WO2018207831A1 - Programmable logic circuit and semiconductor device using same - Google Patents

Programmable logic circuit and semiconductor device using same Download PDF

Info

Publication number
WO2018207831A1
WO2018207831A1 PCT/JP2018/017965 JP2018017965W WO2018207831A1 WO 2018207831 A1 WO2018207831 A1 WO 2018207831A1 JP 2018017965 W JP2018017965 W JP 2018017965W WO 2018207831 A1 WO2018207831 A1 WO 2018207831A1
Authority
WO
WIPO (PCT)
Prior art keywords
programmable logic
switch
logic circuit
type transistor
power supply
Prior art date
Application number
PCT/JP2018/017965
Other languages
French (fr)
Japanese (ja)
Inventor
幸秀 辻
阪本 利司
信 宮村
竜介 根橋
あゆ香 多田
旭 白
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2018207831A1 publication Critical patent/WO2018207831A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a programmable logic integrated circuit using resistance change elements and a semiconductor device using the same.
  • a programmable logic circuit is an integrated circuit in which various logic circuits can be reconfigured by rewriting setting information in the circuit.
  • a reconfigurable circuit using a programmable logic circuit includes a programmable logic circuit having a lookup table (hereinafter abbreviated as LUT) and a flip-flop, and selection of input / output signals to the programmable logic circuit. And a routing circuit that switches signal paths between programmable logic circuits.
  • LUT lookup table
  • the reconfigurable circuit is currently widely used in fields such as image processing and communication, and is also used for circuit trials at the development stage.
  • the routing circuit performs signal path switching such as switching between input [k] and input [k + 1] and outputting to output [n] with a switch as shown in FIG.
  • FIG. 12 shows an SRAM switch composed of SRAM (Static Random Access Memory), a pass transistor having PMOS (P-type Metal-Oxide-Semiconductor) and NMOS (N-type MOS).
  • SRAM Static Random Access Memory
  • PMOS P-type Metal-Oxide-Semiconductor
  • NMOS N-type MOS
  • Patent Documents 1 and 2 disclose techniques for reducing the circuit area and power consumption by replacing the SRAM of the routing circuit with a resistance change element.
  • Japanese Patent Application No. 2017-78050 proposes a technique for replacing an SRAM used as a memory of an LUT in a programmable logic circuit with a resistance change element.
  • the resistance change element uses precipitation of metal bridges in an ion conductive layer through which metal ions are conducted.
  • the variable resistance element has a structure in which an active electrode that supplies metal ions to an ion conductive layer and an inactive electrode that does not supply metal ions sandwich an ion conductive layer.
  • the variable resistance element is turned on and off by forming and dissolving a metal bridge that connects the two electrodes in the ion conductive layer.
  • the resistance ratio between the low resistance state (on state) and the high resistance state (off state) is 10 to the fifth power or higher.
  • Patent Document 3 and Patent Document 4 disclose complementary switch elements including two pairs of resistance change elements and one transistor.
  • Patent Document 5 discloses a complementary switching element in which a transistor is replaced with a varistor (Variable Resistor) element formed in a wiring layer in order to suppress an increase in element area due to the transistor and to reduce the element size. It is disclosed.
  • a varistor element is an element that has two terminals and changes from an insulated state to a conductive state when a voltage difference between the terminals exceeds a threshold value.
  • the LUT of the programmable logic circuit can be divided into a memory and a selection circuit as shown in FIG.
  • the memory is composed of an SRAM, a switch element provided in a wiring layer as shown in FIG.
  • three selection circuits are required to form a one-input multiplexer in two stages.
  • the multiplexer uses a CMOS (Complementary MOS) switch for signal switching, so that the number of transistors is 4 for NMOS and PMOS in a single multiplexer and 12 in total for 3 units. .
  • CMOS Complementary MOS
  • the existing two-input logic circuit of NAND (NAND) and NOR (NOR) can be composed of four transistors. That is, there is a problem that when a logical operation is performed by an LUT using a selection circuit by a multiplexer using a CMOS switch, a circuit area increases because a large number of transistors are required.
  • the number of transistors can be reduced to six with three multiplexers.
  • the output voltage from the LUT is smaller than the difference between the ground (GND) and the power supply voltage (V DD ) by the threshold voltage of each NMOS and PMOS transistor. Become.
  • GND ground
  • V DD power supply voltage
  • Patent Documents 1 to 5 a logic that can be reconfigured without causing an increase in circuit area or a decrease in output voltage by using the variable resistance element disclosed in Patent Documents 1 to 5 as a switch. A technique for realizing an integrated circuit is not disclosed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a logic integrated circuit that outputs a binary potential of a power supply voltage and a ground and that can be reconfigured with a small circuit area. It is in.
  • the programmable logic circuit of the present invention includes a first switch, a second switch, a P-type transistor having a gate connected to an input terminal and a source connected to the power supply voltage via the first switch or directly.
  • the source is connected to the power supply voltage in conjunction with two sets of N-type transistors whose drains are grounded via the second switch or directly to the ground, and the first and second switches;
  • a third switch that outputs to the output terminal the voltage of the drain of the P-type transistor that is turned on, or the voltage of the source of the N-type transistor that is grounded and turned on.
  • the semiconductor device of the present invention has the programmable logic circuit of the present invention.
  • FIG. 1 is a diagram showing a configuration of a programmable logic circuit according to the first embodiment of the present invention.
  • the programmable logic circuit 1 includes a first switch 11 and a second switch 12. Furthermore, a P-type transistor 14 whose gate is connected to the input terminal and whose source is connected to the power supply voltage (V DD ) via the first switch 11 or directly, and whose drain is connected via the second switch 12 or directly. And two sets 16 of N-type transistors 15 to be grounded. Further, in conjunction with the first switch 11 and the second switch 12, the drain voltage of the P-type transistor 14 whose source is connected to the power supply voltage and turned on, or the drain is grounded and turned on. A third switch 13 is provided for outputting the source voltage of the N-type transistor 15 to the output terminal.
  • a logical operation can be reconfigured by a combination of on / off of the first to third switches, and the output of the logical operation can be a binary value of a power supply voltage and ground. Furthermore, since the programmable logic circuit 1 can be configured by four transistors, the circuit area can be reduced.
  • FIG. 2 is a diagram showing a configuration of the programmable logic circuit 2 according to the second embodiment of the present invention.
  • the programmable logic circuit 2 includes a set of a P-type transistor PMOS [0] and an N-type transistor NMOS [0], and a set of a P-type transistor PMOS [1] and an N-type transistor NMOS [1]. Further, as four kinds of change-over switches, a switch SW 1-1 as a first switch, a switch SW 2-1 as a second switch, switches SW 3-1 , SW 3-2 as third switches, SW 3-3 and SW 3-4 and switches SW 4-1 and SW 4-2 as fourth switches are provided.
  • the above four types of changeover switches exist at the intersections of the intersecting wirings, and switch between electrical connection (on) and non-connection (off) between the intersecting wirings.
  • SW 1-1 switches between electrical connection and non-connection between the source of PMOS [1] and the power supply voltage (V DD ) via wiring node [1] to which the source of PMOS [1] is connected.
  • the source of PMOS [0] is connected to V DD .
  • the SW 2-1 switches between electrical connection and non-connection between the drain of the NMOS [1] and the ground (GND) via the wiring node [0] to which the drain of the NMOS [1] is connected.
  • the drain of NMOS [0] is connected to GND.
  • SW 3-1 exists in a node to which the drains of both PMOS [0] and PMOS [1] are connected, and switches between electrical connection and non-connection between the node and the wiring node [0].
  • SW 3-2 exists at a node to which the sources of both NMOS [0] and NMOS [1] are connected, and switches between electrical connection and non-connection between the node and the wiring node [1].
  • SW 3-3 and SW 3-4 exist in the wiring node [0] and the wiring node [1], respectively, and are electrically connected and disconnected between the wiring node [0] and the output terminal OUT, respectively. The electrical connection and disconnection between the node [1] and the output terminal OUT are switched.
  • SW 4-1 and SW 4-2 perform switching to input the input signal Di [1] of the input terminal IN [1] or the power supply voltage to the gates of both PMOS [1] and NMOS [1], respectively.
  • the input signal Di [0] of the input terminal IN [0] is input to the gates of both PMOS [0] and NMOS [0].
  • a switch for switching between electrical connection and non-connection may be provided between the gates of the PMOS [0] and NMOS [0] and the input terminal IN [0].
  • the input signals Di [0] and Di [1] have a high signal or a low signal. In High, NMOS is turned on and PMOS is not turned on. On the other hand, at Low, PMOS is turned on and NMOS is not turned on.
  • the wiring node [0] either SW 2-1 or SW 3-1 is interlocked and one of them is turned on, so that pull-up to the power supply voltage via the PMOS or via the NMOS is performed. Pulled down to GND. Also, the wiring node [1] is connected to SW 1-1 and SW 3-2 and either one is turned on, so that pull-up to the power supply voltage via PMOS or via NMOS is performed. Pull down to all GND. As described above, the potentials of the wiring node [0] and the wiring node [1] are binary values of the power supply voltage and GND. That is, the magnitude of the output signal can be the difference between the power supply voltage and GND, as shown in FIG.
  • the wiring node [0] [1] is connected between the wiring node [0] [1] and the on-resistance of the PMOS or NMOS, the wiring resistance of the wiring, etc. existing between the power supply voltage and GND.
  • the potential output to the voltage drops below the power supply voltage and rises above GND.
  • such a potential drop or rise is sufficiently smaller than the potential drop or rise due to the threshold voltage of the PMOS or NMOS described in FIG.
  • potential drops or rises in electronic circuits using normal PMOS, NMOS, or interconnects can be used to sufficiently increase the gate voltage to lower the on-resistance, or to control the cross-sectional area and length of the interconnects. This can be dealt with by reducing the wiring resistance.
  • the outputs of the wiring node [0] and the wiring node [1] are included in order to briefly explain the effects, including such potential drops and increases. It is assumed that the binary value of the power supply voltage and GND.
  • the above four types of change-over switches are preferably switched on / off by a switch element formed in the wiring layer without including a transistor.
  • the four-terminal switch 20 shown in FIG. can do.
  • the four-terminal switch 20 has two terminals each and is connected in series.
  • the first resistance change element 21 and the first varistor element 23, the second resistance change element 22, and the second varistor element 24 are connected. Are connected at the terminals connected in series.
  • the first resistance change element 21 and the second resistance change element 22 have a bipolar characteristic that has a polarity in the direction of application of a voltage for resistance change.
  • the first variable resistance element 21 and the second variable resistance element 22 are connected with the same polarity.
  • the first varistor element 23 and the second varistor element 24 are bipolar, and change from an insulated state to a conductive state when the potential difference between the terminals exceeds a threshold value.
  • FIG. 5B is a diagram for explaining the connection between the four-terminal switch 20 and the wiring.
  • Terminals other than the terminal to which the first resistance change element 21 and the second resistance change element 22 are connected in series are connected to the first signal line and the second signal line, respectively.
  • terminals different from the terminal to which the first varistor element 23 and the second varistor element 24 are connected in series are connected to the first control line and the second control line, respectively.
  • the four-terminal switch 20 enables signal transmission between the first signal line and the second signal line when both the first resistance change element 21 and the second resistance change element 22 are turned on. .
  • the first control line and the second control line turn on and off the first resistance change element 21 and the second resistance change element 22 together with the first signal line and the second signal line.
  • the control lines are omitted.
  • the voltage between the second signal line and the first control line is the voltage at which the first varistor element 23 changes from the insulated state to the conductive state. Do not exceed the threshold.
  • the first resistance change element 21 and the second resistance change element 22 are resistance change elements that change the resistance state by applying a predetermined voltage for a predetermined time and maintain the changed resistance state. Good. Also, the first resistance change element 21 and the second resistance change element 22 have a polarity in the direction in which the resistance change voltage is applied from the viewpoint of increasing the disturbance resistance when the signal is continuously passed and used. It is desirable to have some bipolar characteristics.
  • a ReRAM (Resistance Random Access Memory) element using a transition metal oxide, a NanoBridge (registered trademark) element using an ion conductor, or the like can be used.
  • the resistance change element includes a resistance change layer, and a first electrode and a second electrode provided on opposite surfaces in contact with the resistance change layer.
  • the variable resistance element can have bipolar characteristics.
  • the ion conductor include oxides containing Al, Ti, Ta, Si, Hf, Zr, chalcogenide compounds containing Ge, As, TeS, etc., organic polymer films containing carbon, oxygen, and silicon.
  • copper can be used as the first electrode, and ruthenium can be used as the second electrode.
  • the resistance value of the resistance change element can be changed to control the conduction state between the electrodes. It can. That is, by controlling the voltage applied between both electrodes, a metal bridge is formed and connected between both electrodes in the ionic conductor, and the metal bridge is dissolved and cut. Thereby, the resistance between both electrodes can be changed between a low resistance state (referred to as an on state) and a high resistance state (referred to as an off state). Since the resistance ratio between the low resistance state and the high resistance state can be set to, for example, 10 5 or higher, the resistance change element functions as a switch that is electrically connected or disconnected. Further, the low resistance state and the high resistance state are non-volatile, and the on and off states are maintained even when no voltage is applied.
  • the varistor element can have a laminated structure in which a rectifying layer is sandwiched between opposing electrode layers.
  • silicon nitride can be used as the rectifying layer
  • nitride of titanium or tantalum can be used as the electrode layer.
  • amorphous silicon may be inserted as a buffer layer between the rectifying layer and the electrode layer.
  • the varistor element has an insulation state with a large impedance (for example, 100 M ⁇ or more) when no voltage is applied between the electrodes, and when a voltage higher than a threshold value is applied, the impedance decreases and becomes conductive. In the conductive state, a large current of 100 ⁇ A or more can be passed.
  • a large impedance for example, 100 M ⁇ or more
  • the varistor element suppresses inflow of current to a resistance change element other than the resistance change element to be turned on / off when the resistance change element is turned on / off. Also, current limiting is performed when the resistance change element is turned on and off. Also, the resistance value when the variable resistance element is on is adjusted. Furthermore, a sneak current (sneak current) through the four-terminal switch in the on state is suppressed during signal transmission through the signal line.
  • FIG. 7 is a diagram for explaining the correspondence between the switches of the programmable logic circuit 2 and the logical operations.
  • a switch that is turned on is indicated by a circle.
  • the input signals Di [0] and Di [1] input from the input terminals IN [0] and IN [1] are negated (NOT) and NANDed (NAND) according to the switch setting of the programmable logic circuit 2. ), NOR (NOR), and clamping.
  • the processing result is output to the wiring nodes [0] and [1] as a binary value of the power supply voltage (V DD ) and GND.
  • the processing results output to the wiring nodes [0] and [1] are taken out to the output terminal OUT as appropriate by turning on and off the switches SW 3-3 and SW 3-4 .
  • FIG. 7 the settings of SW 3-3 and SW 3-4 are omitted. Also, in FIG. 7 and subsequent FIGS. 8A to 8D, the negation of the input signal is represented as “ ⁇ ”, the product as “&”, and the sum as “
  • FIG. 8A to 8D are diagrams showing correspondence between the switches of the programmable logic circuit 2 shown in FIG. 7 and logical operations (negative, negative logical product, negative logical sum, and clamp) using FIG.
  • FIG. 8A shows a case where the programmable logic circuit 2 performs a negative (NOT) process.
  • SW 3-1, SW 3-2, SW 3-3 turns on the SW 4-1.
  • V DD is input to the gates of PMOS [1] and NMOS [1].
  • the input signal Di [0] is input to the gates of PMOS [0] and NMOS [0].
  • FIG. 8A shows a case where SW 3-3 is turned on.
  • FIG. 8B shows a case where the programmable logic circuit 2 performs a NAND operation.
  • SW 1-1, SW 3-1, SW 3-3 turns on the SW 4-2.
  • the input signal Di [1] is input to the gates of PMOS [1] and NMOS [1].
  • the input signal Di [0] is input to the gates of PMOS [0] and NMOS [0].
  • the wiring node [1] always becomes V DD via SW 1-1 .
  • the wiring node [0] becomes GND through the NMOS [0] connected to the GND and the NMOS [1] connected to the NMOS [0], and outputs the GND that is the NAND of the input signal.
  • interconnection node outputting the NAND as [0] via the SW 3-3 is connected to the output terminal OUT.
  • the output terminal OUT outputs the NAND processing result.
  • FIG. 8C shows a case where the programmable logic circuit 2 performs a negative OR (NOR) process.
  • SW 2-1, SW 3-2, SW 3-4 turns on the SW 4-2.
  • the input signal Di [1] is input to the gates of PMOS [1] and NMOS [1].
  • the input signal Di [0] is input to the gates of PMOS [0] and NMOS [0].
  • the wiring node [0] always becomes GND via the SW 2-1 .
  • V DD becomes via the PMOS [1] to connect to the PMOS [0] and PMOS [0] to be connected to V DD, and outputs the V DD is a NOR of the input signal .
  • the wiring node [1] that outputs NOR as described above is connected to the output terminal OUT via the SW 3-4 .
  • the output terminal OUT outputs a NOR processing result.
  • FIG. 8D shows a case where the programmable logic circuit 2 performs the clamping process.
  • SW 1-1 and SW 2-1 are turned on.
  • the wiring node [1] is clamped to V DD .
  • the SW 2-1 interconnection node [0] is clamped to GND.
  • the output terminal OUT outputs GND or V DD .
  • the programmable logic circuit 2 outputs the result of logical operation of the input signal as binary values of V DD and GND.
  • the element areas of the N-type transistor (NMOS) and the P-type transistor (PMOS) are about 16 F 2 , where F is the minimum design dimension in semiconductor design.
  • the element area of the switch provided in the wiring layer is 4F 2 .
  • the memory is formed by an in-wiring layer switch and the selection circuit is formed by a CMOS switch shown in FIG. 16A.
  • the exclusive area of the programmable logic circuit 2 is reduced to 1/3.
  • the wiring length between the circuit blocks can be shortened, so that the operating power is reduced.
  • the output signal is a binary value of the power supply voltage and GND, when this output signal is used as an input signal for the circuit in the subsequent stage, an increase in leakage current due to the intermediate potential can be suppressed. it can.
  • FIG. 9A is a diagram showing a configuration of the semiconductor device 3 using the programmable logic circuit 2 of the present embodiment.
  • the semiconductor device 3 has a multilayer copper wiring layer, and the switch of the programmable logic circuit 2 can be incorporated in the multilayer copper wiring layer.
  • a flip-flop circuit may be provided at the subsequent stage of the programmable logic circuit 2 so that the output signal of the programmable logic circuit 2 is output in synchronization with the clock via the flip-flop circuit.
  • the semiconductor device 3 can have an integrated circuit such as a memory circuit having a CMOS transistor or a bipolar transistor, a logic circuit such as a microprocessor, or a circuit on which these are simultaneously mounted.
  • the semiconductor device 3 may also be packaged with resin, metal, ceramic, or the like.
  • an electronic circuit device, an optical circuit device, a quantum circuit device, a micromachine, a MEMS (Micro Electro Mechanical Systems), or the like can be connected to the semiconductor device 3.
  • FIG. 9B is a diagram showing a configuration of the semiconductor device 3 using the programmable logic circuit 2 of the present embodiment. As shown in FIG. 9B, by using the output signal of the programmable logic circuit 2 as an input signal of another programmable logic circuit 2, it is possible to configure a logic circuit in which the programmable logic circuit 2 has a multi-stage configuration.
  • FIG. 9C is a diagram showing a configuration of the semiconductor device 3 using the programmable logic circuit 2 of the present embodiment. As shown in FIG. 9C, a circuit that executes a large-scale logical operation is realized by connecting the programmable logic circuit 2 and a multiplication circuit, a memory, and the like to each other via a routing circuit.
  • register transfer level RTL (Register Transfer Level) can be used for designing logical operations using the programmable logic circuit 2.
  • a logic operation described in RTL is converted into a circuit (net list) described by a combination of basic gates of logic operations such as NAND and NOR using a logic synthesis tool.
  • the logic operation can be reconfigured by combining the first to fourth switches on and off, and the output of the logic operation is supplied between the power supply voltage and the ground. It can be binary. Furthermore, since the programmable logic circuit 2 can be configured with four transistors, the circuit area can be reduced.
  • a part or all of the above embodiment can be described as follows, but is not limited to the following configuration.
  • (Appendix 1) A first switch, a second switch, A P-type transistor whose gate is connected to the input terminal and whose source is connected to the power supply voltage via the first switch or directly; and an N-type transistor whose drain is connected to the ground via the second switch or directly; , And two pairs, In conjunction with the first and second switches, the source voltage is connected to the source voltage and the drain voltage of the P-type transistor that is turned on, or the drain is grounded and turned on. And a third switch that outputs the voltage of the source of the transistor to the output terminal.
  • the input terminal supplies a first input signal to the gate of one of the two P-type transistors and the N-type transistor in the two sets, and the other P-type transistor and the N-type of the two sets.
  • Appendix 3 The source of the P-type transistor of one of the two sets is directly connected to the power supply voltage, the drain of the N-type transistor is directly grounded, The other of the two sets, the source of the P-type transistor is connected to the power supply voltage via the first switch, and the drain of the N-type transistor is grounded via the second switch.
  • a fourth switch that switches between connection and non-connection of the input terminal or the power supply voltage and the gate.
  • the programmable logic circuit according to appendix 4 wherein the first to fourth switches have resistance change elements.
  • the programmable logic circuit according to appendix 5 wherein the first to fourth switches have two of the variable resistance elements, and the variable resistance elements have bipolar characteristics and are connected in series at the same pole.
  • the first to fourth switches include two varistor elements, and the two varistor elements are respectively connected to nodes where the variable resistance elements are connected in series at the same pole. Programmable logic circuit. (Appendix 8) 8.
  • Appendix 9 A semiconductor device having the programmable logic circuit according to one of appendices 1 to 8.
  • Appendix 10 The semiconductor device according to appendix 9, wherein the semiconductor device has a multilayer copper wiring layer, and the first, second, and third switches of the programmable logic circuit are formed in the multilayer copper wiring layer.
  • the semiconductor device according to appendix 9 or 10 wherein the output terminal of the programmable logic circuit is connected to the input terminal of another programmable logic circuit. (Appendix 12) 12.

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

In order to output two potential values of a power supply voltage and a ground voltage and provide a reconfigurable logic integrated circuit having a small circuit area, this programmable logic circuit is provided with: a first switch; a second switch; a pair of transistors, which is a P-type transistor and an N-type trans each having a gate connected to an input terminal, the P-type transistor having a source connected to the power supply voltage directly or via the first switch, and the N-type transistor having a drain connected to the ground voltage directly or via the second switch; and a third switch which is linked with the first switch and the second switch and outputs, to an output terminal, a drain voltage of the P-type transistor, which is in an on-state and the source of which is connected to the power supply voltage, or a source voltage of the N-type transistor, which is in an on-stae and the drain of which is connected to the ground voltage.

Description

プログラマブル論理回路とこれを用いた半導体装置Programmable logic circuit and semiconductor device using the same

 本発明は、抵抗変化素子を用いたプログラマブル論理集積回路とこれを用いた半導体装置に関する。 The present invention relates to a programmable logic integrated circuit using resistance change elements and a semiconductor device using the same.

 プログラマブル論理回路は、回路内の設定情報を書き換えることにより、様々な論理回路を再構成可能な集積回路である。プログラマブル論理回路を用いた再構成回路は、図10に示すように、ルックアップテーブル(Lookup Table、以降LUTと略す)やフリップフロップを有するプログラマブル論理回路と、プログラマブル論理回路への入出力信号の選択や、プログラマブル論理回路間の信号経路の切り替えを行うルーティング回路を有する。再構成回路は現在、画像処理や通信などの分野で広く利用され、また、開発段階での回路試作にも利用されている。 A programmable logic circuit is an integrated circuit in which various logic circuits can be reconfigured by rewriting setting information in the circuit. As shown in FIG. 10, a reconfigurable circuit using a programmable logic circuit includes a programmable logic circuit having a lookup table (hereinafter abbreviated as LUT) and a flip-flop, and selection of input / output signals to the programmable logic circuit. And a routing circuit that switches signal paths between programmable logic circuits. The reconfigurable circuit is currently widely used in fields such as image processing and communication, and is also used for circuit trials at the development stage.

 ルーティング回路は、図11に示すようなスイッチにより、入力[k]と入力[k+1]を切り替えて出力[n]に出力するなどの信号経路の切り替えを行う。このスイッチの例として、図12は、SRAM(Static Random Access Memory)と、PMOS(P-type Metal-Oxide-Semiconductor)とNMOS(N-type MOS)を有するパストランジスタとからなるSRAMスイッチを示す。SRAMからの信号でパストランジスタがオンオフすることによって、入力「k」の出力[n]への経路を切り替えることができる。 The routing circuit performs signal path switching such as switching between input [k] and input [k + 1] and outputting to output [n] with a switch as shown in FIG. As an example of this switch, FIG. 12 shows an SRAM switch composed of SRAM (Static Random Access Memory), a pass transistor having PMOS (P-type Metal-Oxide-Semiconductor) and NMOS (N-type MOS). The path to the output [n] of the input “k” can be switched by turning on and off the pass transistor with a signal from the SRAM.

 このルーティング回路のSRAMを抵抗変化素子に置き換えることで、回路面積や消費電力を低減する技術が特許文献1や特許文献2に開示されている。また、プログラマブル論理回路にも、LUTのメモリとして用いられているSRAMを、抵抗変化素子に置き換える技術が特願2017-78050に提案されている。 Patent Documents 1 and 2 disclose techniques for reducing the circuit area and power consumption by replacing the SRAM of the routing circuit with a resistance change element. Japanese Patent Application No. 2017-78050 proposes a technique for replacing an SRAM used as a memory of an LUT in a programmable logic circuit with a resistance change element.

 抵抗変化素子は、特許文献1や特許文献2に開示されているように、金属イオンの伝導するイオン伝導層内での金属架橋の析出を利用する。抵抗変化素子は、イオン伝導層に金属イオンを供給する活性電極と金属イオンを供給しない不活性電極とが、イオン伝導層を挟んだ構造を有する。抵抗変化素子は、イオン伝導層中での両電極間を接続する金属架橋の形成と溶解によってオンオフする。抵抗変化素子では、低抵抗状態(オン状態)と高抵抗状態(オフ状態)の抵抗比が10の5乗、あるいはそれ以上となる。 As disclosed in Patent Document 1 and Patent Document 2, the resistance change element uses precipitation of metal bridges in an ion conductive layer through which metal ions are conducted. The variable resistance element has a structure in which an active electrode that supplies metal ions to an ion conductive layer and an inactive electrode that does not supply metal ions sandwich an ion conductive layer. The variable resistance element is turned on and off by forming and dissolving a metal bridge that connects the two electrodes in the ion conductive layer. In the resistance change element, the resistance ratio between the low resistance state (on state) and the high resistance state (off state) is 10 to the fifth power or higher.

 抵抗変化素子を再構成回路のスイッチとして利用する場合、回路上の全ての素子に常時電圧が印加されることから、読み出し時にだけ電圧や電流が印加されるメモリの場合に比べて、より高い信頼性が要求される。この高い信頼性を実現するために、特許文献3や特許文献4には、2つの対となる抵抗変化素子と1つのトランジスタからなる相補型のスイッチ素子が開示されている。さらに、特許文献5には、このトランジスタによる素子面積の増大を抑制し素子を小型化するために、このトランジスタを配線層に形成されたバリスタ(Variable Resistor)素子に置き換えた相補型のスイッチ素子が開示されている。バリスタ素子とは、2端子を有し、端子間の電圧差が閾値を超えると絶縁状態から導通状態に変化する素子である。 When a resistance change element is used as a switch in a reconfigurable circuit, since a voltage is always applied to all elements on the circuit, it is more reliable than a memory in which voltage or current is applied only during reading. Sex is required. In order to realize this high reliability, Patent Document 3 and Patent Document 4 disclose complementary switch elements including two pairs of resistance change elements and one transistor. Further, Patent Document 5 discloses a complementary switching element in which a transistor is replaced with a varistor (Variable Resistor) element formed in a wiring layer in order to suppress an increase in element area due to the transistor and to reduce the element size. It is disclosed. A varistor element is an element that has two terminals and changes from an insulated state to a conductive state when a voltage difference between the terminals exceeds a threshold value.

特開2005-101535号公報JP 2005-101535 A 国際公開第2012/043502号International Publication No. 2012/043502 国際公開第2013/190742号International Publication No. 2013/190742 国際公開第2014/030393号International Publication No. 2014/030393 国際公開第2016/163120号International Publication No. 2016/163120

 プログラマブル論理回路のLUTは、図13に示すように、メモリと選択回路とに分けることができる。メモリは、SRAMや、図14に示すような配線層内に設けられたスイッチ素子などで構成される。また、選択回路は、例えば図15に示すように、2入力のLUTの場合、1入力のマルチプレクサを2段構成とするために3台を要する。マルチプレクサは、図16Aに示すようにCMOS(Complementary MOS)スイッチを信号切り替えに使うため、トランジスタの数は、1台のマルチプレクサでNMOSとPMOSを合わせて4個、3台では合計で12個となる。 The LUT of the programmable logic circuit can be divided into a memory and a selection circuit as shown in FIG. The memory is composed of an SRAM, a switch element provided in a wiring layer as shown in FIG. Further, for example, as shown in FIG. 15, in the case of a two-input LUT, three selection circuits are required to form a one-input multiplexer in two stages. As shown in FIG. 16A, the multiplexer uses a CMOS (Complementary MOS) switch for signal switching, so that the number of transistors is 4 for NMOS and PMOS in a single multiplexer and 12 in total for 3 units. .

 一方で、既存の否定論理積(NAND)や否定論理和(NOR)の2入力の論理回路は、4個のトランジスタで構成することができる。すなわち、CMOSスイッチを用いたマルチプレクサによる選択回路を用いたLUTで論理演算を行おうとした場合、トランジスタを多く必要とするために回路面積が増大してしまうという課題を有している。 On the other hand, the existing two-input logic circuit of NAND (NAND) and NOR (NOR) can be composed of four transistors. That is, there is a problem that when a logical operation is performed by an LUT using a selection circuit by a multiplexer using a CMOS switch, a circuit area increases because a large number of transistors are required.

 また、CMOSに替えて、図16Bに示すようなNMOSとPMOSの一つずつで信号を選択する回路によれば、マルチプレクサ3台でトランジスタの数を6個に減らすことができる。しかしながら、この場合、LUTからの出力電圧は、図17に示すように、接地(GND)と電源電圧(VDD)との差に比べて、NMOSとPMOSの各トランジスタの閾電圧の分だけ小さくなる。このため、LUTからの出力電圧を後段の回路に導入する場合、CMOSゲートにおいて十分な電圧が得られない、もしくは中間電位によりリーク電流が増大する。この結果、複数のプログラマブル論理回路を組み合わせた再構成回路において、動作周波数の低下や消費電力の増大が課題となっている。 Further, according to the circuit for selecting a signal with one NMOS and one PMOS as shown in FIG. 16B instead of CMOS, the number of transistors can be reduced to six with three multiplexers. However, in this case, as shown in FIG. 17, the output voltage from the LUT is smaller than the difference between the ground (GND) and the power supply voltage (V DD ) by the threshold voltage of each NMOS and PMOS transistor. Become. For this reason, when the output voltage from the LUT is introduced into the subsequent circuit, a sufficient voltage cannot be obtained at the CMOS gate, or the leakage current increases due to the intermediate potential. As a result, in a reconfigurable circuit in which a plurality of programmable logic circuits are combined, reduction in operating frequency and increase in power consumption are problems.

 特許文献1から特許文献5には、特許文献1から特許文献5に開示された抵抗変化素子をスイッチに用いて、回路面積の増大や出力電圧の低下をもたらすことなく、再構成が可能な論理集積回路を実現する技術は開示されていない。 In Patent Documents 1 to 5, a logic that can be reconfigured without causing an increase in circuit area or a decrease in output voltage by using the variable resistance element disclosed in Patent Documents 1 to 5 as a switch. A technique for realizing an integrated circuit is not disclosed.

 本発明は、上記の課題に鑑みてなされたものであり、その目的は、電源電圧と接地の2値の電位を出力し、かつ回路面積が小さい再構成が可能な論理集積回路を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a logic integrated circuit that outputs a binary potential of a power supply voltage and a ground and that can be reconfigured with a small circuit area. It is in.

 本発明のプログラマブル論理回路は、第1のスイッチと、第2のスイッチと、ゲートが入力端子に接続し、ソースが前記第1のスイッチを介してもしくは直接、電源電圧に接続するP型トランジスタと、ドレインが前記第2のスイッチを介してもしくは直接、接地するN型トランジスタと、の2つの組と、前記第1と第2のスイッチと連動して、前記電源電圧に前記ソースが接続しかつオンしている前記P型トランジスタのドレインの電圧、もしくは、前記ドレインが接地しかつオンしている前記N型トランジスタのソースの電圧を、出力端子に出力する第3のスイッチと、を有する。 The programmable logic circuit of the present invention includes a first switch, a second switch, a P-type transistor having a gate connected to an input terminal and a source connected to the power supply voltage via the first switch or directly. The source is connected to the power supply voltage in conjunction with two sets of N-type transistors whose drains are grounded via the second switch or directly to the ground, and the first and second switches; And a third switch that outputs to the output terminal the voltage of the drain of the P-type transistor that is turned on, or the voltage of the source of the N-type transistor that is grounded and turned on.

 本発明の半導体装置は、本発明のプログラマブル論理回路を有する。 The semiconductor device of the present invention has the programmable logic circuit of the present invention.

 本発明によれば、電源電圧と接地の2値の電位を出力し、かつ回路面積が小さい再構成が可能な論理集積回路を提供することができる。 According to the present invention, it is possible to provide a logic integrated circuit that outputs a binary potential of a power supply voltage and a ground and that can be reconfigured with a small circuit area.

本発明の第1の実施形態のプログラマブル論理回路の構成を示す図である。It is a figure which shows the structure of the programmable logic circuit of the 1st Embodiment of this invention. 本発明の第2の実施形態のプログラマブル論理回路の構成を示す図である。It is a figure which shows the structure of the programmable logic circuit of the 2nd Embodiment of this invention. 本発明の第2の実施形態のプログラマブル論理回路のスイッチの動作を説明するための図である。It is a figure for demonstrating operation | movement of the switch of the programmable logic circuit of the 2nd Embodiment of this invention. 本発明の第2の実施形態のプログラマブル論理回路の出力信号の大きさを説明するための図である。It is a figure for demonstrating the magnitude | size of the output signal of the programmable logic circuit of the 2nd Embodiment of this invention. 本発明の第2の実施形態のプログラマブル論理回路のスイッチの構成を示す図である。It is a figure which shows the structure of the switch of the programmable logic circuit of the 2nd Embodiment of this invention. 本発明の第2の実施形態のプログラマブル論理回路のスイッチの配線との接続を説明するための図である。It is a figure for demonstrating the connection with the wiring of the switch of the programmable logic circuit of the 2nd Embodiment of this invention. 本発明の第2の実施形態のプログラマブル論理回路の抵抗変化素子の構成を示す図である。It is a figure which shows the structure of the variable resistance element of the programmable logic circuit of the 2nd Embodiment of this invention. 本発明の第2の実施形態のプログラマブル論理回路の抵抗変化素子をシンボリックに示す図である。It is a figure which shows the variable resistance element of the programmable logic circuit of the 2nd Embodiment of this invention symbolically. 本発明の第2の実施形態のプログラマブル論理回路の抵抗変化素子の動作を説明するための図である。It is a figure for demonstrating operation | movement of the resistance change element of the programmable logic circuit of the 2nd Embodiment of this invention. 本発明の第2の実施形態のプログラマブル論理回路のスイッチと論理演算との対応を説明するための図である。It is a figure for demonstrating a response | compatibility with the switch and logic operation of the programmable logic circuit of the 2nd Embodiment of this invention. 本発明の第2の実施形態のプログラマブル論理回路のスイッチと論理演算(否定)との対応を説明するための図である。It is a figure for demonstrating a response | compatibility with the switch of the programmable logic circuit of the 2nd Embodiment of this invention, and logic operation (negative). 本発明の第2の実施形態のプログラマブル論理回路のスイッチと論理演算(否定論理積)との対応を説明するための図である。It is a figure for demonstrating a response | compatibility with the switch of the programmable logic circuit of the 2nd Embodiment of this invention, and a logical operation (negative logical product). 本発明の第2の実施形態のプログラマブル論理回路のスイッチと論理演算(否定論理和)との対応を説明するための図である。It is a figure for demonstrating the response | compatibility with the switch of the programmable logic circuit of the 2nd Embodiment of this invention, and logic operation (negative OR). 本発明の第2の実施形態のプログラマブル論理回路のスイッチと論理演算(クランプ)との対応を説明するための図である。It is a figure for demonstrating a response | compatibility with the switch and programmable logic (clamp) of the programmable logic circuit of the 2nd Embodiment of this invention. 本発明の第2の実施形態のプログラマブル論理回路を用いた半導体装置の構成を示す図である。It is a figure which shows the structure of the semiconductor device using the programmable logic circuit of the 2nd Embodiment of this invention. 本発明の第2の実施形態のプログラマブル論理回路を用いた半導体装置の構成を示す図である。It is a figure which shows the structure of the semiconductor device using the programmable logic circuit of the 2nd Embodiment of this invention. 本発明の第2の実施形態のプログラマブル論理回路を用いた半導体装置の構成を示す図である。It is a figure which shows the structure of the semiconductor device using the programmable logic circuit of the 2nd Embodiment of this invention. 既知の再構成回路の構成を示す図である。It is a figure which shows the structure of a known reconstruction circuit. 既知の再構成回路のルーティング回路のスイッチを説明するための図である。It is a figure for demonstrating the switch of the routing circuit of a known reconstruction circuit. 既知の再構成回路のルーティング回路のSRAMスイッチの構成を示す図である。It is a figure which shows the structure of the SRAM switch of the routing circuit of a known reconstruction circuit. 既知のLUTの構成を示すブロック図である。It is a block diagram which shows the structure of a known LUT. 既知のLUTのスイッチの構成を示す図である。It is a figure which shows the structure of the switch of a known LUT. 既知のLUTの構成を示すブロック図である。It is a block diagram which shows the structure of a known LUT. 既知のLUTのマルチプレクサの構成を示す図である。It is a figure which shows the structure of the multiplexer of a known LUT. 既知のLUTのマルチプレクサの別の構成を示す図である。It is a figure which shows another structure of the multiplexer of a known LUT. 既知のLUTの出力信号の大きさを説明するための図である。It is a figure for demonstrating the magnitude | size of the output signal of a known LUT.

 以下、図を参照しながら、本発明の実施形態を詳細に説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the preferred embodiments described below are technically preferable for carrying out the present invention, but the scope of the invention is not limited to the following.

 (第1の実施形態)
 図1は、本発明の第1の実施形態のプログラマブル論理回路の構成を示す図である。本実施形態のプログラマブル論理回路1は、第1のスイッチ11と、第2のスイッチ12と、を有する。さらに、ゲートが入力端子に接続し、ソースが第1のスイッチ11を介してもしくは直接、電源電圧(VDD)に接続するP型トランジスタ14と、ドレインが第2のスイッチ12を介してもしくは直接、接地するN型トランジスタ15と、の2つの組16を有する。さらに、第1のスイッチ11および第2のスイッチ12と連動して、電源電圧にソースが接続しかつオンしているP型トランジスタ14のドレインの電圧、もしくは、ドレインが接地しかつオンしているN型トランジスタ15のソースの電圧を、出力端子に出力する第3のスイッチ13を有する。
(First embodiment)
FIG. 1 is a diagram showing a configuration of a programmable logic circuit according to the first embodiment of the present invention. The programmable logic circuit 1 according to this embodiment includes a first switch 11 and a second switch 12. Furthermore, a P-type transistor 14 whose gate is connected to the input terminal and whose source is connected to the power supply voltage (V DD ) via the first switch 11 or directly, and whose drain is connected via the second switch 12 or directly. And two sets 16 of N-type transistors 15 to be grounded. Further, in conjunction with the first switch 11 and the second switch 12, the drain voltage of the P-type transistor 14 whose source is connected to the power supply voltage and turned on, or the drain is grounded and turned on. A third switch 13 is provided for outputting the source voltage of the N-type transistor 15 to the output terminal.

 プログラマブル論理回路1によれば、第1から第3のスイッチのオンオフの組み合わせにより、論理演算を再構成することができ、かつ論理演算の出力を電源電圧と接地の2値とすることができる。さらに、4個のトランジスタでプログラマブル論理回路1を構成することができるため、回路面積を小さくすることができる。 According to the programmable logic circuit 1, a logical operation can be reconfigured by a combination of on / off of the first to third switches, and the output of the logical operation can be a binary value of a power supply voltage and ground. Furthermore, since the programmable logic circuit 1 can be configured by four transistors, the circuit area can be reduced.

 以上のように、本実施形態によれば、電源電圧と接地の2値の電位を出力し、かつ回路面積が小さい再構成が可能な論理集積回路を提供することができる。 As described above, according to the present embodiment, it is possible to provide a logic integrated circuit that outputs a binary potential of a power supply voltage and a ground and that can be reconfigured with a small circuit area.

 (第2の実施形態)
 図2は、本発明の第2の実施形態のプログラマブル論理回路2の構成を示す図である。プログラマブル論理回路2は、P型トランジスタPMOS[0]とN型トランジスタNMOS[0]の組と、P型トランジスタPMOS[1]とN型トランジスタNMOS[1]の組とを有する。さらに、4種の切り替えスイッチとして、第1のスイッチとしてのスイッチSW1-1、第2のスイッチとしてのスイッチSW2-1、第3のスイッチとしてのスイッチSW3-1、SW3-2、SW3-3、SW3-4、第4のスイッチとしてのスイッチSW4-1、SW4-2を有する。
(Second Embodiment)
FIG. 2 is a diagram showing a configuration of the programmable logic circuit 2 according to the second embodiment of the present invention. The programmable logic circuit 2 includes a set of a P-type transistor PMOS [0] and an N-type transistor NMOS [0], and a set of a P-type transistor PMOS [1] and an N-type transistor NMOS [1]. Further, as four kinds of change-over switches, a switch SW 1-1 as a first switch, a switch SW 2-1 as a second switch, switches SW 3-1 , SW 3-2 as third switches, SW 3-3 and SW 3-4 and switches SW 4-1 and SW 4-2 as fourth switches are provided.

 以上の4種の切り替えスイッチは、図3に示すように、交差する配線の交点に存し、交差する配線の間の電気的な接続(オン)と非接続(オフ)を切り替える。 As shown in FIG. 3, the above four types of changeover switches exist at the intersections of the intersecting wirings, and switch between electrical connection (on) and non-connection (off) between the intersecting wirings.

 SW1-1は、PMOS[1]のソースが接続する配線ノード[1]を介して、PMOS[1]のソースと電源電圧(VDD)の間の電気的な接続と非接続を切り替える。一方、PMOS[0]のソースはVDDに接続している。 SW 1-1 switches between electrical connection and non-connection between the source of PMOS [1] and the power supply voltage (V DD ) via wiring node [1] to which the source of PMOS [1] is connected. On the other hand, the source of PMOS [0] is connected to V DD .

 SW2-1は、NMOS[1]のドレインが接続する配線ノード[0]を介して、NMOS[1]のドレインと接地(GND)の間の電気的な接続と非接続を切り替える。一方、NMOS[0]のドレインはGNDに接続している。 The SW 2-1 switches between electrical connection and non-connection between the drain of the NMOS [1] and the ground (GND) via the wiring node [0] to which the drain of the NMOS [1] is connected. On the other hand, the drain of NMOS [0] is connected to GND.

 SW3-1は、PMOS[0]とPMOS[1]の双方のドレインが接続するノードに存し、当該ノードと配線ノード[0]の間の電気的な接続と非接続を切り替える。SW3-2は、NMOS[0]とNMOS[1]の双方のソースが接続するノードに存し、当該ノードと配線ノード[1]の間の電気的な接続と非接続を切り替える。SW3-3とSW3-4は、各々配線ノード[0]と配線ノード[1]に存し、各々、配線ノード[0]と出力端子OUTの間の電気的な接続と非接続、配線ノード[1]と出力端子OUTの間の電気的な接続と非接続を切り替える。 SW 3-1 exists in a node to which the drains of both PMOS [0] and PMOS [1] are connected, and switches between electrical connection and non-connection between the node and the wiring node [0]. SW 3-2 exists at a node to which the sources of both NMOS [0] and NMOS [1] are connected, and switches between electrical connection and non-connection between the node and the wiring node [1]. SW 3-3 and SW 3-4 exist in the wiring node [0] and the wiring node [1], respectively, and are electrically connected and disconnected between the wiring node [0] and the output terminal OUT, respectively. The electrical connection and disconnection between the node [1] and the output terminal OUT are switched.

 SW4-1とSW4-2は、各々、PMOS[1]とNMOS[1]の双方のゲートに、入力端子IN[1]の入力信号Di[1]もしくは電源電圧を入力する切り替えを行う。一方、PMOS[0]とNMOS[0]の双方のゲートには、入力端子IN[0]の入力信号Di[0]が入力する。なお、PMOS[0]とNMOS[0]のゲートと入力端子IN[0]の間に、電気的な接続と非接続を切り替えるスイッチを設けていてもよい。 SW 4-1 and SW 4-2 perform switching to input the input signal Di [1] of the input terminal IN [1] or the power supply voltage to the gates of both PMOS [1] and NMOS [1], respectively. . On the other hand, the input signal Di [0] of the input terminal IN [0] is input to the gates of both PMOS [0] and NMOS [0]. Note that a switch for switching between electrical connection and non-connection may be provided between the gates of the PMOS [0] and NMOS [0] and the input terminal IN [0].

 入力信号Di[0]、Di[1]は、Highの信号またはLowの信号を有する。HighではNMOSがオンしPMOSはオンしない。一方、LowではPMOSがオンしNMOSはオンしない。 The input signals Di [0] and Di [1] have a high signal or a low signal. In High, NMOS is turned on and PMOS is not turned on. On the other hand, at Low, PMOS is turned on and NMOS is not turned on.

 配線ノード[0]は、SW2-1とSW3-1とが連動していずれか一方がオンしていることで、PMOSを介しての電源電圧へのプルアップ、もしくはNMOSを介してのGNDへのプルダウンがされる。また、配線ノード[1]は、SW1-1とSW3-2とが連動していずれか一方がオンしていることで、PMOSを介しての電源電圧へのプルアップ、もしくはNMOSを介してのGNDへのプルダウンがされる。以上により、配線ノード[0]と配線ノード[1]の電位は、電源電圧とGNDの2値となる。すなわち、出力信号の大きさは、図4に示すように、電源電圧とGNDの差分とすることができる。 In the wiring node [0], either SW 2-1 or SW 3-1 is interlocked and one of them is turned on, so that pull-up to the power supply voltage via the PMOS or via the NMOS is performed. Pulled down to GND. Also, the wiring node [1] is connected to SW 1-1 and SW 3-2 and either one is turned on, so that pull-up to the power supply voltage via PMOS or via NMOS is performed. Pull down to all GND. As described above, the potentials of the wiring node [0] and the wiring node [1] are binary values of the power supply voltage and GND. That is, the magnitude of the output signal can be the difference between the power supply voltage and GND, as shown in FIG.

 ここで、厳密には、配線ノード[0][1]と、電源電圧やGNDとの間に存在する、PMOSやNMOSのオン抵抗や配線の配線抵抗などにより、配線ノード[0][1]に出力される電位は、電源電圧よりも降下し、またGNDよりも上昇する。しかしながら、このような電位の降下や上昇は、図17で説明したPMOSやNMOSの閾電圧による電位の降下や上昇に比べると十分に小さい。さらに、このような電位の降下や上昇は、通常のPMOSやNMOSや配線を用いた電子回路において、ゲート電圧を十分に高くしてオン抵抗を下げたり、配線の断面積や長さを制御して配線抵抗を下げるなどして対処されるものである。よって、本実施形態および本明細書の全体では、効果を簡潔に説明するために、このような電位の降下や上昇の分を含めて、配線ノード[0]と配線ノード[1]の出力は電源電圧とGNDの2値となる、と言うこととする。 Strictly speaking, the wiring node [0] [1] is connected between the wiring node [0] [1] and the on-resistance of the PMOS or NMOS, the wiring resistance of the wiring, etc. existing between the power supply voltage and GND. The potential output to the voltage drops below the power supply voltage and rises above GND. However, such a potential drop or rise is sufficiently smaller than the potential drop or rise due to the threshold voltage of the PMOS or NMOS described in FIG. Furthermore, such potential drops or rises in electronic circuits using normal PMOS, NMOS, or interconnects can be used to sufficiently increase the gate voltage to lower the on-resistance, or to control the cross-sectional area and length of the interconnects. This can be dealt with by reducing the wiring resistance. Therefore, in the present embodiment and the entirety of this specification, the outputs of the wiring node [0] and the wiring node [1] are included in order to briefly explain the effects, including such potential drops and increases. It is assumed that the binary value of the power supply voltage and GND.

 以上の4種の切り替えスイッチ(第1~第4のスイッチ)は、トランジスタを含まずに配線層内に形成されたスイッチ素子でオンオフを切り替えられることが望ましく、図5Aに示す4端子スイッチ20とすることができる。4端子スイッチ20は、各々端子2つを有して直列接続する、第1の抵抗変化素子21と第1のバリスタ素子23の組と、第2の抵抗変化素子22と第2のバリスタ素子24の組が、前記直列接続する端子で接続している構成を有する。 The above four types of change-over switches (first to fourth switches) are preferably switched on / off by a switch element formed in the wiring layer without including a transistor. The four-terminal switch 20 shown in FIG. can do. The four-terminal switch 20 has two terminals each and is connected in series. The first resistance change element 21 and the first varistor element 23, the second resistance change element 22, and the second varistor element 24 are connected. Are connected at the terminals connected in series.

 第1の抵抗変化素子21および第2の抵抗変化素子22は、抵抗変化させる電圧の印加方向に極性があるバイポーラ特性を有する。第1の抵抗変化素子21と第2の抵抗変化素子22とは同極同士で接続している。また、第1のバリスタ素子23および第2のバリスタ素子24は、双極性を有し、端子間の電位差が閾値を超えると絶縁状態から導通状態に変化する。 The first resistance change element 21 and the second resistance change element 22 have a bipolar characteristic that has a polarity in the direction of application of a voltage for resistance change. The first variable resistance element 21 and the second variable resistance element 22 are connected with the same polarity. The first varistor element 23 and the second varistor element 24 are bipolar, and change from an insulated state to a conductive state when the potential difference between the terminals exceeds a threshold value.

 図5Bは、4端子スイッチ20と配線との接続を説明するための図である。第1の抵抗変化素子21と第2の抵抗変化素子22とが直列接続する端子とは別の端子は、各々、第1の信号線および第2の信号線のそれぞれに接続する。また、第1のバリスタ素子23と第2のバリスタ素子24とが直列接続する端子とは別の端子は、各々、第1の制御線および第2の制御線のそれぞれに接続する。4端子スイッチ20は、第1の抵抗変化素子21と第2の抵抗変化素子22とが共にオンすることで、第1の信号線と第2の信号線の間での信号伝達を可能とする。第1の制御線および第2の制御線は、第1の信号線および第2の信号線と共に、第1の抵抗変化素子21および第2の抵抗変化素子22をオンオフする。なお、図2では、制御線は省略されている。 FIG. 5B is a diagram for explaining the connection between the four-terminal switch 20 and the wiring. Terminals other than the terminal to which the first resistance change element 21 and the second resistance change element 22 are connected in series are connected to the first signal line and the second signal line, respectively. In addition, terminals different from the terminal to which the first varistor element 23 and the second varistor element 24 are connected in series are connected to the first control line and the second control line, respectively. The four-terminal switch 20 enables signal transmission between the first signal line and the second signal line when both the first resistance change element 21 and the second resistance change element 22 are turned on. . The first control line and the second control line turn on and off the first resistance change element 21 and the second resistance change element 22 together with the first signal line and the second signal line. In FIG. 2, the control lines are omitted.

 まず、第1の抵抗変化素子21をスイッチする場合は、第1の信号線と第2の制御線との間に所定の電圧を印加する。このときスイッチさせない第2の抵抗変化素子22に対しては、第2の信号線と第1の制御線との間の電圧が、第1のバリスタ素子23が絶縁状態から導通状態に変化する電圧の閾値を超えないようにする。 First, when switching the first resistance change element 21, a predetermined voltage is applied between the first signal line and the second control line. For the second variable resistance element 22 that is not switched at this time, the voltage between the second signal line and the first control line is the voltage at which the first varistor element 23 changes from the insulated state to the conductive state. Do not exceed the threshold.

 次に、第2の抵抗変化素子22をスイッチする場合は、第2の信号線と第1の制御線との間に所定の電圧を印加する。このときスイッチさせない第1の抵抗変化素子21に対しては、第1の信号線と第2の制御線との間の電圧が、第2のバリスタ素子24の前記閾値を超えないようにする。 Next, when switching the second variable resistance element 22, a predetermined voltage is applied between the second signal line and the first control line. For the first variable resistance element 21 that is not switched at this time, the voltage between the first signal line and the second control line is prevented from exceeding the threshold value of the second varistor element 24.

 第1の抵抗変化素子21および第2の抵抗変化素子22は、所定の電圧を所定の時間印加することで抵抗状態が変化し、かつ変化後の抵抗状態が保持される抵抗変化素子であればよい。また、第1の抵抗変化素子21および第2の抵抗変化素子22は、信号を継続的に通過させて使用する際のディスターブ耐性を高くするという観点から、抵抗変化させる電圧の印加方向に極性があるバイポーラ特性を有することが望ましい。 The first resistance change element 21 and the second resistance change element 22 are resistance change elements that change the resistance state by applying a predetermined voltage for a predetermined time and maintain the changed resistance state. Good. Also, the first resistance change element 21 and the second resistance change element 22 have a polarity in the direction in which the resistance change voltage is applied from the viewpoint of increasing the disturbance resistance when the signal is continuously passed and used. It is desirable to have some bipolar characteristics.

 抵抗変化素子としては、遷移金属酸化物を用いたReRAM(Resistance Random Access Memory)素子や、イオン伝導体を用いたNanoBridge(登録商標)素子などを用いることができる。 As the resistance change element, a ReRAM (Resistance Random Access Memory) element using a transition metal oxide, a NanoBridge (registered trademark) element using an ion conductor, or the like can be used.

 図6Aは、抵抗変化素子の構造を、図6Bは、抵抗変化素子のシンボリック表現を、図6Cは、抵抗変化素子の抵抗状態を切り替える方法を、各々示す。図6Aに示すように、抵抗変化素子は、抵抗変化層と、抵抗変化層に接して対向面に設けられている第1電極および第2電極と、を有する。 6A shows the structure of the resistance change element, FIG. 6B shows a symbolic representation of the resistance change element, and FIG. 6C shows a method of switching the resistance state of the resistance change element. As illustrated in FIG. 6A, the resistance change element includes a resistance change layer, and a first electrode and a second electrode provided on opposite surfaces in contact with the resistance change layer.

 抵抗変化層にイオン伝導体を用いる場合、第1電極からは抵抗変化層に金属イオンが供給され、第2電極からは金属イオンは供給されないとする。これにより抵抗変化素子はバイポーラ特性を有することができる。イオン伝導体としては、例えば、Al、Ti、Ta、Si、Hf、Zrなどを含む酸化物や、Ge、As、TeSなどを含むカルコゲナイド化合物や、炭素と酸素とシリコンを含む有機ポリマー膜などを用いることができる。また、例えば、第1電極としては銅を、第2電極としてはルテニウムを、各々用いることができる。 When an ion conductor is used for the resistance change layer, metal ions are supplied from the first electrode to the resistance change layer, and metal ions are not supplied from the second electrode. Thereby, the variable resistance element can have bipolar characteristics. Examples of the ion conductor include oxides containing Al, Ti, Ta, Si, Hf, Zr, chalcogenide compounds containing Ge, As, TeS, etc., organic polymer films containing carbon, oxygen, and silicon. Can be used. For example, copper can be used as the first electrode, and ruthenium can be used as the second electrode.

 図6Cに示すように、第1電極と第2電極とで抵抗変化層に印加する電圧の極性を変えることで、抵抗変化素子の抵抗値を変化させて電極間の導通状態を制御することができる。すなわち、両電極間に印加する電圧を制御することにより、イオン伝導体中で両電極間に金属架橋を形成して接続し、また金属架橋を溶解して切断する。これにより両電極間の抵抗を低抵抗状態(オン状態と呼ぶ)と高抵抗状態(オフ状態と呼ぶ)とで遷移させることができる。低抵抗状態と高抵抗状態の抵抗比は、例えば、10の5乗、もしくはそれ以上とすることができるため、抵抗変化素子は、電気的に接続あるいは切断するスイッチとして機能する。さらに、低抵抗状態と高抵抗状態は不揮発性であり、オンおよびオフの状態は電圧を印加しなくても保持される。 As shown in FIG. 6C, by changing the polarity of the voltage applied to the resistance change layer between the first electrode and the second electrode, the resistance value of the resistance change element can be changed to control the conduction state between the electrodes. it can. That is, by controlling the voltage applied between both electrodes, a metal bridge is formed and connected between both electrodes in the ionic conductor, and the metal bridge is dissolved and cut. Thereby, the resistance between both electrodes can be changed between a low resistance state (referred to as an on state) and a high resistance state (referred to as an off state). Since the resistance ratio between the low resistance state and the high resistance state can be set to, for example, 10 5 or higher, the resistance change element functions as a switch that is electrically connected or disconnected. Further, the low resistance state and the high resistance state are non-volatile, and the on and off states are maintained even when no voltage is applied.

 バリスタ素子は、対向する電極層で整流層を挟んだ積層構造とすることができる。整流層としては例えば窒化シリコンを、電極層としては例えばチタンやタンタルの窒化物を用いることができる。また、整流層と電極層の間に、バッファ層として例えば非晶質シリコンを挿入してもよい。 The varistor element can have a laminated structure in which a rectifying layer is sandwiched between opposing electrode layers. For example, silicon nitride can be used as the rectifying layer, and nitride of titanium or tantalum can be used as the electrode layer. Further, for example, amorphous silicon may be inserted as a buffer layer between the rectifying layer and the electrode layer.

 バリスタ素子は、電極間に電圧印加のない状態ではインピーダンスの大きい(例えば100MΩ以上)絶縁状態を有し、閾値以上の電圧を印加するとインピーダンスが減少して導通状態になる。導通状態では、100μA以上の大きな電流を流すこともできる。 The varistor element has an insulation state with a large impedance (for example, 100 MΩ or more) when no voltage is applied between the electrodes, and when a voltage higher than a threshold value is applied, the impedance decreases and becomes conductive. In the conductive state, a large current of 100 μA or more can be passed.

 バリスタ素子は、抵抗変化素子をオンオフする際に、オンオフ対象の抵抗変化素子以外の抵抗変化素子への電流の流入を抑制する。また、抵抗変化素子のオンオフを遷移させる際に電流制限を行う。また、抵抗変化素子のオン時の抵抗値を調整する。さらに、信号線を介した信号伝達時に、オン状態にある4端子スイッチを介した回り込み電流(スニーク電流)を抑制する。 The varistor element suppresses inflow of current to a resistance change element other than the resistance change element to be turned on / off when the resistance change element is turned on / off. Also, current limiting is performed when the resistance change element is turned on and off. Also, the resistance value when the variable resistance element is on is adjusted. Furthermore, a sneak current (sneak current) through the four-terminal switch in the on state is suppressed during signal transmission through the signal line.

 図7は、プログラマブル論理回路2のスイッチと論理演算との対応を説明するための図である。図7では、オンしているスイッチを○印で示す。入力端子IN[0]、IN[1]から入力された入力信号Di[0]、Di[1]は、プログラマブル論理回路2のスイッチの設定に応じて、否定(NOT)、否定論理積(NAND)、否定論理和(NOR)、およびクランプの処理をされる。そして、処理結果は、配線ノード[0]、[1]に電源電圧(VDD)とGNDの2値で出力される。配線ノード[0]、[1]に出力された処理結果は、適宜、スイッチSW3-3、SW3-4のオンオフにより、出力端子OUTに取り出される。 FIG. 7 is a diagram for explaining the correspondence between the switches of the programmable logic circuit 2 and the logical operations. In FIG. 7, a switch that is turned on is indicated by a circle. The input signals Di [0] and Di [1] input from the input terminals IN [0] and IN [1] are negated (NOT) and NANDed (NAND) according to the switch setting of the programmable logic circuit 2. ), NOR (NOR), and clamping. The processing result is output to the wiring nodes [0] and [1] as a binary value of the power supply voltage (V DD ) and GND. The processing results output to the wiring nodes [0] and [1] are taken out to the output terminal OUT as appropriate by turning on and off the switches SW 3-3 and SW 3-4 .

 なお、図7では、SW3-3、SW3-4の設定を省略している。また、図7及び以降の図8A~図8Dでは、入力信号の否定を「~」、積を「&」、和を「|」と表記する。 In FIG. 7, the settings of SW 3-3 and SW 3-4 are omitted. Also, in FIG. 7 and subsequent FIGS. 8A to 8D, the negation of the input signal is represented as “˜”, the product as “&”, and the sum as “|”.

 図8A~図8Dは、図7に示すプログラマブル論理回路2のスイッチと論理演算(否定、否定論理積、否定論理和、およびクランプ)との対応を、図2を用いて示した図である。 8A to 8D are diagrams showing correspondence between the switches of the programmable logic circuit 2 shown in FIG. 7 and logical operations (negative, negative logical product, negative logical sum, and clamp) using FIG.

 図8Aは、プログラマブル論理回路2が否定(NOT)の処理を行う場合を示す。この場合、SW3-1、SW3-2、SW3-3、SW4-1をオンする。SW4-1をオンすることで、PMOS[1]とNMOS[1]のゲートにはVDDが入力される。一方、PMOS[0]とNMOS[0]のゲートには、入力信号Di[0]が入力される。 FIG. 8A shows a case where the programmable logic circuit 2 performs a negative (NOT) process. In this case, SW 3-1, SW 3-2, SW 3-3, turns on the SW 4-1. By turning on SW 4-1 , V DD is input to the gates of PMOS [1] and NMOS [1]. On the other hand, the input signal Di [0] is input to the gates of PMOS [0] and NMOS [0].

 VDDが入力されたPMOS[1]とNMOS[1]において、PMOS[1]はオフ、NMOS[1]はオンとなる。入力信号Di[0]がHighの時、PMOS[0]はオフ、NMOS[0]はオンとなる。その結果、GNDに接続するNMOS[0]とNMOS[0]に接続するNMOS[1]を介して、配線ノード[1]と配線ノード[0]はともにGNDとなり、入力信号Di[0]の否定であるGNDを出力する。 In PMOS [1] and NMOS [1] to which V DD is input, PMOS [1] is off and NMOS [1] is on. When the input signal Di [0] is High, PMOS [0] is off and NMOS [0] is on. As a result, both the wiring node [1] and the wiring node [0] become GND through the NMOS [0] connected to the GND and the NMOS [1] connected to the NMOS [0], and the input signal Di [0] The negative GND is output.

 また、入力信号Di[0]がLowの時、PMOS[0]はオン、NMOS[0]はオフとなる。その結果、VDDに接続するPMOS[0]と、PMOS[0]に配線ノード[0]を介して接続するNMOS[1]を介して、配線ノード[0]と配線ノード[1]はともにVDDとなり、入力信号Di[0]の否定であるVDDを出力する。 When the input signal Di [0] is Low, PMOS [0] is on and NMOS [0] is off. As a result, both the wiring node [0] and the wiring node [1] are connected via the PMOS [0] connected to V DD and the NMOS [1] connected to the PMOS [0] via the wiring node [0]. V DD is output, and V DD which is the negative of the input signal Di [0] is output.

 図8Aの場合は、配線ノード[0]と配線ノード[1]の双方に否定の処理結果が出力されるため、出力端子OUTに否定の処理結果を出力するためには、SW3-3とSW3-4のいずれか一方をオンすればよい。図8Aでは、SW3-3をオンする場合を示している。 In the case of FIG. 8A, since a negative processing result is output to both the wiring node [0] and the wiring node [1], in order to output a negative processing result to the output terminal OUT, SW 3-3 Any one of SW 3-4 may be turned on. FIG. 8A shows a case where SW 3-3 is turned on.

 図8Bは、プログラマブル論理回路2が否定論理積(NAND)の処理を行う場合を示す。この場合、SW1-1、SW3-1、SW3-3、SW4-2をオンする。SW4-2をオンすることで、PMOS[1]とNMOS[1]のゲートには、入力信号Di[1]が入力される。一方、PMOS[0]とNMOS[0]のゲートには、入力信号Di[0]が入力される。また、配線ノード[1]は、SW1-1を介して常にVDDとなる。 FIG. 8B shows a case where the programmable logic circuit 2 performs a NAND operation. In this case, SW 1-1, SW 3-1, SW 3-3, turns on the SW 4-2. By turning on SW 4-2 , the input signal Di [1] is input to the gates of PMOS [1] and NMOS [1]. On the other hand, the input signal Di [0] is input to the gates of PMOS [0] and NMOS [0]. Further, the wiring node [1] always becomes V DD via SW 1-1 .

 入力信号Di[0]がHigh、入力信号Di[1]がHighの時、PMOS[0]はオフ、NMOS[0]はオン、PMOS[1]はオフ、NMOS[1]はオンとなる。その結果、配線ノード[0]は、GNDに接続するNMOS[0]とNMOS[0]に接続するNMOS[1]を介してGNDとなり、入力信号のNANDであるGNDを出力する。 When the input signal Di [0] is High and the input signal Di [1] is High, PMOS [0] is off, NMOS [0] is on, PMOS [1] is off, and NMOS [1] is on. As a result, the wiring node [0] becomes GND through the NMOS [0] connected to the GND and the NMOS [1] connected to the NMOS [0], and outputs the GND that is the NAND of the input signal.

 入力信号Di[0]がHigh、入力信号Di[1]がLowの時、PMOS[0]はオフ、NMOS[0]はオン、PMOS[1]はオン、NMOS[1]はオフとなる。その結果、配線ノード[0]は、電源電圧に接続するPMOS[1]を介してVDDとなり、入力信号のNANDであるVDDを出力する。 When the input signal Di [0] is High and the input signal Di [1] is Low, PMOS [0] is off, NMOS [0] is on, PMOS [1] is on, and NMOS [1] is off. As a result, the wiring node [0] becomes V DD via the PMOS [1] connected to the power supply voltage, and outputs V DD which is the NAND of the input signal.

 入力信号Di[0]がLow、入力信号Di[1]がHighの時、PMOS[0]はオン、NMOS[0]はオフ、PMOS[1]はオフ、NMOS[1]はオンとなる。その結果、配線ノード[0]は、VDDに接続するPMOS[0]を介してVDDとなり、入力信号のNANDであるVDDを出力する。 When the input signal Di [0] is Low and the input signal Di [1] is High, PMOS [0] is on, NMOS [0] is off, PMOS [1] is off, and NMOS [1] is on. As a result, the wiring node [0], V DD next through the PMOS [0] to be connected to V DD, and outputs the V DD is a NAND of the input signal.

 入力信号Di[0]がLow、入力信号Di[1]がLowの時、PMOS[0]はオン、NMOS[0]はオフ、PMOS[1]はオン、NMOS[1]はオフとなる。その結果、配線ノード[0]は、VDDに接続するPMOS[0]を介してVDDとなり、入力信号のNANDであるVDDを出力する。 When the input signal Di [0] is Low and the input signal Di [1] is Low, PMOS [0] is on, NMOS [0] is off, PMOS [1] is on, and NMOS [1] is off. As a result, the wiring node [0], V DD next through the PMOS [0] to be connected to V DD, and outputs the V DD is a NAND of the input signal.

 以上のようにしてNANDを出力する配線ノード[0]は、SW3-3を介して出力端子OUTに接続する。出力端子OUTは、NANDの処理結果を出力する。 Or interconnection node outputting the NAND as [0] via the SW 3-3 is connected to the output terminal OUT. The output terminal OUT outputs the NAND processing result.

 図8Cは、プログラマブル論理回路2が否定論理和(NOR)の処理を行う場合を示す。この場合、SW2-1、SW3-2、SW3-4、SW4-2をオンする。SW4-2をオンすることで、PMOS[1]とNMOS[1]のゲートには、入力信号Di[1]が入力される。一方、PMOS[0]とNMOS[0]のゲートには、入力信号Di[0]が入力される。また、配線ノード[0]は、SW2-1を介して常にGNDとなる。 FIG. 8C shows a case where the programmable logic circuit 2 performs a negative OR (NOR) process. In this case, SW 2-1, SW 3-2, SW 3-4, turns on the SW 4-2. By turning on SW 4-2 , the input signal Di [1] is input to the gates of PMOS [1] and NMOS [1]. On the other hand, the input signal Di [0] is input to the gates of PMOS [0] and NMOS [0]. Further, the wiring node [0] always becomes GND via the SW 2-1 .

 入力信号Di[0]がHigh、入力信号Di[1]がHighの時、PMOS[0]はオフ、NMOS[0]はオン、PMOS[1]はオフ、NMOS[1]はオンとなる。その結果、配線ノード[1]は、GNDに接続するNMOS[0]を介してGNDとなり、入力信号のNORであるGNDを出力する。 When the input signal Di [0] is High and the input signal Di [1] is High, PMOS [0] is off, NMOS [0] is on, PMOS [1] is off, and NMOS [1] is on. As a result, the wiring node [1] becomes GND through the NMOS [0] connected to the GND, and outputs GND that is the NOR of the input signal.

 入力信号Di[0]がHigh、入力信号Di[1]がLowの時、PMOS[0]はオフ、NMOS[0]はオン、PMOS[1]はオン、NMOS[1]はオフとなる。その結果、配線ノード[1]は、GNDに接続するNMOS[0]を介してGNDとなり、入力信号のNORであるGNDを出力する。 When the input signal Di [0] is High and the input signal Di [1] is Low, PMOS [0] is off, NMOS [0] is on, PMOS [1] is on, and NMOS [1] is off. As a result, the wiring node [1] becomes GND through the NMOS [0] connected to the GND, and outputs GND that is the NOR of the input signal.

 入力信号Di[0]がLow、入力信号Di[1]がHighの時、PMOS[0]はオン、NMOS[0]はオフ、PMOS[1]はオフ、NMOS[1]はオンとなる。その結果、配線ノード[1]は、GNDに接続するNMOS[1]を介してGNDとなり、入力信号のNORであるGNDを出力する。 When the input signal Di [0] is Low and the input signal Di [1] is High, PMOS [0] is on, NMOS [0] is off, PMOS [1] is off, and NMOS [1] is on. As a result, the wiring node [1] becomes GND via the NMOS [1] connected to the GND, and outputs GND that is the NOR of the input signal.

 入力信号Di[0]がLow、入力信号Di[1]がLowの時、PMOS[0]はオン、NMOS[0]はオフ、PMOS[1]はオン、NMOS[1]はオフとなる。その結果、配線ノード[1]は、VDDに接続するPMOS[0]とPMOS[0]に接続するPMOS[1]とを介してVDDとなり、入力信号のNORであるVDDを出力する。 When the input signal Di [0] is Low and the input signal Di [1] is Low, PMOS [0] is on, NMOS [0] is off, PMOS [1] is on, and NMOS [1] is off. As a result, the wiring node [1], V DD becomes via the PMOS [1] to connect to the PMOS [0] and PMOS [0] to be connected to V DD, and outputs the V DD is a NOR of the input signal .

 以上のようにしてNORを出力する配線ノード[1]は、SW3-4を介して出力端子OUTに接続する。出力端子OUTは、NORの処理結果を出力する。 The wiring node [1] that outputs NOR as described above is connected to the output terminal OUT via the SW 3-4 . The output terminal OUT outputs a NOR processing result.

 図8Dは、プログラマブル論理回路2がクランプの処理を行う場合を示す。この場合、SW1-1、SW2-1をオンする。SW1-1をオンすることで、配線ノード[1]はVDDにクランプされる。また、SW2-1をオンすることで、配線ノード[0]はGNDにクランプされる。さらに、SW3-3とSW3-4のいずれか一方をオンすれば、出力端子OUTは、GNDもしくはVDDを出力する。 FIG. 8D shows a case where the programmable logic circuit 2 performs the clamping process. In this case, SW 1-1 and SW 2-1 are turned on. By turning on SW 1-1 , the wiring node [1] is clamped to V DD . Further, by turning on the SW 2-1, interconnection node [0] is clamped to GND. Further, when either SW 3-3 or SW 3-4 is turned on, the output terminal OUT outputs GND or V DD .

 以上のように、プログラマブル論理回路2では、入力信号を論理演算した結果が、VDDとGNDの2値で出力される。 As described above, the programmable logic circuit 2 outputs the result of logical operation of the input signal as binary values of V DD and GND.

 N型トランジスタ(NMOS)とP型トランジスタ(PMOS)の素子面積は、半導体設計における最小設計寸法をFとした場合、16F2程度になる。また、配線層内に設けられるスイッチの素子面積は、4F2となる。ここで、図15で示す既知のルックアップテーブルにおいて、メモリを配線層内スイッチで形成し、選択回路を図16Aに示すCMOSスイッチで形成した場合を想定する。この場合、配線層内でのメモリの専有面積は、4個のメモリを形成するために2倍の8個のスイッチが必要であるため、4F2×8=32F2となる。また、シリコン基板上での選択回路の専有面積は、16F2×12=192F2となる。ルックアップテーブルの専有面積は、配線層内とシリコン基板上での大きい方の面積となるため、この場合の専有面積は192F2となる。 The element areas of the N-type transistor (NMOS) and the P-type transistor (PMOS) are about 16 F 2 , where F is the minimum design dimension in semiconductor design. The element area of the switch provided in the wiring layer is 4F 2 . Here, in the known lookup table shown in FIG. 15, it is assumed that the memory is formed by an in-wiring layer switch and the selection circuit is formed by a CMOS switch shown in FIG. 16A. In this case, the exclusive area of the memory in the wiring layer is 4F 2 × 8 = 32F 2 because eight switches twice are required to form four memories. Further, the area occupied by the selection circuit on the silicon substrate is 16F 2 × 12 = 192F 2 . Since the exclusive area of the lookup table is the larger area in the wiring layer and on the silicon substrate, the exclusive area in this case is 192F 2 .

 一方、本実施形態のプログラマブル論理回路2では、配線層内での専有面積は、4F2×8=32F2、シリコン基板上での専有面積は、16F2×4=64F2となる。前記ルックアップテーブルの専有面積の192F2に比較して、プログラマブル論理回路2の専有面積は1/3に縮小されている。 On the other hand, in the programmable logic circuit 2 of the present embodiment, the exclusive area in the wiring layer is 4F 2 × 8 = 32F 2 , and the exclusive area on the silicon substrate is 16F 2 × 4 = 64F 2 . Compared to 192F 2 which is the exclusive area of the lookup table, the exclusive area of the programmable logic circuit 2 is reduced to 1/3.

 回路の専有面積が縮小されると、回路ブロック間の配線長が短くて済むため、動作電力が低減される。また、プログラマブル論理回路2では、出力信号が電源電圧とGNDの2値であるため、この出力信号を後段の回路の入力信号として使用する場合に、中間電位によるリーク電流の増大を抑制することができる。 When the area occupied by the circuit is reduced, the wiring length between the circuit blocks can be shortened, so that the operating power is reduced. Further, in the programmable logic circuit 2, since the output signal is a binary value of the power supply voltage and GND, when this output signal is used as an input signal for the circuit in the subsequent stage, an increase in leakage current due to the intermediate potential can be suppressed. it can.

 図9Aは、本実施形態のプログラマブル論理回路2を用いた半導体装置3の構成を示す図である。半導体装置3は、多層銅配線層を有し、プログラマブル論理回路2のスイッチを多層銅配線層内に組み込むことができる。さらに、プログラマブル論理回路2の後段にフリップフロップ回路を設け、プログラマブル論理回路2の出力信号を、フリップフロップ回路を介してクロックに同期するようにして出力するようにしてもよい。 FIG. 9A is a diagram showing a configuration of the semiconductor device 3 using the programmable logic circuit 2 of the present embodiment. The semiconductor device 3 has a multilayer copper wiring layer, and the switch of the programmable logic circuit 2 can be incorporated in the multilayer copper wiring layer. Further, a flip-flop circuit may be provided at the subsequent stage of the programmable logic circuit 2 so that the output signal of the programmable logic circuit 2 is output in synchronization with the clock via the flip-flop circuit.

 半導体装置3は、CMOSトランジスタやバイポーラトランジスタを有するメモリ回路、マイクロプロセッサなどの論理回路、これらを同時に搭載した回路、などの集積回路を有することができる。半導体装置3はまた、樹脂や金属やセラミックなどでパッケージされていてもよい。また、半導体装置3に電子回路装置、光回路装置、量子回路装置、マイクロマシン、MEMS(Micro Electro Mechanical Systems)などを接続することができる。 The semiconductor device 3 can have an integrated circuit such as a memory circuit having a CMOS transistor or a bipolar transistor, a logic circuit such as a microprocessor, or a circuit on which these are simultaneously mounted. The semiconductor device 3 may also be packaged with resin, metal, ceramic, or the like. Further, an electronic circuit device, an optical circuit device, a quantum circuit device, a micromachine, a MEMS (Micro Electro Mechanical Systems), or the like can be connected to the semiconductor device 3.

 図9Bは、本実施形態のプログラマブル論理回路2を用いた半導体装置3の構成を示す図である。図9Bに示すように、プログラマブル論理回路2の出力信号を別のプログラマブル論理回路2の入力信号とすることによって、プログラマブル論理回路2を多段構成とした論理回路を構成することができる。 FIG. 9B is a diagram showing a configuration of the semiconductor device 3 using the programmable logic circuit 2 of the present embodiment. As shown in FIG. 9B, by using the output signal of the programmable logic circuit 2 as an input signal of another programmable logic circuit 2, it is possible to configure a logic circuit in which the programmable logic circuit 2 has a multi-stage configuration.

 図9Cは、本実施形態のプログラマブル論理回路2を用いた半導体装置3の構成を示す図である。図9Cに示すように、プログラマブル論理回路2と乗算回路やメモリなどとをルーディング回路を介して相互に接続することで、大規模な論理演算を実行する回路が実現される。 FIG. 9C is a diagram showing a configuration of the semiconductor device 3 using the programmable logic circuit 2 of the present embodiment. As shown in FIG. 9C, a circuit that executes a large-scale logical operation is realized by connecting the programmable logic circuit 2 and a multiplication circuit, a memory, and the like to each other via a routing circuit.

 プログラマブル論理回路2を用いた論理演算の設計には、レジスタ転送レベルRTL(Register Transfer Level)の言語を用いることができる。RTLで記述された論理演算は、論理合成ツールを用いて、NANDやNORなどの論理演算の基本ゲートの組み合わせで記述された回路(ネットリスト)に変換される。プログラマブル論理回路2に各基本ゲートを割り当て、基本ゲート間をルーティング回路で接続することによって、大規模な論理演算を実行する回路が実現される。 The logic of register transfer level RTL (Register Transfer Level) can be used for designing logical operations using the programmable logic circuit 2. A logic operation described in RTL is converted into a circuit (net list) described by a combination of basic gates of logic operations such as NAND and NOR using a logic synthesis tool. By assigning each basic gate to the programmable logic circuit 2 and connecting the basic gates with a routing circuit, a circuit that executes a large-scale logic operation is realized.

 以上のように本実施形態のプログラマブル論理回路2によれば、第1から第4のスイッチのオンオフの組み合わせにより、論理演算を再構成することができ、かつ論理演算の出力を電源電圧と接地の2値とすることができる。さらに、4個のトランジスタでプログラマブル論理回路2を構成することができるため、回路面積を小さくすることができる。 As described above, according to the programmable logic circuit 2 of the present embodiment, the logic operation can be reconfigured by combining the first to fourth switches on and off, and the output of the logic operation is supplied between the power supply voltage and the ground. It can be binary. Furthermore, since the programmable logic circuit 2 can be configured with four transistors, the circuit area can be reduced.

 以上のように、本実施形態によれば、電源電圧と接地の2値の電位を出力し、かつ回路面積が小さい再構成が可能な論理集積回路を提供することができる。 As described above, according to the present embodiment, it is possible to provide a logic integrated circuit that outputs a binary potential of a power supply voltage and a ground and that can be reconfigured with a small circuit area.

 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.

 上記の実施形態の一部又は全部は、以下のようにも記載可能であるが、以下の構成には限られない。
(付記1)
 第1のスイッチと、第2のスイッチと、
 ゲートが入力端子に接続し、ソースが前記第1のスイッチを介してもしくは直接、電源電圧に接続するP型トランジスタと、ドレインが前記第2のスイッチを介してもしくは直接、接地するN型トランジスタと、の2つの組と、
 前記第1と第2のスイッチと連動して、前記電源電圧に前記ソースが接続しかつオンしている前記P型トランジスタのドレインの電圧、もしくは、前記ドレインが接地しかつオンしている前記N型トランジスタのソースの電圧を、出力端子に出力する第3のスイッチと、を有するプログラマブル論理回路。
(付記2)
 前記入力端子は、前記2つの組の内の一方の前記P型トランジスタと前記N型トランジスタの前記ゲートに第1の入力信号を、前記2つの組の内の他方の前記P型トランジスタと前記N型トランジスタの前記ゲートに第2の入力信号を、各々入力する、付記1記載のプログラマブル論理回路。
(付記3)
 前記2つの組の内の一方の、前記P型トランジスタの前記ソースは直接前記電源電圧に接続し、前記N型トランジスタの前記ドレインは直接接地し、
 前記2つの組の内の他方の、前記P型トランジスタの前記ソースは前記第1のスイッチを介して前記電源電圧に接続し、前記N型トランジスタの前記ドレインは前記第2のスイッチを介して接地する、付記1または2記載のプログラマブル論理回路。
(付記4)
 前記入力端子もしくは前記電源電圧と前記ゲートとの接続と非接続を切り替える第4のスイッチを有する、付記1から3の内の1項記載のプログラマブル論理回路。
(付記5)
 前記第1から第4のスイッチは、抵抗変化素子を有する、付記4記載のプログラマブル論理回路。
(付記6)
 前記第1から第4のスイッチは前記抵抗変化素子を2つ有し、前記抵抗変化素子はバイポーラ特性を有して同じ極で直列に接続している、付記5記載のプログラマブル論理回路。
(付記7)
 前記第1から第4のスイッチは2つのバリスタ素子を有し、前記2つのバリスタ素子は、前記抵抗変化素子が同じ極で直列に接続しているノードに各々接続している、付記6記載のプログラマブル論理回路。
(付記8)
 前記抵抗変化素子は、金属架橋の形成と溶解により抵抗変化する、付記5から7の内の1項記載のプログラマブル論理回路。
(付記9)
 付記1から8の内の1項記載のプログラマブル論理回路を有する、半導体装置。
(付記10)
 多層銅配線層を有し、前記プログラマブル論理回路の前記第1と第2と第3のスイッチが前記多層銅配線層内に形成されている、付記9記載の半導体装置。
(付記11)
 前記プログラマブル論理回路の前記出力端子が、別の前記プログラマブル論理回路の前記入力端子に接続している、付記9または10記載の半導体装置。
(付記12)
 複数の前記プログラマブル論理回路が、ルーティング回路を介して相互に接続している、付記9から11の内の1項記載の半導体装置。
(付記13)
 前記プログラマブル論理回路が、ルーティング回路を介して別の集積回路に接続している、付記9から12の内の1項記載の半導体装置。
A part or all of the above embodiment can be described as follows, but is not limited to the following configuration.
(Appendix 1)
A first switch, a second switch,
A P-type transistor whose gate is connected to the input terminal and whose source is connected to the power supply voltage via the first switch or directly; and an N-type transistor whose drain is connected to the ground via the second switch or directly; , And two pairs,
In conjunction with the first and second switches, the source voltage is connected to the source voltage and the drain voltage of the P-type transistor that is turned on, or the drain is grounded and turned on. And a third switch that outputs the voltage of the source of the transistor to the output terminal.
(Appendix 2)
The input terminal supplies a first input signal to the gate of one of the two P-type transistors and the N-type transistor in the two sets, and the other P-type transistor and the N-type of the two sets. The programmable logic circuit according to appendix 1, wherein a second input signal is input to each gate of the type transistor.
(Appendix 3)
The source of the P-type transistor of one of the two sets is directly connected to the power supply voltage, the drain of the N-type transistor is directly grounded,
The other of the two sets, the source of the P-type transistor is connected to the power supply voltage via the first switch, and the drain of the N-type transistor is grounded via the second switch. The programmable logic circuit according to appendix 1 or 2.
(Appendix 4)
4. The programmable logic circuit according to claim 1, further comprising a fourth switch that switches between connection and non-connection of the input terminal or the power supply voltage and the gate.
(Appendix 5)
The programmable logic circuit according to appendix 4, wherein the first to fourth switches have resistance change elements.
(Appendix 6)
The programmable logic circuit according to appendix 5, wherein the first to fourth switches have two of the variable resistance elements, and the variable resistance elements have bipolar characteristics and are connected in series at the same pole.
(Appendix 7)
The first to fourth switches include two varistor elements, and the two varistor elements are respectively connected to nodes where the variable resistance elements are connected in series at the same pole. Programmable logic circuit.
(Appendix 8)
8. The programmable logic circuit according to one of appendices 5 to 7, wherein the resistance change element changes its resistance by forming and dissolving a metal bridge.
(Appendix 9)
9. A semiconductor device having the programmable logic circuit according to one of appendices 1 to 8.
(Appendix 10)
The semiconductor device according to appendix 9, wherein the semiconductor device has a multilayer copper wiring layer, and the first, second, and third switches of the programmable logic circuit are formed in the multilayer copper wiring layer.
(Appendix 11)
The semiconductor device according to appendix 9 or 10, wherein the output terminal of the programmable logic circuit is connected to the input terminal of another programmable logic circuit.
(Appendix 12)
12. The semiconductor device according to one of appendices 9 to 11, wherein the plurality of programmable logic circuits are connected to each other via a routing circuit.
(Appendix 13)
13. The semiconductor device according to one of appendices 9 to 12, wherein the programmable logic circuit is connected to another integrated circuit via a routing circuit.

 この出願は、2017年5月11日に出願された日本出願特願2017-94507を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-94507 filed on May 11, 2017, the entire disclosure of which is incorporated herein.

 1、2  プログラマブル論理回路
 11  第1のスイッチ
 12  第2のスイッチ
 13  第3のスイッチ
 14  P型トランジスタ
 15  N型トランジスタ
 16  組
 20  4端子スイッチ
 21  第1の抵抗変化素子
 22  第2の抵抗変化素子
 23  第1のバリスタ素子
 24  第2のバリスタ素子
 3  半導体装置
DESCRIPTION OF SYMBOLS 1, 2 Programmable logic circuit 11 1st switch 12 2nd switch 13 3rd switch 14 P-type transistor 15 N-type transistor 16 set 20 4 terminal switch 21 1st resistance change element 22 2nd resistance change element 23 First varistor element 24 Second varistor element 3 Semiconductor device

Claims (13)

 第1のスイッチと、第2のスイッチと、
 ゲートが入力端子に接続し、ソースが前記第1のスイッチを介してもしくは直接、電源電圧に接続するP型トランジスタと、ドレインが前記第2のスイッチを介してもしくは直接、接地するN型トランジスタと、の2つの組と、
 前記第1のスイッチおよび第2のスイッチと連動して、前記電源電圧に前記ソースが接続しかつオンしている前記P型トランジスタのドレインの電圧、もしくは、前記ドレインが接地しかつオンしている前記N型トランジスタのソースの電圧を、出力端子に出力する第3のスイッチと、を有するプログラマブル論理回路。
A first switch, a second switch,
A P-type transistor whose gate is connected to the input terminal and whose source is connected to the power supply voltage via the first switch or directly; and an N-type transistor whose drain is connected to the ground via the second switch or directly; , And two pairs,
In conjunction with the first switch and the second switch, the drain voltage of the P-type transistor whose source is connected to the power supply voltage and turned on, or the drain is grounded and turned on A programmable logic circuit comprising: a third switch that outputs a voltage of a source of the N-type transistor to an output terminal.
 前記入力端子は、前記2つの組の内の一方の前記P型トランジスタと前記N型トランジスタの前記ゲートに第1の入力信号を、前記2つの組の内の他方の前記P型トランジスタと前記N型トランジスタの前記ゲートに第2の入力信号を、各々入力する、請求項1記載のプログラマブル論理回路。 The input terminal supplies a first input signal to the gate of one of the two P-type transistors and the N-type transistor in the two sets, and the other P-type transistor and the N-type of the two sets. The programmable logic circuit according to claim 1, wherein a second input signal is input to each gate of the type transistor.  前記2つの組の内の一方の、前記P型トランジスタの前記ソースは直接前記電源電圧に接続し、前記N型トランジスタの前記ドレインは直接接地し、
 前記2つの組の内の他方の、前記P型トランジスタの前記ソースは前記第1のスイッチを介して前記電源電圧に接続し、前記N型トランジスタの前記ドレインは前記第2のスイッチを介して接地する、請求項1または2記載のプログラマブル論理回路。
The source of the P-type transistor of one of the two sets is directly connected to the power supply voltage, the drain of the N-type transistor is directly grounded,
The other of the two sets, the source of the P-type transistor is connected to the power supply voltage via the first switch, and the drain of the N-type transistor is grounded via the second switch. The programmable logic circuit according to claim 1 or 2.
 前記入力端子もしくは前記電源電圧と前記ゲートとの接続と非接続を切り替える第4のスイッチを有する、請求項1から3の内の1項記載のプログラマブル論理回路。 4. The programmable logic circuit according to claim 1, further comprising a fourth switch for switching between connection and non-connection of the input terminal or the power supply voltage and the gate.  前記第1から第4のスイッチは、抵抗変化素子を有する、請求項4記載のプログラマブル論理回路。 The programmable logic circuit according to claim 4, wherein the first to fourth switches include a resistance change element.  前記第1から第4のスイッチは前記抵抗変化素子を2つ有し、前記抵抗変化素子はバイポーラ特性を有して同じ極で直列に接続している、請求項5記載のプログラマブル論理回路。 6. The programmable logic circuit according to claim 5, wherein the first to fourth switches have two of the variable resistance elements, and the variable resistance elements have bipolar characteristics and are connected in series at the same pole.  前記第1から第4のスイッチは2つのバリスタ素子を有し、前記2つのバリスタ素子は、前記抵抗変化素子が同じ極で直列に接続しているノードに各々接続している、請求項6記載のプログラマブル論理回路。 The first to fourth switches have two varistor elements, and the two varistor elements are respectively connected to nodes where the resistance change elements are connected in series at the same pole. Programmable logic circuit.  前記抵抗変化素子は、金属架橋の形成と溶解により抵抗変化する、請求項5から7の内の1項記載のプログラマブル論理回路。 8. The programmable logic circuit according to claim 5, wherein the resistance change element changes its resistance by forming and dissolving a metal bridge.  請求項1から8の内の1項記載のプログラマブル論理回路を有する、半導体装置。 A semiconductor device comprising the programmable logic circuit according to claim 1.  多層銅配線層を有し、前記プログラマブル論理回路の前記第1から第3のスイッチが前記多層銅配線層内に形成されている、請求項9記載の半導体装置。 The semiconductor device according to claim 9, further comprising a multilayer copper wiring layer, wherein the first to third switches of the programmable logic circuit are formed in the multilayer copper wiring layer.  前記プログラマブル論理回路の前記出力端子が、別の前記プログラマブル論理回路の前記入力端子に接続している、請求項9または10記載の半導体装置。 11. The semiconductor device according to claim 9, wherein the output terminal of the programmable logic circuit is connected to the input terminal of another programmable logic circuit.  複数の前記プログラマブル論理回路が、ルーティング回路を介して相互に接続している、請求項9から11の内の1項記載の半導体装置。 The semiconductor device according to claim 9, wherein the plurality of programmable logic circuits are connected to each other via a routing circuit.  前記プログラマブル論理回路が、ルーティング回路を介して別の集積回路に接続している、請求項9から12の内の1項記載の半導体装置。 13. The semiconductor device according to claim 9, wherein the programmable logic circuit is connected to another integrated circuit via a routing circuit.
PCT/JP2018/017965 2017-05-11 2018-05-09 Programmable logic circuit and semiconductor device using same WO2018207831A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-094507 2017-05-11
JP2017094507 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018207831A1 true WO2018207831A1 (en) 2018-11-15

Family

ID=64104694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017965 WO2018207831A1 (en) 2017-05-11 2018-05-09 Programmable logic circuit and semiconductor device using same

Country Status (1)

Country Link
WO (1) WO2018207831A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115842702A (en) * 2021-09-21 2023-03-24 铠侠股份有限公司 Semiconductor integrated circuit and receiving apparatus
CN118214399A (en) * 2024-05-21 2024-06-18 天水天光半导体有限责任公司 16-Bit D flip-flop

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163845A (en) * 1992-11-25 1994-06-10 Fujitsu Ltd Semiconductor device and its manufacture
JP2005150485A (en) * 2003-11-18 2005-06-09 Hitachi Ltd Apparatus and data processing method using the same
WO2016163120A1 (en) * 2015-04-06 2016-10-13 日本電気株式会社 Switching element, semiconductor device, and semiconductor device manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163845A (en) * 1992-11-25 1994-06-10 Fujitsu Ltd Semiconductor device and its manufacture
JP2005150485A (en) * 2003-11-18 2005-06-09 Hitachi Ltd Apparatus and data processing method using the same
WO2016163120A1 (en) * 2015-04-06 2016-10-13 日本電気株式会社 Switching element, semiconductor device, and semiconductor device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115842702A (en) * 2021-09-21 2023-03-24 铠侠股份有限公司 Semiconductor integrated circuit and receiving apparatus
CN118214399A (en) * 2024-05-21 2024-06-18 天水天光半导体有限责任公司 16-Bit D flip-flop

Similar Documents

Publication Publication Date Title
JP4171703B2 (en) Logic components including organic field effect transistors
JP2013165282A (en) Method and system in memory device
JP2010220200A (en) Conduction switching circuit, conduction switching circuit block, and operation method for conduction switching circuit
JP6245171B2 (en) Semiconductor device and programming method
WO2018207831A1 (en) Programmable logic circuit and semiconductor device using same
US10396798B2 (en) Reconfigurable circuit
US20200266822A1 (en) Logic integrated circuit
JP6687122B2 (en) Reconfigurable circuit and method of using the same
JP2006203898A (en) Method of reducing power in programmable logic device using low voltage swing for routing signal
CN107431487B (en) FPGA based on compact ReRAM
JP3503468B2 (en) Logic circuit
JP6156151B2 (en) Bidirectional buffer and control method thereof
CN104638622A (en) Electrostatic discharge protection circuit
JP6795103B2 (en) Reconfigurable circuit with non-volatile resistance switch
JP6662370B2 (en) Crossbar switch type memory circuit, look-up table circuit, and programming method
WO2019208414A1 (en) Logic integrated circuit and writing method
US11909388B2 (en) Terminal resistance circuit, chip and chip communication device
WO2019049980A1 (en) Reconfiguration circuit
JPH0738420A (en) Multivalued logical circuit
JP2024093764A (en) Semiconductor Device
JP2009188790A (en) Output buffer circuit
US20040056688A1 (en) Programmable semiconductor device including universal logic modules coping with as many user inverters
JP3998437B2 (en) Semiconductor device
JPH0558289B2 (en)
JP2003101399A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18797559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18797559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP