WO2018207836A1 - Actinic-ray-curable composition, method for producing cured film, and cured object - Google Patents

Actinic-ray-curable composition, method for producing cured film, and cured object Download PDF

Info

Publication number
WO2018207836A1
WO2018207836A1 PCT/JP2018/017973 JP2018017973W WO2018207836A1 WO 2018207836 A1 WO2018207836 A1 WO 2018207836A1 JP 2018017973 W JP2018017973 W JP 2018017973W WO 2018207836 A1 WO2018207836 A1 WO 2018207836A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
active energy
energy ray
curable composition
compound
Prior art date
Application number
PCT/JP2018/017973
Other languages
French (fr)
Japanese (ja)
Inventor
有光 晃二
究 寺田
博一 桑原
Original Assignee
学校法人東京理科大学
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学, 日本化薬株式会社 filed Critical 学校法人東京理科大学
Priority to JP2019517671A priority Critical patent/JP7050245B2/en
Priority to KR1020197032657A priority patent/KR20200003815A/en
Priority to CN201880014972.2A priority patent/CN110382597A/en
Publication of WO2018207836A1 publication Critical patent/WO2018207836A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to an active energy ray-curable resin composition
  • a photobase generator containing a compound having a specific structure and a silicon-based compound having a specific structure, a cured product of the composition, and a cure obtained using the composition
  • the present invention relates to a film manufacturing method.
  • a material having high hardness is desired in order to improve the scratch resistance.
  • the hardness and scratch resistance can be increased by increasing the crosslinking density. Techniques that improve performance are known.
  • the crosslinking density is increased by addition polymerization of an acrylic double bond, ring-opening polymerization of an epoxy ring, etc., so that the coating material itself shrinks during the polymerization reaction. There was a problem, and there was a limit to increasing the hardness with only organic components.
  • the characteristics of inorganic coating materials typified by polysiloxane are superior in heat resistance, weather resistance, hardness, scratch resistance and the like as compared with organic coating materials.
  • a metal alkoxide is hydrolyzed and polycondensed using a sol-gel reaction, and thermally crosslinked and cured at a relatively low temperature via a metalloxane oligomer. The method of performing has been put into practical use, and the thin film coat layer obtained has high hardness.
  • Patent Document 1 discloses a coating composition comprising a trihydroxysilane partial condensate and colloidal silica.
  • thermosetting coating materials are not economical because they require a great deal of heat energy for curing, and there is also a problem that the base material is deformed by applied heat.
  • the UV curing organic coating material has excellent characteristics such as curability, transparency, base material compatibility and processability, and inorganic materials have high hardness and scratch resistance. There is a need for a UV curable organic-inorganic coating material that takes advantage of these characteristics and compensates for the respective drawbacks.
  • Patent Document 2 discloses a composition comprising silica particles, acryloxy functional group silane or a hydrolyzate thereof, and an acrylate compound.
  • cures with a photoinitiator is not considered regarding the photocuring of a silica particle or a silane part, the hardness of hardened
  • Patent Document 3 discloses a technique for introducing a polymerizable functional group onto the surface of a particle such as silica, but such modified silica is difficult to produce and is used for introducing a polymerizable functional group. Since a reactive group such as a hydroxyl group is required in the compound, the degree of freedom in design is low, and there has been a limit to improving the hardness of the cured product of the composition using silica obtained by this method.
  • composition is intended to improve hardness and scratch resistance, and other properties such as crack resistance, flexibility, workability and flame retardancy are not considered. .
  • UV curable organic-inorganic coating materials have excellent storage stability, no problem in curability and film-forming property, excellent impact resistance and scratch resistance, and have various physical properties of organic polymers.
  • Curing-type organic-inorganic coating materials have not yet been put into practical use, and in order to solve these problems at the same time, the inorganic component and the organic component are cured simultaneously, and the inorganic component and the organic component are uniformly integrated through covalent bonds.
  • a technique for producing a cured organic-inorganic hybrid film has been studied.
  • Patent Document 4 discloses an organic-inorganic hybrid coating composition containing a radical photopolymerization initiator and a cationic photopolymerization initiator.
  • the composition of the same document needs to contain two different types of photopolymerization initiators, and the composition is not preferable because the amount of the photopolymerization initiator in the composition increases as a result.
  • the cationic photopolymerization initiator since the cationic photopolymerization initiator has high activity and is unstable, not only is there concern about the storage stability of the composition, but there is also a concern that the acid generated by light irradiation remaining in the cured product may cause metal corrosion. . Furthermore, when a SiOR group remains at the terminal, this hydrolysis becomes a rate-determining step, and the generated alcohol may cause radical or cationic photopolymerization initiators to cause poor curing of the composition. .
  • Patent Document 5 discloses a photoinitiator that generates a base (amine) and a radical by ultraviolet irradiation.
  • the base generated from the photopolymerization initiator in this document is a monofunctional amine with low activity, and the curing ability as a photobase generator is insufficient.
  • Patent Document 6 discloses a photobase generator that generates both a base and a radical upon irradiation with actinic rays.
  • the photobase generator of the same document is an ionic compound composed of carboxylic acid and amine, and tertiary amines generated by irradiation with active energy rays are very high in activity and unstable, so that storage stability and solubility are improved.
  • the tertiary amine is difficult to control the reaction of the SiOH group generated by hydrolysis of the alkoxysilyl group, so that the molecular weight of the hydrolysis-condensation product of alkoxysilane cannot be controlled. Therefore, a photobase generator that is a neutral compound that simultaneously generates an aliphatic primary or secondary amine and an active radical by irradiation with active energy rays is desired.
  • Non-Patent Documents 1 and 2 describe a resin comprising a photobase generator, which is a neutral compound that simultaneously generates an aliphatic primary or secondary amine and an active radical, and a silicon compound having an alkoxysilyl group.
  • a photobase generator which is a neutral compound that simultaneously generates an aliphatic primary or secondary amine and an active radical, and a silicon compound having an alkoxysilyl group.
  • the photobase generators disclosed in these documents have a short wavelength of absorption of active energy rays. Therefore, compared with the photosensitive region of the conventional photobase generator, it has higher sensitivity to longer wavelength light (active energy rays) and efficiently generates a base by irradiation with the longer wavelength light. Development of a photobase generator is desired.
  • the present invention provides an active energy ray-curable composition that is excellent in storage stability, curability and film-forming property, and that the cured product has high hardness and is excellent in adhesion to a substrate and scratch resistance. Objective.
  • an active energy ray-curable composition containing a photobase generator as a compound and a silicon-based compound having an alkoxysilyl group solves the above problems, and has completed the present invention.
  • the present invention provides (1) a silicon-based compound having an alkoxysilyl group, and an amine and an active radical that can absorb light and simultaneously generate the following formula (1)
  • R 1 represents a hydrogen atom, a hydroxyl group, an alkoxy group or an organic group.
  • R 2 and R 3 represent an aryl group having a substituent.
  • X represents a primary amine or secondary amine to a nitrogen atom.
  • a method for producing a cured film obtained using an active energy ray-curable composition (A) applying the active energy ray-curable composition to a substrate to form a film; (B) a step of first heating the coating; (C) exposing the first heated coating; and (d) second heating the exposed coating; About.
  • the active energy ray-curable composition of the present invention is excellent in storage stability, curability and film-forming property, and the cured product has high hardness, adhesion to a substrate and scratch resistance, it is a mobile phone. It is suitably used for hard coat applications such as liquid crystal display screens and touch panels.
  • FIG. 1 is an absorbance curve of photobase generators (photopolymerization initiators) 1 to 7 used as materials for Examples and Comparative Examples.
  • the active energy ray-curable composition of the present invention contains a silicon-based compound having an alkoxysilyl group.
  • Examples of the silicon-based compound having an alkoxysilyl group (hereinafter simply referred to as “silicon-based compound”) contained in the active energy ray-curable composition of the present invention include 1 to 3 alkoxysilyl groups.
  • Examples thereof include a silane coupling agent and an alkoxysilane compound having 1 to 4 alkoxysilyl groups, and a part of the alkoxysilyl group may be hydrolyzed or hydrolyzed polycondensed.
  • the alkoxy group in the alkoxysilyl group of the silicon-based compound is preferably an alkoxy group having 1 to 8 carbon atoms from the viewpoint of reactivity, stability, etc., specifically, a methoxy group, an ethoxy group, (iso) A propyloxy group or an (iso) butyloxy group is preferable, and a methoxy group or an ethoxy group is more preferable.
  • (iso) propyl group means both n-propyl group and iso-propyl group.
  • the silane coupling agent may have a functional group other than an alkoxysilyl group, and the functional group that may have an amino group, an epoxy group, a mercapto group, an isocyanate group, or a hydroxyl group is preferable. Groups are more preferred.
  • silane coupling agent having an alkoxysilyl group examples include 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-methacryloxypropylmethyldiethoxy.
  • Silane 3-methacryloxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycid Xylpropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopro Aminosilanes such as rutrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane and 3- (N-phenylaminopropyltrimethoxysilane); 2- (3,4-epoxycyclohexyl) ethyltri Epoxy
  • alkoxysilane compounds include trimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, tetramethoxysilane, methyldimethoxysilane, trimethylethoxysilane, dimethyldiethoxysilane, methyltriethoxysilane, tetraethoxysilane, diphenyldimethoxy.
  • Examples thereof include silane, phenyltrimethoxysilane, diphenyldiethoxysilane, phenyltriethoxysilane, hexyltrimethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.
  • These alkoxysilane compounds may be used singly or in combination of two or more, or may be used partially hydrolyzed or hydrolyzed polycondensed in advance. I do not care.
  • Examples of the silicon compound contained in the active energy ray-curable composition of the present invention include 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-methacryloxy.
  • the active energy ray-curable composition of the present invention is a photobase generator that preferably has absorption in a wavelength region of 350 nm or more, and is a specific photobase that absorbs light and simultaneously generates an amine and an active radical. It contains a generator (hereinafter, also simply referred to as “essential component photobase generator”).
  • R 1 represents a hydrogen atom, a hydroxyl group, an alkoxy group or an organic group.
  • the alkoxy group represented by R 1 in the formula (1) is preferably an alkoxy group having 1 to 18 carbon atoms, and specific examples thereof include methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n -Butoxy group, iso-butoxy group, sec-butoxy group, t-butoxy group, n-pentoxy group, iso-pentoxy group, neo-pentoxy group, n-hexyloxy group and n-dodecyloxy group.
  • organic group represented by R 1 in the formula (1) examples include alkyl groups having 1 to 18 carbon atoms, alkenyl groups having 2 to 18 carbon atoms, alkynyl groups having 2 to 18 carbon atoms, and 6 to 12 carbon atoms.
  • examples thereof include an aryl group, an acyl group having 1 to 18 carbon atoms, an aroyl group having 7 to 18 carbon atoms, a nitro group, a cyano group, an alkylthio group having 1 to 18 carbon atoms, and a halogen atom.
  • Examples of the organic group having 1 to 18 carbon atoms as specific examples of the organic group represented by R 1 in the formula (1) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an iso-butyl group.
  • a linear alkyl group such as a linear or branched alkyl group and a cyclic alkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group, preferably an alkyl group having 2 to 6 carbon atoms, It is more preferably a linear or branched alkyl group having 2 to 6 carbon atoms.
  • organic group having 2 to 18 carbon atoms as the organic group represented by R 1 in the formula (1) include a vinyl group, a propenyl group, a 1-butenyl group, an iso-butenyl group, a 1-pentenyl group, 2- Pentenyl group, 2-methyl-1-butenyl group, 3-methyl-1-butenyl group, 2-methyl-2-butenyl group, 2,2-dicyanovinyl group, 2-cyano-2-methylcarboxyl vinyl group and 2 -Cyano-2-methylsulfone vinyl group and the like.
  • alkynyl group having 2 to 18 carbon atoms as the organic group represented by R 1 in the formula (1) include ethynyl group, 1-propynyl group and 1-butynyl group.
  • organic group having 6 to 12 carbon atoms as the organic group represented by R 1 in the formula (1) include a phenyl group, a naphthyl group, and a tolyl group, and these are aryl groups having 6 to 10 carbon atoms. It is preferable.
  • organic group having 1 to 18 carbon atoms as the organic group represented by R 1 in the formula (1) include formyl group, acetyl group, ethylcarbonyl group, n-propylcarbonyl group, iso-propylcarbonyl group, n -Butylcarbonyl group, n-pentylcarbonyl group, iso-pentylcarbonyl group, neo-pentylcarbonyl group, 2-methylbutylcarbonyl group, nitrobenzylcarbonyl group and the like.
  • aroyl group having 7 to 18 carbon atoms as the organic group represented by R 1 in the formula (1) include a benzoyl group, a toluoyl group, a naphthoyl group, and a phthaloyl group.
  • organic group represented by R 1 in the formula (1) having 1 to 18 carbon atoms include a methylthio group, an ethylthio group, an n-propylthio group, an iso-propylthio group, an n-butylthio group, and an iso-butylthio group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 1 in Formula (1) is preferably an alkoxy group, more preferably an alkoxy group having 1 to 18 carbon atoms, still more preferably an alkoxy group having 1 to 6 carbon atoms, A 1 to 4 alkoxy group is particularly preferable, and a methoxy group is most preferable.
  • R 2 and R 3 represent an aryl group, and the aryl group may have a hydrogen atom in its structure substituted with a substituent.
  • R 2 and R 3 are preferably aryl groups having a substituent.
  • the aryl group represented by R 2 and R 3 in the formula (1) is a residue obtained by removing one hydrogen atom from an aromatic hydrocarbon.
  • the aromatic hydrocarbon include benzene, naphthalene, anthracene, Examples include phenanthrene and pyrene.
  • R 2 and R 3 in Formula (1) residues obtained by removing one hydrogen atom from a benzene or naphthalene are preferred, residues obtained by removing one hydrogen atom from benzene is more preferable.
  • each R 2 and R 3 may be the same as or different from each other.
  • Examples of the halogen that can be substituted for the hydrogen atom contained in the structure of the aryl group represented by R 2 and R 3 in the formula (1) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the alkoxy group that can be substituted for the hydrogen atom contained in the structure of the aryl group represented by R 2 and R 3 in the formula (1) include the same alkoxy groups as those represented by R 1 in the formula (1).
  • an aryl group represented by R 2 and R 3 of formula (1) may be replaced with a hydrogen atom having in the structure, an alkyl group, an aryl group, an aralkyl group, a halogenated alkyl group, an isocyano group
  • examples include cyanato group, isocyanato group, thiocyanato group, isothiocyanato group, alkoxycarbonyl group, carbamoyl group, thiocarbamoyl group, carboxyl group, carboxylate group, acyl group, acyloxy group, and hydroxyimino group.
  • the alkyl group, aryl group, and acyl group as specific examples of the organic group that can be substituted for the hydrogen atom that the aryl group represented by R 2 and R 3 in the formula (1) has in the structure include R in the formula (1), respectively.
  • Specific examples of the organic group represented by 1 include the same alkyl groups having 1 to 18 carbon atoms, aryl groups having 6 to 12 carbon atoms, and acyl groups having 1 to 18 carbon atoms.
  • organic groups may contain bonds and substituents other than hydrocarbon groups such as heteroatoms in the organic group, and these may be linear or branched.
  • the organic group that can be substituted for the hydrogen atom that the aryl group represented by R 2 and R 3 has in the structure is usually a monovalent organic group. It can be an organic group.
  • the bond other than the carbon-hydrogen bond (bond of C and H) of the hydrocarbon group in the organic group in which the aryl group represented by R 2 and R 3 can be substituted for the hydrogen atom in the structure the effect of the present invention As long as is not impaired, it is not particularly limited, and examples include an ether bond, a thioether bond, a carbonyl bond, a thiocarbonyl bond, an ester bond, an amide bond, a urethane bond, a carbonate bond, a sulfonyl bond, a sulfinyl bond, and an azo bond.
  • the bond other than the carbon-hydrogen bond of the hydrocarbon group in the organic group includes ether bond, thioether bond, carbonyl bond, thiocarbonyl bond, ester bond, amide bond, urethane bond, imino bond ( —N ⁇ C (—R) —, —C ( ⁇ NR) —, wherein R is a hydrogen atom or an organic group), a carbonate bond, a sulfonyl bond, and a sulfinyl bond are preferable.
  • the substituent other than the hydrocarbon group in the organic group that can be substituted with the hydrogen atom that the aryl group represented by R 2 and R 3 has in the structure is not particularly limited as long as the effects of the present invention are not impaired.
  • the hydrogen contained in the substituent may be substituted with a hydrocarbon group.
  • the hydrocarbon group contained in the substituent may be any of linear, branched, and cyclic.
  • the substituent other than a hydrocarbon group in the organic group aryl group represented by R 2 and R 3 can be substituted with a hydrogen atom having in the structure, a halogen atom, a hydroxyl group, a mercapto group, a sulfide group, a cyano group, Isocyano group, cyanato group, isocyanato group, thiocyanato group, isothiocyanato group, silyl group, silanol group, alkoxy group, alkoxycarbonyl group, carbamoyl group, thiocarbamoyl group, nitro group, nitroso group, carboxyl group, carboxylate group, acyl group Acyloxy group, sulfino group, sulfo group, sulf
  • cyclic structure is a combination of two or more selected from the group consisting of saturated or unsaturated alicyclic hydrocarbons, heterocycles, and condensed rings, and the alicyclic hydrocarbons, heterocycles, and condensed rings. The structure which becomes may be sufficient.
  • substituents that can replace the aryl group represented by R 2 and R 3 with a hydrogen atom in the structure of the essential photobase generator of the present invention are halogen, hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group , A sulfino group, a sulfo group, a sulfonato group, a phosphino group, a phosphinyl group, a phosphono group, a phosphonato group, an amino group, an ammonio group or an organic group.
  • the light of the photobase generator absorbs light.
  • the wavelength can be adjusted, and a desired wavelength can be absorbed by introducing a substituent.
  • the absorption wavelength can be shifted to a longer wavelength by introducing a substituent that extends the conjugated chain of the aromatic ring. It is also possible to improve the solubility and compatibility with the polymer precursor to be combined. Thereby, it is possible to improve the sensitivity of the photosensitive resin composition in consideration of the absorption wavelength of the polymer precursor to be combined.
  • Examples of the substituent that can be substituted with the hydrogen atom that the aryl group represented by R 2 and R 3 has in the structure include an alkyl group having 1 to 20 carbon atoms such as a methyl group, an ethyl group, and a propyl group; a cyclopentyl group, a cyclohexyl group, and the like A cycloalkyl group having 4 to 23 carbon atoms; a cycloalkenyl group having 4 to 23 carbon atoms such as a cyclopentenyl group and a cyclohexenyl group; and 7 carbon atoms such as a phenoxymethyl group, a 2-phenoxyethyl group, and a 4-phenoxybutyl group.
  • An aryloxyalkyl group having from 26 to 26 (-ROAr group); an aralkyl group having 7 to 20 carbon atoms such as benzyl group and 3-phenylpropyl group; and 2 to 21 carbon atoms having a cyano group such as cyanomethyl group and ⁇ -cyanoethyl group Alkyl group having 1 to 20 carbon atoms having a hydroxyl group such as hydroxymethyl group; methoxy group, ethoxy group An amide group having 2 to 21 carbon atoms such as an alkoxy group having 1 to 20 carbon atoms such as a group, an acetamide group or a benzenesulfonamide group (C 6 H 5 SO 2 NH—); a carbon number such as a methylthio group or an ethylthio group An alkylthio group having 1 to 20 carbon atoms (—SR group); an acyl group having 1 to 20 carbon atoms such as an acetyl group or a be
  • the photobase generator of the essential components if at least one of the substituents aryl group represented by R 2 and R 3 can be substituted with a hydrogen atom having in the structure is a hydroxyl group, an aryl represented by R 2 and R 3 Compared with a compound that does not contain a hydroxyl group as a substituent that can be substituted with a hydrogen atom that the group has in the structure, it is preferable from the viewpoint of improving the solubility in a basic aqueous solution and increasing the absorption wavelength.
  • X represents an amine residue obtained by removing one hydrogen atom directly bonded to a nitrogen atom from a primary amine or secondary amine.
  • Specific examples of the amine residue represented by X in the formula (1) include a residue obtained by removing one hydrogen atom directly bonded to a nitrogen atom from amine compounds represented by the following formulas (a) to (z). Can be mentioned.
  • a residue obtained by removing a hydrogen atom from one amino group It may be a valent residue, or may be a divalent residue obtained by removing one hydrogen atom from each amino group.
  • the amine compound represented by (a) or formula (b) is an amine compound having two amino groups in one molecule, but a hydrogen atom is removed from an amine compound having three amino groups in one molecule. In the case of removing it as a residue, it may be any monovalent to trivalent residue, and when removing a hydrogen atom from an amine compound having four amino groups in one molecule, It may be any monovalent to tetravalent residue.
  • the amine residue represented by X in the formula (1) is preferably a residue obtained by removing one hydrogen atom directly bonded to a nitrogen atom from the amine compounds represented by the formulas (a) to (z).
  • a residue obtained by removing one hydrogen atom directly bonded to a nitrogen atom from the amine compounds represented by () to (n) is more preferable.
  • the use ratio of the silicon-based compound and the essential photobase generator in the active energy ray-curable composition of the present invention depends on the stability of the composition, the transparency of the resulting cured film, the wear resistance, and the scratch resistance. Designed in terms of adhesion and crack resistance.
  • the essential photobase generator is usually 5 to 80% by mass, preferably 10 to 60% by mass, more preferably 20 to 40% by mass based on the total amount of the silicon-based compound and the essential component photobase generator. .
  • the active energy ray-curable composition of the present invention may be used in combination with a photopolymerization initiator other than the compound having the partial structure represented by the formula (1).
  • a photopolymerization initiator other than the compound having the partial structure represented by the formula (1).
  • Examples of the photopolymerization initiator that can be used in combination include conventionally known photo radical generators, photo acid generators, photo base generators, and the like. These photopolymerization initiators may be used alone or in combination of two or more.
  • the photo radical generator that can be used in combination with the active energy ray-curable composition of the present invention is a compound having a function capable of initiating radical polymerization by photoexcitation, such as a monocarbonyl compound, a dicarbonyl compound, an acetophenone compound, a benzoin ether compound, Examples include acylphosphine oxide compounds and aminocarbonyl compounds.
  • the photo radical generator used in combination with the active energy ray-curable composition of the present invention is preferably an acetophenone compound or an acylphosphine compound, more preferably an acetophenone compound, from the viewpoint of the transparency of the cured product.
  • the photoacid generator that can be used in combination with the active energy ray-curable composition of the present invention generates cations upon irradiation with radiation such as ultraviolet rays, far ultraviolet rays, excimer lasers such as KrF and ArF, X-rays, and electron beams.
  • the cation is a compound that can serve as a polymerization initiator, and examples thereof include aromatic iodonium complex salts and aromatic sulfonium complex salts.
  • aromatic iodonium complex salt examples include diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluorophosphate, tricumyl iodonium tetrakis (Pentafluorophenyl) borate (Rhodia, trade name Rhodosyl PI2074), di (4-tert-butyl) iodonium tris (trifluoromethanesulfonyl) methanide (BASF, trade name CGI BBI-C1), and the like.
  • aromatic sulfonium complex salt examples include 4-thiophenyldiphenylsulfonium hexafluoroantimonate (manufactured by Sun Apro, trade name: CPI-101A), thiophenyldiphenylsulfonium tris (pentafluoroethyl) trifluorophosphate ( San Apro, trade name CPI-210S), 4- [4- (2-chlorobenzoyl) phenylthio] phenyl bis (4-fluorophenyl) sulfonium hexafluoroantimonate (ADEKA, trade name SP-172), 4 -A mixture of aromatic sulfonium hexafluoroantimonate containing thiophenyldiphenylsulfonium hexafluoroantimonate (ACETO Corporate USA, trade name CPI-6976) and Riphenylsulfonium tris (trifluoromethanesulfon
  • the photobase generator that can be used in combination with the active energy ray-curable composition of the present invention is a compound that generates biguanidinium, imidazole, pyridine, diamine, and derivatives thereof by light irradiation such as ultraviolet rays, and specific examples thereof.
  • the content of the photopolymerization initiator in the active energy ray-curable composition of the present invention is preferably 10% by mass or less in the active energy ray-curable composition.
  • the active energy ray-curable composition of the present invention may be used in combination with a base proliferating agent that generates a base proliferatively by the action of a base.
  • a base proliferating agent in combination with the active energy ray-curable composition of the present invention, the sensitivity of the active energy ray-curable composition can be further improved.
  • the base action is photochemically generated on the surface of the active energy ray-curable composition layer and the base growth reaction by the base proliferating agent is started, thereby thermochemically and chain-linking the base. Therefore, it can be expected that a base catalyzed reaction occurs even in the deep part of the active energy ray-curable composition layer.
  • the base proliferating agent contains a compound having at least one urethane bond.
  • the content of the base proliferating agent in the active energy ray-curable composition of the present invention may be appropriately determined depending on the type and combination of the essential component base generator and silicon compound, but the active energy ray-curable type of the present invention. It is preferably 40% by mass or less, more preferably 5 to 20% by mass in the composition.
  • a compound having an acryloyl group and / or a methacryloyl group may be used in combination.
  • Compounds having an acryloyl group or a methacryloyl group include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) ) Acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, benzyl (Meth) acryl
  • polyester (meth) acrylate polyurethane (meth) acrylate, epoxy (meth) acrylate, (meth) acrylated maleic acid-modified polybutadiene, and the like.
  • the content of the compound having an acryloyl group and / or a methacryloyl group in the active energy ray-curable composition of the present invention is preferably 80% by mass or less, more preferably 5 to 5% in the active energy ray-curable composition of the present invention. 50% by mass.
  • a sensitizer may be used in combination to expand the absorption wavelength region of the photobase generator as an essential component and the photopolymerization initiator used in combination.
  • the sensitizer that can be used in combination is not particularly limited, and examples thereof include benzophenone, p, p′-tetramethyldiaminobenzophenone, p, p′-tetraethylaminobenzophenone, 2-chlorothioxanthone, anthrone, 9-ethoxyanthracene, anthracene, Pyrene, perylene, phenothiazine, benzyl, acridine orange, benzoflavin, cetoflavin-T, 9,10-diphenylanthracene, 9-fluorenone, acetophenone, phenanthrene, 2-nitrofluorene, 5-nitroacenaphthene, benzoquinone, 2-chloro
  • the content of the sensitizer in the active energy ray-curable composition of the present invention depends on the type and amount of the base generator and silicon compound as essential components, the sensitivity required for the active energy ray-curable composition, and the like. What is necessary is just to determine suitably, Preferably it is 30 mass% or less in the active energy ray hardening-type composition of this invention, More preferably, it is 5 to 20 mass%.
  • a solvent may be used in combination with the active energy ray-curable composition of the present invention.
  • the solvent that can be used in combination is not particularly limited as long as it is a solvent that can dissolve or disperse a silicon compound, but is preferably a solvent that can dissolve a silicon compound, and more preferably an alcohol solvent.
  • Examples of the solvent that can be used in combination include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-ethoxyethanol, and 2-butoxyethanol.
  • An alcohol having 1 to 4 carbon atoms is preferable, and 2-propanol is more preferable in terms of solubility, stability, and coatability.
  • ketones such as methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK) which are good solvents for the compound; esters such as ethyl acetate and butyl acetate; glycol Ethers; glycol ether esters; aromatic hydrocarbons; are preferably used.
  • the content of the solvent in the active energy ray-curable composition of the present invention is preferably 80% by mass or less, more preferably 0 to 50% by mass in the active energy ray-curable composition of the present invention.
  • additives such as a known leveling agent and antifoaming agent can be blended for the purpose of improving coatability and smoothness and appearance of the resulting cured film.
  • the content of these additives is preferably 2% by mass or less in the active energy ray-curable composition of the present invention.
  • the active energy ray-curable composition of the present invention can be applied to a substrate (coating material) by bar coating, dip coating, flow coating, spray coating, spin coating, roller coating, reverse coating. Or any application
  • the active energy ray-curable composition of the present invention can be used as various adhesives including ink binders such as paints, gravure printing inks, flexographic printing inks and inkjet printing inks, and lamination adhesives.
  • the active energy ray-curable composition of the present invention can be cured by a known active energy ray curing method, and it is particularly preferable to use ultraviolet rays or electron beams.
  • a light source usually containing light in the range of 200 to 500 nm for example, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a gallium lamp, a xenon lamp, a carbon arc lamp, etc. can be used. It is preferable to use a light source including light in a wavelength region of 350 nm or more.
  • the accumulated amount of active energy rays is not limited because the required minimum accumulated amount of light depends on the application, film thickness, presence / absence of colorant, and type and amount of photopolymerization initiator.
  • the combined use of heat by ultraviolet rays, electron beams and infrared rays, far infrared rays, hot air, high frequency heating, etc. is effective.
  • the thickness of the active energy ray-curable composition of the present invention is usually 0.1 to 20 ⁇ m, preferably 2 to 10 ⁇ m, and most preferably 3 to 8 ⁇ m.
  • the adhesiveness between the composition layer and the substrate does not decrease due to stress generated during curing, and the object of the present invention is sufficient.
  • a cured product layer having excellent hardness, scratch resistance and abrasion resistance can be obtained.
  • a method for producing a cured film obtained using the active energy ray-curable composition of the present invention (A) applying the active energy ray-curable composition to a substrate to form a film; (B) a step of first heating the coating; (C) It is a manufacturing method including a step of exposing the heat-treated film, and (d) a step of secondly heating the exposed film.
  • coating in a process is performed by methods, such as above-mentioned bar coating method.
  • the film after the application and before the first heating in (b) is referred to as a coating in this specification.
  • the first heating in the step (b) is performed by an apparatus such as a hot plate or an oven, and the conditions are usually 25 to 150 ° C. for 5 to 120 minutes, preferably 25 to 100 ° C. for 5 to 10 minutes.
  • the exposure process in the step (c) is performed using the above-described high-pressure mercury lamp or the like.
  • the irradiation amount may be appropriately selected according to the type of silicon compound and the type and content of the photobase generator as an essential component, but is usually about 100 to 1500 mJ, preferably about 100 to 500 mJ.
  • the second heating in the step (d) may be performed using the same apparatus as the first heating in the step (b), and the conditions are usually 25 to 150 ° C. for 5 to 120 minutes, preferably 25 to 100 ° C. 5 to 30 minutes.
  • the film obtained after the second heating is referred to as a cured film.
  • the active energy ray-curable composition of the present invention is excellent in storage stability, curability and film-forming property, and the cured product is excellent in impact resistance and scratch resistance, liquid crystal display screens such as mobile phones, touch panels, etc. It is suitably used for hard coat applications represented by
  • part used in the present example means “part by mass” unless specified.
  • Example 1 DPHA (Nihon Kayaku Co., Ltd.) 0.3 parts, 3-acryloxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., trade name KBM-5103) 0.075 parts, Tetraethoxysilane (Kanto Chemical Co., Ltd.) After adding 0.3 part, 0.0175 part of photobase generator 1 obtained in Synthesis Example 3 was added and diluted with 0.04 part of MEK to obtain the active energy ray-curable composition of the present invention. .
  • Example 2 The active energy ray curing of the present invention was carried out in the same manner as in Example 1 except that the addition amount of the photobase generator 1 was changed to 0.00125 parts and 0.01375 parts of photopolymerization initiator 2 (Irg.184) was added. A mold composition was obtained.
  • Example 3 The active energy ray curing of the present invention was carried out in the same manner as in Example 1 except that the addition amount of the photobase generator 1 was changed to 0.0025 part and 0.0125 part of the photopolymerization initiator 2 (Irg.184) was added. A mold composition was obtained.
  • Example 4 The active energy ray curing of the present invention was carried out in the same manner as in Example 1 except that the amount of photobase generator 1 added was changed to 0.005 part and 0.01 part of photopolymerization initiator 2 (Irg.184) was added. A mold composition was obtained.
  • Comparative Example 5 A comparative active energy ray-curable composition was obtained in the same manner as in Example 1 except that 0.0175 part of the photobase generator 1 was changed to 0.015 part of the photopolymerization initiator 2 (Irg. 184).
  • Comparative Example 6 A comparative active energy ray-curable composition was obtained in the same manner as in Example 1 except that 0.0175 part of the photobase generator 1 was changed to 0.015 part of the photopolymerization initiator 3 (Irg.369).
  • Comparative Example 7 A comparative active energy ray-curable composition was obtained in the same manner as in Example 1 except that 0.0175 part of photobase generator 1 was changed to 0.015 part of photobase generator 4 (Irg.OXE-01). It was.
  • Comparative Example 8 Comparative active energy ray-curable composition as in Example 1 except that 0.0175 part of the photobase generator 1 was changed to 0.015 part of the photobase generator 5 for comparison obtained in Synthesis Example 5. I got a thing.
  • Comparative Example 9 Active energy ray curing for comparison was performed in the same manner as in Comparative Example 8 except that the addition amount of the photobase generator 5 was changed to 0.00125 parts and 0.01375 parts of photopolymerization initiator 2 (Irg.184) was added. A mold composition was obtained.
  • Comparative Example 10 Comparative active energy ray-curable composition in the same manner as in Example 1 except that 0.0175 part of the photobase generator 1 was changed to 0.015 part of the photobase generator 6 for comparison obtained in Synthesis Example 7. I got a thing.
  • Comparative Example 11 Comparative active energy ray-curable composition in the same manner as in Example 1 except that 0.0175 part of the photobase generator 1 was changed to 0.015 part of the comparative photobase generator 7 obtained in Synthesis Example 9. I got a thing.
  • the pass on the PET film obtained above is 3 passes under the condition that the exposure amount of one pass is 100 mJ / cm 2 (height from the belt conveyor to the high-pressure mercury lamp is 100 mm). Exposure was performed. Thereafter, heat treatment (second heating, post-exposure baking) at 80 ° C. for 10 minutes was performed using an oven to obtain a cured product (cured film) of each active energy ray-curable composition.
  • Appearance of the solution The solutions of the active energy ray-curable compositions of Examples 1 to 4 and Comparative Examples 5 to 11 were filled in test tubes, and the appearance was visually confirmed.
  • Appearance of cured film The appearance of the cured film of each composition obtained using each of the active energy ray-curable compositions of Examples 1 to 4 and Comparative Examples 5 to 11 was visually checked for the presence of turbidity, luster, shading, cracks, and the like. Confirmed with.
  • Pencil hardness The pencil hardness of the cured film of each composition obtained using each of the active energy ray-curable compositions of Examples 1 to 4 and Comparative Examples 5 to 11 was weighted at 750 g by a method according to JIS K-5600. It was measured.
  • Adhesion The adhesiveness of the cured film of each composition obtained using each of the active energy ray-curable compositions of Examples 1 to 4 and Comparative Examples 5 to 11 to the PET film was measured in accordance with JIS K-5600. It was measured.
  • Scratch resistance The surface of the cured film of each composition obtained using each of the active energy ray-curable compositions of Examples 1 to 4 and Comparative Examples 5 to 11 was rubbed 20 times with a load of 1000 g using # 0000 steel wool. After that, the damaged state of the surface was visually observed and evaluated according to the following evaluation criteria. ⁇ : No scratch at all ⁇ : Slightly scratch ⁇ : Clear scratch (6) Transparency (400 nm): The transparency of the cured film of each composition obtained using each of the active energy ray-curable compositions of Examples 1 to 4 and Comparative Examples 5 to 11 was measured using an ultraviolet-visible spectrophotometer V-600 manufactured by JASCO Corporation.
  • the active energy ray-curable composition of the present invention is superior in storage stability than the comparative composition, excellent in the appearance of the solution and the cured film, and the cured product has high hardness. It turns out that it is excellent in the adhesiveness to a PET film, and a body abrasion property, and is excellent in the transmittance
  • the active energy ray-curable composition of the present invention is excellent in storage stability, curability and film-forming property, and the cured product has high hardness, adhesion to a substrate and scratch resistance, it is a mobile phone. It is suitably used for hard coat applications such as liquid crystal display screens and touch panels.

Abstract

Provided are: an actinic-ray-curable composition that comprises a silicon compound having an alkoxysilyl group and a photobase generator which comprises a compound represented by a given chemical formula and can generate an amine and a free radical at the same time upon light absorption; a cured object obtained from the composition; and a method for producing a cured film from the composition. The actinic-ray-curable composition is excellent in terms of storage stability, curability, and film-forming property, and the cured object obtained therefrom is excellent in terms of adhesion to the base, scratch resistance, etc.

Description

活性エネルギー線硬化型組成物、硬化膜の製造方法及び硬化物Active energy ray-curable composition, method for producing cured film, and cured product
 本発明は特定の構造を有する化合物を含有する光塩基発生剤と特定構造のケイ素系化合物を含む活性エネルギー線硬化型樹脂組成物、該組成物の硬化物及び該組成物を用いて得られる硬化膜の製造方法に関する。 The present invention relates to an active energy ray-curable resin composition comprising a photobase generator containing a compound having a specific structure and a silicon-based compound having a specific structure, a cured product of the composition, and a cure obtained using the composition The present invention relates to a film manufacturing method.
 携帯電話やPDAに代表される移動体通信の液晶表示画面やATMやカーナビゲーションなどの画面表示入力デバイスとしてのタッチパネルなどの分野では、表示画面へのキズ付き防止を目的としてハードコートが多用されているが、これらの表示媒体の用途が拡大するのに伴い、表示媒体の表面保護に対する要求はますます厳しくなりつつある。 In the field of liquid crystal display screens for mobile communications such as mobile phones and PDAs, and touch panels as screen display input devices such as ATMs and car navigation systems, hard coats are often used to prevent scratches on the display screen. However, as the use of these display media expands, the demand for surface protection of the display media is becoming stricter.
 この様なハードコート材には、耐擦傷性を向上させるために硬度の高い材料が望まれており、例えばUV硬化型の有機系ハードコート材では、その架橋密度を高めることで硬度や耐擦傷性を向上させる技術が知られている。しかしながら、この様なUV硬化型のハードコート材においては、アクリル性二重結合の付加重合やエポキシ環の開環重合等により架橋密度を高めているため、重合反応時に起こるコート材自体の収縮が問題となり、有機成分のみで硬度を高めることには限界があった。 For such a hard coat material, a material having high hardness is desired in order to improve the scratch resistance. For example, in the case of a UV curable organic hard coat material, the hardness and scratch resistance can be increased by increasing the crosslinking density. Techniques that improve performance are known. However, in such a UV curable hard coat material, the crosslinking density is increased by addition polymerization of an acrylic double bond, ring-opening polymerization of an epoxy ring, etc., so that the coating material itself shrinks during the polymerization reaction. There was a problem, and there was a limit to increasing the hardness with only organic components.
 一方、ポリシロキサンに代表される無機系コート材の特徴は、有機系コート材と比べて、耐熱性、耐候性、硬度及び耐擦傷性等に優れることが挙げられる。このような無機系コート材の薄膜コート層の形成方法として、ゾル-ゲル反応を利用して金属アルコキシドを加水分解・重縮合させ、メタロキサンオリゴマーを経由して比較的低温で熱架橋・硬化を行う方法が実用化されており、得られる薄膜コート層は高い硬度を有する。 On the other hand, the characteristics of inorganic coating materials typified by polysiloxane are superior in heat resistance, weather resistance, hardness, scratch resistance and the like as compared with organic coating materials. As a method for forming such a thin coating layer of an inorganic coating material, a metal alkoxide is hydrolyzed and polycondensed using a sol-gel reaction, and thermally crosslinked and cured at a relatively low temperature via a metalloxane oligomer. The method of performing has been put into practical use, and the thin film coat layer obtained has high hardness.
 特許文献1にはトリヒドロキシシラン部分縮合物とコロイダルシリカからなるコーティング組成物が開示されている。しかしながら、熱硬化型のコーティング材は硬化の際に多大な熱エネルギーを要することから経済的ではなく、加えられる熱により基材が変形してしまうことなどの問題もあった。 Patent Document 1 discloses a coating composition comprising a trihydroxysilane partial condensate and colloidal silica. However, thermosetting coating materials are not economical because they require a great deal of heat energy for curing, and there is also a problem that the base material is deformed by applied heat.
 これらの問題を解決するために、UV硬化型有機コーティング材が有する硬化性、透明性、基材適合性、加工性等の優れた特徴と無機系材の有する高硬度、耐擦傷性等の優れた特徴を活かし、かつそれぞれの欠点を補うUV硬化型有機-無機コーティング材が求められている。 In order to solve these problems, the UV curing organic coating material has excellent characteristics such as curability, transparency, base material compatibility and processability, and inorganic materials have high hardness and scratch resistance. There is a need for a UV curable organic-inorganic coating material that takes advantage of these characteristics and compensates for the respective drawbacks.
 特許文献2にはシリカ粒子、アクリロキシ官能基シランもしくはその加水分解物、およびアクリレート化合物からなる組成物が開示されている。しかしながら、光重合開始剤により硬化する同文献の組成物はシリカ粒子やシラン部位の光硬化に関して考慮されていないため、硬化物の硬度が不十分であった。 Patent Document 2 discloses a composition comprising silica particles, acryloxy functional group silane or a hydrolyzate thereof, and an acrylate compound. However, since the composition of the same literature which hardens | cures with a photoinitiator is not considered regarding the photocuring of a silica particle or a silane part, the hardness of hardened | cured material was inadequate.
 特許文献3にはシリカなどの粒子表面に重合性官能基を導入する手法が開示されているが、このような変性シリカは作製が困難なうえに、重合性官能基を導入するために用いられる化合物中に水酸基などの反応基が必要であることから設計の自由度が低く、この手法で得られたシリカなどを用いて組成物の硬化物の硬度を向上させるのには限界があった。 Patent Document 3 discloses a technique for introducing a polymerizable functional group onto the surface of a particle such as silica, but such modified silica is difficult to produce and is used for introducing a polymerizable functional group. Since a reactive group such as a hydroxyl group is required in the compound, the degree of freedom in design is low, and there has been a limit to improving the hardness of the cured product of the composition using silica obtained by this method.
 しかも、上述の組成物は硬度や耐擦傷性の向上を目的としたものであって、これら以外の特性、例えば耐クラック性、可撓性、加工性及び難燃性等については考慮されていない。 In addition, the above-mentioned composition is intended to improve hardness and scratch resistance, and other properties such as crack resistance, flexibility, workability and flame retardancy are not considered. .
 すなわちUV硬化型の有機-無機コーティング材においては、保存安定性に優れ、硬化性及び製膜性に問題がなく、耐衝撃性や耐擦傷性に優れ、かつ有機ポリマーの諸物性をも併せ持つUV硬化型の有機-無機コーティング材はいまだ実用化されておらず、これらの課題を同時に解決するために無機成分と有機成分を同時に硬化させ、無機成分と有機成分が共有結合を通して均一に一体化させた有機-無機ハイブリット硬化膜を作製する技術が検討されている。 In other words, UV curable organic-inorganic coating materials have excellent storage stability, no problem in curability and film-forming property, excellent impact resistance and scratch resistance, and have various physical properties of organic polymers. Curing-type organic-inorganic coating materials have not yet been put into practical use, and in order to solve these problems at the same time, the inorganic component and the organic component are cured simultaneously, and the inorganic component and the organic component are uniformly integrated through covalent bonds. A technique for producing a cured organic-inorganic hybrid film has been studied.
 特許文献4にはラジカル系光重合開始剤およびカチオン系光重合開始剤を含有する有機-無機ハイブリットコーティング組成物が開示されている。しかしながら、同文献の組成物は異なる二種類の光重合開始剤を含む必要があり、組成物中の光重合開始剤の配合量が結果的に増えることで組成物が高価になるため好ましくない。 Patent Document 4 discloses an organic-inorganic hybrid coating composition containing a radical photopolymerization initiator and a cationic photopolymerization initiator. However, the composition of the same document needs to contain two different types of photopolymerization initiators, and the composition is not preferable because the amount of the photopolymerization initiator in the composition increases as a result.
 しかもカチオン系光重合開始剤は活性が高く不安定であるため組成物の保存安定性に懸念があるだけでなく、硬化物中に残存する光照射により発生した酸が金属腐食を引き起こす懸念がある。さらには末端にSiOR基が残っている場合は、この加水分解が律速段階となり、生成するアルコールがラジカル系、カチオン系光重合開始剤を変質させることによって組成物の硬化不良を引き起こす可能性がある。 Moreover, since the cationic photopolymerization initiator has high activity and is unstable, not only is there concern about the storage stability of the composition, but there is also a concern that the acid generated by light irradiation remaining in the cured product may cause metal corrosion. . Furthermore, when a SiOR group remains at the terminal, this hydrolysis becomes a rate-determining step, and the generated alcohol may cause radical or cationic photopolymerization initiators to cause poor curing of the composition. .
 これらの問題を解決する目的で、アニオン系UV硬化システムの導入が近年検討されている。光塩基発生剤により生成するアニオンはSiOR基に直接求核的に作用し、速やかにSiOHを発生することができる。 In recent years, the introduction of an anionic UV curing system has been studied for the purpose of solving these problems. The anion produced by the photobase generator acts directly on the SiOR group in a nucleophilic manner, and can quickly generate SiOH.
 特許文献5には紫外線照射により塩基(アミン)とラジカルを発生する光開始剤が開示されている。しかしながら、同文献の光重合開始剤から発生する塩基は活性の低い単官能のアミンであり、光塩基発生剤としての硬化能力が不十分である。 Patent Document 5 discloses a photoinitiator that generates a base (amine) and a radical by ultraviolet irradiation. However, the base generated from the photopolymerization initiator in this document is a monofunctional amine with low activity, and the curing ability as a photobase generator is insufficient.
 特許文献6には活性光線の照射により塩基及びラジカルの両方を発生する光塩基発生剤が開示されている。しかしながら、同文献の光塩基発生剤はカルボン酸とアミンからなるイオン化合物であり、活性エネルギー線の照射により発生する三級アミンは活性が非常に高く不安定であるため保存安定性と溶解性に問題があり、しかも該三級アミンはアルコキシシリル基の加水分解により発生するSiOH基の反応の制御が困難であるためアルコキシシランの加水分解縮合物の分子量を制御できないことも問題である。そのため、活性エネルギー線の照射により脂肪族一級あるいは二級アミンと活性ラジカルを同時に発生する中性化合物である光塩基発生剤が望まれている。 Patent Document 6 discloses a photobase generator that generates both a base and a radical upon irradiation with actinic rays. However, the photobase generator of the same document is an ionic compound composed of carboxylic acid and amine, and tertiary amines generated by irradiation with active energy rays are very high in activity and unstable, so that storage stability and solubility are improved. There is a problem, and the tertiary amine is difficult to control the reaction of the SiOH group generated by hydrolysis of the alkoxysilyl group, so that the molecular weight of the hydrolysis-condensation product of alkoxysilane cannot be controlled. Therefore, a photobase generator that is a neutral compound that simultaneously generates an aliphatic primary or secondary amine and an active radical by irradiation with active energy rays is desired.
 これらを解決するために、非特許文献1及び2では、脂肪族一級あるいは二級アミンと活性ラジカルを同時に発生する中性化合物である光塩基発生剤とアルコキシシリル基を有するケイ素系化合物からなる樹脂組成物とその硬化物について検討している。しかしながら、これらの文献で開示されている光塩基発生剤は活性エネルギー線の吸収波長が短波長である。したがって、従来の光塩基発生剤の感光領域と比べてより長波長の光(活性エネルギー線)に対しても高い感受性を有し、当該長波長の光の照射によって、効率的に塩基を発生する光塩基発生剤の開発が望まれている。 In order to solve these problems, Non-Patent Documents 1 and 2 describe a resin comprising a photobase generator, which is a neutral compound that simultaneously generates an aliphatic primary or secondary amine and an active radical, and a silicon compound having an alkoxysilyl group. We are studying compositions and their cured products. However, the photobase generators disclosed in these documents have a short wavelength of absorption of active energy rays. Therefore, compared with the photosensitive region of the conventional photobase generator, it has higher sensitivity to longer wavelength light (active energy rays) and efficiently generates a base by irradiation with the longer wavelength light. Development of a photobase generator is desired.
特公昭52-039691号公報Japanese Patent Publication No. 52-039691 特開昭62-256874号公報JP-A-62-256874 特許3474330号公報Japanese Patent No. 3474330 特許5063915号公報Japanese Patent No. 5063915 特開2009-58923号公報JP 2009-58923 A 特開2011-202160号公報JP 2011-202160 A
 本発明は保存安定性、硬化性及び製膜性に優れ、かつその硬化物が高い硬度を有すると共に基材への密着性及び耐擦傷性に優れる活性エネルギー線硬化性組成物を提供することを目的とする。 The present invention provides an active energy ray-curable composition that is excellent in storage stability, curability and film-forming property, and that the cured product has high hardness and is excellent in adhesion to a substrate and scratch resistance. Objective.
 本発明者らが検討した結果、長波長の光(活性エネルギー線)に対しても高い感受性を有し、活性エネルギー線の照射により脂肪族一級あるいは二級アミンと活性ラジカルを同時に発生する中性化合物である光塩基発生剤と、アルコキシシリル基を有するケイ素系化合物を含有する活性エネルギー線硬化性組成物が上記の課題を解決することを見出し、本発明を完成するに至った。 As a result of the study by the present inventors, there is a high sensitivity to long-wavelength light (active energy rays), and neutrality that simultaneously generates aliphatic primary or secondary amines and active radicals upon irradiation with active energy rays. The present inventors have found that an active energy ray-curable composition containing a photobase generator as a compound and a silicon-based compound having an alkoxysilyl group solves the above problems, and has completed the present invention.
 即ち本発明は
(1)アルコキシシリル基を有するケイ素系化合物、及び光を吸収してアミンと活性ラジカルを同時に発生することができる、下記式(1)
That is, the present invention provides (1) a silicon-based compound having an alkoxysilyl group, and an amine and an active radical that can absorb light and simultaneously generate the following formula (1)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式(1)中、Rは水素原子、水酸基、アルコキシ基又は有機基を表す。R及びRは置換基を有するアリール基を表す。Xは一級アミン又は二級アミンから窒素原子に直接結合する水素原子を一つ除いた残基を表す。)
で表される化合物を含有する光塩基発生剤を含有する、活性エネルギー線硬化型組成物、
(2)光塩基発生剤が350nm以上の波長領域に吸収を有する、(1)に記載の活性エネルギー線硬化型組成物、
(3)更に式(1)で表される化合物以外の光重合開始剤を含有する前項(1)又は(2)に記載の活性エネルギー線硬化型組成物、
(4)更に塩基増殖剤として少なくとも1つのウレタン結合を有する化合物を含有する前項(1)乃至(3)のいずれか一項に記載の活性エネルギー線硬化型組成物、
(5)更にアクリロイル基および/またはメタクリロイル基を有する化合物を含有する前項(1)乃至(4)のいずれか一項に記載の活性エネルギー線硬化型組成物、
(6)前項(1)乃至(5)のいずれか一項に記載の活性エネルギー線硬化型組成物の硬化物、及び
(7)前項(1)乃至(5)のいずれか一項に記載の活性エネルギー線硬化型組成物を用いて得られる硬化膜の製造方法であって、
(a)該活性エネルギー線硬化型組成物を基材に塗布して被膜を形成する工程、
(b)該被膜を第一加熱する工程、
(c)該第一加熱された被膜を露光する工程、及び
(d)該露光された被膜を第二加熱する工程
を含む方法、
に関する。
(In Formula (1), R 1 represents a hydrogen atom, a hydroxyl group, an alkoxy group or an organic group. R 2 and R 3 represent an aryl group having a substituent. X represents a primary amine or secondary amine to a nitrogen atom. (Represents a residue excluding one directly bonded hydrogen atom.)
An active energy ray-curable composition containing a photobase generator containing a compound represented by:
(2) The active energy ray-curable composition according to (1), wherein the photobase generator has absorption in a wavelength region of 350 nm or more,
(3) The active energy ray-curable composition according to item (1) or (2), further containing a photopolymerization initiator other than the compound represented by formula (1),
(4) The active energy ray-curable composition according to any one of (1) to (3), further containing a compound having at least one urethane bond as a base proliferating agent,
(5) The active energy ray-curable composition according to any one of (1) to (4), further comprising a compound having an acryloyl group and / or a methacryloyl group,
(6) A cured product of the active energy ray-curable composition according to any one of (1) to (5) above, and (7) any one of (1) to (5) above. A method for producing a cured film obtained using an active energy ray-curable composition,
(A) applying the active energy ray-curable composition to a substrate to form a film;
(B) a step of first heating the coating;
(C) exposing the first heated coating; and (d) second heating the exposed coating;
About.
 本発明の活性エネルギー線硬化型組成物は保存安定性、硬化性及び製膜性に優れ、かつその硬化物は高い硬度を有すると共に基材への密着性及び耐擦傷性に優れるため、携帯電話等の液晶表示画面やタッチパネルなどのハードコート用途等に好適に用いられる。 Since the active energy ray-curable composition of the present invention is excellent in storage stability, curability and film-forming property, and the cured product has high hardness, adhesion to a substrate and scratch resistance, it is a mobile phone. It is suitably used for hard coat applications such as liquid crystal display screens and touch panels.
図1は、実施例及び比較例の材料として用いた光塩基発生剤(光重合開始剤)1乃至7の吸光度曲線である。FIG. 1 is an absorbance curve of photobase generators (photopolymerization initiators) 1 to 7 used as materials for Examples and Comparative Examples.
 以下、本発明の活性エネルギー線硬化型組成物について詳細に説明するが、本発明の活性エネルギー線硬化型組成物は、発明を実施するための形態に限定されるものではない。
[アルコキシシリル基を有するケイ素系化合物]
 本発明の活性エネルギー線硬化型組成物はアルコキシシリル基を有するケイ素系化合物を含有する。
 本発明の活性エネルギー線硬化型組成物が含有するアルコキシシリル基を有するケイ素系化合物(以下、単に「ケイ素系化合物」と記載する。)としては、例えば、1乃至3個のアルコキシシリル基を有するシランカップリング剤や1乃至4個のアルコキシシリル基を有するアルコキシシラン化合物等が挙げられ、アルコキシシリル基の一部が加水分解または加水分解重縮合されていてもよい。ケイ素系化合物が有するアルコキシシリル基中のアルコキシ基は、反応性や安定性等の観点から、炭素数1乃至8個のアルコキシ基が好ましく、具体的には、メトキシ基、エトキシ基、(イソ)プロピルオキシ基又は(イソ)ブチルオキシ基が好ましく、メトキシ基又はエトキシ基がより好ましい。尚、本明細書において、例えば「(イソ)プロピル基」との記載は、n-プロピル基及びiso-プロピル基の両者を意味する。前記シランカップリング剤はアルコキシシリル基以外の官能基を有していてもよく、該有していてもよい官能基としては、アミノ基、エポキシ基、メルカプト基、イソシアネート基又は水酸基が好ましく、アミノ基がより好ましい。
Hereinafter, although the active energy ray-curable composition of the present invention will be described in detail, the active energy ray-curable composition of the present invention is not limited to the form for carrying out the invention.
[Silicon compound having alkoxysilyl group]
The active energy ray-curable composition of the present invention contains a silicon-based compound having an alkoxysilyl group.
Examples of the silicon-based compound having an alkoxysilyl group (hereinafter simply referred to as “silicon-based compound”) contained in the active energy ray-curable composition of the present invention include 1 to 3 alkoxysilyl groups. Examples thereof include a silane coupling agent and an alkoxysilane compound having 1 to 4 alkoxysilyl groups, and a part of the alkoxysilyl group may be hydrolyzed or hydrolyzed polycondensed. The alkoxy group in the alkoxysilyl group of the silicon-based compound is preferably an alkoxy group having 1 to 8 carbon atoms from the viewpoint of reactivity, stability, etc., specifically, a methoxy group, an ethoxy group, (iso) A propyloxy group or an (iso) butyloxy group is preferable, and a methoxy group or an ethoxy group is more preferable. In this specification, for example, the description “(iso) propyl group” means both n-propyl group and iso-propyl group. The silane coupling agent may have a functional group other than an alkoxysilyl group, and the functional group that may have an amino group, an epoxy group, a mercapto group, an isocyanate group, or a hydroxyl group is preferable. Groups are more preferred.
 アルコキシシリル基を有するシランカップリング剤の具体例としては、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン;3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン及び3-(N-フェニルアミノプロピルトリメトキシシラン等のアミノシラン;2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン及び3-グリシドキシプロピルトリエトキシシラン等のエポキシシラン;3-メルカプトプロピルトリメトキシシラン及び3-メルカプトプロピルトリエトキシシラン等のメルカプトシラン;3-オクタノイルチオ-1-プロピルトリエトキシシラン等のサルファシラン;3-イソシアネートプロピルトリエトキシシラン及び3-イソシアネートプロピルトリメトキシシラン等のイソシアネートシラン等が挙げられる。これらのシランカップリング剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよく、予め部分的に加水分解または加水分解重縮合を施しておいたものを使用しても構わない。 Specific examples of the silane coupling agent having an alkoxysilyl group include 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-methacryloxypropylmethyldiethoxy. Silane, 3-methacryloxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycid Xylpropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopro Aminosilanes such as rutrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane and 3- (N-phenylaminopropyltrimethoxysilane); 2- (3,4-epoxycyclohexyl) ethyltri Epoxy silanes such as methoxysilane, 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane; mercaptosilanes such as 3-mercaptopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane; 3-octanoylthio Sulfur silanes such as -1-propyltriethoxysilane, isocyanate silanes such as 3-isocyanatopropyltriethoxysilane and 3-isocyanatepropyltrimethoxysilane, etc. These silane couplings As the adhesive agent, one kind may be used alone, or two or more kinds may be used in combination, and one that has been partially hydrolyzed or hydrolyzed polycondensed in advance may be used. Absent.
 アルコキシシラン化合物の具体例としては、トリメチルメトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、テトラメトキシシラン、メチルジメトキシシラン、トリメチルエトキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシラン、テトラエトキシシラン、ジフェニルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジエトキシシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、テトラプロポキシシラン及びテトラブトキシシラン等が挙げられる。これらのアルコキシシラン化合物は、1種を単独で使用しても2種以上を組み合わせて使用してもよく、予め部分的に加水分解または加水分解重縮合を施しておいたものを使用しても構わない。 Specific examples of alkoxysilane compounds include trimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, tetramethoxysilane, methyldimethoxysilane, trimethylethoxysilane, dimethyldiethoxysilane, methyltriethoxysilane, tetraethoxysilane, diphenyldimethoxy. Examples thereof include silane, phenyltrimethoxysilane, diphenyldiethoxysilane, phenyltriethoxysilane, hexyltrimethoxysilane, tetrapropoxysilane, and tetrabutoxysilane. These alkoxysilane compounds may be used singly or in combination of two or more, or may be used partially hydrolyzed or hydrolyzed polycondensed in advance. I do not care.
 本発明の活性エネルギー線硬化型組成物が含有するケイ素系化合物としては、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、トリメチルメトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、テトラメトキシシラン、メチルジメトキシシラン、トリメチルエトキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシランまたはテトラエトキシシランが好ましく、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、テトラメトキシシラン、テトラメトキシシランまたはテトラエトキシシランがより好ましい。 Examples of the silicon compound contained in the active energy ray-curable composition of the present invention include 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-methacryloxy. Propylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, trimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, tetramethoxysilane, methyldimethyl Xyloxysilane, trimethylethoxysilane, dimethyldiethoxysilane, methyltriethoxysilane or tetraethoxysilane are preferred, and 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3 -Methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, tetramethoxysilane, tetramethoxysilane or tetraethoxysilane are more preferred.
[光塩基発生剤]
 本発明の活性エネルギー線硬化型組成物は、350nm以上の波長領域に吸収を有することが好ましい、光塩基発生剤であって、光を吸収してアミンと活性ラジカルを同時に発生する特定の光塩基発生剤(以下、単に「必須成分の光塩基発生剤」とも記載する。)を含有する。
[Photobase generator]
The active energy ray-curable composition of the present invention is a photobase generator that preferably has absorption in a wavelength region of 350 nm or more, and is a specific photobase that absorbs light and simultaneously generates an amine and an active radical. It contains a generator (hereinafter, also simply referred to as “essential component photobase generator”).
[式(1)で表される化合物]
 下記式(1)で表される化合物は、本発明の活性エネルギー線硬化型組成物に含まれる光塩基発生剤として用いることができる。
Figure JPOXMLDOC01-appb-C000003
[Compound represented by Formula (1)]
The compound represented by the following formula (1) can be used as a photobase generator contained in the active energy ray-curable composition of the present invention.
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Rは水素原子、水酸基、アルコキシ基又は有機基を表す。式(1)のRが表すアルコキシ基としては炭素数1乃至18のアルコキシ基であることが好ましく、その具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、iso-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペントキシ基、iso-ペントキシ基、neo-ペントキシ基、n-ヘキシルオキシ基及びn-ドデシルオキシ基等が挙げられる。 In formula (1), R 1 represents a hydrogen atom, a hydroxyl group, an alkoxy group or an organic group. The alkoxy group represented by R 1 in the formula (1) is preferably an alkoxy group having 1 to 18 carbon atoms, and specific examples thereof include methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n -Butoxy group, iso-butoxy group, sec-butoxy group, t-butoxy group, n-pentoxy group, iso-pentoxy group, neo-pentoxy group, n-hexyloxy group and n-dodecyloxy group.
 式(1)のRが表す有機基の具体例としては、炭素数1乃至18のアルキル基、炭素数2乃至18のアルケニル基、炭素数2乃至18のアルキニル基、炭素数6乃至12のアリール基、炭素数1乃至18のアシル基、炭素数7乃至18のアロイル基、ニトロ基、シアノ基、炭素数1乃至18のアルキルチオ基及びハロゲン原子等が挙げられる。 Specific examples of the organic group represented by R 1 in the formula (1) include alkyl groups having 1 to 18 carbon atoms, alkenyl groups having 2 to 18 carbon atoms, alkynyl groups having 2 to 18 carbon atoms, and 6 to 12 carbon atoms. Examples thereof include an aryl group, an acyl group having 1 to 18 carbon atoms, an aroyl group having 7 to 18 carbon atoms, a nitro group, a cyano group, an alkylthio group having 1 to 18 carbon atoms, and a halogen atom.
 式(1)のRが表す有機基の具体例としての炭素数1乃至18のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基及びn-ドデシル基等の直鎖状又は分岐鎖状のアルキル基、並びにシクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基等の環状のアルキル基が挙げられ、炭素数2乃至6のアルキル基であることが好ましく、炭素数2乃至6の直鎖状又は分岐鎖状のアルキル基であることがより好ましい。 Examples of the organic group having 1 to 18 carbon atoms as specific examples of the organic group represented by R 1 in the formula (1) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an iso-butyl group. , Sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group and n-dodecyl group And a linear alkyl group such as a linear or branched alkyl group and a cyclic alkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group, preferably an alkyl group having 2 to 6 carbon atoms, It is more preferably a linear or branched alkyl group having 2 to 6 carbon atoms.
 式(1)のRが表す有機基の具体例としての炭素数2乃至18のアルケニル基としては、ビニル基、プロペニル基、1-ブテニル基、iso-ブテニル基、1-ペンテニル基、2-ペンテニル基、2-メチル-1-ブテニル基、3-メチル-1-ブテニル基、2-メチル-2-ブテニル基、2,2-ジシアノビニル基、2-シアノ-2-メチルカルボキシルビニル基及び2-シアノ-2-メチルスルホンビニル基等が挙げられる。 Specific examples of the organic group having 2 to 18 carbon atoms as the organic group represented by R 1 in the formula (1) include a vinyl group, a propenyl group, a 1-butenyl group, an iso-butenyl group, a 1-pentenyl group, 2- Pentenyl group, 2-methyl-1-butenyl group, 3-methyl-1-butenyl group, 2-methyl-2-butenyl group, 2,2-dicyanovinyl group, 2-cyano-2-methylcarboxyl vinyl group and 2 -Cyano-2-methylsulfone vinyl group and the like.
 式(1)のRが表す有機基の具体例としての炭素数2乃至18のアルキニル基としては、エチニル基、1-プロピニル基及び1-ブチニル基等が挙げられる。 Specific examples of the alkynyl group having 2 to 18 carbon atoms as the organic group represented by R 1 in the formula (1) include ethynyl group, 1-propynyl group and 1-butynyl group.
 式(1)のRが表す有機基の具体例としての炭素数6乃至12のアリール基としては、フェニル基、ナフチル基及びトリル基等が挙げられ、炭素数6乃至10のアリール基であることが好ましい。 Specific examples of the organic group having 6 to 12 carbon atoms as the organic group represented by R 1 in the formula (1) include a phenyl group, a naphthyl group, and a tolyl group, and these are aryl groups having 6 to 10 carbon atoms. It is preferable.
 式(1)のRが表す有機基の具体例としての炭素数1乃至18のアシル基としては、ホルミル基、アセチル基、エチルカルボニル基、n-プロピルカルボニル基、iso-プロピルカルボニル基、n-ブチルカルボニル基、n-ペンチルカルボニル基、iso-ペンチルカルボニル基、neo-ペンチルカルボニル基、2-メチルブチルカルボニル基及びニトロベンジルカルボニル基等が挙げられる。 Specific examples of the organic group having 1 to 18 carbon atoms as the organic group represented by R 1 in the formula (1) include formyl group, acetyl group, ethylcarbonyl group, n-propylcarbonyl group, iso-propylcarbonyl group, n -Butylcarbonyl group, n-pentylcarbonyl group, iso-pentylcarbonyl group, neo-pentylcarbonyl group, 2-methylbutylcarbonyl group, nitrobenzylcarbonyl group and the like.
 式(1)のRが表す有機基の具体例としての炭素数7乃至18のアロイル基としては、ベンゾイル基、トルオイル基、ナフトイル基及びフタロイル基等が挙げられる。 Specific examples of the aroyl group having 7 to 18 carbon atoms as the organic group represented by R 1 in the formula (1) include a benzoyl group, a toluoyl group, a naphthoyl group, and a phthaloyl group.
 式(1)のRが表す有機基の具体例としての炭素数1乃至18のアルキルチオ基としてはメチルチオ基、エチルチオ基、n-プロピルチオ基、iso-プロピルチオ基、n-ブチルチオ基、iso-ブチルチオ基、sec-ブチルチオ基、t-ブチルチオ基、n-ペンチルチオ基、iso-ペンチルチオ基、2-メチルブチルチオ基、1-メチルブチルチオ基、neo-ペンチルチオ基、1,2-ジメチルプロピルチオ基及び1,1-ジメチルプロピルチオ基等が挙げられる。 Specific examples of the organic group represented by R 1 in the formula (1) having 1 to 18 carbon atoms include a methylthio group, an ethylthio group, an n-propylthio group, an iso-propylthio group, an n-butylthio group, and an iso-butylthio group. Group, sec-butylthio group, t-butylthio group, n-pentylthio group, iso-pentylthio group, 2-methylbutylthio group, 1-methylbutylthio group, neo-pentylthio group, 1,2-dimethylpropylthio group, and Examples include 1,1-dimethylpropylthio group.
 式(1)のRが表す有機基の具体例としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 式(1)におけるRとしては、アルコキシ基であることが好ましく、炭素数1乃至18のアルコキシ基であることがより好ましく、炭素数1乃至6のアルコキシ基であることが更に好ましく、炭素数1乃至4のアルコキシ基であることが特に好ましく、メトキシ基であることが最も好ましい。
Examples of the halogen atom as a specific example of the organic group represented by R 1 in Formula (1) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
R 1 in Formula (1) is preferably an alkoxy group, more preferably an alkoxy group having 1 to 18 carbon atoms, still more preferably an alkoxy group having 1 to 6 carbon atoms, A 1 to 4 alkoxy group is particularly preferable, and a methoxy group is most preferable.
 式(1)中、R及びRはアリール基を表し、該アリール基はその構造中に有する水素原子が置換基で置換されていてもよい。R及びRは、置換基を有するアリール基であることが好ましい。
 式(1)のR及びRが表すアリール基とは、芳香族炭化水素から水素原子を一つ除いた残基であり、該芳香族炭化水素の具体例としてはベンゼン、ナフタレン、アントラセン、フェナントレン、ピレン等が挙げられる。
 式(1)におけるR及びRとしては、ベンゼン又はナフタレンから水素原子を一つ除いた残基が好ましく、ベンゼンから水素原子を一つ除いた残基がより好ましい。
 式(1)のR及びRが表すアリール基が構造中に有する水素原子と置換され得る置換基の具体例としては、ハロゲン原子、水酸基、アルコキシ基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、シアノ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、アミノ基、アンモニオ基又は有機基を表し、R及びRが複数存在する場合それぞれのR及びRは互いに同じでも異なっていてもよい。
In formula (1), R 2 and R 3 represent an aryl group, and the aryl group may have a hydrogen atom in its structure substituted with a substituent. R 2 and R 3 are preferably aryl groups having a substituent.
The aryl group represented by R 2 and R 3 in the formula (1) is a residue obtained by removing one hydrogen atom from an aromatic hydrocarbon. Specific examples of the aromatic hydrocarbon include benzene, naphthalene, anthracene, Examples include phenanthrene and pyrene.
R 2 and R 3 in Formula (1), residues obtained by removing one hydrogen atom from a benzene or naphthalene are preferred, residues obtained by removing one hydrogen atom from benzene is more preferable.
Specific examples of the substituent that the aryl group represented by R 2 and R 3 in the formula (1) can be substituted with a hydrogen atom in the structure include a halogen atom, a hydroxyl group, an alkoxy group, a mercapto group, a sulfide group, a silyl group, silanol group, a nitro group, a nitroso group, a cyano group, a sulfino group, a sulfo group, a sulfonato group, a phosphino group, a phosphinyl group, a phosphono group, a phosphonate group, an amino group, an ammonio group or an organic group, R 2 and R 3 When a plurality of R 2 and R 3 are present, each R 2 and R 3 may be the same as or different from each other.
 式(1)のR及びRが表すアリール基が構造中に有する水素原子と置換され得るハロゲンとしては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 式(1)のR及びRが表すアリール基が構造中に有する水素原子と置換され得るアルコキシ基としては、式(1)のRが表すアルコキシ基と同じものが挙げられる。
Examples of the halogen that can be substituted for the hydrogen atom contained in the structure of the aryl group represented by R 2 and R 3 in the formula (1) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the alkoxy group that can be substituted for the hydrogen atom contained in the structure of the aryl group represented by R 2 and R 3 in the formula (1) include the same alkoxy groups as those represented by R 1 in the formula (1).
 式(1)のR及びRが表すアリール基が構造中に有する水素原子と置換され得る有機基の具体例としては、アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、アルコキシカルボニル基、カルバモイル基、チオカルバモイル基、カルボキシル基、カルボキシラート基、アシル基、アシルオキシ基、ヒドロキシイミノ基等が挙げられる。
 式(1)のR及びRが表すアリール基が構造中に有する水素原子と置換され得る有機基の具体例としてのアルキル基、アリール基及びアシル基としては、それぞれ式(1)のRが表す有機基の具体例としての炭素数1乃至18のアルキル基、炭素数6乃至12のアリール基及び炭素数1乃至18のアシル基と同じものが挙げられる。
Specific examples of the organic group in which an aryl group represented by R 2 and R 3 of formula (1) may be replaced with a hydrogen atom having in the structure, an alkyl group, an aryl group, an aralkyl group, a halogenated alkyl group, an isocyano group, Examples include cyanato group, isocyanato group, thiocyanato group, isothiocyanato group, alkoxycarbonyl group, carbamoyl group, thiocarbamoyl group, carboxyl group, carboxylate group, acyl group, acyloxy group, and hydroxyimino group.
The alkyl group, aryl group, and acyl group as specific examples of the organic group that can be substituted for the hydrogen atom that the aryl group represented by R 2 and R 3 in the formula (1) has in the structure include R in the formula (1), respectively. Specific examples of the organic group represented by 1 include the same alkyl groups having 1 to 18 carbon atoms, aryl groups having 6 to 12 carbon atoms, and acyl groups having 1 to 18 carbon atoms.
 これらの有機基は、当該有機基中にヘテロ原子等の炭化水素基以外の結合や置換基を含んでよく、これらは、直鎖状でも分岐状でも良い。R及びRが表すアリール基が構造中に有する水素原子と置換され得る有機基は、通常、一価の有機基であるが、後述する環状構造を形成する場合等には、二価以上の有機基となり得る。 These organic groups may contain bonds and substituents other than hydrocarbon groups such as heteroatoms in the organic group, and these may be linear or branched. The organic group that can be substituted for the hydrogen atom that the aryl group represented by R 2 and R 3 has in the structure is usually a monovalent organic group. It can be an organic group.
 R及びRが表すアリール基が構造中に有する水素原子と置換され得る有機基中の炭化水素基の炭素と水素の結合(CとHの結合)以外の結合としては、本発明の効果が損なわれない限り、特に限定されず、エーテル結合、チオエーテル結合、カルボニル結合、チオカルボニル結合、エステル結合、アミド結合、ウレタン結合、カーボネート結合、スルホニル結合、スルフィニル結合、アゾ結合等が挙げられる。耐熱性の点から、有機基中の炭化水素基の炭素と水素の結合以外の結合としては、エーテル結合、チオエーテル結合、カルボニル結合、チオカルボニル結合、エステル結合、アミド結合、ウレタン結合、イミノ結合(-N=C(-R)-、-C(=NR)-:ここでRは水素原子又は有機基)、カーボネート結合、スルホニル結合、スルフィニル結合が好ましい。 As the bond other than the carbon-hydrogen bond (bond of C and H) of the hydrocarbon group in the organic group in which the aryl group represented by R 2 and R 3 can be substituted for the hydrogen atom in the structure, the effect of the present invention As long as is not impaired, it is not particularly limited, and examples include an ether bond, a thioether bond, a carbonyl bond, a thiocarbonyl bond, an ester bond, an amide bond, a urethane bond, a carbonate bond, a sulfonyl bond, a sulfinyl bond, and an azo bond. From the viewpoint of heat resistance, the bond other than the carbon-hydrogen bond of the hydrocarbon group in the organic group includes ether bond, thioether bond, carbonyl bond, thiocarbonyl bond, ester bond, amide bond, urethane bond, imino bond ( —N═C (—R) —, —C (═NR) —, wherein R is a hydrogen atom or an organic group), a carbonate bond, a sulfonyl bond, and a sulfinyl bond are preferable.
 R及びRが表すアリール基が構造中に有する水素原子と置換され得る有機基中の炭化水素基以外の置換基としては、本発明の効果が損なわれない限り、特に限定されず、ハロゲン原子、水酸基、メルカプト基、スルフィド基、シアノ基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、シリル基、シラノール基、アルコキシ基、アルコキシカルボニル基、カルバモイル基、チオカルバモイル基、ニトロ基、ニトロソ基、カルボキシル基、カルボキシラート基、アシル基、アシルオキシ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、ヒドロキシイミノ基、飽和又は不飽和アルキルエーテル基、飽和又は不飽和アルキルチオエーテル基、アリールエーテル基、及びアリールチオエーテル基、アミノ基(-NH、-NHR、-NRR’:ここで、R及びR’はそれぞれ独立に炭化水素基) 、アンモニオ基等が挙げられる。上記置換基に含まれる水素は、炭化水素基によって置換されていても良い。また、上記置換基に含まれる炭化水素基は、直鎖、分岐、及び環状のいずれでも良い。中でも、R及びRが表すアリール基が構造中に有する水素原子と置換され得る有機基中の炭化水素基以外の置換基としては、ハロゲン原子、水酸基、メルカプト基、スルフィド基、シアノ基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、シリル基、シラノール基、アルコキシ基、アルコキシカルボニル基、カルバモイル基、チオカルバモイル基、ニトロ基、ニトロソ基、カルボキシル基、カルボキシラート基、アシル基、アシルオキシ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、ヒドロキシイミノ基、飽和又は不飽和アルキルエーテル基、飽和又は不飽和アルキルチオエーテル基、アリールエーテル基、及びアリールチオエーテル基が好ましい。 The substituent other than the hydrocarbon group in the organic group that can be substituted with the hydrogen atom that the aryl group represented by R 2 and R 3 has in the structure is not particularly limited as long as the effects of the present invention are not impaired. Atoms, hydroxyl groups, mercapto groups, sulfide groups, cyano groups, isocyano groups, cyanato groups, isocyanato groups, thiocyanato groups, isothiocyanato groups, silyl groups, silanol groups, alkoxy groups, alkoxycarbonyl groups, carbamoyl groups, thiocarbamoyl groups, nitro groups Nitroso group, carboxyl group, carboxylate group, acyl group, acyloxy group, sulfino group, sulfo group, sulfonate group, phosphino group, phosphinyl group, phosphono group, phosphonato group, hydroxyimino group, saturated or unsaturated alkyl ether group, A saturated or unsaturated alkylthioether group, Chromatography ether group, and thioether group, an amino group (-NH 2, -NHR, -NRR ' : wherein, R and R' each independently represent a hydrocarbon group) include an ammonio group. The hydrogen contained in the substituent may be substituted with a hydrocarbon group. Further, the hydrocarbon group contained in the substituent may be any of linear, branched, and cyclic. Among them, as the substituent other than a hydrocarbon group in the organic group aryl group represented by R 2 and R 3 can be substituted with a hydrogen atom having in the structure, a halogen atom, a hydroxyl group, a mercapto group, a sulfide group, a cyano group, Isocyano group, cyanato group, isocyanato group, thiocyanato group, isothiocyanato group, silyl group, silanol group, alkoxy group, alkoxycarbonyl group, carbamoyl group, thiocarbamoyl group, nitro group, nitroso group, carboxyl group, carboxylate group, acyl group Acyloxy group, sulfino group, sulfo group, sulfonate group, phosphino group, phosphinyl group, phosphono group, phosphonate group, hydroxyimino group, saturated or unsaturated alkyl ether group, saturated or unsaturated alkyl thioether group, aryl ether group, and Arylthioate Group is preferred.
 また、R及びRが表すアリール基が構造中に有する水素原子と置換され得る置換基のうち2つ以上が結合して環状構造になっていても良い。環状構造は、飽和又は不飽和の脂環式炭化水素、複素環、及び縮合環、並びに当該脂環式炭化水素、複素環、及び縮合環よりなる群から選ばれる2種以上が組み合されてなる構造であっても良い。 In addition, two or more of the substituents that can be substituted for the hydrogen atom in the aryl group represented by R 2 and R 3 may be bonded to form a cyclic structure. The cyclic structure is a combination of two or more selected from the group consisting of saturated or unsaturated alicyclic hydrocarbons, heterocycles, and condensed rings, and the alicyclic hydrocarbons, heterocycles, and condensed rings. The structure which becomes may be sufficient.
 本発明の必須成分の光塩基発生剤には、R及びRが表すアリール基が構造中に有する水素原子と置換され得る置換基を1つ以上導入することが好ましい。すなわち、R及びRが表すアリール基が構造中に有する水素原子と置換され得る置換基の少なくとも1つが、ハロゲン、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、アミノ基、アンモニオ基又は有機基であることが好ましい。置換基R及びRが表すアリール基が構造中に有する水素原子と置換され得る置換基に、上記のような置換基を少なくとも1つ導入することにより、光塩基発生剤の吸収する光の波長を調整することが可能であり、置換基を導入することで所望の波長を吸収させるようにすることもできる。芳香族環の共役鎖を伸ばすような置換基を導入することにより、吸収波長を長波長にシフトすることができる。また、溶解性や組み合わせる高分子前駆体との相溶性が向上するようにすることもできる。これにより、組み合わせる高分子前駆体の吸収波長も考慮しながら、感光性樹脂組成物の感度を向上させることが可能である。 It is preferable to introduce one or more substituents that can replace the aryl group represented by R 2 and R 3 with a hydrogen atom in the structure of the essential photobase generator of the present invention. That is, at least one of the substituents that can be substituted for the hydrogen atom that the aryl group represented by R 2 and R 3 has in the structure is halogen, hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group , A sulfino group, a sulfo group, a sulfonato group, a phosphino group, a phosphinyl group, a phosphono group, a phosphonato group, an amino group, an ammonio group or an organic group. By introducing at least one substituent as described above into the substituent that can be substituted for the hydrogen atom of the aryl group represented by the substituents R 2 and R 3 , the light of the photobase generator absorbs light. The wavelength can be adjusted, and a desired wavelength can be absorbed by introducing a substituent. The absorption wavelength can be shifted to a longer wavelength by introducing a substituent that extends the conjugated chain of the aromatic ring. It is also possible to improve the solubility and compatibility with the polymer precursor to be combined. Thereby, it is possible to improve the sensitivity of the photosensitive resin composition in consideration of the absorption wavelength of the polymer precursor to be combined.
 R及びRが表すアリール基が構造中に有する水素原子と置換され得る置換基としては、メチル基、エチル基、プロピル基等の炭素数1乃至20のアルキル基;シクロペンチル基、シクロヘキシル基等の炭素数4乃至23のシクロアルキル基;シクロペンテニル基、シクロヘキセニル基等の炭素数4乃至23のシクロアルケニル基;フェノキシメチル基、2-フェノキシエチル基、4-フェノキシブチル基等の炭素数7乃至26のアリールオキシアルキル基(-ROAr基);ベンジル基、3-フェニルプロピル基等の炭素数7乃至20のアラルキル基;シアノメチル基、β-シアノエチル基等のシアノ基をもつ炭素数2乃至21のアルキル基;ヒドロキシメチル基等の水酸基をもつ炭素数1乃至20のアルキル基;メトキシ基、エトキシ基等の炭素数1乃至20のアルコキシ基、アセトアミド基、ベンゼンスルホナミド基(CSONH-)等の炭素数2乃至21のアミド基;メチルチオ基、エチルチオ基等の炭素数1乃至20のアルキルチオ基(-SR基);アセチル基、ベンゾイル基等の炭素数1乃至20のアシル基、メトキシカルボニル基、アセトキシ基等の炭素数2乃至21のエステル基(-COOR基及び-OCOR基);フェニル基、ナフチル基、ビフェニル基、トリル基等の炭素数6乃至20のアリール基;電子供与性基及び/又は電子吸引性基が置換した炭素数6乃至20のアリール基;電子供与性基及び/又は電子吸引性基が置換したベンジル基、シアノ基、及びメチルチオ基(-SCH)であることが好ましい。また、上記のアルキル部分は直鎖でも分岐状でも環状でも良い。 Examples of the substituent that can be substituted with the hydrogen atom that the aryl group represented by R 2 and R 3 has in the structure include an alkyl group having 1 to 20 carbon atoms such as a methyl group, an ethyl group, and a propyl group; a cyclopentyl group, a cyclohexyl group, and the like A cycloalkyl group having 4 to 23 carbon atoms; a cycloalkenyl group having 4 to 23 carbon atoms such as a cyclopentenyl group and a cyclohexenyl group; and 7 carbon atoms such as a phenoxymethyl group, a 2-phenoxyethyl group, and a 4-phenoxybutyl group. An aryloxyalkyl group having from 26 to 26 (-ROAr group); an aralkyl group having 7 to 20 carbon atoms such as benzyl group and 3-phenylpropyl group; and 2 to 21 carbon atoms having a cyano group such as cyanomethyl group and β-cyanoethyl group Alkyl group having 1 to 20 carbon atoms having a hydroxyl group such as hydroxymethyl group; methoxy group, ethoxy group An amide group having 2 to 21 carbon atoms such as an alkoxy group having 1 to 20 carbon atoms such as a group, an acetamide group or a benzenesulfonamide group (C 6 H 5 SO 2 NH—); a carbon number such as a methylthio group or an ethylthio group An alkylthio group having 1 to 20 carbon atoms (—SR group); an acyl group having 1 to 20 carbon atoms such as an acetyl group or a benzoyl group; an ester group having 2 to 21 carbon atoms such as a methoxycarbonyl group or an acetoxy group (—COOR group and — OCOR group); aryl group having 6 to 20 carbon atoms such as phenyl group, naphthyl group, biphenyl group and tolyl group; aryl group having 6 to 20 carbon atoms substituted by electron donating group and / or electron withdrawing group; A donating group and / or an electron-withdrawing group is preferably a substituted benzyl group, cyano group, and methylthio group (—SCH 3 ). The alkyl moiety may be linear, branched or cyclic.
 また、必須成分の光塩基発生剤において、R及びRが表すアリール基が構造中に有する水素原子と置換され得る置換基の少なくとも1つが水酸基である場合、R及びRが表すアリール基が構造中に有する水素原子と置換され得る置換基に水酸基を含まない化合物と比べ、塩基性水溶液等に対する溶解性の向上、および吸収波長の長波長化が可能な点から好ましい。 Further, the photobase generator of the essential components, if at least one of the substituents aryl group represented by R 2 and R 3 can be substituted with a hydrogen atom having in the structure is a hydroxyl group, an aryl represented by R 2 and R 3 Compared with a compound that does not contain a hydroxyl group as a substituent that can be substituted with a hydrogen atom that the group has in the structure, it is preferable from the viewpoint of improving the solubility in a basic aqueous solution and increasing the absorption wavelength.
 式(1)中、Xは一級アミン又は二級アミンから窒素原子に直接結合する水素原子を一つ除いたアミン残基を表す。
 式(1)のXが表すアミン残基の具体例としては、下記式(a)乃至(z)で表されるアミン化合物等から窒素原子に直接結合する水素原子を一つ除いた残基が挙げられる。
In formula (1), X represents an amine residue obtained by removing one hydrogen atom directly bonded to a nitrogen atom from a primary amine or secondary amine.
Specific examples of the amine residue represented by X in the formula (1) include a residue obtained by removing one hydrogen atom directly bonded to a nitrogen atom from amine compounds represented by the following formulas (a) to (z). Can be mentioned.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(a)や式(b)等で表される一分子中にアミノ基を二つ有するアミン化合物から水素原子を除いて残基とする場合は、一方のアミノ基から水素原子を除いた一価の残基であってもよいし、両方のアミノ基からそれぞれ水素原子を一つずつ除いた二価の残基であってもよい。尚、(a)や式(b)等で表されるアミン化合物は一分子中にアミノ基を二つ有するアミン化合物であるが、一分子中にアミノ基を三つ有するアミン化合物から水素原子を除いて残基とする場合は、一乃至三価の何れの残基であってもよいし、一分子中にアミノ基を四つ有するアミン化合物から水素原子を除いて残基とする場合は、一乃至四価の何れの残基であってもよい。一分子中のアミノ基の数が五つ以上の化合物から水素原子を除いて残基とする場合についても同様である。
 式(1)のXが表すアミン残基としては、式(a)乃至(z)で表されるアミン化合物から窒素原子に直接結合する水素原子を一つ除いた残基が好ましく、式(a)乃至(n)で表されるアミン化合物から窒素原子に直接結合する水素原子を一つ除いた残基がより好ましい。
When a hydrogen atom is removed from an amine compound having two amino groups in one molecule represented by formula (a), formula (b), or the like, a residue obtained by removing a hydrogen atom from one amino group It may be a valent residue, or may be a divalent residue obtained by removing one hydrogen atom from each amino group. The amine compound represented by (a) or formula (b) is an amine compound having two amino groups in one molecule, but a hydrogen atom is removed from an amine compound having three amino groups in one molecule. In the case of removing it as a residue, it may be any monovalent to trivalent residue, and when removing a hydrogen atom from an amine compound having four amino groups in one molecule, It may be any monovalent to tetravalent residue. The same applies to the case where a residue is formed by removing a hydrogen atom from a compound having five or more amino groups in one molecule.
The amine residue represented by X in the formula (1) is preferably a residue obtained by removing one hydrogen atom directly bonded to a nitrogen atom from the amine compounds represented by the formulas (a) to (z). A residue obtained by removing one hydrogen atom directly bonded to a nitrogen atom from the amine compounds represented by () to (n) is more preferable.
 本発明の活性エネルギー線硬化性組成物におけるケイ素系化合物と、必須成分の光塩基発生剤との使用割合は、組成物の安定性、得られる硬化膜の透明性、耐摩耗性、耐擦傷性、密着性および耐クラック性の点から設計される。ケイ素系化合物と必須成分の光塩基発生剤の合計量に対して必須成分の光塩基発生剤が通常5乃至80質量%、好ましくは10乃至60質量%、より好ましくは20乃至40質量%である。 The use ratio of the silicon-based compound and the essential photobase generator in the active energy ray-curable composition of the present invention depends on the stability of the composition, the transparency of the resulting cured film, the wear resistance, and the scratch resistance. Designed in terms of adhesion and crack resistance. The essential photobase generator is usually 5 to 80% by mass, preferably 10 to 60% by mass, more preferably 20 to 40% by mass based on the total amount of the silicon-based compound and the essential component photobase generator. .
[併用し得る光重合開始剤]
 本発明の活性エネルギー線硬化型組成物には、式(1)で表される部分構造を有する化合物以外の光重合開始剤を併用してもよい。併用し得る光重合開始剤としては、従来公知の光ラジカル発生剤、光酸発生剤、光塩基発生剤等が挙げられる。これらの光重合開始剤は、1種を併用してもよく、2種以上を組み合わせて併用してもよい。
[Photopolymerization initiator that can be used in combination]
The active energy ray-curable composition of the present invention may be used in combination with a photopolymerization initiator other than the compound having the partial structure represented by the formula (1). Examples of the photopolymerization initiator that can be used in combination include conventionally known photo radical generators, photo acid generators, photo base generators, and the like. These photopolymerization initiators may be used alone or in combination of two or more.
 本発明の活性エネルギー線硬化型組成物に併用し得る光ラジカル発生剤は、光励起によってラジカル重合を開始できる機能を有する化合物であり、例えばモノカルボニル化合物、ジカルボニル化合物、アセトフェノン化合物、ベンゾインエーテル化合物、アシルフォスフィンオキシド化合物及びアミノカルボニル化合物などが挙げられる。
 本発明の活性エネルギー線硬化型組成物に併用する光ラジカル発生剤としては、硬化物の透明性の観点からアセトフェノン化合物、アシルフォスフィン化合物等が好ましく、アセトフェノン化合物がより好ましい。
The photo radical generator that can be used in combination with the active energy ray-curable composition of the present invention is a compound having a function capable of initiating radical polymerization by photoexcitation, such as a monocarbonyl compound, a dicarbonyl compound, an acetophenone compound, a benzoin ether compound, Examples include acylphosphine oxide compounds and aminocarbonyl compounds.
The photo radical generator used in combination with the active energy ray-curable composition of the present invention is preferably an acetophenone compound or an acylphosphine compound, more preferably an acetophenone compound, from the viewpoint of the transparency of the cured product.
 本発明の活性エネルギー線硬化型組成物に併用し得る光酸発生剤とは、紫外線、遠紫外線、KrFやArFなどのエキシマレーザー、X線および電子線などの放射線の照射を受けてカチオンを発生し、そのカチオンが重合開始剤となり得る化合物であり、例えば芳香族ヨードニウム錯塩や芳香族スルホニウム錯塩を挙げることができる。
 芳香族ヨードニウム錯塩の具体例としては、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウムヘキサフルオロホスフェート、トリルクミルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート(ローディア社製、商品名 ロードシルPI2074)、ジ(4-ターシャリブチル)ヨードニウムトリス(トリフルオロメタンスルホニル)メタニド(BASF社製、商品名 CGI BBI-C1)等が挙げられる。
The photoacid generator that can be used in combination with the active energy ray-curable composition of the present invention generates cations upon irradiation with radiation such as ultraviolet rays, far ultraviolet rays, excimer lasers such as KrF and ArF, X-rays, and electron beams. The cation is a compound that can serve as a polymerization initiator, and examples thereof include aromatic iodonium complex salts and aromatic sulfonium complex salts.
Specific examples of the aromatic iodonium complex salt include diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluorophosphate, tricumyl iodonium tetrakis (Pentafluorophenyl) borate (Rhodia, trade name Rhodosyl PI2074), di (4-tert-butyl) iodonium tris (trifluoromethanesulfonyl) methanide (BASF, trade name CGI BBI-C1), and the like.
 芳香族スルホニウム錯塩の具体例としては、4-チオフェニルジフェニルスルフォニウムヘキサフルオロアンチモネート(サンアプロ社製、商品名 CPI-101A)、チオフェニルジフェニルスルフォニウムトリス(ペンタフルオロエチル)トリフルオロホスフェート(サンアプロ社製、商品名 CPI-210S)、4-[4-(2-クロロベンゾイル)フェニルチオ]フェニルビス(4-フルオロフェニル)スルホニウムヘキサフルオロアンチモネート(ADEKA社製、商品名 SP-172)、4-チオフェニルジフェニルスルフォニウムヘキサフルオロアンチモネートを含有する芳香族スルフォニウムヘキサフルオロアンチモネートの混合物(ACETO Corporate USA製、商品名 CPI-6976)及びトリフェニルスルホニウムトリス(トリフルオロメタンスルホニル)メタニド(BASF社製、商品名 CGI TPS-C1)、トリス[4-(4-アセチルフェニル)スルホニルフェニル]スルホニウムトリス(トリフルオロメチルスルホニル)メチド(BASF社製、商品名 GSID 26-1)、トリス[4-(4-アセチルフェニル)スルホニルフェニル]スルホニウムテトラキス(2,3,4,5,6-ペンタフルオロフェニル)ボレート(BASF社製、商品名 イルガキュアPAG290)等が挙げられる。 Specific examples of the aromatic sulfonium complex salt include 4-thiophenyldiphenylsulfonium hexafluoroantimonate (manufactured by Sun Apro, trade name: CPI-101A), thiophenyldiphenylsulfonium tris (pentafluoroethyl) trifluorophosphate ( San Apro, trade name CPI-210S), 4- [4- (2-chlorobenzoyl) phenylthio] phenyl bis (4-fluorophenyl) sulfonium hexafluoroantimonate (ADEKA, trade name SP-172), 4 -A mixture of aromatic sulfonium hexafluoroantimonate containing thiophenyldiphenylsulfonium hexafluoroantimonate (ACETO Corporate USA, trade name CPI-6976) and Riphenylsulfonium tris (trifluoromethanesulfonyl) methanide (manufactured by BASF, trade name CGI TPS-C1), tris [4- (4-acetylphenyl) sulfonylphenyl] sulfonium tris (trifluoromethylsulfonyl) methide (manufactured by BASF) Product name GSID 26-1), tris [4- (4-acetylphenyl) sulfonylphenyl] sulfonium tetrakis (2,3,4,5,6-pentafluorophenyl) borate (product name: Irgacure PAG290, manufactured by BASF), etc. Is mentioned.
 本発明の活性エネルギー線硬化型組成物に併用し得る光塩基発生剤とは、紫外線等の光照射により、ビグアニジウム、イミダゾール、ピリジン、ジアミンおよびこれらの誘導体等を発生する化合物であり、その具体例としては、9-アンスリルメチル-N,N-ジエチルカルバメート、(E)-1-[3-(2-ヒドロキシフェニル)-2-プロペノイル]ピペリジン、1-(アニソラキノン-2-イル)エチルイミダゾールカルボキシレート、2-ニトロフェニルメチル4-メタクリロイルオキシピペリジン-1-カルボキシレート、1,2-ジイソプロピル-3-[ビス(ジメチルアミノ)メチレン]グアニジウム-2-(3-ベンゾイルフェニル)プロピオネート、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジウム-n-ブチルトリフェニルボレート等が挙げられる。これらの光塩基発生剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 本発明の活性エネルギー線硬化型組成物に併用する光塩基発生剤としては、イミダゾール又はビグアニジウムを発生する化合物が好ましい。
The photobase generator that can be used in combination with the active energy ray-curable composition of the present invention is a compound that generates biguanidinium, imidazole, pyridine, diamine, and derivatives thereof by light irradiation such as ultraviolet rays, and specific examples thereof. As 9-anthrylmethyl-N, N-diethylcarbamate, (E) -1- [3- (2-hydroxyphenyl) -2-propenoyl] piperidine, 1- (anisolaquinone-2-yl) ethylimidazolecarboxyl 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate, 1,2-diisopropyl-3- [bis (dimethylamino) methylene] guanidinium-2- (3-benzoylphenyl) propionate, 1,2- Dicyclohexyl-4,4,5,5-tetramethylbiguani Um -n- butyl triphenyl borate, and the like. These photobase generators may be used singly or in combination of two or more.
The photobase generator used in combination with the active energy ray-curable composition of the present invention is preferably a compound that generates imidazole or biguanium.
 本発明の活性エネルギー線硬化型組成物における光重合開始剤の含有量は、活性エネルギー線硬化型組成物中に好ましくは10質量%以下である。 The content of the photopolymerization initiator in the active energy ray-curable composition of the present invention is preferably 10% by mass or less in the active energy ray-curable composition.
 本発明の活性エネルギー線硬化型組成物には、塩基の作用で増殖的に塩基を発生する塩基増殖剤を併用してもよい。本発明の活性エネルギー線硬化型組成物に塩基増殖剤を併用することにより、当該活性エネルギー線硬化型組成物の感度をさらに向上させることができる。特に、光が活性エネルギー線硬化型組成物層の深部に到達しない場合(光照射に供される活性エネルギー線硬化型組成物層が厚い場合や活性エネルギー線硬化型組成物が多量の染料や顔料を含む場合等)は、活性エネルギー線硬化型組成物層の表面で光化学的に発生した塩基の作用及び塩基増殖剤による塩基増殖反応が開始されることにより、熱化学的にかつ連鎖的に塩基が生成するので、活性エネルギー線硬化型組成物層の深部でも塩基触媒反応が起こることが期待できる。併用し得る塩基増殖剤に特に制限はないが、例えば、特開2000-330270号公報、特開2002-128750号公報や、K.Arimitsu、M.Miyamoto and K.Ichimura,Angew.Chem.Int.Ed.,39,3425(2000)、等に開示される塩基増殖剤が挙げられるが、塩基増殖剤が少なくとも1つのウレタン結合を有する化合物を含有することが好ましい。 The active energy ray-curable composition of the present invention may be used in combination with a base proliferating agent that generates a base proliferatively by the action of a base. By using a base proliferating agent in combination with the active energy ray-curable composition of the present invention, the sensitivity of the active energy ray-curable composition can be further improved. In particular, when light does not reach the deep part of the active energy ray curable composition layer (when the active energy ray curable composition layer used for light irradiation is thick or the active energy ray curable composition is a large amount of dye or pigment In the case of the active energy ray-curable composition layer, the base action is photochemically generated on the surface of the active energy ray-curable composition layer and the base growth reaction by the base proliferating agent is started, thereby thermochemically and chain-linking the base. Therefore, it can be expected that a base catalyzed reaction occurs even in the deep part of the active energy ray-curable composition layer. There are no particular restrictions on the base proliferating agent that can be used in combination, but for example, JP 2000-330270 A, JP 2002-128750 A, Arimitsu, M.M. Miyamoto and K.K. Ichimura, Angew. Chem. Int. Ed. 39, 3425 (2000), etc., and it is preferable that the base proliferating agent contains a compound having at least one urethane bond.
 本発明の活性エネルギー線硬化型組成物における塩基増殖剤の含有量は、必須成分の塩基発生剤やケイ素系化合物等の種類や組み合わせにより適宜決定すればよいが、本発明の活性エネルギー線硬化型組成物中に好ましくは40質量%以下、より好ましくは5乃至20質量%である。 The content of the base proliferating agent in the active energy ray-curable composition of the present invention may be appropriately determined depending on the type and combination of the essential component base generator and silicon compound, but the active energy ray-curable type of the present invention. It is preferably 40% by mass or less, more preferably 5 to 20% by mass in the composition.
 本発明の活性エネルギー線硬化型組成物には、アクリロイル基及び/又はメタクリロイル基を有する化合物を併用してもよい。
 アクリロイル基又はメタクリロイル基を有する化合物としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボニル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート等のアルコキシポリアルキレングリコール(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等の水酸基含有(メタ)アクリレート類;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド、アクリロイルモルホリン等のN置換型(メタ)アクリルアミド類;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート等のアミノ基含有(メタ)アクリレート類;(メタ)アクリロニトリルなどのニトリル類;スチレン、α-メチルスチレン等のスチレン類;エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテルなどのビニルエーテル類;酢酸ビニル、プロピオン酸ビニルなどの脂肪酸ビニル類;1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;グリセリンプロピレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキサイド変性トリ(メタ)アクリレート、イソシアール酸エチレンオキサイド変性トリ(メタ)アクリレート、イソシアール酸エチレンオキサイド変性ε-カプロラクトン変性トリ(メタ)アクリレート、1,3,5-トリアクリロイルヘキサヒドロ-S-トリアジン、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレートトリプロピオネートなどの3官能(メタ)アクリレート類;ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ) アクリレートモノプロピオネート、ジペンタエリスリトールヘキサ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、オリゴエステルテトラ(メタ)アクリレート、トリス((メタ)アクリロイルオキシ)ホスフェ-ト、PPZなどの多官能(メタ)アクリレートが挙げられる。
In the active energy ray-curable composition of the present invention, a compound having an acryloyl group and / or a methacryloyl group may be used in combination.
Compounds having an acryloyl group or a methacryloyl group include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) ) Acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, benzyl (Meth) acrylate, phenoxyethyl (meth) acrylate, phenoxyethylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, etoxy Alkoxypolyalkylene glycol (meth) acrylates such as polyethylene glycol (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, glycerol (meth) acrylate Hydroxyl group-containing (meth) acrylates such as polyethylene glycol (meth) acrylate and polypropylene glycol (meth) acrylate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N -N-substituted (meth) acrylamides such as isopropyl (meth) acrylamide, diacetone (meth) acrylamide, acryloylmorpholine; N, N-dimethylaminoethyl (meth) ) Amino group-containing (meth) acrylates such as acrylate and N, N-diethylaminoethyl (meth) acrylate; Nitriles such as (meth) acrylonitrile; Styrenes such as styrene and α-methylstyrene; Ethyl vinyl ether, n-propyl Vinyl ethers such as vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether; fatty acid vinyls such as vinyl acetate and vinyl propionate; 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Alkylene glycol di (meth) acrylate such as polyethylene glycol di (meth) acrylate; glycerin propylene oxide modified tri (meth) acrylate, trimethylolpropane tri (Meth) acrylate, trimethylolpropane ethylene oxide modified tri (meth) acrylate, trimethylolpropane propylene oxide modified tri (meth) acrylate, isocyanic acid ethylene oxide modified tri (meth) acrylate, isocyanic acid ethylene oxide modified ε-caprolactone modified tri ( Trifunctional (meth) acrylates such as (meth) acrylate, 1,3,5-triacryloylhexahydro-S-triazine, pentaerythritol tri (meth) acrylate, dipentaerythritol tri (meth) acrylate tripropionate; pentaerythritol Tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate monopropionate, dipentaerythritol hexa (meth) Acrylate, tetra methylol methane tetra (meth) acrylate, oligoester tetra (meth) acrylate, tris ((meth) acryloyloxy) Hosufe - DOO include polyfunctional (meth) acrylates such as PPZ.
 さらにはポリエステル(メタ)アクリレート、ポリウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、(メタ)アクリル化マレイン酸変性ポリブタジエン等を挙げることができる。
 本発明の活性エネルギー線硬化型組成物におけるアクリロイル基及び/又はメタクリロイル基を有する化合物の含有量は、本発明の活性エネルギー線硬化型組成物中に好ましくは80質量%以下、より好ましくは5乃至50質量%である。
Further examples include polyester (meth) acrylate, polyurethane (meth) acrylate, epoxy (meth) acrylate, (meth) acrylated maleic acid-modified polybutadiene, and the like.
The content of the compound having an acryloyl group and / or a methacryloyl group in the active energy ray-curable composition of the present invention is preferably 80% by mass or less, more preferably 5 to 5% in the active energy ray-curable composition of the present invention. 50% by mass.
 本発明の活性エネルギー線硬化型組成物には、必須成分の光塩基発生剤や併用される光重合開始剤の吸収波長領域を拡大して感度を高めるために、増感剤を併用してもよい。併用し得る増感剤に特に限定はないが、例えば、ベンゾフェノン、p,p’-テトラメチルジアミノベンゾフェノン、p,p’-テトラエチルアミノベンゾフェノン、2-クロロチオキサントン、アントロン、9-エトキシアントラセン、アントラセン、ピレン、ペリレン、フェノチアジン、ベンジル、アクリジンオレンジ、ベンゾフラビン、セトフラビン-T、9,10-ジフェニルアントラセン、9-フルオレノン、アセトフェノン、フェナントレン、2-ニトロフルオレン、5-ニトロアセナフテン、ベンゾキノン、2-クロロ-4-ニトロアニリン、N-アセチル-p-ニトロアニリン、p-ニトロアニリン、N-アセチル-4-ニトロ-1-ナフチルアミン、ピクラミド、アントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1,2-ベンズアントラキノン、3-メチル-1,3-ジアザ-1,9-ベンズアンスロン、ジベンザルアセトン、1,2-ナフトキノン、3,3’-カルボニル-ビス(5,7-ジメトキシカルボニルクマリン)またはコロネン等が挙げられる。
 これらの増感剤は1種類を併用してもよく、また、2種類以上を組み合わせて併用してもよい。
In the active energy ray-curable composition of the present invention, a sensitizer may be used in combination to expand the absorption wavelength region of the photobase generator as an essential component and the photopolymerization initiator used in combination. Good. The sensitizer that can be used in combination is not particularly limited, and examples thereof include benzophenone, p, p′-tetramethyldiaminobenzophenone, p, p′-tetraethylaminobenzophenone, 2-chlorothioxanthone, anthrone, 9-ethoxyanthracene, anthracene, Pyrene, perylene, phenothiazine, benzyl, acridine orange, benzoflavin, cetoflavin-T, 9,10-diphenylanthracene, 9-fluorenone, acetophenone, phenanthrene, 2-nitrofluorene, 5-nitroacenaphthene, benzoquinone, 2-chloro- 4-nitroaniline, N-acetyl-p-nitroaniline, p-nitroaniline, N-acetyl-4-nitro-1-naphthylamine, picramid, anthraquinone, 2-ethylanthraquinone, 2-tert Butylanthraquinone, 1,2-benzanthraquinone, 3-methyl-1,3-diaza-1,9-benzanthrone, dibenzalacetone, 1,2-naphthoquinone, 3,3′-carbonyl-bis (5,7 -Dimethoxycarbonylcoumarin) or coronene.
These sensitizers may be used alone or in combination of two or more.
 本発明の活性エネルギー線硬化型組成物における増感剤の含有量は、必須成分の塩基発生剤やケイ素系化合物の種類や量、及び活性エネルギー線硬化型組成物に必要とされる感度等により適宜決定すればよいが、本発明の活性エネルギー線硬化型組成物中に好ましくは30質量%以下であり、より好ましくは5乃至20質量%である。 The content of the sensitizer in the active energy ray-curable composition of the present invention depends on the type and amount of the base generator and silicon compound as essential components, the sensitivity required for the active energy ray-curable composition, and the like. What is necessary is just to determine suitably, Preferably it is 30 mass% or less in the active energy ray hardening-type composition of this invention, More preferably, it is 5 to 20 mass%.
 本発明の活性エネルギー線硬化型組成物には、溶媒を併用してもよい。併用し得る溶媒としてはケイ素系化合物を溶解又は分散し得る溶媒であれば特に制限はないが、ケイ素系化合物を溶解し得る溶媒であることが好ましく、アルコール系の溶媒がより好ましい。併用し得る溶媒としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-エトキシエタノール及び2-ブトキシエタノールなどが挙げられ、炭素数1乃至4のアルコールが好ましく、溶解性、安定性及び塗工性の点で2-プロパノールがより好ましい。
 また、アクリロイル基又はメタクリロイル基を有する化合物を併用する場合は、該化合物の良溶媒であるメチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)などのケトン類;酢酸エチル、酢酸ブチルなどのエステル類;グリコールエーテル類;グリコールエーテルエステル類;芳香族炭化水素類;が好ましく用いられる。
 本発明の活性エネルギー線硬化型組成物における溶媒の含有量は、本発明の活性エネルギー線硬化型組成物中に好ましくは80質量%以下であり、より好ましくは0乃至50質量%である。
A solvent may be used in combination with the active energy ray-curable composition of the present invention. The solvent that can be used in combination is not particularly limited as long as it is a solvent that can dissolve or disperse a silicon compound, but is preferably a solvent that can dissolve a silicon compound, and more preferably an alcohol solvent. Examples of the solvent that can be used in combination include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-ethoxyethanol, and 2-butoxyethanol. An alcohol having 1 to 4 carbon atoms is preferable, and 2-propanol is more preferable in terms of solubility, stability, and coatability.
When a compound having an acryloyl group or a methacryloyl group is used in combination, ketones such as methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK) which are good solvents for the compound; esters such as ethyl acetate and butyl acetate; glycol Ethers; glycol ether esters; aromatic hydrocarbons; are preferably used.
The content of the solvent in the active energy ray-curable composition of the present invention is preferably 80% by mass or less, more preferably 0 to 50% by mass in the active energy ray-curable composition of the present invention.
 本発明の活性エネルギー線硬化型組成物には、塗工性および得られる硬化膜の平滑性、外観を向上させる目的で公知のレベリング剤、消泡剤などの添加剤を配合することができる。これら添加剤の含有量は、本発明の活性エネルギー線硬化型組成物中に好ましくは2質量%以下である。また、本発明の目的を損なわない範囲で紫外線吸収剤、光安定剤、染料、顔料、フィラーなどを配合してもかまわない。 In the active energy ray-curable composition of the present invention, additives such as a known leveling agent and antifoaming agent can be blended for the purpose of improving coatability and smoothness and appearance of the resulting cured film. The content of these additives is preferably 2% by mass or less in the active energy ray-curable composition of the present invention. Moreover, you may mix | blend a ultraviolet absorber, a light stabilizer, dye, a pigment, a filler, etc. in the range which does not impair the objective of this invention.
 本発明の活性エネルギー線硬化型組成物の基材(被塗物)への塗布方法は、バーコート法、ディップコート法、フローコート法、スプレーコート法、スピンコート法、ローラーコート法、リバースコートあるいはグラビア印刷、フレキソ印刷、スクリーン印刷、インクジェット印刷などといったあらゆる塗布、印刷方法が可能であり、基材の形状に応じて適宜選択することができる。 The active energy ray-curable composition of the present invention can be applied to a substrate (coating material) by bar coating, dip coating, flow coating, spray coating, spin coating, roller coating, reverse coating. Or any application | coating and printing methods, such as gravure printing, flexographic printing, screen printing, and inkjet printing, are possible, and it can select suitably according to the shape of a base material.
 また、本発明の活性エネルギー線硬化型組成物は、塗料、グラビア印刷インキ、フレキソ印刷インキ、インクジェット印刷インキなどのインキバインダー、およびラミネーション接着剤を含む各種接着剤として使用することができる。本発明の活性エネルギー線硬化型組成物は、公知の活性エネルギー線硬化方法により硬化させることができ、特に紫外線もしくは電子線を用いることが好ましい。 The active energy ray-curable composition of the present invention can be used as various adhesives including ink binders such as paints, gravure printing inks, flexographic printing inks and inkjet printing inks, and lamination adhesives. The active energy ray-curable composition of the present invention can be cured by a known active energy ray curing method, and it is particularly preferable to use ultraviolet rays or electron beams.
 活性エネルギー線照射装置の光源として、通常200乃至500nmの範囲の光を含む光源、例えば高圧水銀灯、超高圧水銀灯、メタルハライド灯、ガリウム灯、キセノン灯、カーボンアーク灯等を有するものが使用できるが、350nm以上の波長領域の光を含む光源を用いることが好ましい。活性エネルギー線の積算光量は、用途、膜厚、着色剤の有無、光重合開始剤の種類と量により必要最低積算光量が左右されるため制限はない。これら紫外線、電子線と赤外線、遠赤外線、熱風、高周波加熱等による熱の併用は効果的である。 As the light source of the active energy ray irradiation apparatus, a light source usually containing light in the range of 200 to 500 nm, for example, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a gallium lamp, a xenon lamp, a carbon arc lamp, etc. can be used. It is preferable to use a light source including light in a wavelength region of 350 nm or more. The accumulated amount of active energy rays is not limited because the required minimum accumulated amount of light depends on the application, film thickness, presence / absence of colorant, and type and amount of photopolymerization initiator. The combined use of heat by ultraviolet rays, electron beams and infrared rays, far infrared rays, hot air, high frequency heating, etc. is effective.
 本発明の活性エネルギー線硬化型組成物の厚みは、通常0.1乃至20μm、好ましくは2乃至10μm、最も好ましくは3乃至8μmである。組成物層の厚みがかかる範囲内で塗布された場合には、硬化時に発生する応力の為に組成物層と基材との密着性が低下したりすることなく、本発明の目的とする十分な硬度、耐擦傷性、耐摩耗性を有する硬化物層が得られる。 The thickness of the active energy ray-curable composition of the present invention is usually 0.1 to 20 μm, preferably 2 to 10 μm, and most preferably 3 to 8 μm. When the thickness of the composition layer is applied within such a range, the adhesiveness between the composition layer and the substrate does not decrease due to stress generated during curing, and the object of the present invention is sufficient. A cured product layer having excellent hardness, scratch resistance and abrasion resistance can be obtained.
[硬化膜及び硬化膜の製造方法]
 本発明の活性エネルギー線硬化型組成物を用いて得られる硬化膜の製造方法は、
(a)該活性エネルギー線硬化型組成物を基材に塗布して被膜を形成する工程、
(b)該被膜を第一加熱する工程、
(c)該加熱処理された被膜を露光する工程、及び
(d)該露光された被膜を第二加熱する工程
を含む製造方法である。
[Curing film and method for producing cured film]
A method for producing a cured film obtained using the active energy ray-curable composition of the present invention,
(A) applying the active energy ray-curable composition to a substrate to form a film;
(B) a step of first heating the coating;
(C) It is a manufacturing method including a step of exposing the heat-treated film, and (d) a step of secondly heating the exposed film.
 (a)工程における塗布は、上記したバーコート法等の方法により行われる。塗布後であって、(b)の第一加熱前の膜を本明細書では、被膜という。
 (b)工程における第一加熱は、ホットプレートまたはオーブン等の装置により行われ、その条件は通常25乃至150℃で5乃至120分間、好ましくは25乃至100℃で5乃至10分間である。
 (c)工程における露光処理は、上記した高圧水銀灯等を用いて行われる。照射量はケイ素系化合物の種類や必須成分の光塩基発生剤の種類及び含有量等に合せて適宣選択すればよいが、通常100乃至1500mJ程度、好ましくは100乃至500mJ程度である。
 (d)工程における第二加熱は、(b)工程の第一加熱と同様の装置を用いて行えばよく、その条件は通常25乃至150℃で5乃至120分間、好ましくは25乃至100℃で5乃至30分間である。第二加熱後に得られる膜を本明細書では、硬化膜ということにする。
(A) Application | coating in a process is performed by methods, such as above-mentioned bar coating method. The film after the application and before the first heating in (b) is referred to as a coating in this specification.
The first heating in the step (b) is performed by an apparatus such as a hot plate or an oven, and the conditions are usually 25 to 150 ° C. for 5 to 120 minutes, preferably 25 to 100 ° C. for 5 to 10 minutes.
The exposure process in the step (c) is performed using the above-described high-pressure mercury lamp or the like. The irradiation amount may be appropriately selected according to the type of silicon compound and the type and content of the photobase generator as an essential component, but is usually about 100 to 1500 mJ, preferably about 100 to 500 mJ.
The second heating in the step (d) may be performed using the same apparatus as the first heating in the step (b), and the conditions are usually 25 to 150 ° C. for 5 to 120 minutes, preferably 25 to 100 ° C. 5 to 30 minutes. In the present specification, the film obtained after the second heating is referred to as a cured film.
 本発明の活性エネルギー線硬化型組成物は保存安定性、硬化性及び製膜性に優れ、かつその硬化物は耐衝撃性や耐擦傷性に優れるため、携帯電話等の液晶表示画面やタッチパネル等に代表されるハードコート用途等に好適に用いられる。 Since the active energy ray-curable composition of the present invention is excellent in storage stability, curability and film-forming property, and the cured product is excellent in impact resistance and scratch resistance, liquid crystal display screens such as mobile phones, touch panels, etc. It is suitably used for hard coat applications represented by
 次に、実施例および比較例を挙げて本発明をより具体的に説明するが、これにより本発明が限定されるものでないことは言うまでもない。また、本実施例において使用する「部」は特定しない限り、「質量部」であることを意味する。 Next, the present invention will be described more specifically with reference to examples and comparative examples, but it goes without saying that the present invention is not limited thereby. In addition, “part” used in the present example means “part by mass” unless specified.
<合成例1 式(1)で表される部分構造を有する必須成分の光塩基発生剤1の中間体化合物1の合成>
 シアン化カリウム 1.9部に水10部、エタノール53部を加えて溶解させた後、窒素雰囲気下で超音波処理することで反応液の脱気処理を行った。この溶液に4-(メチルチオ)ベンズアルデヒド10部を滴下し、80℃で加温して反応を開始した。30分間撹拌後、反応液を3℃まで冷却して出た結晶を吸引濾過して回収した。回収した固体を大量のエタノールを用いて再結晶により精製し、中間体化合物1を7.6部得た。
<Synthesis Example 1 Synthesis of Intermediate Compound 1 of Photobase Generator 1 as an Essential Component Having the Partial Structure Represented by Formula (1)>
After 10 parts of water and 53 parts of ethanol were dissolved in 1.9 parts of potassium cyanide, the reaction solution was degassed by sonication under a nitrogen atmosphere. To this solution, 10 parts of 4- (methylthio) benzaldehyde was added dropwise and heated at 80 ° C. to initiate the reaction. After stirring for 30 minutes, the reaction solution was cooled to 3 ° C. and the resulting crystals were collected by suction filtration. The recovered solid was purified by recrystallization using a large amount of ethanol to obtain 7.6 parts of intermediate compound 1.
<合成例2 式(1)で表される必須成分の光塩基発生剤1の中間体化合物2の合成>
 攪拌機、還流冷却管及び撹拌装置を備えたフラスコに、パラホルムアルデヒド9.0部とジメチルスルホキシド170部を加え撹拌した。水酸化カリウム1.4部をエタノール5部に溶解させた溶液をフラスコに滴下し、パラホルムアルデヒドが完全に溶解するまで撹拌した。合成例1で得られた中間体化合物1をジメチルスルホキシド30部に溶解させた溶液を30分間かけてフラスコに滴下し、室温で2時間撹拌した。その後35%塩酸2.6部を滴下して中和し、反応を終了させた。この反応溶液にトルエンと飽和食塩水を加えて有機層に抽出し、溶媒留去して中間体化合物2を40部得た。
<Synthesis Example 2 Synthesis of Intermediate Compound 2 of Photobase Generator 1 as Essential Component Represented by Formula (1)>
In a flask equipped with a stirrer, a reflux condenser and a stirrer, 9.0 parts of paraformaldehyde and 170 parts of dimethyl sulfoxide were added and stirred. A solution prepared by dissolving 1.4 parts of potassium hydroxide in 5 parts of ethanol was added dropwise to the flask and stirred until the paraformaldehyde was completely dissolved. A solution prepared by dissolving the intermediate compound 1 obtained in Synthesis Example 1 in 30 parts of dimethyl sulfoxide was added dropwise to the flask over 30 minutes and stirred at room temperature for 2 hours. Thereafter, 2.6 parts of 35% hydrochloric acid was added dropwise for neutralization to complete the reaction. Toluene and saturated brine were added to this reaction solution, and the mixture was extracted into an organic layer. The solvent was distilled off to obtain 40 parts of intermediate compound 2.
<合成例3 式(1)で表される必須成分の光塩基発生剤1の合成>
 合成例2で得られた中間体化合物2 1.0部、トルエン15部及びトリエチルアミン0.3部をフラスコに入れて均一になるまで還流撹拌を行った。続いて室温下でジシクロヘキシルメタン-4,4-ジイソシアナート0.4部を加え、12時間撹拌を続けた後、冷却してエバポレーターで溶媒を留去した。得られた溶液をシクロヘキサン中に滴下し、30分間撹拌して洗浄し、下記式(IV)で表される光塩基発生剤1を1.0部得た。
<Synthesis Example 3 Synthesis of Photobase Generator 1 as Essential Component Represented by Formula (1)>
1.0 part of the intermediate compound 2 obtained in Synthesis Example 2, 15 parts of toluene and 0.3 part of triethylamine were placed in a flask and stirred under reflux until uniform. Subsequently, 0.4 part of dicyclohexylmethane-4,4-diisocyanate was added at room temperature, and stirring was continued for 12 hours, followed by cooling and evaporation of the solvent with an evaporator. The obtained solution was dropped into cyclohexane, washed by stirring for 30 minutes, and 1.0 part of a photobase generator 1 represented by the following formula (IV) was obtained.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
<合成例4 比較用の光塩基発生剤5の中間体化合物3の合成>
 1,1,3,3-テトラメチルグアニジン11.9部にN,N’-ジイソプロピルカルボジイミド13.1部を加え、100℃で2時間加熱攪拌した。反応終了後、反応液にヘキサンを加え、5℃まで冷却し、得られた結晶をろ過することにより、中間体化合物3(1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニド)8.3部を白色固体で得た。
<Synthesis Example 4 Synthesis of Intermediate Compound 3 of Comparative Photobase Generator 5>
13.1 parts of N, N′-diisopropylcarbodiimide was added to 11.9 parts of 1,1,3,3-tetramethylguanidine, and the mixture was heated and stirred at 100 ° C. for 2 hours. After completion of the reaction, hexane was added to the reaction solution, cooled to 5 ° C., and the resulting crystals were filtered to obtain intermediate compound 3 (1,2-diisopropyl-4,4,5,5-tetramethylbiguanide). 8.3 parts were obtained as a white solid.
<合成例5 比較用の光塩基発生剤5の合成>
 ケトプロフェン7.6部と合成例4で得られた中間体化合物3 7.2部を、メタノール30mLに溶解させ、室温で30分間攪拌した。反応終了後、反応液を減圧濃縮し、得られた残渣をヘキサンで洗浄後、減圧乾燥することにより、下記式(V)で表される光塩基発生剤5 12.2部を白色固体で得た。
<Synthesis Example 5 Synthesis of Photobase Generator 5 for Comparison>
7.6 parts of ketoprofen and 7.2 parts of intermediate compound 3 obtained in Synthesis Example 4 were dissolved in 30 mL of methanol and stirred at room temperature for 30 minutes. After completion of the reaction, the reaction solution was concentrated under reduced pressure, and the resulting residue was washed with hexane and dried under reduced pressure to obtain 12.2 parts of a photobase generator 5 represented by the following formula (V) as a white solid. It was.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
<合成例6 比較用の光塩基発生剤6の中間体化合物4の合成>
 攪拌機、還流冷却管及び撹拌装置を備えたフラスコに、4, 5-ジメトキシ-2-ニトロベンジルアルデヒド12.5部、テトラヒドロホウ酸ナトリウム1.5部及びメタノール250部を入れ、室温(23℃)で3時間撹拌した後、飽和塩化アンモニウム溶液38部を加えた。その後、析出した黄色固体をろ過回収し、ろ液にクロロホルム120部を加えて抽出操作を行った後、溶媒を留去して灰色固体を得た。得られた固体を酢酸エチルで再結晶することにより、中間体化合物4(4,5-ジメトキシ-2-ニトロベンジルアルコール)8.4部を黄色固体で得た。
<Synthesis Example 6 Synthesis of Intermediate Compound 4 of Comparative Photobase Generator 6>
A flask equipped with a stirrer, a reflux condenser and a stirrer was charged with 12.5 parts of 4,5-dimethoxy-2-nitrobenzylaldehyde, 1.5 parts of sodium tetrahydroborate and 250 parts of methanol at room temperature (23 ° C.). After stirring for 3 hours, 38 parts of saturated ammonium chloride solution was added. Thereafter, the precipitated yellow solid was collected by filtration, and 120 parts of chloroform was added to the filtrate for extraction, and then the solvent was distilled off to obtain a gray solid. The obtained solid was recrystallized from ethyl acetate to obtain 8.4 parts of intermediate compound 4 (4,5-dimethoxy-2-nitrobenzyl alcohol) as a yellow solid.
<合成例7 比較用の光塩基発生剤6の合成>
 合成例6で得られた中間体化合物4 8.9部、トルエン150部及びオクチル酸スズ0.02部をフラスコに入れて均一になるまで還流撹拌を行った。続いて還流下でジシクロヘキシルメタン4、4-ジイソシアナート4.6部を加え、3時間還流を続けた後、冷却してエバポレーターで溶媒を留去した。得られた褐色固体をエタノールで再結晶することにより、下記式(VI)で表される光塩基発生剤6を6.8部得た。
<Synthesis Example 7 Synthesis of Photobase Generator 6 for Comparison>
8.9 parts of intermediate compound 4 obtained in Synthesis Example 6, 150 parts of toluene, and 0.02 part of tin octylate were placed in a flask and stirred under reflux until uniform. Subsequently, 4.6 parts of dicyclohexylmethane 4,4-diisocyanate was added under reflux, and the mixture was refluxed for 3 hours. After cooling, the solvent was distilled off with an evaporator. The obtained brown solid was recrystallized with ethanol to obtain 6.8 parts of a photobase generator 6 represented by the following formula (VI).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
<合成例8 比較用の光塩基発生剤7の中間体化合物5の合成>
 中間体化合物1をベンゾインに変更した以外は合成例2と同様にして中間体化合物5を8.1部得た。
<Synthesis Example 8 Synthesis of Intermediate Compound 5 of Comparative Photobase Generator 7>
8.1 parts of intermediate compound 5 were obtained in the same manner as in Synthesis Example 2 except that intermediate compound 1 was changed to benzoin.
<合成例9 比較用の光塩基発生剤7の合成>
 中間体化合物2を合成例8で得られた中間体化合物5に変更した以外は合成例3と同様にして下記式(VII)で表される光塩基発生剤7を5.3部得た。
<Synthesis Example 9 Synthesis of Photobase Generator 7 for Comparison>
5.3 parts of photobase generators 7 represented by the following formula (VII) were obtained in the same manner as in Synthesis Example 3 except that Intermediate Compound 2 was changed to Intermediate Compound 5 obtained in Synthesis Example 8.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(実施例1)
 褐色瓶にDPHA(日本化薬社製)0.3部、3-アクリロキシプロピルトリメトキシシラン(信越化学社製、商品名KBM-5103)0.075部、テトラエトキシシラン(関東化学社製)0.3部を加えたのち、合成例3で得られた光塩基発生剤1 0.0175部を添加してMEK0.04部で希釈して本発明の活性エネルギー線硬化型組成物を得た。
Example 1
DPHA (Nihon Kayaku Co., Ltd.) 0.3 parts, 3-acryloxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., trade name KBM-5103) 0.075 parts, Tetraethoxysilane (Kanto Chemical Co., Ltd.) After adding 0.3 part, 0.0175 part of photobase generator 1 obtained in Synthesis Example 3 was added and diluted with 0.04 part of MEK to obtain the active energy ray-curable composition of the present invention. .
(実施例2)
 光塩基発生剤1の添加量を0.00125部に変更し、光重合開始剤2(Irg.184)を0.01375部添加した以外は実施例1と同様にして本発明の活性エネルギー線硬化型組成物を得た。
(Example 2)
The active energy ray curing of the present invention was carried out in the same manner as in Example 1 except that the addition amount of the photobase generator 1 was changed to 0.00125 parts and 0.01375 parts of photopolymerization initiator 2 (Irg.184) was added. A mold composition was obtained.
(実施例3)
 光塩基発生剤1の添加量を0.0025部に変更し、光重合開始剤2(Irg.184)を0.0125部添加した以外は実施例1と同様にして本発明の活性エネルギー線硬化型組成物を得た。
(Example 3)
The active energy ray curing of the present invention was carried out in the same manner as in Example 1 except that the addition amount of the photobase generator 1 was changed to 0.0025 part and 0.0125 part of the photopolymerization initiator 2 (Irg.184) was added. A mold composition was obtained.
(実施例4)
 光塩基発生剤1の添加量を0.005部に変更し、光重合開始剤2(Irg.184)を0.01部添加した以外は実施例1と同様にして本発明の活性エネルギー線硬化型組成物を得た。
Example 4
The active energy ray curing of the present invention was carried out in the same manner as in Example 1 except that the amount of photobase generator 1 added was changed to 0.005 part and 0.01 part of photopolymerization initiator 2 (Irg.184) was added. A mold composition was obtained.
(比較例5)
 光塩基発生剤1 0.0175部を光重合開始剤2(Irg.184)0.015部に変更した以外は実施例1と同様にして比較用の活性エネルギー線硬化型組成物を得た。
(Comparative Example 5)
A comparative active energy ray-curable composition was obtained in the same manner as in Example 1 except that 0.0175 part of the photobase generator 1 was changed to 0.015 part of the photopolymerization initiator 2 (Irg. 184).
(比較例6)
 光塩基発生剤1 0.0175部を光重合開始剤3(Irg.369)0.015部に変更した以外は実施例1と同様にして比較用の活性エネルギー線硬化型組成物を得た。
(Comparative Example 6)
A comparative active energy ray-curable composition was obtained in the same manner as in Example 1 except that 0.0175 part of the photobase generator 1 was changed to 0.015 part of the photopolymerization initiator 3 (Irg.369).
(比較例7)
 光塩基発生剤1 0.0175部を光塩基発生剤4(Irg.OXE-01)0.015部に変更した以外は実施例1と同様にして比較用の活性エネルギー線硬化型組成物を得た。
(Comparative Example 7)
A comparative active energy ray-curable composition was obtained in the same manner as in Example 1 except that 0.0175 part of photobase generator 1 was changed to 0.015 part of photobase generator 4 (Irg.OXE-01). It was.
(比較例8)
 光塩基発生剤1 0.0175部を合成例5で得られた比較用の光塩基発生剤5 0.015部に変更した以外は実施例1と同様にして比較用の活性エネルギー線硬化型組成物を得た。
(Comparative Example 8)
Comparative active energy ray-curable composition as in Example 1 except that 0.0175 part of the photobase generator 1 was changed to 0.015 part of the photobase generator 5 for comparison obtained in Synthesis Example 5. I got a thing.
(比較例9)
 光塩基発生剤5の添加量を0.00125部に変更し、光重合開始剤2(Irg.184)を0.01375部添加した以外は比較例8と同様にして比較用の活性エネルギー線硬化型組成物を得た。
(Comparative Example 9)
Active energy ray curing for comparison was performed in the same manner as in Comparative Example 8 except that the addition amount of the photobase generator 5 was changed to 0.00125 parts and 0.01375 parts of photopolymerization initiator 2 (Irg.184) was added. A mold composition was obtained.
(比較例10)
 光塩基発生剤1 0.0175部を合成例7で得られた比較用の光塩基発生剤6 0.015部に変更した以外は実施例1と同様にして比較用の活性エネルギー線硬化型組成物を得た。
(Comparative Example 10)
Comparative active energy ray-curable composition in the same manner as in Example 1 except that 0.0175 part of the photobase generator 1 was changed to 0.015 part of the photobase generator 6 for comparison obtained in Synthesis Example 7. I got a thing.
(比較例11)
 光塩基発生剤1 0.0175部を合成例9で得られた比較用の光塩基発生剤7 0.015部に変更した以外は実施例1と同様にして比較用の活性エネルギー線硬化型組成物を得た。
(Comparative Example 11)
Comparative active energy ray-curable composition in the same manner as in Example 1 except that 0.0175 part of the photobase generator 1 was changed to 0.015 part of the comparative photobase generator 7 obtained in Synthesis Example 9. I got a thing.
(活性エネルギー線硬化型組成物からなる被膜の作製及び第一加熱)
 膜厚100μmの両面易接着PETフィルム(コスモシャインA4300:100 東洋紡績社製)上に、#14のバーコーダーを用いて実施例1乃至4及び比較例5乃至11で得られた各活性エネルギー線硬化型組成物をそれぞれ塗布した後、オーブンを用いて80℃×1分間の加熱処理(第一加熱、露光前ベイク)を行い、溶媒を留去した。
(Preparation and first heating of a film comprising an active energy ray-curable composition)
Each active energy ray obtained in Examples 1 to 4 and Comparative Examples 5 to 11 using a # 14 bar coder on a double-sided easy-adhesion PET film (Cosmo Shine A4300: 100 manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm. After each curable composition was applied, heat treatment (first heating, pre-exposure baking) at 80 ° C. for 1 minute was performed using an oven, and the solvent was distilled off.
(露光処理及び第二加熱)
 上記で得られたPETフィルム上の被膜に、ベルトコンベア式高圧水銀灯露光機を用いて1パスの露光量が100mJ/cm(ベルトコンベアから高圧水銀灯までの高さ100mm)の条件で3パスの露光を行った。その後、オーブンを用いて80℃×10分間の加熱処理(第二加熱、露光後ベイク)を行い、各活性エネルギー線硬化型組成物の硬化物(硬化膜)を得た。
(Exposure treatment and second heating)
Using the belt conveyor type high-pressure mercury lamp exposure machine, the pass on the PET film obtained above is 3 passes under the condition that the exposure amount of one pass is 100 mJ / cm 2 (height from the belt conveyor to the high-pressure mercury lamp is 100 mm). Exposure was performed. Thereafter, heat treatment (second heating, post-exposure baking) at 80 ° C. for 10 minutes was performed using an oven to obtain a cured product (cured film) of each active energy ray-curable composition.
 実施例1乃至4乃至及び比較例5乃至11の各活性エネルギー線硬化型組成物の組成と、該各組成物又は該各組成物から得られた硬化膜について以下の方法で行った評価の結果を表1に記載した。 Results of evaluations performed on the compositions of the active energy ray-curable compositions of Examples 1 to 4 and Comparative Examples 5 to 11 and the compositions or cured films obtained from the compositions by the following methods. Are listed in Table 1.
(評価方法)
(1)溶液の外観:
 実施例1乃至4及び比較例5乃至11の各活性エネルギー線硬化型組成物の溶液を試験管に満たし、目視で外観を確認した。
(2)硬化膜外観:
 実施例1乃至4及び比較例5乃至11の各活性エネルギー線硬化型組成物を用いて得られた各組成物の硬化膜の外観について、濁り、艶びけ、ブツ及びクラック等の有無を目視で確認した。
(3)鉛筆硬度:
 実施例1乃至4及び比較例5乃至11の各活性エネルギー線硬化型組成物を用いて得られた各組成物の硬化膜の鉛筆硬度を、JIS K-5600に準じた方法で750gの加重で測定した。
(4)密着性:
 実施例1乃至4及び比較例5乃至11の各活性エネルギー線硬化型組成物を用いて得られた各組成物の硬化膜のPETフィルムへの密着性を、JIS K-5600に準じた方法で測定した。
(5)耐擦傷性:
 実施例1乃至4及び比較例5乃至11の各活性エネルギー線硬化型組成物を用いて得られた各組成物の硬化膜の表面を、#0000スチールウールを用いて1000gの荷重で20回擦った後、表面の傷つき状態を目視で観察して以下の評価基準で評価した。
   ○;全くキズがついていない
   △;わずかにキズがついている
   ×;明らかなキズがついている
(6)透明性(400nm):
 実施例1乃至4及び比較例5乃至11の各活性エネルギー線硬化型組成物を用いて得られた各組成物の硬化膜の透明性を、日本分光社製紫外可視分光光度計V-600を用いて波長400nmの透過率で評価した。
(7)安定性:
 実施例1乃至4及び比較例5乃至11の各活性エネルギー線硬化型組成物の溶液を密閉容器に封入し、25℃の恒温室に3ヶ月間放置した後の状態を観察し、以下の評価基準で評価した。
   ○;全く変化なし
   ×;顕著な増粘やゲル化
(Evaluation methods)
(1) Appearance of the solution:
The solutions of the active energy ray-curable compositions of Examples 1 to 4 and Comparative Examples 5 to 11 were filled in test tubes, and the appearance was visually confirmed.
(2) Appearance of cured film:
The appearance of the cured film of each composition obtained using each of the active energy ray-curable compositions of Examples 1 to 4 and Comparative Examples 5 to 11 was visually checked for the presence of turbidity, luster, shading, cracks, and the like. Confirmed with.
(3) Pencil hardness:
The pencil hardness of the cured film of each composition obtained using each of the active energy ray-curable compositions of Examples 1 to 4 and Comparative Examples 5 to 11 was weighted at 750 g by a method according to JIS K-5600. It was measured.
(4) Adhesion:
The adhesiveness of the cured film of each composition obtained using each of the active energy ray-curable compositions of Examples 1 to 4 and Comparative Examples 5 to 11 to the PET film was measured in accordance with JIS K-5600. It was measured.
(5) Scratch resistance:
The surface of the cured film of each composition obtained using each of the active energy ray-curable compositions of Examples 1 to 4 and Comparative Examples 5 to 11 was rubbed 20 times with a load of 1000 g using # 0000 steel wool. After that, the damaged state of the surface was visually observed and evaluated according to the following evaluation criteria.
○: No scratch at all Δ: Slightly scratch ×: Clear scratch (6) Transparency (400 nm):
The transparency of the cured film of each composition obtained using each of the active energy ray-curable compositions of Examples 1 to 4 and Comparative Examples 5 to 11 was measured using an ultraviolet-visible spectrophotometer V-600 manufactured by JASCO Corporation. It was used and evaluated with transmittance at a wavelength of 400 nm.
(7) Stability:
The active energy ray-curable composition solutions of Examples 1 to 4 and Comparative Examples 5 to 11 were sealed in a sealed container and observed after standing in a thermostatic chamber at 25 ° C. for 3 months, and the following evaluations were made. Evaluated by criteria.
○: No change at all ×: Significant thickening or gelation
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
光重合開始剤(光塩基発生剤)の吸光度:
 表1記載の光重合開始剤(光塩基発生剤)1乃至7 1.0×10-5molを、THFに10mlに溶解した光重合開始剤(光塩基発生剤)溶液を調整した。ホールピペットを用いて前記の光重合開始剤(光塩基発生剤)溶液1mlを分取し、再びTHFを用いて10mlにメスアップすることにより吸光度評価用の光重合開始剤(光塩基発生剤)希釈液を得た。得られた光重合開始剤(光塩基発生剤)希釈液で満たした光路長10mmの石英セルを用いて光重合発生剤(光塩基発生剤)1乃至7の吸光度を測定し、該吸光度の測定結果に基づいて下記の式によりモル吸光係数εを算出した。吸光度の測定結果を図1に、モル吸光係数εの算出値を表2にそれぞれ示した。
  モル吸光係数ε = 吸光度/(光路長 × 光重合開始剤(光塩基発生剤)のモル濃度)
 なお、モル吸光係数が500以上ある場合、該化合物は吸収を有すると定義する。
Absorbance of photopolymerization initiator (photobase generator):
A photopolymerization initiator (photobase generator) solution prepared by dissolving 1 to 7 1.0 × 10 −5 mol of the photopolymerization initiator (photobase generator) shown in Table 1 in 10 ml of THF was prepared. A 1 ml portion of the above photopolymerization initiator (photobase generator) solution is collected using a whole pipette, and again made up to 10 ml using THF, to obtain a photopolymerization initiator (photobase generator) for absorbance evaluation. A dilution was obtained. The absorbance of the photopolymerization generators (photobase generators) 1 to 7 was measured using a quartz cell having an optical path length of 10 mm filled with the obtained diluted photopolymerization initiator (photobase generator), and the absorbance was measured. Based on the results, the molar extinction coefficient ε was calculated by the following formula. The measurement results of the absorbance are shown in FIG. 1, and the calculated value of the molar extinction coefficient ε is shown in Table 2.
Molar extinction coefficient ε = absorbance / (optical path length × molar concentration of photopolymerization initiator (photobase generator))
When the molar extinction coefficient is 500 or more, the compound is defined as having absorption.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1の結果より、本発明の活性エネルギー線硬化型組成物が、比較用の組成物よりも保存安定性に優れ、溶液及び硬化膜の外観に優れ、かつその硬化物が高い硬度を有すると共にPETフィルムへの密着性及び体擦傷性に優れ、しかも波長400nmの光の透過率に優れることがわかる。また、表2の結果により、実施例に用いた光重合開始剤は、350nm以上の光吸収帯を有することがわかる。 From the results of Table 1, the active energy ray-curable composition of the present invention is superior in storage stability than the comparative composition, excellent in the appearance of the solution and the cured film, and the cured product has high hardness. It turns out that it is excellent in the adhesiveness to a PET film, and a body abrasion property, and is excellent in the transmittance | permeability of the light of wavelength 400nm. Moreover, it can be seen from the results in Table 2 that the photopolymerization initiator used in the examples has a light absorption band of 350 nm or more.
 本発明の活性エネルギー線硬化型組成物は保存安定性、硬化性及び製膜性に優れ、かつその硬化物は高い硬度を有すると共に基材への密着性及び耐擦傷性に優れるため、携帯電話等の液晶表示画面やタッチパネルなどのハードコート用途等に好適に用いられる。 Since the active energy ray-curable composition of the present invention is excellent in storage stability, curability and film-forming property, and the cured product has high hardness, adhesion to a substrate and scratch resistance, it is a mobile phone. It is suitably used for hard coat applications such as liquid crystal display screens and touch panels.

Claims (7)

  1.  アルコキシシリル基を有するケイ素系化合物、及び光を吸収してアミンと活性ラジカルを同時に発生することができる、下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは水素原子、水酸基、アルコキシ基又は有機基を表す。R及びRは置換基を有するアリール基を表す。Xは一級アミン又は二級アミンから窒素原子に直接結合する水素原子を一つ除いた残基を表す。)
    で表される化合物を含有する光塩基発生剤を含有する、活性エネルギー線硬化型組成物。
    A silicon-based compound having an alkoxysilyl group, and an amine and an active radical that can absorb light and simultaneously generate the following formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), R 1 represents a hydrogen atom, a hydroxyl group, an alkoxy group or an organic group. R 2 and R 3 represent an aryl group having a substituent. X represents a primary amine or secondary amine to a nitrogen atom. (Represents a residue excluding one directly bonded hydrogen atom.)
    The active energy ray hardening-type composition containing the photobase generator containing the compound represented by these.
  2.  光塩基発生剤が350nm以上の波長領域に吸収を有する、請求項1に記載の活性エネルギー線硬化型組成物。 The active energy ray-curable composition according to claim 1, wherein the photobase generator has absorption in a wavelength region of 350 nm or more.
  3.  更に式(1)で表される化合物以外の光重合開始剤を含有する請求項1又は2に記載の活性エネルギー線硬化型組成物。 Furthermore, the active energy ray hardening-type composition of Claim 1 or 2 containing photoinitiators other than the compound represented by Formula (1).
  4.  更に塩基増殖剤として少なくとも1つのウレタン結合を有する化合物を含有する請求項1乃至3のいずれか一項に記載の活性エネルギー線硬化型組成物。 The active energy ray-curable composition according to any one of claims 1 to 3, further comprising a compound having at least one urethane bond as a base proliferating agent.
  5.  更にアクリロイル基および/またはメタクリロイル基を有する化合物を含有する請求項1乃至4のいずれか一項に記載の活性エネルギー線硬化型組成物。 Furthermore, the active energy ray hardening-type composition as described in any one of Claims 1 thru | or 4 containing the compound which has an acryloyl group and / or a methacryloyl group.
  6.  請求項1乃至5のいずれか一項に記載の活性エネルギー線硬化型組成物の硬化物。 Hardened | cured material of the active energy ray hardening-type composition as described in any one of Claims 1 thru | or 5.
  7.  請求項1乃至5のいずれか一項に記載の活性エネルギー線硬化型組成物を用いて得られる硬化膜の製造方法であって、
    (a)該活性エネルギー線硬化型組成物を基材に塗布して被膜を形成する工程、
    (b)該被膜を第一加熱する工程、
    (c)該第一加熱された被膜を露光する工程、及び
    (d)該露光された被膜を第二加熱する工程
    を含む方法。

     
    A method for producing a cured film obtained using the active energy ray-curable composition according to any one of claims 1 to 5,
    (A) applying the active energy ray-curable composition to a substrate to form a film;
    (B) a step of first heating the coating;
    (C) exposing the first heated coating; and (d) second heating the exposed coating.

PCT/JP2018/017973 2017-05-10 2018-05-09 Actinic-ray-curable composition, method for producing cured film, and cured object WO2018207836A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019517671A JP7050245B2 (en) 2017-05-10 2018-05-09 Active energy ray-curable composition, method for producing a cured film, and cured product
KR1020197032657A KR20200003815A (en) 2017-05-10 2018-05-09 Active energy ray curable composition, production method of cured film, and cured product
CN201880014972.2A CN110382597A (en) 2017-05-10 2018-05-09 Curable with actinic energy ray composition, the manufacturing method of cured film and hardening thing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-094069 2017-05-10
JP2017094069 2017-05-10

Publications (1)

Publication Number Publication Date
WO2018207836A1 true WO2018207836A1 (en) 2018-11-15

Family

ID=64105276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017973 WO2018207836A1 (en) 2017-05-10 2018-05-09 Actinic-ray-curable composition, method for producing cured film, and cured object

Country Status (5)

Country Link
JP (1) JP7050245B2 (en)
KR (1) KR20200003815A (en)
CN (1) CN110382597A (en)
TW (1) TWI758475B (en)
WO (1) WO2018207836A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019066779A (en) * 2017-10-05 2019-04-25 日本化薬株式会社 Photosensitive resin composition
WO2019168113A1 (en) * 2018-03-01 2019-09-06 日本化薬株式会社 Novel compound, photopolymerization initiator containing said compound, and photosensitive resin composition containing said photopolymerization initiator
WO2019168089A1 (en) * 2018-03-02 2019-09-06 日本化薬株式会社 Novel compound, photopolymerization initiator containing said compound, and photosensitive resin composition containing said photopolymerization initiator
WO2020009087A1 (en) * 2018-07-05 2020-01-09 日本化薬株式会社 Photosensitive resin composition
WO2022102732A1 (en) * 2020-11-16 2022-05-19 株式会社豊田自動織機 Coating agent, resinous member, and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002092718A1 (en) * 2001-05-16 2002-11-21 Sekisui Chemical Co., Ltd. Curing resin composition and sealants and end-sealing materials for displays
JP2004163764A (en) * 2002-11-14 2004-06-10 Sekisui Chem Co Ltd Curable resin composition, sealing material for display element, end sealing material for display element, and display element
JP2006023580A (en) * 2004-07-08 2006-01-26 Sekisui Chem Co Ltd Curable resin composition for liquid crystal display element, sealing material for liquid crystal dispenser method, vertically conducting material, and liquid crystal display element
JP2012082247A (en) * 2010-10-07 2012-04-26 Autonetworks Technologies Ltd Ultraviolet curing liquid composition, and cured resin using the same
JP2017105749A (en) * 2015-12-09 2017-06-15 日本化薬株式会社 Novel compound, photopolymerization initiator comprising compound and photosensitive resin composition comprising photopolymerization initiator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3912287B2 (en) * 2000-12-27 2007-05-09 日立化成工業株式会社 Photobase generator and curable composition and curing method using the same
JP5516574B2 (en) * 2009-03-31 2014-06-11 大日本印刷株式会社 Base generator, photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method and article using the photosensitive resin composition
EP2444391B1 (en) * 2009-06-17 2013-11-06 Three Bond Co., Ltd. Base and radical generator, composition using same and method for curing same
JP5862021B2 (en) * 2010-03-05 2016-02-16 株式会社リコー Actinic ray curable ink composition, actinic ray curable inkjet ink composition and printing method thereof
JP5556452B2 (en) * 2010-07-06 2014-07-23 信越化学工業株式会社 Pattern formation method
KR101948028B1 (en) * 2011-03-29 2019-02-14 가부시키가이샤 가네카 Actinic-radiation curable coating resin composition
KR20130066483A (en) * 2011-12-12 2013-06-20 동우 화인켐 주식회사 New photopolymerization initiator, acrylic copolymer and adhesive composition containing the same
JP6280919B2 (en) * 2013-05-13 2018-02-14 和光純薬工業株式会社 Thioxanthene compound, base proliferating agent, and base-reactive resin composition containing the base proliferating agent
WO2014208632A1 (en) * 2013-06-28 2014-12-31 和光純薬工業株式会社 Base generator, base-reactive composition containing said base generator, and base generation method
CN104513607B (en) * 2014-12-24 2016-09-28 浙江佑谦特种材料有限公司 A kind of wear-resisting anti-fog coating of photocuring and construction method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002092718A1 (en) * 2001-05-16 2002-11-21 Sekisui Chemical Co., Ltd. Curing resin composition and sealants and end-sealing materials for displays
JP2004163764A (en) * 2002-11-14 2004-06-10 Sekisui Chem Co Ltd Curable resin composition, sealing material for display element, end sealing material for display element, and display element
JP2006023580A (en) * 2004-07-08 2006-01-26 Sekisui Chem Co Ltd Curable resin composition for liquid crystal display element, sealing material for liquid crystal dispenser method, vertically conducting material, and liquid crystal display element
JP2012082247A (en) * 2010-10-07 2012-04-26 Autonetworks Technologies Ltd Ultraviolet curing liquid composition, and cured resin using the same
JP2017105749A (en) * 2015-12-09 2017-06-15 日本化薬株式会社 Novel compound, photopolymerization initiator comprising compound and photosensitive resin composition comprising photopolymerization initiator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019066779A (en) * 2017-10-05 2019-04-25 日本化薬株式会社 Photosensitive resin composition
WO2019168113A1 (en) * 2018-03-01 2019-09-06 日本化薬株式会社 Novel compound, photopolymerization initiator containing said compound, and photosensitive resin composition containing said photopolymerization initiator
JPWO2019168113A1 (en) * 2018-03-01 2021-02-25 日本化薬株式会社 A novel compound, a photopolymerization initiator containing the compound, and a photosensitive resin composition containing the photopolymerization initiator.
JP7232241B2 (en) 2018-03-01 2023-03-02 日本化薬株式会社 Novel compound, photopolymerization initiator comprising said compound, and photosensitive resin composition containing said photopolymerization initiator
US11608316B2 (en) 2018-03-01 2023-03-21 Nippon Kayaku Kabushiki Kaisha Compound, photopolymerization initiator containing said compound, and photosensitive resin composition containing said photopolymerization initiator
WO2019168089A1 (en) * 2018-03-02 2019-09-06 日本化薬株式会社 Novel compound, photopolymerization initiator containing said compound, and photosensitive resin composition containing said photopolymerization initiator
JPWO2019168089A1 (en) * 2018-03-02 2021-04-01 日本化薬株式会社 A novel compound, a photopolymerization initiator containing the compound, and a photosensitive resin composition containing the photopolymerization initiator.
US11414382B2 (en) 2018-03-02 2022-08-16 Nippon Kayaku Kabushiki Kaisha Compound, photopolymerization initiator containing said compound, and photosensitive resin composition containing said photopolymerization initiator
JP7218073B2 (en) 2018-03-02 2023-02-06 日本化薬株式会社 Novel compound, photopolymerization initiator comprising said compound, and photosensitive resin composition containing said photopolymerization initiator
WO2020009087A1 (en) * 2018-07-05 2020-01-09 日本化薬株式会社 Photosensitive resin composition
WO2022102732A1 (en) * 2020-11-16 2022-05-19 株式会社豊田自動織機 Coating agent, resinous member, and production method therefor
CN116368000A (en) * 2020-11-16 2023-06-30 株式会社丰田自动织机 Coating agent, resin member, and method for producing same

Also Published As

Publication number Publication date
JPWO2018207836A1 (en) 2020-03-12
TW201900778A (en) 2019-01-01
JP7050245B2 (en) 2022-04-08
TWI758475B (en) 2022-03-21
KR20200003815A (en) 2020-01-10
CN110382597A (en) 2019-10-25

Similar Documents

Publication Publication Date Title
WO2018207836A1 (en) Actinic-ray-curable composition, method for producing cured film, and cured object
EP2360194B1 (en) Siloxane resin composition and protective film for touch panel using same
AU2016232011B2 (en) Novel siloxane polymer compositions and their use
JP5459315B2 (en) Silane coupling agent, negative photosensitive resin composition, cured film, and touch panel member
JP5534246B2 (en) Resist underlayer film forming composition for nanoimprint
US10508078B2 (en) Compound, photopolymerization initiator comprising said compound, and photosensitive resin composition containing said photopolymerization initiator
JP5407210B2 (en) Siloxane resin composition and cured film using the same
JP4679388B2 (en) Laminate having releasability and method for producing the same
JPWO2007066597A1 (en) Silicon-containing resist underlayer film forming composition for forming a photocrosslinking cured resist underlayer film
CN112236420B (en) Dialkyl peroxide having thioxanthone skeleton and polymerizable composition containing same
TW201821453A (en) Curable composition and product
JP2012088610A (en) Negative photosensitive resin composition and cured film using the same
WO2013125637A1 (en) Negative photosensitive resin composition, cured film, and member for touch panel
WO2017099130A1 (en) Novel compound, photopolymerization initiator comprising said compound, and photosensitive resin composition containing said photopolymerization initiator
WO2017018361A1 (en) Acid-resistant base and/or radical generator, and curable resin composition containing said base and/or radical generator
JP2016047898A (en) Curable composition, production method of cured film, cured film, touch panel and display device
JP2014108974A (en) Photosensitive composition
JP7119390B2 (en) Negative photosensitive resin composition and cured film using the same
JP2019156802A (en) New compound, active energy ray polymerization initiator containing that compound, and active energy ray curable composition containing that polymerization initiator
JP2022064302A (en) Negative siloxane resin composition, cured film, and element
JP2016050259A (en) Curable resin composition, cured film, semiconductor element, and display element
JP2023168981A (en) Polysiloxane-based compound, film-forming composition, laminate, touch panel, and method for forming cured film
JP2017187754A (en) Negative siloxane resin composition, photospacer, color filter substrate, and liquid crystal display device
JP2016042166A (en) Curable composition, production method of cured film, cured film, touch panel, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517671

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197032657

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798814

Country of ref document: EP

Kind code of ref document: A1