WO2018207799A1 - マニピュレータ - Google Patents

マニピュレータ Download PDF

Info

Publication number
WO2018207799A1
WO2018207799A1 PCT/JP2018/017843 JP2018017843W WO2018207799A1 WO 2018207799 A1 WO2018207799 A1 WO 2018207799A1 JP 2018017843 W JP2018017843 W JP 2018017843W WO 2018207799 A1 WO2018207799 A1 WO 2018207799A1
Authority
WO
WIPO (PCT)
Prior art keywords
leaf spring
holder
pair
manipulator
outer lateral
Prior art date
Application number
PCT/JP2018/017843
Other languages
English (en)
French (fr)
Inventor
純平 荒田
誠 橋爪
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to US16/611,572 priority Critical patent/US20200093504A1/en
Priority to JP2019517651A priority patent/JPWO2018207799A1/ja
Priority to EP18798990.0A priority patent/EP3622903A4/en
Publication of WO2018207799A1 publication Critical patent/WO2018207799A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/295Forceps for use in minimally invasive surgery combined with cutting implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00836Material properties corrosion-resistant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00862Material properties elastic or resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2927Details of heads or jaws the angular position of the head being adjustable with respect to the shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2932Transmission of forces to jaw members
    • A61B2017/2933Transmission of forces to jaw members camming or guiding means
    • A61B2017/2937Transmission of forces to jaw members camming or guiding means with flexible part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2932Transmission of forces to jaw members
    • A61B2017/2939Details of linkages or pivot points

Definitions

  • This disclosure relates to a manipulator.
  • minimally invasive surgery typified by laparoscopic surgery has attracted attention as a method of surgical operation.
  • a surgical instrument such as an endoscope or forceps is inserted through a narrow incision hole of about 5 to 10 mm opened in the body surface, and surgery is performed inside the body. Therefore, there is an advantage that damage to the patient's body at the time of surgery and pain after the surgery can be narrowed compared to normal surgery (for example, thoracotomy or abdominal surgery).
  • the forceps used in minimally invasive surgery are restricted in posture by the incision hole in the patient's body, and therefore can only approach the affected area from a limited direction.
  • a bending forceps that is, a multi-degree-of-freedom manipulator
  • Non-Patent Document 1 As a product of this kind of multi-degree-of-freedom manipulator, for example, “da Vinci surgical system” of Intuitive Surgical is known (see Non-Patent Document 1).
  • a wire is adopted as a power transmission means from the drive device. By winding the wire with a drive unit, bending of the joint and opening / closing of the gripping part are realized.
  • Patent Document 1 can be cited.
  • a link mechanism is employed as power transmission means from the drive device.
  • Non-Patent Document 1 has the following problems.
  • wires must be replaced frequently because they may “stretch” or “cut”.
  • wires may “stretch” or “cut”.
  • it is necessary to change the wire for about 10 operations.
  • the wire since the wire is wound around a plurality of gears and pulleys, it takes a lot of labor to remove and install. As a result, the running cost and the maintenance load are increased.
  • the wire since the wire expands and contracts, there is a limit to the control accuracy of joints and gripping parts.
  • the wire has a disadvantage that power can be transmitted only in one direction (pulling direction).
  • the present disclosure has been devised in view of the above-described conventional circumstances, and can eliminate the wire as a power transmission means to the distal end portion that performs treatment on the affected area, and can be reduced in size, weight, and cost with a small number of parts.
  • Another object of the present invention is to provide a manipulator capable of easily approaching the affected area.
  • a rectangular horizontal leaf spring, a plate surface perpendicular to the plate surface of the horizontal leaf spring, and a base end is connected to one end in a longitudinal direction of the horizontal leaf spring
  • a curved vertical leaf spring that protrudes in one of the plate width directions of the horizontal leaf spring and extends along the longitudinal direction of the horizontal leaf spring and is a bent portion whose distal end in the extending direction is bent in a direction opposite to the direction of the projection
  • a shaft body connected to the tip of the bent portion, supported by a rotation center perpendicular to the plate surface of the horizontal leaf spring and capable of rotating; and an operating portion provided projecting radially from the outer periphery of the shaft body;
  • a pair of flexible actuating bodies, and the shafts of each of the pair of flexible actuating bodies penetrating the shafts, and supporting both ends of a pin that rotatably connects the pair of flexible actuating bodies at the rotation center.
  • a holder, and the holder includes the horizontal leaf spring of each of the pair of flexible actuators. Sandwiching a row, a pair of outer lateral plate springs extending in the transverse leaf spring in the same direction are formed with said holder integrally to provide a manipulator.
  • the horizontal leaf spring, the curved longitudinal leaf spring, and the shaft body are arranged in series on the same plane to constitute a flexible operating body.
  • the curved vertical leaf spring is connected to the horizontal leaf spring in a direction in which the plate surface rises.
  • the flexible actuating body is configured such that when the shaft body is supported so as not to move within the same plane, the curved longitudinal leaf spring is Furthermore, it deforms in the direction of bending. Since the horizontal leaf spring and the plate surface of the curved vertical leaf spring are orthogonal to each other, the deformation direction of the curved vertical leaf spring is changed by 90 degrees.
  • the protruding direction of the curved vertical leaf springs is reversed, so that the other longitudinal end of each horizontal leaf spring (that is, the side opposite to the operating portion side) is simultaneously pushed or pulled.
  • the respective operating parts can be moved closer to and away from each other.
  • the operating part is a capture instrument such as forceps or tweezers in, for example, laparoscopic surgery, it can be clamped.
  • the other longitudinal end of the pair of horizontal leaf springs (that is, the side opposite to the working part side) is simultaneously pushed or pulled in the reverse direction, thereby bringing the pair of working parts into the rotation center of the shaft body.
  • a pair of outer lateral leaf springs are disposed outside the pair of lateral leaf springs with these interposed therebetween. That is, a pair of lateral leaf springs and a pair of outer lateral leaf springs are arranged in four layers.
  • the pair of lateral leaf springs and the pair of outer lateral leaf springs are pushed and pulled independently of each other.
  • a pair of outer side horizontal spring the longitudinal direction one end (namely, action
  • the manipulator is such that the pair of outer side leaf springs are inclined toward one outer side leaf spring side or the other outer side leaf spring side. Deform (bend).
  • the holder is displaced (tilted) by bending of the pair of outer lateral leaf springs.
  • the pair of lateral leaf springs disposed between the pair of outer lateral leaf springs also passively bends in the same direction.
  • a pair of outer lateral leaf springs are integrally formed on the holder. That is, in the holder, the holder main body and the outer lateral leaf spring are integrally formed without having a joint portion.
  • the holder does not have a joint by a fixture, a caulking part, an adhesive, or the like.
  • the holder body is made of stainless steel and the outer side leaf spring is made of titanium or titanium alloy, the holder body and the outer side leaf spring are connected and integrated by a pin or the like due to difficulty in welding (separate members). Are grouped together).
  • each of the pair of outer lateral leaf springs with a fixture such as a pin
  • at least five parts one holder body, two outer lateral leaf springs, two fastenings) Tool
  • the integrally formed holder requires only one component.
  • the integrally formed holder does not suffer from wear, backlash, or accuracy degradation caused by a joining structure using a fixture or the like.
  • body fluids such as blood do not enter the bonded structure and can be easily cleaned, and can be used safely for the next operation and the like by being sufficiently dried.
  • the integrally formed holder is free from a plurality of small parts, so that it is possible to avoid the risk of strength reduction and the risk of disconnection. Long-term use is also possible.
  • the manipulator in which the holder is integrally formed has a great merit in the case of a small diameter (outer diameter of about 4 mm or less) particularly applied to neurosurgery or the like that requires miniaturization.
  • the present disclosure provides a manipulator in which the pair of outer lateral leaf springs has an arcuate outer peripheral surface extending in a direction along a generatrix from a cylindrical outer peripheral surface of the holder and having the same radius of curvature as the cylindrical outer peripheral surface. .
  • the holder main body has a cylindrical outer peripheral surface, and the pair of outer lateral leaf springs are extended from the cylindrical outer peripheral surface in a direction along the generatrix.
  • the cylindrical outer peripheral surface and the arc-shaped outer peripheral surface of each outer lateral leaf spring have the same radius of curvature. That is, the holder main body and the pair of outer lateral leaf springs can be processed from the same metal tube material without providing a joint portion.
  • the holder uses a material (metal tube material) having a circular inner and outer diameter, removes a part thereof and leaves the other part, whereby different rigidity (spring property) can be expressed at a desired part.
  • the outer diameter of the holder inserted inside the outer cylinder is about 3 mm or less.
  • Such a holder made of titanium or a titanium alloy having a small diameter can be manufactured by cutting a metal tube material by wire-cut electric discharge machining, for example.
  • the present disclosure provides a manipulator in which a flexible portion that is thinner and narrower than both ends in the longitudinal direction of the outer lateral leaf spring is formed at the center in the extending direction of the outer lateral leaf spring.
  • each outer lateral leaf spring is formed with a portion (that is, a flexible portion) that is thinner and narrower than both ends in the longitudinal direction at the central portion in the extending direction.
  • This flexible part has a smaller cross-sectional area than both ends in the longitudinal direction.
  • the stress acting on both ends in the longitudinal direction concentrates on the flexible portion in the central portion in the extending direction, and bending (elastic deformation) occurs.
  • the holder is made of a single part made of the same material by controlling the thickness and width of the outer lateral leaf spring formed integrally with the holder main body, while providing a spring property only at a desired position. Can be expressed.
  • the present disclosure provides a manipulator in which a pair of the outer lateral leaf springs are disposed inside the outer cylinder such that a part in the extending direction is in contact with the inner wall surface of the outer cylinder.
  • the pair of outer lateral leaf springs are deformed (bent) in a direction inclined toward one outer lateral leaf spring or in a direction inclined toward the other outer lateral leaf spring. Since the pair of outer lateral leaf springs are in contact with the inner wall surface of the outer cylinder, the bending is restricted inside the outer cylinder. Most of the pair of outer lateral leaf springs are bent at portions protruding from the outer cylinder. For this reason, the pair of outer lateral leaf springs can regard the open end of the outer cylinder as the bending start end. That is, the opening of the outer cylinder serves as a fulcrum that supports the outer lateral leaf spring on the side to be bent.
  • a part of the outer lateral leaf spring is made the inner wall surface of the outer cylinder, and the open end of the outer cylinder is used as a fulcrum.
  • plate spring can suppress the useless expansion of a bending radius.
  • the fulcrum moves on the outer lateral leaf spring as the outer lateral leaf spring advances and retreats from the open end of the outer cylinder.
  • the present disclosure provides a manipulator in which the outer lateral leaf spring and the lateral leaf spring have a smooth surface with no irregularities adjacent in the extending direction at the central portion in the extending direction.
  • This manipulator makes it difficult for bodily fluids such as blood to adhere to the outer lateral leaf spring or the lateral leaf spring. Moreover, it is possible to easily remove body fluid such as blood adhering to the outer lateral leaf spring or the lateral leaf spring by washing.
  • the outer lateral leaf spring can smoothly advance and retreat from the open end of the outer cylinder.
  • the present disclosure provides a manipulator in which the holder is provided with a pair of guides in contact with the curved outer surfaces of the curved vertical leaf springs of the pair of flexible operating bodies.
  • the deformation of the curved vertical leaf spring in the direction of further bending is regulated by the guide in contact with the curved outer surface.
  • plate spring by the reaction force from a shaft body is controlled.
  • a large moment can be applied to the shaft body.
  • the present disclosure provides a manipulator in which the holder is integrally formed of at least one of metal and resin.
  • the holder is integrally formed of metal or resin. That is, in the holder, the holder main body and the pair of outer lateral leaf springs are integrally formed of metal or resin.
  • integrally forming does not include a structure joined by a fixing tool (bolt, nut, grommet, eyelet, rivet), a caulking portion, an adhesive, or the like.
  • integrally forming means for example, cutting, grinding, electric discharge machining (wire cut electric discharge machining, etc.) and laser machining of the tube material, which is a raw material, to remove a unnecessary part, and a structure (holder) ) Can be mentioned.
  • the integral formation may be performed by, for example, filling a mold with a resin material and forming a holder with a desired shape.
  • two-color molding and insert molding are included.
  • integral is synonymous with “integral” in terms of “being in a relationship that cannot be divided into one”, but is not required to be made of a single material. Therefore, the integrally formed holder does not have a fixing portion joined using another member.
  • the holder includes a first holder that supports one end of the pin and is integrally formed with one of the pair of outer lateral leaf springs, and supports the other end of the pin.
  • a manipulator is provided that is divided into a second holder formed integrally with the other of the outer lateral leaf springs.
  • the divided first holder and the second holder have no part (that is, a guide) for integrally connecting the two.
  • a guide for integrally connecting the two.
  • the divided first holder and second holder it is possible to prevent friction due to friction between the curved vertical leaf spring and the guide.
  • segmented 1st holder and 2nd holder the tilting precision of an action
  • manufacture becomes easy compared with the integral holder connected with the guide. Further, since the friction with the guide is eliminated as compared with the integral holder, the tilting of the operating portion can be made smooth.
  • the fixing portion that fixes both ends of the pin to each of the first holder and the second holder has a diameter larger than about half of the width dimension orthogonal to the extending direction of the outer lateral leaf spring.
  • a manipulator formed of a circular shape is provided.
  • the fixed portion is formed in a circular shape having a diameter larger than half of the width dimension of the outer lateral leaf spring. Therefore, the first holder and the second holder have a pin that is not removed from the holding plate, as compared with a structure in which both ends of the pin are fixed by a fixing portion having a diameter smaller than about half or half of the width of the outer lateral leaf spring. It can be regulated with great strength. Thereby, the fixing strength of the pin can be enhanced in response to the stress acting on the fixing portion between the both ends of the pin and the holding plate, which is increased by eliminating the guide.
  • the wire can be eliminated, the number of parts can be reduced, the weight can be reduced, and the cost can be reduced, and the approach to the affected part can be easily performed.
  • FIG. 7 is a perspective view of one flexible actuator shown in FIG.
  • omitted the pin shown in FIG. The perspective view of the holder shown in FIG. Explanatory drawing of the displacement direction of the actuator Operation explanatory diagram showing the displacement direction of the operating part by a pair of horizontal leaf springs Operation explanatory diagram showing the displacement direction of the operating part by a pair of outer lateral leaf springs Enlarged perspective view of the main part of the manipulator with the operating part open Enlarged perspective view of the main part of the manipulator with the operating part rotated in the -Y direction
  • the principal part expansion perspective view of the manipulator which the operation part displaced in the X direction The principal part expansion perspective view of the manipulator which the operation part opened and was displaced to the X direction
  • tip part of the manipulator of a modification 18 is a side sectional view of the manipulator shown in FIG.
  • a manipulator according to the present disclosure will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
  • the accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
  • a manipulator according to the present disclosure will be described by exemplifying a manipulator used for laparoscopic surgery or neurosurgery in a minimally invasive surgical technique, for example.
  • FIG. 1 is an external perspective view of the manipulator 11 of the present embodiment.
  • the manipulator 11 of this embodiment is attached to the manipulator drive unit 13.
  • the manipulator drive unit 13 is fixed to a link unit (not shown).
  • the manipulator 11 has a distal end inserted into a trocar (not shown) fixed to the link unit.
  • the manipulator 11 moves with multiple degrees of freedom around one rotation center by a link unit driven by a link drive unit (not shown) together with the trocar.
  • the manipulator 11 is rotated inside the trocar by a rotation driving device 15 provided in the manipulator driving unit 13. Further, the operating portion 17 provided on the distal end side of the manipulator 11 is operated with multiple degrees of freedom by a slide drive device 19 provided in the manipulator drive unit 13. At least one actuating part 17 constitutes an end effector.
  • An end effector means the actual working part of a surgical instrument and includes, for example, clamps, capture instruments, scissors, staples, needle holders.
  • the pair of operating portions 17 can be used as end effectors such as a clamp, a capturing device, scissors, and a stapler.
  • One actuating portion 17 can be used as an end effector such as a needle holder.
  • the end effector can also be used as a capture device that can be configured by a single actuating portion 17, but in order to explain more specifically, the capture device configured by a pair of actuating portions 17 is illustrated. To explain.
  • the manipulator 11 is inserted through the above-described trocar through a small (approximately 1 ⁇ 2 inch) cut in the abdomen.
  • the surgeon operates the end effector arranged at the internal surgical site via the manipulator 11 from the outside of the abdomen.
  • the surgeon observes the treatment on a monitor (not shown) that displays an image of the surgical site taken from the laparoscope by an endoscope (not shown).
  • Similar endoscopic procedures include, for example, arthroscopes, retroperitoneoscopes, pelviscopy, nephroscope, cystoscope, cisternoscopy, sinoscopy, hysteroscope, and urethroscope Adopted.
  • the manipulator 11 has an outer cylinder 21.
  • the outer cylinder 21 is made of, for example, a stainless steel pipe and has an outer diameter of 6 mm.
  • the outer cylinder 21 is formed with a smaller diameter (outer diameter of about 4 mm or less).
  • the diameter is smaller than the outer cylinder 21 having an outer diameter of 8.5 mm in the “da ⁇ Vinci surgical system” system of Non-Patent Document 1 described above.
  • the manipulator 11 is formed with a distance from the tip of the operating portion 17 to the manipulator drive unit 13 of 125 to 300 mm.
  • the outer periphery of the outer cylinder 21 may be further covered with a sheath.
  • An end cap 23 is fixed to the base end side of the outer cylinder 21 in the insertion direction (that is, the side opposite to the operating portion side).
  • the manipulator 11 rotates integrally with the direction e of FIG. 2 when the end cap 23 is rotated by the rotation driving device 15 provided in the manipulator driving unit 13.
  • a stopper 25 is fixed to the front side of the end cap 23 in the insertion direction (that is, the operating portion side). The stopper 25 engages with the manipulator drive unit 13 to restrict the movement of the manipulator 11 in the longitudinal direction.
  • the first outer slider 27, the first slider 29, the second slider 31, and the second outer slider 33 are arranged from the base end side (that is, the side opposite to the operating portion side).
  • Two sliders are provided so as to be movable in the longitudinal direction of the outer cylinder 21. These four sliders (that is, the first outer slider 27, the first slider 29, the second slider 31, and the second outer slider 33) are inserted into the outer cylinder 21 and are long toward the tip (that is, the operating portion side).
  • the first outer slider shaft 35, the first slider shaft 37, the second slider shaft 39, and the second outer slider shaft 41 are connected to each other.
  • the first outer slider shaft 35, the first slider shaft 37, the second slider shaft 39, and the second outer slider shaft 41 are respectively connected to the first outer slider 27, the first outer slider shaft 41, and the second outer slider shaft 41.
  • the slider 29, the second slider 31, and the second outer slider 33 are independently moved in the longitudinal direction (that is, pushed and pulled).
  • the end effector provided at the distal end of the outer cylinder 21 (that is, the operating portion side) operates with these four shafts with multiple degrees of freedom.
  • FIG. 2 is an enlarged perspective view of a main part of the tip of the manipulator 11 shown in FIG.
  • FIG. 3 is a plan view in which a part of the tip shown in FIG. 2 is cut away.
  • FIG. 4 is a side view in which a part of the tip shown in FIG. 2 is cut away.
  • the manipulator 11 is composed of a pair of flexible operating bodies, a holder 43 integrally formed with a pair of outer lateral leaf springs, and a pin 45.
  • the pair of flexible operating bodies includes a first flexible operating body 47 and a second flexible operating body 49.
  • the pair of outer lateral leaf springs includes a first outer lateral leaf spring 51 and a second outer lateral leaf spring 53 shown in FIG.
  • the first outer lateral leaf spring 51, the first flexible actuation body 47, the second flexible actuation body 49, and the second outer lateral leaf spring 53 are elongated along the longitudinal direction with the outer cylinder 21. It is formed, and one end in the longitudinal direction extends from the inside of the outer cylinder 21.
  • the direction of one end side is the direction of the front end side (that is, the action
  • the first outer lateral leaf spring 51, the first flexible actuator 47, the second flexible actuator 49, and the second outer lateral leaf spring 53 are accommodated in the outer cylinder 21 from the other end in the longitudinal direction to the middle in the longitudinal direction.
  • the first outer lateral leaf spring 51 is connected to the first outer slider shaft 35 inside the outer cylinder 21.
  • the first flexible actuator 47 is connected to the first slider shaft 37.
  • the second flexible actuator 49 is connected to the second slider shaft 39.
  • the second outer lateral leaf spring 53 is connected to the second outer slider shaft 41.
  • FIG. 5 is a perspective view of the distal end portion shown in FIG. 2 rotated 90 degrees clockwise around the tube axis.
  • FIG. 6 is a perspective view in which the outer cylinder 21 at the tip shown in FIG. 5 is omitted.
  • the first outer lateral leaf spring 51 and the second outer lateral leaf spring 53 which are a pair of outer lateral leaf springs, are partially in contact with the inner wall surface of the outer cylinder 21 in the extending direction. Placed inside.
  • the holder 43 is supported by the outer cylinder 21 by the first outer lateral leaf spring 51 and the second outer lateral leaf spring 53.
  • the holder 43 supports both ends of the pin 45.
  • the pin 45 is supported by the holder 43 with its axial movement restricted.
  • the pin 45 passes through the first flexible actuator 47 and the second flexible actuator 49.
  • FIG. 7 is a perspective view in which the holder 43 at the tip shown in FIG. 6 is omitted.
  • FIG. 8 is a perspective view of one flexible actuator shown in FIG.
  • the manipulator 11 is based on the push-pull of a leaf spring (for example, a later-described lateral leaf spring 55, a first outer lateral leaf spring 51, a second outer lateral leaf spring 53, or a combination thereof).
  • a leaf spring for example, a later-described lateral leaf spring 55, a first outer lateral leaf spring 51, a second outer lateral leaf spring 53, or a combination thereof.
  • a configuration in which each of the first flexible actuator 47 and the second flexible actuator 49 is operated with multiple degrees of freedom by deforming a part of the second flexible actuator 49 and a part of the second flexible actuator 49. Have.
  • a pair of first flexible actuator 47 and second flexible actuator 49 are used as flexible actuators.
  • a widened portion 57 is formed at the end of the lateral leaf spring 55 on the opposite side of the actuator 17.
  • the widened portion 57 is in contact with the inner surface of the outer cylinder 21 at both sides in the plate width direction.
  • the first flexible actuator 47 and the second flexible actuator 49 are used by turning the same object upside down. Therefore, hereinafter, the first flexible actuator 47 will be described as a representative example of the flexible actuator.
  • FIG. 9 is a plan view of the first flexible actuator 47 in which the pin 45 shown in FIG. 8 is omitted.
  • the first flexible actuating body 47 is formed integrally with the horizontal leaf spring 55, the curved longitudinal leaf spring 59, the shaft body 61, and the actuating portion 17.
  • the material of the first flexible actuator 47 for example, Ni—Ti (nickel titanium) having excellent biocompatibility, a wide elastic range, and corrosion resistance is used.
  • the horizontal leaf spring 55 is formed in a long rectangular shape along the longitudinal direction of the outer cylinder 21.
  • the horizontal leaf spring 55 has a leaf spring shape. By adopting such a shape, the unidirectionality of deformation is increased, the twist is suppressed, and the manipulator 11 is operated with higher positioning accuracy. Is possible.
  • the horizontal leaf spring 55 can be formed with a plate thickness of 0.4 mm, for example.
  • the horizontal leaf spring 55 can be formed with a plate thickness of 0.25 mm when applied to neurosurgery.
  • the curved vertical plate spring 59 stands up with a plate surface perpendicular to the plate surface of the horizontal plate spring 55, and the base end of the curved vertical plate spring 59 is connected to one longitudinal end of the horizontal plate spring 55.
  • the curved vertical leaf spring 59 protrudes in one of the plate width directions of the horizontal leaf spring 55 (for example, the direction toward the upper left side in FIG. 9) and extends along the longitudinal direction of the horizontal leaf spring 55.
  • the curved vertical leaf spring 59 is an R portion 65 as an example of a bent portion whose distal end in the extending direction bends in a direction opposite to the protruding direction of the curved portion 63.
  • the curved vertical leaf spring 59 is provided with an R portion 65 at the connection portion with the shaft body 61, thereby enabling efficient power transmission during the deformation operation of the first flexible operating body 47 and facilitating the deformation operation. Yes.
  • the curved vertical leaf spring 59 can be formed with a plate thickness of the curved portion 63 of 0.3 mm, for example.
  • the curved vertical leaf spring 59 can be formed with a plate thickness of 0.2 mm when applied to neurosurgery.
  • the tip of the R portion 65 of the curved vertical leaf spring 59 is connected to the outer periphery of the shaft body 61.
  • the shaft body 61 is supported by a rotation center 67 perpendicular to the plate surface of the horizontal leaf spring 55 and is rotatable. More specifically, a pin hole 69 is formed in the shaft body 61.
  • a pin 45 (see FIG. 8) is inserted into the pin hole 69 coaxially with the rotation center 67. Both ends of the pin 45 are supported by the holder 43.
  • the holder 43 is supported on the outer cylinder 21 by a pair of outer lateral leaf springs (that is, the first outer lateral leaf spring 51 and the second outer lateral leaf spring 53).
  • the shaft body 61 has an R portion 65 connected to the outer periphery at a position of approximately 90 degrees counterclockwise in FIG. 9 when the radial position on the side where the curved portion 63 protrudes from the rotation center 67 is 0 degrees.
  • the R portion 65 is connected so as to wind the shaft body 61 at a position of 90 degrees from a position of 0 degrees on the outer periphery.
  • the R portion 65 is preferably connected to the shaft body 61 within a range of 120 degrees from a position of 0 degrees on the outer periphery in terms of space efficiency.
  • the operating portion 17 is provided on the outer periphery of the shaft body 61 so as to protrude outward of the rotation radius (that is, in the radial direction).
  • the operating portion 17 is connected to the outer periphery of the shaft body 61 whose proximal end substantially coincides with the connection position of the R portion 65.
  • the actuating part 17 constituting the capturing device has a plate width along the rotation center 67 and is formed in a substantially pyramid shape in which the plate width and the plate thickness gradually decrease toward the protruding tip.
  • the manipulator 11 has a protruding direction of the bending portion 63 of the other second flexible actuator 49 with respect to a protruding direction of the bending portion 63 of the first flexible actuator 47. Overlaid to be the opposite.
  • the first flexible actuating body 47 and the second flexible actuating body 49 are configured such that the pair of shaft bodies 61 are overlapped in the direction along the rotation center 67 so that the pair of shaft bodies 61 and the operating portion 17 are the rotation centers. 67 are assembled at the same height in the direction along 67.
  • the first flexible actuating body 47 and the second flexible actuating body 49 are rotatably connected at the same rotation center 67 by a pin 45 penetrating both shaft bodies 61.
  • the first flexible actuating body 47 and the second flexible actuating body 49 that are assembled together from the other longitudinal end of the horizontal leaf spring 55 of each of the first flexible actuating body 47 and the second flexible actuating body 49. Up to the middle in the longitudinal direction is accommodated in the outer cylinder 21.
  • the first flexible actuating body 47 and the second flexible actuating body 49 are arranged so that the respective actuating portions 17 intersect with each other in a state where the shaft bodies are overlapped with each other. Therefore, the operating portion 17 of the first flexible operating body 47 shown in FIG. 9 becomes the operating portion 17 on the lower right side of the paper surface shown in FIG. 7 when the two operating portions 17 shown in FIG. 7 face the lower side of the paper surface. . Similarly, the operating portion 17 of the second flexible operating body 49 becomes the operating portion 17 on the upper left side of the paper surface shown in FIG. 7 when the two operating portions 17 shown in FIG. 7 face the lower side of the paper surface.
  • the pair of operating portions 17 are rotated in a direction of approaching (that is, gripping) to each other when the first flexible operating body 47 and the second flexible operating body 49 are pulled simultaneously. That is, the first flexible actuator 47 and the second flexible actuator 49 convert the force in the linear direction into a moment about the pin 45 by the curved vertical leaf spring 59. For this reason, the 1st flexible actuator 47 and the 2nd flexible actuator 49 can avoid buckling which arises in the curved vertical leaf
  • the first flexible operating body 47 is arranged on an extension line of an axis passing through the center of the horizontal leaf spring 55 in the plate width direction of the rotation center 67 of the shaft body 61. That is, the first flexible actuating body 47 has a shape in which only the curved vertical leaf spring 59 bulges from one side from the horizontal leaf spring 55, the shaft body 61, and the actuating portion 17 arranged substantially linearly.
  • FIG. 10 is a perspective view of the holder 43 shown in FIG.
  • the manipulator 11 includes a holder 43 that supports both ends of the pin 45 that passes through the pair of stacked shafts 61.
  • the holder 43 sandwiches the horizontal springs 55 of the pair of flexible operating bodies (the first flexible operating body 47 and the second flexible operating body 49) in parallel and extends in the same direction as the horizontal springs 55.
  • a pair of existing lateral lateral leaf springs (the first lateral lateral leaf spring 51 and the second lateral lateral leaf spring 53) are integrally formed.
  • the holder 43 is integrally formed of at least one of metal and resin.
  • the holder 43 is made of, for example, Ni—Ti (nickel titanium) that is excellent in biocompatibility, a wide elastic range, and corrosion resistance, like the first flexible operating body 47.
  • the holder 43 can be manufactured by wire-cut electric discharge machining of a nickel titanium tube material. When the manipulator 11 is applied to neurosurgery, a tube material having an outer diameter of 3 mm and an inner diameter of 1.4 mm is used as the material of the holder 43.
  • a pair of outer lateral leaf springs are formed from this tube material by wire cut electric discharge machining. From this, a pair of outer side leaf springs (first outer side leaf spring 51, second outer side leaf spring 53) extend from the cylindrical outer peripheral surface 73 of the holder main body 71 of the holder 43 in a direction along the generatrix. An arcuate outer circumferential surface 75 having the same radius of curvature as the cylindrical outer circumferential surface 73 is provided.
  • the first outer lateral leaf spring 51 and the second outer lateral leaf spring 53 are formed by turning the same shape upside down.
  • the first outer lateral leaf spring 51 will be described as a representative example of the outer lateral leaf spring.
  • the first outer lateral leaf spring 51 is formed with a flexible portion 77 that is thinner and narrower than both ends in the longitudinal direction of the outer lateral leaf spring at the central portion in the extending direction.
  • the holder 43 forms a flexible portion 77 on the first outer lateral leaf spring 51 so that stress is concentrated on the flexible portion 77 so that the first outer lateral leaf spring 51 can be elastically deformed.
  • the flexible portion 77 is formed with a length in the extending direction of about 7 mm and a width of about 1.4 mm.
  • the first outer lateral leaf spring 51 has an opposing flat surface 79 on the side opposite to the arcuate outer peripheral surface 75.
  • the first outer lateral leaf spring 51 and the above-described lateral leaf spring 55 have a smooth surface with no irregularities adjacent to each other in the extending direction at the central portion in the extending direction. Thereby, the manipulator 11 makes it difficult for body fluid such as blood to adhere to the first outer lateral leaf spring 51 and the lateral leaf spring 55 exposed from the outer cylinder 21. Moreover, the 1st outer side leaf
  • the holder 43 has a pair of parallel holding plates 81 that are separated from each other.
  • One holding plate 81 is formed in a semi-cylindrical shape with a curved tip end obtained by cutting a rotating body obtained by rotating an ellipse with a long axis along a surface along the long axis.
  • the pair of holding plates 81 that are separated from each other are connected to each other by side plates 83.
  • the holder 43 has a square hole-like internal space in a front view.
  • the above-described pin 45 is fixed to a pin support hole 85 having both ends drilled in the pair of holding plates 81.
  • the holder 43 accommodates the shaft body 61 and the curved vertical leaf spring 59 in this internal space.
  • a pair of parallel guides 87 are formed on the holder 43 so as to protrude from the respective side plates 83 toward the outer cylinder 21.
  • the pair of guides 87 are in contact with the respective curved outer surfaces 89 (see FIG. 9) of the curved vertical leaf spring 59 in the pair of first flexible actuator 47 and second flexible actuator 49. Since the guide 87 is in contact with the curved outer surface 89 of the curved vertical plate spring 59 from the outside, the guide 87 regulates the deformation operation that bulges outside the curved vertical plate spring 59, so that power can be effectively transmitted to the R portion 65. Can be easily performed.
  • control unit 91 that controls the slide drive device 19 and the rotation drive device 15 of the manipulator 11 will be described.
  • the operation of the manipulator 11 is controlled by the control unit 91 shown in FIG.
  • the control unit 91 includes a control computer 93 and a motor driver 95.
  • the control unit 91 controls the operations of the slide drive device 19 and the rotary drive device 15.
  • the slide drive device 19 includes a ball screw 97 and a DC motor 99.
  • the slide drive device 19 controls the positions of the four first outer sliders 27, the first slider 29, the second slider 31, and the second outer slider 33 in the longitudinal direction of the outer cylinder 21 shown in FIG.
  • the slide drive device 19 operates based on an instruction from the control unit 91.
  • the rotation drive device 15 includes a gear unit 101 and a DC motor 103.
  • the rotation drive device 15 controls the rotation direction and rotation angle of the end cap 23 at the rear end in the longitudinal direction of the outer cylinder 21 shown in FIG.
  • the rotation drive device 15 operates based on an instruction from the control unit 91.
  • the operating unit 17 operates with respect to the outer cylinder 21 with multiple degrees of freedom. That is, it can move in the direction (arrow a direction in FIG. 2) in which the pair of operating portions 17 are moved closer to and away from each other (opening and closing, etc.).
  • the manipulator 11 can rotate forward and backward (rotate in the direction of arrow b in FIG. 2) around the rotation center 67 of the shaft body 61 with the pair of operating parts 17 closed.
  • the holder 43 can be displaced in the bending direction of the outer lateral leaf spring (in the direction of arrow c in FIG. 2).
  • the holder 43 can be advanced and retracted in the direction along the central axis of the outer cylinder 21 (the direction of arrow d in FIG. 2).
  • the manipulator 11 can further rotate the holder 43 and the outer cylinder 21 integrally through the end cap 23 (in the direction of arrow e in FIG. 2) by the rotation driving device 15.
  • FIG. 11 is an explanatory diagram of the displacement direction of the operating portion 17.
  • the front end surface of the outer cylinder 21 is a surface orthogonal to the central axis of the outer cylinder 21 and is circular with the central axis as the center. At this time, the central axis of the outer cylinder 21 is set to “Z axis”.
  • the surface including the distal end surface of the outer cylinder 21 passes through the Z axis, and the axis in the same direction as the rotation center 67 of the pin 45 is “X”. Axis ".
  • An axis including the distal end surface of the outer cylinder 21 and passing through the Z axis and orthogonal to the X axis is referred to as a “Y axis”.
  • the included angle of the pair of operating portions 17 opened by rotating the rotation center 67 is “ ⁇ ”.
  • the angle formed by the rotation center 67 of the pin 45 and the X-axis is “ ⁇ ”.
  • the point where the rotation center 67 of the pin 45 and the X axis intersect is a bending center B.
  • the manipulator 11 tilts the end effector with the distance from the distal end surface of the outer cylinder 21 to the pin 45 within a bendable range.
  • a distance P (see FIG. 2) from the distal end surface of the outer cylinder 21 to the rotation center 67 of the pin 45 is set to 7.5 mm, for example.
  • This distance P is shorter than the equivalent distance 9 mm in the “da Vinci surgical system” described above.
  • the distance P is set to 4.85 mm in the manipulator 11 applied to the neurosurgery.
  • FIG. 12 is an operation explanatory view showing the displacement direction of the operating portion 17 by the pair of horizontal leaf springs 55.
  • FIG. 13 is an operation explanatory view showing the displacement direction of the operating portion 17 by a pair of outer lateral leaf springs.
  • FIG. 14 is an enlarged perspective view of a main part of the manipulator 11 with the operating part 17 opened.
  • FIG. 15 is an enlarged perspective view of a main part of the manipulator 11 in which the operation unit 17 is rotated in the ⁇ Y direction.
  • the horizontal leaf spring 55 of the first flexible actuating body 47 and the transverse leaf spring 55 of the second flexible actuating body 49 are simultaneously pressed (that is, pushed toward the operating portion). Then, the pair of shaft bodies 61 rotate in the opposite directions. That is, as shown in FIG. 14, the pair of operating parts 17 are opened.
  • the pair of shafts 61 rotate in the direction opposite to that at the time of opening. That is, as shown in FIG. 2, the pair of operating parts 17 is closed.
  • the manipulator 11 when the horizontal leaf spring 55 of the first flexible operating body 47 is pulled and the horizontal leaf spring 55 of the second flexible operating body 49 is pressed, as shown in FIG. While being closed, it rotates clockwise about the rotation center 67 in FIG. 2 and tilts to the ⁇ Y axis side.
  • the manipulator 11 rotates while the pair of operating portions 17 are closed. It rotates counterclockwise in FIG. 2 about the center 67 and tilts to the Y-axis side.
  • the pair of operating portions 17 advance in the Z direction. Further, in the manipulator 11, when the first outer lateral leaf spring 51 and the second outer lateral leaf spring 53 are pulled simultaneously, the pair of operating portions 17 retracts in the ⁇ Z direction. Note that, during these advance / retreat operations, the first flexible actuator 47 and the second flexible actuator 49 are driven or pushed / pulled simultaneously.
  • FIG. 16 is an enlarged perspective view of a main part of the manipulator 11 in which the operating part 17 is displaced in the X direction.
  • the pair of operating parts 17 tilts to the X-axis side as shown in FIG. Further, in the manipulator 11, when the first outer lateral leaf spring 51 is pulled and the second outer lateral leaf spring 53 is pressed, the pair of operating portions 17 tilts toward the ⁇ X axis side.
  • FIG. 17 is an enlarged perspective view of a main part of the manipulator 11 in which the operating unit 17 is opened and displaced in the X direction.
  • the manipulator 11 can move the bending center B (see FIG. 11) by changing the push-pull amount of the first outer lateral leaf spring 51 and the second outer lateral leaf spring 53. Further, the manipulator 11 changes the push-pull amount of the first flexible operating body 47 and the second flexible operating body 49 simultaneously with the movement of the bending center B, as shown in FIG. 17 can be opened and closed.
  • the manipulator 11 obtains target values of the feed amounts of the first outer slider 27, the first slider 29, the second slider 31, and the second outer slider 33 of the manipulator 11 by the control computer 93 with respect to the target bending angle ⁇ .
  • the tip of the manipulator 11 that is, an end effector, more specifically, a pair of operating parts. 17
  • the manipulator 11 can open and close the pair of operating parts 17 while bending the end effector to the target bending angle ⁇ .
  • the manipulator 11 changes the push-pull amounts of the first outer lateral leaf spring 51 and the second outer lateral leaf spring 53 while changing the push-pull amounts of the first flexible actuating body 47 and the second flexible actuating body 49.
  • the tip of the end effector can be swiveled in an arbitrary direction of 360 degrees around the Z axis.
  • the horizontal leaf spring 55, the curved vertical leaf spring 59, and the shaft body 61 are arranged in series on the same plane, so that a flexible operating body (that is, the first flexible operation).
  • the curved vertical leaf spring 59 is connected to the horizontal leaf spring 55 in a direction in which the plate surface rises. That is, the horizontal leaf spring 55 and the curved vertical leaf spring 59 are connected so that the plate surfaces are orthogonal to each other.
  • the shaft body 61 is rotatably supported at a rotation center 67 perpendicular to the plate surface of the horizontal leaf spring 55.
  • the flexible actuating body that is, the first flexible actuating body 47 and the second flexible actuating body 49
  • the shaft body 61 When the other longitudinal end of the horizontal leaf spring 55 is pressed in a direction along the longitudinal direction, the flexible actuating body (that is, the first flexible actuating body 47 and the second flexible actuating body 49) is the shaft body 61. Is supported so as to be immovable within the same plane as described above, the curved vertical leaf spring 59 is further deformed in a bending direction. This deformation occurs within the elastic limit of the curved longitudinal leaf spring 59. For this reason, the flexible operating body does not stretch or contract (permanent strain). Since the horizontal leaf spring 55 and the plate surface of the curved vertical plate spring 59 are orthogonal to each other, the deformation direction of the curved vertical plate spring 59 is changed by 90 degrees.
  • the curved vertical leaf spring 59 can be deformed along the same plane as described above.
  • most of the internal stress accumulated by this deformation becomes an elastic restoring force.
  • Part of this elastic restoring force acts on the shaft body 61 as a component force in the tangential direction of the outer periphery of the shaft body that generates a moment.
  • the deformation of the curved vertical leaf spring 59 mainly occurs at the R portion 65.
  • the flexible operating body (that is, the first flexible operating body 47 and the second flexible operating body 49) is curved vertically when the other longitudinal end of the horizontal leaf spring 55 is pulled in a direction along the longitudinal direction.
  • the leaf spring 59 is deformed in a direction to cancel the curve (a direction approaching a linear shape).
  • a part of the elastic restoring force stored by this deformation acts on the shaft body 61 as a component force in the tangential direction of the outer periphery of the shaft body that generates a moment in the opposite direction to the above.
  • the shaft body 61 can rotate the operating portion 17 provided in the shaft body 61 in the reverse direction around the rotation center 67 by pushing and pulling the horizontal leaf spring 55.
  • the flexible actuators (that is, the first flexible actuator 47 and the second flexible actuator 49) are arranged in the direction in which the horizontal leaf spring 55 is displaced toward the front and back plate surfaces (the X-axis side in FIG. -Allow deformation on the X-axis side).
  • the flexible operating body does not hinder the tilting of the operating portion 17 in the same direction.
  • the manipulator 11 using the flexible operating body can eliminate the wire that has been a conventional means and can operate the operating unit 17 with multiple degrees of freedom.
  • the flexible actuating body (that is, the first flexible actuating body 47 and the second flexible actuating body 49) is unlikely to be stretched or cut like a wire. Therefore, durability can be improved and the number of replacements of the manipulator 11 can be extremely reduced. Since the flexible actuating body (that is, the first flexible actuating body 47 and the second flexible actuating body 49) does not extend like a wire, the rotational accuracy and position accuracy of the operating unit 17 can be increased. Furthermore, since the flexible operating bodies (that is, the first flexible operating body 47 and the second flexible operating body 49) are single members, a simple mechanical configuration can be realized, and sterilization and cleaning are extremely easy. .
  • the flexible actuators that is, the first flexible actuator 47 and the second flexible actuator 49
  • the manipulator 11 and the driving means Detachment can be simplified and facilitated.
  • the flexible actuators (that is, the first flexible actuator 47 and the second flexible actuator 49) do not need to use a plurality of links and passive joints unlike the link mechanism. Therefore, the number of parts is reduced, and it is easy to reduce the size and weight. Accordingly, the product cost can be reduced easily. Moreover, the moving mass of the end effector is reduced by the weight reduction, and the inertial force can be reduced. Thereby, positioning control of the end effector becomes easy and positioning accuracy can be improved. In addition, since a wire, a pulley, a plurality of links, and passive joints are not used, the bending radius when the operating unit 17 is displaced together with the shaft body 61 can be reduced.
  • each manipulator 11 is activated.
  • the part 17 can be moved closer and away. That is, if the operation part 17 is a capture instrument, it can be clamped. If the operating part 17 is scissors, cutting is possible.
  • the manipulator 11 rotates the pair of operating portions 17 in the same direction around the rotation center 67 of the shaft body 61 by simultaneously pushing and pulling the other longitudinal ends of the pair of horizontal leaf springs 55 in the opposite direction. Can do. That is, if the operating unit 17 is a capture device, the capture device can be rotated forward and backward with the capture device closed.
  • the manipulator 11 has a pair of curved vertical leaf springs 59 protruding in the opposite direction.
  • operation body overlaps, without shifting
  • the rotation center 67 of each shaft body 61 is commonly arranged and fixed on the extension line of the axis of the horizontal leaf spring 55 by one pin 45. Thereby, the manipulator 11 can ensure the curved shape while suppressing the protruding width between the protruding ends in the bending direction of the pair of curved vertical leaf springs 59 to be small.
  • the manipulator 11 has a pair of flexible operating bodies stacked so that the pair of horizontal leaf springs 55 sandwich the center axis of the outer cylinder 21.
  • the manipulator 11 is further provided with a pair of outer lateral leaf springs (a first outer lateral leaf spring 51 and a second outer lateral leaf spring 53) sandwiching them between the outer sides of the pair of lateral leaf springs 55.
  • the outer cylinder 21 includes a pair of lateral leaf springs 55 and a pair of outer lateral leaf springs arranged in four layers. Each of these leaf springs is pushed and pulled independently.
  • One end in the longitudinal direction of the pair of outer lateral leaf springs is fixed to the holder 43.
  • the front end surface of the outer cylinder 21 and the holder 43 are spaced apart. Therefore, a pair of horizontal leaf springs 55 overlapping the four layers and a pair of outer lateral leaf springs sandwiching them are exposed between the distal end surface of the outer cylinder 21 and the holder 43.
  • both the pair of outer lateral leaf springs are inclined toward the one outer lateral leaf spring, and the pair of outer lateral leaf springs are both in the other direction.
  • the holder 43 is displaced (that is, tilted) by bending of the pair of outer lateral leaf springs.
  • the pair of lateral leaf springs 55 disposed between the pair of outer lateral leaf springs also allow bending in the same direction.
  • the manipulator 11 simultaneously pushes and pulls the other longitudinal end of the horizontal leaf spring 55 in the pair of flexible operating bodies to bring the pair of operating portions 17 close to and away from each other (opening and closing) (see FIG. 2). ) (1 degree of freedom).
  • the holder 43 By pushing and pulling the pair of outer lateral leaf springs in the opposite direction, the holder 43 (that is, the operating portion 17) can be displaced in the bending direction c (see FIG. 2) of the outer lateral leaf spring (3 degrees of freedom). ).
  • the pair of actuating portions 17 are moved along the central axis of the outer cylinder 21. It is possible to advance and retract in the direction d (see FIG. 2) (4 degrees of freedom).
  • the manipulator 11 rotates integrally (5 degrees of freedom) in the e direction (see FIG. 2) around the tube axis of the outer cylinder 21 as the end cap 23 rotates.
  • the manipulator 11 applies the deformation of the elastic body without using a wire or a link mechanism, and performs mechanical power conversion, so that the operating unit 17 has multiple degrees of freedom (specifically, 5 degrees of freedom). Operable.
  • the deformation in the direction in which the curved vertical leaf spring 59 is further curved is restricted by the guide 87 that contacts the curved outer surface 89.
  • plate spring 59 by the reaction force from the shaft body 61 is controlled.
  • a large moment can be applied to the shaft body 61.
  • a pair of outer lateral leaf springs are integrally formed on the holder 43. That is, in the holder 43, the holder main body 71 and the outer lateral leaf spring are integrally formed without having a joint portion.
  • the holder 43 does not have a joint portion formed by a fixture, a caulking portion, an adhesive, or the like.
  • the holder body 71 is made of stainless steel and the outer lateral leaf spring is made of titanium or a titanium alloy
  • the holder body 71 and the outer lateral leaf spring are connected and integrated by a pin 45 or the like due to difficulty in welding ( Separate members are grouped together).
  • each of the pair of outer lateral leaf springs with a fixture such as a pin 45, for example, at least five parts (one holder body 71, two outer lateral leaf springs). , Two fixtures) are required.
  • the integrally formed holder 43 requires only one component.
  • the integrally formed holder 43 does not suffer from wear, backlash, or accuracy degradation caused by a joining structure using a fixture or the like.
  • body fluids such as blood do not enter the bonded structure and can be easily cleaned, and can be used safely for the next operation and the like by being sufficiently dried. Furthermore, it is not necessary to downsize individual parts when a plurality of separate parts are integrated.
  • the integrally formed holder 43 eliminates a plurality of small parts, thereby avoiding the risk of strength reduction and the risk of disconnection. Long-term use is also possible. As a result, the manipulator 11 in which the holder 43 is integrally formed has a great merit in the case of a small diameter (outer diameter of about 4 mm or less) particularly applied to neurosurgery or the like that requires a reduction in size.
  • the holder main body 71 has a cylindrical outer peripheral surface 73, and a pair of outer lateral leaf springs are extended from the cylindrical outer peripheral surface 73 in a direction along the generatrix.
  • the cylindrical outer peripheral surface 73 and the arc-shaped outer peripheral surface 75 of each outer lateral leaf spring have the same radius of curvature. That is, the holder main body 71 and the pair of outer lateral leaf springs can be processed from the same metal tube material without providing a joint portion.
  • the holder 43 uses a material (metal tube material) having a circular inner and outer diameter, removes a part thereof, and leaves the other part, whereby different rigidity (spring property) can be expressed in a desired part.
  • the outer diameter of the holder 43 inserted inside the outer cylinder 21 is about 3 mm or less.
  • the holder 43 made of such a small-diameter titanium or titanium alloy can be manufactured by cutting a metal tube material by wire-cut electric discharge machining, for example.
  • a portion that is, the flexible portion 77 that is thinner and narrower than both ends in the longitudinal direction is formed in the center portion in the extending direction in each outer lateral leaf spring.
  • the flexible portion 77 has a smaller cross-sectional area than both ends in the longitudinal direction. For this reason, in the outer lateral leaf spring, the stress acting on both ends in the longitudinal direction is concentrated on the flexible portion 77 in the central portion in the extending direction, and bending (elastic deformation) occurs.
  • the holder 43 is a single part made of the same material by controlling the thickness and width of the outer lateral leaf spring formed integrally with the holder main body 71, but the spring 43 is only in a desired position. Sex can be expressed.
  • the pair of outer lateral leaf springs are arranged inside the outer cylinder 21 with a part in the extending direction being in contact with the inner wall surface of the outer cylinder 21.
  • the pair of outer lateral leaf springs are deformed (bent) in a direction inclined toward one outer lateral leaf spring or in a direction inclined toward the other outer lateral leaf spring. Since the pair of outer lateral leaf springs are in contact with the inner wall surface of the outer cylinder 21, the bending is restricted inside the outer cylinder 21. Most of the pair of outer lateral leaf springs are bent at portions protruding from the outer cylinder 21. For this reason, the pair of outer lateral leaf springs can regard the open end of the outer cylinder 21 as a bending start end.
  • the opening of the outer cylinder 21 serves as a fulcrum for supporting the outer lateral leaf spring on the side to be bent.
  • a part of the outer lateral leaf spring is made the inner wall surface of the outer cylinder 21, and the opening end of the outer cylinder 21 is used as a fulcrum.
  • plate spring can suppress the useless expansion of a bending radius.
  • This fulcrum moves on the outer lateral leaf spring as the outer lateral leaf spring advances and retreats from the opening end of the outer cylinder 21.
  • the outer lateral leaf spring and the lateral leaf spring 55 have a smooth surface in the extending direction center portion where no irregularities are adjacent in the extending direction.
  • the manipulator 11 is less likely to cause body fluid such as blood to adhere to the outer lateral leaf spring or the lateral leaf spring 55.
  • the outer lateral leaf spring can smoothly advance and retract from the open end of the outer cylinder 21.
  • the deformation of the curved vertical leaf spring 59 in the further bending direction is restricted by the guide 87 in contact with the curved outer surface 89.
  • plate spring 59 by the reaction force from the shaft body 61 is controlled.
  • a large moment can be applied to the shaft body 61.
  • the holder 43 is integrally formed of metal or resin. That is, in the holder 43, the holder main body 71 and the pair of outer lateral leaf springs are integrally formed of metal or resin.
  • integrally forming does not include a structure joined by a fixing tool (bolt, nut, grommet, eyelet, rivet), a caulking portion, an adhesive, or the like.
  • integral formation means, for example, that a tube material, which is a material, is cut, ground, electric discharge (wire cut electric discharge machining, etc.), laser processed to remove unnecessary portions, and a structure having a desired shape ( A production method for obtaining the holder 43) can be mentioned.
  • the holder 43 having a desired shape may be obtained by filling a mold with a resin material and molding the resin material.
  • two-color molding and insert molding are included.
  • integral is synonymous with “integral” in terms of “being in a relationship that cannot be divided into one”, but is not required to be made of a single material. Therefore, the integrally formed holder 43 does not have a fixing portion joined using another member.
  • FIG. 18 is an enlarged perspective view of a main part of the distal end portion of a modified manipulator 111.
  • the same reference numerals are given to the same members or parts as those in the present embodiment, and the duplicate description is omitted.
  • the holder 43 is divided into a first holder 113 and a second holder 115.
  • the first holder 113 is formed integrally with the first outer lateral leaf spring 51 that supports one end of the pin 45 and is one of a pair of outer lateral leaf springs.
  • the second holder 115 supports the other end of the pin 45 and is formed integrally with a second outer lateral leaf spring 53 that is the other of the pair of outer lateral leaf springs.
  • the manipulator 111 is separated from the holder 43 into the first holder 113 and the second holder 115 by eliminating the side plate 83 and the guide 87.
  • the manipulator 111 has fixing portions 117 that fix both ends of the pin 45 to the first holder 113 and the second holder 115 in the extending direction of the first outer lateral leaf spring 51 and the second outer lateral leaf spring 53, respectively. It is formed in a circular shape having a diameter D (see FIG. 18) larger than about half (for example, the length of W / 2) of the orthogonal width dimension W (see FIG. 3).
  • the fixing portion 117 is preferably larger than the outer diameter of the pin 45.
  • the fixing portion 117 has, for example, a head shape such as a bolt or a rivet formed at one end of the pin 45, or a nut shape that is fixed to the other end of the pin 45 by engagement, adhesion, brazing, or welding. be able to.
  • the holding plate 81 of each of the first holder 113 and the second holder is preferably formed with a recess having the fixing portion 117 fitted inward and having the same surface as the holding plate 81.
  • the manipulator 111 is provided with a spring distributing portion 119 at the tip of the outer cylinder 21.
  • a guide hole 121 is formed through the spring distributor 119 so as to be coaxial with the outer cylinder 21.
  • the lateral leaf springs 55 of the first flexible actuator 47 and the second flexible actuator 49 are inserted into the guide hole 121.
  • the guide hole 121 suppresses eccentricity of the inserted horizontal leaf spring 55 that is displaced in the radial direction in the outer cylinder 21.
  • the outer cylinder 21 is provided with a spring distributing portion 119 at the tip, so that a pair of spring position regulating gaps 123 are formed in the opening at the tip with the spring distributing portion 119 interposed therebetween.
  • the first outer lateral leaf spring 51 and the second outer lateral leaf spring 53 are inserted into each of the pair of spring position regulating gaps 123.
  • the spring position regulating gap 123 regulates the displacement of the first outer lateral leaf spring 51 and the second outer lateral leaf spring 53 toward the radially inner side of the outer cylinder 21.
  • FIG. 19 is a side sectional view of the manipulator shown in FIG.
  • the spring distributor 119 can be formed integrally with the outer cylinder 21. Further, the spring distributor 119 may be fixed by engaging, bonding, brazing, or welding a member formed separately from the outer cylinder 21. When the spring distributor 119 is provided separately from the outer cylinder 21, the fixing allowance can be secured by forming a flange 125 for fixing to the inner wall surface of the outer cylinder 21.
  • the spacer 127 may be arrange
  • the spacer 127 can reduce friction caused by relative rotation between the shaft bodies 61 when the first flexible actuator 47 and the second flexible actuator 49 are opened and closed, and can smoothly open and close the spacer 127.
  • the holder 43 is divided into a first holder 113 and a second holder 115.
  • the divided first holder 113 and second holder 115 sandwich the respective horizontal leaf springs 55 of the flexible actuator in parallel.
  • the respective curved vertical leaf springs 59 connected to the pair of horizontal leaf springs 55 are arranged.
  • Each curved vertical leaf spring 59 is pushed and pulled in different directions by each of the pair of horizontal leaf springs 55.
  • the operating portion 17 is displaced in the Y direction and the ⁇ Y direction by pushing and pulling the pair of horizontal leaf springs 55 in different directions.
  • one of the curved vertical leaf springs 59 on the side opposite to the tilting direction may be deformed outward and bulge out.
  • the curved vertical leaf spring 59 that bulges outward may have a curved outer surface 89 that contacts a guide 87 (see FIG. 2) of the holder 43.
  • the curved outer surface 89 is rubbed with the guide 87 to cause friction. When this friction is excessive, there is a possibility that the tilting accuracy of the actuating portion 17 is lowered or the curved vertical leaf spring 59 is broken.
  • the guide 87 that integrally connects both is eliminated.
  • the first holder 113 and the second holder 115 thus divided do not generate friction due to friction between the curved vertical leaf spring 59 and the guide 87.
  • operation part 17 can be improved, and destruction of the curved vertical leaf
  • manufacture becomes easy compared with the structure which has the integral holder 43 connected with the guide 87.
  • FIG. since the friction with the guide 87 is eliminated as compared with the integral holder 43, the tilting of the operating portion 17 can be made smooth.
  • the pin 45 passes through the tips (holding plates 81) of the divided first holder 113 and second holder 115. Both ends of the pin 45 are fixed to the holding plate 81 by fixing portions 117.
  • the fixing portion 117 is formed in a circular shape having a diameter D larger than about half (for example, half W / 2) of the width dimension W orthogonal to the extending direction of the outer lateral leaf spring. Accordingly, the first holder 113 and the second holder 115 are separated from the holding plate 81 in comparison with a structure in which both ends of the pin 45 are fixed by a fixing portion having a diameter smaller than half W / 2 of the width dimension W of the outer lateral leaf spring.
  • the pin 45 can be secured with great strength. Thereby, the fixing strength of the pin 45 can be enhanced in response to the stress acting on the fixing structure between the both ends of the pin 45 and the holding plate 81, which is increased by eliminating the guide 87.
  • the spring distributing portion 119 is provided at the tip of the outer cylinder 21, the respective horizontal leaf springs 55 of the first flexible actuator 47 and the second flexible actuator 49 are inserted into the guide holes 121. To do.
  • the first outer lateral leaf spring 51 and the second outer lateral leaf spring 53 can be inserted and guided through each of the pair of spring position regulating gaps 123. Thereby, the radial displacement of the outer cylinder 21 in the pair of lateral leaf springs 55, the first outer lateral leaf spring 51, and the second outer lateral leaf spring 53 can be suppressed. As a result, the operation accuracy of opening / closing and tilting of the operating unit 17 can be increased.
  • the wires can be eliminated, the number of parts can be reduced, the weight can be reduced, and the cost can be reduced.
  • an easy approach to the affected area is possible.
  • the manipulator may have three or more flexible operating bodies.
  • the present disclosure can abolish the wire as a power transmission means to the tip part that performs treatment on the affected part, and can be reduced in size, weight and cost with a small number of parts, and can be easily approached to the affected part. It is useful as a manipulator.
  • Manipulator 17 Actuator 21 Outer cylinder 43 Holder 45 Pin 47 First flexible actuator (flexible actuator) 49 Second Flexible Actuator (Flexible Actuator) 51 1st outer lateral leaf spring (outer lateral leaf spring) 53 2nd outer lateral leaf spring (outer lateral leaf spring) 55 Horizontal leaf spring 59 Curved longitudinal leaf spring 61 Shaft body 65 R part (bent part) 67 Rotation center 73 Cylindrical outer peripheral surface 75 Arc-shaped outer peripheral surface 77 Flexible portion 87 Guide 89 Curved outer surface 111 Manipulator 113 First holder 115 Second holder 117 Fixed portion

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Surgical Instruments (AREA)

Abstract

板ばねの押し引きにより板ばねを変形させて作動部を多自由度で動作させるマニピュレータは、横板ばねと、湾曲縦板ばねと、軸体と、作動部と、を含む可撓作動体(第1可撓作動体、第2可撓作動体)を、一対備える。一対の可撓作動体は、一方の第1可撓作動体に対して他方の第2可撓作動体が反対となるように重ねられ、それぞれの軸体を貫通したピンによって回転自在に連結される。ピンの両端を支持するホルダには、一対の可撓作動体のそれぞれの横板ばねを平行に挟むとともに、横板ばねと同方向に延在する一対の外側横板ばね(第1外側横板ばね、第2外側横板ばね)が一体的に形成される。

Description

マニピュレータ
 本開示は、マニピュレータに関する。
 近年、外科手術の一手法として、例えば腹腔鏡下手術に代表される低侵襲手術が注目されている。低侵襲手術では、体表に開けた5~10mm程度の狭小な切開孔を通じて内視鏡や鉗子等の手術器具が挿入され、体の内部で手術が行われる。従って、通常の外科手術(例えば開胸手術や開腹手術)に比べて、手術時の患者の体に対するダメージや手術後の痛みの狭小化が可能という利点がある。
 低侵襲手術に用いられる鉗子は、患者の体の切開孔によりその姿勢を拘束されるため、患部に対して限られた方向からのアプローチしかできない。このような条件下で把持、結紮等の作業を簡便に行うために、鉗子の先端部分を複数の方向に屈曲する屈曲鉗子(つまり、多自由度マニピュレータ)の開発要請がある。
 この種の多自由度マニピュレータの製品としては、例えばインテュイティブ・サージカル社の「da Vinci surgical system」が知られている(非特許文献1参照)。非特許文献1の多自由度マニピュレータでは、駆動装置からの動力伝達手段としてワイヤーが採用されている。ワイヤーを駆動装置で巻き上げることで、関節の屈曲や把持部の開閉などを実現している。
 また、多自由度マニピュレータに関する先行技術としては、例えば特許文献1などが挙げられる。特許文献1に開示される多自由度マニピュレータでは、駆動装置からの動力伝達手段としてリンク機構が採用されている。
日本国特許第4460890号公報
Gary S. Guthart and J. Kenneth Salisbury, Jr., "The Intuitive(TM) Telesurgery System: Overview and Application", Proceedings of the 2000 IEEE International Conference on Robotics & Automation San Francisco, CA April 2000, pp. 618-621, 2000
 しかしながら、非特許文献1において採用されている動力伝達の手法としてのワイヤー駆動には次のような問題がある。
 第一に、ワイヤーは「伸び」や「切れ」等のおそれがあるため、頻繁に交換しなければならない。例えば上述した「 da Vinci surgical system」では、約10回の手術につきワイヤー交換が必要となる。しかも、ワイヤーは複数のギアやプーリに巻回されているため、取り外しや装着に非常な手間を要する。これにより、ランニングコスト及びメンテナンス負荷の増大を招いている。
 第二に、ワイヤーは伸縮するため、関節や把持部の制御精度に限界がある。また、ワイヤーは一方向(引き方向)にしか動力を伝達できないという欠点もある。
 第三に、ワイヤーは滅菌・洗浄が難しいという問題がある。このため、従来の多自由度マニピュレータでは、術前、術後の滅菌・洗浄作業が非常に煩雑である。
 また、特許文献1において採用されている動力伝達の手法としてのリンク機構には次のような問題がある。
 第一に、複数のリンクからなる複数のリンク機構を備えた場合、部品点数が増え、小型化、軽量化が困難となり、製品コストが増大する。
 第二に、複数のリンク機構によって回転動作を行わせると、捕捉器具(例えば特許文献1の第1支持体16)の屈曲半径(言い換えると、首振り半径)が大きくなり、狭小な部位に対して行われる手術時の患部に近づくための滑らかな動きが困難となる。この不具合は、ギアやプーリを用いたワイヤー駆動においても同様に生じる。
 これに加え、把持部を構成する部材が多くなると、必然的に接合部が増える。接合部が増えることは、例えば脳神経外科手術などへの適用では、把持部の細径化の障害となる。接合部は、マニピュレータが脳神経外科手術への適用を可能とする所定の外径(例えば4mm程度以下)であると、接合強度が確保しにくくなる。特に異種金属との接合性が良好でないチタンやチタン合金を素材に使用した場合、接合部が離脱する可能性もある。そのため、細径化が可能で、脳神経外科手術に適用可能な細径サイズにおいても構成部材に分離が生じにくい構造を実現したい要請がある。この要請に対する技術的な対策は上述した非特許文献1や特許文献1などの従来技術では考慮されていない。
 本開示は、上述した従来の事情に鑑みて案出され、患部への処置を施す先端部への動力伝達手段としてワイヤーを廃止でき、少ない部品点数で小型化、軽量化、コスト低減が可能であり、更に、患部への容易なアプローチが可能となるマニピュレータを提供することを目的とする。
 本開示は、矩形状の横板ばねと、前記横板ばねの板面に垂直な板面を有して起立しかつ前記横板ばねの長手方向一端に基端が接続され、前記横板ばねの板幅方向の一方に突出するとともに、前記横板ばねの長手方向に沿って延在しかつ延在方向先端が前記突出の方向と反対方向に曲がる屈曲部となる湾曲縦板ばねと、前記屈曲部の先端に接続され、前記横板ばねの板面に垂直な回転中心で支持されて回転自在となる軸体と、前記軸体の外周から半径方向に突出して設けられた作動部と、を含む一対の可撓作動体と、前記一対の可撓作動体のそれぞれの前記軸体を貫通し、前記一対の可撓作動体を前記回転中心で回転自在に連結するピンの両端を支持するホルダと、を備え、前記ホルダは、前記一対の可撓作動体のそれぞれの前記横板ばねを平行に挟み、前記横板ばねと同方向に延在する一対の外側横板ばねが前記ホルダと一体的に形成される、マニピュレータを提供する。
 このマニピュレータによれば、横板ばねと、湾曲縦板ばねと、軸体とが、同一面上で直列的に配置されて、可撓作動体が構成される。湾曲縦板ばねは、横板ばねに対し、板面が起立する向きで接続される。可撓作動体は、横板ばねの長手方向他端が、長手方向に沿う方向で押圧されると、軸体が上述の同一平面内で移動不能に支持されている場合、湾曲縦板ばねが更に湾曲する方向に変形する。横板ばねと湾曲縦板ばねの板面とが直交するので、湾曲縦板ばねの変形方向が90度変わる。湾曲縦板ばねは、この変形によって蓄えられた内部応力の殆どが弾性復元力となる。この弾性復元力の一部は、軸体に対し、モーメントを生じさせる軸体外周の接線方向の分力として作用する。
 一対の可撓作動体は、湾曲縦板ばねの突出方向が逆向きとなるので、それぞれの横板ばねの長手方向他端(つまり、作動部側とは反対側)を同時に押したり引いたりすることにより、それぞれの作動部を接近離反させることができる。つまり、作動部が例えば腹腔鏡下手術における鉗子やピンセット等の捕捉器具であれば挟持が可能となる。また、このマニピュレータでは、一対の横板ばねの長手方向他端(つまり、作動部側とは反対側)を同時に逆方向に押したり引いたりすることにより、一対の作動部を軸体の回転中心を中心に同方向に回転させることができる。つまり、作動部が例えば腹腔鏡下手術における鉗子やピンセット等の捕捉器具であれば捕捉器具を閉じたまま正逆回転させることができる。
 マニピュレータは、一対の横板ばねの外側に、これらを挟んで一対の外側横板ばねが配置される。つまり、一対の横板ばねと、一対の外側横板ばねとが4層に配置される。これらの一対の横板ばねと一対の外側横板ばねとは、それぞれ独立して押し引きされる。一対の外側横板ばねは、長手方向一端(つまり、作動部側)がホルダから延出する。マニピュレータは、一対の外側横板ばねがそれぞれ逆方向に押し引きされると、一対の外側横板ばねがともに一方の外側横板ばね側に傾く方向又は他方の外側横板ばね側に傾く方向に変形(屈曲)する。ホルダは、この一対の外側横板ばねの屈曲によって変位(傾動)する。この際、一対の外側横板ばねの間に配置されている一対の横板ばねも受動的に同方向に屈曲する。
 そして、このマニピュレータでは、ホルダに、一対の外側横板ばねが一体的に形成される。即ち、ホルダは、ホルダ本体と外側横板ばねとが接合部を有さずに一体的に形成されている。ホルダは、固定具、加締め部、接着剤などによる接合部を有しない。従来、ホルダ本体をステンレス鋼、外側横板ばねをチタンやチタン合金で製作した場合、溶接の困難性からホルダ本体と外側横板ばねとはピン等により接続して一体化される(別々の部材が一つにまとめられる)。ホルダは、ホルダ本体に例えばピン等の固定具により一対の外側横板ばねのそれぞれを固定して一体化した場合、少なくとも5つの部品(一つのホルダ本体、二つの外側横板ばね、二つの固定具)が必要となる。これに対し、一体的に形成したホルダでは、一つの部品で済む。一体的に形成したホルダは、固定具等を用いた接合構造で生じる摩耗、ガタ、精度低下が生じない。また、血液等の体液が接合構造に侵入しなくなり、かつ洗浄も容易となり、十分に乾燥することで次回以降の手術等への使用も安心して行える。更に、複数の別部品を一体化した場合の個々の部品の小型化が必要なくなる。このため、同一サイズのマニピュレータを比較すれば、一体的に形成したホルダは、複数の小部品が無くなるので、強度低下のリスクや接合外れのリスクを回避できる。長期使用も可能となる。その結果、ホルダを一体的に形成したマニピュレータは、特に小型化が要求される脳神経外科手術等に適用される細径(外径4mm程度以下)の場合に、大きなメリットが生じる。
 また、本開示は、一対の前記外側横板ばねは、前記ホルダが有する円筒外周面から母線に沿う方向で延出して前記円筒外周面と同一曲率半径の弧状外周面を有する、マニピュレータを提供する。
 このマニピュレータによれば、ホルダ本体が円筒外周面を有し、この円筒外周面から母線に沿う方向で一対の外側横板ばねを延出させている。円筒外周面とそれぞれの外側横板ばねの弧状外周面とは、同一曲率半径となる。即ち、ホルダ本体と一対の外側横板ばねとは、接合部を設けずに、同一の金属管材から加工することが可能となる。ホルダは、内外径が円形状の素材(金属管材)を用い、その一部分を除去し、他の部分を残すことにより、異なる剛性(ばね性)を所望の部位に発現させることができる。脳神経外科手術に適用するマニピュレータでは、外筒(外径4mm程度以下)の内側に挿入されるホルダの外径が3mm程度以下となる。このような細径サイズのチタンやチタン合金からなるホルダは、例えばワイヤーカット放電加工により金属管材を切断加工して製作できる。
 また、本開示は、前記外側横板ばねの延在方向中央部には、前記外側横板ばねの長手方向両端よりも薄厚かつ幅狭の可撓部が形成される、マニピュレータを提供する。
 このマニピュレータによれば、それぞれの外側横板ばねには、延在方向中央部に、長手方向両端よりも薄厚かつ幅狭となる部位(即ち、可撓部)が形成される。この可撓部は、長手方向両端よりも断面積が小さくなる。このため、外側横板ばねは、長手方向両端に作用する応力が、この延在方向中央部の可撓部に集中して撓み(弾性変形)が生じる。このように、ホルダは、ホルダ本体と一体的に形成した外側横板ばねの肉厚及び板幅をコントロールすることにより、同一素材からなる単一部品でありながら、所望の位置のみにばね性を発現させることができる。
 また、本開示は、一対の前記外側横板ばねは、延在方向の一部分が外筒の内壁面に接して前記外筒の内部に配置される、マニピュレータを提供する。
 このマニピュレータによれば、一対の外側横板ばねは、一方の外側横板ばね側に傾く方向又は他方の外側横板ばね側に傾く方向に変形(屈曲)する。一対の外側横板ばねは、外筒の内壁面に接しているので、外筒の内部では屈曲が規制される。一対の外側横板ばねは、殆どが外筒から突出した部分で屈曲する。このため、一対の外側横板ばねは、外筒の開口端を、屈曲の開始端と見なすことができる。つまり、外筒の開口部は、屈曲する側の外側横板ばねを支持する支点となる。このように、マニピュレータでは、外側横板ばねの一部分を外筒の内壁面にさせ、外筒の開口端を支点とする。これにより、外側横板ばねは、曲げ半径の無用な拡大を抑制できる。なお、この支点は、外側横板ばねが外筒の開口端から進退することにより、外側横板ばね上を移動する。
 また、本開示は、前記外側横板ばね及び前記横板ばねは、延在方向に凹凸が隣接しない平滑面を延在方向中央部に有する、マニピュレータを提供する。
 このマニピュレータによれば、血液等の体液が、外側横板ばねや横板ばねに付着しにくくなる。また、付着した血液等の体液を、洗浄により外側横板ばねや横板ばねから除去し易くできる。また、特に外側横板ばねは、外筒の開口端からの進退が円滑となる。
 また、本開示は、前記ホルダには、一対の前記可撓作動体のそれぞれの前記湾曲縦板ばねの湾曲外面に接する一対のガイドが設けられる、マニピュレータを提供する。
 このマニピュレータによれば、湾曲縦板ばねの更に湾曲する方向の変形が、湾曲外面に接するガイドによって規制される。これにより、軸体からの反力による湾曲縦板ばねの湾曲方向の変形が規制される。その結果、軸体へ大きなモーメントを作用させることが可能となる。
 また、本開示は、前記ホルダが、金属及び樹脂の少なくとも一方により一体的に形成されている、マニピュレータを提供する。
 このマニピュレータによれば、ホルダが金属または樹脂により一体的に形成される。即ち、ホルダは、ホルダ本体と、一対の外側横板ばねとが金属または樹脂により一体的に形成される。本明細書において、一体的に形成とは、固定具(ボルトやナット、グロメットや鳩目、リベット)、加締め部、接着剤などにより接合した構造体を含まない。ホルダにおいて、一体的に形成とは、例えば素材である管材を切削加工、研削加工、放電加工(ワイヤーカット放電加工など)、レーザ加工することにより不要部分を除去し、所望形状の構造体(ホルダ)を得る製作法を挙げることができる。また、一体的に形成は、例えば樹脂材を金型に充填して成形し、所望の形状のホルダを得てもよい。この場合、二色成形やインサート成形が含まれる。このため、「一体的」は、「一つになって分けられない関係にある」点では「一体」と同義であるが、単一材料からなることは要件としていない。従って、一体的に形成したホルダは、別部材を使用して接合した固定部を有しない。
 また、本開示は、前記ホルダは、前記ピンの一端を支持して前記一対の外側横板ばねの一方と一体的に形成される第1ホルダと、前記ピンの他端を支持して前記一対の外側横板ばねの他方と一体的に形成される第2ホルダとに分割される、マニピュレータを提供する。
 このマニピュレータによれば、分割された第1ホルダと第2ホルダとは、双方を一体的に連結する部分(即ち、ガイド)がなくなる。分割された第1ホルダと第2ホルダとでは、湾曲縦板ばねとガイドとが擦れ合うことによる摩擦を生じなくすることができる。これにより、分割された第1ホルダと第2ホルダによれば、作動部の傾動精度を向上させ、摩擦による湾曲縦板ばねの破壊を防止できる。また、分割された第1ホルダと第2ホルダによれば、ガイドにより連結された一体のホルダに比べ、製造が容易となる。更に、一体のホルダに比べ、ガイドとの摩擦がなくなるので、作動部の傾動を滑らかにすることができる。
 また、本開示は、前記ピンの両端を前記第1ホルダ及び前記第2ホルダのそれぞれに固定する固定部は、前記外側横板ばねの延在方向に直交する幅寸法の約半分よりも大きい直径の円形状で形成される、マニピュレータを提供する。
 このマニピュレータによれば、固定部が、外側横板ばねの幅寸法の半分よりも大きい直径の円形状で形成される。従って、第1ホルダと第2ホルダは、外側横板ばねの幅寸法の約半分または半分よりも小さい直径の固定部でピンの両端が固定される構造に比べ、保持板からのピンの抜けを大きな強度で規制できる。これにより、ガイドが廃止されることで増加するピンの両端と保持板との固定部に作用する応力に対応させて、ピンの固定強度を増強することができる。
 本開示によれば、ワイヤーを廃止でき、少ない部品点数で小型化、軽量化、コスト低減が可能であり、しかも、患部への容易なアプローチが可能となる。
本実施の形態のマニピュレータの外観斜視図 図1に示したマニピュレータの先端部の要部拡大斜視図 図2に示した先端部の一部分を切り欠いた平面図 図2に示した先端部の一部分を切り欠いた側面図 図2に示した先端部を管軸を中心に時計回りに90度回転した斜視図 図5に示した先端部の外筒を省略した斜視図 図6に示した先端部のホルダを省略した斜視図 図7に示した一方の可撓作動体の斜視図 図8に示したピンを省略した第1可撓作動体の平面図 図5に示したホルダの斜視図 作動部の変位方向の説明図 一対の横板ばねによる作動部の変位方向を表す動作説明図 一対の外側横板ばねによる作動部の変位方向を表す動作説明図 作動部が開いたマニピュレータの要部拡大斜視図 作動部が-Y方向に回転したマニピュレータの要部拡大斜視図 作動部がX方向に変位したマニピュレータの要部拡大斜視図 作動部が開いてX方向に変位したマニピュレータの要部拡大斜視図 変形例のマニピュレータの先端部の要部拡大斜視図 図18に示したマニピュレータの側断面図
 以下、適宜図面を参照しながら、本開示に係るマニピュレータを具体的に開示した実施の形態(以下、本実施の形態という)を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。なお、以下の本実施の形態において、本開示に係るマニピュレータは、例えば低侵襲手術手技における腹腔鏡下手術或いは脳神経外科手術に用いるマニピュレータを例示して説明する。
 図1は、本実施の形態のマニピュレータ11の外観斜視図である。
 本実施の形態のマニピュレータ11は、マニピュレータ駆動ユニット13に取り付けられる。マニピュレータ駆動ユニット13は、リンクユニット(図示略)に固定される。マニピュレータ11は、リンクユニットに固定されるトロッカー(図示略)に、先端側が挿入される。マニピュレータ11は、トロッカーとともに、リンク駆動ユニット(図示略)により駆動されるリンクユニットによって、1つの回転中心を中心に、多自由度で移動する。
 マニピュレータ11は、マニピュレータ駆動ユニット13に設けられる回転駆動装置15によって、トロッカーの内側で回転する。また、マニピュレータ11の先端側に設けられた作動部17は、マニピュレータ駆動ユニット13に設けられたスライド駆動装置19によって多自由度で動作する。少なくとも1つの作動部17は、エンドエフェクタを構成する。エンドエフェクタとは、手術器具の実際の作業部分を意味し、例えばクランプ、捕捉器具、はさみ、ホッチキス、持針器を含む。一対の作動部17は、例えばクランプ、捕捉器具、はさみ、ホッチキスなどのエンドエフェクタとして用いることができる。1つの作動部17は、例えば持針器などのエンドエフェクタとして用いることができる。本実施形態において、エンドエフェクタは、1つの作動部17によって構成可能な捕捉器具としても使用可能ではあるが、より具体的に説明するために、一対の作動部17によって構成される捕捉器具を例示して説明する。
 例えば標準の腹腔鏡下手術において、マニピュレータ11は、腹部の小さい(およそ1/2インチ)切り口に通した上述のトロッカーを介して挿入が行われる。外科医は、マニピュレータ11を介して内部の手術部位に配置したエンドエフェクタを腹部の外側から操作する。外科医は腹腔鏡から内視鏡(図示略)によって撮像された手術部位の画像を表示するモニタ(図示略)で、処置を観察する。同様の内視鏡手技は、例えば、関節鏡、腹膜後腔鏡、骨盤鏡(pelviscopy)、腎盂鏡、膀胱鏡、脳槽鏡(cisternoscopy)、洞房鏡(sinoscopy)、子宮鏡、及び尿道鏡などにおいて採用される。
 マニピュレータ11は、外筒21を有する。外筒21は、例えばステンレス鋼管により構成され、外径6mmで形成される。脳神経外科手術に適用のマニピュレータ11は、外筒21が、より細径(外径4mm程度以下)で形成される。上述した非特許文献1の「da Vinci surgical system」システムにおける外径8.5mmの外筒21よりも細径で形成されている。マニピュレータ11は、作動部17の先端からマニピュレータ駆動ユニット13までの距離が125~300mmで形成される。なお、外筒21の外周は、更にシースによって覆われてもよい。
 外筒21の挿入方向基端側(つまり、作動部側とは反対側)には、エンドキャップ23が固定される。マニピュレータ11は、マニピュレータ駆動ユニット13に設けられた回転駆動装置15によりエンドキャップ23が回転することで、図2のe方向に一体回転する。エンドキャップ23の挿入方向前側(つまり、作動部側)には、ストッパ25が固定される。ストッパ25は、マニピュレータ駆動ユニット13に係合してマニピュレータ11の長手方向の移動を規制する。エンドキャップ23とストッパ25との間には、基端側(つまり、作動部側とは反対側)より第1外側スライダ27、第1スライダ29、第2スライダ31、第2外側スライダ33の4つのスライダが外筒21の長手方向にそれぞれ移動自在に設けられている。これら4つのスライダ(つまり、第1外側スライダ27、第1スライダ29、第2スライダ31、第2外側スライダ33)は、外筒21に挿入されて先端(つまり、作動部側)に向かって長尺となる第1外側スライダシャフト35、第1スライダシャフト37、第2スライダシャフト39、第2外側スライダシャフト41のそれぞれ(図4参照)に連結される。
 第1外側スライダシャフト35、第1スライダシャフト37、第2スライダシャフト39、第2外側スライダシャフト41のそれぞれは、スライド駆動装置19のボールねじが移動することで、第1外側スライダ27、第1スライダ29、第2スライダ31、第2外側スライダ33の移動によりそれぞれが独立して長手方向に移動(つまり、押し引き)される。外筒21の先端(つまり、作動部側)に設けられたエンドエフェクタは、これら4つのシャフトによって多自由度で動作する。
 図2は、図1に示したマニピュレータ11の先端部の要部拡大斜視図である。
 図3は、図2に示した先端部の一部分を切り欠いた平面図である。
 図4は、図2に示した先端部の一部分を切り欠いた側面図である。
 マニピュレータ11は、先端部が、一対の可撓作動体と、一対の外側横板ばねを一体的に形成したホルダ43と、ピン45と、によって構成される。本実施形態において、一対の可撓作動体は、第1可撓作動体47と、第2可撓作動体49とを有する。また、一対の外側横板ばねは、図4に示す第1外側横板ばね51と、第2外側横板ばね53とを有する。第1外側横板ばね51、第1可撓作動体47、第2可撓作動体49、及び第2外側横板ばね53は、外筒21との長手方向に沿って長尺となるように形成され、長手方向一端が外筒21の内部から延出する。なお、本明細書中、一端側の方向とは、マニピュレータ11の先端側(つまり、作動部17の側)の方向である。第1外側横板ばね51、第1可撓作動体47、第2可撓作動体49、及び第2外側横板ばね53は、長手方向他端から長手方向中間までが外筒21に収容される。
 図4に示すように、外筒21の内部において、第1外側横板ばね51は、第1外側スライダシャフト35に接続される。第1可撓作動体47は、第1スライダシャフト37に接続される。第2可撓作動体49は、第2スライダシャフト39に接続される。第2外側横板ばね53は、第2外側スライダシャフト41に接続される。
 図5は、図2に示した先端部を管軸を中心に時計回りに90度回転した斜視図である。
 図6は、図5に示した先端部の外筒21を省略した斜視図である。
 図5に示すように、一対の外側横板ばねである第1外側横板ばね51と第2外側横板ばね53は、延在方向の一部分が外筒21の内壁面に接して外筒21の内部に配置される。ホルダ43は、第1外側横板ばね51と第2外側横板ばね53により外筒21に支持される。図6に示すように、ホルダ43は、ピン45の両端を支持する。ピン45は、ホルダ43に軸方向の移動が規制されて支持される。このピン45は、第1可撓作動体47及び第2可撓作動体49を貫通する。
 図7は、図6に示した先端部のホルダ43を省略した斜視図である。
 図8は、図7に示した一方の可撓作動体の斜視図である。
 マニピュレータ11は、板ばね(例えば後述する横板ばね55、第1外側横板ばね51、第2外側横板ばね53又はこれらの組み合わせ)の押し引きに基づいて、第1可撓作動体47の一部及び第2可撓作動体49の一部をそれぞれ変形させることで、第1可撓作動体47及び第2可撓作動体49のそれぞれの作動部17を多自由度で動作させる構成を有する。本実施形態において、エンドエフェクタは捕捉器具として説明するので可撓作動体として一対の第1可撓作動体47、第2可撓作動体49が用いられる。
 一対の第1可撓作動体47、第2可撓作動体49は、作動部17と反対側の横板ばね55の端部に拡幅部57が形成される。拡幅部57は、板幅方向両側が外筒21の内面に接する。これにより、第1可撓作動体47、第2可撓作動体49は、外筒内おける横板ばね55の板幅方向の移動が規制されている。
 第1可撓作動体47、第2可撓作動体49は、同一の物体が上下反転させて用いられる。従って、以下では、第1可撓作動体47を可撓作動体の代表例として説明する。
 図9は、図8に示したピン45を省略した第1可撓作動体47の平面図である。
 図9に示すように、第1可撓作動体47は、横板ばね55と、湾曲縦板ばね59と、軸体61と、作動部17とが一体で形成される。第1可撓作動体47の材質としては、例えば生体適合性、広い弾性域、耐腐食性に優れるNi-Ti(ニッケルチタン)が用いられる。横板ばね55は、外筒21の長手方向に沿って長い矩形状に形成される。横板ばね55は、板ばね形状となっており、このような形状とすることで、変形の単一方向性が増加し、またねじれが抑制され、より高い位置決め精度でマニピュレータ11を動作させることが可能である。つまり、横板ばね55の形状により第1可撓作動体47の変形方向を制御し、エンドエフェクタの位置決めが可能である。横板ばね55は、例えば板厚を0.4mmで形成できる。なお、横板ばね55は、脳神経外科手術に適用の場合、板厚を0.25mmで形成することができる。
 湾曲縦板ばね59は、横板ばね55の板面に垂直な板面を有して起立し、横板ばね55の長手方向一端に湾曲縦板ばね59の基端が接続される。湾曲縦板ばね59は、横板ばね55の板幅方向の一方(例えば図9の紙面左上側に向かう方向)に突出するとともに、横板ばね55の長手方向に沿って延在する。湾曲縦板ばね59は、延在方向先端が、湾曲部63の突出方向と反対方向に曲がる屈曲部の一例としてのR部65となる。湾曲縦板ばね59は、軸体61との接続部分にR部65を設けることにより、第1可撓作動体47の変形動作時に効率的な動力伝達が可能となり、変形動作を行い易くしている。湾曲縦板ばね59は、例えば湾曲部63の板厚を0.3mmで形成できる。なお、湾曲縦板ばね59は、脳神経外科手術に適用の場合、板厚を0.2mmで形成することができる。
 第1可撓作動体47は、湾曲縦板ばね59のR部65の先端が軸体61の外周に接続される。軸体61は、横板ばね55の板面に垂直な回転中心67で支持されて回転自在となる。より具体的には、軸体61にはピン孔69が穿設される。このピン孔69に、回転中心67と同軸でピン45(図8参照)が挿入される。ピン45の両端は、ホルダ43によって支持される。ホルダ43は、一対の外側横板ばね(つまり、第1外側横板ばね51、第2外側横板ばね53)によって外筒21に支持される。
 軸体61は、回転中心67から湾曲部63が突出する側の半径位置を0度とした場合、図9の反時計回りに略90度の位置の外周にR部65が接続される。R部65は、この外周の0度の位置から90度の位置で軸体61を巻くようにして接続されている。R部65は、例えば外周の0度の位置から120度の範囲で軸体61に接続することがスペース効率上、好ましい。
 作動部17は、軸体61の外周に回転半径(つまり、半径方向)の外側に突出して設けられる。本実施形態において、作動部17は、基端がR部65の接続位置と略一致する軸体61の外周に接続される。捕捉器具を構成する作動部17は、回転中心67に沿う板幅を有し、突出先端に向かって板幅と板厚とが徐々に減少する略角錐形状で形成される。
 また、図7に示すように、マニピュレータ11は、一方の第1可撓作動体47の湾曲部63の突出方向に対して、他方の第2可撓作動体49の湾曲部63の突出方向が反対となるように重ねられる。第1可撓作動体47と第2可撓作動体49とは、一対の軸体61が回転中心67に沿う方向で重ねられることで、一対の軸体61と、作動部17とが回転中心67に沿う方向に同一高さとなって組み立てられる。
 第1可撓作動体47と第2可撓作動体49とは、双方の軸体61に貫通したピン45によって、同一の回転中心67で回転自在に連結される。一体に組み立てられた第1可撓作動体47及び第2可撓作動体49は、第1可撓作動体47と第2可撓作動体49のそれぞれの横板ばね55の長手方向他端から長手方向中間までが外筒21の内部に収容される。
 第1可撓作動体47と第2可撓作動体49とは、軸体同士が重ねられた状態で、それぞれの作動部17が、交差して配置される。従って、図9に示す第1可撓作動体47の作動部17は、図7に示す2つの作動部17が紙面下側を向く場合において図7に示す紙面右下側の作動部17となる。また、第2可撓作動体49の作動部17は、同様に図7に示す2つの作動部17が紙面下側を向く場合において図7に示す紙面左上側の作動部17となる。このため、一対の作動部17は、第1可撓作動体47及び第2可撓作動体49が同時に引っ張られることで、相互に接近する(つまり、把持する)方向に回転される。即ち、第1可撓作動体47及び第2可撓作動体49は、直線方向の力を、湾曲縦板ばね59によりピン45を中心としたモーメントに変換する。このため、第1可撓作動体47及び第2可撓作動体49は、押す場合に比べ、湾曲縦板ばね59に生じる座屈を回避して、大きな把持力を得ることができる。
 また、第1可撓作動体47は、軸体61の回転中心67が、横板ばね55の板幅方向の中央を通る軸線の延長線上に配置される。つまり、第1可撓作動体47は、ほぼ直線状に配置された横板ばね55、軸体61及び作動部17から、湾曲縦板ばね59のみが片側から膨出した形状となる。
 図10は、図5に示したホルダ43の斜視図である。
 マニピュレータ11は、重ねられた一対の軸体61を貫通したピン45の両端を支持するホルダ43を備える。ホルダ43には、一対の可撓作動体(第1可撓作動体47及び第2可撓作動体49)のそれぞれの横板ばね55を平行に挟むとともに、横板ばね55と同方向に延在する一対の外側横板ばね(第1外側横板ばね51及び第2外側横板ばね53)が一体的に形成される。
 ホルダ43は、金属及び樹脂の少なくとも一方により一体的に形成されている。本実施形態においてホルダ43には、第1可撓作動体47と同様に、例えば生体適合性、広い弾性域、耐腐食性に優れるNi-Ti(ニッケルチタン)が用いられる。ホルダ43は、ニッケルチタンの管材を素材にワイヤーカット放電加工することにより製作できる。マニピュレータ11は、脳神経外科手術に適用の場合、このホルダ43の素材には、外径3mm、内径1.4mmの管材が用いられる。
 一対の外側横板ばねは、この管材からワイヤーカット放電加工により形成される。このことから、一対の外側横板ばね(第1外側横板ばね51、第2外側横板ばね53)は、ホルダ43が有するホルダ本体71の円筒外周面73から母線に沿う方向で延出して円筒外周面73と同一曲率半径の弧状外周面75を有する。
 第1外側横板ばね51、第2外側横板ばね53は、同一形状のものが上下反転して形成される。以下、第1外側横板ばね51を外側横板ばねの代表例として説明する。
 図4、図10に示すように、第1外側横板ばね51は、延在方向中央部に、外側横板ばねの長手方向両端よりも薄厚かつ幅狭の可撓部77が形成される。ホルダ43は、第1外側横板ばね51に可撓部77を形成することにより、この可撓部77に応力を集中させて第1外側横板ばね51を弾性変形可能としている。この可撓部77は、延在方向の長さが7mm程度、幅が1.4mm程度で形成される。
 第1外側横板ばね51は、弧状外周面75と反対側が、対向平坦面79となる。第1外側横板ばね51は、このような形状とすることで、変形の単一方向性が増加し、また、ねじれが抑制され、より高い位置決め精度でマニピュレータ11を動作させることが可能となる。つまり、第1外側横板ばね51の形状により第1可撓作動体47の変形方向を制御し、エンドエフェクタの位置決めが可能である。
 第1外側横板ばね51及び上述の横板ばね55は、延在方向に凹凸が隣接しない平滑面を延在方向中央部に有する。これにより、マニピュレータ11は、外筒21から露出する第1外側横板ばね51及び横板ばね55に、血液等の体液を付着し難くしている。また、平滑面を有する第1外側横板ばね51及び横板ばね55は、洗浄が良好に行える。
 ホルダ43は、離間する一対の平行な保持板81を有する。1つの保持板81は、長円を長軸で回転して得られる回転体を、長軸に沿う面で切った先端湾曲面の半筒状に形成される。離間する一対の保持板81は、両側がそれぞれ側板83によって接続される。これにより、ホルダ43は、正面視で角穴状の内部空間を有する。上述のピン45は、両端が一対の保持板81に穿設されるピン支持孔85に固定される。ホルダ43は、この内部空間に、軸体61や、湾曲縦板ばね59を収容する。
 また、ホルダ43には、一対の平行なガイド87が、それぞれの側板83から外筒21に向かって突出して形成される。一対のガイド87は、一対の第1可撓作動体47及び第2可撓作動体49における湾曲縦板ばね59のそれぞれの湾曲外面89(図9参照)に接する。ガイド87は、湾曲縦板ばね59の湾曲外面89に外側から接することで、湾曲縦板ばね59の外側へ膨出する変形動作を規制するので、R部65へ動力を効果的に伝達することができ、変形動作が行い易くなる。
 次に、マニピュレータ11のスライド駆動装置19及び回転駆動装置15を制御するコントロール部91について説明する。
 マニピュレータ11は、図1に示すコントロール部91によって動作が制御される。コントロール部91は、制御コンピュータ93と、モータドライバ95とを有する。コントロール部91は、スライド駆動装置19と、回転駆動装置15との動作を制御する。スライド駆動装置19は、ボールねじ97と、DCモータ99とを備える。スライド駆動装置19は、図1に示す外筒21の長手方向における4つの第1外側スライダ27、第1スライダ29、第2スライダ31及び第2外側スライダ33の位置をそれぞれ制御する。スライド駆動装置19は、コントロール部91からの指示に基づき動作する。
 回転駆動装置15は、ギヤユニット101と、DCモータ103とを備える。回転駆動装置15は、図1に示す外筒21の長手方向後端におけるエンドキャップ23の回転方向及び回転角度を制御する。回転駆動装置15は、コントロール部91からの指示に基づき動作する。
 次に、マニピュレータ11の動作を説明する。
 マニピュレータ11は、作動部17が外筒21に対して多自由度で動作する。即ち、一対の作動部17を接近離反(開閉等)させる方向(図2の矢印a方向)に移動できる。マニピュレータ11は、一対の作動部17を閉じたまま、軸体61の回転中心67を中心に正逆回転(図2の矢印b方向に回転)することができる。ホルダ43を外側横板ばねの屈曲の方向(図2の矢印c方向)に変位させることができる。ホルダ43を、外筒21の中心軸に沿う方向(図2矢印d方向)へ進退させることができる。なお、マニピュレータ11は、回転駆動装置15により、更にホルダ43及び外筒21をエンドキャップ23を介して一体回転(図2の矢印e方向)させることができる。
 図11は、作動部17の変位方向の説明図である。
 ここで、マニピュレータ11の先端部分における動作の説明を容易とするため動作の方向を定義する。なお、外筒21の先端面は、外筒21の中心軸に直交する面で、中心軸を中心とする円形状とする。このとき、外筒21の中心軸は、「Z軸」とする。ホルダ43が変位していない状態(図2に示す状態)のマニピュレータ11において、外筒21の先端面を含む面で、Z軸を通り、ピン45の回転中心67と同方向の軸を「X軸」とする。外筒21の先端面を含む面で、Z軸を通り、X軸に直交する軸を「Y軸」とする。回転中心67を回転することで開いた一対の作動部17の挟角は、「θ」とする。板ばねがX軸方向に撓み、ホルダ43が変位(傾動)したとき、ピン45の回転中心67とX軸とが成す角は、「φ」とする。このとき、ピン45の回転中心67とX軸とが交わる点は、屈曲中心Bとする。
 マニピュレータ11は、外筒21の先端面とピン45までの距離が屈曲可能範囲となってエンドエフェクタを傾動する。外筒21の先端面からピン45の回転中心67までの距離P(図2参照)は、例えば7.5mmに設定される。この距離Pは、上述した「da Vinci surgical system」における同等の距離9mmよりも短い。これにより、エンドエフェクタが傾動する際の屈曲半径を小さくできる。このことは、例えば腹腔鏡下手術等の狭小な部位(つまり、患部)への滑らかなアプローチの容易性に寄与する。なお、この距離Pは、脳神経外科手術に適用のマニピュレータ11では、4.85mmに設定される。
 図12は、一対の横板ばね55による作動部17の変位方向を表す動作説明図である。
 図13は、一対の外側横板ばねによる作動部17の変位方向を表す動作説明図である。
 図14は、作動部17が開いたマニピュレータ11の要部拡大斜視図である。
 図15は、作動部17が-Y方向に回転したマニピュレータ11の要部拡大斜視図である。
 マニピュレータ11は、図12に示すように、第1可撓作動体47の横板ばね55及び第2可撓作動体49の横板ばね55が同時に押される(つまり、作動部側に押される)と、一対の軸体61が逆方向に回転する。即ち、図14に示すように、一対の作動部17が開く。また、マニピュレータ11は、第1可撓作動体47の横板ばね55及び第2可撓作動体49の横板ばね55が同時に引っ張られる(つまり、作動部側とは反対側に引かれる)と、一対の軸体61が開き時とは逆方向に回転する。即ち、図2に示すように、一対の作動部17が閉じる。
 マニピュレータ11は、第1可撓作動体47の横板ばね55が引かれ、第2可撓作動体49の横板ばね55が押されると、図15に示すように、一対の作動部17が、閉じたまま回転中心67を中心に図2の時計回りに回転し、-Y軸側に傾動する。また、マニピュレータ11は、第1可撓作動体47の横板ばね55が押され、第2可撓作動体49の横板ばね55が引っ張られると、一対の作動部17が、閉じたまま回転中心67を中心に図2の反時計回りに回転し、Y軸側に傾動する。
 マニピュレータ11は、図13に示すように、第1外側横板ばね51及び第2外側横板ばね53が同時に押されると、一対の作動部17がZ方向に進出する。また、マニピュレータ11は、第1外側横板ばね51及び第2外側横板ばね53が同時に引っ張られると、一対の作動部17が-Z方向に後退する。なお、これらの進退動作時には、第1可撓作動体47及び第2可撓作動体49は、従動又は同時に押し引きされる。
 図16は、作動部17がX方向に変位したマニピュレータ11の要部拡大斜視図である。
 マニピュレータ11は、第1外側横板ばね51が押され、第2外側横板ばね53が引っ張られると、図16に示すように、一対の作動部17が、X軸側に傾動する。また、マニピュレータ11は、第1外側横板ばね51が引かれ、第2外側横板ばね53が押されると、一対の作動部17が、-X軸側に傾動する。
 図17は、作動部17が開いてX方向に変位したマニピュレータ11の要部拡大斜視である。
 マニピュレータ11は、第1外側横板ばね51及び第2外側横板ばね53の押し引き量を変更することで、屈曲中心B(図11参照)の移動が可能である。また、マニピュレータ11は、屈曲中心Bの移動と同時に、第1可撓作動体47及び第2可撓作動体49の押し引き量を変更することで、図17に示すように、一対の作動部17の開閉が可能である。
 マニピュレータ11は、目標の屈曲角φに対して、制御コンピュータ93でマニピュレータ11の第1外側スライダ27、第1スライダ29、第2スライダ31及び第2外側スライダ33の送り量の目標値を求め、モータドライバ95から制御信号を送信し、スライド駆動装置19において、DCモータ99によりボールねじ97を駆動することで、マニピュレータ11の先端(つまり、エンドエフェクタであってより具体的には一対の作動部17)を動作させる。これにより、マニピュレータ11は、図17に示すように、エンドエフェクタを目標の屈曲角φに屈曲しながら、一対の作動部17を開閉することができる。更に、マニピュレータ11は、第1外側横板ばね51及び第2外側横板ばね53の押し引き量を変更しながら、第1可撓作動体47及び第2可撓作動体49の押し引き量を変更することで、エンドエフェクタの先端を、Z軸を中心に360度の任意な方向に旋回動作させることができる。
 次に、上述したマニピュレータ11の構成の作用及び当該作用による効果を具体的に説明する。
 本実施形態のマニピュレータ11では、横板ばね55と、湾曲縦板ばね59と、軸体61とが、同一面上で直列的に配置されて、可撓作動体(つまり、第1可撓作動体47、第2可撓作動体49)が構成される。湾曲縦板ばね59は、横板ばね55に対し、板面が起立する向きで接続される。即ち、横板ばね55と湾曲縦板ばね59とは、板面が直交して接続される。軸体61は、横板ばね55の板面に垂直な回転中心67で回転自在に支持される。
 可撓作動体(つまり、第1可撓作動体47、第2可撓作動体49)は、横板ばね55の長手方向他端が、長手方向に沿う方向で押圧されると、軸体61が上述の同一平面内で移動不能に支持されている場合、湾曲縦板ばね59が更に湾曲する方向に変形する。この変形は、湾曲縦板ばね59の弾性限度内で起こる。このため、可撓作動体には、伸びや収縮(永久ひずみ)が生じない。横板ばね55と湾曲縦板ばね59の板面とが直交するので、湾曲縦板ばね59の変形方向が90度変わる。これにより、湾曲縦板ばね59は、上述の同一平面に沿う変形が可能となる。湾曲縦板ばね59は、この変形によって蓄えられた内部応力の殆どが弾性復元力となる。この弾性復元力の一部は、軸体61に対し、モーメントを生じさせる軸体外周の接線方向の分力として作用する。なお、ホルダ43に、一対のガイド87が設けられたマニピュレータ11では、湾曲縦板ばね59の変形が主にR部65で起こることになる。
 また、可撓作動体(つまり、第1可撓作動体47、第2可撓作動体49)は、横板ばね55の長手方向他端が、長手方向に沿う方向で引っ張られると、湾曲縦板ばね59が湾曲を解消する方向(直線状に近づく方向)に変形する。湾曲縦板ばね59は、この変形によって蓄えられた弾性復元力の一部が、軸体61に対し、上述とは逆方向のモーメントを生じさせる軸体外周の接線方向の分力として作用する。その結果、軸体61は、横板ばね55の押し引きによって、軸体61に設けられた作動部17を、上述の回転中心67を中心に逆方向で回転動作させることが可能となる。
 更に、可撓作動体(つまり、第1可撓作動体47、第2可撓作動体49)は、横板ばね55が、表裏の板面側に変位する方向(図11のX軸側、-X軸側)の変形を許容する。これにより、可撓作動体は、作動部17の同方向の傾動を妨げることがない。
 このように可撓作動体を用いたマニピュレータ11は、従来の常套手段であったワイヤーを廃止し、作動部17を多自由度で動作させることができる。
 可撓作動体(つまり、第1可撓作動体47、第2可撓作動体49)は、ワイヤーのように伸びたり切れたりするおそれがない。よって、耐久性を向上でき、マニピュレータ11の交換回数を極めて少なくすることができる。可撓作動体(つまり、第1可撓作動体47、第2可撓作動体49)は、ワイヤーのように伸びないことから、作動部17の回転精度や位置精度を高めることができる。更に、可撓作動体(つまり、第1可撓作動体47、第2可撓作動体49)は、単体の部材であるため、シンプルな機械構成が実現でき、滅菌や洗浄が極めて容易である。しかも、可撓作動体(つまり、第1可撓作動体47、第2可撓作動体49)は、ワイヤーのようにギアやプーリに巻回する必要がないので、マニピュレータ11と駆動手段との着脱を簡易化・容易化できる。
 また、可撓作動体(つまり、第1可撓作動体47、第2可撓作動体49)は、リンク機構のように、複数のリンク、受動関節を用いる必要がない。よって、部品点数を少なくし、小型化、軽量化が容易となる。それに伴って製品コストの低減も容易となる。また、軽量化によってエンドエフェクタの移動質量が小さくなり、慣性力の低減が可能となる。これにより、エンドエフェクタの位置決め制御が容易となるとともに、位置決め精度を高めることができる。また、ワイヤーやプーリ、複数のリンクや受動関節を用いないので、作動部17を軸体61と共に変位させる際の屈曲半径を小さくできる。
 マニピュレータ11は、一対の可撓作動体の湾曲縦板ばね59の突出方向が逆向きとなるので、それぞれの横板ばね55の長手方向他端を同時に押したり引いたりすることにより、それぞれの作動部17を接近離反させることができる。つまり、作動部17が捕捉器具であれば挟持が可能となる。作動部17がはさみであれば、切断が可能となる。マニピュレータ11は、一対の横板ばね55の長手方向他端を同時に逆方向に押したり引いたりすることにより、一対の作動部17を軸体61の回転中心67を中心に同方向に回転させることができる。つまり、作動部17が捕捉器具であれば捕捉器具を閉じたまま正逆回転させることができる。
 また、マニピュレータ11は、一対の湾曲縦板ばね59が逆方向に突出する。これに対し、一対の可撓作動体のそれぞれの横板ばね55は、長手方向及び板幅方向にずれることなく重なる。マニピュレータ11は、横板ばね55の軸線の延長線上に1本のピン45によってそれぞれの軸体61の回転中心67が共用的に配置されかつ固定される。これにより、マニピュレータ11は、一対の湾曲縦板ばね59の湾曲方向突出端同士の突出幅を小さく抑制しながら、湾曲形状の確保が可能となる。
 また、マニピュレータ11は、一対の横板ばね55が外筒21の中心軸を挟むようにして、一対の可撓作動体が重ねられる。マニピュレータ11は、更に、一対の横板ばね55の外側に、これらを挟んで一対の外側横板ばね(第1外側横板ばね51、第2外側横板ばね53)が配置される。つまり、外筒21には、一対の横板ばね55と、一対の外側横板ばねとが4層に配置される。これらそれぞれの板ばねは、独立して押し引きされる。一対の外側横板ばねは、長手方向一端がホルダ43に固定される。外筒21の先端面と、ホルダ43とは離間して配置される。従って、外筒21の先端面とホルダ43との間には、4層に重なる一対の横板ばね55と、それらを挟む一対の外側横板ばねとが露出する。
 マニピュレータ11は、一対の外側横板ばねが逆方向に押し引きされると、一対の外側横板ばねがともに一方の外側横板ばね側に傾く方向、及び一対の外側横板ばねが共に他方の外側横板ばね側に傾く方向に変形(屈曲)する。ホルダ43は、この一対の外側横板ばねの屈曲によって変位する(つまり、傾動する)。この際、一対の外側横板ばねの間に配置されている一対の横板ばね55も同方向の屈曲を許容する。
 このように、マニピュレータ11は、一対の可撓作動体における横板ばね55の長手方向他端を同時に押し引きすることにより、一対の作動部17を接近離反(開閉)させる方向a(図2参照)に移動できる(1自由度)。
 一対の可撓作動体における横板ばね55の長手方向他端を逆方向に押し引きすることにより、一対の作動部17を、軸体61の回転中心67を中心に正逆方向b(図2参照)に回転することができる(2自由度)。
 一対の外側横板ばねを逆方向に押し引きすることにより、ホルダ43(即ち、作動部17)を外側横板ばねの屈曲の方向c(図2参照)に変位させることができる(3自由度)。
 また、一対の可撓作動体、及び一対の外側横板ばねの全てのばねを長手方向に沿って同方向へ押し引きすることにより、一対の作動部17を、外筒21の中心軸に沿う方向d(図2参照)へ進退させることができる(4自由度)。
 更に、マニピュレータ11は、エンドキャップ23が回転することで、外筒21の管軸を中心としたe方向(図2参照)に一体回転する(5自由度)。
 即ち、マニピュレータ11は、ワイヤーやリンク機構を用いずに、弾性体の変形を応用し、機械的な動力変換を行うことで、作動部17を多自由度(具体的には5自由度)に動作可能としている。
 また、このマニピュレータ11では、湾曲縦板ばね59が更に湾曲する方向の変形が、湾曲外面89に接するガイド87によって規制される。これにより、軸体61からの反力による湾曲縦板ばね59の湾曲方向の変形が規制される。その結果、軸体61へ大きなモーメントを作用させることが可能となる。
 そして、このマニピュレータ11では、ホルダ43に、一対の外側横板ばねが一体的に形成される。即ち、ホルダ43は、ホルダ本体71と外側横板ばねとが接合部を有さずに一体的に形成されている。ホルダ43は、固定具、加締め部、接着剤などによる接合部を有しない。従来、ホルダ本体71をステンレス鋼、外側横板ばねをチタンやチタン合金で製作した場合、溶接の困難性からホルダ本体71と外側横板ばねとはピン45等により接続して一体化される(別々の部材が一つにまとめられる)。ホルダ43は、ホルダ本体71に例えばピン45等の固定具により一対の外側横板ばねのそれぞれを固定して一体化した場合、少なくとも5つの部品(一つのホルダ本体71、二つの外側横板ばね、二つの固定具)が必要となる。これに対し、一体的に形成したホルダ43では、一つの部品で済む。一体的に形成したホルダ43は、固定具等を用いた接合構造で生じる摩耗、ガタ、精度低下が生じない。また、血液等の体液が接合構造に侵入しなくなり、かつ洗浄も容易となり、十分に乾燥することで次回以降の手術等への使用も安心して行える。更に、複数の別部品を一体化した場合の個々の部品の小型化が必要なくなる。このため、同一サイズのマニピュレータ11を比較すれば、一体的に形成したホルダ43は、複数の小部品が無くなるので、強度低下のリスクや接合外れのリスクを回避できる。長期使用も可能となる。その結果、ホルダ43を一体的に形成したマニピュレータ11は、特に小型化が要求される脳神経外科手術等に適用される細径(外径4mm程度以下)の場合に、大きなメリットが生じる。
 また、マニピュレータ11では、ホルダ本体71が円筒外周面73を有し、この円筒外周面73から母線に沿う方向で一対の外側横板ばねを延出させている。円筒外周面73とそれぞれの外側横板ばねの弧状外周面75とは、同一曲率半径となる。即ち、ホルダ本体71と一対の外側横板ばねとは、接合部を設けずに、同一の金属管材から加工することが可能となる。ホルダ43は、内外径が円形状の素材(金属管材)を用い、その一部分を除去し、他の部分を残すことにより、異なる剛性(ばね性)を所望の部位に発現させることができる。脳神経外科手術に適用するマニピュレータ11では、外筒21(外径4mm程度以下)の内側に挿入されるホルダ43の外径が3mm程度以下となる。このような細径サイズのチタンやチタン合金からなるホルダ43は、例えばワイヤーカット放電加工により金属管材を切断加工して製作できる。
 また、マニピュレータ11では、それぞれの外側横板ばねには、延在方向中央部に、長手方向両端よりも薄厚かつ幅狭となる部位(即ち、可撓部77)が形成される。この可撓部77は、長手方向両端よりも断面積が小さくなる。このため、外側横板ばねは、長手方向両端に作用する応力が、この延在方向中央部の可撓部77に集中して撓み(弾性変形)が生じる。このように、ホルダ43は、ホルダ本体71と一体的に形成した外側横板ばねの肉厚及び板幅をコントロールすることにより、同一素材からなる単一部品でありながら、所望の位置のみにばね性を発現させることができる。
 また、一対の外側横板ばねは、延在方向の一部分が外筒21の内壁面に接して外筒21の内部に配置される。一対の外側横板ばねは、一方の外側横板ばね側に傾く方向又は他方の外側横板ばね側に傾く方向に変形(屈曲)する。一対の外側横板ばねは、外筒21の内壁面に接しているので、外筒21の内部では屈曲が規制される。一対の外側横板ばねは、殆どが外筒21から突出した部分で屈曲する。このため、一対の外側横板ばねは、外筒21の開口端を、屈曲の開始端と見なすことができる。つまり、外筒21の開口部は、屈曲する側の外側横板ばねを支持する支点となる。このように、マニピュレータ11では、外側横板ばねの一部分を外筒21の内壁面にさせ、外筒21の開口端を支点とする。これにより、外側横板ばねは、曲げ半径の無用な拡大を抑制できる。なお、この支点は、外側横板ばねが外筒21の開口端から進退することにより、外側横板ばね上を移動する。
 そして、外側横板ばね及び横板ばね55は、延在方向に凹凸が隣接しない平滑面を延在方向中央部に有する。これにより、マニピュレータ11は、血液等の体液が、外側横板ばねや横板ばね55に付着しにくくなる。また、付着した血液等の体液を、洗浄により外側横板ばねや横板ばね55から除去し易くできる。また、特に外側横板ばねは、外筒21の開口端からの進退が円滑となる。
 更に、マニピュレータ11では、湾曲縦板ばね59の更に湾曲する方向の変形が、湾曲外面89に接するガイド87によって規制される。これにより、軸体61からの反力による湾曲縦板ばね59の湾曲方向の変形が規制される。その結果、軸体61へ大きなモーメントを作用させることが可能となる。
 また、マニピュレータ11では、ホルダ43が金属または樹脂により一体的に形成される。即ち、ホルダ43は、ホルダ本体71と、一対の外側横板ばねとが金属または樹脂により一体的に形成される。本明細書において、一体的に形成とは、固定具(ボルトやナット、グロメットや鳩目、リベット)、加締め部、接着剤などにより接合した構造体を含まない。ホルダ43において、一体的に形成とは、例えば素材である管材を切削加工、研削加工、放電加工(ワイヤーカット放電加工など)、レーザ加工することにより不要部分を除去し、所望形状の構造体(ホルダ43)を得る製作法を挙げることができる。また、一体的に形成は、例えば樹脂材を金型に充填して成形し、所望の形状のホルダ43を得てもよい。この場合、二色成形やインサート成形が含まれる。このため、「一体的」は、「一つになって分けられない関係にある」点では「一体」と同義であるが、単一材料からなることは要件としていない。従って、一体的に形成したホルダ43は、別部材を使用して接合した固定部を有しない。
 次に、上記した本実施の形態のマニピュレータ11の変形例を説明する。
 図18は、変形例のマニピュレータ111の先端部の要部拡大斜視図である。なお、変形例のマニピュレータ111において本実施の形態と同等の部材若しくは部位には同一の符号を付し重複する説明は省略する。
 マニピュレータ111は、上記のホルダ43が、第1ホルダ113と第2ホルダ115とに分割される。第1ホルダ113は、ピン45の一端を支持して一対の外側横板ばねの一方である第1外側横板ばね51と一体的に形成される。第2ホルダ115は、ピン45の他端を支持して一対の外側横板ばねの他方である第2外側横板ばね53と一体的に形成される。
 マニピュレータ111は、上記のホルダ43から、側板83及びガイド87がなくなることで、第1ホルダ113と第2ホルダ115とに分離されている。
 また、マニピュレータ111は、ピン45の両端を第1ホルダ113及び第2ホルダ115のそれぞれに固定する固定部117が、第1外側横板ばね51及び第2外側横板ばね53の延在方向に直交する幅寸法W(図3参照)の約半分(例えばW/2の長さ)よりも大きい直径D(図18参照)の円形状で形成されている。
 この固定部117は、ピン45の外径より大きいことが好ましい。固定部117は、例えばピン45の一端に形成されたボルトやリベットなどの頭部形状や、ピン45の他端に係合、接着、ろう付け、或いは溶接により固定されるナット形状のものとすることができる。第1ホルダ113及び第2ホルダのそれぞれの保持板81には、固定部117を内方に嵌めて表面を保持板81と同一表面とする凹部が形成されることが好ましい。
 また、マニピュレータ111は、外筒21の先端にばね分配部119が設けられている。ばね分配部119には、外筒21と同軸でガイド孔121が貫通して形成される。ガイド孔121には、第1可撓作動体47及び第2可撓作動体49のそれぞれの横板ばね55が挿通される。ガイド孔121は、挿通された横板ばね55の外筒21における半径方向に変位する偏芯を抑制する。
 また、外筒21は、先端にばね分配部119が設けられることにより、先端の開口に、ばね分配部119を挟んで一対のばね位置規制間隙123が形成される。一対のばね位置規制間隙123のそれぞれには、第1外側横板ばね51と第2外側横板ばね53とが挿通される。ばね位置規制間隙123は、外筒21の半径方向内側への第1外側横板ばね51と第2外側横板ばね53の変位を規制する。
 図19は、図18に示したマニピュレータの側断面図である。ばね分配部119は、外筒21と一体で形成することができる。また、ばね分配部119は、外筒21と別体で形成したものを係合、接着、ろう付け、或いは溶接により固定してもよい。ばね分配部119は、外筒21と別体で設ける場合には、外筒21の内壁面に固定するための鍔部125を形成することにより、固定代を確保することができる。
 なお、第1可撓作動体47、第2可撓作動体49は、ピン45の貫通するそれぞれの軸体61の間に、スペーサ127が配置されていてもよい。スペーサ127は、第1可撓作動体47と第2可撓作動体49が開閉する際の軸体61同士の相対回転による摩擦を軽減し、開閉動作を滑らかにすることができる。
 次に、変形例のマニピュレータ111の作用を説明する。
 この変形例のマニピュレータ111では、ホルダ43が、第1ホルダ113と第2ホルダ115とに分割される。分割された第1ホルダ113と第2ホルダ115とは、可撓作動体のそれぞれの横板ばね55を平行に挟む。第1ホルダ113と第2ホルダ115との間には、一対の横板ばね55に接続するそれぞれの湾曲縦板ばね59が配置される。それぞれの湾曲縦板ばね59は、一対の横板ばね55のそれぞれにより、異なる向きに押し引きされる。マニピュレータ111は、図12に示したように、一対の横板ばね55の異なる向きの押し引きにより作動部17がY方向、-Y方向に変位する。この際、湾曲縦板ばね59は、傾動方向と反対側の一方が、外側に変形して膨出する場合がある。外側に膨出した湾曲縦板ばね59は、湾曲外面89が、ホルダ43のガイド87(図2参照)と接触することがある。湾曲外面89は、ガイド87と擦れ合うことにより摩擦が生じる。この摩擦が過大な場合、作動部17の傾動精度を低下させたり、湾曲縦板ばね59を破壊したりする可能性がある。
 これに対し、ホルダ43を第1ホルダと第2ホルダとに分割したマニピュレータ111は、双方を一体的に連結していたガイド87がなくなる。このため、分割された第1ホルダ113と第2ホルダ115とでは、湾曲縦板ばね59とガイド87とが擦れ合うことによる摩擦が生じない。これにより、マニピュレータ111によれば、作動部17の傾動精度を向上させ、摩擦による湾曲縦板ばね59の破壊を防止できる。また、マニピュレータ111によれば、ガイド87により連結された一体のホルダ43を有する構造に比べ、製造が容易となる。更に、一体のホルダ43に比べ、ガイド87との摩擦がなくなるので、作動部17の傾動を滑らかにすることができる。
 また、このマニピュレータ111では、分割された第1ホルダ113と第2ホルダ115の先端(保持板81)同士をピン45が貫通する。ピン45の両端は、それぞれが固定部117により保持板81に固定される。この固定部117は、外側横板ばねの延在方向に直交する幅寸法Wの約半分(例えば、半分W/2)よりも大きい直径Dの円形状で形成される。従って、第1ホルダ113と第2ホルダ115は、外側横板ばねの幅寸法Wの半分W/2よりも小さい直径の固定部でピン45の両端が固定される構造に比べ、保持板81からのピン45の抜けを大きな強度で固定できる。これにより、ガイド87が廃止されることで増加するピン45の両端と保持板81との固定構造に作用する応力に対応させて、ピン45の固定強度を増強することができる。
 また、このマニピュレータ111では、外筒21の先端にばね分配部119を設けたので、第1可撓作動体47及び第2可撓作動体49のそれぞれの横板ばね55をガイド孔121に挿通する。これと同時に、第1外側横板ばね51と第2外側横板ばね53とを一対のばね位置規制間隙123のそれぞれに挿通してガイドすることができる。これにより、一対の横板ばね55や、第1外側横板ばね51及び第2外側横板ばね53における外筒21の半径方向への変位を抑制することができる。その結果、作動部17の開閉や傾動の動作精度を高めることができる。
 従って、本実施の形態に係るマニピュレータ11によれば、ワイヤーを廃止でき、少ない部品点数で小型化、軽量化、コスト低減が可能であり、しかも、患部への容易なアプローチが可能となる。
 以上、図面を参照しながら実施の形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例又は組み合わせ例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 尚、上述した実施の形態では、マニピュレータが可撓作動体を3つ以上有してもよい。
 なお、本出願は、2017年5月8日出願の日本特許出願(特願2017-092574)に基づくものであり、その内容は本出願の中に参照として援用される。
 本開示は、患部への処置を施す先端部への動力伝達手段としてワイヤーを廃止でき、少ない部品点数で小型化、軽量化、コスト低減が可能であり、更に、患部への容易なアプローチが可能となるマニピュレータとして有用である。
11 マニピュレータ
17 作動部
21 外筒
43 ホルダ
45 ピン
47 第1可撓作動体(可撓作動体)
49 第2可撓作動体(可撓作動体)
51 第1外側横板ばね(外側横板ばね)
53 第2外側横板ばね(外側横板ばね)
55 横板ばね
59 湾曲縦板ばね
61 軸体
65 R部(屈曲部)
67 回転中心
73 円筒外周面
75 弧状外周面
77 可撓部
87 ガイド
89 湾曲外面
111 マニピュレータ
113 第1ホルダ
115 第2ホルダ
117 固定部

Claims (9)

  1.  矩形状の横板ばねと、
     前記横板ばねの板面に垂直な板面を有して起立しかつ前記横板ばねの長手方向一端に基端が接続され、前記横板ばねの板幅方向の一方に突出するとともに、前記横板ばねの長手方向に沿って延在しかつ延在方向先端が前記突出の方向と反対方向に曲がる屈曲部となる湾曲縦板ばねと、
     前記屈曲部の先端に接続され、前記横板ばねの板面に垂直な回転中心で支持されて回転自在となる軸体と、
     前記軸体の外周から半径方向に突出して設けられた作動部と、を含む一対の可撓作動体と、
     前記一対の可撓作動体のそれぞれの前記軸体を貫通し、前記一対の可撓作動体を前記回転中心で回転自在に連結するピンの両端を支持するホルダと、を備え、
     前記ホルダは、前記一対の可撓作動体のそれぞれの前記横板ばねを平行に挟んで収容し、
     前記横板ばねと同方向に延在する一対の外側横板ばねが前記ホルダと一体的に形成される、
     マニピュレータ。
  2.  一対の前記外側横板ばねは、前記ホルダが有する円筒外周面から母線に沿う方向で延出して前記円筒外周面と同一曲率半径の弧状外周面を有する、
     請求項1に記載のマニピュレータ。
  3.  前記外側横板ばねの延在方向中央部には、前記外側横板ばねの長手方向両端よりも薄厚かつ幅狭の可撓部が形成される、
     請求項1又は2に記載のマニピュレータ。
  4.  一対の前記外側横板ばねは、延在方向の一部分が外筒の内壁面に接して前記外筒の内部に配置される、
     請求項1~3のうちいずれか一項に記載のマニピュレータ。
  5.  前記外側横板ばね及び前記横板ばねは、延在方向に凹凸が隣接しない平滑面を延在方向中央部に有する、
     請求項1~4のうちいずれか一項に記載のマニピュレータ。
  6.  前記ホルダには、一対の前記可撓作動体のそれぞれの前記湾曲縦板ばねの湾曲外面に接する一対のガイドが設けられる、
     請求項1~5のうちいずれか一項に記載のマニピュレータ。
  7.  前記ホルダと前記一対の外側横板ばねとが、金属及び樹脂のいずれか一方により一体的に形成されている、
     請求項1~6のうちいずれか一項に記載のマニピュレータ。
  8.  前記ホルダは、前記ピンの一端を支持して前記一対の外側横板ばねの一方と一体的に形成される第1ホルダと、前記ピンの他端を支持して前記一対の外側横板ばねの他方と一体的に形成される第2ホルダとに分割される、
     請求項1に記載のマニピュレータ。
  9.  前記ピンの両端を前記第1ホルダ及び前記第2ホルダのそれぞれに固定する固定部は、前記外側横板ばねの延在方向に直交する幅寸法の約半分よりも大きい直径の円形状で形成される、
     請求項8に記載のマニピュレータ。
PCT/JP2018/017843 2017-05-08 2018-05-08 マニピュレータ WO2018207799A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/611,572 US20200093504A1 (en) 2017-05-08 2018-05-08 Manipulator
JP2019517651A JPWO2018207799A1 (ja) 2017-05-08 2018-05-08 マニピュレータ
EP18798990.0A EP3622903A4 (en) 2017-05-08 2018-05-08 MANIPULATOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017092574 2017-05-08
JP2017-092574 2017-05-08

Publications (1)

Publication Number Publication Date
WO2018207799A1 true WO2018207799A1 (ja) 2018-11-15

Family

ID=64105595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017843 WO2018207799A1 (ja) 2017-05-08 2018-05-08 マニピュレータ

Country Status (4)

Country Link
US (1) US20200093504A1 (ja)
EP (1) EP3622903A4 (ja)
JP (1) JPWO2018207799A1 (ja)
WO (1) WO2018207799A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11369398B2 (en) * 2020-08-19 2022-06-28 Tag Dream Medical Ltd. Hybrid laser cutter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4460890B2 (ja) 2003-12-15 2010-05-12 衛 光石 多自由度マニピュレータ
WO2014162440A1 (ja) * 2013-04-01 2014-10-09 テルモ株式会社 作動部材、および医療器具
JP2017064326A (ja) * 2015-10-02 2017-04-06 国立大学法人九州大学 マニピュレータ
JP2017092574A (ja) 2015-11-04 2017-05-25 株式会社Nttドコモ 無線通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4460890B2 (ja) 2003-12-15 2010-05-12 衛 光石 多自由度マニピュレータ
WO2014162440A1 (ja) * 2013-04-01 2014-10-09 テルモ株式会社 作動部材、および医療器具
JP2017064326A (ja) * 2015-10-02 2017-04-06 国立大学法人九州大学 マニピュレータ
JP2017092574A (ja) 2015-11-04 2017-05-25 株式会社Nttドコモ 無線通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GARY S. GUTHARTJ. KENNETH SALISBURY, JR.: "The Intuitive (TM) Telesurgery System: Overview and Application", PROCEEDINGS OF THE 2000 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS & AUTOMATION SAN FRANCISCO, CA, April 2000 (2000-04-01), pages 618 - 621, XP010500281
See also references of EP3622903A4 *

Also Published As

Publication number Publication date
US20200093504A1 (en) 2020-03-26
EP3622903A4 (en) 2021-01-20
EP3622903A1 (en) 2020-03-18
JPWO2018207799A1 (ja) 2020-03-12

Similar Documents

Publication Publication Date Title
JP6564668B2 (ja) マニピュレータ
US11744662B2 (en) Force transmission mechanism for surgical instrument, and related devices, systems, and methods
JP6177364B2 (ja) アクチュエータ装置
JP2023535493A (ja) 二重枢動関節継手装置を有する外科用器具
EP3321045B1 (en) Joint for robot arm, and surgical instrument
US8945174B2 (en) Medical instrument with flexible jaw mechanism
EP2744427B1 (en) Medical instrument with flexible jaw mechanisms
US20230255657A1 (en) Surgical devices and systems with rotating end effector assemblies having an ultrasonic blade
JP7005768B2 (ja) テンションバンドを有する医療ツール
WO2018207799A1 (ja) マニピュレータ
CN117159164A (zh) 操作臂、从操作设备及手术机器人
EP4072434A1 (en) Instrument shafts with relief features, and related devices, systems, and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018798990

Country of ref document: EP

Effective date: 20191209