WO2019049980A1 - Reconfiguration circuit - Google Patents

Reconfiguration circuit Download PDF

Info

Publication number
WO2019049980A1
WO2019049980A1 PCT/JP2018/033178 JP2018033178W WO2019049980A1 WO 2019049980 A1 WO2019049980 A1 WO 2019049980A1 JP 2018033178 W JP2018033178 W JP 2018033178W WO 2019049980 A1 WO2019049980 A1 WO 2019049980A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
wiring
circuit
crossbar
lut
Prior art date
Application number
PCT/JP2018/033178
Other languages
French (fr)
Japanese (ja)
Inventor
幸秀 辻
阪本 利司
信 宮村
竜介 根橋
あゆ香 多田
旭 白
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2019049980A1 publication Critical patent/WO2019049980A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a reconfiguration circuit whose logic circuit can be reconfigured.
  • the programmable logic integrated circuit (also referred to as a reconfiguration circuit) can reconfigure various logic circuits by rewriting internal setting information.
  • FIG. 29 is a circuit diagram of a general reconstruction circuit 100.
  • the reconfiguration circuit 100 includes a plurality of reconfiguration circuits 101 (hereinafter, referred to as LB: Logic Block) and a plurality of routing units 102 (hereinafter, referred to as RB: Routing Block).
  • the LB includes a look-up table (hereinafter referred to as LUT) and a flip-flop FF.
  • LUT look-up table
  • FF flip-flop FF
  • the number of configurable logics can be adjusted by designing a logic block (hereinafter, CLB: Configurable Logic Block) having LBs and RBs of a certain size. And, by adjusting the number of CLBs arranged to interconnect, it is possible to manufacture a semiconductor chip including reconfiguration circuits of different circuit sizes in accordance with customer needs. In the fields of image processing and communication, various semiconductor chips including reconstruction circuits have been developed.
  • CLB Configurable Logic Block
  • SRAM switches including pass transistors and static random access memories (SRAMs) have been developed as reconfiguration circuits or CLBs.
  • SRAMs static random access memories
  • Patent Document 1 discloses a programmable logic integrated circuit having a crossbar switch including a variable resistance element and a logic circuit logically configured by the crossbar switch. According to the circuit of Patent Document 1, since the transistor and the memory can be formed in different layers by using the resistance change element, the chip area can be reduced.
  • Patent Document 2 discloses an arithmetic processing unit having two identical arithmetic units in an arithmetic processing unit and capable of performing arithmetic processing on different operand input data at the same time.
  • Patent Document 3 image values from an image signal source are sequentially stored in a frame memory, and image values stored in a frame memory are sequentially read at a speed faster than the writing speed to the frame memory and displayed on a display device.
  • An image processing apparatus is disclosed.
  • the devices of Patent Document 2 and Patent Document 3 can detect a defect caused by the aged deterioration of the element.
  • the application is interrupted due to the switching process to the alternative process in another circuit block, and the chip before and after the fault occurs. Performance degradation may occur.
  • it is necessary to simultaneously operate at least triple redundant circuits in parallel, which increases the overhead of the circuit area.
  • the object of the present invention is to solve the above-mentioned problems, and while implementing an application at a high density as a reconfiguration circuit without redundant bits, provide redundancy with a small circuit overhead to enable continuous application operation.
  • An object of the present invention is to provide a reconstruction circuit.
  • a reconfiguration circuit includes a crossbar memory configured of a crossbar switch circuit including a plurality of switch cells including complementary elements, and at least one of a plurality of signals input from the crossbar memory.
  • a first lookup table configured by a multiplexer that selects and outputs the second lookup table configured by the crossbar memory and the multiplexer; an output node of the first lookup table; And a switch connected to the output node of the second look-up table and electrically switching the output node of the first look-up table and the output node of the second look-up table to a conductive or non-conductive state.
  • a reconfiguration circuit which enables continuous application operation by providing redundancy with a small amount of circuit overhead while mounting an application at high density as a reconfiguration circuit without redundant bits. Becomes possible.
  • FIG. 1 is a block diagram showing a configuration of a reconfiguration circuit according to a first embodiment of the present invention. It is a block diagram which shows the structure of the look-up table (LUT: Lookup Table) comprised by the reconstruction circuit which concerns on the 1st Embodiment of this invention.
  • FIG. 6 is a conceptual diagram showing a configuration of a resistance change element included in a switch cell of a crossbar switch circuit for configuring a crossbar memory of a LUT included in the reconfiguration circuit according to the first embodiment of the present invention. It is a symbolic expression of the resistance change element contained in the switch cell of the crossbar switch circuit which comprises the crossbar memory of LUT contained in the reconfiguration
  • FIG. 3 is a circuit diagram showing a connection state of a crossbar switch circuit and a switching control circuit included in the reconfiguration circuit according to the first embodiment of the present invention. It is a conceptual diagram which shows the structure of the interface of the crossbar switch circuit which comprises the crossbar memory of LUT comprised by the reconfiguration
  • FIG. 1 It is a conceptual diagram which shows the structure of the interface of the crossbar switch circuit which comprises the crossbar memory of LUT comprised by the reconfiguration
  • FIG. 7 is a circuit diagram for describing a switch cell redundant in an operation (reliable mode) of the reconfiguration circuit according to the first embodiment of the present invention.
  • FIG. 2 is a conceptual view of a large scale logic integrated circuit in which logic cells (hereinafter, CLB: Configurable Logic Block) including LUTs included in the reconfiguration circuit according to the first embodiment of the present invention are arranged. It is a conceptual diagram which shows LUT using the crossbar switch circuit which made the switch cell redundant.
  • FIG. 6 is a conceptual diagram showing an example of making a LUT highly reliable using a crossbar switch circuit in which switch cells are made redundant.
  • FIG. 6 is a conceptual diagram showing a LUT in which two crossbar switch circuits are connected to make them redundant.
  • FIG. 6 is a circuit diagram showing a connection state of a crossbar switch circuit and a switching control circuit included in a reconfiguration circuit according to a second embodiment of the present invention. It is a conceptual diagram which shows the structure of LUT comprised by the reconstruction circuit which concerns on the 2nd Embodiment of this invention. It is a conceptual diagram which shows the structure of the reconfiguration
  • LUTs look-up tables
  • FIG. 1 is a block diagram showing a configuration of a reconfiguration circuit 1 configured in the reconfiguration circuit of the present embodiment.
  • the reconstruction circuit 1 includes a first LUT 10-1, a second LUT 10-2, and a switch 17.
  • the output node (first output node 15-1) of the first LUT 10-1 and the output node (second output node 15-2) of the second LUT 10-2 are mutually connected via the switch 17 Be done.
  • the LUT 10 is configured using a crossbar switch circuit.
  • the switch cells connecting the cross points of the crossbar switch circuit included in the reconfiguration circuit of the present embodiment include a resistance change element.
  • the first LUT 10-1 outputs a signal via the first output node 15-1.
  • the first LUT 10-1 is connected to the switch 17 via the first output node 15-1.
  • the second LUT 10-2 outputs a signal via the second output node 15-2.
  • the second LUT 10-2 is connected to the switch 17 via the second output node 15-2.
  • the switch 17 is connected to the first LUT 10-1 via the first output node 15-1, and connected to the second LUT 10-2 via the second output node 15-2.
  • the switch 17 has a configuration of a complementary element in which two semiconductor elements having different polarities are combined.
  • the switch 17 is realized by a selection transistor in which an NMOS (N-type Metal-Oxide-Semiconductor) and a PMOS (P-type Metal-Oxide-Semiconductor) are combined.
  • the switch 17 is connected to the first output node 15-1 of the first LUT 10-1 and the second output node 15-2 of the second LUT 10-2.
  • the switch 17 switches the first output node 15-1 of the first LUT 10-1 and the second output node 15-2 of the second LUT 10-2 to the electrically conductive or non-conductive state.
  • FIG. 2 is a block diagram showing the configuration of the LUT 10.
  • the LUT 10 includes a crossbar memory 11 and a multiplexer 13. Although only one crossbar memory 11 and one multiplexer 13 are illustrated in FIG. 2, the LUT 10 can be configured by combining an arbitrary number of crossbar memories 11 and multiplexers 13.
  • the crossbar memory 11 is a storage circuit configured using a crossbar switch circuit.
  • the crossbar memory 11 is configured as a crossbar switch circuit having a plurality of switch cells including complementary elements.
  • the crossbar memory 11 is configured by a crossbar switch circuit 12 of 2 inputs and K outputs (K is a natural number).
  • the multiplexer 13 is a selection circuit that receives a plurality of signals output from the crossbar memory 11 and selects and outputs one of the input signals. In other words, the multiplexer 13 outputs one of the plurality of signals input from the crossbar switch circuit to the output node 15 in response to the selection control signal (not shown).
  • the multiplexer 13 can be configured by combining a plurality of complementary elements in multiple stages.
  • a complementary element including a p-type metal oxide semiconductor device (PMOS) and an n-type metal oxide semiconductor device (NMOS) is exemplified.
  • the reconfiguration circuit 1 of the present embodiment is connected to the crossbar switch circuit 12 in which the crossbar memory 11 is configured, the multiplexer 13 connected to the crossbar switch circuit, and the output node 15 of at least two LUTs 10.
  • the LUT 10 is configured of a crossbar memory 11 configured using a crossbar switch circuit and a multiplexer 13.
  • the switch 17 When the switch 17 is in the ON state, one node is included in the crossbar memory 11 in which the first LUT 10-1 is configured, and one in the crossbar memory 11 in which the second LUT 10-2 is configured. Electrically connect with the node. When the switch 17 is in the off state, the switch 17 disconnects the electrical connection between the first LUT 10-1 and the second LUT 10-2.
  • FIG. 3 is a conceptual view showing a configuration of the variable resistance element 50 included in a switch cell configuring the crossbar switch circuit included in the reconfiguration circuit of the present embodiment.
  • FIG. 4 is a symbolic representation of the resistance change element 50.
  • the variable resistance element 50 includes a first wiring layer 51 (also described as T1), a solid electrolyte layer 52 (also described as IC), and a second wiring layer 53 (also described as T2). And.
  • the solid electrolyte layer 52 contains metal ions and is disposed between the first wiring layer 51 and the second wiring layer 53.
  • the resistance change element 50 can change the resistance value by applying a forward bias or a reverse bias to both terminals of the first wiring layer 51 and the second wiring layer 53.
  • variable resistance element 50 one that can change its resistance by applying a predetermined voltage or more for a predetermined time and can hold the changed resistance is used.
  • ReRAM Resistance Random Access Memory
  • NanoBridge registered trademark
  • ion conductor or the like
  • the variable resistance element 50 may include two bipolar variable resistance elements having a polarity in the application direction of the voltage for changing the resistance.
  • the variable resistance element 50 has a configuration in which two bipolar variable resistance elements are opposed and connected in series, and a switch (transistor) is disposed at a connection point of two switches. This is because the variable resistance element 50 having such a configuration has high disturbance resistance when using a signal continuously passing through.
  • the resistance change element 50 may be a resistance change element utilizing movement of metal ions and an electrochemical reaction in a solid (ion conductor) in which ions can freely move by application of an electric field or the like.
  • variable resistance element 50 can be used as a switch element that can distinguish whether or not a signal passes between electrodes because the amount of change in resistance is large.
  • the solid electrolyte layer 52 used for the resistance change element 50 receives metal ions from the first wiring layer 51 but does not receive metal ions from the second wiring layer 53.
  • the resistance value of the solid electrolyte layer 52 largely changes, and the voltage between the first wiring layer 51 and the second wiring layer 53 is changed.
  • the conduction state can be controlled.
  • FIG. 5 is a table 500 showing the correspondence between the voltage applied to both terminals of the variable resistance element 50 and the resistance state.
  • a voltage higher than that of the second wiring layer 53 is applied to the first wiring layer 51 (forward bias)
  • the variable resistance element 50 is in a low resistance state (on).
  • a voltage higher than that of the first wiring layer 51 is applied to the second wiring layer 53 (reverse bias)
  • the variable resistance element 50 is in a high resistance state (off).
  • the ratio of the resistance value in the low resistance state (on) to the high resistance state (off) is set to be larger than 10 5.
  • FIG. 6 is a symbolic representation of the switch cell 120 disposed at the cross point of the crossbar switch circuit for realizing the reconfiguration circuit of this embodiment.
  • Switch cell 120 includes a first resistance change element 125-1, a second resistance change element 125-2, and a selection transistor 126.
  • the first resistance change element 125-1 includes the solid electrolyte layer 152-1
  • the second resistance change element 125-2 includes the solid electrolyte layer 152-2.
  • Each of the first resistance change element 125-1 and the second resistance change element 125-2 has the structure of the resistance change element 50 of FIG.
  • the switch cell 120 uses one transistor (selection transistor 126) and two pairs of resistance change elements (first resistance change element 125-1 and second resistance change element 125-2). It is a switch cell of a complementary type (1T2R) structure.
  • One electrodes of the first resistance change element 125-1 and the second resistance change element 125-2 are connected to each other to form a shared node (hereinafter, common node 127).
  • the common node 127 is connected to one diffusion layer (source or drain) of the selection transistor 126.
  • the other electrode TR1 of the first resistance change element 125-1 is connected to the first signal line.
  • the resistance value of the first resistance change element 125-1 changes in accordance with the voltage applied to the electrode TR1 and the common node 127.
  • the other electrode TR2 of the second resistance change element 125-2 is connected to the second signal line.
  • the resistance value of second resistance change element 125-2 changes according to the voltage applied to electrode TR 2 and common node 127.
  • the selection transistor 126 can be configured by a general transistor. One of the diffusion layers (source or drain) of the select transistor 126 is connected to the common node 127. The other (drain or source) electrode TS of the diffusion layer of the selection transistor 126 is connected to a write control line SV described later. The gate electrode TG of the selection transistor 126 is connected to a write control line GH described later.
  • the switch cell 120 includes the first resistance change element 125-1 and the second resistance change element 125-2, which can switch the resistance state according to the applied voltage, and at least one selection transistor 126.
  • One terminal of the first resistance change element 125-1 and one terminal of the second resistance change element 125-2 are connected to one of the diffusion layers of the selection transistor 126.
  • the first resistance change element 125-1 and the second resistance change element 125-2 are bipolar type resistance change elements, and are arranged such that the resistance change polarity faces each other.
  • the first resistance change element 125-1 and the second resistance change element 125-2 include an ion conductive solid electrolyte layer.
  • FIG. 7 is a circuit diagram showing a connection relationship between the switch cell 120 and each wire.
  • the switch cell 120 is used as a switch of the crossbar switch circuit 12.
  • the switch cell 120 is a signal line RH [k] which is a wiring along the x direction (also referred to as a first direction) and a signal which is a wiring along ay direction (also referred to as a second direction). It is arranged near the cross point of line RV [j] (j, k: natural number).
  • the electrode TR1 is connected to the signal line RH [k].
  • the electrode TR2 of the second resistance change element 125-2 is connected to the signal line RV [j]. That is, the signal line RV [j] and the signal line RH [k] are connected to the electrode not shared by the first resistance change element 125-1 and the second resistance change element 125-2, respectively.
  • the write control line GH [k] is connected to the gate electrode TG of the selection transistor 126.
  • the write control line SV [j] is connected to the electrode TS of the diffusion layer (drain or source) on the side to which the first resistance change element 125-1 and the second resistance change element 125-2 are not connected. Ru.
  • the write control line GH [k] and the write control line SV [j] are wired independently of the signal line RH [k] and the signal line RV [j], and other switches positioned in the wiring direction Shared with.
  • FIG. 8 is a three-dimensional schematic view of the switch cell 120 shown in FIG. 6 and FIG.
  • the common node 127 is connected to the solid electrolyte layer 152-1 via the via 128-1, and connected to the solid electrolyte layer 152-2 via the via 128-2. In addition, the common node 127 is connected to one (source or drain) of the diffusion layer of the selection transistor 126 through the via 128-3 and the electrode 129.
  • the signal line RH [k] is located in the + z direction of the electrode TR1.
  • the signal line RH [k] and the electrode TR1 are electrically connected via the via 128-4.
  • the signal line RV [j] is electrically connected to the electrode TR2 in the same xy plane.
  • the electrode TR1 and the electrode TR2 are located in the same xy plane.
  • FIG. 9 is a circuit diagram of the crossbar switch circuit 12.
  • the crossbar switch circuit 12 shown in FIG. 9 is a crossbar switch circuit for signal switching of J input and K output (J, K: natural number).
  • FIG. 9 is a diagram including a control transistor for controlling a voltage / current source supplied from a writing power source (PS: Power Source) and a control wiring when the resistance change element is rewritten (at the time of writing). It shows.
  • the circuit configuration shown in FIG. 9 conceptually illustrates a part of the configuration of the crossbar switch circuit 12 and does not represent all.
  • the crossbar switch circuit 12 for realizing the reconstruction circuit 1 of the present embodiment is not limited to the number of elements and signal lines shown in FIG.
  • the crossbar switch circuit 12 includes switch cells 120-1 to 9.
  • Each of switch cells 120-1 to 9 includes a switch element.
  • a pair of resistance change elements are used as switch elements will be described. Further, hereinafter, when the switch cells 120-1 to 9 are not distinguished from one another, the hyphen and the number at the end are omitted and the switch cell 120 is described.
  • Switch cells 120-1 to 3 have write control line GH [k-1] (also referred to as first write control line) and signal line RH [k-1], which are wirings in the x direction (also referred to as first direction). ] (Also referred to as first wiring).
  • the write control line GH [k ⁇ 1] and the signal line RH [k ⁇ 1] are wires independent of each other.
  • the signal line RH [k ⁇ 1] is connected to one diffusion layer of the first control transistor 121 a connected to the switch cells 120-1 to 3.
  • a power supply line PS [0] (also referred to as a first power supply line) is connected to the other diffusion layer of the first control transistor 121a.
  • a write control line GSH [k ⁇ 1] (also referred to as a second write control line) is connected to the gate electrode of the first control transistor 121a.
  • the write control line GSH [k ⁇ 1] is a wiring used to change the resistance of the switch elements included in the switch cells 120-1 to 3.
  • the switch cells 120-4 to 6 share the write control line GH [k] and the signal line RH [k], which are wirings in the x direction.
  • the write control line GH [k] and the signal line RH [k] are wires independent of each other.
  • the signal line RH [k] is connected to one diffusion layer of the first control transistor 121 b connected to the switch cells 120-4 to 6.
  • the power supply line PS [0] is connected to the other diffusion layer of the first control transistor 121b.
  • the write control line GSH [k] is connected to the gate electrode of the first control transistor 121b.
  • the write control line GSH [k] is a wiring used to change the resistance of the switch elements included in the switch cells 120-4 to 6.
  • the switch cells 120-7 to 9 share the write control line GH [k + 1] and the signal line RH [k + 1], which are wirings in the x direction.
  • the write control line GH [k + 1] and the signal line RH [k + 1] are wires independent of each other.
  • the signal line RH [k + 1] is connected to one of the diffusion layers of the first control transistor 121c connected to the switch cells 120-7 to 9.
  • the power supply line PS [0] is connected to the other diffusion layer of the first control transistor 121c.
  • the write control line GSH [k + 1] is connected to the gate electrode of the first control transistor 121c.
  • the write control line GSH [k + 1] is a wiring used to change the resistance of the switch elements included in the switch cells 120-7 to 9.
  • the switch cells 120-1, 4 and 7 have the write control line SV [j-1] (also referred to as a second write control line) and the signal line RV [j], which are wirings in the y direction (also referred to as a second direction). -1] (also referred to as second wiring).
  • the write control line SV [j-1] and the signal line RV [j-1] are wires independent of each other.
  • the write control line SV [j ⁇ 1] is connected to one diffusion layer of the second control transistor 122 a connected to the switch cells 120-1, 4, 7.
  • a power supply line PS [1] (also referred to as a second power supply line) is connected to the other diffusion layer of the second control transistor 122a.
  • the driver control line PGV [j-1] is connected to the gate electrode of the second control transistor 122a. Further, the signal line RV [j ⁇ 1] is connected to one diffusion layer of the third control transistor 123 a connected to the switch cells 120-1, 4, 7.
  • a power supply line PS [2] (also referred to as a third power supply line) is connected to the other diffusion layer of the third control transistor 123a.
  • the driver control line PGV [j-1] is connected to the gate electrode of the third control transistor 123a.
  • the switch cells 120-2, 5, 8 share the write control line SV [j] and the signal line RV [j], which are wirings in the y direction.
  • the write control line SV [j] and the signal line RV [j] are wires independent of each other.
  • the write control line SV [j] is connected to one diffusion layer of the second control transistor 122 b connected to the switch cells 120-2, 5 and 8.
  • the power supply line PS [1] is connected to the other diffusion layer of the second control transistor 122b.
  • the driver control line PGV [j] is connected to the gate electrode of the second control transistor 122b.
  • the signal line RV [j] is connected to one diffusion layer of the third control transistor 123 b connected to the switch cells 120-2, 5, 8.
  • the power supply line PS [2] is connected to the other diffusion layer of the third control transistor 123b.
  • the driver control line PGV [j] is connected to the gate electrode of the third control transistor 123b.
  • the switch cells 120-3, 6, 9 share the write control line SV [j + 1] and the signal line RV [j + 1], which are wirings in the y direction.
  • the write control line SV [j + 1] and the signal line RV [j + 1] are wires independent of each other.
  • the write control line SV [j + 1] is connected to one diffusion layer of the second control transistor 122 c connected to the switch cells 120-3, 6, 9.
  • the power supply line PS [1] is connected to the other diffusion layer of the second control transistor 122c.
  • the driver control line PGV [j + 1] is connected to the gate electrode of the second control transistor 122c.
  • the signal line RV [j + 1] is connected to one diffusion layer of the third control transistor 123c connected to the switch cells 120-3, 6, 9.
  • the power supply line PS [2] is connected to the other diffusion layer of the third control transistor 123c.
  • the driver control line PGV [j + 1] is connected to the gate electrode of the third control transistor 123c.
  • FIG. 10 is a conceptual diagram showing an I / O interface, with the J input / K output crossbar switch circuit 12 as one block.
  • the signal line RV and the driver control line PGV are arranged on one side corresponding to the x direction.
  • the write control line GH, the write control line GSH, and the power supply line PS are disposed on one side corresponding to the y direction, and the signal line RH is disposed on the other side.
  • the conceptual diagram of the cross bar shown in FIG. 10 is an illustration, and does not limit the scope of the present invention.
  • FIG. 11 is a conceptual diagram showing an input / output interface of a crossbar switch circuit (crossbar memory 11) modified for memory.
  • crossbar memory 11 on one side corresponding to the x direction, a signal line RV to which each of the power supply level (VDD) or the ground level (GND) is input and a driver control line PGV are arranged.
  • the write control line GH, the write control line GSH, and the power supply line PS are disposed on one side corresponding to the y direction, and the signal line RH is disposed on the other side.
  • the crossbar memory 11 can function as a memory by inputting a power supply level (hereinafter, VDD) and a ground level (hereinafter, GND) to the two RV ports in the crossbar switch configuration. By turning on the switch cell of VDD or GND, the output level of the output node of the crossbar memory 11 can be controlled to VDD or GND.
  • VDD power supply level
  • GND ground level
  • the multiplexer 13 has a configuration in which a plurality of complementary elements (switches 130) are combined.
  • FIG. 12 shows an example in which the switches 130-1 to 6 in which a pair of CMOS and NMOS are connected in parallel are combined.
  • FIG. 12 shows an example in which six switches 130-1 to 6 are combined and subjected to two inputs, the number of switches 130 and the number of inputs are set according to the scale of the logic circuit to be configured.
  • the gate lines connected to the gate electrodes of the CMOS and NMOS of the switches 130-1 to 6 are omitted.
  • FIG. 13 is a conceptual diagram showing the configuration of the reconfiguration circuit 1 of the present embodiment.
  • an example is shown in which the output node 15 of the LUT 10 of FIG. 11 is connected via a complementary element (switch 17).
  • switch 17 the gate lines connected to the CMOS and NMOS gate electrodes of the switch 17 are omitted.
  • the reconfiguration circuit 1 can switch the mode by turning on and off the switch 17.
  • the switch 17 When the switch 17 is off (normal mode), the first output node 15-1 and the second output node 15-2 are not short-circuited.
  • the switch 17 when the switch 17 is on (high reliability mode), the first output node 15-1 and the second output node 15-2 are shorted.
  • the switch 17 when the switch 17 is off (normal mode), the first LUT 10-1 and the second LUT 10-2 execute different logical operations independently of each other. Therefore, the operation result of the first LUT 10-1 is output from the first output node 15-1, and the operation result of the second LUT 10-2 is output from the second output node 15-2.
  • the switch 17 when the switch 17 is in the on state (reliable mode), the switch 17 is shorted.
  • the reconfiguration circuit 1 executes the same logical operation as the first LUT 10-1 and the second LUT 10-2. Therefore, the same calculation result calculated by the redundant first LUT 10-1 and the second LUT 10-2 is output from the first output node 15-1 and the second output node 15-2.
  • a high reliability LUT 110 is formed in which two LUTs performing the same logical operation are redundant.
  • the switch 17 When the same logical operation is performed on the first LUT 10-1 and the second LUT 10-2 using the high reliability mode, the switch 17 is turned on to connect the two LUTs to each other. At this time, the memory state of the two LUTs 10 and the input signal are made identical and operated as one LUT to operate a desired application. As a result, in the high reliability mode, high reliability can be obtained for the holding failure of the variable resistance element 50.
  • the on / off of the switch 17 can be controlled by, for example, an IO (Input Output) pin of the chip. Further, the on / off of the switch 17 may be controlled by preparing a memory that holds the on / off state for each switch 17, for example.
  • IO Input Output
  • each node in two different LUTs 10 (FIG. 15) is electrically connected to the corresponding switch cell 120 in crossbar memory 11 via switch 130 constituting multiplexer 13. Be done.
  • One node inside the LUT 10 (FIG. 15) is pulled up to VDD or pulled down to GND through the two switch cells 120 in the on state. For this reason, even if one switch cell corresponding to the same node causes a holding failure and the state transitions, the potential of the node can be kept the same.
  • the retention failure rate of the variable resistance element when stored for 10 years at a temperature of 150 degrees is 1/6 of 10
  • the probability that the circuit malfunctions is equal to 10 6 6 before redundancy. In contrast to being 1, it can be improved to one tenth of a factor of 10 by redundancy.
  • a plurality of reconfiguration circuits 1 (hereinafter, CLBs: Configurable Logic Blocks) can be arranged side by side and connected to each other, whereby a larger scale reconfiguration circuit 1000 (also referred to as an integrated circuit) can be configured.
  • CLBs Configurable Logic Blocks
  • one memory can be configured by sharing on / off states of a plurality of switches 17 included in a plurality of CLBs.
  • the memory configured in this way is redundantly redundant and has high reliability.
  • the write control line of the crossbar memory 11 included in each reconfiguration circuit 1 is shared.
  • on / off states are shared by a plurality of switches 17 included in a plurality of CLBs, control can be performed using one memory.
  • the on / off state is shared by a plurality of switches included in a plurality of CLBs, it is desirable to use a redundant memory.
  • the output nodes of the two LUTs are connected by the switch including the complementary element.
  • the switch is turned off and each LUT is used as a different logical operation circuit.
  • the switch is turned on, and the state of the LUT memory and the input signal to the multiplexer in the LUT are the same between the two LUTs connected by the switch. Do. As a result, even if a holding failure occurs in a switch cell included in one of the LUTs and a transition is made to a high resistance state, the switch cell used in the other LUT is pulled down or pulled up. You can
  • the reconfiguration circuit of this embodiment can implement two applications while being a single circuit.
  • One is an application that implements an application at high density as a reconfigurable circuit without redundant bits.
  • the other is an application requiring high reliability that enables continuous application operation even when the resistance change element causes a holding failure.
  • the circuit area required for application operation can be suppressed as compared with high density mounting. That is, according to the present embodiment, it is possible to implement a continuous application operation by providing redundancy with a small amount of circuit overhead while mounting an application at high density as a reconfiguration circuit having no redundant bits. It becomes possible to offer.
  • the reconstruction circuit For example, three same application patterns are prepared on the reconstruction circuit, the same signal is input to each pattern, and majority decision circuit is inserted to the output node, thereby improving the retention reliability as a chip can do.
  • this method using the majority circuit it is possible to improve the reliability only by changing the switch pattern (configuration pattern) for mounting the application pattern on the reconfiguration circuit, and therefore, it is not necessary to change the circuit of the reconfiguration circuit itself.
  • the use of a majority circuit requires three times or more of the circuit area required for the application operation.
  • FIGS. 18 to 20 there is a method of connecting redundantly the number of switches of the crossbar switch circuit constituting the LUT memory to a signal switching point to make it redundant.
  • FIG. 18 and FIG. 19 are examples of multiplexing RV (VDD and GND) and PGV.
  • FIG. 20 shows an example of multiplexing the crossbar memory.
  • FIG. 21 is a conceptual diagram showing the configuration of the reconfiguration circuit 2 included in the reconfiguration circuit of the present embodiment.
  • the reconstruction circuit 2 includes a first LUT 20-1, a second LUT 20-2, and a switch 27.
  • the output node (first output node 25-1) of the first LUT 20-1 and the output node (second output node 25-2) of the second LUT 20-2 are mutually connected via the switch 27. Be done.
  • the first LUT 20-1 and the second LUT 20-2 are not distinguished from one another, they are referred to as the LUT 20.
  • the first LUT 20-1 outputs a signal via the first output node 25-1.
  • the first LUT 20-1 is connected to the switch 27 via the first output node 25-1.
  • the second LUT 20-2 outputs a signal via the second output node 25-2.
  • the second LUT 20-2 is connected to the switch 27 via the second output node 25-2.
  • the switch 27 is connected to the first LUT 20-1 through the first output node 25-1, and is output to the second LUT 20-2 through the second output node 25-2.
  • the switch 27 is similar to the switch 17 of the first embodiment.
  • FIG. 22 is a block diagram showing the configuration of the LUT 20. As shown in FIG. As shown in FIG. 22, the LUT 20 includes a first crossbar memory 21A, a second crossbar memory 21B, a first multiplexer 23, and a second multiplexer 24.
  • the first crossbar memory 21A and the second crossbar memory 21B are storage circuits configured by crossbar switch circuits.
  • the first crossbar memory 21A and the second crossbar memory 21B have nodes at the same signal level or high impedance state as the input signal.
  • the first crossbar memory 21A and the second crossbar memory 21B are realized by a two-input K-output crossbar switch circuit (K is a natural number).
  • the first multiplexer 23 is a selection circuit which receives a plurality of signals output from the first crossbar memory 21A, selects one of the input signals, and outputs the selected one.
  • the first multiplexer 23 has a configuration in which a plurality of PMOSs are combined in multiple stages, and selects at least one of the plurality of signals input from the first crossbar memory 21A.
  • the second multiplexer 24 is a selection circuit which receives a plurality of signals output from the second crossbar memory 21B as input, and selects and outputs any one of the input signals.
  • the second multiplexer 24 has a configuration in which a plurality of NMOSs are combined in multiple stages, and selects at least one of the plurality of signals input from the second crossbar memory 21B.
  • the first multiplexer 23 and the second multiplexer 24 output any one of the plurality of signals input from the crossbar switch circuit to the common output node 25 in response to a selection control signal (not shown).
  • FIG. 23 is a circuit diagram showing a circuit configuration of the crossbar switch circuit 22 included in the reconfiguration circuit of the present embodiment.
  • FIG. 23 also includes a control transistor for controlling a voltage / current source supplied from a writing power source (PS: Power Source) and a control wiring when rewriting the resistance change element (during writing). It shows.
  • the circuit configuration shown in FIG. 23 is a conceptual diagram illustrating a part of the configuration of the crossbar switch circuit 22 and does not represent all.
  • the crossbar switch circuit 22 for realizing the reconstruction circuit 2 of the present embodiment is not limited to the number of elements and signal lines shown in FIG.
  • Crossbar switch circuit 22 includes switch cells 220-1-6. Each of switch cells 220-1 to 6 includes a switch element. In the present embodiment, an example in which a pair of resistance change elements are used as switch elements will be described. Further, hereinafter, when the switch cells 220-1 to 6 are not distinguished from one another, the hyphens and numbers at the end are omitted and described as the switch cell 220.
  • the output ports of the crossbar switch circuit 22 are provided on the left and right (x direction) of the crossbar switch circuit 22.
  • the power supply line PS [0] (also referred to as a first power supply line) for writing installed along the y direction shares the switch cells 220-1 to 6 positioned on the left and right of the power supply line PS [0]. Power source.
  • Switch cells 220-1 to 3 and first control transistors 221-1 to 22-3 are arranged along the y direction between the left output port and the power supply line PS [0].
  • Switch cells 220-1 to 220-3 are write control lines GH [k-1] to GH [k + 1] (also referred to as first write control lines), which are wirings in the x direction (also referred to as the first direction), and signal lines It is connected to RH1 [k-1] to RH1 [k + 1] (also referred to as first wiring).
  • the write control lines GH [k ⁇ 1] to GH [k + 1] and the signal lines RH1 [k ⁇ 1] to RH1 [k + 1] are wires independent of each other.
  • the signal lines RH1 [k ⁇ 1] to RH1 [k + 1] are connected to one of the diffusion layers of the first control transistors 221a to 221c connected to the switch cells 220-1 to 220-3.
  • a power supply line PS [0] (also referred to as a first power supply line) is connected to the other diffusion layer of the first control transistors 221a to 221c.
  • Switch cells 220-1 to 220-3 have a write control line SV [1] (also referred to as a second write control line) and a signal line RV [1] (a second line), which are wirings in the y direction (also referred to as a second direction). Share the wiring).
  • the write control line SV [1] and the signal line RV [1] are wires independent of each other.
  • the write control line SV [1] is connected to one diffusion layer of the second control transistor 222 a connected to the switch cells 220-1 to 3.
  • a power supply line PS [1] (also referred to as a second power supply line) is connected to the other diffusion layer of the second control transistor 222a.
  • the driver control line PGV [1] is connected to the gate electrode of the second control transistor 222a.
  • the driver control line PGV [1] is shared by the first control transistors 221a, 221b, and 221c.
  • the driver control line PGV [1] is a second control transistor provided to control the power supply line for writing from the power supply line PS [1] and the power supply line PS [2] (also referred to as a third power supply line). It is shared as a gate line of 222a and the third control transistor 223a.
  • the signal line RV [1] is connected to one diffusion layer of the third control transistor 223a connected to the switch cells 220-1 to 2.
  • the power supply line PS [2] is connected to the other diffusion layer of the third control transistor 223a.
  • Switch cells 220-4 to 6 and first control transistors 221d, 221e, and 221f are disposed along the y direction between the output port on the right side and PS [0].
  • the switch cells 220-4 to 6 are connected to write control lines GH [k-1] to GH [k + 1] and signal lines RH2 [k-1] to RH2 [k + 1], which are wirings in the x direction.
  • the write control lines GH [k ⁇ 1] to GH [k + 1] are shared by the switch cells 220-1 to 3 and the switch cells 220-4 to 6, respectively.
  • the write control lines GH [k ⁇ 1] to GH [k + 1] and the signal lines RH2 [k ⁇ 1] to RH2 [k + 1] are wires independent of each other.
  • the signal lines RH2 [k-1] to RH2 [k + 1] are connected to one of the diffusion layers of the first control transistors 221d to 221f connected to the switch cells 220-4 to 6, respectively.
  • the power supply line PS [0] is connected to the other diffusion layer of the first control transistors 221d to 221f.
  • the switch cells 220-4 to 6 share the write control line SV [2] and the signal line RV [2], which are wirings in the y direction.
  • the write control line SV [2] and the signal line RV [2] are wires independent of each other.
  • the write control line SV [2] is connected to one diffusion layer of the second control transistor 222 b connected to the switch cells 220-4 to 6.
  • the power supply line PS [1] is connected to the other diffusion layer of the second control transistor 222b.
  • the driver control line PGV [2] is connected to the gate electrode of the second control transistor 222b.
  • the driver control line PGV [2] is shared by the first control transistors 221d, 221e, and 221f.
  • the driver control line PGV [2] is a second control transistor 222b and a third control transistor 223b provided to control the power supply line for writing from the power supply line PS [1] and the power supply line PS [2].
  • the signal line RV [2] is connected to one diffusion layer of the third control transistor 223b connected to the switch cells 220-4 to 6.
  • the power supply line PS [2] is connected to the other diffusion layer of the third control transistor 223b.
  • FIG. 24 is a conceptual diagram showing an input / output interface of a crossbar switch circuit (crossbar memory 21) modified for memory.
  • the signal line RV and the driver control line PGV are arranged on one side corresponding to the x direction.
  • the signal line RH1, the write control line GH, and the power supply line PS are disposed on one side corresponding to the y direction, and the signal line RH2 is disposed on the other side.
  • the crossbar memory 21 can function as a memory by inputting a power supply level (hereinafter, VDD) or a ground level (hereinafter, GND) to one RV port of the crossbar switch configuration.
  • VDD power supply level
  • GND ground level
  • the output of the crossbar memory 21 can be controlled by rewriting either the VDD or the high resistance state (High-z) switch cell.
  • the input to the crossbar switch circuit 22 is GND
  • the output to the crossbar switch circuit 22 can be controlled by rewriting either the GND or the high resistance state (High-z) switch cell.
  • FIG. 25 is a conceptual diagram showing a circuit configuration of the reconfiguration circuit 2 (FIG. 21) of the present embodiment.
  • the first output node 25-1 of the first LUT 20-1 and the second output node 25-2 of the second LUT 20-2 are connected via the complementary element (switch 27).
  • switch 27 An example of connecting
  • the first LUT 20-1 includes a first crossbar memory 21A-1, a second crossbar memory 21B-1, a first multiplexer 23-1, a second multiplexer 24-1, and a first output node 25. It has -1.
  • the first crossbar memory 21A-1 and the second crossbar memory 21B-1 are, for example, 1-input 2K-output crossbar switch circuits.
  • the first multiplexer 23-1 has a configuration in which a plurality of PMOSs are combined.
  • the second multiplexer 24-1 has a configuration in which a plurality of NMOSs are combined.
  • the first LUT 20-1 has input ports separated and disposed to the left and right across the first output node 25-1.
  • the left input port of the first LUT 20-1 is connected to one output port of the first crossbar memory 21A-1 disposed on the left.
  • the input port on the right side of the first LUT 20-1 is connected to one output port of the second crossbar memory 21B-1 disposed on the right side.
  • the input signals to the first multiplexer 23-1 and the second multiplexer 24-1 included in the first LUT 20-1 are related.
  • One conduction path is selected from each of the first multiplexer 23-1 and the second multiplexer 24-1 for the gate input signal set to the first LUT 20-1.
  • the second LUT 20-2 includes a first crossbar memory 21A-2, a second crossbar memory 21B-2, a first multiplexer 23-2, a second multiplexer 24-2, and a second output node 25. It has -2.
  • the first crossbar memory 21A-2 and the second crossbar memory 21B-2 are, for example, 1-input 2K-output crossbar switch circuits.
  • the first multiplexer 23-2 has a configuration in which a plurality of PMOSs are combined.
  • the second multiplexer 24-2 has a configuration in which a plurality of NMOSs are combined.
  • the second LUT 20-2 has input ports separated and disposed to the left and right across the second output node 25-2.
  • the left input port of the second LUT 20-2 is connected to one output port of the first crossbar memory 21A-2 disposed on the left.
  • the input port on the right side of the second LUT 20-2 is connected to one output port of the second crossbar memory 21B-2 disposed on the right side.
  • the input signals to the first multiplexer 23-2 and the second multiplexer 24-2 included in the second LUT 20-2 are related.
  • One conduction path is selected from each of the first multiplexer 23-2 and the second multiplexer 24-2 for the gate input signal set to the second LUT 20-2.
  • the method of changing the value output from the first output node 25-1 will be described.
  • the method of changing the value output from the second output node 25-2 is the same as that of the first output node 25-1, and thus the description thereof is omitted.
  • the switch cell 220 included in the first crossbar memory 21A-1 connected to the source of the PMOS included in the first multiplexer 23-1 is turned on to start the first crossbar memory 21A-1
  • the case of outputting VDD will be described.
  • the switch cell 220 in the second crossbar memory 21B-1 connected to the drain of the NMOS included in the second multiplexer 24-1 is turned off to output High-Z.
  • the VDD level is output at a node where the internal source and drain of the first multiplexer 23-1 and the second multiplexer 24-1 are connected to each other.
  • the switch cell 220 included in the first crossbar memory 21A-1 connected to the source of the PMOS included in the first multiplexer 23-1 is turned off, and the first crossbar memory 21A-1 is opened.
  • the switch cell included in the second crossbar memory 21B-1 connected to the drain of the NMOS included in the second multiplexer 24-1 is turned on to output GND.
  • the GND level can be output at the node where the sources and drains of the NMOS and PMOS inside the first multiplexer 23-1 and the second multiplexer 24-1 are connected to each other.
  • Desired logic operation is performed as a LUT by rewriting the switch cell 220 on the conduction path selected for the gate input signal set to the first LUT 20-1 and the second LUT 20-2 while paying attention to the complementarity Be done.
  • the first output node 25-1 of the first LUT 20-1 and the second of the second LUT 20-2 are connected via the switch 27 which is a complementary element. And the output node 25-2 of the
  • the switch 27 When different logical operations are performed on the first LUT 20-1 and the second LUT 20-2 in the circuit configuration of the reconstruction circuit 2 (FIG. 21) shown in FIG. 25, the switch 27 is used as shown in FIG. Turn off. When the switch 27 is turned off, desired memory states and input signals can be selected for each of the first LUT 20-1 and the second LUT 20-2, and a desired application can be operated. In this case, since the use efficiency of the LUT is high and logic can be implemented at high density, performances such as power and delay become high.
  • the switch 27 is turned on and the first LUT 20-1 and the second LUT 20-2 are mutually switched. Connect to At this time, the memory states of the first LUT 20-1 and the second LUT 20-2 and the input signals are made identical and operated as one LUT to operate a desired application.
  • each node in the first LUT 20-1 (FIG. 25) and the second LUT 20-2 (FIG. 25) passes through the first multiplexer 23 and the second multiplexer 24, respectively. It is electrically connected to the corresponding switch cell.
  • One node is pulled up to VDD or pulled down to GND through two switch cells in the on state. For this reason, even if one switch cell causes a holding failure and the state transitions, the potential of the node can be kept the same.
  • the retention failure rate of the variable resistance element when stored for 10 years at a temperature of 150 degrees is 1/6 of 10
  • the probability that the circuit malfunctions is equal to 10 6 6 before redundancy. In contrast to being 1, it can be improved to 1/12 to the tenth by redundancy.
  • the desired logic operation can be performed by rewriting the switch cells on the path selected for each gate input signal set to the LUT while paying attention to the complementarity.
  • An executable LUT can be realized.
  • the operating voltage is alternatively applied to one of the switch cells in the off state. Therefore, according to the present embodiment, the LUT (FIG. 12) using the crossbar switch circuit (FIG. 11) of the first embodiment in which operating voltages are applied to all the switch cells (2 ⁇ N) Leakage current can be reduced to 1/2 ⁇ N in comparison with.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Computing Systems (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Logic Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

In order to achieve both high-density implementation of applications in the form a reconfiguration circuit without a redundancy bit and the capability to continuously run applications with redundancy, the present invention is a reconfiguration circuit provided with: a first lookup table composed of a crossbar memory formed in a crossbar switching circuit having a plurality of switch cells including a complementary element and a multiplexer for selecting and outputting at least one of a plurality of signals input from the crossbar memory; a second lookup table composed of a crossbar memory and a multiplexer; and a switch that is connected to an output node of the first lookup table and to an output node of the second lookup table and that switches the output node of the first lookup table and the output node of the second lookup table to an electrically conductive state or a non-conductive state.

Description

再構成回路Reconstruction circuit
 本発明は、論理回路が再構成可能な再構成回路に関する。 The present invention relates to a reconfiguration circuit whose logic circuit can be reconfigured.
 プログラマブル論理集積回路(再構成回路とも呼ぶ)は、内部の設定情報を書き換えることにより、様々な論理回路を再構成できる。図29は、一般的な再構成回路100の回路図である。再構成回路100は、複数の再構成回路101(以下、LB:Logic Block)と、複数のルーティング部102(以下、RB:Routing Block)とを備える。LBは、ルックアップテーブル(以下、LUT:Lookup Table)とフリップフロップFF(Flip-Flop)とを含む。RBは、LBへの入出力信号の切り替えとLB間の信号パスの切り替えとを行う。 The programmable logic integrated circuit (also referred to as a reconfiguration circuit) can reconfigure various logic circuits by rewriting internal setting information. FIG. 29 is a circuit diagram of a general reconstruction circuit 100. As shown in FIG. The reconfiguration circuit 100 includes a plurality of reconfiguration circuits 101 (hereinafter, referred to as LB: Logic Block) and a plurality of routing units 102 (hereinafter, referred to as RB: Routing Block). The LB includes a look-up table (hereinafter referred to as LUT) and a flip-flop FF. The RB switches input / output signals to / from the LB and switches signal paths between the LBs.
 構成可能な論理数(再構成回路の回路規模)は、ある程度の規模のLBおよびRBを有する論理ブロック(以下、CLB:Configurable Logic Block)を設計することによって調整できる。そして、相互接続するように並べられるCLBの数を調整することによって、顧客ニーズに合わせて異なる回路規模の再構成回路を含む半導体チップを製造できる。画像処理や通信などの分野では、再構成回路を含む様々な半導体チップが開発されている。 The number of configurable logics (the circuit scale of the reconfiguration circuit) can be adjusted by designing a logic block (hereinafter, CLB: Configurable Logic Block) having LBs and RBs of a certain size. And, by adjusting the number of CLBs arranged to interconnect, it is possible to manufacture a semiconductor chip including reconfiguration circuits of different circuit sizes in accordance with customer needs. In the fields of image processing and communication, various semiconductor chips including reconstruction circuits have been developed.
 これまでに、パストランジスタやSRAM(Static Random Access Memory)を含むSRAMスイッチが再構成回路やCLBとして開発されてきた。しかしながら、一般的なSRAMでは、トランジスタとメモリとが同じ層に形成されるため、チップ面積が大きくなるという問題点があった。 So far, SRAM switches including pass transistors and static random access memories (SRAMs) have been developed as reconfiguration circuits or CLBs. However, in a general SRAM, since the transistor and the memory are formed in the same layer, there is a problem that the chip area becomes large.
 特許文献1には、抵抗変化素子を含むクロスバースイッチと、クロスバースイッチにより論理構成する論理回路とを有するプログラマブル論理集積回路について開示されている。特許文献1の回路によれば、抵抗変化素子を用いることによってトランジスタとメモリとを異なる層に形成できるため、チップ面積を低減できる。 Patent Document 1 discloses a programmable logic integrated circuit having a crossbar switch including a variable resistance element and a logic circuit logically configured by the crossbar switch. According to the circuit of Patent Document 1, since the transistor and the memory can be formed in different layers by using the resistance change element, the chip area can be reduced.
 また、抵抗変化素子そのものではく、複数の演算器を装置内に構成し、冗長性を得ることによって装置の信頼性を向上させる技術がある。 In addition, there is a technique for improving the reliability of the device by configuring a plurality of arithmetic units in the device and obtaining redundancy instead of the resistance change element itself.
 特許文献2には、演算処理装置内に2つの同一の演算器を持ち、同時に異なるオペランド入力データに対する演算処理が可能な演算処理装置について開示されている。 Patent Document 2 discloses an arithmetic processing unit having two identical arithmetic units in an arithmetic processing unit and capable of performing arithmetic processing on different operand input data at the same time.
 特許文献3には、画像信号源からの画像値をフレームメモリに順次格納するとともに、フレームメモリに記憶された画像値をフレームメモリへの書き込み速度よりも速い速度で順次読み出して表示装置に表示させる画像処理装置について開示されている。 In Patent Document 3, image values from an image signal source are sequentially stored in a frame memory, and image values stored in a frame memory are sequentially read at a speed faster than the writing speed to the frame memory and displayed on a display device. An image processing apparatus is disclosed.
国際公開第2017/038095号International Publication No. 2017/038095 特開平09-305423号公報Japanese Patent Application Laid-Open No. 09-305423 特開平01-017096号公報Unexamined-Japanese-Patent No. 01-017096
 特許文献1のように、抵抗変化素子を用いる再構成回路においては、図30のように、時間の経過に伴って、セット状態(低抵抗状態)からオフ状態(高抵抗状態)に遷移し、保持不良が発生する可能性がある。例えば、スイッチ状態を書き換えてアプリケーションパターンを再構成回路上に実装したチップを製品に組み込んで出荷することが想定される。このような場合、チップ内のLUT用メモリとして使用されるクロスバースイッチを構成するスイッチ素子に保持不良が発生すると、LUT用メモリとしてのデータが消失して論理演算ができなくなる。その結果、チップとしてもアプリケーション動作をしなくなる可能性があった。 As in Patent Document 1, in a reconfiguration circuit using a resistance change element, transition from a set state (low resistance state) to an off state (high resistance state) with the passage of time as shown in FIG. Poor retention may occur. For example, it is assumed that a chip in which an application pattern is mounted on a reconfiguration circuit by rewriting a switch state is incorporated into a product and shipped. In such a case, if a holding failure occurs in the switch elements constituting the crossbar switch used as the LUT memory in the chip, the data as the LUT memory disappears and the logical operation can not be performed. As a result, there is a possibility that the chip does not operate as an application.
 特許文献2および特許文献3の装置は、素子の経年劣化によって発生した不具合を検知することは可能である。しかし、特許文献2および特許文献3の装置では、不具合が発生した回路ブロックは正常に動作しなくなるため、他の回路ブロックでの代替処理への切り替え処理によるアプリケーションの中断や、不具合発生前後でチップとしての性能劣化が起こり得る。性能劣化を引き起こさない連続動作を保障するには、少なくとも3重冗長した回路を並列に同時動作させることが必要で回路面積のオーバーヘッドが大きくなってしまう。 The devices of Patent Document 2 and Patent Document 3 can detect a defect caused by the aged deterioration of the element. However, in the devices of Patent Document 2 and Patent Document 3, since the circuit block in which the fault occurs does not operate normally, the application is interrupted due to the switching process to the alternative process in another circuit block, and the chip before and after the fault occurs. Performance degradation may occur. In order to ensure continuous operation without causing performance degradation, it is necessary to simultaneously operate at least triple redundant circuits in parallel, which increases the overhead of the circuit area.
 本発明の目的は、上述した課題を解決し、冗長ビットを持たない再構成回路としてアプリケーションを高密度に実装しつつ、少ない回路オーバーヘッドで冗長性を持たせて継続的なアプリケーション動作を可能とする再構成回路を提供することにある。 The object of the present invention is to solve the above-mentioned problems, and while implementing an application at a high density as a reconfiguration circuit without redundant bits, provide redundancy with a small circuit overhead to enable continuous application operation. An object of the present invention is to provide a reconstruction circuit.
 本発明の一態様の再構成回路は、相補型素子を含む複数のスイッチセルを有するクロスバースイッチ回路に構成されるクロスバーメモリと、クロスバーメモリから入力される複数の信号のうち少なくとも一つを選択して出力するマルチプレクサとによって構成される第1のルックアップテーブルと、クロスバーメモリとマルチプレクサとによって構成される第2のルックアップテーブルと、第1のルックアップテーブルの出力ノードと、第2のルックアップテーブルの出力ノードとに接続され、第1のルックアップテーブルの出力ノードと第2のルックアップテーブルの出力ノードとを電気的に導通もしくは非導通の状態に切り替えるスイッチとを備える。 A reconfiguration circuit according to an aspect of the present invention includes a crossbar memory configured of a crossbar switch circuit including a plurality of switch cells including complementary elements, and at least one of a plurality of signals input from the crossbar memory. A first lookup table configured by a multiplexer that selects and outputs the second lookup table configured by the crossbar memory and the multiplexer; an output node of the first lookup table; And a switch connected to the output node of the second look-up table and electrically switching the output node of the first look-up table and the output node of the second look-up table to a conductive or non-conductive state.
 本発明によれば、冗長ビットを持たない再構成回路としてアプリケーションを高密度に実装しつつ、少ない回路オーバーヘッドで冗長性を持たせて継続的なアプリケーション動作を可能とする再構成回路を提供することが可能になる。 According to the present invention, there is provided a reconfiguration circuit which enables continuous application operation by providing redundancy with a small amount of circuit overhead while mounting an application at high density as a reconfiguration circuit without redundant bits. Becomes possible.
本発明の第1の実施形態に係る再構成回路の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a reconfiguration circuit according to a first embodiment of the present invention. 本発明の第1の実施形態に係る再構成回路に構成されるルックアップテーブル(LUT:Lookup Table)の構成を示すブロック図である。It is a block diagram which shows the structure of the look-up table (LUT: Lookup Table) comprised by the reconstruction circuit which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る再構成回路に含まれるLUTのクロスバーメモリを構成するためのクロスバースイッチ回路のスイッチセルに含まれる抵抗変化素子の構成を示す概念図である。FIG. 6 is a conceptual diagram showing a configuration of a resistance change element included in a switch cell of a crossbar switch circuit for configuring a crossbar memory of a LUT included in the reconfiguration circuit according to the first embodiment of the present invention. 本発明の第1の実施形態に係る再構成回路に含まれるLUTのクロスバーメモリを構成するクロスバースイッチ回路のスイッチセルに含まれる抵抗変化素子のシンボリック表現である。It is a symbolic expression of the resistance change element contained in the switch cell of the crossbar switch circuit which comprises the crossbar memory of LUT contained in the reconfiguration | reconstruction circuit which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る再構成回路に含まれるLUTのクロスバーメモリを構成するクロスバースイッチ回路のスイッチセルに含まれる抵抗変化素子の抵抗状態の変化に関するテーブルである。It is a table regarding the change of the resistance state of the variable resistance element contained in the switch cell of the crossbar switch circuit which comprises the crossbar memory of LUT contained in the reconfiguration | reconstruction circuit which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る再構成回路に含まれるLUTのクロスバーメモリを構成するクロスバースイッチ回路のスイッチセルのシンボリック表現である。It is a symbolic representation of the switch cell of the crossbar switch circuit which comprises the crossbar memory of LUT contained in the reconfiguration | reconstruction circuit which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る再構成回路に含まれるLUTのクロスバーメモリを構成するクロスバースイッチ回路のスイッチセルの接続を示す回路図である。It is a circuit diagram showing connection of switch cells of a crossbar switch circuit which constitutes a crossbar memory of a LUT included in the reconfiguration circuit according to the first embodiment of the present invention. 本発明の第1の実施形態に係る再構成回路に含まれるLUTのクロスバーメモリを構成するクロスバースイッチ回路のスイッチセルの構成を示す概念図である。It is a conceptual diagram which shows the structure of the switch cell of the crossbar switch circuit which comprises the crossbar memory of LUT contained in the reconfiguration | reconstruction circuit which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る再構成回路に含まれるクロスバースイッチ回路と切換え制御回路との接続状態を示す回路図である。FIG. 3 is a circuit diagram showing a connection state of a crossbar switch circuit and a switching control circuit included in the reconfiguration circuit according to the first embodiment of the present invention. 本発明の第1の実施形態に係る再構成回路に構成されるLUTのクロスバーメモリを構成するクロスバースイッチ回路のインターフェースの構成を示す概念図である。It is a conceptual diagram which shows the structure of the interface of the crossbar switch circuit which comprises the crossbar memory of LUT comprised by the reconfiguration | reconstruction circuit which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る再構成回路に構成されるLUTのクロスバーメモリを構成するクロスバースイッチ回路のインターフェースの構成を示す概念図である。It is a conceptual diagram which shows the structure of the interface of the crossbar switch circuit which comprises the crossbar memory of LUT comprised by the reconfiguration | reconstruction circuit which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る再構成回路に構成されるLUTの構成を示す概念図である。It is a conceptual diagram which shows the structure of LUT comprised by the reconstruction circuit which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る再構成回路の構成を示す概念図である。It is a conceptual diagram which shows the structure of the reconfiguration | reconstruction circuit which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る再構成回路の動作(ノーマルモード)に関する概念図である。It is a conceptual diagram regarding operation (normal mode) of a reconfiguration circuit concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る再構成回路の動作(高信頼モード)に関する概念図である。It is a conceptual diagram regarding operation (reliable mode) of a reconfiguration circuit concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る再構成回路の動作(高信頼モード)において冗長化されたスイッチセルについて説明するための回路図である。FIG. 7 is a circuit diagram for describing a switch cell redundant in an operation (reliable mode) of the reconfiguration circuit according to the first embodiment of the present invention. 本発明の第1の実施形態に係る再構成回路に含まれるLUTを含むロジックセル(以下、CLB:Configurable Logic Block)を並べて構成した大規模論理集積回路の概念図である。FIG. 2 is a conceptual view of a large scale logic integrated circuit in which logic cells (hereinafter, CLB: Configurable Logic Block) including LUTs included in the reconfiguration circuit according to the first embodiment of the present invention are arranged. スイッチセルを冗長化させたクロスバースイッチ回路を用いるLUTを示す概念図である。It is a conceptual diagram which shows LUT using the crossbar switch circuit which made the switch cell redundant. スイッチセルを冗長化させたクロスバースイッチ回路を用いてLUTを高信頼化する例を示す概念図である。FIG. 6 is a conceptual diagram showing an example of making a LUT highly reliable using a crossbar switch circuit in which switch cells are made redundant. 2つのクロスバースイッチ回路を連結して冗長化させたLUTを示す概念図である。FIG. 6 is a conceptual diagram showing a LUT in which two crossbar switch circuits are connected to make them redundant. 本発明の第2の実施形態に係る再構成回路の構成を示すブロック図である。It is a block diagram which shows the structure of the reconfiguration | reconstruction circuit which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る再構成回路に構成されるルックアップテーブル(LUT:Lookup Table)の構成を示すブロック図である。It is a block diagram which shows the structure of the look-up table (LUT: Lookup Table) comprised by the reconstruction circuit which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る再構成回路に含まれるクロスバースイッチ回路と切換え制御回路との接続状態を示す回路図である。FIG. 6 is a circuit diagram showing a connection state of a crossbar switch circuit and a switching control circuit included in a reconfiguration circuit according to a second embodiment of the present invention. 本発明の第2の実施形態に係る再構成回路に構成されるLUTの構成を示す概念図である。It is a conceptual diagram which shows the structure of LUT comprised by the reconstruction circuit which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る再構成回路の構成を示す概念図である。It is a conceptual diagram which shows the structure of the reconfiguration | reconstruction circuit which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る再構成回路の動作(ノーマルモード)に関する概念図である。It is a conceptual diagram regarding operation (normal mode) of a reconfiguration circuit concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る再構成回路の動作(高信頼モード)に関する概念図である。It is a conceptual diagram regarding operation (reliable mode) of the reconfiguration circuit according to the second embodiment of the present invention. 本発明の第2の実施形態に係る再構成回路の動作(高信頼モード)において冗長化されたスイッチセルについて説明するための回路図である。It is a circuit diagram for demonstrating the switch cell made redundant in operation (reliable mode) of the reconfiguration circuit concerning a 2nd embodiment of the present invention. 一般的な再構成回路の構成を示す回路図である。It is a circuit diagram which shows the structure of a general reconstruction circuit. 一般的なクロスバースイッチ回路において保持不良が発生してLUT用メモリデータの一部が消失する例を示す概念図である。It is a conceptual diagram which shows the example which a holding failure generate | occur | produces in a general crossbar switch circuit, and a part of memory data for LUT lose | disappears.
 以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。なお、以下の実施形態の説明に用いる全図においては、特に理由がない限り、同様箇所には同一符号を付す。また、以下の実施形態において、同様の構成・動作に関しては繰り返しの説明を省略する場合がある。また、図面中の矢印の向きは、信号の向きの一例を示すものであり、信号の向きを限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiments described below are technically preferable limitations for carrying out the present invention, but the scope of the invention is not limited to the following. In all the drawings used in the following description of the embodiment, the same reference numerals are given to the same parts unless there is a particular reason. In the following embodiments, the same configuration and operation may not be repeatedly described. Further, the direction of the arrow in the drawing indicates an example of the direction of the signal, and does not limit the direction of the signal.
 (第1の実施形態)
 まず、本発明の第1の実施形態に係る再構成回路について図面を参照しながら説明する。本実施形態の再構成回路には、少なくとも二つのルックアップテーブル(以下、LUT:Lookup Table)が構成される。
First Embodiment
First, a reconfiguration circuit according to a first embodiment of the present invention will be described with reference to the drawings. In the reconstruction circuit of this embodiment, at least two look-up tables (hereinafter referred to as LUTs) are configured.
 (構成)
 図1は、本実施形態の再構成回路に構成される再構成回路1の構成を示すブロック図である。図1のように、再構成回路1は、第1のLUT10-1、第2のLUT10-2、スイッチ17を備える。第1のLUT10-1の出力ノード(第1の出力ノード15-1)と、第2のLUT10-2の出力ノード(第2の出力ノード15-2)とは、スイッチ17を介して互いに接続される。
(Constitution)
FIG. 1 is a block diagram showing a configuration of a reconfiguration circuit 1 configured in the reconfiguration circuit of the present embodiment. As shown in FIG. 1, the reconstruction circuit 1 includes a first LUT 10-1, a second LUT 10-2, and a switch 17. The output node (first output node 15-1) of the first LUT 10-1 and the output node (second output node 15-2) of the second LUT 10-2 are mutually connected via the switch 17 Be done.
 以下において、第1のLUT10-1と第2のLUT10-2とを区別しない場合は、LUT10と記載する。本実施形態の再構成回路には、クロスバースイッチ回路を用いてLUT10を構成させる。また、本実施形態の再構成回路に含まれるクロスバースイッチ回路のクロスポイントを接続するスイッチセルには抵抗変化素子が含まれる。 In the following, when the first LUT 10-1 and the second LUT 10-2 are not distinguished from one another, they are referred to as the LUT 10. In the reconfiguration circuit of this embodiment, the LUT 10 is configured using a crossbar switch circuit. The switch cells connecting the cross points of the crossbar switch circuit included in the reconfiguration circuit of the present embodiment include a resistance change element.
 第1のLUT10-1は、第1の出力ノード15-1を介して信号を出力する。第1のLUT10-1は、第1の出力ノード15-1を介してスイッチ17に接続される。また、第2のLUT10-2は、第2の出力ノード15-2を介して信号を出力する。第2のLUT10-2は、第2の出力ノード15-2を介してスイッチ17に接続される。 The first LUT 10-1 outputs a signal via the first output node 15-1. The first LUT 10-1 is connected to the switch 17 via the first output node 15-1. The second LUT 10-2 outputs a signal via the second output node 15-2. The second LUT 10-2 is connected to the switch 17 via the second output node 15-2.
 スイッチ17は、第1の出力ノード15-1を介して第1のLUT10-1に接続されるとともに、第2の出力ノード15-2を介して第2のLUT10-2に接続される。スイッチ17は、極性の異なる二つの半導体素子を組み合わせた相補型素子の構成を有する。例えば、スイッチ17は、NMOS(N-type Metal-Oxide-Semiconductor)とPMOS(P-type Metal-Oxide-Semiconductor)とを組み合わせた選択トランジスタによって実現される。 The switch 17 is connected to the first LUT 10-1 via the first output node 15-1, and connected to the second LUT 10-2 via the second output node 15-2. The switch 17 has a configuration of a complementary element in which two semiconductor elements having different polarities are combined. For example, the switch 17 is realized by a selection transistor in which an NMOS (N-type Metal-Oxide-Semiconductor) and a PMOS (P-type Metal-Oxide-Semiconductor) are combined.
 言い換えると、スイッチ17は、第1のLUT10-1の第1の出力ノード15-1と、第2のLUT10-2の第2の出力ノード15-2とに接続される。スイッチ17は、第1のLUT10-1の第1の出力ノード15-1と、第2のLUT10-2の第2の出力ノード15-2とを電気的に導通もしくは非導通の状態に切り替える。 In other words, the switch 17 is connected to the first output node 15-1 of the first LUT 10-1 and the second output node 15-2 of the second LUT 10-2. The switch 17 switches the first output node 15-1 of the first LUT 10-1 and the second output node 15-2 of the second LUT 10-2 to the electrically conductive or non-conductive state.
 図2は、LUT10の構成を示すブロック図である。図2のように、LUT10は、クロスバーメモリ11と、マルチプレクサ13とを含む。なお、図2には、クロスバーメモリ11とマルチプレクサ13とを一つずつしか図示していないが、LUT10には、任意の数のクロスバーメモリ11とマルチプレクサ13とを組み合わせて構成できる。 FIG. 2 is a block diagram showing the configuration of the LUT 10. As shown in FIG. 2, the LUT 10 includes a crossbar memory 11 and a multiplexer 13. Although only one crossbar memory 11 and one multiplexer 13 are illustrated in FIG. 2, the LUT 10 can be configured by combining an arbitrary number of crossbar memories 11 and multiplexers 13.
 クロスバーメモリ11は、クロスバースイッチ回路を用いて構成される記憶回路である。言い換えると、クロスバーメモリ11は、相補型素子を含む複数のスイッチセルを有するクロスバースイッチ回路に構成される。例えば、クロスバーメモリ11は、2入力・K出力のクロスバースイッチ回路12によって構成される(K:自然数)。 The crossbar memory 11 is a storage circuit configured using a crossbar switch circuit. In other words, the crossbar memory 11 is configured as a crossbar switch circuit having a plurality of switch cells including complementary elements. For example, the crossbar memory 11 is configured by a crossbar switch circuit 12 of 2 inputs and K outputs (K is a natural number).
 マルチプレクサ13は、クロスバーメモリ11から出力される複数の信号を入力とし、入力された信号のいずれかを選択して出力する選択回路である。言い換えると、マルチプレクサ13は、クロスバースイッチ回路から入力される複数の信号のうちいずれか一つを選択制御信号(図示しない)に応じて出力ノード15に出力する。例えば、マルチプレクサ13は、複数の相補型素子を多段に組み合わせて構成できる。本実施形態においては、p型金属酸化膜半導体素子(PMOS)とn型金属酸化膜半導体素子(NMOS)とを含む相補型素子を例示する。 The multiplexer 13 is a selection circuit that receives a plurality of signals output from the crossbar memory 11 and selects and outputs one of the input signals. In other words, the multiplexer 13 outputs one of the plurality of signals input from the crossbar switch circuit to the output node 15 in response to the selection control signal (not shown). For example, the multiplexer 13 can be configured by combining a plurality of complementary elements in multiple stages. In the present embodiment, a complementary element including a p-type metal oxide semiconductor device (PMOS) and an n-type metal oxide semiconductor device (NMOS) is exemplified.
 すなわち、本実施形態の再構成回路1は、クロスバーメモリ11が構成されるクロスバースイッチ回路12と、クロスバースイッチ回路に接続されたマルチプレクサ13と、少なくとも二つのLUT10の出力ノード15に接続されたスイッチ17とを備える。LUT10は、クロスバースイッチ回路を用いて構成されるクロスバーメモリ11とマルチプレクサ13とによって構成される。 That is, the reconfiguration circuit 1 of the present embodiment is connected to the crossbar switch circuit 12 in which the crossbar memory 11 is configured, the multiplexer 13 connected to the crossbar switch circuit, and the output node 15 of at least two LUTs 10. And the switch 17. The LUT 10 is configured of a crossbar memory 11 configured using a crossbar switch circuit and a multiplexer 13.
 スイッチ17は、オン状態の場合、第1のLUT10-1が構成されるクロスバーメモリ11に含まれる一つのノードと、第2のLUT10-2が構成されるクロスバーメモリ11に含まれる一つのノードとを電気的に接続する。スイッチ17は、オフ状態の場合、前記第1のLUT10-1と第2のLUT10-2との電気的な接続を切断する。 When the switch 17 is in the ON state, one node is included in the crossbar memory 11 in which the first LUT 10-1 is configured, and one in the crossbar memory 11 in which the second LUT 10-2 is configured. Electrically connect with the node. When the switch 17 is in the off state, the switch 17 disconnects the electrical connection between the first LUT 10-1 and the second LUT 10-2.
 〔抵抗変化素子〕
 ここで、本実施形態の再構成回路に含まれるクロスバースイッチ回路に含まれる抵抗変化素子について説明する。図3は、本実施形態の再構成回路に含まれるクロスバースイッチ回路を構成するスイッチセルに含まれる抵抗変化素子50の構成を示す概念図である。図4は、抵抗変化素子50のシンボリック表現である。
[Resistive change element]
Here, the variable resistance element included in the crossbar switch circuit included in the reconfiguration circuit of the present embodiment will be described. FIG. 3 is a conceptual view showing a configuration of the variable resistance element 50 included in a switch cell configuring the crossbar switch circuit included in the reconfiguration circuit of the present embodiment. FIG. 4 is a symbolic representation of the resistance change element 50.
 図3のように、抵抗変化素子50は、第1の配線層51(T1とも記載する)と、固体電解質層52(ICとも記載する)と、第2の配線層53(T2とも記載する)とを含む。固体電解質層52は、金属イオンを含有し、第1の配線層51と第2の配線層53との間に配置される。抵抗変化素子50は、第1の配線層51および第2の配線層53の両端子に、順バイアスまたは逆バイアスを印加することによって抵抗値を変えることができる。 As shown in FIG. 3, the variable resistance element 50 includes a first wiring layer 51 (also described as T1), a solid electrolyte layer 52 (also described as IC), and a second wiring layer 53 (also described as T2). And. The solid electrolyte layer 52 contains metal ions and is disposed between the first wiring layer 51 and the second wiring layer 53. The resistance change element 50 can change the resistance value by applying a forward bias or a reverse bias to both terminals of the first wiring layer 51 and the second wiring layer 53.
 抵抗変化素子50には、一定以上の電圧を所定時間印加することによって抵抗が変化し、かつ変化した抵抗を保持できるものを用いる。例えば、抵抗変化素子50としては、遷移金属酸化物を用いたReRAM(Resistance Random Access Memory)や、イオン伝導体を用いたNanoBridge(登録商標)などを用いることができる。 As the variable resistance element 50, one that can change its resistance by applying a predetermined voltage or more for a predetermined time and can hold the changed resistance is used. For example, as the resistance change element 50, ReRAM (Resistance Random Access Memory) using a transition metal oxide, NanoBridge (registered trademark) using an ion conductor, or the like can be used.
 また、抵抗変化素子50は、抵抗を変化させるための電圧の印加方向に極性を有する2つのバイポーラ型の抵抗変化素子を含むものでもよい。この場合、抵抗変化素子50は、2つのバイポーラ型の抵抗変化素子を対向して直列に接続し、かつ2つのスイッチの接続点にスイッチ(トランジスタ)が配置されている構成が好ましい。なぜならば、このような構成を有する抵抗変化素子50は、信号を継続的に通過させて使用する際のディスターブ耐性が高いためである。また、抵抗変化素子50は、電界などの印加によってイオンが自由に動くことのできる固体(イオン伝導体)中における金属イオンの移動と電気化学反応とを利用した抵抗変化素子であってもよい。 The variable resistance element 50 may include two bipolar variable resistance elements having a polarity in the application direction of the voltage for changing the resistance. In this case, it is preferable that the variable resistance element 50 has a configuration in which two bipolar variable resistance elements are opposed and connected in series, and a switch (transistor) is disposed at a connection point of two switches. This is because the variable resistance element 50 having such a configuration has high disturbance resistance when using a signal continuously passing through. Further, the resistance change element 50 may be a resistance change element utilizing movement of metal ions and an electrochemical reaction in a solid (ion conductor) in which ions can freely move by application of an electric field or the like.
 上述の抵抗変化素子50は、抵抗の変化量が大きいので、電極間を信号が通過するかしないかを区別できるスイッチ素子として使用できる。抵抗変化素子50に用いられる固体電解質層52は、第1の配線層51からは金属イオンを受け取るが、第2の配線層53からは金属イオンを受け取らない。その結果、抵抗変化素子50の両端子への印加電圧の極性が変化することによって固体電解質層52の抵抗値が大きく変化し、第1の配線層51と第2の配線層53との間の導通状態を制御できる。 The above-described variable resistance element 50 can be used as a switch element that can distinguish whether or not a signal passes between electrodes because the amount of change in resistance is large. The solid electrolyte layer 52 used for the resistance change element 50 receives metal ions from the first wiring layer 51 but does not receive metal ions from the second wiring layer 53. As a result, when the polarity of the voltage applied to both terminals of the variable resistance element 50 changes, the resistance value of the solid electrolyte layer 52 largely changes, and the voltage between the first wiring layer 51 and the second wiring layer 53 is changed. The conduction state can be controlled.
 図5は、抵抗変化素子50の両端子への印加電圧と抵抗状態との対応関係を示すテーブル500である。第1の配線層51に対して第2の配線層53よりも高い電圧を印加する(順バイアス)と、抵抗変化素子50は低抵抗状態(オン)となる。第2の配線層53に対して第1の配線層51よりも高い電圧を印加する(逆バイアス)と、抵抗変化素子50は高抵抗状態(オフ)となる。例えば、低抵抗状態(オン)と高抵抗状態(オフ)の抵抗値の比は10の5乗よりも大きくなるように設定される。 FIG. 5 is a table 500 showing the correspondence between the voltage applied to both terminals of the variable resistance element 50 and the resistance state. When a voltage higher than that of the second wiring layer 53 is applied to the first wiring layer 51 (forward bias), the variable resistance element 50 is in a low resistance state (on). When a voltage higher than that of the first wiring layer 51 is applied to the second wiring layer 53 (reverse bias), the variable resistance element 50 is in a high resistance state (off). For example, the ratio of the resistance value in the low resistance state (on) to the high resistance state (off) is set to be larger than 10 5.
 〔スイッチセル〕
 図6は、本実施形態の再構成回路を実現するためのクロスバースイッチ回路のクロスポイントに配置されるスイッチセル120のシンボリック表現である。スイッチセル120は、第1の抵抗変化素子125-1と、第2の抵抗変化素子125-2と、選択トランジスタ126とを含む。
[Switch cell]
FIG. 6 is a symbolic representation of the switch cell 120 disposed at the cross point of the crossbar switch circuit for realizing the reconfiguration circuit of this embodiment. Switch cell 120 includes a first resistance change element 125-1, a second resistance change element 125-2, and a selection transistor 126.
 第1の抵抗変化素子125-1は固体電解質層152-1を含み、第2の抵抗変化素子125-2は固体電解質層152-2を含む。第1の抵抗変化素子125-1および第2の抵抗変化素子125-2のそれぞれは、図3の抵抗変化素子50の構造を有する。 The first resistance change element 125-1 includes the solid electrolyte layer 152-1, and the second resistance change element 125-2 includes the solid electrolyte layer 152-2. Each of the first resistance change element 125-1 and the second resistance change element 125-2 has the structure of the resistance change element 50 of FIG.
 すなわち、スイッチセル120は、1つのトランジスタ(選択トランジスタ126)と、2つの対となる抵抗変化素子(第1の抵抗変化素子125-1と第2の抵抗変化素子125-2)とを用いた相補型(1T2R)構造のスイッチセルである。 That is, the switch cell 120 uses one transistor (selection transistor 126) and two pairs of resistance change elements (first resistance change element 125-1 and second resistance change element 125-2). It is a switch cell of a complementary type (1T2R) structure.
 第1の抵抗変化素子125-1および第2の抵抗変化素子125-2の一方の電極は、相互に接続されて共通化されたノード(以下、共通ノード127)を形成する。共通ノード127は、選択トランジスタ126の一方の拡散層(ソースまたはドレイン)に接続される。 One electrodes of the first resistance change element 125-1 and the second resistance change element 125-2 are connected to each other to form a shared node (hereinafter, common node 127). The common node 127 is connected to one diffusion layer (source or drain) of the selection transistor 126.
 第1の抵抗変化素子125-1の他方の電極TR1は第1の信号線に接続される。第1の抵抗変化素子125-1の抵抗値は、電極TR1および共通ノード127に印加する電圧に応じて変化する。一方、第2の抵抗変化素子125-2の他方の電極TR2は第2の信号線に接続される。第2の抵抗変化素子125-2の抵抗値は、電極TR2および共通ノード127に印加する電圧に応じて変化する。 The other electrode TR1 of the first resistance change element 125-1 is connected to the first signal line. The resistance value of the first resistance change element 125-1 changes in accordance with the voltage applied to the electrode TR1 and the common node 127. On the other hand, the other electrode TR2 of the second resistance change element 125-2 is connected to the second signal line. The resistance value of second resistance change element 125-2 changes according to the voltage applied to electrode TR 2 and common node 127.
 選択トランジスタ126は、一般的なトランジスタで構成できる。選択トランジスタ126の拡散層の一方(ソースまたはドレイン)は、共通ノード127に接続される。選択トランジスタ126の拡散層の他方(ドレインまたはソース)の電極TSは、後述する書き込み制御線SVに接続される。選択トランジスタ126のゲート電極TGは、後述する書き込み制御線GHに接続される。 The selection transistor 126 can be configured by a general transistor. One of the diffusion layers (source or drain) of the select transistor 126 is connected to the common node 127. The other (drain or source) electrode TS of the diffusion layer of the selection transistor 126 is connected to a write control line SV described later. The gate electrode TG of the selection transistor 126 is connected to a write control line GH described later.
 まとめると、スイッチセル120は、印加する電圧に応じて抵抗状態を切り替えることができる第1の抵抗変化素子125-1および第2の抵抗変化素子125-2、少なくとも一つの選択トランジスタ126を含む。第1の抵抗変化素子125-1の一方の端子と、第2の抵抗変化素子125-2の一方の端子とは、選択トランジスタ126の拡散層の一方に接続される。例えば、第1の抵抗変化素子125-1および第2の抵抗変化素子125-2は、バイポーラ型の抵抗変化素子であり、抵抗変化極性が対向するように配置される。例えば、第1の抵抗変化素子125-1および第2の抵抗変化素子125-2は、イオン電導性の固体電解質層を含む。 In summary, the switch cell 120 includes the first resistance change element 125-1 and the second resistance change element 125-2, which can switch the resistance state according to the applied voltage, and at least one selection transistor 126. One terminal of the first resistance change element 125-1 and one terminal of the second resistance change element 125-2 are connected to one of the diffusion layers of the selection transistor 126. For example, the first resistance change element 125-1 and the second resistance change element 125-2 are bipolar type resistance change elements, and are arranged such that the resistance change polarity faces each other. For example, the first resistance change element 125-1 and the second resistance change element 125-2 include an ion conductive solid electrolyte layer.
 図7は、スイッチセル120と各配線との接続関係を示す回路図である。スイッチセル120は、クロスバースイッチ回路12のスイッチとして用いられる。図7において、スイッチセル120は、x方向(第1の方向とも呼ぶ)に沿った配線である信号線RH[k]と、y方向(第2の方向とも呼ぶ)に沿った配線である信号線RV[j]と、のクロスポイント近傍に配置される(j、k:自然数)。 FIG. 7 is a circuit diagram showing a connection relationship between the switch cell 120 and each wire. The switch cell 120 is used as a switch of the crossbar switch circuit 12. In FIG. 7, the switch cell 120 is a signal line RH [k] which is a wiring along the x direction (also referred to as a first direction) and a signal which is a wiring along ay direction (also referred to as a second direction). It is arranged near the cross point of line RV [j] (j, k: natural number).
 電極TR1は、信号線RH[k]と接続される。第2の抵抗変化素子125-2の電極TR2は、信号線RV[j]と接続される。すなわち、信号線RV[j]および信号線RH[k]は、それぞれ、第1の抵抗変化素子125-1と第2の抵抗変化素子125-2との間で共有されていない方の電極に接続される。 The electrode TR1 is connected to the signal line RH [k]. The electrode TR2 of the second resistance change element 125-2 is connected to the signal line RV [j]. That is, the signal line RV [j] and the signal line RH [k] are connected to the electrode not shared by the first resistance change element 125-1 and the second resistance change element 125-2, respectively. Connected
 選択トランジスタ126のゲート電極TGには、書き込み制御線GH[k]が接続される。第1の抵抗変化素子125-1および第2の抵抗変化素子125-2が接続されていない側の拡散層(ドレイン、またはソース)の電極TSには、書き込み制御線SV[j]が接続される。後述するが、書き込み制御線GH[k]および書き込み制御線SV[j]は、信号線RH[k]および信号線RV[j]とは独立に配線し、配線する方向に位置する他のスイッチとの間で共有される。 The write control line GH [k] is connected to the gate electrode TG of the selection transistor 126. The write control line SV [j] is connected to the electrode TS of the diffusion layer (drain or source) on the side to which the first resistance change element 125-1 and the second resistance change element 125-2 are not connected. Ru. Although described later, the write control line GH [k] and the write control line SV [j] are wired independently of the signal line RH [k] and the signal line RV [j], and other switches positioned in the wiring direction Shared with.
 図8は、図6および図7に示すスイッチセル120の立体的な模式図である。 FIG. 8 is a three-dimensional schematic view of the switch cell 120 shown in FIG. 6 and FIG.
 共通ノード127は、ビア128-1を介して固体電解質層152-1に接続されるとともに、ビア128-2を介して固体電解質層152-2に接続される。また、共通ノード127は、ビア128-3と電極129を介して選択トランジスタ126の拡散層の一方(ソースまたはドレイン)に接続される。 The common node 127 is connected to the solid electrolyte layer 152-1 via the via 128-1, and connected to the solid electrolyte layer 152-2 via the via 128-2. In addition, the common node 127 is connected to one (source or drain) of the diffusion layer of the selection transistor 126 through the via 128-3 and the electrode 129.
 信号線RH[k]は、電極TR1の+z方向に位置する。信号線RH[k]と電極TR1とは、ビア128-4を介して電気的に接続される。信号線RV[j]は、同一のxy平面内で電極TR2と電気的に接続される。電極TR1と電極TR2とは、同一のxy平面内に位置する。 The signal line RH [k] is located in the + z direction of the electrode TR1. The signal line RH [k] and the electrode TR1 are electrically connected via the via 128-4. The signal line RV [j] is electrically connected to the electrode TR2 in the same xy plane. The electrode TR1 and the electrode TR2 are located in the same xy plane.
 〔クロスバースイッチ回路〕
 次に、図9を参照しながら、本実施形態のクロスバーメモリ11を実現するためのクロスバースイッチ回路12について説明する。図9は、クロスバースイッチ回路12の回路図である。
[Crossbar switch circuit]
Next, the crossbar switch circuit 12 for realizing the crossbar memory 11 of the present embodiment will be described with reference to FIG. FIG. 9 is a circuit diagram of the crossbar switch circuit 12.
 図9に示すクロスバースイッチ回路12は、J入力・K出力の信号切り替え用のクロスバースイッチ回路である(J、K:自然数)。図9には、抵抗変化素子を書き換える際(書き込み時)に、書き込み用の電源ソース(PS:Power Source)からの供給電圧・電流源を制御するための制御トランジスタや制御用配線も含めて図示している。なお、図9に示す回路構成は、クロスバースイッチ回路12の構成の一部を概念的に図示したものであり、全てを表すものではない。また、本実施形態の再構成回路1を実現するためのクロスバースイッチ回路12は、図9に示す素子や信号線の数に限定されない。 The crossbar switch circuit 12 shown in FIG. 9 is a crossbar switch circuit for signal switching of J input and K output (J, K: natural number). FIG. 9 is a diagram including a control transistor for controlling a voltage / current source supplied from a writing power source (PS: Power Source) and a control wiring when the resistance change element is rewritten (at the time of writing). It shows. The circuit configuration shown in FIG. 9 conceptually illustrates a part of the configuration of the crossbar switch circuit 12 and does not represent all. Further, the crossbar switch circuit 12 for realizing the reconstruction circuit 1 of the present embodiment is not limited to the number of elements and signal lines shown in FIG.
 クロスバースイッチ回路12は、スイッチセル120-1~9を含む。スイッチセル120-1~9のそれぞれは、スイッチ素子を含む。なお、本実施形態においては、一対の抵抗変化素子をスイッチ素子として用いる例について説明する。また、これ以降、スイッチセル120-1~9を区別しない場合は、末尾のハイフンおよび番号を省略してスイッチセル120と記載する。 The crossbar switch circuit 12 includes switch cells 120-1 to 9. Each of switch cells 120-1 to 9 includes a switch element. In the present embodiment, an example in which a pair of resistance change elements are used as switch elements will be described. Further, hereinafter, when the switch cells 120-1 to 9 are not distinguished from one another, the hyphen and the number at the end are omitted and the switch cell 120 is described.
 スイッチセル120-1~3は、x方向(第1の方向とも呼ぶ)の配線である書き込み制御線GH[k-1](第1の書き込み制御線とも呼ぶ)および信号線RH[k-1](第1の配線とも呼ぶ)を共有する。書き込み制御線GH[k-1]と信号線RH[k-1]とは、互いに独立した配線である。信号線RH[k-1]は、スイッチセル120-1~3に接続される第1制御トランジスタ121aの一方の拡散層と接続される。第1制御トランジスタ121aの他方の拡散層には、電源線PS[0](第1の電源線とも呼ぶ)が接続される。第1制御トランジスタ121aのゲート電極には、書き込み制御線GSH[k-1](第2の書き込み制御線とも呼ぶ)が接続される。書き込み制御線GSH[k-1]は、スイッチセル120-1~3に含まれるスイッチ素子の抵抗を変化させるために使用される配線である。 Switch cells 120-1 to 3 have write control line GH [k-1] (also referred to as first write control line) and signal line RH [k-1], which are wirings in the x direction (also referred to as first direction). ] (Also referred to as first wiring). The write control line GH [k−1] and the signal line RH [k−1] are wires independent of each other. The signal line RH [k−1] is connected to one diffusion layer of the first control transistor 121 a connected to the switch cells 120-1 to 3. A power supply line PS [0] (also referred to as a first power supply line) is connected to the other diffusion layer of the first control transistor 121a. A write control line GSH [k−1] (also referred to as a second write control line) is connected to the gate electrode of the first control transistor 121a. The write control line GSH [k−1] is a wiring used to change the resistance of the switch elements included in the switch cells 120-1 to 3.
 スイッチセル120-4~6は、x方向の配線である書き込み制御線GH[k]および信号線RH[k]を共有する。書き込み制御線GH[k]と信号線RH[k]とは、互いに独立した配線である。信号線RH[k]は、スイッチセル120-4~6に接続される第1制御トランジスタ121bの一方の拡散層と接続される。第1制御トランジスタ121bの他方の拡散層には、電源線PS[0]が接続される。第1制御トランジスタ121bのゲート電極には、書き込み制御線GSH[k]が接続される。書き込み制御線GSH[k]は、スイッチセル120-4~6に含まれるスイッチ素子の抵抗を変化させるために使用される配線である。 The switch cells 120-4 to 6 share the write control line GH [k] and the signal line RH [k], which are wirings in the x direction. The write control line GH [k] and the signal line RH [k] are wires independent of each other. The signal line RH [k] is connected to one diffusion layer of the first control transistor 121 b connected to the switch cells 120-4 to 6. The power supply line PS [0] is connected to the other diffusion layer of the first control transistor 121b. The write control line GSH [k] is connected to the gate electrode of the first control transistor 121b. The write control line GSH [k] is a wiring used to change the resistance of the switch elements included in the switch cells 120-4 to 6.
 スイッチセル120-7~9は、x方向の配線である書き込み制御線GH[k+1]および信号線RH[k+1]を共有する。書き込み制御線GH[k+1]と信号線RH[k+1]とは、互いに独立した配線である。信号線RH[k+1]は、スイッチセル120-7~9に接続される第1制御トランジスタ121cの一方の拡散層と接続される。第1制御トランジスタ121cの他方の拡散層には、電源線PS[0]が接続される。第1制御トランジスタ121cのゲート電極には、書き込み制御線GSH[k+1]が接続される。書き込み制御線GSH[k+1]は、スイッチセル120-7~9に含まれるスイッチ素子の抵抗を変化させるために使用される配線である。 The switch cells 120-7 to 9 share the write control line GH [k + 1] and the signal line RH [k + 1], which are wirings in the x direction. The write control line GH [k + 1] and the signal line RH [k + 1] are wires independent of each other. The signal line RH [k + 1] is connected to one of the diffusion layers of the first control transistor 121c connected to the switch cells 120-7 to 9. The power supply line PS [0] is connected to the other diffusion layer of the first control transistor 121c. The write control line GSH [k + 1] is connected to the gate electrode of the first control transistor 121c. The write control line GSH [k + 1] is a wiring used to change the resistance of the switch elements included in the switch cells 120-7 to 9.
 スイッチセル120-1、4、7は、y方向(第2の方向とも呼ぶ)の配線である書き込み制御線SV[j-1](第2の書き込み制御線とも呼ぶ)および信号線RV[j-1](第2の配線とも呼ぶ)を共有する。書き込み制御線SV[j-1]と信号線RV[j-1]とは、互いに独立した配線である。書き込み制御線SV[j-1]は、スイッチセル120-1、4、7に接続される第2制御トランジスタ122aの一方の拡散層と接続される。第2制御トランジスタ122aの他方の拡散層には、電源線PS[1](第2の電源線とも呼ぶ)が接続される。第2制御トランジスタ122aのゲート電極には、ドライバ制御線PGV[j-1]が接続される。さらに、信号線RV[j-1]は、スイッチセル120-1、4、7に接続される第3制御トランジスタ123aの一方の拡散層と接続される。第3制御トランジスタ123aの他方の拡散層には、電源線PS[2](第3の電源線とも呼ぶ)が接続される。第3制御トランジスタ123aのゲート電極には、ドライバ制御線PGV[j-1]が接続される。 The switch cells 120-1, 4 and 7 have the write control line SV [j-1] (also referred to as a second write control line) and the signal line RV [j], which are wirings in the y direction (also referred to as a second direction). -1] (also referred to as second wiring). The write control line SV [j-1] and the signal line RV [j-1] are wires independent of each other. The write control line SV [j−1] is connected to one diffusion layer of the second control transistor 122 a connected to the switch cells 120-1, 4, 7. A power supply line PS [1] (also referred to as a second power supply line) is connected to the other diffusion layer of the second control transistor 122a. The driver control line PGV [j-1] is connected to the gate electrode of the second control transistor 122a. Further, the signal line RV [j−1] is connected to one diffusion layer of the third control transistor 123 a connected to the switch cells 120-1, 4, 7. A power supply line PS [2] (also referred to as a third power supply line) is connected to the other diffusion layer of the third control transistor 123a. The driver control line PGV [j-1] is connected to the gate electrode of the third control transistor 123a.
 スイッチセル120-2、5、8は、y方向の配線である書き込み制御線SV[j]および信号線RV[j]を共有する。書き込み制御線SV[j]と信号線RV[j]とは、互いに独立した配線である。書き込み制御線SV[j]は、スイッチセル120-2、5、8に接続される第2制御トランジスタ122bの一方の拡散層と接続される。第2制御トランジスタ122bの他方の拡散層には、電源線PS[1]が接続される。第2制御トランジスタ122bのゲート電極には、ドライバ制御線PGV[j]が接続される。さらに、信号線RV[j]は、スイッチセル120-2、5、8に接続される第3制御トランジスタ123bの一方の拡散層と接続される。第3制御トランジスタ123bの他方の拡散層には、電源線PS[2]が接続される。第3制御トランジスタ123bのゲート電極には、ドライバ制御線PGV[j]が接続される。 The switch cells 120-2, 5, 8 share the write control line SV [j] and the signal line RV [j], which are wirings in the y direction. The write control line SV [j] and the signal line RV [j] are wires independent of each other. The write control line SV [j] is connected to one diffusion layer of the second control transistor 122 b connected to the switch cells 120-2, 5 and 8. The power supply line PS [1] is connected to the other diffusion layer of the second control transistor 122b. The driver control line PGV [j] is connected to the gate electrode of the second control transistor 122b. Further, the signal line RV [j] is connected to one diffusion layer of the third control transistor 123 b connected to the switch cells 120-2, 5, 8. The power supply line PS [2] is connected to the other diffusion layer of the third control transistor 123b. The driver control line PGV [j] is connected to the gate electrode of the third control transistor 123b.
 スイッチセル120-3、6、9は、y方向の配線である書き込み制御線SV[j+1]および信号線RV[j+1]を共有する。書き込み制御線SV[j+1]と信号線RV[j+1]とは、互いに独立した配線である。書き込み制御線SV[j+1]は、スイッチセル120-3、6、9に接続される第2制御トランジスタ122cの一方の拡散層と接続される。第2制御トランジスタ122cの他方の拡散層には、電源線PS[1]が接続される。第2制御トランジスタ122cのゲート電極には、ドライバ制御線PGV[j+1]が接続される。さらに、信号線RV[j+1]は、スイッチセル120-3、6、9に接続される第3制御トランジスタ123cの一方の拡散層と接続される。第3制御トランジスタ123cの他方の拡散層には、電源線PS[2]が接続される。第3制御トランジスタ123cのゲート電極には、ドライバ制御線PGV[j+1]が接続される。 The switch cells 120-3, 6, 9 share the write control line SV [j + 1] and the signal line RV [j + 1], which are wirings in the y direction. The write control line SV [j + 1] and the signal line RV [j + 1] are wires independent of each other. The write control line SV [j + 1] is connected to one diffusion layer of the second control transistor 122 c connected to the switch cells 120-3, 6, 9. The power supply line PS [1] is connected to the other diffusion layer of the second control transistor 122c. The driver control line PGV [j + 1] is connected to the gate electrode of the second control transistor 122c. Further, the signal line RV [j + 1] is connected to one diffusion layer of the third control transistor 123c connected to the switch cells 120-3, 6, 9. The power supply line PS [2] is connected to the other diffusion layer of the third control transistor 123c. The driver control line PGV [j + 1] is connected to the gate electrode of the third control transistor 123c.
 図10は、J入力・K出力のクロスバースイッチ回路12を一つのブロックとし、入出力インターフェースを示す概念図である。図10のように、x方向に対応する一方の辺に信号線RVおよびドライバ制御線PGVが配置される。また、y方向に対応する一方の辺に書き込み制御線GH、書き込み制御線GSHおよび電源線PSが配置され、他方の辺に信号線RHが配置される。なお、図10に示すクロスバーの概念図は、例示であり、本発明の範囲を限定するものではない。 FIG. 10 is a conceptual diagram showing an I / O interface, with the J input / K output crossbar switch circuit 12 as one block. As shown in FIG. 10, the signal line RV and the driver control line PGV are arranged on one side corresponding to the x direction. In addition, the write control line GH, the write control line GSH, and the power supply line PS are disposed on one side corresponding to the y direction, and the signal line RH is disposed on the other side. In addition, the conceptual diagram of the cross bar shown in FIG. 10 is an illustration, and does not limit the scope of the present invention.
 図11は、メモリ用に修正されたクロスバースイッチ回路(クロスバーメモリ11)の入出力インターフェースを示す概念図である。図11のように、x方向に対応する一方の辺に、電源レベル(VDD)またはグランドレベル(GND)のそれぞれが入力される信号線RVと、ドライバ制御線PGVとが配置される。また、y方向に対応する一方の辺に書き込み制御線GH、書き込み制御線GSHおよび電源線PSが配置され、他方の辺に信号線RHが配置される。 FIG. 11 is a conceptual diagram showing an input / output interface of a crossbar switch circuit (crossbar memory 11) modified for memory. As shown in FIG. 11, on one side corresponding to the x direction, a signal line RV to which each of the power supply level (VDD) or the ground level (GND) is input and a driver control line PGV are arranged. In addition, the write control line GH, the write control line GSH, and the power supply line PS are disposed on one side corresponding to the y direction, and the signal line RH is disposed on the other side.
 クロスバーメモリ11は、クロスバースイッチ構成の2つのRVポートに対して、電源レベル(以下、VDD)とグランドレベル(以下、GND)とをそれぞれ入力することによってメモリとして機能させることができる。VDDまたはGNDのスイッチセルをオン状態にすることによって、クロスバーメモリ11の出力ノードの出力レベルをVDDまたはGNDに制御できる。 The crossbar memory 11 can function as a memory by inputting a power supply level (hereinafter, VDD) and a ground level (hereinafter, GND) to the two RV ports in the crossbar switch configuration. By turning on the switch cell of VDD or GND, the output level of the output node of the crossbar memory 11 can be controlled to VDD or GND.
 図12は、LUT10の構成を示す概念図である。LUT10は、クロスバーメモリ11からの出力をマルチプレクサ13の入力ポートと接続することによって実装される。図12の例では、クロスバーメモリ11からの出力ノード(K=2^N)は、N入力のマルチプレクサ13のN^2個の入力ノードに接続されて1つのLUTとして機能する(N、K:自然数)。 FIG. 12 is a conceptual diagram showing the configuration of the LUT 10. As shown in FIG. The LUT 10 is implemented by connecting the output from the crossbar memory 11 to the input port of the multiplexer 13. In the example of FIG. 12, the output node (K = 2 ^ N) from the crossbar memory 11 is connected to the N ^ 2 input nodes of the N-input multiplexer 13 to function as one LUT (N, K :Natural number).
 マルチプレクサ13は、複数の相補型素子(スイッチ130)を組み合わせた構成を有する。図12には、一対のCMOSおよびNMOSを並列に接続したスイッチ130-1~6を組み合わせる例を示す。なお、図12においては、6個のスイッチ130-1~6を組み合わせ、2入力する例を示すが、スイッチ130や入力の数は、構成する論理回路の規模に応じて設定される。なお、図12およびこれ以降の図面においては、スイッチ130-1~6のCMOSおよびNMOSのゲート電極に接続されるゲート線を省略している。 The multiplexer 13 has a configuration in which a plurality of complementary elements (switches 130) are combined. FIG. 12 shows an example in which the switches 130-1 to 6 in which a pair of CMOS and NMOS are connected in parallel are combined. Although FIG. 12 shows an example in which six switches 130-1 to 6 are combined and subjected to two inputs, the number of switches 130 and the number of inputs are set according to the scale of the logic circuit to be configured. In FIG. 12 and the subsequent drawings, the gate lines connected to the gate electrodes of the CMOS and NMOS of the switches 130-1 to 6 are omitted.
 〔再構成回路〕
 図13は、本実施形態の再構成回路1の構成を示す概念図である。本実施形態においては、相補型素子(スイッチ17)を介して、図11のLUT10の出力ノード15を接続する例を示す。なお、図13およびこれ以降の図面においては、スイッチ17のCMOSおよびNMOSのゲート電極に接続されるゲート線を省略している。
[Reconstruction circuit]
FIG. 13 is a conceptual diagram showing the configuration of the reconfiguration circuit 1 of the present embodiment. In the present embodiment, an example is shown in which the output node 15 of the LUT 10 of FIG. 11 is connected via a complementary element (switch 17). In FIG. 13 and the subsequent drawings, the gate lines connected to the CMOS and NMOS gate electrodes of the switch 17 are omitted.
 再構成回路1は、スイッチ17をオン・オフすることによって、モードを切り替えることができる。スイッチ17がオフの状態(ノーマルモード)では、第1の出力ノード15-1と第2の出力ノード15-2とは短絡されない。一方、スイッチ17がオンの状態(高信頼モード)では、第1の出力ノード15-1と第2の出力ノード15-2とが短絡される。 The reconfiguration circuit 1 can switch the mode by turning on and off the switch 17. When the switch 17 is off (normal mode), the first output node 15-1 and the second output node 15-2 are not short-circuited. On the other hand, when the switch 17 is on (high reliability mode), the first output node 15-1 and the second output node 15-2 are shorted.
 図14のように、スイッチ17がオフの状態(ノーマルモード)では、第1のLUT10-1と第2のLUT10-2とが互いに独立して異なる論理演算を実行する。そのため、第1の出力ノード15-1からは第1のLUT10-1の演算結果が出力され、第2の出力ノード15-2からは第2のLUT10-2の演算結果が出力される。 As shown in FIG. 14, when the switch 17 is off (normal mode), the first LUT 10-1 and the second LUT 10-2 execute different logical operations independently of each other. Therefore, the operation result of the first LUT 10-1 is output from the first output node 15-1, and the operation result of the second LUT 10-2 is output from the second output node 15-2.
 ノーマルモードを用いる場合、第1のLUT10-1と第2のLUT10-2とに対して異なる論理演算をさせる。この場合、それぞれのLUT10に対して所望のメモリ状態と入力信号の選択を行い、所望のアプリケーションを動作させる。その結果、ノーマルモードでは、LUTの使用効率が高く、高密度で論理を実装できるため、電力や遅延に関して高い性能が得られる。 When the normal mode is used, different logical operations are performed on the first LUT 10-1 and the second LUT 10-2. In this case, desired memory states and input signals are selected for each LUT 10 to operate a desired application. As a result, in the normal mode, the usage efficiency of the LUT is high, and logic can be implemented with high density, so high performance in terms of power and delay can be obtained.
 一方、図15のように、スイッチ17がオンの状態(高信頼モード)では、スイッチ17が短絡される。再構成回路1は、第1のLUT10-1と第2のLUT10-2とが同じ論理演算を実行する。そのため、冗長化された第1のLUT10-1および第2のLUT10-2によって演算された同じ演算結果が第1の出力ノード15-1および第2の出力ノード15-2から出力される。言い換えると、高信頼モードでは、同じ論理演算を実行する二つのLUTが冗長化された高信頼LUT110が形成される。 On the other hand, as shown in FIG. 15, when the switch 17 is in the on state (reliable mode), the switch 17 is shorted. The reconfiguration circuit 1 executes the same logical operation as the first LUT 10-1 and the second LUT 10-2. Therefore, the same calculation result calculated by the redundant first LUT 10-1 and the second LUT 10-2 is output from the first output node 15-1 and the second output node 15-2. In other words, in the high reliability mode, a high reliability LUT 110 is formed in which two LUTs performing the same logical operation are redundant.
 高信頼モードを用いて第1のLUT10-1と第2のLUT10-2とに対して同じ論理演算をさせる場合は、スイッチ17をオン状態にして、2つのLUTを相互に接続する。このとき、2つのLUT10のメモリ状態と入力信号とを同一にして1つのLUTとして動作させ、所望のアプリケーションを動作させる。その結果、高信頼モードでは、抵抗変化素子50の保持不良に対して高い信頼性が得られる。 When the same logical operation is performed on the first LUT 10-1 and the second LUT 10-2 using the high reliability mode, the switch 17 is turned on to connect the two LUTs to each other. At this time, the memory state of the two LUTs 10 and the input signal are made identical and operated as one LUT to operate a desired application. As a result, in the high reliability mode, high reliability can be obtained for the holding failure of the variable resistance element 50.
 スイッチ17のオン・オフは、例えば、チップのIO(Input Output)ピンによって制御できる。また、スイッチ17のオン・オフは、例えば、スイッチ17ごとにオン・オフ状態を保持するメモリを用意して制御してもよい。 The on / off of the switch 17 can be controlled by, for example, an IO (Input Output) pin of the chip. Further, the on / off of the switch 17 may be controlled by preparing a memory that holds the on / off state for each switch 17, for example.
 図16に示すように、2つの異なるLUT10(図15)の内部の各ノードは、マルチプレクサ13を構成するスイッチ130を介して、クロスバーメモリ11の内部の対応するスイッチセル120と電気的に接続される。LUT10(図15)の内部の1つのノードは、オン状態にある2つのスイッチセル120を介して、VDDにプルアップされるか、GNDにプルダウンされる。このため、同一のノードに対応する1つのスイッチセルが保持不良を起こして状態が遷移しても、ノードの電位は同じ状態を保つことができる。例えば、150度の温度で10年間保管した場合の抵抗変化素子の保持不良率が10の6乗分の1であった場合、回路が誤動作する確率は、冗長化前は10の6乗分の1であったのに対して、冗長化によって10の12乗分の1まで向上させることができる。 As shown in FIG. 16, each node in two different LUTs 10 (FIG. 15) is electrically connected to the corresponding switch cell 120 in crossbar memory 11 via switch 130 constituting multiplexer 13. Be done. One node inside the LUT 10 (FIG. 15) is pulled up to VDD or pulled down to GND through the two switch cells 120 in the on state. For this reason, even if one switch cell corresponding to the same node causes a holding failure and the state transitions, the potential of the node can be kept the same. For example, in the case where the retention failure rate of the variable resistance element when stored for 10 years at a temperature of 150 degrees is 1/6 of 10, the probability that the circuit malfunctions is equal to 10 6 6 before redundancy. In contrast to being 1, it can be improved to one tenth of a factor of 10 by redundancy.
 また、図17に示すように、複数の再構成回路1(以下、CLB:Configurable Logic Block)を並べて相互に接続することによって、より大規模の再構成回路1000(集積回路とも呼ぶ)を構成できる。例えば、複数のCLBに含まれる複数のスイッチ17のオン・オフ状態を共有し、1つのメモリを構成できる。このように構成したメモリは、多重に冗長化されて信頼性が高い。ただし、図17のように再構成回路1を多重化させる場合、それぞれの再構成回路1に含まれるクロスバーメモリ11の書き込み制御線は共有化させる。複数のCLBに含まれる複数のスイッチ17でオン・オフ状態を共有させれば、1つのメモリを使って制御できる。なお、複数のCLBに含まれる複数のスイッチでオン・オフ状態を共有させる場合は、冗長化されたメモリを用いることが望ましい。 Further, as shown in FIG. 17, a plurality of reconfiguration circuits 1 (hereinafter, CLBs: Configurable Logic Blocks) can be arranged side by side and connected to each other, whereby a larger scale reconfiguration circuit 1000 (also referred to as an integrated circuit) can be configured. . For example, one memory can be configured by sharing on / off states of a plurality of switches 17 included in a plurality of CLBs. The memory configured in this way is redundantly redundant and has high reliability. However, when the reconfiguration circuit 1 is multiplexed as shown in FIG. 17, the write control line of the crossbar memory 11 included in each reconfiguration circuit 1 is shared. If the on / off states are shared by a plurality of switches 17 included in a plurality of CLBs, control can be performed using one memory. When the on / off state is shared by a plurality of switches included in a plurality of CLBs, it is desirable to use a redundant memory.
 以上のように、本実施形態においては、相補型素子を含むスイッチで二つのLUTの出力ノードを接続する。論理実装密度や電力特性、遅延特性を優先するアプリケーションを効率よく実装する場合には、スイッチをオフ状態にし、それぞれのLUTを異なる論理演算回路として利用する。一方、信頼性を優先するアプリケーションを実装する場合は、スイッチをオン状態にするとともに、スイッチによって接続される二つのLUT間において、LUTメモリの状態と、LUT内のマルチプレクサへの入力信号を同じにする。その結果、一方のLUTに含まれるスイッチセルに保持不良が発生して高抵抗状態に遷移しても、他方のLUTで使われているスイッチセルによってプルダウンまたはプルアップされるため、不具合なくロジック動作をさせることができる。 As described above, in this embodiment, the output nodes of the two LUTs are connected by the switch including the complementary element. In order to efficiently implement an application that prioritizes the logic mounting density, the power characteristic, and the delay characteristic, the switch is turned off and each LUT is used as a different logical operation circuit. On the other hand, when implementing an application that prioritizes reliability, the switch is turned on, and the state of the LUT memory and the input signal to the multiplexer in the LUT are the same between the two LUTs connected by the switch. Do. As a result, even if a holding failure occurs in a switch cell included in one of the LUTs and a transition is made to a high resistance state, the switch cell used in the other LUT is pulled down or pulled up. You can
 また、2つの4入力LUTでは、クロスバースイッチ回路に2×(16×2+16+4)個のトランジスタ、マルチプレクサに、2×(32+16+8+4)個のトランジスタを必要とするため、合計224個のトランジスタを使用する。PMOSとNMOSを1つずつ用いたスイッチを1つ追加することによるフットプリントの面積オーバーヘッドは、LUTに使用するトランジスタ数で単純化して換算すると1%以下である。このため、相補型素子を含むスイッチを1つ追加しても、スイッチがない場合と比べてアプリケーションを実装させて動作させた際のパフォーマンス(電力・遅延)の劣化は1%以下となる。
また、高信頼性が要求される用途においては、同一チップでスイッチパターン(コンフィギュレーションパターン)を変えるだけで対応できる。さらに、アプリケーション動作に必要な回路面積、すなわちアプリケーション動作に必要なCLB数とCLBの面積との積を2倍に抑えることができる。
Also, since two 4-input LUTs require 2 × (16 × 2 + 16 + 4) transistors in the crossbar switch circuit and 2 × (32 + 16 + 8 + 4) transistors in the multiplexer, a total of 224 transistors are used. . The footprint overhead of the footprint resulting from the addition of one switch using PMOS and NMOS each is 1% or less in terms of the number of transistors used for the LUT. Therefore, even if one switch including a complementary element is added, the degradation of performance (power and delay) when the application is installed and operated is 1% or less compared to the case without the switch.
Further, in applications where high reliability is required, it can be coped with by changing the switch pattern (configuration pattern) on the same chip. Furthermore, the circuit area required for the application operation, that is, the product of the number of CLBs necessary for the application operation and the area of the CLB can be doubled.
 以上のように、本実施形態の再構成回路は、単一の回路でありながら、二つの用途を実装できる。一つは、冗長ビットを持たない再構成可能回路としてアプリケーションを高密度に実装する用途である。もう一つは、抵抗変化素子が保持不良を起こした場合であっても継続的にアプリケーション動作可能な高信頼性が要求される用途である。特に、高信頼性が要求される用途においては、アプリケーション動作に必要な回路面積を高密度実装時と比べて抑えることができる。すなわち、本実施形態によれば、冗長ビットを持たない再構成回路としてアプリケーションを高密度に実装しつつ、少ない回路オーバーヘッドで冗長性を持たせて継続的なアプリケーション動作を可能とする再構成回路を提供することが可能になる。 As described above, the reconfiguration circuit of this embodiment can implement two applications while being a single circuit. One is an application that implements an application at high density as a reconfigurable circuit without redundant bits. The other is an application requiring high reliability that enables continuous application operation even when the resistance change element causes a holding failure. In particular, in applications where high reliability is required, the circuit area required for application operation can be suppressed as compared with high density mounting. That is, according to the present embodiment, it is possible to implement a continuous application operation by providing redundancy with a small amount of circuit overhead while mounting an application at high density as a reconfiguration circuit having no redundant bits. It becomes possible to offer.
 (関連技術)
 ここで、本実施形態の再構成回路と、関連技術を用いた再構成回路とを比較して説明する。
(Related technology)
Here, the reconfiguration circuit of the present embodiment will be described in comparison with a reconfiguration circuit using the related art.
 例えば、同じアプリケーションパターンを再構成回路上に3つ用意し、それぞれのパターンに対して同じ信号を入力するとともに、出力ノードに対して多数決判定回路を入れることによって、チップとしての保持信頼性を向上することができる。多数決回路を用いるこの方法によれば、アプリケーションパターンを再構成回路に実装するためのスイッチパターン(コンフィギュレーションパターン)を変えるだけで信頼性を向上できるため、再構成回路そのものの回路変更が必要ない。しかしながら、多数決回路を用いると、アプリケーション動作に必要な回路面積が3倍以上必要になる。 For example, three same application patterns are prepared on the reconstruction circuit, the same signal is input to each pattern, and majority decision circuit is inserted to the output node, thereby improving the retention reliability as a chip can do. According to this method using the majority circuit, it is possible to improve the reliability only by changing the switch pattern (configuration pattern) for mounting the application pattern on the reconfiguration circuit, and therefore, it is not necessary to change the circuit of the reconfiguration circuit itself. However, the use of a majority circuit requires three times or more of the circuit area required for the application operation.
 抵抗変化素子を用いた再構成回路でも、冗長ビットを持たせずにアプリケーションを高密度に実装する用途と、抵抗変化素子が保持不良を起こしても継続的にアプリケーション動作可能な高信頼性が要求される用途とを同一の回路で実装可能ではある。しかしながら、高信頼性が要求される用途においては、アプリケーション動作に必要な回路面積を非高信頼化時(高密度実装時)と比べて2倍以内に抑えることは困難である。 Even in reconfiguration circuits using resistance change elements, applications that require high density mounting of applications without redundant bits, and high reliability that applications can operate continuously even if resistance change elements cause retention failure are required. Can be implemented with the same circuit. However, in applications where high reliability is required, it is difficult to reduce the circuit area required for application operation to less than twice that in non-high reliability (dense mounting).
 また、図18~図20に示すように、LUT用メモリを構成するクロスバースイッチ回路のスイッチ数を信号切り替えポイントに多重に接続し、冗長化する方法がある。図18および図19は、RV(VDDおよびGND)とPGVとを多重化する例である。図20は、クロスバーメモリを多重化する例である。 Further, as shown in FIGS. 18 to 20, there is a method of connecting redundantly the number of switches of the crossbar switch circuit constituting the LUT memory to a signal switching point to make it redundant. FIG. 18 and FIG. 19 are examples of multiplexing RV (VDD and GND) and PGV. FIG. 20 shows an example of multiplexing the crossbar memory.
 図18~図20の場合、LUTに必要なスイッチ数を2倍にするだけで済み、アプリケーション動作に必要なCLB数は同じであるため、アプリケーション動作に必要な回路面積は多くても2倍で済む。ただし、図18~図20に示す方法では、CLBや再構成回路そのものの物理レイアウトが大きくなり、単位面積あたりに可能な論理実装面積が低下する。そのため、図18~図20に示す方法では、保持信頼性よりも、論理実装密度や、電力特性、遅延特性を優先する用途に関しては、図12のように冗長ビットのない通常の再構成回路を別途用意する必要がある。すなわち、図18~図20に示す方法では、チップ品種の増大による製造・設計コスト、製品管理コストなどが増大する。 In the case of FIGS. 18 to 20, only the number of switches required for the LUT is doubled, and the number of CLBs required for the application operation is the same, so the circuit area required for the application operation is at most twice as large. It's over. However, in the method shown in FIG. 18 to FIG. 20, the physical layout of the CLB and the reconfiguration circuit itself becomes large, and the possible logic mounting area per unit area decreases. Therefore, in the method shown in FIG. 18 to FIG. 20, for an application where priority is given to logic mounting density, power characteristics, and delay characteristics over retention reliability, a normal reconfiguration circuit without redundant bits is used as shown in FIG. It is necessary to prepare separately. That is, in the method shown in FIGS. 18 to 20, the manufacturing / design cost, the product management cost and the like increase due to the increase in the number of chips.
 すなわち、本実施形態によれば、上述の関連技術と比べて、冗長ビットを持たない再構成可能回路としてアプリケーションを高密度に実装しつつ、抵抗変化素子に保持不良が発生しても継続的なアプリケーション動作が可能な再構成回路を低コストで提供できる。 That is, according to the present embodiment, as compared with the related art described above, while the application is mounted at a high density as a reconfigurable circuit having no redundant bits, continuous holding is possible even when a holding failure occurs in the variable resistance element. It is possible to provide a reconfigurable circuit capable of application operation at low cost.
 (第2の実施形態)
 次に、本発明の第2の実施形態に係る再構成回路について図面を参照しながら説明する。本実施形態と第1の実施形態とは、クロスバースイッチ回路のクロスポイントに配置するスイッチセルが抵抗変化素子を含む点は同じであるが、回路の構造が異なる。
Second Embodiment
Next, a reconfiguration circuit according to a second embodiment of the present invention will be described with reference to the drawings. The present embodiment and the first embodiment are the same in that the switch cells disposed at the cross points of the crossbar switch circuit include resistance change elements, but the structure of the circuit is different.
 (構成)
 図21は、本実施形態の再構成回路に含まれる再構成回路2の構成を示す概念図である。図21のように、再構成回路2は、第1のLUT20-1、第2のLUT20-2、スイッチ27を備える。第1のLUT20-1の出力ノード(第1の出力ノード25-1)と、第2のLUT20-2の出力ノード(第2の出力ノード25-2)とは、スイッチ27を介して互いに接続される。なお、以下において、第1のLUT20-1と第2のLUT20-2とを区別しない場合は、LUT20と記載する。
(Constitution)
FIG. 21 is a conceptual diagram showing the configuration of the reconfiguration circuit 2 included in the reconfiguration circuit of the present embodiment. As shown in FIG. 21, the reconstruction circuit 2 includes a first LUT 20-1, a second LUT 20-2, and a switch 27. The output node (first output node 25-1) of the first LUT 20-1 and the output node (second output node 25-2) of the second LUT 20-2 are mutually connected via the switch 27. Be done. In the following, when the first LUT 20-1 and the second LUT 20-2 are not distinguished from one another, they are referred to as the LUT 20.
 第1のLUT20-1は、第1の出力ノード25-1を介して信号を出力する。第1のLUT20-1は、第1の出力ノード25-1を介してスイッチ27に接続される。また、第2のLUT20-2は、第2の出力ノード25-2を介して信号を出力する。第2のLUT20-2は、第2の出力ノード25-2を介してスイッチ27に接続される。 The first LUT 20-1 outputs a signal via the first output node 25-1. The first LUT 20-1 is connected to the switch 27 via the first output node 25-1. The second LUT 20-2 outputs a signal via the second output node 25-2. The second LUT 20-2 is connected to the switch 27 via the second output node 25-2.
 スイッチ27は、第1の出力ノード25-1を介して第1のLUT20-1に接続されるとともに、第2の出力ノード25-2を介して第2のLUT20-2に出力される。スイッチ27は、第1の実施形態のスイッチ17と同様である。 The switch 27 is connected to the first LUT 20-1 through the first output node 25-1, and is output to the second LUT 20-2 through the second output node 25-2. The switch 27 is similar to the switch 17 of the first embodiment.
 図22は、LUT20の構成を示すブロック図である。図22のように、LUT20は、第1のクロスバーメモリ21A、第2のクロスバーメモリ21B、第1のマルチプレクサ23、第2のマルチプレクサ24を含む。 FIG. 22 is a block diagram showing the configuration of the LUT 20. As shown in FIG. As shown in FIG. 22, the LUT 20 includes a first crossbar memory 21A, a second crossbar memory 21B, a first multiplexer 23, and a second multiplexer 24.
 第1のクロスバーメモリ21Aおよび第2のクロスバーメモリ21Bは、クロスバースイッチ回路によって構成される記憶回路である。第1のクロスバーメモリ21Aおよび第2のクロスバーメモリ21Bは、入力信号と同じ信号レベルまたは高インピーダンス状態となるノードを有する。例えば、第1のクロスバーメモリ21Aおよび第2のクロスバーメモリ21Bは、2入力・K出力のクロスバースイッチ回路によって実現される(K:自然数)。 The first crossbar memory 21A and the second crossbar memory 21B are storage circuits configured by crossbar switch circuits. The first crossbar memory 21A and the second crossbar memory 21B have nodes at the same signal level or high impedance state as the input signal. For example, the first crossbar memory 21A and the second crossbar memory 21B are realized by a two-input K-output crossbar switch circuit (K is a natural number).
 第1のマルチプレクサ23は、第1のクロスバーメモリ21Aから出力される複数の信号を入力とし、入力された信号からいずれか一つを選択して出力する選択回路である。例えば、第1のマルチプレクサ23は、複数のPMOSを多段に組み合わせた構成を有し、第1のクロスバーメモリ21Aから入力される複数の信号のうち少なくとも一つを選択する。 The first multiplexer 23 is a selection circuit which receives a plurality of signals output from the first crossbar memory 21A, selects one of the input signals, and outputs the selected one. For example, the first multiplexer 23 has a configuration in which a plurality of PMOSs are combined in multiple stages, and selects at least one of the plurality of signals input from the first crossbar memory 21A.
 第2のマルチプレクサ24は、第2のクロスバーメモリ21Bから出力される複数の信号を入力とし、入力された信号からいずれか一つを選択して出力する選択回路である。例えば、第2のマルチプレクサ24は、複数のNMOSを多段に組み合わせた構成を有し、第2のクロスバーメモリ21Bから入力される複数の信号のうち少なくとも一つを選択する。 The second multiplexer 24 is a selection circuit which receives a plurality of signals output from the second crossbar memory 21B as input, and selects and outputs any one of the input signals. For example, the second multiplexer 24 has a configuration in which a plurality of NMOSs are combined in multiple stages, and selects at least one of the plurality of signals input from the second crossbar memory 21B.
 第1のマルチプレクサ23と第2のマルチプレクサ24は、クロスバースイッチ回路から入力される複数の信号のうちいずれか一つを選択制御信号(図示しない)に応じて共通の出力ノード25に出力する。 The first multiplexer 23 and the second multiplexer 24 output any one of the plurality of signals input from the crossbar switch circuit to the common output node 25 in response to a selection control signal (not shown).
 〔クロスバースイッチ回路〕
 図23は、本実施形態の再構成回路に含まれるクロスバースイッチ回路22の回路構成を示す回路図である。図23には、抵抗変化素子を書き換える際(書き込み時)に、書き込み用の電源ソース(PS:Power Source)からの供給電圧・電流源を制御するための制御トランジスタや制御用配線も含めて図示している。なお、図23に示す回路構成は、クロスバースイッチ回路22の構成の一部を図示した概念図であり、全てを表すものではない。また、本実施形態の再構成回路2を実現するためのクロスバースイッチ回路22は、図23に示す素子や信号線の数に限定されない。
[Crossbar switch circuit]
FIG. 23 is a circuit diagram showing a circuit configuration of the crossbar switch circuit 22 included in the reconfiguration circuit of the present embodiment. FIG. 23 also includes a control transistor for controlling a voltage / current source supplied from a writing power source (PS: Power Source) and a control wiring when rewriting the resistance change element (during writing). It shows. The circuit configuration shown in FIG. 23 is a conceptual diagram illustrating a part of the configuration of the crossbar switch circuit 22 and does not represent all. Further, the crossbar switch circuit 22 for realizing the reconstruction circuit 2 of the present embodiment is not limited to the number of elements and signal lines shown in FIG.
 クロスバースイッチ回路22は、スイッチセル220-1~6を含む。スイッチセル220-1~6のそれぞれは、スイッチ素子を含む。なお、本実施形態においては、一対の抵抗変化素子をスイッチ素子として用いる例について説明する。また、これ以降、スイッチセル220-1~6を区別しない場合は、末尾のハイフンおよび番号を省略してスイッチセル220と記載する。 Crossbar switch circuit 22 includes switch cells 220-1-6. Each of switch cells 220-1 to 6 includes a switch element. In the present embodiment, an example in which a pair of resistance change elements are used as switch elements will be described. Further, hereinafter, when the switch cells 220-1 to 6 are not distinguished from one another, the hyphens and numbers at the end are omitted and described as the switch cell 220.
 クロスバースイッチ回路22の出力ポートは、クロスバースイッチ回路22の左右(x方向)に設ける。また、y方向に沿って設置される書き込み用の電源線PS[0](第1の電源線とも呼ぶ)は、電源線PS[0]の左右に位置するスイッチセル220-1~6の共有の電源ソースである。 The output ports of the crossbar switch circuit 22 are provided on the left and right (x direction) of the crossbar switch circuit 22. In addition, the power supply line PS [0] (also referred to as a first power supply line) for writing installed along the y direction shares the switch cells 220-1 to 6 positioned on the left and right of the power supply line PS [0]. Power source.
 左側の出力ポートと電源線PS[0]との間には、y方向に沿って、スイッチセル220-1~3、第1制御トランジスタ221-1~3が配置される。 Switch cells 220-1 to 3 and first control transistors 221-1 to 22-3 are arranged along the y direction between the left output port and the power supply line PS [0].
 スイッチセル220-1~3は、x方向(第1の方向とも呼ぶ)の配線である書き込み制御線GH[k-1]~GH[k+1](第1の書き込み制御線とも呼ぶ)、信号線RH1[k-1]~RH1[k+1](第1の配線とも呼ぶ)に接続される。書き込み制御線GH[k-1]~GH[k+1]と、信号線RH1[k-1]~RH1[k+1]とは、互いに独立した配線である。信号線RH1[k-1]~RH1[k+1]は、スイッチセル220-1~3に接続される第1制御トランジスタ221a~221cの一方の拡散層と接続される。第1制御トランジスタ221a~221cの他方の拡散層には、電源線PS[0](第1の電源線とも呼ぶ)が接続される。 Switch cells 220-1 to 220-3 are write control lines GH [k-1] to GH [k + 1] (also referred to as first write control lines), which are wirings in the x direction (also referred to as the first direction), and signal lines It is connected to RH1 [k-1] to RH1 [k + 1] (also referred to as first wiring). The write control lines GH [k−1] to GH [k + 1] and the signal lines RH1 [k−1] to RH1 [k + 1] are wires independent of each other. The signal lines RH1 [k−1] to RH1 [k + 1] are connected to one of the diffusion layers of the first control transistors 221a to 221c connected to the switch cells 220-1 to 220-3. A power supply line PS [0] (also referred to as a first power supply line) is connected to the other diffusion layer of the first control transistors 221a to 221c.
 スイッチセル220-1~3は、y方向(第2の方向とも呼ぶ)の配線である書き込み制御線SV[1](第2の書き込み制御線とも呼ぶ)および信号線RV[1](第2の配線とも呼ぶ)を共有する。書き込み制御線SV[1]と信号線RV[1]とは、互いに独立した配線である。書き込み制御線SV[1]は、スイッチセル220-1~3に接続される第2制御トランジスタ222aの一方の拡散層と接続される。第2制御トランジスタ222aの他方の拡散層には、電源線PS[1](第2の電源線とも呼ぶ)が接続される。第2制御トランジスタ222aのゲート電極には、ドライバ制御線PGV[1]が接続される。ドライバ制御線PGV[1]は、第1制御トランジスタ221a、221b、221cに共有される。ドライバ制御線PGV[1]は、電源線PS[1]および電源線PS[2](第3の電源線とも呼ぶ)からの書き込み用の電源ラインを制御するために設けられた第2制御トランジスタ222aおよび第3制御トランジスタ223aのゲート線として共有される。さらに、信号線RV[1]は、スイッチセル220-1~3に接続される第3制御トランジスタ223aの一方の拡散層と接続される。第3制御トランジスタ223aの他方の拡散層には、電源線PS[2]が接続される。 Switch cells 220-1 to 220-3 have a write control line SV [1] (also referred to as a second write control line) and a signal line RV [1] (a second line), which are wirings in the y direction (also referred to as a second direction). Share the wiring). The write control line SV [1] and the signal line RV [1] are wires independent of each other. The write control line SV [1] is connected to one diffusion layer of the second control transistor 222 a connected to the switch cells 220-1 to 3. A power supply line PS [1] (also referred to as a second power supply line) is connected to the other diffusion layer of the second control transistor 222a. The driver control line PGV [1] is connected to the gate electrode of the second control transistor 222a. The driver control line PGV [1] is shared by the first control transistors 221a, 221b, and 221c. The driver control line PGV [1] is a second control transistor provided to control the power supply line for writing from the power supply line PS [1] and the power supply line PS [2] (also referred to as a third power supply line). It is shared as a gate line of 222a and the third control transistor 223a. Further, the signal line RV [1] is connected to one diffusion layer of the third control transistor 223a connected to the switch cells 220-1 to 2. The power supply line PS [2] is connected to the other diffusion layer of the third control transistor 223a.
 右側の出力ポートとPS[0]との間には、y方向に沿って、スイッチセル220-4~6、第1制御トランジスタ221d、221e、221fが配置される。 Switch cells 220-4 to 6 and first control transistors 221d, 221e, and 221f are disposed along the y direction between the output port on the right side and PS [0].
 スイッチセル220-4~6は、x方向の配線である書き込み制御線GH[k-1]~GH[k+1]、信号線RH2[k-1]~RH2[k+1]に接続される。書き込み制御線GH[k-1]~GH[k+1]は、スイッチセル220-1~3のそれぞれと、スイッチセル220-4~6のそれぞれと共有される。書き込み制御線GH[k-1]~GH[k+1]と、信号線RH2[k-1]~RH2[k+1]とは、互いに独立した配線である。信号線RH2[k-1]~RH2[k+1]は、スイッチセル220-4~6に接続される第1制御トランジスタ221d~221fの一方の拡散層と接続される。第1制御トランジスタ221d~221fの他方の拡散層には、電源線PS[0]が接続される。 The switch cells 220-4 to 6 are connected to write control lines GH [k-1] to GH [k + 1] and signal lines RH2 [k-1] to RH2 [k + 1], which are wirings in the x direction. The write control lines GH [k−1] to GH [k + 1] are shared by the switch cells 220-1 to 3 and the switch cells 220-4 to 6, respectively. The write control lines GH [k−1] to GH [k + 1] and the signal lines RH2 [k−1] to RH2 [k + 1] are wires independent of each other. The signal lines RH2 [k-1] to RH2 [k + 1] are connected to one of the diffusion layers of the first control transistors 221d to 221f connected to the switch cells 220-4 to 6, respectively. The power supply line PS [0] is connected to the other diffusion layer of the first control transistors 221d to 221f.
 スイッチセル220-4~6は、y方向の配線である書き込み制御線SV[2]および信号線RV[2]を共有する。書き込み制御線SV[2]と信号線RV[2]とは、互いに独立した配線である。書き込み制御線SV[2]は、スイッチセル220-4~6に接続される第2制御トランジスタ222bの一方の拡散層と接続される。第2制御トランジスタ222bの他方の拡散層には、電源線PS[1]が接続される。第2制御トランジスタ222bのゲート電極には、ドライバ制御線PGV[2]が接続される。ドライバ制御線PGV[2]は、第1制御トランジスタ221d、221e、221fに共有される。また、ドライバ制御線PGV[2]は、電源線PS[1]および電源線PS[2]からの書き込み用の電源ラインを制御するために設けられた第2制御トランジスタ222b、第3制御トランジスタ223bのゲート線として共有される。さらに、信号線RV[2]は、スイッチセル220-4~6に接続される第3制御トランジスタ223bの一方の拡散層と接続される。第3制御トランジスタ223bの他方の拡散層には、電源線PS[2]が接続される。 The switch cells 220-4 to 6 share the write control line SV [2] and the signal line RV [2], which are wirings in the y direction. The write control line SV [2] and the signal line RV [2] are wires independent of each other. The write control line SV [2] is connected to one diffusion layer of the second control transistor 222 b connected to the switch cells 220-4 to 6. The power supply line PS [1] is connected to the other diffusion layer of the second control transistor 222b. The driver control line PGV [2] is connected to the gate electrode of the second control transistor 222b. The driver control line PGV [2] is shared by the first control transistors 221d, 221e, and 221f. The driver control line PGV [2] is a second control transistor 222b and a third control transistor 223b provided to control the power supply line for writing from the power supply line PS [1] and the power supply line PS [2]. Shared as the gate line of Further, the signal line RV [2] is connected to one diffusion layer of the third control transistor 223b connected to the switch cells 220-4 to 6. The power supply line PS [2] is connected to the other diffusion layer of the third control transistor 223b.
 図24は、メモリ用に修正されたクロスバースイッチ回路(クロスバーメモリ21)の入出力インターフェースを示す概念図である。図24のように、x方向に対応する一方の辺に信号線RVおよびドライバ制御線PGVが配置される。また、y方向に対応する一方の辺に信号線RH1、書き込み制御線GHおよび電源線PSが配置され、他方の辺に信号線RH2が配置される。 FIG. 24 is a conceptual diagram showing an input / output interface of a crossbar switch circuit (crossbar memory 21) modified for memory. As shown in FIG. 24, the signal line RV and the driver control line PGV are arranged on one side corresponding to the x direction. The signal line RH1, the write control line GH, and the power supply line PS are disposed on one side corresponding to the y direction, and the signal line RH2 is disposed on the other side.
 クロスバーメモリ21は、クロスバースイッチ構成の1つのRVポートに対して、電源レベル(以下、VDD)またはグランドレベル(以下、GND)を入力することによってメモリとして機能させることができる。クロスバーメモリ21への入力がVDDの場合、クロスバーメモリ21の出力は、VDDまたは高抵抗状態(High-z)のいずれかのスイッチセルを書き換えることによって制御できる。クロスバースイッチ回路22への入力がGNDの場合、クロスバースイッチ回路22への出力は、GNDまたは高抵抗状態(High-z)のいずれかのスイッチセルを書き換えることによって制御できる。 The crossbar memory 21 can function as a memory by inputting a power supply level (hereinafter, VDD) or a ground level (hereinafter, GND) to one RV port of the crossbar switch configuration. When the input to the crossbar memory 21 is VDD, the output of the crossbar memory 21 can be controlled by rewriting either the VDD or the high resistance state (High-z) switch cell. When the input to the crossbar switch circuit 22 is GND, the output to the crossbar switch circuit 22 can be controlled by rewriting either the GND or the high resistance state (High-z) switch cell.
 〔論理回路〕
 図25は、本実施形態の再構成回路2(図21)の回路構成を示す概念図である。本実施形態においては、相補型素子(スイッチ27)を介して、第1のLUT20-1の第1の出力ノード25-1と、第2のLUT20-2の第2の出力ノード25-2とを接続する例を示す。
[Logic circuit]
FIG. 25 is a conceptual diagram showing a circuit configuration of the reconfiguration circuit 2 (FIG. 21) of the present embodiment. In the present embodiment, the first output node 25-1 of the first LUT 20-1 and the second output node 25-2 of the second LUT 20-2 are connected via the complementary element (switch 27). An example of connecting
 第1のLUT20-1は、第1のクロスバーメモリ21A-1、第2のクロスバーメモリ21B-1、第1のマルチプレクサ23-1、第2のマルチプレクサ24-1、第1の出力ノード25-1を有する。 The first LUT 20-1 includes a first crossbar memory 21A-1, a second crossbar memory 21B-1, a first multiplexer 23-1, a second multiplexer 24-1, and a first output node 25. It has -1.
 第1のクロスバーメモリ21A-1および第2のクロスバーメモリ21B-1は、例えば、1入力・2K出力のクロスバースイッチ回路である。第1のマルチプレクサ23-1は、複数のPMOSを組み合わせた構成を有する。第2のマルチプレクサ24-1は、複数のNMOSを組み合わせた構成を有する。 The first crossbar memory 21A-1 and the second crossbar memory 21B-1 are, for example, 1-input 2K-output crossbar switch circuits. The first multiplexer 23-1 has a configuration in which a plurality of PMOSs are combined. The second multiplexer 24-1 has a configuration in which a plurality of NMOSs are combined.
 図25のように、第1のLUT20-1は、第1の出力ノード25-1を挟んで左右に分離されて配置された入力ポートを有する。第1のLUT20-1の左側の入力ポートは、左側に配置された第1のクロスバーメモリ21A-1の一方の出力ポートと接続される。第1のLUT20-1の右側の入力ポートは、右側に配置された第2のクロスバーメモリ21B-1の一方の出力ポートと接続される。第1のLUT20-1に含まれる第1のマルチプレクサ23-1と第2のマルチプレクサ24-1への入力信号は関係づけられる。第1のLUT20-1へのゲート入力信号セットに対して、第1のマルチプレクサ23-1および第2のマルチプレクサ24-1からそれぞれ1つの導通パスが選択される。 As shown in FIG. 25, the first LUT 20-1 has input ports separated and disposed to the left and right across the first output node 25-1. The left input port of the first LUT 20-1 is connected to one output port of the first crossbar memory 21A-1 disposed on the left. The input port on the right side of the first LUT 20-1 is connected to one output port of the second crossbar memory 21B-1 disposed on the right side. The input signals to the first multiplexer 23-1 and the second multiplexer 24-1 included in the first LUT 20-1 are related. One conduction path is selected from each of the first multiplexer 23-1 and the second multiplexer 24-1 for the gate input signal set to the first LUT 20-1.
 第2のLUT20-2は、第1のクロスバーメモリ21A-2、第2のクロスバーメモリ21B-2、第1のマルチプレクサ23-2、第2のマルチプレクサ24-2、第2の出力ノード25-2を有する。 The second LUT 20-2 includes a first crossbar memory 21A-2, a second crossbar memory 21B-2, a first multiplexer 23-2, a second multiplexer 24-2, and a second output node 25. It has -2.
 第1のクロスバーメモリ21A-2および第2のクロスバーメモリ21B-2は、例えば、1入力・2K出力のクロスバースイッチ回路である。第1のマルチプレクサ23-2は、複数のPMOSを組み合わせた構成を有する。第2のマルチプレクサ24-2は、複数のNMOSを組み合わせた構成を有する。 The first crossbar memory 21A-2 and the second crossbar memory 21B-2 are, for example, 1-input 2K-output crossbar switch circuits. The first multiplexer 23-2 has a configuration in which a plurality of PMOSs are combined. The second multiplexer 24-2 has a configuration in which a plurality of NMOSs are combined.
 図25のように、第2のLUT20-2は、第2の出力ノード25-2を挟んで左右に分離されて配置された入力ポートを有する。第2のLUT20-2の左側の入力ポートは、左側に配置された第1のクロスバーメモリ21A-2の一方の出力ポートと接続される。第2のLUT20-2の右側の入力ポートは、右側に配置された第2のクロスバーメモリ21B-2の一方の出力ポートと接続される。第2のLUT20-2に含まれる第1のマルチプレクサ23-2と第2のマルチプレクサ24-2への入力信号は関係づけられる。第2のLUT20-2へのゲート入力信号セットに対して、第1のマルチプレクサ23-2および第2のマルチプレクサ24-2からそれぞれ1つの導通パスが選択される。 As shown in FIG. 25, the second LUT 20-2 has input ports separated and disposed to the left and right across the second output node 25-2. The left input port of the second LUT 20-2 is connected to one output port of the first crossbar memory 21A-2 disposed on the left. The input port on the right side of the second LUT 20-2 is connected to one output port of the second crossbar memory 21B-2 disposed on the right side. The input signals to the first multiplexer 23-2 and the second multiplexer 24-2 included in the second LUT 20-2 are related. One conduction path is selected from each of the first multiplexer 23-2 and the second multiplexer 24-2 for the gate input signal set to the second LUT 20-2.
 ここで、第1の出力ノード25-1から出力される値を変化させる方法について説明する。なお、第2の出力ノード25-2から出力される値を変化させる方法については、第1の出力ノード25-1と同様であるので説明は省略する。 Here, a method of changing the value output from the first output node 25-1 will be described. The method of changing the value output from the second output node 25-2 is the same as that of the first output node 25-1, and thus the description thereof is omitted.
 まず、第1のマルチプレクサ23-1に含まれるPMOSのソースに接続された第1のクロスバーメモリ21A-1に含まれるスイッチセル220をオン状態にして、第1のクロスバーメモリ21A-1からVDDを出力させる場合について説明する。この場合、第2のマルチプレクサ24-1に含まれるNMOSのドレインに接続された第2のクロスバーメモリ21B-1内のスイッチセル220をオフ状態にしてHigh-Zを出力させる。その結果、第1のマルチプレクサ23-1および第2のマルチプレクサ24-1の内部のソース・ドレインが相互に接続されるノードにおいて、VDDレベルが出力される。 First, the switch cell 220 included in the first crossbar memory 21A-1 connected to the source of the PMOS included in the first multiplexer 23-1 is turned on to start the first crossbar memory 21A-1 The case of outputting VDD will be described. In this case, the switch cell 220 in the second crossbar memory 21B-1 connected to the drain of the NMOS included in the second multiplexer 24-1 is turned off to output High-Z. As a result, the VDD level is output at a node where the internal source and drain of the first multiplexer 23-1 and the second multiplexer 24-1 are connected to each other.
 次に、第1のマルチプレクサ23-1に含まれるPMOSのソースに接続された第1のクロスバーメモリ21A-1に含まれるスイッチセル220をオフ状態にして、第1のクロスバーメモリ21A-1からHigh-Zを出力する場合について説明する。この場合、第2のマルチプレクサ24-1に含まれるNMOSのドレインに接続された第2のクロスバーメモリ21B-1内に含まれるスイッチセルをオン状態にしてGNDを出力させる。その結果、第1のマルチプレクサ23-1および第2のマルチプレクサ24-1の内部のNMOSとPMOSのソース・ドレインが相互に接続されるノードにおいて、GNDレベルが出力できる。 Next, the switch cell 220 included in the first crossbar memory 21A-1 connected to the source of the PMOS included in the first multiplexer 23-1 is turned off, and the first crossbar memory 21A-1 is opened. The case of outputting High-Z from. In this case, the switch cell included in the second crossbar memory 21B-1 connected to the drain of the NMOS included in the second multiplexer 24-1 is turned on to output GND. As a result, the GND level can be output at the node where the sources and drains of the NMOS and PMOS inside the first multiplexer 23-1 and the second multiplexer 24-1 are connected to each other.
 第1のLUT20-1および第2のLUT20-2へのゲート入力信号セットに対して選択される導通パス上のスイッチセル220を相補性に注意しながら書き換えることによってLUTとして所望の論理演算が実行される。 Desired logic operation is performed as a LUT by rewriting the switch cell 220 on the conduction path selected for the gate input signal set to the first LUT 20-1 and the second LUT 20-2 while paying attention to the complementarity Be done.
 本実施形態においては、図25に示すように、相補型素子であるスイッチ27を介して、第1のLUT20-1の第1の出力ノード25-1と、第2のLUT20-2の第2の出力ノード25-2とを相互に接続する。 In the present embodiment, as shown in FIG. 25, the first output node 25-1 of the first LUT 20-1 and the second of the second LUT 20-2 are connected via the switch 27 which is a complementary element. And the output node 25-2 of the
 図25に示す再構成回路2(図21)の回路構成において、第1のLUT20-1と第2のLUT20-2とに対して異なる論理演算をさせる場合は、図26のように、スイッチ27をオフ状態にする。スイッチ27をオフ状態にすると、第1のLUT20-1と第2のLUT20-2のそれぞれに対して、所望のメモリ状態と入力信号の選択を行い、所望のアプリケーションを動作させることができる。この場合、LUTの使用効率が高く、論理を高密度で実装できるため、電力や遅延などの性能が高くなる。 When different logical operations are performed on the first LUT 20-1 and the second LUT 20-2 in the circuit configuration of the reconstruction circuit 2 (FIG. 21) shown in FIG. 25, the switch 27 is used as shown in FIG. Turn off. When the switch 27 is turned off, desired memory states and input signals can be selected for each of the first LUT 20-1 and the second LUT 20-2, and a desired application can be operated. In this case, since the use efficiency of the LUT is high and logic can be implemented at high density, performances such as power and delay become high.
 一方、抵抗変化素子の保持不良に対して高い信頼性を持たせたい場合は、図27のように、スイッチ27をオン状態にして第1のLUT20-1と第2のLUT20-2とを相互に接続する。このとき、第1のLUT20-1と第2のLUT20-2のメモリ状態と入力信号とを同一にして1つのLUTとして動作させ、所望のアプリケーションを動作させる。 On the other hand, when it is desired to give high reliability to the holding failure of the variable resistance element, as shown in FIG. 27, the switch 27 is turned on and the first LUT 20-1 and the second LUT 20-2 are mutually switched. Connect to At this time, the memory states of the first LUT 20-1 and the second LUT 20-2 and the input signals are made identical and operated as one LUT to operate a desired application.
 図28のように、第1のLUT20-1(図25)および第2のLUT20-2(図25)内の各ノードは、第1のマルチプレクサ23と第2のマルチプレクサ24のそれぞれを介して、対応するスイッチセルと電気的に接続される。1つのノードは、オン状態にある2つのスイッチセルを介して、VDDにプルアップされるか、GNDにプルダウンされる。このため、1つのスイッチセルが保持不良を起こして状態が遷移しても、ノードの電位は同じ状態を保つことができる。例えば、150度の温度で10年間保管した場合の抵抗変化素子の保持不良率が10の6乗分の1であった場合、回路が誤動作する確率は、冗長化前は10の6乗分の1であったのに対して、冗長化によって10の12乗分の1にまで向上させることができる。 As shown in FIG. 28, each node in the first LUT 20-1 (FIG. 25) and the second LUT 20-2 (FIG. 25) passes through the first multiplexer 23 and the second multiplexer 24, respectively. It is electrically connected to the corresponding switch cell. One node is pulled up to VDD or pulled down to GND through two switch cells in the on state. For this reason, even if one switch cell causes a holding failure and the state transitions, the potential of the node can be kept the same. For example, in the case where the retention failure rate of the variable resistance element when stored for 10 years at a temperature of 150 degrees is 1/6 of 10, the probability that the circuit malfunctions is equal to 10 6 6 before redundancy. In contrast to being 1, it can be improved to 1/12 to the tenth by redundancy.
 以上のように、本実施形態の論理回路によれば、LUTへの各ゲート入力信号セットに対して選択されるパス上のスイッチセルを相補性に注意しながら書き換えることによって、所望の論理演算を実行できるLUTを実現できる。本実施形態の論理回路においては、オフ状態にあるスイッチセルの1つに択一的に動作電圧が印加される。そのため、本実施形態によれば、全てのスイッチセル(2^N個)に動作電圧が印加される第1の実施形態のクロスバースイッチ回路(図11)をメモリとして使ったLUT(図12)と比べて、リーク電流を1/2^Nにすることができる。 As described above, according to the logic circuit of this embodiment, the desired logic operation can be performed by rewriting the switch cells on the path selected for each gate input signal set to the LUT while paying attention to the complementarity. An executable LUT can be realized. In the logic circuit of the present embodiment, the operating voltage is alternatively applied to one of the switch cells in the off state. Therefore, according to the present embodiment, the LUT (FIG. 12) using the crossbar switch circuit (FIG. 11) of the first embodiment in which operating voltages are applied to all the switch cells (2 ^ N) Leakage current can be reduced to 1/2 ^ N in comparison with.
 以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. Various modifications that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2017年9月11日に出願された日本出願特願2017-174182を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-174182 filed on Sep. 11, 2017, the entire disclosure of which is incorporated herein.
 1、2  再構成回路
 10-1  第1のLUT
 10-2  第2のLUT
 11  クロスバーメモリ
 12  クロスバースイッチ回路
 13  マルチプレクサ
 15-1  第1の出力ノード
 15-2  第2の出力ノード
 17  スイッチ
 20-1  第1のLUT
 20-2  第2のLUT
 21A  第1のクロスバーメモリ
 21B  第2のクロスバーメモリ
 22  クロスバースイッチ回路
 23  第1のマルチプレクサ
 24  第2のマルチプレクサ
 25-1  第1の出力ノード
 25-2  第2の出力ノード
 27  スイッチ
 50  抵抗変化素子
 51  第1の配線層
 52  固体電解質層
 53  第2の配線層
 120  スイッチセル
 121a、121b、121c  第1制御トランジスタ
 122a、122b、122c  第2制御トランジスタ
 123a、123b、123c  第3制御トランジスタ
 125-1  第1の抵抗変化素子
 125-2  第2の抵抗変化素子
 126  選択トランジスタ
 127  共通ノード
1, 2 Reconstruction circuit 10-1 First LUT
10-2 Second LUT
11 crossbar memory 12 crossbar switch circuit 13 multiplexer 15-1 first output node 15-2 second output node 17 switch 20-1 first LUT
20-2 Second LUT
21A first crossbar memory 21B second crossbar memory 22 crossbar switch circuit 23 first multiplexer 24 second multiplexer 25-1 first output node 25-2 second output node 27 switch 50 resistance change Element 51 first wiring layer 52 solid electrolyte layer 53 second wiring layer 120 switch cell 121a, 121b, 121c first control transistor 122a, 122b, 122c second control transistor 123a, 123b, 123c third control transistor 125-1 First resistance change element 125-2 Second resistance change element 126 Select transistor 127 Common node

Claims (10)

  1.  相補型素子を含む複数のスイッチセルを有するクロスバースイッチ回路に構成されるクロスバーメモリと、前記クロスバーメモリから入力される複数の信号のうち少なくとも一つを選択制御信号に応じて選択して出力するマルチプレクサとによって構成される第1のルックアップテーブルと、
     前記クロスバーメモリと前記マルチプレクサとによって構成される第2のルックアップテーブルと、
     前記第1のルックアップテーブルの出力ノードと、前記第2のルックアップテーブルの出力ノードとに接続され、前記第1のルックアップテーブルの出力ノードと前記第2のルックアップテーブルの出力ノードとを電気的に導通もしくは非導通の状態に切り替えるスイッチとを備える再構成回路。
    A crossbar memory configured in a crossbar switch circuit having a plurality of switch cells including complementary elements, and at least one of a plurality of signals input from the crossbar memory is selected according to a selection control signal A first look-up table configured with an output multiplexer;
    A second lookup table configured by the crossbar memory and the multiplexer;
    An output node of the first look-up table and an output node of the second look-up table, and an output node of the first look-up table and an output node of the second look-up table; And a switch configured to switch to an electrically conductive or non-conductive state.
  2.  前記スイッチは、
     オン状態の場合、前記第1のルックアップテーブルが構成される前記クロスバーメモリに含まれる一つのノードと、前記第2のルックアップテーブルが構成される前記クロスバーメモリに含まれる一つのノードとを電気的に接続し、
     オフ状態の場合、前記第1のルックアップテーブルと前記第2のルックアップテーブルとの電気的な接続を切断する請求項1に記載の再構成回路。
    The switch is
    In the ON state, one node included in the crossbar memory in which the first look-up table is configured, and one node included in the crossbar memory in which the second look-up table is configured. Electrically connected,
    The reconfiguration circuit according to claim 1, which disconnects the electrical connection between the first look-up table and the second look-up table in the off state.
  3.  前記クロスバースイッチ回路は、
     第1の方向に沿って配置された複数の第1の配線と、
     前記第1の配線に沿って配置された複数の第1の書き込み制御線と、
     第2の方向に沿って配置された複数の第2の配線と、
     前記第2の配線に沿って配置された複数の第2の書き込み制御線と、
     前記第1の配線と前記第2の配線とが交差する箇所に配置され、一方の拡散層が前記第1の書き込み制御線に接続され、他方の拡散層が前記第2の書き込み制御線に接続され、前記第1の配線と前記第2の配線との電気的な接続を切り替える複数の前記スイッチセルと、
     前記第1の配線に接続され、前記第1の配線に電力を供給する第1の電源線と前記第1の配線との電気的な接続を切り替える第1制御トランジスタと、
     前記第1の書き込み制御線に接続され、前記第1の書き込み制御線に電力を供給する第2の電源線と前記第1の書き込み制御線との電気的な接続を切り替える第2制御トランジスタと、
     前記第2の配線に接続され、前記第2の配線に電力を供給する第2の電源線と前記第2の配線との電気的な接続を切り替える第3制御トランジスタとを備える請求項1または2に記載の再構成回路。
    The crossbar switch circuit is
    A plurality of first wires arranged along the first direction;
    A plurality of first write control lines disposed along the first wiring;
    A plurality of second wires arranged along the second direction;
    A plurality of second write control lines disposed along the second wiring;
    It is disposed at the intersection of the first wiring and the second wiring, one diffusion layer is connected to the first write control line, and the other diffusion layer is connected to the second write control line A plurality of switch cells for switching electrical connection between the first wiring and the second wiring;
    A first control transistor connected to the first wiring and switching an electrical connection between a first power supply line supplying power to the first wiring and the first wiring;
    A second control transistor connected to the first write control line and switching an electrical connection between a second power supply line supplying power to the first write control line and the first write control line;
    3. The device according to claim 1, further comprising: a third control transistor connected to the second wiring and switching an electrical connection between a second power supply line supplying power to the second wiring and the second wiring. Reconstruction circuit as described in.
  4.  前記マルチプレクサは、
     p型金属酸化膜半導体素子とn型金属酸化膜半導体素子とを含む複数の相補型素子を多段に組み合わせた構成を有し、
     前記クロスバースイッチ回路から入力される複数の信号のうちいずれか一つを前記選択制御信号に応じて出力する請求項3に記載の再構成回路。
    The multiplexer is
    has a configuration in which a plurality of complementary elements including a p-type metal oxide film semiconductor element and an n-type metal oxide film semiconductor element are combined in multiple stages,
    4. The reconstruction circuit according to claim 3, wherein any one of a plurality of signals input from the crossbar switch circuit is output according to the selection control signal.
  5.  前記クロスバースイッチ回路は、
     第1の方向に沿って配置された複数の第1の配線と、
     前記第1の配線に沿って配置された複数の第1の書き込み制御線と、
     第2の方向に沿って配置された複数の第2の配線と、
     前記第2の配線に沿って配置された複数の第2の書き込み制御線と、
     前記第2の方向に沿って配置され、前記第1の配線に接続された第1の電源線と、
     前記第1の配線と前記第2の配線とが交差する箇所に前記第1の電源線を挟んで対称的に配置され、前記第1の配線と前記第2の配線との電気的な接続を切り替える複数の前記スイッチセルと、
     前記第1の電源線と前記スイッチセルとの間において前記第1の配線に接続され、前記第1の配線に電力を供給する第1の電源線と前記第1の配線との電気的な接続を切り替える第1制御トランジスタと、
     前記スイッチセルの一方の電極に接続される第1の書き込み制御線に接続され、前記第1の書き込み制御線に電力を供給する第2の電源線と前記第1の書き込み制御線との電気的な接続を切り替える第2制御トランジスタと、
     前記第2の配線に接続され、前記第2の配線に電力を供給する第2の電源線と前記第2の配線との電気的な接続を切り替える第3制御トランジスタとを備える請求項1または2に記載の再構成回路。
    The crossbar switch circuit is
    A plurality of first wires arranged along the first direction;
    A plurality of first write control lines disposed along the first wiring;
    A plurality of second wires arranged along the second direction;
    A plurality of second write control lines disposed along the second wiring;
    A first power supply line disposed along the second direction and connected to the first wiring;
    It is symmetrically disposed at the intersection of the first wiring and the second wiring with the first power supply line interposed between the first wiring and the second wiring. A plurality of the switch cells to switch;
    Electrical connection between a first power supply line, which is connected to the first wiring between the first power supply line and the switch cell, and supplies power to the first wiring, and the first wiring A first control transistor for switching
    Electrically connected between a second power supply line connected to a first write control line connected to one electrode of the switch cell and supplying power to the first write control line and the first write control line A second control transistor that switches the
    3. The device according to claim 1, further comprising: a third control transistor connected to the second wiring and switching an electrical connection between a second power supply line supplying power to the second wiring and the second wiring. Reconstruction circuit as described in.
  6.  前記第1および第2のルックアップテーブルは、
     入力信号と同じ信号レベルまたは高インピーダンス状態となるノードを有する第1および第2のクロスバーメモリと、
     複数のp型半導体素子を多段に組み合わせた構成を有し、前記第1のクロスバーメモリから入力される複数の信号のうち少なくとも一つを選択する第1のマルチプレクサと、
     複数のn型半導体素子を多段に組み合わせた構成を有し、前記第2のクロスバーメモリから入力される複数の信号のうち少なくとも一つを選択する第2のマルチプレクサとをそれぞれ有し、
     前記第1および第2のマルチプレクサは、
     前記クロスバースイッチ回路から入力される複数の信号のうちいずれか一つを前記選択制御信号に応じて共通の出力ノードに出力する請求項5に記載の再構成回路。
    The first and second look-up tables are:
    First and second crossbar memories having nodes at the same signal level or high impedance state as the input signal;
    A first multiplexer configured to combine a plurality of p-type semiconductor elements in multiple stages and selecting at least one of a plurality of signals input from the first crossbar memory;
    A plurality of n-type semiconductor elements combined in multiple stages, and a second multiplexer for selecting at least one of the plurality of signals input from the second crossbar memory;
    The first and second multiplexers
    The reconfiguration circuit according to claim 5, wherein any one of a plurality of signals input from the crossbar switch circuit is output to a common output node according to the selection control signal.
  7.  前記スイッチセルは、
     印加する電圧に応じて抵抗状態を切り替えることができる第1および第2の抵抗変化素子と、
     少なくとも一つのトランジスタとを含み、
     前記第1の抵抗変化素子の一方の端子と、前記第2の抵抗変化素子の一方の端子とが、前記トランジスタの拡散層の一方に接続される請求項1乃至6のいずれか一項に記載の再構成回路。
    The switch cell is
    First and second resistance change elements capable of switching the resistance state in accordance with the applied voltage;
    And at least one transistor,
    7. The device according to claim 1, wherein one terminal of the first variable resistance element and one terminal of the second variable resistance element are connected to one of the diffusion layers of the transistor. Reconstruction circuit.
  8.  前記第1および第2の抵抗変化素子は、バイポーラ型の抵抗変化素子であり、抵抗変化極性が対向するように配置される請求項7に記載の再構成回路。 8. The reconfiguration circuit according to claim 7, wherein the first and second resistance change elements are bipolar type resistance change elements, and are arranged such that resistance change polarities face each other.
  9.  前記第1および第2の抵抗変化素子は、イオン電導性の固体電解質層を含む請求項8に記載の再構成回路。 The reconstruction circuit according to claim 8, wherein the first and second resistance change elements include an ion conductive solid electrolyte layer.
  10.  請求項1乃至9のいずれか一項に記載の再構成回路を複数備え、複数の前記再構成回路を相互に接続させて構成した集積回路。 An integrated circuit comprising a plurality of the reconfiguration circuits according to any one of claims 1 to 9 and connecting the plurality of reconfiguration circuits to each other.
PCT/JP2018/033178 2017-09-11 2018-09-07 Reconfiguration circuit WO2019049980A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-174182 2017-09-11
JP2017174182 2017-09-11

Publications (1)

Publication Number Publication Date
WO2019049980A1 true WO2019049980A1 (en) 2019-03-14

Family

ID=65635003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033178 WO2019049980A1 (en) 2017-09-11 2018-09-07 Reconfiguration circuit

Country Status (1)

Country Link
WO (1) WO2019049980A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177935A (en) * 2002-08-26 2003-06-27 Hitachi Ltd Redundancy system
US20080288758A1 (en) * 2004-10-25 2008-11-20 Robert Bosch Gmbh Method and Device for Switching Over in a Computer System Having at Least Two Execution Units
WO2017126544A1 (en) * 2016-01-20 2017-07-27 日本電気株式会社 Reconfigurable circuit, reconfigurable circuit system, and method for operating reconfigurable circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177935A (en) * 2002-08-26 2003-06-27 Hitachi Ltd Redundancy system
US20080288758A1 (en) * 2004-10-25 2008-11-20 Robert Bosch Gmbh Method and Device for Switching Over in a Computer System Having at Least Two Execution Units
WO2017126544A1 (en) * 2016-01-20 2017-07-27 日本電気株式会社 Reconfigurable circuit, reconfigurable circuit system, and method for operating reconfigurable circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG, MEISONG ET AL.: "DAO; Dual Module Redundancy with AND/OR Logic Voter for FPGA Hardening", 2015 FIRST INTERNATIONAL CONFERENCE ON RELIABILITY SYSTEMS ENGINEERING (ICRSE, 2015, China, pages 1 - 5, XP032838656, DOI: doi:10.1109/ICRSE.2015.7366414 *

Similar Documents

Publication Publication Date Title
US8558574B2 (en) Programmable logic device structure using third dimensional memory
EP2140548A2 (en) Configurable ic having a routing fabric with storage elements
JP6856032B2 (en) How Reconfigurable Circuits, Reconfigurable Circuit Systems, and Reconfigurable Circuits Operate
WO2012032937A1 (en) Reconfigurable circuit
JP6687122B2 (en) Reconfigurable circuit and method of using the same
US10396798B2 (en) Reconfigurable circuit
US20050140389A1 (en) Logic basic cell and logic basic cell arrangement
JP2018120992A (en) Integrated circuit and electronic apparatus
JP6908120B2 (en) Logic integrated circuit
WO2019049980A1 (en) Reconfiguration circuit
US10748614B2 (en) Semiconductor device and programming method therefor
US7482834B2 (en) Programmable multiplexer
WO2018207831A1 (en) Programmable logic circuit and semiconductor device using same
JP6156151B2 (en) Bidirectional buffer and control method thereof
JP6795103B2 (en) Reconfigurable circuit with non-volatile resistance switch
WO2019208414A1 (en) Logic integrated circuit and writing method
WO2016139926A1 (en) Crossbar switch type memory circuit, lookup table circuit, and programming method
US9111641B1 (en) Memory circuit including memory devices, a freeze circuit and a test switch
WO2018180536A1 (en) Programmable logic integrated circuit, programming method therefor and program therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP