WO2018209492A1 - 背光模组透镜及其构成的背光模组 - Google Patents

背光模组透镜及其构成的背光模组 Download PDF

Info

Publication number
WO2018209492A1
WO2018209492A1 PCT/CN2017/084322 CN2017084322W WO2018209492A1 WO 2018209492 A1 WO2018209492 A1 WO 2018209492A1 CN 2017084322 W CN2017084322 W CN 2017084322W WO 2018209492 A1 WO2018209492 A1 WO 2018209492A1
Authority
WO
WIPO (PCT)
Prior art keywords
backlight module
light
center point
top surface
lens
Prior art date
Application number
PCT/CN2017/084322
Other languages
English (en)
French (fr)
Inventor
刘海生
刘龙辉
Original Assignee
苏州奥浦迪克光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州奥浦迪克光电技术有限公司 filed Critical 苏州奥浦迪克光电技术有限公司
Priority to CN201780001157.8A priority Critical patent/CN108401448A/zh
Priority to PCT/CN2017/084322 priority patent/WO2018209492A1/zh
Publication of WO2018209492A1 publication Critical patent/WO2018209492A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the invention relates to the field of illumination.
  • the invention relates to an optical lens for converting a point source into a surface light source, which is suitable for the field of general illumination, especially backlight technology.
  • the backlight of LCD TVs requires a large number of LEDs arranged in an array to illuminate the liquid crystal panel.
  • Each LED chip is provided with a lens in front of it, and the light from the LED is twice passed through the lens.
  • the LED lens on the market has a circular outer peripheral contour of the optical structure part, and the optical structure part is mostly in a rotationally symmetrical form. Therefore, the existing direct-lit LCD TV LED lens spot is circular, and the optical liquid crystal TV screens are generally square, and LED lenses with rectangular spot distribution will be more reasonable. How to adjust the spot of each lens to a regular square is a technical problem to be solved.
  • An invention patent of the patent number ZL201310095608.2 filed by the applicant on March 25, 2013 discloses an LED for a direct-lit liquid crystal backlight.
  • the lens is a solid body made of a transparent material, and includes a bottom surface, an inner curved surface extending in a vertical direction around the bottom surface, and an outer curved surface.
  • the inner curved surface is recessed upward to form a first optical curved surface, and the first optical curved surface is a light incident surface.
  • the curved surface includes four second optical curved surfaces which are formed by splicing upwardly along the bottom surface, and the second optical curved surface is a light refractive surface, and each of the second optical curved surfaces includes a side surface extending upward along the bottom surface and an upward convex surface.
  • HDR is English 'High Dynamatic
  • Range's high dynamic range means that the display effect is closer to the real color seen by the human eye, achieving higher brightness and wider color gamut.
  • the image quality improvement brought by HDR technology is intuitive and sensible, even if it is ordinary.
  • the audience can also be identified with the naked eye, so many manufacturers have equipped HDR technology on TV products this year.
  • Real HDR must meet dynamic contrast, color gamut, and Peak Brightness related conditions.
  • the dynamic range is up to 1500 nits and the lowest is only 0.05 nit.
  • the solution of HDR technology mainly has the following forms: from the hardware point of view, the first is independent control of the backlight partition; in addition, the backlight should adopt a high color gamut scheme, such as Red. Use new phosphors or use quantum dot backlighting.
  • signal processing is also essential, which requires the chip to support HDR decoding.
  • real HDR from film source production, code decoding, transmission and final display, all of these aspects require technological innovation and breakthrough.
  • LED local dimming technology LED local The principle of dimming is to achieve high contrast by controlling the illumination state of the LED chip separately.
  • the present invention provides a backlight module lens comprising a substrate having a cubic structure as a whole, the substrate having a square bottom surface, a square top surface and a side surface, the bottom surface of the bottom surface being recessed upwardly to form a smooth surface, the top surface upwardly embossing forms a main light-emitting surface, the main light-emitting surface comprises four free-form surfaces, and the four free-form surfaces have a combined center point and are symmetric about the center of the joint center point.
  • the bonding center point is recessed downward toward the light incident surface and is on the same center line as the center point of the light incident surface, wherein the joint of the main light emitting surface and the top surface forms a circular inclined slope surface.
  • the annular slope surface and the top surface are at a predetermined angle to form a dimming surface.
  • the slope angle of the annular slope is in the range of 0.1 to 15 .
  • the annular slope has a wavy cross section.
  • the bottom surface is provided with a positioning post.
  • the bottom surface of the substrate has a size smaller than the top surface dimension such that the side surface is inclined at an angle ⁇ 1 toward the inner side to form an auxiliary light surface.
  • the ⁇ 1 angle is in the range of 1-15°.
  • the main light-emitting surface and the auxiliary light-emitting surface are coated with a reflective coating.
  • it is made of a glass or optical resin material.
  • a backlight module including a plurality of backlight module lenses as described above is arranged in an array, and LED chips are disposed at a light incident surface of each backlight module lens.
  • the light effect diagram of the present invention has a certain residual light around the edge position.
  • the plurality of backlight module lenses are arranged in an array, and each lens is not closely arranged, there may be a gap, and
  • the generated residual light can eliminate the dark area or the bright area brought by the gap, and ensure that no black side or bright line is formed at the joint position to make the overall light effect distribution uniform.
  • FIG. 1 is a perspective view of a first embodiment of a backlight module lens according to the present invention
  • FIG. 2 is a front elevational view showing a first embodiment of a backlight module lens according to the present invention
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 2;
  • FIG. 5 is a perspective view of a second embodiment of a backlight module lens according to the present invention.
  • FIG. 6 is a front elevational view showing a second embodiment of a backlight module lens according to the present invention.
  • Figure 7 is a cross-sectional view taken along line A-A of Figure 6;
  • FIG. 8 is a light effect test chart of the illumination effect of the second embodiment.
  • the backlight module lens of this embodiment is made of glass or an optical resin material.
  • the substrate 1 has a cubic structure as a whole, and the substrate 1 has a square bottom surface 2, a square top surface 3 and a side surface 4.
  • the bottom surface 2 is provided with a positioning post 10 for mounting and positioning, and the center of the bottom surface 1 is recessed upward to form the light incident surface 5.
  • the top surface 3 is raised upward to form a main light-emitting surface 6, and the main light-emitting surface 6 includes four free-form surfaces 7 which are combined with the center point 8 and centered around the joint center point 8.
  • the joint center point 8 Downwardly facing the light incident surface 5 and being located on the same center line as the center point of the light incident surface 5, wherein the joint of the main light exit surface 6 and the top surface 3 forms a ring-shaped outwardly inclined circular slope surface, the annular slope surface
  • the angle between the top surface 3 and the top surface 3 is 0.1° to form the dimming surface 12, and the cross section of the annular slope surface is wavy (in this example, the angle is smaller in the figure, it is more difficult to display); the bottom surface 2 of the substrate 1 is smaller than the size
  • the top surface 3 is dimensioned such that the sides are inclined at an angle of ⁇ 1 toward the inside to form an auxiliary light surface 9, and the inclination angle ⁇ 1 is usually in the range of 1 to 15° (the effect is
  • the principle of the present invention is that the main light-emitting surface 6 functions to uniformly project the incident light to the intermediate portion of the square projection surface; the incident light of a larger angle is refracted by the dimming surface 12 to be projected at a position near the edge of the square projection surface; The incident light of the angle is utilized by the auxiliary light surface 9 to be projected at the edge position of the square projection surface, otherwise these large angle incident light will be wasted by the vertical side reflection.
  • the annular slope surface helps the upper mold to perform drafting, and the inclination angle ⁇ 1 contributes to the realization of the lower mold drafting process.
  • the light effect diagram of the present invention has a certain amount of residual light around the edge position.
  • the plurality of backlight module lenses are arranged in an array, and the light entrance surface 5 of each backlight module lens is disposed.
  • LED chip 11 each lens is not closely arranged, there may be a gap (here the gap is determined by the design), by adjusting the angle of the dimming surface 12, the bonding position between each lens will not form black.
  • the edge ensures uniform distribution of overall light efficiency.
  • the backlight module lens of this embodiment is made of glass or an optical resin material.
  • the substrate 1 has a cubic structure as a whole, and the substrate 1 has a square bottom surface 2, a square top surface 3 and a side surface 4.
  • the bottom surface 2 is provided with a positioning post 10 for mounting and positioning, and the center of the bottom surface 1 is recessed upward to form the light incident surface 5.
  • the top surface 3 is raised upward to form a main light-emitting surface 6, and the main light-emitting surface 6 includes four free-form surfaces 7 which are combined with the center point 8 and centered around the joint center point 8.
  • the joint center point 8 Downwardly facing the light incident surface 5 and being located on the same center line as the center point of the light incident surface 5, wherein the joint of the main light exit surface 6 and the top surface 3 forms a ring-shaped outwardly inclined circular slope surface, the annular slope surface
  • the angle between the top surface 3 and the top surface 3 is 15° to form a dimming surface 12, and the cross section of the annular slope surface is wavy; the bottom surface 2 of the substrate 1 is smaller in size than the top surface 3, so that the side surface is inclined toward the inner side by an angle of ⁇ 1 to form a secondary
  • the light exit surface 9, the tilt angle ⁇ 1 is usually in the range of 1-15° (the effect is preferably 2.5°).
  • the principle of the present invention is that the main light-emitting surface 6 functions to uniformly project the incident light to the intermediate portion of the square projection surface; the incident light of a larger angle is refracted by the dimming surface 12 to be projected at a position near the edge of the square projection surface; The incident light of the angle is utilized by the auxiliary light surface 9 to be projected at the edge position of the square projection surface, otherwise these large angle incident light will be reflected by the vertical side and the waste is deflected away from the square projection area . It should be noted that since the lens is integrally injection molded, the annular slope surface helps the upper mold to perform drafting, and the inclination angle ⁇ 1 contributes to the realization of the lower mold drafting process.
  • the light effect diagram of the embodiment has less residual light around the edge position, because the angle of the dimming surface 12 is larger, and the incident light is deflected at a large angle.
  • a backlight module a plurality of backlight module lenses are arranged in an array, and LED chips 11 are disposed at the light incident surface 5 of each backlight module lens, and each lens is not closely arranged, and there may be a gap ( Here, the gap is determined at the beginning of the design.
  • the angle of the dimming surface 12 black spots and no bright lines are formed at the joint position between each lens, and the overall light effect distribution is ensured.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种背光模组透镜,包括整体上呈立方体结构基底(1),基底(1)具有正方形的底面(2)、正方形的顶面(3)以及侧面(4),底面(2)的中心向上凹陷形成入光面(5),顶面(3)向上隆起形成主出光面(6),主出光面(6)包括四个自由曲面(7)拼接而成,四个自由曲面(7)具有结合中心点(8)并且绕该结合中心点(8)中心对称,该结合中心点(8)向下朝向入光面(5)凹陷并且与入光面(5)的中心点位于同一中心线上,主出光面(6)与顶面(3)的接合处形成一圈向外倾斜的环形坡面,环形坡面与顶面(3)之间呈预定夹角以构成调光面(12)。透镜的光效图在边缘位置周围会有一定的余光,当应用于背光模组时,复数个背光模组透镜排布成阵列,所产生的余光可以消除间隙所带来的暗区或亮区,保证结合位置处不会形成黑边或亮线以位置使整体光效分布均匀。

Description

背光模组透镜及其构成的背光模组
技术领域
本发明涉及照明领域。 本发明涉及一种将点光源转换成为面光源的光学透镜,适用于普通照明尤其是背光技术领域。
背景技术
随着大尺寸液晶电视技术的发展,液晶电视的背光源需要大量的LED排布成阵列对液晶面板进行照明,每颗LED芯片前设置有一个透镜,通过透镜对从LED出来的光进行二次配光,以减少背光模组厚度及LED的使用量,同时满足液晶的背光源对辉度及均一性的要求。目前市场上的LED透镜,其光学结构部分俯视图投影的外围轮廓大都为圆形,其光学结构部分形状大都为旋转对称形式,因此现有直下式液晶电视LED透镜光斑都为圆形,而光液晶电视显示屏一般都为方形,采用矩形光斑分布的LED透镜将更为合理,如何将每颗透镜的光斑调整为规整的方形是需要解决的技术问题。
本申请人于2013年3月25日申请的一项专利号为ZL201310095608.2的发明专利,公开了一种用于直下式液晶背光的LED 透镜,透镜是由透明材料制成的实体,包括底面、围绕底面在竖直方向延伸的内曲面以及外曲面,内曲面四周向上凹陷形成第一光学曲面,第一光学曲面为光入射面,外曲面包括四个四周沿底面向上延伸的相拼接而成的第二光学曲面,第二光学曲面为光折射面,每个第二光学曲面包括沿底面向上延伸的侧面、沿侧面向上凸起的上凸面、沿上凸面向中心凹陷的上凹面。该发明虽然解决了现有技术中的问题,能够在扩散板上形成一个均匀照度的矩形或椭圆形光斑,但是依然无法解决当LED构成阵列时各个发光单元之间的调光问题。
近年来大尺寸液晶显示技术将呈多元化发展趋势,4K、曲面、量子点、无边框等面板需求将会迎来高增长。伴随着消费升级和大尺寸化趋势,8K面板将步入市场。以75英寸为例,4K面板像素密集度仅为59ppi,若提升至8K则PPI可提升至110以上,显示画面细腻度将大幅提升。
另外, HDR是英文'High Dynamatic Range'高动态范围的缩写,是指显示效果更接近人眼看到的真实色彩,实现更高的亮度和更宽的色域,HDR技术带来的画质提升是直观可感的,即使是普通观众也能用肉眼辨别,因此今年众多厂商纷纷在电视产品上搭载HDR技术。根据Dolby Vision以及UHD Lines的标准,要实现Real HDR必须满足动态对比度、色域以及Peak Brightness的相关条件。以目前技术水平来看,动态范围最高可达到1500nits,最低仅为0.05nit。HDR技术的解决方案主要有以下形式:从硬件来看,首先是背光分区独立控制;另外背光源要采用高色域方案,如Red 采用新的荧光粉或使用量子点背光方案。除了硬件显示方面达到HDR的标准外,信号处理也是必不可少的,这就要求芯片必须支持HDR解码。当然,实现真正的HDR,从片源的制作,编码解码,传输以及最终的显示,所有的这些环节均需要技术的革新和突破。
在电视市场,因受面板价格波动的影响,电视整机厂商长期面临着严峻的获利挑战,而这项技术将给用户带来更真实的画质体验,也有利于提升获利。随着产业链相关技术的逐步成熟和突破,技术也呈现多元化,面板厂商尝试通过了LED局部调光技术(LED local dimming)和Tcon算法两种方式来实现HDR,可以预见未来几年HDR电视也将会迎来快速增长。LED局部调光技术(LED local dimming)的原理是通过单独控制LED芯片的发光状态来实现高对比度,然而如何提供一种全新的背光模组透镜,来匹配这种具有不同发光状态的LED芯片(例如具有不同光强,或者具有不同的出射角度等),是本发明要解决的另一个技术问题,这一点对于本业界具有重大的技术意义 。
发明内容
为了克服上述缺点,本发明的目的在于提供一种组合后照明均匀的背光模组透镜。
为了达到以上目的,本发明提供了一种背光模组透镜,包括整体上呈立方体结构基底,所述的基底具有正方形的底面、正方形的顶面以及侧面,所述的底面的中心向上凹陷形成入光面,所述的顶面向上隆起形成主出光面,所述的主出光面包括四个自由曲面拼接而成,四个所述的自由曲面具有结合中心点并且绕该结合中心点中心对称,该结合中心点向下朝向入光面凹陷并且与入光面的中心点位于同一中心线上,其中,所述的主出光面与顶面的接合处形成一圈向外倾斜的环形坡面,所述的环形坡面与顶面之间呈预定夹角以构成调光面。
作为本发明进一步的改进,所述的环形坡面的坡度角处于0.1°至15°范围。
作为本发明进一步的改进,所述的环形坡面的横截面呈波浪形。
作为本发明进一步的改进,所述的底面上设置有定位柱。
作为本发明进一步的改进,所述的基底的底面尺寸小于顶面尺寸使所述的侧面朝向内侧倾斜θ1角以形成辅出光面。
作为本发明进一步的改进,所述的θ1角处于1-15°范围内。
作为本发明进一步的改进,所述的主出光面和辅出光面上涂覆反射镀膜。
作为本发明进一步的改进,由玻璃或光学树脂材料制成。
根据本发明的另一方面,提供了一种背光模组,包括复数个如上所述的背光模组透镜排布成阵列,每个背光模组透镜的入光面处设置有LED芯片。
本发明的光效图在边缘位置周围会有一定的余光,当应用于背光模组时,复数个背光模组透镜排布成阵列,每颗透镜之间并非紧密排列可能会存在间隙,而所产生的余光可以消除间隙所带来的暗区或亮区,保证结合位置处不会形成黑边或亮线以位置使整体光效分布均匀。
附图说明
附图1为根据本发明的背光模组透镜的实施例一的立体示意图;
附图2为根据本发明的背光模组透镜的实施例一的主视示意图;
附图3为附图2中沿A-A的剖视图;
附图4为实施例一的照明效果光效测试图;
附图5为根据本发明的背光模组透镜的实施例二的立体示意图;
附图6为根据本发明的背光模组透镜的实施例二的主视示意图;
附图7为附图6中沿A-A的剖视图;
附图8为实施例二的照明效果光效测试图。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
实施例一
参见各附图1至附图4所示,本实施例中的背光模组透镜由玻璃或光学树脂材料制成。基底1整体上呈立方体结构,基底1具有正方形的底面2、正方形的顶面3以及侧面4,底面2上设置有定位柱10用于安装定位,底面1的中心向上凹陷形成入光面5。
顶面3向上隆起形成主出光面6,主出光面6包括四个自由曲面7拼接而成,四个自由曲面7具有结合中心点8并且绕该结合中心点8中心对称,该结合中心点8向下朝向入光面5凹陷并且与入光面5的中心点位于同一中心线上,其中,主出光面6与顶面3的接合处形成一圈向外倾斜的环形坡面,环形坡面与顶面3之间呈0.1°夹角以构成调光面12,环形坡面的横截面呈波浪形(本例中由于角度较小图中较难显示出来);基底1的底面2尺寸小于顶面3尺寸使侧面朝向内侧倾斜θ1角以形成辅出光面9,倾斜角θ1通常在1-15°范围之间(2.5°效果较佳)。优选的,主出光面6、调光面12和辅出光面9上可以涂覆反射镀膜。
本发明的原理是主出光面6起到将入射光均匀投射至正方形投射面的中间区域;较大角度的入射光通过调光面12被折射以投射在正方形投射面的边缘附近的位置;大角度的入射光通过辅出光面9被利用以投射在正方形投射面的边缘位置,否则这些大角度入射光将被垂直的侧面反射浪费。需要说明的是,由于透镜是一体注塑成型,环形坡面有助于上模实现拔模,倾斜角θ 1有助于下模拔模过程的实现。
本发明的光效图在边缘位置周围会有一定的余光,当应用于背光模组时,复数个背光模组透镜排布成阵列,每个背光模组透镜的入光面5处设置有LED芯片11,每颗透镜之间并非紧密排列可能会存在间隙(此处空隙由设计之初决定),通过调整调光面12的角度可以使得每颗透镜之间的结合位置处不会形成黑边,保证了整体光效分布均匀。
实施例二
参见各附图5至附图8所示,本实施例中的背光模组透镜由玻璃或光学树脂材料制成。基底1整体上呈立方体结构,基底1具有正方形的底面2、正方形的顶面3以及侧面4,底面2上设置有定位柱10用于安装定位,底面1的中心向上凹陷形成入光面5。
顶面3向上隆起形成主出光面6,主出光面6包括四个自由曲面7拼接而成,四个自由曲面7具有结合中心点8并且绕该结合中心点8中心对称,该结合中心点8向下朝向入光面5凹陷并且与入光面5的中心点位于同一中心线上,其中,主出光面6与顶面3的接合处形成一圈向外倾斜的环形坡面,环形坡面与顶面3之间呈15°夹角以构成调光面12,环形坡面的横截面呈波浪形;基底1的底面2尺寸小于顶面3尺寸使侧面朝向内侧倾斜θ1角以形成辅出光面9,倾斜角θ1通常在1-15°范围之间(2.5°效果较佳)。优选的,主出光面6、调光面12和辅出光面9上可以涂覆反射镀膜。
本发明的原理是主出光面6起到将入射光均匀投射至正方形投射面的中间区域;较大角度的入射光通过调光面12被折射以投射在正方形投射面的边缘附近的位置;大角度的入射光通过辅出光面9被利用以投射在正方形投射面的边缘位置,否则这些大角度入射光将被垂直的侧面反射浪费折射偏离正方形投射区域。需要说明的是,由于透镜是一体注塑成型,环形坡面有助于上模实现拔模,倾斜角θ 1有助于下模拔模过程的实现。
相较于实施例一,本实施例的光效图在边缘位置周围余光较少,这是因为调光面12角度较大将入射光大角度偏折出射。当应用于背光模组时,复数个背光模组透镜排布成阵列,每个背光模组透镜的入光面5处设置有LED芯片11,每颗透镜之间并非紧密排列可能会存在间隙(此处空隙由设计之初决定),通过调整调光面12的角度可以使得每颗透镜之间的结合位置处不会形成黑边、也不会有亮线,保证了整体光效分布均匀。
以上实施方式只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所做的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (9)

1. 一种背光模组透镜,其特征在于:包括整体上呈立方体结构基底,所述的基底具有正方形的底面、正方形的顶面以及侧面,所述的底面的中心向上凹陷形成入光面,所述的顶面向上隆起形成主出光面,所述的主出光面包括四个自由曲面拼接而成,四个所述的自由曲面具有结合中心点并且绕该结合中心点中心对称,该结合中心点向下朝向入光面凹陷并且与入光面的中心点位于同一中心线上,其中,所述的主出光面与顶面的接合处形成一圈向外倾斜的环形坡面,所述的环形坡面与顶面之间呈预定夹角以构成调光面。
2. 如权利要求1所述的背光模组透镜,其特征在于:所述的环形坡面的坡度角处于0.1°至15°范围。
3. 如权利要求1所述的背光模组透镜,其特征在于:所述的环形坡面的横截面呈波浪形。
4. 如权利要求1所述的背光模组透镜,其特征在于:所述的基底的底面尺寸小于顶面尺寸使所述的侧面朝向内侧倾斜θ 1角以形成辅出光面。
5. 如权利要求4所述的背光模组透镜,其特征在于:所述的θ1角处于1-15°范围内。
6. 根据权利要求1所述的背光模组透镜,其特征在于:所述的底面上设置有定位柱。
7. 根据权利要求1所述的背光模组透镜,其特征在于:所述的主出光面、辅出光面和调光面上涂覆反射镀膜。
8. 如权利要求1所述的背光模组透镜,其特征在于:由玻璃或光学树脂材料制成。
9. 一种背光模组,其特征在于:包括复数个如权利要求1至8任一所述的背光模组透镜排布成阵列,每个背光模组透镜的入光面处设置有LED芯片。
PCT/CN2017/084322 2017-05-15 2017-05-15 背光模组透镜及其构成的背光模组 WO2018209492A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780001157.8A CN108401448A (zh) 2017-05-15 2017-05-15 背光模组透镜及其构成的背光模组
PCT/CN2017/084322 WO2018209492A1 (zh) 2017-05-15 2017-05-15 背光模组透镜及其构成的背光模组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/084322 WO2018209492A1 (zh) 2017-05-15 2017-05-15 背光模组透镜及其构成的背光模组

Publications (1)

Publication Number Publication Date
WO2018209492A1 true WO2018209492A1 (zh) 2018-11-22

Family

ID=63095062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084322 WO2018209492A1 (zh) 2017-05-15 2017-05-15 背光模组透镜及其构成的背光模组

Country Status (2)

Country Link
CN (1) CN108401448A (zh)
WO (1) WO2018209492A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818216A (zh) * 2012-06-05 2012-12-12 佛山市国星光电股份有限公司 一种大角度透镜及大角度出光的led光源模块
CN103277739A (zh) * 2013-04-26 2013-09-04 易美芯光(北京)科技有限公司 一种光学透镜
US8651707B1 (en) * 2013-03-07 2014-02-18 Ledlink Optics, Inc. Optical lens for a LED having a quasi-elliptical shape
CN203744119U (zh) * 2013-12-19 2014-07-30 辅讯光电工业(苏州)有限公司 光学透镜及使用其的背光模组
CN204141495U (zh) * 2014-09-22 2015-02-04 张志才 方形光斑背光源透镜
CN204227321U (zh) * 2014-11-19 2015-03-25 卿清波 二次透镜及背光模组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201027184A (en) * 2009-01-05 2010-07-16 Chi Mei Optoelectronics Corp Backlight module and liquid crystal display device using the same and light emitting diode package
CN102287679A (zh) * 2011-05-26 2011-12-21 深圳市华星光电技术有限公司 光源模块以及背光模块
CN205640733U (zh) * 2016-01-20 2016-10-12 张志才 一种新型的双凹面背光源透镜
CN205827020U (zh) * 2016-06-28 2016-12-21 周楠 一种直下式背光模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818216A (zh) * 2012-06-05 2012-12-12 佛山市国星光电股份有限公司 一种大角度透镜及大角度出光的led光源模块
US8651707B1 (en) * 2013-03-07 2014-02-18 Ledlink Optics, Inc. Optical lens for a LED having a quasi-elliptical shape
CN103277739A (zh) * 2013-04-26 2013-09-04 易美芯光(北京)科技有限公司 一种光学透镜
CN203744119U (zh) * 2013-12-19 2014-07-30 辅讯光电工业(苏州)有限公司 光学透镜及使用其的背光模组
CN204141495U (zh) * 2014-09-22 2015-02-04 张志才 方形光斑背光源透镜
CN204227321U (zh) * 2014-11-19 2015-03-25 卿清波 二次透镜及背光模组

Also Published As

Publication number Publication date
CN108401448A (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
KR101957184B1 (ko) 백라이트 유닛 및 그를 구비한 디스플레이 장치
US8520150B2 (en) Lighting device, display device and television receiver
US20140376219A1 (en) Light-emitting device, illuminating apparatus, and display apparatus
CN102901000B (zh) 背光单元和使用该背光单元的显示装置
US10816852B2 (en) Backlight unit and liquid crystal display device including the same
KR101335791B1 (ko) 디스플레이 장치의 백라이트 유닛 및 그를 이용한 디스플레이 장치
WO2012035798A1 (ja) 面状照明装置およびこれを備えた液晶表示装置
US20130121016A1 (en) Optical film having improved optical performance, and backlight unit comprising the same
RU2491475C1 (ru) Устройство освещения, устройство отображения и телевизионный приемник
WO2018149025A1 (zh) 一种超薄背光模组
WO2017206366A1 (zh) 背光模组和显示设备
WO2020147213A1 (zh) 支撑结构、背光单元和显示面板
CN109407397A (zh) 背光模组及显示装置
CN213395154U (zh) 一种应用于薄型显示器的背光透镜
CN101701693A (zh) 发光装置
WO2018209487A1 (zh) 背光模组透镜及其构成的背光模组
US20100214514A1 (en) Optical diffusion device
KR20050121578A (ko) 백라이트 유닛
WO2018209492A1 (zh) 背光模组透镜及其构成的背光模组
KR100380855B1 (ko) 액정표시장치용 백라이트 시스템
TWI776581B (zh) 直下式背光模組及其顯示器
WO2019109992A1 (zh) 背光模组透镜及其构成的背光模组
WO2021063055A1 (zh) 光扩散部件、背光组件及交互智能平板
WO2019088457A1 (ko) 광학렌즈
KR20000055299A (ko) 액정표시장치용 백라이트 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910444

Country of ref document: EP

Kind code of ref document: A1