WO2019109992A1 - 背光模组透镜及其构成的背光模组 - Google Patents

背光模组透镜及其构成的背光模组 Download PDF

Info

Publication number
WO2019109992A1
WO2019109992A1 PCT/CN2018/119675 CN2018119675W WO2019109992A1 WO 2019109992 A1 WO2019109992 A1 WO 2019109992A1 CN 2018119675 W CN2018119675 W CN 2018119675W WO 2019109992 A1 WO2019109992 A1 WO 2019109992A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
backlight module
incident
module lens
annular groove
Prior art date
Application number
PCT/CN2018/119675
Other languages
English (en)
French (fr)
Inventor
刘龙辉
林徐磊
潘春梅
Original Assignee
刘龙辉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘龙辉 filed Critical 刘龙辉
Publication of WO2019109992A1 publication Critical patent/WO2019109992A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the invention relates to the field of flat panel display, lighting field and light box billboard.
  • the backlight of LCD TVs requires a large number of LEDs arranged in an array to illuminate the liquid crystal panel.
  • Each LED chip is provided with a lens in front of it, and the light from the LED is twice passed through the lens.
  • the LED lens on the market has a dark ring effect due to the mating discontinuity between the light incident surface and the light exit surface, so that the exit spot has a certain dark ring effect (see FIG. 1), that is, there are multiple darkness around the central area.
  • the narrow-type PCB board becomes the mainstream.
  • the present invention provides a backlight module lens including a circular bottom surface, a side surface surrounding the bottom surface, and a light-emitting surface extending upward along the side surface, the center of the bottom surface being upward
  • the recesses form an ellipsoidal light-incident surface, and the light-emitting surface covers the bottom surface, and the center of the light-emitting surface is recessed downward toward the light-incident surface and is located on the same center line as the center point of the light-incident surface.
  • the inner surface of the light incident surface is provided with a plurality of annular groove lines, and the annular groove lines are distributed along the height direction of the light incident surface.
  • the center of the light-emitting surface is recessed toward the light-incident surface such that the incident light in the vicinity of the center point reaches a total reflection condition, and the incident light of the remaining portion of the light-emitting surface reaches Refraction emission conditions.
  • the light-emitting surface is entirely recessed toward the light-incident surface, and the incident light in the vicinity of the center point reaches a total reflection condition, and the periphery of the vicinity of the center point has a first periphery. a region, the incident light of the first peripheral region mainly reaches a refractive emission condition, and the total reflection condition is secondary, the periphery of the first peripheral region has a second peripheral region, and the incident light of the second peripheral region Mainly reaching the total reflection condition and secondary to the refractive emission condition, the incident light of the remaining portion of the light exiting surface reaches the total reflection condition.
  • the annular groove line is spirally spiraled upward.
  • the pitch of each of the annular groove lines is gradually decreased from the bottom to the top.
  • the annular groove line is disposed at a position between 1/3 and 2/3 of the height of the light incident surface.
  • a nano-scale particle coating is disposed between each of the annular groove lines on the light incident surface.
  • the bottom surface is formed with a grid-like texture.
  • the light-emitting surface is coated with a plating film.
  • a backlight module including a plurality of backlight module lenses arranged in an array, and an LED light source is disposed at a light incident surface of each backlight module lens.
  • the annular groove line of the invention partially converges the light incident at the groove line, thereby disturbing the original light distribution mode, eliminating the original regular distribution and forming a dark ring, ensuring uniform distribution of light intensity on the whole. .
  • Figure 1 depicts the dark ring effect
  • FIG. 2 is a perspective view of a backlight module lens according to the present invention.
  • Figure 3 is a front elevational view of a backlight module lens in accordance with the present invention.
  • Figure 4 is a cross-sectional view taken along line I-I of Figure 3;
  • Figure 5 is a partial enlarged view of Figure 4.
  • Figure 6 is a schematic view showing the comparison of illuminance distributions of the present embodiment
  • Figure 7 is a light effect test chart of the illumination effect of the embodiment
  • Figure 8 is a cross-sectional view showing another embodiment of a backlight module lens according to the present invention.
  • Figure 9 is a partially enlarged schematic view of Figure 8.
  • FIG. 2 is a perspective view of a backlight module lens according to the present invention
  • FIG. 3 is a front view of a backlight module lens according to the present invention
  • FIG. 4 is attached 3 is a cross-sectional view along II
  • FIG. 5 is a partial enlarged view of FIG.
  • the backlight module lens of the present invention comprises a circular bottom surface 1, a side surface 2 surrounding the bottom surface 1, and a light-emitting surface 3 extending upward along the side surface 2.
  • the center of the bottom surface 1 is recessed upward to form an ellipsoidal light-incident surface 4, and the bottom surface 1
  • a positioning post 6 for longitudinal mounting positioning is disposed thereon, and a positioning edge 7 for circumferential mounting positioning is disposed on the side surface 2, and a mesh-like texture 8 is formed on the bottom surface 1, and the mesh-like texture 8 serves to reflect light upwards. It can be molded by injection molding.
  • the light-emitting surface 3 covers the bottom surface 1, and the center of the light-emitting surface 3 is recessed downward toward the light-incident surface 4 and is on the same center line as the center point of the light-incident surface 4, and the center of the light-emitting surface 3 faces the light.
  • the face 4 is recessed so that the incident light rays near the center point reach the total reflection condition, and the incident light of the remaining portion of the light exit face 3 reaches the refractive emission condition.
  • the inner surface of the light incident surface 4 is provided with a plurality of annular groove lines 5, and the annular groove lines 5 are distributed along the height direction of the light incident surface 4.
  • the annular groove lines 5 may be independent plurality of groove lines, or may be an integral one.
  • the annular groove line 5 is disposed at a position between 1/3 and 2/3 of the light entrance surface 4, and the pitch of each annular groove line 5 is gradually decreased from the bottom to the top. .
  • the light ray a in the present embodiment is refracted by the light incident surface 4, and the light rays b, c, and d are incident at the groove line, and the annular groove line is incident at the groove line.
  • the light is partially inwardly closed (the angle of refraction is reduced), thereby disturbing the original light distribution pattern, and the original light intensity is distributed at the groove line as a whole, and the generated intensity deviation and the original regular distribution are generated.
  • the formed dark rings are superimposed on each other to ensure uniform distribution of light intensity as a whole.
  • 6 is a schematic view showing the comparison of the illuminance distribution of the present embodiment
  • FIG. 7 is a test diagram of the illumination effect of the embodiment. It can be seen that the present invention can greatly improve the original dark ring effect.
  • the backlight module lens including a circular bottom surface 1, a side surface 2 surrounding the bottom surface 1, and a light exit surface 3 extending upward along the side surface 2,
  • the center of the bottom surface 1 is recessed upward to form a light incident surface 4, and the bottom surface 1 is provided with a positioning post 6 for longitudinal mounting positioning.
  • the light-emitting surface is entirely recessed toward the light-incident surface, and the light-emitting surface 3 may be coated with a coating film to enhance the effect.
  • the incident light in the vicinity of the center point reaches the total reflection condition
  • the periphery of the vicinity of the center point has the first In the peripheral region
  • the incident light of the first peripheral region mainly reaches the refractive emission condition
  • the secondary reflection condition is secondarily reached.
  • the periphery of the first peripheral region has a second peripheral region, and the incident light of the second peripheral region mainly reaches the total reflection condition and the secondary When the refractive emission condition is reached, the incident light of the remaining portion of the light exiting surface reaches the total reflection condition.
  • the inner surface of the light incident surface 4 of the present embodiment is provided with a plurality of annular groove lines 5, and the annular groove lines 5 are distributed along the height direction of the light incident surface 4.
  • the annular groove line 5 can be independent. a plurality of slot lines, or an integral spiral shape that is upwardly spiraled, in this embodiment,
  • a nanoscale particle coating 10 is disposed between each of the annular groove lines 5 on the entrance face 4.
  • the nano-scale particle coating 9 mainly functions as a light mixing function to disperse the light, and the annular groove line 5 acts as a deflecting light, and the deflection direction is concentrated, and the annular groove line 5 and the nano-scale particle coating are passed through.
  • the combination of 10 makes the light in the deflected area excessively uniform, and there is no fault phenomenon caused by the deflection.
  • the backlight module lens of the present invention can be arranged in an array, and the LED light source 9 is disposed at the light incident surface of each backlight module lens, and the backlight module with uniform light intensity distribution can be formed as a whole.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

本发明公开了一种背光模组透镜,包括呈圆形的底面、环绕所述的底面的侧面、以及沿所述的侧面向上延伸的出光面,所述的底面的中心向上凹陷形成椭球形入光面,所述的出光面覆盖于所述的底面上方,所述的出光面的中心向下朝向入光面凹陷并且与入光面的中心点位于同一中心线上,所述的入光面的内表面设置有多个环形槽线,所述的环形槽线沿入光面的高度方向分布。本发明的环形槽线将在槽线处入射的光线局部向内收拢,从而打乱原有光线分布方式,消除了原有的规律性分布而形成的暗环,保证整体上的光强分布均匀。

Description

背光模组透镜及其构成的背光模组
技术领域
本发明涉及平板显示领域、照明领域、灯箱广告牌领域。
背景技术
随着大尺寸液晶电视技术的发展,液晶电视的背光源需要大量的LED排布成阵列对液晶面板进行照明,每颗LED芯片前设置有一个透镜,通过透镜对从LED出来的光进行二次配光,以减少背光模组厚度及LED的使用量,同时满足液晶的背光源对辉度及均一性的要求。目前市场上的LED透镜,由于入光面与出光面之间存在配合不连续性,导致其出射光斑均有一定的暗环效应(参见附图1所示),即环绕中心区域存在多个暗环,另外,为降低成本,窄版PCB板成为主流,当PCB板材宽度小于透镜地面直径时,透镜底面出射的光将有部分无法返回透镜,导致光斑中心暗斑问题,如何消除这种暗环或中心暗斑使得照射区域内光强分布均匀是本发明需要解决的技术问题。
发明内容
为了克服上述缺点,本发明的目的在于提供一种可以消除暗环或中心暗斑效应的背光模组透镜。
为了达到以上目的,本发明提供了一种背光模组透镜,包括呈圆形的底面、环绕所述的底面的侧面、以及沿所述的侧面向上延伸的出光面,所述的底面的中心向上凹陷形成椭球形入光面,所述的出光面覆盖于所述的底面上方,所述的出光面的中心向下朝向入光面凹陷并且与入光面的中心点位于同一中心线上,所述的入光面的内表面设置有多个环形槽线,所述的环形槽线沿入光面的高度方向分布。
作为本发明进一步的改进,所述的出光面的中心朝向所述的入光面凹陷以使在中心点附近区域的入射光线达到全反射条件,所述的出光面的其余部分区域的入射光线达到折射出射条件。
作为本发明进一步的改进,所述的出光面整体朝向所述的入光面凹陷,所述的中心点附近区域的入射光线达到全反射条件,所述的中心点附近区域的外围具有第一周边区域,所述的第一周边区域的入射光线主要达到折射出射条件、次要达到全反射条件,所述的第一周边区域的外围具有第二周边区域,所述的第二周边区域的入射光线主要达到全反射条件、次要达到折射出射条件,所述的出光面的其余部分区域的入射光线达到全反射条件。
作为本发明进一步的改进,所述的环形槽线呈向上盘旋的螺旋线状。
作为本发明进一步的改进,各个所述的环形槽线的间距自下向上逐渐减小。
作为本发明进一步的改进,所述的环形槽线设置于入光面的1/3至2/3高度之间位置。
作为本发明进一步的改进,所述的入光面上的各个所述的环形槽线之间设置有纳米级别颗粒涂层。
作为本发明进一步的改进,所述的底面上形成有网格状纹理。
作为本发明进一步的改进,所述的出光面上涂覆有镀膜。
根据本发明的另一方面,提供了一种背光模组,包括复数个如上所述的背光模组透镜排布成阵列,每个背光模组透镜的入光面处设置有LED光源。
本发明的环形槽线将在槽线处入射的光线局部向内收拢,从而打乱原有光线分布方式,消除了原有的规律性分布而形成的暗环,保证整体上的光强分布均匀。
附图说明
附图1描述了暗环效应;
附图2为根据本发明的背光模组透镜的立体示意图;
附图3为根据本发明的背光模组透镜的主视示意图;
附图4为附图3中沿I-I的剖视图;
附图5为附图4中的局部放大图;
附图6为本实施例的照度分布对比示意图;
附图7为本实施例的照明效果光效测试图;
附图8为根据本发明的背光模组透镜的另一实施例的剖视图;
附图9为附图8的局部放大示意图。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
参见各附图2至附图5所示,附图2为根据本发明的背光模组透镜的立体示意图,附图3为根据本发明的背光模组透镜的主视示意图,附图4为附图3中沿I-I的剖视图,附图5为附图4中的局部放大图。
本发明的背光模组透镜,包括呈圆形的底面1、环绕底面1的侧面2、以及沿侧面2向上延伸的出光面3,底面1的中心向上凹陷形成椭球形入光面4,底面1上设置有用于纵向安装定位的定位柱6,侧面2上设置有用于周向安装定位的定位缘7,底面1上形成有网格状纹理8,网格状纹理8起到将光线反射向上出射,可以通过注塑一体成型。
作为折射型透镜,出光面3覆盖于底面1上方,出光面3的中心向下朝向入光面4凹陷并且与入光面4的中心点位于同一中心线上,出光面3的中心朝向入光面4凹陷以使在该中心点附近的入射光线达到全反射条件,出光面3的其余部分区域的入射光线达到折射出射条件。
入光面4的内表面设置有多个环形槽线5,环形槽线5沿入光面4的高度方向分布,环形槽线5可以是独立多个槽线,或者还可以是一根整体的呈向上盘旋的螺旋线状,在本实施例中,环形槽线5设置于入光面4的1/3至2/3高度之间位置,各个环形槽线5的间距自下向上逐渐减小。
参见附图4和附图5所示,本实施例中的光线a通过入光面4折射后出射,而光线b、c、d,在槽线处入射,环形槽线将在槽线处入射的光线局部向内收拢(折射角度减小),从而打乱原有光线分布方式,将原来的光强分布在槽线处整体聚拢,所产生的光强偏移量与原有的规律性分布而形成的暗环相互叠加,保证整体上的光强分布均匀。附图6为本实施例的照度分布对比示意图,附图7为本实施例的照明效果光效测试图,可以看出,本发明可以极大的改善原有的暗环效应。
附图8为根据本发明的背光模组透镜的另一实施例的剖视图,背光模组透镜包括呈圆形的底面1、环绕底面1的侧面2、以及沿侧面2向上延伸的出光面3,底面1的中心向上凹陷形成入光面4,底面1上设置有用于纵向安装定位的定位柱6。作为一种反射型透镜,出光面整体朝向入光面凹陷,出光面3上可以涂覆有镀膜以增强效果,中心点附近区域的入射光线达到全反射条件,中心点附近区域的外围具有第一周边区域,第一周边区域的入射光线主要达到折射出射条件、次要达到全反射条件,第一周边区域的外围具有第二周边区域,第二周边区域的入射光线主要达到全反射条件、次要达到折射出射条件,出光面的其余部分区域的入射光线达到全反射条件。
参见附图9的局部放大示意图,本实施例的入光面4的内表面设置有多个环形槽线5,环形槽线5沿入光面4的高度方向分布,环形槽线5可以是独立多个槽线,或者还可以是一根整体的呈向上盘旋的螺旋线状,在本实施例中, 入光面4上的各个环形槽线5之间设置有纳米级别颗粒涂层10。纳米级别颗粒涂层9主要起到混光作用,将光线打散开来,而环形槽线5起到偏折光线的作用,偏折方向较为集中,通过环形槽线5与纳米级别颗粒涂层10的结合作用,使得偏折区域的光线过度较为均匀,不会有偏折作用所带来的断层现象发生。
进而,可以将本发明的背光模组透镜排布成阵列,每个背光模组透镜的入光面处设置有LED光源9,整体上可以构成一种光强分布均匀的背光模组。
以上实施方式只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所做的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

1. 一种背光模组透镜,其特征在于:包括呈圆形的底面(1)、环绕所述的底面(1)的侧面(2)、以及沿所述的侧面(2)向上延伸的出光面(3),所述的底面(1)的中心向上凹陷形成入光面(4),所述的出光面(3)覆盖于所述的底面(1)上方,所述的出光面(3)的中心向下朝向入光面(4)凹陷并且与入光面(4)的中心点位于同一中心线上,所述的入光面(4)的内表面设置有多个环形槽线(5),所述的环形槽线(5)沿入光面(4)的高度方向分布。
2. 根据权利要求1所述的背光模组透镜,其特征在于:所述的出光面(3)的中心朝向所述的入光面(4)凹陷以使在中心点附近区域的入射光线达到全反射条件,所述的出光面(3)的其余部分区域的入射光线达到折射出射条件。
3. 根据权利要求1所述的背光模组透镜,其特征在于:所述的出光面(3)整体朝向所述的入光面(4)凹陷,所述的中心点附近区域的入射光线达到全反射条件,所述的中心点附近区域的外围具有第一周边区域,所述的第一周边区域的入射光线主要达到折射出射条件、次要达到全反射条件,所述的第一周边区域的外围具有第二周边区域,所述的第二周边区域的入射光线主要达到全反射条件、次要达到折射出射条件,所述的出光面(3)的其余部分区域的入射光线达到全反射条件。
4. 根据权利要求1所述的背光模组透镜,其特征在于:所述的环形槽线(5)呈向上盘旋的螺旋线状。
5. 根据权利要求1所述的背光模组透镜,其特征在于:各个所述的环形槽线(5)的间距自下向上逐渐减小。
6. 根据权利要求1所述的背光模组透镜,其特征在于:所述的环形槽线(5)设置于入光面(4)的1/3至2/3高度之间位置。
7. 根据权利要求1所述的背光模组透镜,其特征在于:所述的入光面(4)上的各个所述的环形槽线(5)之间设置有纳米级别颗粒涂层(10)。
8. 根据权利要求1所述的背光模组透镜,其特征在于:所述的底面(1)上形成有网格状纹理(8)。
9. 根据权利要求1所述的背光模组透镜,其特征在于:所述的出光面(3)上涂覆有光学镀膜。
10. 一种背光模组,其特征在于:包括复数个根据权利要求1至9任一所述的背光模组透镜排布成阵列,每个背光模组透镜的入光面处设置有LED光源。
PCT/CN2018/119675 2017-12-07 2018-12-07 背光模组透镜及其构成的背光模组 WO2019109992A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711287031.X 2017-12-07
CN201711287031.XA CN107991807B (zh) 2017-12-07 2017-12-07 背光模组透镜及其构成的背光模组

Publications (1)

Publication Number Publication Date
WO2019109992A1 true WO2019109992A1 (zh) 2019-06-13

Family

ID=62036837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119675 WO2019109992A1 (zh) 2017-12-07 2018-12-07 背光模组透镜及其构成的背光模组

Country Status (2)

Country Link
CN (1) CN107991807B (zh)
WO (1) WO2019109992A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107991807B (zh) * 2017-12-07 2021-03-26 苏州奥浦迪克光电技术有限公司 背光模组透镜及其构成的背光模组
CN110160010A (zh) * 2019-04-03 2019-08-23 苏州阿奎睿思机器人科技有限公司 工业照明装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997178A (zh) * 2011-09-09 2013-03-27 欧司朗股份有限公司 透镜以及具有该透镜的照明装置
CN103836537A (zh) * 2012-12-15 2014-06-04 东莞雷笛克光学有限公司 发光二极管透镜结构
CN103868016A (zh) * 2012-12-11 2014-06-18 鸿富锦精密工业(深圳)有限公司 光学透镜以及应用该光学透镜的发光元件
CN107991807A (zh) * 2017-12-07 2018-05-04 苏州奥浦迪克光电技术有限公司 背光模组透镜及其构成的背光模组

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202927738U (zh) * 2012-11-09 2013-05-08 深圳Tcl新技术有限公司 Led光学透镜及led背光模组
CN203395813U (zh) * 2013-08-16 2014-01-15 张志才 背光源透镜
CN104566211A (zh) * 2013-10-28 2015-04-29 鸿富锦精密工业(深圳)有限公司 复合透镜及使用该复合透镜的光源装置
CN203784829U (zh) * 2014-01-20 2014-08-20 东莞市欧科光电科技有限公司 直下式液晶显示背光源用led透镜和液晶显示背光屏
JP6356997B2 (ja) * 2014-04-02 2018-07-11 株式会社エンプラス 光束制御部材、発光装置、面光源装置および表示装置
CN204042747U (zh) * 2014-06-19 2014-12-24 苏州东山精密制造股份有限公司 Led透镜及包括该led透镜的led光源
CN203907479U (zh) * 2014-07-04 2014-10-29 佛山市中山大学研究院 一种直下式背光模组的led透镜
CN204962620U (zh) * 2015-08-17 2016-01-13 卿清波 直下式二次配光透镜、背光模组和电视机
CN205079173U (zh) * 2015-11-02 2016-03-09 张洪才 一种改良的双凹面背光源透镜
CN205208443U (zh) * 2015-11-30 2016-05-04 苏州东山精密制造股份有限公司 一种透镜、具有该透镜的背光模组及显示设备
CN105629569B (zh) * 2016-01-11 2018-11-20 苏州奥浦迪克光电技术有限公司 Csp封装led发光装置
CN206449591U (zh) * 2017-01-22 2017-08-29 广州闻达电子有限公司 一种光源用透镜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997178A (zh) * 2011-09-09 2013-03-27 欧司朗股份有限公司 透镜以及具有该透镜的照明装置
CN103868016A (zh) * 2012-12-11 2014-06-18 鸿富锦精密工业(深圳)有限公司 光学透镜以及应用该光学透镜的发光元件
CN103836537A (zh) * 2012-12-15 2014-06-04 东莞雷笛克光学有限公司 发光二极管透镜结构
CN107991807A (zh) * 2017-12-07 2018-05-04 苏州奥浦迪克光电技术有限公司 背光模组透镜及其构成的背光模组

Also Published As

Publication number Publication date
CN107991807A (zh) 2018-05-04
CN107991807B (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
US8251547B2 (en) Emission device, surface light source device and display
US8147100B2 (en) Lighting device
JP4870950B2 (ja) 光放射用光源ユニット及びそれを用いた面状発光装置
TWI752234B (zh) 具有極薄直下式背光之光學透鏡之發光裝置
KR101047439B1 (ko) 렌즈 및 렌즈를 포함하는 조명 유닛
US8994896B2 (en) Surface light source and liquid crystal display device
WO2012132043A1 (ja) 照明装置
US11309293B2 (en) Backlight module and manufacturing method thereof, and display device
JP2011159435A (ja) エッジライト式照明装置
CN103115284A (zh) 背光单元和具有该背光单元的显示装置
TWI519836B (zh) 發光裝置及應用其之背光模組與液晶顯示裝置
TWM580691U (zh) Direct type backlight
KR20190021522A (ko) 도광체 및 이를 구비하는 백라이트 장치
WO2019109992A1 (zh) 背光模组透镜及其构成的背光模组
US20140092628A1 (en) Illumination device
WO2018208056A1 (ko) 확산렌즈 및 이를 채용한 발광장치
JP2006072874A (ja) 信号灯
JP5849192B2 (ja) 面光源および液晶ディスプレイ装置
KR101211723B1 (ko) 광학용시트, 광학유닛 및 이를 적용한 조명장치
US11242977B2 (en) Illumination device with element having annular coating
KR20150137959A (ko) 보조 광학 소자 및 광원 모듈
JP4842107B2 (ja) 照明装置及びこれを備えた液晶表示装置
WO2013009039A2 (en) Lighting device
CN113126308A (zh) 光学模组、显示装置及照明装置
JP6678524B2 (ja) 照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885354

Country of ref document: EP

Kind code of ref document: A1