WO2018207857A1 - 有機無機ハイブリッド材料ならびにこれを用いたペロブスカイト型太陽電池 - Google Patents

有機無機ハイブリッド材料ならびにこれを用いたペロブスカイト型太陽電池 Download PDF

Info

Publication number
WO2018207857A1
WO2018207857A1 PCT/JP2018/018060 JP2018018060W WO2018207857A1 WO 2018207857 A1 WO2018207857 A1 WO 2018207857A1 JP 2018018060 W JP2018018060 W JP 2018018060W WO 2018207857 A1 WO2018207857 A1 WO 2018207857A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
halide
inorganic hybrid
solar cell
perovskite
Prior art date
Application number
PCT/JP2018/018060
Other languages
English (en)
French (fr)
Inventor
浩司 瀬川
毅隆 別所
澤国 唐
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to JP2019517683A priority Critical patent/JP7098166B2/ja
Priority to US16/611,332 priority patent/US20200294727A1/en
Publication of WO2018207857A1 publication Critical patent/WO2018207857A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/204Light-sensitive devices comprising an oxide semiconductor electrode comprising zinc oxides, e.g. ZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices

Definitions

  • the present invention relates to a new organic-inorganic hybrid solar cell material and a perovskite solar cell using the same.
  • Patent Document 1 Non-Patent Documents 1 and 2.
  • This solar cell has a structure in which a porous metal oxide semiconductor is provided on a transparent conductive glass substrate, a dye adsorbed on the surface thereof, an electrolyte having a redox pair, and a counter electrode.
  • This solar cell is expected to be able to reduce the manufacturing cost because it does not require a vacuum process in the manufacturing process of the element and can apply a printing method, and does not require expensive manufacturing equipment.
  • this solar cell contains a volatile solvent and has a problem in durability.
  • Non-Patent Document 3 copper iodide is used as a constituent material of the p-type semiconductor layer. It is known that a relatively good photoelectric conversion efficiency immediately after fabrication is halved in a few hours due to deterioration due to an increase in copper iodide crystal grains and the like.
  • Non-Patent Document 6 The solid dye-sensitized solar cell using the organic hole transport material described in Non-Patent Document 5 is further improved (Non-Patent Document 6).
  • a triphenylamine compound In a solid-state dye-sensitized solar cell using a triphenylamine compound described in Patent Document 2, a triphenylamine compound is vacuum-deposited to form a charge transport layer. Therefore, the triphenylamine compound cannot reach the internal pores of the porous semiconductor, and only low conversion efficiency is obtained.
  • a spiro-type hole transport material is dissolved in an organic solvent, and a composite of nanotitania particles and a hole transport material is obtained using spin coating.
  • the optimum value of the nanotitania particle thickness in this solar cell is about 2 ⁇ m, which is very thin compared to 10 to 20 ⁇ m when using an iodine electrolyte. For this reason, the amount of dye adsorbed on titanium oxide is small, and sufficient photoelectric conversion efficiency is not obtained.
  • Non-Patent Document 7 As a solid type solar cell using a conductive polymer, one using polypyrrole has been reported (see Non-Patent Document 7). Also in this solar cell, the conversion efficiency is low.
  • the solid-type dye-sensitized solar cell using the polythiophene derivative described in Patent Document 3 is provided with a charge transfer layer using an electrolytic polymerization method on a porous titanium oxide electrode on which a dye is adsorbed. There is a problem that it is desorbed from titanium or pigments are decomposed.
  • Non-Patent Document 8 a solar cell in which a perovskite compound absorbs light and generates power has been reported (see Non-Patent Document 8).
  • the perovskite type compound used in this solar cell has strong absorption in the visible light region.
  • the solar cell reported here has very low stability.
  • the perovskite solar cell has excellent power conversion efficiency, there is an essential problem that a large hysteresis appears in the current-voltage curve.
  • An object of the present invention is to solve the above-described problems, provide a new organic-inorganic hybrid material for providing a perovskite solar cell having a small distribution of conversion efficiency and a small hysteresis of a current-voltage curve, and a solar cell using the same. It relates to batteries.
  • a high-performance perovskite solar cell can be provided by an organic-inorganic hybrid material to which potassium (K) is added as a small amount of an inorganic monovalent cation.
  • the above problems have been solved by the following means. ⁇ 0> A first electrode provided with an electron transporting compound layer on the first electrode, a perovskite compound layer provided on the first electrode, a hole transporting layer provided on the perovskite compound layer, the holes An organic-inorganic hybrid material having the following general formula, to which potassium (K) is added as a small amount of an inorganic monovalent cation, which can be used in a perovskite solar cell having a second electrode on a transport layer.
  • K x A1 y A2 z PbX1 p X2 q (In the formula, K is potassium, Pb is lead, A1 and A2 may be any monovalent cation, organic or inorganic, and may be the same. X1 and X2 represent a halogen atom and may be the same.
  • Organic-inorganic hybrid material consisting of General formula 1 K x A1 y A2 z PbX1 p X2 q (In the formula, K is potassium, Pb is lead, A1 and A2 may be any cation, organic or inorganic, and may be the same. X1 and X2 may be the same and may be the same.
  • ⁇ 2> The organic compound according to ⁇ 1>, wherein the compound represented by the general formula 1 is formed of a mixture of lead halide and a divalent metal cation halide other than lead and a monovalent cation halide.
  • Inorganic hybrid material ⁇ 3> The organic-inorganic hybrid material according to ⁇ 1>, wherein the compound represented by the general formula 1 is formed of lead halide and a monovalent cation halide.
  • ⁇ 4> The organic-inorganic hybrid material according to ⁇ 2> or ⁇ 3>, wherein the cation halide includes potassium halide.
  • ⁇ 5> The organic-inorganic hybrid material according to ⁇ 2> or ⁇ 3>, wherein the cation halide includes potassium halide and alkylammonium halide.
  • ⁇ 6> The organic-inorganic hybrid material according to ⁇ 1>, wherein the compound represented by the general formula 1 is formed using a halogenated alkyl ammonium.
  • ⁇ 7> The organic-inorganic hybrid material according to ⁇ 5> or ⁇ 6>, wherein the alkylammonium halide includes any of methylammonium halide and formamidinium halide.
  • ⁇ 8> The organic-inorganic hybrid according to any one of ⁇ 1> to ⁇ 7>, wherein the electron transporting compound is at least one of zinc oxide, tin oxide, titanium oxide, aluminum oxide, niobium oxide, and yttrium oxide. material.
  • ⁇ 9> A perovskite solar cell comprising the organic-inorganic hybrid material according to any one of ⁇ 1> to ⁇ 8>.
  • the solar cell using the organic-inorganic hybrid material of the present invention has good characteristics in which the distribution of conversion efficiency is small and the hysteresis of the current-voltage curve is small compared to the conventional one.
  • FIG. 3 is a structural diagram of a perovskite solar cell in the present embodiment.
  • FIG. 3 is a structural diagram of a perovskite solar cell in the present embodiment.
  • FIG. 3 is a structural diagram of a perovskite solar cell in the present embodiment.
  • 2 is a diagram showing an IV curve of a perovskite solar cell of Example 1.
  • FIG. 2 is a diagram showing an IV curve of a perovskite solar cell of Example 1.
  • FIG. 6 is a diagram showing hysteresis factors of the perovskite solar cells of Example 1 and Comparative Example 1.
  • FIG. 2 is a distribution of conversion efficiency of the perovskite solar cell of Example 1.
  • FIG. 2 is a SEM photograph of the perovskite compound layer of Example 1.
  • FIG. 3 is a diagram showing band gap energy of a perovskite compound layer in the perovskite solar cell of Example 1 and Comparative Example 1. It is a figure which shows the transient response characteristic of the perovskite type solar cell of Example 1 and Comparative Example 1.
  • 4 is a diagram showing an IV curve of a perovskite solar cell of Comparative Example 1.
  • FIG. 3 is a SEM photograph of a perovskite compound layer of Comparative Example 1. It is a figure which shows the XRD chart (2 (theta)) of a perovskite compound.
  • the present invention relates to an “organic-inorganic hybrid material” having the configuration described in ⁇ 1> above and a “perovskite solar cell” including the “organic-inorganic hybrid material”.
  • the embodiments also include “perovskite solar cells” and “organic-inorganic hybrid materials” in the embodiments described in the following ⁇ 2> to ⁇ 8>.
  • the compound represented by the general formula 1 is formed of a mixture of lead halide and a divalent metal cation halide other than lead and a monovalent cation halide.
  • Organic-inorganic hybrid materials and perovskite solar cells are formed of a mixture of lead halide and a divalent metal cation halide other than lead and a monovalent cation halide.
  • ⁇ 3> The organic-inorganic hybrid material and the perovskite solar cell according to ⁇ 1>, wherein the compound represented by the general formula 1 is formed of lead halide and a monovalent cation halide.
  • ⁇ 4> The organic-inorganic hybrid material and the perovskite solar cell according to ⁇ 2> or ⁇ 3>, wherein the cation halide includes potassium halide.
  • ⁇ 5> The organic-inorganic hybrid material and the perovskite solar cell according to ⁇ 2> or ⁇ 3>, wherein the cation halide includes potassium halide and alkylammonium halide.
  • ⁇ 6> The organic-inorganic hybrid material and the perovskite solar cell according to ⁇ 1>, wherein the compound represented by the general formula 1 is formed using an alkylammonium halide.
  • ⁇ 7> The organic-inorganic hybrid material according to ⁇ 5> or ⁇ 6>, wherein the alkylammonium halide includes any of methylammonium halide and formamidinium halide.
  • ⁇ 8> The organic-inorganic hybrid according to any one of ⁇ 1> to ⁇ 7>, wherein the electron transporting compound is at least one of zinc oxide, tin oxide, titanium oxide, aluminum oxide, niobium oxide, and yttrium oxide. Materials and perovskite solar cells.
  • the organic-inorganic hybrid material of the present invention is a compound represented by the general formula 1, and this compound contains a trace amount of potassium.
  • the organic-inorganic hybrid material of the present invention is presumed to be a compound having an ABC 3 type crystal structure, that is, a compound having a perovskite type structure. This compound is presumed to be distorted in the crystal lattice by substitution of some of the constituent atoms of the perovskite crystal with potassium atoms.
  • the crystal lattice has such a strain, it is presumed that when the crystal grows, the generation of grain boundaries is suppressed by the strain, and it is presumed that the crystal lattice has excellent electrical characteristics.
  • a first electrode 2 is provided on a substrate 1.
  • a dense electron transport layer 3 and a layer on which nanoparticles 4 are deposited are sequentially provided.
  • a perovskite layer 5, a hole transport layer 6, and a second electrode 7 are sequentially provided on the layer on which the nanoparticles 4 are deposited.
  • the first electrode 2 and the second electrode 7 are provided with lead lines 8 and 9, respectively.
  • the first electrode 2 is provided on the substrate 1.
  • an electron transport layer 3, a perovskite layer 5, a hole transport layer 6, and a second electrode 7 are sequentially provided on the first electrode 2.
  • the first electrode 2 and the second electrode 7 are provided with lead lines 8 and 9, respectively.
  • This configuration is a so-called planar type structure.
  • the first electrode 2 is provided on the substrate 1, and the hole transport layer 6, the perovskite layer 5, the electron transport layer 6, and the second electrode 7 are sequentially provided.
  • the first electrode 2 and the second electrode 7 are provided with lead lines 8 and 9, respectively.
  • This configuration is a so-called reverse structure.
  • the perovskite solar cell of the present invention may have any structure shown in FIGS.
  • the first electrode 2 corresponds to the “first electrode” defined in claim 1
  • the second electrode 7 corresponds to the “second electrode”.
  • the second electrode 7 corresponds to the “first electrode” defined in claim 1
  • the first electrode 2 corresponds to the “second electrode”.
  • the substrate 1 used in the present invention needs to maintain a certain hardness, and examples of the substrate 1 that can be used include glass, a transparent plastic plate, a transparent plastic film, and an inorganic transparent crystal.
  • the first electrode 2 used in the present invention is provided on the substrate 1.
  • the 1st electrode 2 it is comprised with the electroconductive substance and metal transparent with respect to visible light.
  • ITO indium tin oxide
  • FTO fluorine doped tin oxide
  • ATO antimony doped tin oxide
  • ITO indium tin oxide
  • niobium titanium oxide Graphene
  • gold silver, Pt, Ti, Cr, and the like
  • the thickness of the first electrode 2 is preferably 5 nm to 100 ⁇ m, more preferably 50 nm to 10 ⁇ m.
  • the first electrode 2 may be provided with a metal lead wire or the like.
  • the material of the metal lead wire include metals such as aluminum, copper, silver, gold, platinum, and nickel.
  • the metal lead wire may be provided on the substrate by vapor deposition, sputtering, pressure bonding, or the like, and ITO or FTO may be provided thereon.
  • a layer made of an electron transporting compound that is a semiconductor (hereinafter also referred to as an electron transporting layer) is provided on the first electrode 2.
  • a dense electron transport layer may be formed on the first electrode 2, and a layer of porous nanoparticles 4 may be further formed thereon.
  • the thickness of the dense electron transport layer is not limited, but is preferably 5 nm to 1 ⁇ m, more preferably 20 nm to 700 nm.
  • the “dense” of the electron transport layer means that the semiconductor is filled at a higher density than the packing density of the nanoparticles in the nanoparticle 4 layer.
  • the layer of the nanoparticles 4 may be a single layer or a multilayer.
  • a dispersion of nanoparticles having different particle diameters may be formed by multilayer coating, or a dispersion of different types of nanoparticles, resin, or additive composition may be formed by multilayer coating.
  • Multi-layer coating is an effective means when the film thickness is insufficient with a single coating.
  • the film thickness of the nanoparticles is preferably 5 nm to 1 ⁇ m.
  • a semiconductor (electron transport compound) used for an electron carrying layer A well-known thing can be used. Specifically, a single semiconductor such as silicon or germanium, a compound semiconductor typified by a metal chalcogenide, an electron acceptor of an organic material such as fullerene, or a compound having a perovskite structure can be given. Among these, an oxide semiconductor is preferable, and titanium oxide, zinc oxide, tin oxide, and niobium oxide are particularly preferable, and they may be used alone or in combination of two or more.
  • the crystal type of these semiconductors is not particularly limited, and may be single crystal, polycrystal, or amorphous.
  • the size of the nanoparticles is not particularly limited, but the average particle size of the primary particles is preferably 1 to 100 nm, and more preferably 5 to 50 nm. Further, the efficiency can be improved by the effect of scattering incident light by mixing or laminating nanoparticles having a larger average particle diameter. In this case, the average particle size of the semiconductor is preferably 50 to 500 nm.
  • the nanoparticles may be insulators or any of the semiconductors described above.
  • the method for producing the electron transport layer 3 is not particularly limited, and examples thereof include a method of forming a thin film in a vacuum such as sputtering and a wet film forming method.
  • a wet film forming method is particularly preferable, and a method in which a paste in which semiconductor fine particle powder or sol is dispersed is prepared and applied onto the first electrode is preferable.
  • the coating method is not particularly limited, and can be performed according to a known method.
  • dip method for example, dip method, spray method, wire bar method, spin coating method, roller coating method, blade coating method, gravure coating method, and wet printing methods such as relief printing, offset, gravure, intaglio printing, rubber printing, screen printing, etc. Can be used.
  • the particles are brought into electronic contact with each other, and firing and microwave irradiation are performed in order to improve film strength and adhesion to the substrate. It is preferable to perform electron beam irradiation or laser beam irradiation. These processes may be performed alone or in combination of two or more.
  • the range of the firing temperature is not particularly limited, but if the temperature is raised too much, the resistance of the substrate becomes higher and the substrate may melt, and therefore it is preferably 30 to 700 ° C, more preferably 100 to 600 ° C.
  • the firing time is not particularly limited, but is preferably 10 minutes to 10 hours.
  • microwave irradiation may be performed from the electron transport layer forming side or from the back side. Although there is no restriction
  • the perovskite compound layer 5 is composed of the organic-inorganic hybrid material of the present invention.
  • This organic-inorganic hybrid material is a compound represented by the following general formula 1, which is a composite material of an organic compound and an inorganic compound, and preferably exhibits a perovskite structure. Since the organic-inorganic hybrid material of the present invention is also a compound having a perovskite structure, it is hereinafter also referred to as a perovskite compound.
  • K x A1 y A2 z PbX1 p X2 q (In the formula, K is potassium, Pb is lead, A1 and A2 may be any cation, organic or inorganic, and may be the same. X1 and X2 may be the same and may be the same.
  • X1 and X2 each independently include halogen atoms such as fluorine, chlorine, bromine and iodine, and these can be used alone or as a mixture.
  • a preferred embodiment is a combination in which p and q each have a value exceeding 0, and one of X1 and X2 is iodine and the other is bromine.
  • A1 and A2 each independently include organic monovalent cations such as methylammonium, ethylammonium, n-butylammonium, formamidinium and the like.
  • the compound represented by the general formula 1 is preferably a compound formed of a mixture of lead halide and a divalent metal cation halide other than lead, and a monovalent cation halide, More preferably, it is a compound formed of lead halide and monovalent cation halide.
  • the monovalent cation halide preferably contains potassium halide, and more preferably contains potassium halide and alkylammonium halide.
  • the halogenated alkylammonium is preferably at least one selected from methylammonium halide and formamidinium halide.
  • lead halide lead iodide and lead bromide are preferable.
  • potassium halide potassium iodide and potassium bromide are preferable.
  • the organic-inorganic hybrid material (hereinafter referred to as perovskite compound) of the present invention is a solution in which a metal halide and an alkylammonium halide are dissolved or dispersed in a solvent, preferably a lead halide, a potassium halide and an alkylammonium halide.
  • a solvent preferably a lead halide, a potassium halide and an alkylammonium halide.
  • any of the two-stage precipitation methods in which a perovskite compound is formed by immersing in a solution in which an alkylammonium halide is dissolved in a solvent after coating and drying may be used. Further, when drying by a one-step precipitation method, a poor solvent such as hexane or toluene or a gas such as nitrogen gas may be sprayed.
  • a dipping method, a spin coating method, a spray method, a dipping method, a roller method, an air knife method, or the like can be used. Further, it may be deposited on the electron transport layer or the hole transport layer 6 in a supercritical fluid using carbon dioxide or the like.
  • a method in which a metal halide is formed on the electron transport layer 3 or the hole transport layer 6 and a solution of the alkylammonium halide are brought into contact with each other by a dipping method, a spin coating method, a spray method, A dipping method, a roller method, an air knife method, or the like can be used.
  • it may be deposited by contacting with an alkyl ammonium halide in a supercritical fluid using carbon dioxide or the like.
  • the hole transport layer 6 may be either a liquid electrolyte or a solid hole transport compound, but is preferably formed using a solid hole transport compound.
  • the solid hole transport compound may be either an inorganic compound or an organic compound.
  • the inorganic hole transport layer using an inorganic solid compound is formed inside the electrode by a method such as casting, coating, spin coating, dipping, or electrolytic plating of copper iodide, copper thiocyanide, or the like.
  • a single layer structure made of a single material or a laminated structure made of a plurality of compounds may be used.
  • a polymer material is preferably used for the organic hole transport material layer in contact with the second electrode 7. This is because the surface of the porous electron transport layer 3 can be further smoothed and the photoelectric conversion characteristics can be improved by using a polymer material having excellent film forming properties.
  • organic hole transporting material used in a single layer structure used in a single layer a known organic hole transporting compound is used, and specific examples thereof include oxadiazole disclosed in Japanese Patent Publication No. 34-5466.
  • a known hole transport polymer material is used as the polymer material used for the organic hole transport layer in contact with the second electrode 7 used in the laminated structure.
  • additives may be added to the inorganic and organic charge transport materials shown above.
  • Examples of the additive include iodine, lithium iodide, sodium iodide, potassium iodide, cesium iodide, calcium iodide, copper iodide, iron iodide, silver iodide, and other metal iodides, tetraalkyl iodide.
  • Quaternary ammonium salt such as ammonium or pyridinium iodide, metal bromide such as lithium bromide, sodium bromide, potassium bromide, cesium bromide or calcium bromide, quaternary ammonium such as tetraalkylammonium bromide or pyridinium bromide
  • metal chlorides such as copper chloride or silver chloride, metal acetates such as copper acetate, silver acetate or palladium acetate, metal sulfates such as copper sulfate or zinc sulfate, ferrocyanate-ferricyanate Or metal complex such as ferrocene-ferricinium ion, polysulfide sodium Or sulfur compounds such as alkylthiol-alkyldisulfides, viologen dyes, hydroquinones, etc., 1,2-dimethyl-3-n-propylimidazolinium iodide, 1-methyl-3-n-hexylim
  • Chem. 35 (1996) 1168 such as sulfonylimide, basic compound such as pyridine, 4-t-butylpyridine or benzimidazole, lithium compound such as lithium trifluoromethanesulfonylimide or lithium diisopropylimide, etc. Raise Door can be.
  • an oxidizing agent for making a part of the organic charge transporting substance a radical cation may be added.
  • the oxidizing agent examples include tris (4-bromophenyl) aminium hexachloroantimonate, silver hexafluoroantimonate, nitrosonium tetrafluorate, silver nitrate, and the like.
  • the added oxidizing agent may be taken out of the system after the addition or may not be taken out.
  • the hole transport layer 6 is preferably formed directly on the perovskite layer 5.
  • the production method of the hole transport layer 6 is not particularly limited, and examples thereof include a method of forming a thin film in a vacuum such as vacuum deposition, a wet film formation method, and the like. In consideration of the manufacturing cost and the like, the wet film forming method is particularly preferable.
  • the coating method is not particularly limited, and can be performed according to a known method.
  • a coating method for example, a dipping method, a spray method, a wire bar method, a spin coating method, a roller coating method, a blade coating method, a gravure coating method, or the like can be used.
  • a printing method using a relief plate, offset, gravure, intaglio plate, rubber plate, screen or the like may be used.
  • a metal oxide layer may be provided between the hole transport layer 6 and the second electrode 7.
  • the metal oxide include molybdenum oxide, tungsten oxide, vanadium oxide, nickel oxide, and the like, and molybdenum oxide is particularly preferable.
  • the method of providing the metal oxide layer on the hole transport layer is not particularly limited, and examples thereof include a method of forming a thin film in a vacuum such as sputtering and vacuum deposition, and a wet film forming method.
  • the wet film-forming method is preferably a method in which a paste in which metal oxide powder or sol is dispersed is prepared and applied onto the hole transport layer.
  • the coating method is not particularly limited, and can be performed according to a known method.
  • a coating method for example, a dipping method, a spray method, a wire bar method, a spin coating method, a roller coating method, a blade coating method, a gravure coating method, or the like can be used.
  • a printing method using a relief plate, offset, gravure, intaglio plate, rubber plate, screen or the like may be used.
  • the thickness of the metal oxide is not particularly limited, but is preferably 0.1 to 50 nm, and more preferably 1 to 10 nm.
  • the second electrode 7 may be formed on the substrate.
  • the second electrode 7 include metals such as platinum, gold, silver, copper, aluminum, rhodium, and indium, carbon compounds such as graphite, fullerene, and carbon nanotubes, ITO, and fluorine-doped tin oxide (hereinafter referred to as FTO). ), Conductive metal oxides such as antimony-doped tin oxide (hereinafter referred to as ATO), or conductive polymers such as polythiophene or polyaniline.
  • the film thickness of the second electrode 7 is not particularly limited.
  • the second electrode 7 may be used by mixing or laminating the above materials alone or in combination of two or more.
  • the device may be formed with an inverse structure, and in the case of the device with the inverse structure (structure shown in FIG. 3), the above-described electron transport layer 3 and hole transport layer 6 may be formed in the reverse order. Absent.
  • Example 1 (Production of titanium oxide semiconductor electrode) Titanium tetra-n-propoxide (2 ml), acetic acid (4 ml), ion exchange water (1 ml), and 2-propanol (40 ml) were mixed, spin-coated on an FTO glass substrate, dried at room temperature, and baked at 450 ° C. for 30 minutes in air. Using the same solution again, it was applied on the obtained electrode by spin coating so as to have a film thickness of 50 nm, and baked in air at 450 ° C. for 30 minutes to form a dense electron transport layer.
  • Dyesol 18NR-T titanium oxide paste was applied onto the dense electron transport layer by spin coating so as to have a film thickness of 300 nm, dried in warm air at 120 ° C. for 3 minutes, and then at 30 ° C. in air at 30 ° C. Firing was performed for a minute to form a porous electron transport layer.
  • FIG. 5 shows an IV curve measured by changing the scan rate
  • FIG. 6 shows a test result of the hysteresis factor measured by changing the scan rate.
  • Example 1 the hysteresis factor of Example 1 in FIG. 6 was calculated from the IV curve in FIG. As shown in FIGS. 5 and 6, it was confirmed that the solar cell of the example had almost no hysteresis even when the scan rate was changed. Moreover, the energy conversion efficiency histogram (40 solar cells) of this solar cell is shown in FIG. FIG. 7 shows that the perovskite compound (Example 1) formed from a mixture of lead (II) iodide and potassium iodide (Example 1) has a peak at an energy conversion efficiency of 19.5%, which is ⁇ 1.5. %, It was confirmed that the energy conversion efficiency of all 40 solar cells was included. FIG.
  • FIG. 8 shows an SEM photograph (50000 times magnification) of the perovskite compound layer in this solar cell. As shown in FIG. 8, in the perovskite compound layer (perovskite in the figure), crystal grain boundaries were hardly observed.
  • FIG. 9 shows the band gap energy of the perovskite compound layer in the solar cells of Example 1 and Comparative Example 1 (left of FIG. 9 is Example 1 and right is Comparative Example 1). The band gap energy of the perovskite compound layer of Example 1 was lower than that of Comparative Example 1 described later.
  • FIG. 10 shows changes in the transient current (transient response characteristics) at the maximum charge voltage for the solar cells of Example 1 and Comparative Example 1.
  • the maximum charging voltage of the solar cell of Example 1 was 0.95V, and the maximum charging voltage of the solar cell of Comparative Example 1 was 0.90V. As shown in FIG. 10, the solar cell of Example 1 was superior in transient response characteristics as compared to Comparative Example 1 described later.
  • Example 1 Lead (II) iodide (0.507 mg), lead (II) bromide (0.073 mg), formamidinium iodide (0.172 mg), methylammonium bromide (0.022 mg) in Example 1
  • a perovskite precursor solution prepared by adding 100 ⁇ L of a dimethyl sulfoxide (1 mL) solution in which potassium iodide (I) (249 mg) was dissolved to a dissolved N, N-dimethylformamide (1.0 ml) solution and stirring was added.
  • a solar cell was prepared and evaluated in the same manner as in Example 1 except that the solution was changed to an N, N-dimethylformamide (1.0 ml) solution to which potassium (I) was not added.
  • FIG. 11 shows an IV curve measured by changing the scan rate
  • FIG. 6 shows a test result of the hysteresis factor measured by changing the scan rate.
  • the forward IV curve 200 mV / s-forward measured at a scan rate of 200 mV / s and the forward I measured at a scan rate of 100 mV / s in order from the left side at the position of the arrow.
  • FIG. 12 shows an SEM photograph (50000 times magnification) of the perovskite compound layer in this solar cell. As shown in FIG. 12, in this perovskite compound layer (perovskite in the figure), many crystal grain boundaries were observed.
  • Example 2 In Example 1, the amount of potassium iodide (I) was adjusted so as to satisfy the following composition formula, and a perovskite precursor solution was prepared. This perovskite precursor solution was dropped on the substrate so that the film thickness of the perovskite film was 500 nm, and a film was formed by spin coating. An XRD chart (2 ⁇ ) of the obtained film is shown in FIG. The 0% XRD chart in the figure is an XRD chart of a film not containing potassium iodide, and the composition formula of this film is FA 0.85 MA 0.15 Pb (I 0.85 Br 0.15 ). 3 is a composition formula.
  • the XRD chart of 2.5 to 20% in the figure is an XRD chart of a film prepared by blending potassium iodide, and the composition formula of the film of the 2.5% XRD chart is K 0. 025 (FA 0.85 MA 0.15) 0.975 Pb (I 0.85 Br 0.15) is 3, the composition formula of 5% XRD chart of the film, K 0.05 (FA 0.85 MA 0.15 ) 0.95 Pb (I 0.85 Br 0.15 ) 3 and the composition formula of the 7.5% XRD chart film is K 0.075 (FA 0.85 MA 0.15 ) 0.925 Pb (I 0.85 Br 0.15 ) 3 and the composition formula of the 10% XRD chart film is K 0.1 (FA 0.85 MA 0.15 ) 0.9 Pb ( I 0.85 Br 0.15 ) 3 and 20% of the XRD chart
  • the compositional formula of the film is K 0.2 (FA 0.85 MA 0.15 ) 0.8 Pb (I 0.85 Br 0.15 ) 3 .
  • K represents a potassium atom
  • FA represents formamidinium
  • MA represents methylammonium
  • Pb represents a lead atom
  • I represents an iodine atom
  • Br represents a bromine atom.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

変換効率の高いペロブスカイト型太陽電池を提供する。 第一電極、前記第一電極上に設けられた電子輸送性化合物の層、前記電子輸送性化合物の層上に設けられたペロブスカイト化合物層、前記ペロブスカイト化合物層上に設けられたホール輸送層、前記ホール輸送層上に設けられた第二電極を具備したペロブスカイト型太陽電池に用いることのできる、「KxA1yA2zPbX1pX2q」で表される化合物からなる有機無機ハイブリッド材料。式中、Kはカリウム、Pbは鉛、A1とA2は任意の陽イオンで有機でも無機でも良く同じであっても構わない。X1とX2はハロゲン原子を表し、同じであっても構わない。xは0.01~0.20の間の数値で、y、z、pおよびqは、任意の数であり、x+y+z=1、p+q=3である。

Description

有機無機ハイブリッド材料ならびにこれを用いたペロブスカイト型太陽電池
 本発明は、新しい有機無機ハイブリッド太陽電池材料とこれを用いたペロブスカイト型太陽電池に関するものである。
 近年、低炭素社会の構築に向けて再生可能エネルギーの利用拡大が進んでいる。その中で、近年最も高い割合で市場が拡大しているのが太陽電池である。しかしながら既存の太陽電池は製造原価が高く、革新的な低コスト太陽電池の創成が望まれてきた。
 そのため、各種低コスト型の太陽電池の研究開発が進められてきた(例えば、特許文献1、非特許文献1、2参照)。この太陽電池の構造は、透明導電性ガラス基板上に多孔質な金属酸化物半導体を設け、その表面に吸着した色素と、酸化還元対を有する電解質と、対向電極とからなる。この太陽電池は、素子の製造工程に真空プロセスを必要とせず印刷方式を適用出来るため、高価な製造設備を必要としないことから製造コストを下げられることが期待されている。しかしながら、この太陽電池は揮発性溶剤を含んでおり、耐久性に問題がある。
 この欠点を補うものとして、次に示されるような固体型色素増感型太陽電池が研究されている。
1)無機半導体を用いたもの(例えば、非特許文献3、4参照)
2)低分子有機ホール輸送材料を用いたもの(例えば、特許文献2、非特許文献5、6参照)
3)導電性高分子を用いたもの(例えば、特許文献3、非特許文献7参照)
 非特許文献3に記載の太陽電池では、p型半導体層の構成材料としてヨウ化銅が用いられている。作製直後は比較的良好な光電変換効率も、ヨウ化銅の結晶粒の増大等を理由とする劣化により数時間で半減してしまうことが知られている。
 非特許文献5に記載の有機ホール輸送材料を用いたタイプの固体型色素増感太陽電池は、さらに改良されている(非特許文献6)。特許文献2に記載のトリフェニルアミン化合物を用いた固体型色素増感太陽電池は、トリフェニルアミン化合物を真空蒸着して電荷輸送層を形成している。そのため、多孔質半導体の内部空孔へトリフェニルアミン化合物が到達できず、低い変換効率しか得られていない。非特許文献6に記載の例では、スピロ型のホール輸送材料を有機溶媒に溶解し、スピンコートを利用してナノチタニア粒子とホール輸送材料の複合体を得ている。しかしながら、この太陽電池におけるナノチタニア粒子膜厚の最適値は2μm程度とされており、ヨウ素電解液を使用する場合の10~20μmと比較して非常に薄い。そのため、酸化チタンに吸着した色素量も少なく、十分な光電変換効率が得られていない。
 また、導電性高分子を用いたタイプの固体型太陽電池として、ポリピロールを用いたものが報告されている(非特許文献7参照)。この太陽電池においても、変換効率は低い。特許文献3に記載のポリチオフェン誘導体を用いた固体型色素増感太陽電池は、色素を吸着した多孔質酸化チタン電極上で、電解重合法を用いて電荷移動層を設けているが、色素が酸化チタンから脱着したり、あるいは色素の分解が生じたりする問題がある。
 また、近年ペロブスカイト型化合物が光を吸収し、発電する太陽電池が報告されている(非特許文献8参照)。この太陽電池に用いられているペロブスカイト型化合物は可視光領域に強い吸収を有している。しかしながら、ここで報告された太陽電池は非常に安定性が低いことが確認された。
 ペロブスカイト型太陽電池は優れた電力変換効率を有しているものの、電流電圧曲線に大きなヒステリシスが現れるといった本質的な問題があった。 
特許第2664194号公報 特開平11-144773号公報 特開2000-106223号公報 WO07/100095号公報
Nature,353(1991)737 J.Am.Chem.Soc.,115(1993)6382 Semicond.Sci.Technol.,10(1995)1689 Electrochemistry,70(2002)432 Synthetic Metals,89(1997)215 Nature,398(1998)583 Chem.Lett.,(1997)471 J.Am.Chem.Soc.,131(2009)6050 Science,338(2012)643
 本発明の課題は、このような上記問題点を解決し、変換効率の分布が小さく、電流電圧曲線のヒステリシスが小さいペロブスカイト型太陽電池を提供するための新しい有機無機ハイブリッド材料ならびにこれを用いた太陽電池に関するものである。
 上記課題を解決するために、少量の無機一価陽イオンとしてカリウム(K)を添加した有機無機ハイブリッド材料により、高性能なペロブスカイト型太陽電池を提供できることを見出し本発明に到達した。上記課題は、下記手段により解決された。
<0>第一電極上に、電子輸送性化合物の層を設けた第一電極、前記第一電極上に設けられたペロブスカイト化合物層、前記ペロブスカイト化合物層上に設けられたホール輸送層、前記ホール輸送層上に第二電極を具備したペロブスカイト型太陽電池に用いることのできる、少量の無機一価陽イオンとしてカリウム(K)を添加した以下の一般式からなる有機無機ハイブリッド材料。
一般式 
A1A2PbX1X2
(式中、Kはカリウム、Pbは鉛、A1とA2は任意の一価陽イオンで有機でも無機でも良く同じであっても構わない。X1とX2はハロゲン原子を表し、同じであっても構わない。xは0.01~0.20の間の数値で、y、z、pおよびqは、任意の数であり、x+y+z=1、p+q=3である。)
<1> 第一電極、前記第一電極上に設けられた電子輸送性化合物の層、前記電子輸送性化合物の層上に設けられたペロブスカイト化合物層、前記ペロブスカイト化合物層上に設けられたホール輸送層、前記ホール輸送層上に設けられた第二電極を具備したペロブスカイト型太陽電池に用いることのできる、少量の無機一価陽イオンとしてカリウム(K)を添加した以下の一般式1で表される化合物からなる有機無機ハイブリッド材料。
一般式1 
A1A2PbX1X2
(式中、Kはカリウム、Pbは鉛、A1とA2は任意の陽イオンで有機でも無機でも良く同じであっても構わない。X1とX2はハロゲン原子を表し、同じであっても構わない。xは0.01~0.20の間の数値で、y、z、pおよびqは、任意の数であり、x+y+z=1、p+q=3である。)
 <2> 前記一般式1で表される化合物が、ハロゲン化鉛と鉛以外の二価金属陽イオンハロゲン化物の混合物と、一価陽イオンハロゲン化物により形成される、<1>に記載の有機無機ハイブリッド材料。
 <3> 前記一般式1で表される化合物が、ハロゲン化鉛と一価陽イオンハロゲン化物により形成される、<1>に記載の有機無機ハイブリッド材料。
 <4> 前記陽イオンハロゲン化物は、ハロゲン化カリウムを含む、<2>または<3>に記載の有機無機ハイブリッド材料。
 <5> 前記陽イオンハロゲン化物は、ハロゲン化カリウムとハロゲン化アルキルアンモニウムとを含む、<2>または<3>に記載の有機無機ハイブリッド材料。
 <6> 前記一般式1で表される化合物が、ハロゲン化アルキルアンモニウムを用いて形成される、<1>に記載の有機無機ハイブリッド材料。
 <7> 前記ハロゲン化アルキルアンモニウムが、ハロゲン化メチルアンモニウム、ハロゲン化ホルムアミジニウムの何れかを含む、<5>または<6>に記載の有機無機ハイブリッド材料。
 <8> 前記電子輸送性化合物が、酸化亜鉛、酸化スズ、酸化チタン、酸化アルミニウム、酸化ニオブおよび酸化イットリウムの少なくとも1種である、<1>~<7>のいずれかに記載の有機無機ハイブリッド材料。
 <9> <1>~<8>のいずれか1に記載の有機無機ハイブリッド材料を含む、ペロブスカイト型太陽電池。
 本発明の有機無機ハイブリッド材料を使った太陽電池は、従来と比較して変換効率の分布が小さく、電流電圧曲線のヒステリシスが小さい良好な特性を与える。
本実施の形態におけるペロブスカイト型太陽電池の構造図。 本実施の形態におけるペロブスカイト型太陽電池の構造図。 本実施の形態におけるペロブスカイト型太陽電池の構造図。 実施例1のペロブスカイト型太陽電池のI-V曲線を示す図である。 実施例1のペロブスカイト型太陽電池のI-V曲線を示す図である。 実施例1および比較例1のペロブスカイト型太陽電池のヒステリシスファクターを示す図である。 実施例1のペロブスカイト型太陽電池の変換効率の分布である。 実施例1のペロブスカイト化合物層のSEM写真である。 実施例1および比較例1のペロブスカイト型太陽電池におけるペロブスカイト化合物層のバンドギャップエネルギーを示す図である。 実施例1および比較例1のペロブスカイト型太陽電池の過渡応答特性を示す図である。 比較例1のペロブスカイト型太陽電池のI-V曲線を示す図である。 比較例1のペロブスカイト化合物層のSEM写真である。 ペロブスカイト化合物のXRDチャート(2θ)を示す図である。
 本発明は、上記<1>に記載の構成を有する「有機無機ハイブリッド材料」およびこの「有機無機ハイブリッド材料」を備えた「ペロブスカイト型太陽電池」に係るものであるが、本発明は、以降の詳細な説明から理解されるように、つぎの<2>~<8>に記載される態様の「ペロブスカイト型太陽電池」および「有機無機ハイブリッド材料」をも包含する。
 <2> 前記一般式1で表される化合物が、ハロゲン化鉛と鉛以外の二価金属陽イオンハロゲン化物の混合物と、一価陽イオンハロゲン化物により形成される、上記<1>に記載の有機無機ハイブリッド材料およびペロブスカイト型太陽電池。
 <3> 前記一般式1で表される化合物が、ハロゲン化鉛と一価陽イオンハロゲン化物により形成される、<1>に記載の有機無機ハイブリッド材料およびペロブスカイト型太陽電池。
 <4> 前記陽イオンハロゲン化物は、ハロゲン化カリウムを含む、<2>または<3>に記載の有機無機ハイブリッド材料およびペロブスカイト型太陽電池。
 <5> 前記陽イオンハロゲン化物は、ハロゲン化カリウムとハロゲン化アルキルアンモニウムとを含む、<2>または<3>に記載の有機無機ハイブリッド材料およびペロブスカイト型太陽電池。
 <6> 前記一般式1で表される化合物が、ハロゲン化アルキルアンモニウムを用いて形成される、<1>に記載の有機無機ハイブリッド材料およびペロブスカイト型太陽電池。
 <7> 前記ハロゲン化アルキルアンモニウムが、ハロゲン化メチルアンモニウム、ハロゲン化ホルムアミジニウムの何れかを含む、<5>または<6>に記載の有機無機ハイブリッド材料。
 <8> 前記電子輸送性化合物が、酸化亜鉛、酸化スズ、酸化チタン、酸化アルミニウム、酸化ニオブおよび酸化イットリウムの少なくとも1種である、<1>~<7>のいずれかに記載の有機無機ハイブリッド材料およびペロブスカイト型太陽電池。
 本発明の有機無機ハイブリッド材料は、一般式1で表される化合物であって、この化合物は微量のカリウムを含む。本発明の有機無機ハイブリッド材料は、ABC型の結晶構造の化合物、すなわちペロブスカイト型構造の化合物であると推測される。そして、この化合物は、ペロブスカイト型結晶の構成原子の一部がカリウム原子に置換されていることにより、結晶格子にゆがみが生じると推測される。結晶格子がこのような歪みを有することにより、結晶成長した際に、歪みによって粒界の生成が抑制されると推測され、優れた電気特性を有していると推測される。このため、後述の実施例に示すように、この有機無機ハイブリッド材料をペロブスカイト型太陽電池に用いることで、変換効率が高く、ヒステリシスが小さいペロブスカイト型太陽電池を提供することが可能になったと推測される。
 前記<2>~<7>に記載の構成により、前記「発明の効果」に加えて、良好な変換効率を示すペロブスカイト型太陽電池が提供される。
 前記<8>に記載の構成により、電子輸送層に上記金属酸化物用いることで、電子移動が効率的となり、更に優れた変換効率を示すペロブスカイト型太陽電池が提供される。
 以下本発明を詳細に説明する。
 ペロブスカイト型太陽電池の構成について図1~3に基づいて説明する。
 図1に示す態様においては、基板1上に第一電極2が設けられている。この第一電極2上に、緻密な電子輸送層3、ナノ粒子4が堆積した層が順次設けられている。ナノ粒子4が堆積した層上にペロブスカイト層5、ホール輸送層6、第二電極7が順次設けられた構成をとっている。また、第一電極2、第二電極7にはそれぞれリードライン8、9が設けられている。
 図2に示す態様においては、基板1上に第一電極2が設けられている。この第一電極2上に、電子輸送層3、ペロブスカイト層5、ホール輸送層6、第二電極7が順次設けられた構成をとっている。また、第一電極2、第二電極7にはそれぞれリードライン8、9が設けられている。この構成は、いわゆるプラナー型と呼ばれる構造である。
 図3に示す態様においては、基板1上に第一電極2が設けられ、ホール輸送層6、ペロブスカイト層5、電子輸送層6、第二電極7が順次設けられた構成をとっている。また、第一電極2、第二電極7にはそれぞれリードライン8、9が設けられている。この構成は、いわゆる逆構造と呼ばれるものである。
 本発明のペロブスカイト型太陽電池においては、図1~3に示す、何れの構造であっても構わない。
 なお、図1、2に示す態様においては、第一電極2が請求項1で規定する「第一電極」に相当し、第二電極7が同「第二電極」に相当する。また、図3に示す態様においては、第二電極7が請求項1で規定する「第一電極」に相当し、第一電極2が同「第二電極」に相当する。
<基板>
 本発明で用いられる基板1は、一定の硬性を維持する必要があり、基板1として用いられるものとしては、ガラス、透明プラスチック板、透明プラスチック膜、無機物透明結晶体等が挙げられる。
<第一電極>
 本発明で用いられる第一電極2は、基板1の上に設ける。第一電極2としては、可視光に対して透明な導電性物質や金属で構成されるものであり、通常の光電変換素子、あるいは液晶パネル等に用いられる公知のものを使用できる。例えば、インジウム・スズ酸化物(以下、ITOと称する)、フッ素ドープ酸化スズ(以下、FTOと称する)、アンチモンドープ酸化スズ(以下、ATOと称する)、インジウム・亜鉛酸化物、ニオブ・チタン酸化物、グラフェン、金、銀、Pt、Ti、Crなどの金属が挙げられ、これらが単独あるいは複数積層されていてもよい。第一電極2の厚さは5nm~100μmが好ましく、50nm~10μmが更に好ましい。
 また、第一電極2には金属リード線等が設けられていてもよい。金属リード線の材質はアルミニウム、銅、銀、金、白金、ニッケル等の金属が挙げられる。金属リード線は、基板に蒸着、スパッタリング、圧着等で設置し、その上にITOやFTOを設ける方法が挙げられる。
<電子輸送層>
 図1、2に示す態様のペロブスカイト型太陽電池においては、上記の第一電極2上に、半導体である電子輸送性化合物からなる層(以下、電子輸送層ともいう)が設けられている。この電子輸送層は、第一電極2上に緻密な電子輸送層が形成され、更にその上に多孔質状のナノ粒子4の層が形成されていても構わない。この緻密な電子輸送層の膜厚に制限はないが、5nm~1μmが好ましく、20nm~700nmがより好ましい。なお、電子輸送層の「緻密」とは、ナノ粒子4の層中のナノ粒子の充填密度より高密度で半導体が充填されていることを意味する。
 ナノ粒子4の層は、単層であってもよく多層であってもよい。多層の場合、粒径の異なるナノ粒子の分散液を多層塗布して形成してもよく、種類の異なるナノ粒子や、樹脂、添加剤の組成が異なる分散液を多層塗布して形成してもよい。一度の塗布で膜厚が不足する場合には、多層塗布は有効な手段である。このナノ粒子の膜厚は5nm~1μmが好ましい。
 電子輸送層に用いられる半導体(電子輸送性化合物)としては特に限定されるものではなく、公知のものを使用することができる。
 具体的には、シリコン、ゲルマニウムのような単体半導体、あるいは金属のカルコゲニドに代表される化合物半導体、フラーレン等の有機材料の電子アクセプター、またはペロブスカイト構造を有する化合物等を挙げることができる。
 これらの中でも酸化物半導体が好ましく、特に酸化チタン、酸化亜鉛、酸化スズ、酸化ニオブが好ましく、単独、あるいは2種以上の混合で使用しても構わない。これらの半導体の結晶型は特に限定されるものではなく、単結晶でも多結晶でも、あるいは非晶質でも構わない。
 ナノ粒子のサイズに特に制限はないが、一次粒子の平均粒径は1~100nmが好ましく、5~50nmがより好ましい。また、より大きい平均粒径のナノ粒子を混合あるいは積層して入射光を散乱させる効果により、効率を向上させることも可能である。この場合の半導体の平均粒径は50~500nmが好ましい。
 ナノ粒子は、絶縁体であっても前述の半導体の何れであっても構わない。
 電子輸送層3の作製方法には特に制限はなく、スパッタリング等の真空中で薄膜を形成する方法や湿式製膜法が挙げられる。製造コスト等を考慮した場合、特に湿式製膜法が好ましく、半導体微粒子の粉末あるいはゾルを分散したペーストを調製し、第一電極上に塗布する方法が好ましい。この湿式製膜法を用いた場合、塗布方法は特に制限はなく、公知の方法に従って行なうことができる。例えば、ディップ法、スプレー法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、グラビアコート法、また、湿式印刷方法として、凸版、オフセット、グラビア、凹版、ゴム版、スクリーン印刷等様々な方法を用いることができる。
 ナノ粒子4の層の作製方法としては、ナノ粒子を含む組成物を塗布した後に粒子同士を電子的にコンタクトさせ、膜強度の向上や基板との密着性を向上させるために焼成、マイクロ波照射、電子線照射、あるいはレーザー光照射を行なうことが好ましい。これらの処理は単独で行なってもあるいは二種類以上組み合わせて行なってもよい。
 焼成する場合、焼成温度の範囲に特に制限はないが、温度を上げ過ぎると基板の抵抗が高くなり、溶融することもあるため、30~700℃が好ましく、100~600℃がより好ましい。また、焼成時間にも特に制限はないが、10分~10時間が好ましい。焼成後、四塩化チタンの水溶液や有機溶剤との混合溶液を用いた化学メッキや三塩化チタン水溶液を用いた電気化学的メッキ処理を行なってもよい。マイクロ波照射は、電子輸送層形成側から照射しても、裏側から照射しても構わない。照射時間には特に制限がないが、1時間以内で行なうことが好ましい。
<ペロブスカイト化合物層>
 ペロブスカイト化合物層5は、本発明の有機無機ハイブリッド材料で構成されている。この有機無機ハイブリッド材料は以下の一般式1で表される化合物であって、有機化合物と無機化合物の複合物質であり、ペロブスカイト型構造を示すことが好ましい。本発明の有機無機ハイブリッド材料は、ペロブスカイト型構造を示す化合物でもあることから、以下、ペロブスカイト化合物ともいう。
 一般式1 
 KA1A2PbX1X2
(式中、Kはカリウム、Pbは鉛、A1とA2は任意の陽イオンで有機でも無機でも良く同じであっても構わない。X1とX2はハロゲン原子を表し、同じであっても構わない。xは0.01~0.20の間の数値で、y、z、pおよびqは、任意の数であり、x+y+z=1、p+q=3である。)
 y、z、pおよびqは、それぞれ独立に、任意の数であり、x+y+z=1およびp+q=3は、x+y+zおよびp+qが、それぞれ、小数点第一位を四捨五入した値が1または3となることを意味する。
 具体的には、X1およびX2は、それぞれ独立に、フッ素、塩素、臭素、ヨウ素などのハロゲン原子を挙げることができ、これらは単独または混合物として用いることができる。pおよびqがそれぞれ0を超える値であって、かつ、X1およびX2のいずれか一方がヨウ素で、他方が臭素である組み合わせが好ましい態様として挙げられる。
 また、A1およびA2は、それぞれ独立に、メチルアンモニウム、エチルアンモニウム、n-ブチルアンモニウム、ホルムアミジニウム等の有機一価陽イオンを挙げることができる。
 本発明において、上記一般式1で表される化合物は、ハロゲン化鉛と鉛以外の二価金属陽イオンハロゲン化物の混合物と、一価陽イオンハロゲン化物により形成される化合物であることが好ましく、ハロゲン化鉛と一価陽イオンハロゲン化物により形成される化合物であることがより好ましい。また、上記の一価陽イオンハロゲン化物は、ハロゲン化カリウムを含むことが好ましく、ハロゲン化カリウムとハロゲン化アルキルアンモニウムとを含むことがより好ましい。ハロゲン化アルキルアンモニウムとしては、ハロゲン化メチルアンモニウムおよびハロゲン化ホルムアミジニウムから選ばれる少なくとも1種であることが好ましい。ハロゲン化鉛としては、ヨウ化鉛、臭化鉛が好ましい。ハロゲン化カリウムとしては、ヨウ化カリウム、臭化カリウムが好ましい。
 本発明の有機無機ハイブリッド材料(以下、ペロブスカイト化合物)は、ハロゲン化金属とハロゲン化アルキルアンモニウムを溶媒に溶解あるいは分散した溶液、好ましくは、ハロゲン化鉛とハロゲン化カリウムとハロゲン化アルキルアンモニウムを溶媒に溶解あるいは分散した溶液を電子輸送層3またはホール輸送層6上に塗布、乾燥することで形成する一段階析出法、あるいはハロゲン化金属を溶解あるいは分散した溶媒を電子輸送層3またはホール輸送層6上に塗布、乾燥した後、ハロゲン化アルキルアンモニウムを溶媒に溶解した溶液中に浸してペロブスカイト化合物を形成する二段階析出法の何れを用いても構わない。
 また、一段階析出法にて乾燥する際に、ヘキサンやトルエンなどの貧溶媒や窒素ガスなどの気体を吹き付けることを行っても構わない。
 電子輸送層またはホール輸送層6上に塗布する方法としては、浸漬法、スピンコート法、スプレー法、ディップ法、ローラ法、エアーナイフ法等を用いることができる。また、二酸化炭素などを用いた超臨界流体中で電子輸送層またはホール輸送層6上に析出させても構わない。
 二段階析出法の場合、ハロゲン化金属を電子輸送層3またはホール輸送層6上に形成したものと、ハロゲン化アルキルアンモニウムの溶液を接触する方法としては、浸漬法、スピンコート法、スプレー法、ディップ法、ローラ法、エアーナイフ法等を用いることができる。また、二酸化炭素などを用いた超臨界流体中でハロゲン化アルキルアンモニウムと接触することによって析出させても構わない。
<ホール輸送層>
 ホール輸送層6は、液体電解液、固体ホール輸送性化合物の何れであっても構わないが、特に固体ホール輸送性化合物を用いて形成されることが好ましい。
 固体ホール輸送化合物は、無機化合物、有機化合物の何れであっても構わない。無機固体化合物を用いた無機ホール輸送層は、例えば、ヨウ化銅、チオシアン化銅等をキャスト法、塗布法、スピンコート法、浸漬法、電解メッキ等の手法により電極内部に形成される。
 有機固体化合物の場合、単一材料からなる単層構造でも複数の化合物からなる積層構造でも良い。積層構造の場合は、第二電極7に接する有機ホール輸送材料層には、高分子材料を用いることが好ましい。製膜性に優れる高分子材料を用いることにより、多孔質状の電子輸送層3の表面をより平滑化することができ、光電変換特性を向上することができるためである。
 単一で用いられる単層構造において用いられる有機ホール輸送材料としては、公知の有機ホール輸送性化合物が用いられ、その具体例としては特公昭34-5466号公報等に示されているオキサジアゾール化合物、特公昭45-555号公報等に示されているトリフェニルメタン化合物、特公昭52-4188号公報等に示されているピラゾリン化合物、特公昭55-42380号公報等に示されているヒドラゾン化合物、特開昭56-123544号公報等に示されているオキサジアゾール化合物、特開昭54-58445号公報に示されているテトラアリールベンジジン化合物又は特開昭58-65440号公報若しくは特開昭60-98437号公報に示されているスチルベン化合物等を挙げることができる。
 積層構造において用いられる第二電極7に接する有機ホール輸送層に用いられる高分子材料としては、公知のホール輸送性高分子材料が用いられる。
 また、上記に示した無機及び有機電荷輸送物質に各種添加剤を加えても良い。
 添加剤としては、例えば、ヨウ素、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウム、ヨウ化カルシウム、ヨウ化銅、ヨウ化鉄若しくはヨウ化銀等の金属ヨウ化物、ヨウ化テトラアルキルアンモニウム若しくはヨウ化ピリジニウム等の4級アンモニウム塩、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化セシウム若しくは臭化カルシウム等の金属臭化物、臭化テトラアルキルアンモニウム若しくは臭化ピリジニウム等の4級アンモニウム化合物の臭素塩、塩化銅若しくは塩化銀等の金属塩化物、酢酸銅、酢酸銀若しくは酢酸パラジウム等の酢酸金属塩、硫酸銅若しくは硫酸亜鉛等の金属硫酸塩、フェロシアン酸塩-フェリシアン酸塩若しくはフェロセン-フェリシニウムイオン等の金属錯体、ポリ硫化ナトリウム若しくはアルキルチオール-アルキルジスルフィド等のイオウ化合物、ビオロゲン色素、ヒドロキノン等、ヨウ化1,2-ジメチル-3-n-プロピルイミダゾイニウム塩、ヨウ化1-メチル-3-n-ヘキシルイミダゾリニウム塩、1,2-ジメチル-3-エチルイミダゾリウムトリフロオロメタンスルホン酸塩、1-メチル-3-ブチルイミダゾリウムノナフルオロブチルスルホン酸塩若しくは1-メチル-3-エチルイミダゾリウムビス(トリフルオロメチル)スルホニルイミド等のInorg. Chem. 35 (1996) 1168に記載のイオン液体、ピリジン、4-t-ブチルピリジン若しくはベンズイミダゾール等の塩基性化合物又はリチウムトリフルオロメタンスルホニルイミド若しくはリチウムジイソプロピルイミド等のリチウム化合物等を挙げることができる。
 また、導電性を向上させる目的で、有機電荷輸送物質の一部をラジカルカチオンにするための酸化剤を添加しても良い。
 酸化剤としては、例えば、ヘキサクロロアンチモン酸トリス(4-ブロモフェニル)アミニウム、ヘキサフルオロアンチモネート銀、ニトロソニウムテトラフルオボラート、硝酸銀等が挙げられる。なお、酸化剤の添加によって全ての有機ホール輸送材料が酸化される必要はなく、一部のみが酸化されていれば良い。また、添加した酸化剤は添加した後、系外に取り出しても、取り出さなくても良い。
 ホール輸送層6は、ペロブスカイト層5の上に、直接形成されることが好ましい。ホール輸送層6の作製方法は、特に限定されず、例えば、真空蒸着等の真空中で薄膜を形成する方法や湿式製膜法等が挙げられる。製造コスト等を考慮した場合、特に湿式製膜法が好ましい。
 湿式製膜法を用いる場合、塗布方法は特に限定されず、公知の方法に従って行なうことができる。塗布方法は、例えば、ディップ法、スプレー法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、グラビアコート法等を用いることができる。また、凸版、オフセット、グラビア、凹版、ゴム版、スクリーン等を用いた印刷法を用いても良い。また、超臨界流体又は亜臨界流体中で製膜しても良い。
 第二電極7を設ける前に、ホール輸送層6と第二電極7との間に金属酸化物層を設けても良い。金属酸化物としては、例えば、酸化モリブデン、酸化タングステン、酸化バナジウム、酸化ニッケル等を挙げることができ、特に酸化モリブデンが好ましい。
 金属酸化物層をホール輸送層上に設ける方法は、特に限定されず、スパッタリングや真空蒸着等の真空中で薄膜を形成する方法や湿式製膜法が挙げることができる。
 湿式製膜法は、金属酸化物の粉末又はゾルを分散したペーストを調製し、ホール輸送層上に塗布する方法が好ましい。
 湿式製膜法を用いた場合、塗布方法は特に限定されず、公知の方法に従って行なうことができる。塗布方法は、例えば、ディップ法、スプレー法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、グラビアコート法等を用いることができる。また、凸版、オフセット、グラビア、凹版、ゴム版、スクリーン等を用いた印刷法を用いても良い。
 金属酸化物の膜厚は、特に限定されないが、0.1~50nmが好ましく、1~10nmがより好ましい。
<第二電極>
 第二電極7は、基板の上に形成されていてもよい。第二電極7としては、例えば、白金、金、銀、銅、アルミニウム、ロジウム若しくはインジウム等の金属、グラファイト、フラーレン若しくはカーボンナノチューブ等の炭素系化合物、ITO、フッ素ドープ酸化スズ(以下、FTOと称す)、アンチモンドープ酸化スズ(以下、ATOと称す)等の導電性金属酸化物又はポリチオフェン若しくはポリアニリン等の導電性高分子等が挙げられる。
 第二電極7の膜厚は、特に限定されない。また、第二電極7は、上述の材料を単独又は2種以上を混合又は積層して用いても良い。
 本発明は、逆構造でデバイスを形成しても構わなく、逆構造のデバイス(図3に示す構造)の場合、上述の電子輸送層3とホール輸送層6を逆の順番で形成すれば構わない。
<試験例1>
[実施例1]
(酸化チタン半導体電極の作製)
 チタニウムテトラ-n-プロポキシド2ml、酢酸4ml、イオン交換水1ml、2-プロパノール40mlを混合し、FTOガラス基板上にスピンコートし、室温で乾燥後、空気中450℃で30分間焼成した。再度同一溶液を用いて、得た電極上に膜厚50nmになるようにスピンコートで塗布し、空気中450℃で30分間焼成して緻密な電子輸送層を形成した。
 Dyesol社製18NR-T(酸化チタンペースト)を、上記緻密な電子輸送層上に膜厚300nmになるようにスピンコートで塗布し、120℃で3分温風乾燥後、空気中500℃で30分間焼成し、多孔質状の電子輸送層を形成した。
(ペロブスカイト化合物層の作製)
 ヨウ化鉛(II)(0.507mg)、臭化化鉛(II)(0.073mg)、ヨウ化ホルムアミジニウム(0.172mg)、臭化メチルアンモニウム(0.022mg)を溶解したN,N-ジメチルホルムアミド(1.0ml)溶液に、ヨウ化カリウム(I)(249mg)を溶解したジメチルスルホキシド(1mL)溶液を100μL添加して撹拌し、ペロブスカイト前駆体溶液を作製した。ペロブスカイト膜の膜厚が500nmとなるように、電子輸送層が形成された基板上に前駆体溶液を滴下しスピンコート法にて膜形成を行った。
(ホール輸送層の作製)
 2,2(7,7(-テトラキス-(N,N-ジ-p-メトキシフェニルアミン)9,9(-スピロビフルオレン)))(100mM)、リチウムビス(トリフルオロメタンスルホニル)イミド(27mM)、4-t-ブチルピリジン(110mM)を溶解したクロロベンゼン溶液をスピンコートにて製膜し、自然乾燥した。この上に金を真空蒸着で約100nm形成して図1に示す構造の太陽電池を作製した。
(太陽電池特性の評価)
 得た太陽電池の疑似太陽光照射下(AM1.5、100mW/cm)における光電変換効率を測定した。擬似太陽光は山下電装社製YSS-80、評価機器は東陽テクニカ社製 ModuLab M-2Aにて測定した。その結果、開放電圧=1.16V、短絡電流密度23.0mA/cm、形状因子=0.76、変換効率=20.3%という優れた特性を示した。また、この太陽電池のI-V(Current-Voltage)を測定した結果を図4に示す。図4より、ヨウ化鉛(II)とヨウ化カリウム(I)の混合物より形成されたペロブスカイト化合物(実施例1)は、I-Vの測定にて、短絡電流状態から開放電圧状態へ電位を変化させて検出された電流値と、開放電圧状態から短絡電流状態へ電位を変化させて検出された電流値の間にほぼ差が見られず、ヒステリシスがほとんど存在しないことが確認された。
 また、図5に、スキャンレートを変化させて測定したI-V曲線を示し、図6にスキャンレートを変化させて測定したヒステリシスファクターの試験結果を示す。なお、図5において、矢印の位置において、左側から順に、200mV/sのスキャンレートで測定したForwardのI-V曲線(200mV/s-Forward)、100mV/sのスキャンレートで測定したForwardのI-V曲線(100mV/s-Forward)、50mV/sのスキャンレートで測定したForwardのI-V曲線(50mV/s-Forward)、25mV/sのスキャンレートで測定したForwardのI-V曲線(25mV/s-Forward)、200mV/sのスキャンレートで測定したReverseのI-V曲線(200mV/s-Reverse)、100mV/sのスキャンレートで測定したReverseのI-V曲線(100mV/s-Reverse)、50mV/sのスキャンレートで測定したReverseのI-V曲線(50mV/s-Reverse)、25mV/sのスキャンレートで測定したReverseのI-V曲線(25mV/s-Reverse)である。また、図6における実施例1のヒステリシスファクターは、図5のI-V曲線から算出した。図5、6に示すように、実施例の太陽電池は、スキャンレートを変化させてもヒステリシスがほとんど存在しないことが確認された。
 またこの太陽電池のエネルギー変換効率ヒストグラム(太陽電池40個)を図7に示す。図7より、ヨウ化鉛(II)とヨウ化カリウム(I)の混合物より形成されたペロブスカイト化合物(実施例1)は、エネルギー変換効率19.5%にピークを示し、それの±1.5%以内に40個全ての太陽電池のエネルギー変換効率が含まれることが確認された。
 また、図8に、この太陽電池におけるペロブスカイト化合物層のSEM写真(倍率50000倍)を示す。図8示すように、このペロブスカイト化合物層(図中のperovskite)は、結晶粒界がほとんど観測されなかった。
また、図9に、実施例1および比較例1の太陽電池におけるペロブスカイト化合物層のバンドギャップエネルギーを示す(図9の左が実施例1であり、右が比較例1である)。実施例1のペロブスカイト化合物層のバンドギャップエネルギーは、後述の比較例1に比べて低かった。
また、図10に、実施例1および比較例1の太陽電池についての最大荷電電圧での過渡電流の変化(過渡応答特性)を示す。なお、実施例1の太陽電池の最大荷電電圧は0.95Vであり、比較例1の太陽電池の最大荷電電圧は0.90Vであった。図10に示すように、実施例1の太陽電池は、後述の比較例1に比べて過渡応答特性に優れていた。
[比較例1]
 実施例1におけるヨウ化鉛(II)(0.507mg)、臭化化鉛(II)(0.073mg)、ヨウ化ホルムアミジニウム(0.172mg)、臭化メチルアンモニウム(0.022mg)を溶解したN,N-ジメチルホルムアミド(1.0ml)溶液に、ヨウ化カリウム(I)(249mg)を溶解したジメチルスルホキシド(1mL)溶液を100μL添加して撹拌し作製したペロブスカイト前駆体溶液を、ヨウ化カリウム(I)を添加しないN,N-ジメチルホルムアミド(1.0ml)溶液に変更した以外は実施例1と同様にして太陽電池を作製し、評価した。その結果、開放電圧=1.11V、短絡電流密度22.6mA/cm、形状因子=0.71、変換効率=17.8%という値であり、本発明の太陽電池に比較して特性が低かった。
 また、図11に、スキャンレートを変化させて測定したI-V曲線を示し、図6にスキャンレートを変化させて測定したヒステリシスファクターの試験結果を示す。なお、図11において、矢印の位置において、左側から順に、200mV/sのスキャンレートで測定したForwardのI-V曲線(200mV/s-Forward)、100mV/sのスキャンレートで測定したForwardのI-V曲線(100mV/s-Forward)、50mV/sのスキャンレートで測定したForwardのI-V曲線(50mV/s-Forward)、25mV/sのスキャンレートで測定したForwardのI-V曲線(25mV/s-Forward)、200mV/sのスキャンレートで測定したReverseのI-V曲線(200mV/s-Reverse)、100mV/sのスキャンレートで測定したReverseのI-V曲線(100mV/s-Reverse)、50mV/sのスキャンレートで測定したReverseのI-V曲線(50mV/s-Reverse)、25mV/sのスキャンレートで測定したReverseのI-V曲線(25mV/s-Reverse)である。また、図6における比較例1のヒステリシスファクターは、図11のI-V曲線から算出した。図6、11に示すように、比較例の太陽電池は、実施例に比べて大きなヒステリシスファクターを有していた。また、図12に、この太陽電池におけるペロブスカイト化合物層のSEM写真(倍率50000倍)を示す。図12に示すように、このペロブスカイト化合物層(図中のperovskite)は、結晶粒界が多く観測された。
 以上、本発明の実施に係る形態について説明したが、上記内容は、発明の内容を限定するものではない。
<試験例2>
 実施例1において、ヨウ化カリウム(I)の配合量について、下記の組成式となるように調整して、ペロブスカイト前駆体溶液を作製した。このペロブスカイト前駆体溶液を、ペロブスカイト膜の膜厚が500nmとなるように、基板上に前駆体溶液を滴下しスピンコート法にて膜形成を行った。得られた膜についてのXRDチャート(2θ)を図13に示す。図中の0%のXRDチャートは、ヨウ化カリウムを配合しなかった膜のXRDチャートであり、この膜の組成式はFA0.85MA0.15Pb(I0.85Br0.15の組成式である。また、図中の2.5~20%のXRDチャートは、ヨウ化カリウムを配合して調製した膜のXRDチャートであって、2.5%のXRDチャートの膜の組成式は、K0.025(FA0.85MA0.150.975Pb(I0.85Br0.15であり、5%のXRDチャートの膜の組成式は、K0.05(FA0.85MA0.150.95Pb(I0.85Br0.15であり、7.5%のXRDチャートの膜の組成式は、K0.075(FA0.85MA0.150.925Pb(I0.85Br0.15であり、10%のXRDチャートの膜の組成式は、K0.1(FA0.85MA0.150.9Pb(I0.85Br0.15であり、20%のXRDチャートの膜の組成式は、K0.2(FA0.85MA0.150.8Pb(I0.85Br0.15である。
 また、上記の組成式において、Kはカリウム原子を意味し、FAはホルムアミジニウムを表し、MAはメチルアンモニウムを表し、Pbは鉛原子を表し、Iはヨウ素原子を表し、Brは臭素原子を表す。
 図13のXRDチャートから、得られた膜はペロブスカイト構造の結晶構造を有していることを確認できた。
1  基板
2  第一電極
3  電子輸送層
4  ナノ粒子
5  ペロブスカイト層
6  ホール輸送層
7  第二電極
8、9  リードライン
 
 

Claims (9)

  1.  第一電極、前記第一電極上に設けられた電子輸送性化合物の層、前記電子輸送性化合物の層上に設けられたペロブスカイト化合物層、前記ペロブスカイト化合物層上に設けられたホール輸送層、前記ホール輸送層上に設けられた第二電極を具備したペロブスカイト型太陽電池に用いることのできる、少量の無機一価陽イオンとしてカリウム(K)を添加した以下の一般式1で表される化合物からなる有機無機ハイブリッド材料。
    一般式1 
    A1A2PbX1X2
    (式中、Kはカリウム、Pbは鉛、A1とA2は任意の陽イオンで有機でも無機でも良く同じであっても構わない。X1とX2はハロゲン原子を表し、同じであっても構わない。xは0.01~0.20の間の数値で、y、z、pおよびqは、任意の数であり、x+y+z=1、p+q=3である。)
  2.  前記一般式1で表される化合物が、ハロゲン化鉛と鉛以外の二価金属陽イオンハロゲン化物の混合物と、一価陽イオンハロゲン化物により形成される、請求項1に記載の有機無機ハイブリッド材料。
  3.  前記一般式1で表される化合物が、ハロゲン化鉛と一価陽イオンハロゲン化物により形成される、請求項1に記載の有機無機ハイブリッド材料。
  4.  前記陽イオンハロゲン化物は、ハロゲン化カリウムを含む、請求項2または3に記載の有機無機ハイブリッド材料。
  5.  前記陽イオンハロゲン化物は、ハロゲン化カリウムとハロゲン化アルキルアンモニウムとを含む、請求項2または3に記載の有機無機ハイブリッド材料。
  6.  前記一般式1で表される化合物が、ハロゲン化アルキルアンモニウムを用いて形成される、請求項1に記載の有機無機ハイブリッド材料。
  7.  前記ハロゲン化アルキルアンモニウムが、ハロゲン化メチルアンモニウム、ハロゲン化ホルムアミジニウムの何れかを含む、請求項5または6に記載の有機無機ハイブリッド材料。
  8.  前記電子輸送性化合物が、酸化亜鉛、酸化スズ、酸化チタン、酸化アルミニウム、酸化ニオブおよび酸化イットリウムの少なくとも1種である、請求項1~7のいずれか1項に記載の有機無機ハイブリッド材料。
  9.  請求項1~8のいずれか1項に記載の有機無機ハイブリッド材料を含む、ペロブスカイト型太陽電池。
     
PCT/JP2018/018060 2017-05-10 2018-05-10 有機無機ハイブリッド材料ならびにこれを用いたペロブスカイト型太陽電池 WO2018207857A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019517683A JP7098166B2 (ja) 2017-05-10 2018-05-10 有機無機ハイブリッド材料ならびにこれを用いたペロブスカイト型太陽電池
US16/611,332 US20200294727A1 (en) 2017-05-10 2018-05-10 Organic-inorganic hybrid material and perovskite solar cell using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-093656 2017-05-10
JP2017093656 2017-05-10
JP2017222393 2017-11-20
JP2017-222393 2017-11-20

Publications (1)

Publication Number Publication Date
WO2018207857A1 true WO2018207857A1 (ja) 2018-11-15

Family

ID=64105716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018060 WO2018207857A1 (ja) 2017-05-10 2018-05-10 有機無機ハイブリッド材料ならびにこれを用いたペロブスカイト型太陽電池

Country Status (3)

Country Link
US (1) US20200294727A1 (ja)
JP (1) JP7098166B2 (ja)
WO (1) WO2018207857A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11174276B2 (en) * 2017-09-06 2021-11-16 Alliance For Sustainable Energy, Llc Organic-inorganic perovskite materials and methods of making the same
CN113224239B (zh) * 2021-03-15 2022-11-25 南开大学 一种原位生成水、热稳定的钝化层及具有钝化层的钙钛矿太阳能电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079145A1 (en) * 2014-11-21 2016-05-26 Heraeus Deutschland GmbH & Co. KG Pedot in perovskite solar cells
WO2016143506A1 (ja) * 2015-03-09 2016-09-15 富士フイルム株式会社 光電変換素子、太陽電池および光電変換素子の製造方法
JP2016186968A (ja) * 2015-03-27 2016-10-27 株式会社カネカ 光電変換装置及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079145A1 (en) * 2014-11-21 2016-05-26 Heraeus Deutschland GmbH & Co. KG Pedot in perovskite solar cells
WO2016143506A1 (ja) * 2015-03-09 2016-09-15 富士フイルム株式会社 光電変換素子、太陽電池および光電変換素子の製造方法
JP2016186968A (ja) * 2015-03-27 2016-10-27 株式会社カネカ 光電変換装置及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHANG, JINGJING ET AL.: "Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions", JOURNAL OF MATERIALS CHEMISTRY A, vol. 4, no. 42, 2016, pages 16546 - 16552, XP055561255 *
NAM, JAEKEUN ET AL.: "Potassium Incorporation for Enhanced Performance and Stability of Fully Inorganic Cesium Lead Halide Perovskite Solar Cells", NANO LETTERS, vol. 17, no. 3, 7 February 2017 (2017-02-07), pages 2028 - 2033, XP055561250 *
ZHAO, PENGJUN ET AL.: "Improved carriers injection capacity in perovskite solar cells by introducing A-site interstitial defects", JOURNAL OF MATERIALS CHEMISTRY A, vol. 5, 25 March 2017 (2017-03-25), pages 7905 - 7911, XP055561254 *

Also Published As

Publication number Publication date
US20200294727A1 (en) 2020-09-17
JP7098166B2 (ja) 2022-07-11
JPWO2018207857A1 (ja) 2020-03-19

Similar Documents

Publication Publication Date Title
Lin et al. Efficient and stable planar hole-transport-material-free perovskite solar cells using low temperature processed SnO2 as electron transport material
Ye et al. Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes
JP4583025B2 (ja) ナノアレイ電極の製造方法およびそれを用いた光電変換素子
Rhee et al. A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites
Nogueira et al. Polymers in dye sensitized solar cells: overview and perspectives
US7569765B2 (en) Electrode, photoelectric conversion element, and dye-sensitized solar cell
Li et al. A composite film of TiS 2/PEDOT: PSS as the electrocatalyst for the counter electrode in dye-sensitized solar cells
Savariraj et al. CuS nano flakes and nano platelets as counter electrode for quantum dots sensitized solar cells
Zhang et al. A novel TCO-and Pt-free counter electrode for high efficiency dye-sensitized solar cells
CN110690350A (zh) 光电转换元件和太阳能电池
JP6520020B2 (ja) 色素増感太陽電池
JP2018113305A (ja) 光電変換素子及び太陽電池
TW200915641A (en) Process for producing electroconductive polymer electrode and dye-sensitized solar cell comprising the electroconductive polymer electrode
CN103972394A (zh) 固体染料敏化型太阳能电池和固体染料敏化型太阳能电池模块
Huang et al. Solution-processed relatively pure MoS2 nanoparticles in-situ grown on graphite paper as an efficient FTO-free counter electrode for dye-sensitized solar cells
JP7088837B2 (ja) 太陽電池
Huang et al. Solution-based synthesis of ultrasmall Nb2O5 nanoparticles for functional thin films in dye-sensitized and perovskite solar cells
Yu et al. Platinum alloy decorated polyaniline counter electrodes for dye-sensitized solar cells
Abdel-Fattah et al. Dye-sensitized solar cells based on polyaniline-single wall carbon nanotubes composite
Venkatesan et al. Efficiency and stability improvements for room light dye-sensitized solar cells in the presence of electrochemically fabricated composite counter electrodes
WO2018207857A1 (ja) 有機無機ハイブリッド材料ならびにこれを用いたペロブスカイト型太陽電池
Mozaffari et al. Synthesis of polyindole nanoparticles and its copolymers via emulsion polymerization for the application as counter electrode for dye-sensitized solar cells
Bumika et al. Electrosynthesis of polyaniline‐based composite films and their electrochemical activity
Kesavan et al. Performance of dye-sensitized solar cells employing polymer gel as an electrolyte and the influence of nano-porous materials as fillers
Kumar et al. Investigation of the cobalt-additive role in improving the performance of formamidium lead triiodide based solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517683

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798995

Country of ref document: EP

Kind code of ref document: A1