系的第一相对关系;
    依据所述第二图像获得所述标定物所定义的第二坐标系以及所述被检测物件与所述第二坐标系的第二相对关系包括:
    依据所述第二图像获得所述标定物所定义的第二坐标系以及所述被检测物件的特征点集合与所述第二坐标系的第二相对关系。
  7. 一种视觉系统,其特征在于,包括:
    拍摄设备;
    处理设备,连接所述拍摄设备,控制所述拍摄设备第一次拍摄以获取包括被检测物件和标定物的第一图像,所述标定物被设置为与所述被检测物件相对关系不变;
    依据所述第一图像获得所述标定物所定义的第一坐标系以及所述被检测物件与所述第一坐标系的第一相对关系;
    控制所述拍摄设备第二次拍摄以获取包括所述被检测物件和标定物的第二图像,依据所述第二图像获得所述标定物所定义的第二坐标系及所述被检测物件与所述第二坐标系的第二相对关系;
    对比所述第一图像和所述第二图像以获得所述标定物的位移,并利用所述位移获得所述第二坐标系与所述第一坐标系的转换关系;
    以所述第一相对关系及所述转换关系计算所述被检测物件与所述第二坐标系的第三相对关系;
    判断所述第三相对关系与所述第二相对关系是否一致或差异在阈值内,若一致或差异在阈值内,则利用所述转换关系校正所述被检测物件与所述第二坐标系的第二相对关系。
  8. 根据权利要求7所述的视觉系统,其特征在于,所述处理设备具体用于:
    依据所述第一图像获得所述标定物所定义的第一坐标系以及所述被检测物件的特征点集合与所述第一坐标系的第一相对关系;
    依据所述第二图像获得所述标定物所定义的第二坐标系以及所述被检测物件的特征点集合与所述第二坐标系的第二相对关系。
  9. 根据权利要求7所述的视觉系统,其特征在于,所述处理设备还用于:
    判断出所述第三相对关系与所述第二相对关系不一致且差异不在阈值内,则提示需要人工校正所述被检测物件的坐标位置。
  10. 根据权利要求7所述的视觉系统,其特征在于,所述标定物至少为两个标定点。
  11. 根据权利要求7所述的视觉系统,其特征在于,所述标定点对应置于所述拍摄范围的边缘。
  12. 根据权利要求7所述的视觉系统,其特征在于,所述第一坐标系是所述标定物对应所述第一图像的第一空间平面坐标系,所述第二坐标系是所述标定物对应所述第二图像的第二空间平面坐标系。
  13. 一种基于视觉系统振动移位的自动校正装置,其特征在于,包括:
    处理器、输入/输出电路;
    其中,所述处理器连接所述输入/输出电路,所述处理器执行程序以实现如下动作:
    控制所述输入/输出电路获取包括被检测物件和标定物的第一图像,所述标定物被设置为与所述被检测物件相对关系不变;
    依据所述第一图像获得所述标定物所定义的第一坐标系以及所述被检测物件与所述第一坐标系的第一相对关系;
    控制所述输入/输出电路再次获取包括所述被检测物件和标定物的第二图像,依据所述第二图像获得所述标定物所定义的第二坐标系及所述被检测物件与所述第二坐标系的第二相对关系;
    对比所述第一图像和所述第二图像以获得所述标定物的位移,并利用所述位移获得所述第二坐标系与所述第一坐标系的转换关系;
    以所述第一相对关系及所述转换关系计算所述被检测物件与所述第二坐标系的第三相对关系;
    判断所述第三相对关系与所述第二相对关系是否一致或差异在阈值内,若一致或差异在阈值内,则利用所述转换关系校正所述被检测物件与所述第二坐标系的第二相对关系。
  14. 根据权利要求13所述的装置,其特征在于,
    所述标定物至少为三个不共线的标定点。
  15. 根据权利要求14所述的装置,其特征在于,
    所述标定点对应置于所述拍摄范围的边缘。
  16. 根据权利要求13所述的装置,其特征在于,
    若不一致且差异不在阈值内,则提示需要人工校正所述被检测物件的坐标位置。
  17. 根据权利要求13所述的装置,其特征在于,
    所述第一坐标系是所述标定物对应所述第一图像的第一空间平面坐标系,所述第二坐标系是所述标定物对应所述第二图像的第二空间平面坐标系。
  18. 根据权利要求13所述的装置,其特征在于,
    依据所述第一图像获得所述标定物所定义的第一坐标系以及所述被检测物件与所述第一坐标系的第一相对关系包括:
    依据所述第一图像获得所述标定物所定义的第一坐标系以及所述被检测物件的特征点集合与所述第一坐标系的第一相对关系;
    依据所述第二图像获得所述标定物所定义的第二坐标系以及所述被检测物件与所述第二坐标系的第二相对关系包括:
    依据所述第二图像获得所述标定物所定义的第二坐标系以及所述被检测物件的特征点集合与所述第二坐标系的第二相对关系。
PCT/CN2017/084857 2017-05-18 2017-05-18 基于视觉系统振动移位的自动校正方法、装置及视觉系统 WO2018209633A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780034127.7A CN109313811B (zh) 2017-05-18 2017-05-18 基于视觉系统振动移位的自动校正方法、装置及系统
PCT/CN2017/084857 WO2018209633A1 (zh) 2017-05-18 2017-05-18 基于视觉系统振动移位的自动校正方法、装置及视觉系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/084857 WO2018209633A1 (zh) 2017-05-18 2017-05-18 基于视觉系统振动移位的自动校正方法、装置及视觉系统

Publications (1)

Publication Number Publication Date
WO2018209633A1 true WO2018209633A1 (zh) 2018-11-22

Family

ID=64273241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084857 WO2018209633A1 (zh) 2017-05-18 2017-05-18 基于视觉系统振动移位的自动校正方法、装置及视觉系统

Country Status (2)

Country Link
CN (1) CN109313811B (zh)
WO (1) WO2018209633A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111275761A (zh) * 2020-01-17 2020-06-12 湖北三江航天红峰控制有限公司 一种自适应高度的视觉定位激光标刻方法
CN113446933A (zh) * 2021-05-19 2021-09-28 浙江大华技术股份有限公司 用于多三维传感器的外参标定方法、装置和系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697364A (zh) * 2019-10-23 2021-04-23 北京图森智途科技有限公司 传感器支架的振动测量方法、装置、系统及可移动设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109620A (zh) * 2007-09-05 2008-01-23 北京航空航天大学 一种结构光视觉传感器结构参数标定方法
CN101706957A (zh) * 2009-10-30 2010-05-12 无锡景象数字技术有限公司 一种双目立体视觉装置的自标定方法
US20100232684A1 (en) * 2009-03-12 2010-09-16 Omron Corporation Calibration apparatus and method for assisting accuracy confirmation of parameter for three-dimensional measurement
CN104240216A (zh) * 2013-06-07 2014-12-24 光宝电子(广州)有限公司 图像校正方法、模块及其电子装置
CN106054874A (zh) * 2016-05-19 2016-10-26 歌尔股份有限公司 视觉定位标定方法、装置及机器人
CN106341956A (zh) * 2016-09-30 2017-01-18 哈尔滨工业大学 一种固定相机校正方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100416336C (zh) * 2003-06-12 2008-09-03 美国西门子医疗解决公司 校准真实和虚拟视图
PL2023812T3 (pl) * 2006-05-19 2017-07-31 The Queen's Medical Center Układ śledzenia ruchu dla adaptacyjnego obrazowania w czasie rzeczywistym i spektroskopii
CN104224212B (zh) * 2013-06-14 2019-07-23 Ge医疗系统环球技术有限公司 Ct系统、其扫描定位方法及校准方法
CN106153074B (zh) * 2016-06-20 2023-05-05 浙江大学 一种惯性测量组合动态导航性能的光学标定系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109620A (zh) * 2007-09-05 2008-01-23 北京航空航天大学 一种结构光视觉传感器结构参数标定方法
US20100232684A1 (en) * 2009-03-12 2010-09-16 Omron Corporation Calibration apparatus and method for assisting accuracy confirmation of parameter for three-dimensional measurement
CN101706957A (zh) * 2009-10-30 2010-05-12 无锡景象数字技术有限公司 一种双目立体视觉装置的自标定方法
CN104240216A (zh) * 2013-06-07 2014-12-24 光宝电子(广州)有限公司 图像校正方法、模块及其电子装置
CN106054874A (zh) * 2016-05-19 2016-10-26 歌尔股份有限公司 视觉定位标定方法、装置及机器人
CN106341956A (zh) * 2016-09-30 2017-01-18 哈尔滨工业大学 一种固定相机校正方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111275761A (zh) * 2020-01-17 2020-06-12 湖北三江航天红峰控制有限公司 一种自适应高度的视觉定位激光标刻方法
CN111275761B (zh) * 2020-01-17 2023-10-03 湖北三江航天红峰控制有限公司 一种自适应高度的视觉定位激光标刻方法
CN113446933A (zh) * 2021-05-19 2021-09-28 浙江大华技术股份有限公司 用于多三维传感器的外参标定方法、装置和系统

Also Published As

Publication number Publication date
CN109313811B (zh) 2021-11-05
CN109313811A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2018209633A1 (zh) 基于视觉系统振动移位的自动校正方法、装置及视觉系统
WO2013081268A1 (en) Auto calibration method and ois camera using the same
JP7069102B2 (ja) リアルタイムビデオ伸び計
WO2019148453A1 (zh) 目标识别模型训练方法、目标识别方法、设备及机器人
WO2019146861A1 (ko) 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템 및 방법
CN103283214A (zh) 摄像机、畸变校正装置以及畸变校正方法
WO2019035550A1 (ko) 카메라 모듈에 포함된 렌즈부의 흔들림을 제어하는 전자 장치 및 전자 장치의 동작 방법
WO2019171984A1 (ja) 信号処理装置、信号処理方法、及び、プログラム
WO2015160052A1 (ko) 광각 렌즈 이미지 보정 방법 및 그 장치
WO2018072568A1 (zh) 移动终端图标动态显示的方法及系统
EP4318398A1 (en) Calibration and verification method and apparatus for intrinsic camera parameter, device, and medium
CN107948639B (zh) 一种背靠背摄像头模组的标定方法以及标定系统
WO2021221334A1 (ko) Gps정보 및 라이다 신호를 기초로 형성되는 컬러 맵 생성 장치 및 그 제어방법
JP2003169255A (ja) シェーディング補正方法
CN109177138B (zh) 一种玻璃与膜片的对位方法及装置
TW202131084A (zh) 判斷相機模組之組裝品質的方法
WO2016006911A1 (ko) 가스 감지 장치
WO2021096320A1 (ko) 3차원 스캐너를 이용한 로봇의 위치 보정 방법 및 장치
WO2020047959A1 (zh) 穿透率检测方法、装置和计算机可读存储介质
WO2019124750A1 (ko) 타임슬라이스 촬영을 위한 카메라 캘리브레이션 방법 및 이를 위한 장치
TW201247373A (en) System and method for adjusting mechanical arm
WO2018212489A1 (ko) 안압 감지용 렌즈, 안압 감지 장치 및 이를 이용한 안압 감지 방법
WO2023085492A1 (ko) Kinect 장치들을 이용한 ar 콘텐츠용 3d 공간 맵 지원 방법 및 이를 지원하는 전자 장치
JPH0886609A (ja) ビーム光投影式3次元センサによる計測方法及びキャリブレーション方法並びにそれらの装置
WO2015067086A1 (zh) 一种数据库数据核算方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910473

Country of ref document: EP

Kind code of ref document: A1