WO2018207663A1 - Actuator and moving body - Google Patents

Actuator and moving body Download PDF

Info

Publication number
WO2018207663A1
WO2018207663A1 PCT/JP2018/017152 JP2018017152W WO2018207663A1 WO 2018207663 A1 WO2018207663 A1 WO 2018207663A1 JP 2018017152 W JP2018017152 W JP 2018017152W WO 2018207663 A1 WO2018207663 A1 WO 2018207663A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
tube
inner tube
axial direction
actuator
Prior art date
Application number
PCT/JP2018/017152
Other languages
French (fr)
Japanese (ja)
Inventor
塚越 秀行
光一 寺島
雄二郎 高井
Original Assignee
国立大学法人東京工業大学
学校法人東邦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 学校法人東邦大学 filed Critical 国立大学法人東京工業大学
Publication of WO2018207663A1 publication Critical patent/WO2018207663A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type

Definitions

  • the present invention relates to an actuator using fluid pressure.
  • Endoscopes for observation inside the body, catheters for administration of drug solutions, and catheters for discharge of body fluids are known as important medical devices. Since these instruments are used by being inserted into a thin tube in the body, there is a limitation in the radial size, and it is difficult to incorporate a complicated mechanism. For this reason, such a device does not have its own propulsive force, and accordingly, conventionally, a medical practitioner must apply force from the outside to push or pull it out into the body.
  • Patent Documents 1 to 3 disclose a self-propelled device using an air pressure, an endoscope propulsion device, and a tube insertion device.
  • Bronchi can be mentioned as a complex observation object in the body.
  • the bronchi have a complex structure that branches. When an active catheter is inserted into the bronchus, it is necessary to select a direction for each branch. Therefore, it is desired to provide an actuator that can control the direction with a simple structure.
  • the bronchus has a smaller inner diameter as it goes to the tip.
  • each branch is referred to as the 0th generation to the 5th generation, and the inner diameter largely changes in the range of 18 mm from the 0th generation to 3.6 mm from the 5th generation. Therefore, the function of propelling a wide inner diameter pipe line is desired.
  • Such a request may occur not only in a biological tube such as a bronchus or a large intestine tube, but also in an industrial pipeline such as a drain tube or a gas tube.
  • the present invention has been made in view of such a situation, and one of exemplary purposes of an aspect thereof is to provide an actuator capable of operating differently from the conventional one. Another exemplary object of another aspect is to provide a movable body that can be propelled from a narrow line to a wide line.
  • An aspect of the present invention relates to an actuator.
  • the actuator includes a telescopic balloon that expands in a radial direction and an axial direction by pressurization.
  • the telescopic balloon is constrained to hardly extend in the direction along the spiral and to hardly expand in the radial direction.
  • the telescopic balloon may be restrained in a further curved state. Thereby, the member curved by pressurization can be rotated.
  • the stretchable balloon may be non-uniform in the circumferential direction in terms of ease of elongation in the axial direction.
  • the telescopic balloon is pressurized, the telescopic balloon is bent while being expanded. As a result, it is possible to generate an operation in which stretching, bending, and rotational motion are mixed.
  • the thickness of the cross section of the telescopic balloon may be uneven in the circumferential direction. Thereby, the distribution of the circumferential direction can be given to the elongating balloon in the easiness of extending in the axial direction.
  • the actuator includes a tube whose tip is closed and expands in a radial direction and an axial direction by pressurization, and a thread-like member wound spirally around the surface of the tube.
  • the tube When the tube is pressurized, it cannot expand in the radial direction, so that a force to extend in the axial direction acts in a direction that further inclines the spiral in the axial direction.
  • This actuator can provide rotational motion and the rotational angle can be controlled according to pressure.
  • the actuator may further include a bending restraining member that is provided inside the tube and restrains the tube in a curved state.
  • the tube may be non-uniform in the axial direction but easy to extend in the axial direction.
  • the tube is pressurized, the tube is curved while extending. As a result, it is possible to generate an operation in which stretching, bending, and rotational motion are mixed.
  • the thickness of the cross section of the tube may be uneven in the circumferential direction. Thereby, the distribution of the circumferential direction can be given to the elongating balloon in the easiness of extending in the axial direction.
  • the moving body includes a tip portion provided with the above-described actuator and a propulsion unit.
  • the telescopic balloon of the actuator may be restrained in a curved state. When the telescopic balloon is pressurized, it rotates in a curved state. Thereby, the advancing direction of a mobile body can be selected.
  • the propulsion unit has an inner tube that receives a controllable pressure from the outside at the rear end, expands in the radial direction by pressurization, and can shrink in the axial direction, and a plurality of N pieces (N ⁇ And a telescopic member forming the chamber chamber of 2).
  • the inner tube has at least one opening for each chamber chamber, the axial length of the i-th (1 ⁇ i ⁇ N) chamber chamber is L i , and at least one aperture corresponding to the i-th chamber chamber S i / L i may be different for each chamber, where S i is the total area.
  • this propulsion unit by controlling the pressure of one system supplied to the other end of the inner tube, a plurality of chamber chambers can be expanded and contracted at different timings according to the ratio S / L.
  • the moving body can be deformed like an earthworm to generate a propulsive force (peristaltic motion).
  • Pressure may be supplied to the expandable balloon via an inner tube.
  • the inner tube may be provided with at least one opening for supplying pressure to the telescopic balloon.
  • the propulsion unit may further include a plurality of restraining members provided at the boundary between adjacent chamber chambers. According to this structure, the inside of a thick pipe line can be propelled not by a peristaltic motion but by a bending motion.
  • Yet another embodiment of the present invention is also a mobile object.
  • This moving body is an inner tube that receives a controllable pressure from the outside at the rear end, and a telescopic member that expands in the radial direction by pressurization and contracts in the axial direction. And an elastic member that forms a single chamber chamber, and a plurality of restraining members provided at the boundary between adjacent chamber chambers.
  • the inner tube has at least one opening for each chamber chamber.
  • the restraining member does not act on the expansion / contraction member in the narrow pipe, and can be propelled by a peristaltic motion.
  • the restraining member acts on the expansion / contraction member, and therefore can be propelled by a bending operation.
  • the expansion / contraction member is tubular, the inner tube is inserted into the expansion / contraction member, and the inner wall of the expansion / contraction member and the outer wall of the inner tube may be in close contact with each boundary portion of the plurality of chamber chambers.
  • the length L may be as short as the tip, and the area S may be as large as the tip. Thereby, a large driving force in the distal direction can be obtained.
  • an actuator that can operate differently from the conventional one can be provided.
  • the moving body which can be propelled in a wide pipe line from a narrow pipe line can be provided.
  • FIG.7 (a) is a figure which shows a mobile body provided with a rotation actuator
  • FIG.7 (b) is a figure explaining the direction steering of the mobile body in a pipe line.
  • FIG.8 (a) is sectional drawing of the propulsion part which concerns on embodiment
  • FIG.8 (b) is the external view.
  • FIGS. 9A to 9G are diagrams for explaining the operation of the propulsion unit in FIG.
  • FIGS. 10A to 10G are diagrams for explaining the operation of another propulsion unit.
  • FIGS. 11A to 11C are diagrams showing design examples of the area S i and the length L i .
  • FIGS. 12A to 12C are diagrams showing design examples of the area S when S 1 > S 2 > S 3 .
  • 13A to 13D are diagrams showing a method for manufacturing the propulsion unit. It is a figure which shows a moving body.
  • FIGS. 16A to 16G are diagrams for explaining the operation of the moving body of FIG.
  • FIG. 17A is a view showing a propulsion unit according to a modification
  • FIG. 17B shows a state of restraint by a restraining member
  • 18 (a) to 18 (g) are diagrams showing the operation of the propulsion unit in FIG. 17 (a).
  • Rotation Actuator An actuator (rotation actuator) that uses a fluid pressure and can provide a new operation different from an expansion / contraction operation or a bending operation in a specific direction will be described.
  • FIG. 1 is a diagram illustrating a basic configuration of the rotary actuator 100.
  • the dimensions of each member shown in the drawings referred to in this specification are appropriately scaled up for ease of understanding and simplification of description.
  • the rotary actuator 100 includes a telescopic balloon 102.
  • the expandable balloon 102 has an air chamber 104 therein and is connected to a pressure controller 110 (not shown) via a pneumatic tube 106. Is expanded in the radial direction and the axial direction.
  • the expandable balloon 102 is constrained to hardly extend in the direction along the spiral 108 and to hardly expand in the radial direction.
  • the spiral 108 does not have to be a mathematically exact spiral.
  • FIG. 2A and 2B are views for explaining the operation of the rotary actuator of FIG.
  • FIG. 2A shows a non-pressurized state
  • FIG. 2B shows a pressurized state
  • 2A and 2B also show a cross-sectional view viewed from the Z direction.
  • the expandable balloon 102 When the expandable balloon 102 is pressurized, it tends to extend in the radial direction and the axial direction. It cannot expand in the radial direction (R direction) due to restraint, but extends in the axial direction (Z direction). At this time, the spiral 108 of the expandable balloon 102 further tilts in the axial direction, and the angle ⁇ increases ( ⁇ 1 > ⁇ 0 ).
  • this rotary actuator 100 it is possible to provide a motion that rotates (twists) while extending in the axial direction (Z) direction, and it is possible to control the rotation angle ⁇ according to the pressure (or the amount of air supplied).
  • FIG. 3 is a diagram illustrating a configuration example of the rotary actuator 100.
  • the rotary actuator 100 includes a tube 120 having elasticity and a thread-like member 122 having no elasticity.
  • the tube 120 is, for example, a silicon tube, the tip of which is closed, and forms the telescopic balloon 102.
  • a rubber tube may be used instead of the silicon tube.
  • the thread-like member 122 is, for example, a fiber, and is wound around the surface of the tube 120 in a spiral shape.
  • the above is an example configuration of the rotary actuator 100.
  • FIGS. 4A and 4B are views showing a rotary actuator 100A according to a first modification.
  • the rotary actuator 100A is restrained with the expandable balloon 102 being curved.
  • the bending restraining member 124 may be provided inside the tube 120.
  • FIG. 4B shows an operation when the rotary actuator 100A of FIG. 4A is pressurized. By applying pressure, the direction of the tube 120 can be rotated while the curve of the tube 120 is maintained.
  • FIG. 5 is a diagram showing the measurement result of the relationship between the pressure and the rotation angle.
  • a silicon tube 120 having an inner diameter of 1.6 mm, an outer diameter of 2.6 mm, and a length of 50 mm was used.
  • the thread-like member 122 water thread was used.
  • the bending restraining member 124 is a vinyl tie.
  • the rotary actuator 100A it is possible to realize a rotational motion of 360 ° or more as a movable range. Note that the movable range can be designed according to the pitch and inclination of the thread-like member 122.
  • FIGS. 6A and 6B are views showing a rotary actuator 100B according to a second modification.
  • FIG. 6A shows a cross-sectional view and a perspective view.
  • the expandable balloon 102 is configured such that the easiness of extension in the axial direction (Z direction) is not uniform in the circumferential direction.
  • the thickness of the cross section of the expandable balloon 102 may be non-uniform in the circumferential direction. Thereby, the distribution of the circumferential direction can be given to the elongating balloon in the easiness of extending in the axial direction. Similar to FIG.
  • the rotary actuator 100 ⁇ / b> B may be formed of the tube 120 and the thread-like member 122.
  • the thickness of the tube 120 may be uneven.
  • the hollow portion 121 of the tube 120 may be eccentric with respect to the central axis Z.
  • FIG. 6B shows the rotary actuator 100B in a pressurized state.
  • the inside of the expandable balloon 102 (tube 120) is pressurized, the thin wall side is easier to extend in the axial direction than the thick side, so the expandable balloon 102 is curved while extending (arrow A in the figure).
  • the aforementioned twisting motion (arrow B in the figure) occurs.
  • a motion with a mixture of stretching, bending, and rotation tilting
  • the bending direction can be controlled according to the pressure.
  • means for introducing the non-uniformity of the easiness of elongation in the axial direction to the expandable balloon 102 is not limited.
  • a non-uniformity may be introduced by sticking a restraining member other than the thread-like member 122 to the tube 120 having uniform easiness of elongation.
  • two sheet-like or strip-like restraining members having different easiness of extension in the axial direction may be attached around the telescopic balloon 102.
  • the expandable balloon 102 may be divided into two regions in the circumferential direction, and the tube 120 may be configured by bonding two half tubes corresponding to the two regions.
  • the materials and characteristics of the two half tubes may be made different.
  • the application of the rotary actuators 100A and 100B is not limited.
  • the rotary actuators 100A and 100B can be used as a steering actuator that is attached to the tip of a moving body that propels in a pipeline and selects a direction.
  • Fig.7 (a) is a figure which shows the mobile body 30 provided with the rotation actuator 100A.
  • the rotary actuator 100A may be replaced with 100B.
  • the moving body 130 includes a rotary actuator 100A and the propulsion unit 1.
  • the rotary actuator 100A is provided at the distal end portion 134 of the moving body 130 and functions as a steering actuator.
  • FIG. 7B is a diagram for explaining the direction steering of the moving body 130 in the pipeline 140.
  • a branch 142 exists inside the pipeline 140.
  • the rotary actuator 100A With the moving body 130 positioned in front of the branch 142, the rotary actuator 100A is pressurized, and the rotary actuator 100A is rotated in the direction of the branch 144A desired to travel.
  • the propulsion unit 1 is driven to generate a propulsive force
  • the moving body 130 can be propelled in the direction of the branch 144A.
  • the pressure is adjusted and the rotary actuator 100A is rotated in the direction of the branch 142B as indicated by a broken line.
  • the rotary actuator 100B can maintain a linear shape during a normal traveling operation. Therefore, it can be said that the rotary actuator 100B is more advantageous from the viewpoint of resistance to the wall surface of the pipe line, and that the rotary actuator 100B is more advantageous in that the angle of curvature can be controlled.
  • propulsion unit 1 a configuration example of the propulsion unit 1 will be described.
  • the propulsion unit 1 can also be driven by air pressure.
  • the suitable structure of the propulsion part 1 is demonstrated.
  • FIG. 8A is a cross-sectional view of the propulsion unit 1 according to the embodiment, and FIG. 8B is an external view thereof.
  • the propulsion unit 1 is a flexible linear actuator and propels it while deforming like an earthworm (peristaltic motion).
  • the propulsion unit 1 includes an elastic member 10 and an inner tube 20.
  • the expansion / contraction member 10 expands in the radial direction by pressurization from the inside and contracts in the axial direction.
  • a McKibben type pneumatic rubber artificial muscle or a tube having a similar structure can be used as the elastic member 10 having such properties.
  • the material of the tube is not particularly limited, but for example, a silicone rubber material can be used.
  • the inner tube 20 has one end (also referred to as a tip) 22 closed.
  • the other end (also referred to as rear end) 24 of the inner tube 20 is connected to the pressure controller 2 so that the pressure (air flow rate and direction) at the rear end 24 can be controlled from the outside.
  • the pressure controller 2 may include a pneumatic pump, a compressor, and a pressure control valve.
  • the stretchable member 10 forms a plurality of chamber chambers 40_1 to 40_N in the axial direction outside the inner tube 20.
  • the chamber room 40_1 is located at the forefront, and the chamber room 40_N is located at the end.
  • N 3 is illustrated in FIG. 8, N is arbitrary.
  • the elastic member 10 is tubular, and the inner tube 20 is inserted into the elastic member 10.
  • the inner wall of the elastic member 10 and the outer wall of the inner tube 20 are in close contact with each boundary portion of the plurality of chamber chambers 40_1 to 40_3.
  • the propulsion unit 1 may include an annular restraining member 50 that presses the elastic member 10 from the outside in the radial direction.
  • the restraining member 50 can be a thread, string, rubber, metal wire, or the like, and the material is not particularly limited.
  • the inner wall of the elastic member 10 and the outer wall of the inner tube 20 may be bonded or welded at the boundary between the adjacent chamber chambers 40.
  • one opening 26 is provided for each chamber 40.
  • the flow path 21 inside the inner tube 20 communicates with the corresponding chamber chamber 40_i through the opening 26_i.
  • the ratio in each of a plurality of chambers chambers 40_i S i / L i Is different.
  • the ratio S i / L i changes monotonously in the axial direction.
  • FIGS. 9A to 9G are diagrams for explaining the operation of the propulsion unit 1 of FIG. It is assumed that S i / L i ⁇ S j / L j holds for the two chamber chambers 40 — i and 40 — j (i ⁇ j).
  • the propulsion unit 1 propels the inside of the pipe line 140 in the right direction.
  • FIG. 9A shows an initial state. When the inner tube 20 is pressurized by the pressure controller 2, air flows into the chamber chamber 40 through the opening 26 of the inner tube 20.
  • each chamber chamber 40 Assuming that the air pressure inside the inner tube 20 is constant, the flow rate of air flowing into each chamber chamber 40 is proportional to the area S of the opening 26 corresponding to the chamber chamber 40.
  • the expansion rate of the chamber 40 is proportional to the flow rate per unit volume. Assuming that the inner diameter of the elastic member 10 is uniform, the volume of each chamber is proportional to the length L in the axial direction. Therefore, each chamber chamber 40 — i expands at an expansion rate corresponding to the ratio S i / L i .
  • the chamber chamber 40_1 on the tip 22 side having a large ratio S i / L i expands first.
  • the expanded chamber chamber 40_1 is brought into contact with the inner wall 141 of the pipe line 140, whereby the position in the propulsion direction (axial direction) is fixed.
  • the chamber chamber 40_1 is expanded, the length of the chamber chamber 40_1 is shortened due to the nature of the elastic member 10, and the subsequent chamber chambers 40_2 and 40_3 are drawn forward.
  • the second chamber chamber 40_2 expands, the length thereof becomes shorter, and the subsequent chamber chamber 40_3 is drawn forward.
  • FIG. 9D all the chamber chambers 40_1 to 40_3 are in an expanded state.
  • the inner tube 20 is switched to a reduced pressure state by the pressure controller 2.
  • the chamber chamber 40_1 on the tip 22 side having a large ratio S i / L i contracts first.
  • the chamber chamber 40_1 contracts, the length of the chamber chamber 40_1 increases due to the nature of the elastic member 10, and the chamber chamber 40_1 is extended in the axial direction.
  • the second chamber chamber 40_2 contracts as shown in FIG. 9 (f), the length thereof becomes longer, and the chamber chambers 40_1 and 40_2 are fed out in the axial direction.
  • the pressure is further reduced, as shown in FIG.
  • the third chamber chamber 40_3 contracts, its length increases, and the chamber chambers 40_1 to 40_3 are fed out in the axial direction.
  • the pressure controller 2 By repeating pressurization and depressurization by the pressure controller 2, the operations shown in FIGS. 9A to 9G are repeated, and the propulsion unit 1 propels rightward, that is, toward the tip 22 side.
  • the chamber chambers 40_1 to 40_3 are shown to sequentially expand and contract, but in reality, the chamber chambers 40_2 and 40_3 also expand while the chamber chamber 40_1 is expanding. Conversely, while the chamber chamber 40_1 is contracting, the chamber chambers 40_2 and 40_3 may also contract.
  • FIGS. 10A to 10G are diagrams for explaining the operation of another propulsion unit 1.
  • S i / L i ⁇ S j / L j is established for the two chamber chambers 40 — i and 40 — j that satisfy i ⁇ j.
  • the order in which the plurality of chamber chambers 40 expand and contract is opposite to that shown in FIGS.
  • the propulsion unit 1 propels leftward, that is, toward the rear end 24.
  • the propulsion unit 1 by providing a gradient to the ratio S i / L i , the chamber chambers 40_1 to 40_3 are sequentially expanded and contracted only by controlling the pressure of one system to the inner tube 20.
  • the propulsion unit 1 can be deformed like an earthworm to generate a propulsive force.
  • the direction of the propulsive force can be designed according to the direction of the gradient. Further, the propulsive force and the propulsive speed can be designed based on the area S of the opening 26 and the length L of the space. Further, in the propulsion unit 1, the plurality of chamber chambers 40 can be controlled by one system of air pressure source, and the cost and size can be greatly reduced as compared with the conventional moving body.
  • FIGS. 11A to 11C are diagrams showing design examples of the area S i and the length L i .
  • the lengths L 1 to L 3 are equal, and S 1 > S 2 > S 3 holds.
  • FIGS. 12A to 12C are diagrams showing design examples of the area S when S 1 > S 2 > S 3 .
  • each chamber chamber 40 is provided with one opening having a different area.
  • FIG. 12B different numbers of openings of the same size are provided.
  • FIG. 12C different numbers of openings having different sizes are provided.
  • the same number of openings having different sizes may be provided.
  • FIGS. 13A to 13D are diagrams showing a method for manufacturing the propulsion unit 1.
  • the inner tube 20 has a plurality of openings 26_1 to 26_3.
  • the opening 26 may be formed using a needle-like instrument.
  • Silicon (for example, Ecoflex 00-50: registered trademark) 14 is applied to the surface while rotating the carbon tube 12 to produce a silicon tube. Then, the thread 16 is wound around the surface of the silicon tube so as to have a network structure like McKibben. Then, the silicon 14 is soaked into the thread 16 to obtain a reduced pressure state (negative pressure), and the silicon 14 is coated on the thread 16 and cured.
  • the stretchable member 10 may be a commercially available Mackiben type artificial muscle rubber.
  • the inner tube 20 is inserted into the elastic member 10.
  • the restraint member 50 is mounted
  • the restraining member 50 may be a nylon fiber, a polyamide-based synthetic fiber, or a metal wire such as a wire or a piano wire.
  • the above is the manufacturing method of the propulsion unit 1.
  • the prototype of the propulsion unit 1 manufactured by the inventor by this manufacturing method was 2.5 g in weight, 18.5 cm in length, 2 mm in inner diameter of the elastic member 10, and 4 mm in outer diameter.
  • This prototype confirms propulsion in a pipeline with an inner diameter of 6 mm to 8 mm, and a moving speed of 8 mm / sec (50 cm / min) has been obtained, making it practical for medical applications including active catheters. Is confirmed to be high.
  • the expansion / contraction member 10 could not sufficiently expand in the pipeline 140 narrower than the inner diameter of 6 mm, and the propulsive force was reduced.
  • the diameter of the expansion / contraction member 10 may be optimized in consideration of the inner diameter of the conduit 140.
  • propulsion and direction steering can be controlled only by air pressure control.
  • FIG. 14 is a diagram showing the moving body 130B.
  • pressure is supplied to the expandable balloon 102 of the rotary actuator 100A via the inner tube 20 of the propulsion unit 1. That is, the inner tube 20 also serves as the pneumatic tube 106.
  • the inner tube 20 is provided with at least one opening 28 for supplying pressure to the telescopic balloon 102.
  • S 0 S 0 ⁇ S 1 ,. N holds.
  • N 3
  • S 0 ⁇ S 3 ⁇ S 2 ⁇ S 1 holds.
  • FIG. 15 is a diagram showing the responsiveness of the pressure (i) inside the telescopic balloon 102 of the rotary actuator 100A and the pressure (ii) of the air chamber inside the telescopic member 10 of the propulsion unit 1.
  • the response speed when pressurized becomes slowest.
  • the response speed of the expansion / contraction balloon 102 is about 1 second
  • the response speed of the expansion / contraction member 10 is about 0.1 second
  • the former is about 10 times larger.
  • the pressure supplied to the inner tube 20 is pulsed.
  • the pressurization time of the inner tube 20 in the normal propulsion motion is set to be shorter than the response time of the telescopic balloon 102. Therefore, during the normal propulsion motion, a pressure change does not substantially occur in the telescopic balloon 102.
  • the rotary actuator 100A does not rotate.
  • the pressurization time of the inner tube 20 is lengthened. Thereby, the telescopic balloon 102 is pressurized, and the rotary actuator 100A can be rotated.
  • FIGS. 16A to 16G are diagrams for explaining the operation of the moving body 130B of FIG.
  • FIGS. 16A to 16C correspond to FIGS. 9B to 9D. In these states, no pressure change has occurred in the rotary actuator 100A.
  • the expandable balloon 102 of the rotary actuator 100A is pressurized as shown in FIG. 16D, and the rotary actuator 100A rotates.
  • the rotary actuator 100A rotates to a desired angle, it is switched to a reduced pressure state as shown in FIG. FIGS. 16E to 16G correspond to FIGS. 9E to 9G.
  • the reduced pressure state the pressure change occurs in the order of the chamber chambers 40_1, 40_2, and 40_3, and the pressure change of the expandable balloon 102 of the rotary actuator 100A hardly occurs. Therefore, the propulsion unit 1 can be propelled while maintaining the angle of the rotary actuator 100A.
  • FIG. 16D When it is desired to propel the rotary actuator 100A without changing the direction, the state shown in FIG. 16D is not passed, that is, the time of the pressurized state is shortened, and FIGS. 16A to 16C and 16E are displayed. It is sufficient to repeat the states (g) to (g).
  • the above is the operation of the moving body 130.
  • the rotary actuator 100A and the propulsion unit 1 can be controlled by one system of pressure control.
  • the above-described propulsion unit 1 cannot propel the pipeline 140 having a large inner diameter because the expanded chamber chamber 40 needs to contact the inner wall 141 of the pipeline 140.
  • the propulsion unit 1A capable of propelling a pipe having a large inner diameter will be described.
  • FIG. 17 (a) is a diagram showing a propulsion unit 1A according to a modification.
  • the propulsion unit 1A includes a plurality of restraining members 52 in addition to the propulsion unit 1 of FIG.
  • the plurality of restraining members 52 are provided at the boundary between the adjacent chamber chambers 40.
  • the restraining members 52_1 and 52_2 are disposed substantially 180 degrees apart in the circumferential direction.
  • FIG. 17B shows the state of restraint by the restraining member 52.
  • the boundary (joint) thereof is bent to the side opposite to the restraining member 52.
  • 18 (a) to 18 (g) are diagrams showing the operation of the propulsion unit 1A of FIG. 17 (a).
  • the first joint, the second joint, and the third joint are bent in order as shown in FIGS. 18 (b) to 18 (d).
  • the pressure is subsequently reduced, as shown in FIGS. 18E to 18G, the first joint, the second joint, and the third joint expand in this order.
  • the propulsion unit 1A can be propelled in a thick pipe.
  • the propulsion unit 1A propels in a narrow pipeline with a peristaltic motion as shown in FIGS. 9 (a) to (g). That is, the propulsion unit 1A has an advantage that the peristaltic motion and the bending motion are passively switched according to the diameter of the pipe line.
  • the present invention can be used for an actuator using fluid pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Actuator (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

This rotary actuator 100 is provided with an expandable balloon 102 which radially and axially expands by pressurization. The expandable balloon 102 is restrained such that the expandable balloon 102 hardly stretches in the direction along a helix 108 and hardly expands in a radial direction.

Description

アクチュエータおよび移動体Actuator and moving body
 本発明は、流体圧を利用したアクチュエータに関する。 The present invention relates to an actuator using fluid pressure.
 体内の観察のための内視鏡や、薬液の投与、体液の排出のためのカテーテルは、重要な医療機器として知られる。これらの器具はいずれも、体内の細い管内に挿入して使用されるため、径方向のサイズには制約があり、複雑な機構を組み込むことが難しい。このためこのような器具は、自分自身の推進力を有さず、したがって従来では、医療行為者が外部から力を与えて、体内に押し込み、あるいは引き抜く必要があった。 Endoscopes for observation inside the body, catheters for administration of drug solutions, and catheters for discharge of body fluids are known as important medical devices. Since these instruments are used by being inserted into a thin tube in the body, there is a limitation in the radial size, and it is difficult to incorporate a complicated mechanism. For this reason, such a device does not have its own propulsive force, and accordingly, conventionally, a medical practitioner must apply force from the outside to push or pull it out into the body.
 近年、能動カテーテルや能動内視鏡の開発が進められている。たとえば特許文献1~3には、空気圧を用いた管内自走装置、内視鏡推進装置、管内挿入装置が開示されている。 In recent years, active catheters and active endoscopes have been developed. For example, Patent Documents 1 to 3 disclose a self-propelled device using an air pressure, an endoscope propulsion device, and a tube insertion device.
 体内の複雑な観察対象として気管支が挙げられる。気管支は、枝分かれした複雑な構造を有している。気管支に能動カテーテルを挿入する場合、枝分かれごとに方向を選択する必要がある。したがって簡素な構造で方向を制御可能なアクチュエータの提供が望まれる。 Bronchi can be mentioned as a complex observation object in the body. The bronchi have a complex structure that branches. When an active catheter is inserted into the bronchus, it is necessary to select a direction for each branch. Therefore, it is desired to provide an actuator that can control the direction with a simple structure.
 また気管支は、先端に進むほど、内径が小さくなる。具体的には枝分かれごとに第0世代~第5世代と称され、第0世代の18mm~第5世代の3.6mmの範囲で内径は大きく変化する。したがって、幅広い内径の管路を推進する機能が望まれる。 Also, the bronchus has a smaller inner diameter as it goes to the tip. Specifically, each branch is referred to as the 0th generation to the 5th generation, and the inner diameter largely changes in the range of 18 mm from the 0th generation to 3.6 mm from the 5th generation. Therefore, the function of propelling a wide inner diameter pipe line is desired.
 このような要望は、気管支や大腸管などの生体管のみでなく、排水管やガス管などの工業用管路においても生じうる。 Such a request may occur not only in a biological tube such as a bronchus or a large intestine tube, but also in an industrial pipeline such as a drain tube or a gas tube.
特開2009-240713号公報JP 2009-240713 A 特開2012-81130号公報JP 2012-81130 A 特開平5-293077号公報JP-A-5-293077
 従来の流体圧を利用したアクチュエータは、軸方向への伸縮動作、あるいは、ある一方向への湾曲動作を提供するものに限られていた。軸周りに回転可能なアクチュエータが存在すれば、流体圧アクチュエータの利用価値は大きくなるものと考えられる。 Conventional actuators that utilize fluid pressure have been limited to those that provide an expansion / contraction operation in the axial direction or a bending operation in one direction. If there is an actuator that can rotate around an axis, the utility value of the fluid pressure actuator is considered to increase.
 本発明はかかる状況に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、従来と異なる動作が可能なアクチュエータの提供にある。また別の態様の例示的な目的のひとつは、狭い管路から広い管路において推進可能な移動体の提供にある。 The present invention has been made in view of such a situation, and one of exemplary purposes of an aspect thereof is to provide an actuator capable of operating differently from the conventional one. Another exemplary object of another aspect is to provide a movable body that can be propelled from a narrow line to a wide line.
 本発明のある態様は、アクチュエータに関する。アクチュエータは、加圧によって径方向および軸方向に膨張する伸縮バルーンを備える。伸縮バルーンは、螺旋に沿う方向に伸びにくく、かつ径方向に膨張しにくく拘束されている。 An aspect of the present invention relates to an actuator. The actuator includes a telescopic balloon that expands in a radial direction and an axial direction by pressurization. The telescopic balloon is constrained to hardly extend in the direction along the spiral and to hardly expand in the radial direction.
 伸縮バルーンを加圧すると、径方向には膨張できないため、軸方向に伸びようとする力が、螺旋を軸方向にさらに傾ける向きに作用する。その結果、伸縮バルーンは、軸周りに回転する。このアクチュエータによれば回転運動を提供でき、回転角度は圧力に応じて制御できる。 When pressurizing the telescopic balloon, it cannot expand in the radial direction, so that the force to extend in the axial direction acts in a direction that further inclines the spiral in the axial direction. As a result, the telescopic balloon rotates around the axis. This actuator can provide rotational motion and the rotational angle can be controlled according to pressure.
 伸縮バルーンはさらに湾曲した状態で拘束されていてもよい。これにより、加圧によって湾曲した部材を回転させることができる。 The telescopic balloon may be restrained in a further curved state. Thereby, the member curved by pressurization can be rotated.
 伸縮バルーンは、軸方向の伸びやすさが、周方向に関して不均一であってもよい。伸縮バルーンを加圧すると、伸縮バルーンは伸展しながら、湾曲していく。これにより伸展、湾曲および回転運動が混在した動作を生成できる。 The stretchable balloon may be non-uniform in the circumferential direction in terms of ease of elongation in the axial direction. When the telescopic balloon is pressurized, the telescopic balloon is bent while being expanded. As a result, it is possible to generate an operation in which stretching, bending, and rotational motion are mixed.
 伸縮バルーンの断面の厚みは、周方向に不均一であってもよい。これにより、伸縮バルーンに、軸方向の伸びやすさに周方向の分布を持たせることができる。 The thickness of the cross section of the telescopic balloon may be uneven in the circumferential direction. Thereby, the distribution of the circumferential direction can be given to the elongating balloon in the easiness of extending in the axial direction.
 本発明の別の態様も、アクチュエータに関する。アクチュエータは、先端が閉じられており、加圧によって径方向および軸方向に膨張するチューブと、チューブの表面に螺旋状に巻き付けられた糸状の部材と、を備える。
 チューブを加圧すると、径方向には膨張できないため、軸方向に伸びようとする力が、螺旋を軸方向にさらに傾ける向きに作用する。その結果、チューブは、軸周りに回転する。このアクチュエータによれば回転運動を提供でき、回転角度は圧力に応じて制御できる。
Another aspect of the present invention also relates to an actuator. The actuator includes a tube whose tip is closed and expands in a radial direction and an axial direction by pressurization, and a thread-like member wound spirally around the surface of the tube.
When the tube is pressurized, it cannot expand in the radial direction, so that a force to extend in the axial direction acts in a direction that further inclines the spiral in the axial direction. As a result, the tube rotates around the axis. This actuator can provide rotational motion and the rotational angle can be controlled according to pressure.
 アクチュエータは、チューブの内部に設けられ、チューブを湾曲した状態で拘束する湾曲拘束部材をさらに備えてもよい。 The actuator may further include a bending restraining member that is provided inside the tube and restrains the tube in a curved state.
 チューブは、軸方向の伸びやすさが、周方向に関して不均一であってもよい。チューブを加圧すると、チューブは伸展しながら、湾曲していく。これにより伸展、湾曲および回転運動が混在した動作を生成できる。 The tube may be non-uniform in the axial direction but easy to extend in the axial direction. When the tube is pressurized, the tube is curved while extending. As a result, it is possible to generate an operation in which stretching, bending, and rotational motion are mixed.
 チューブの断面の厚みは、周方向に不均一であってもよい。これにより、伸縮バルーンに、軸方向の伸びやすさに周方向の分布を持たせることができる。 The thickness of the cross section of the tube may be uneven in the circumferential direction. Thereby, the distribution of the circumferential direction can be given to the elongating balloon in the easiness of extending in the axial direction.
 本発明の別の態様は、管路内の移動体に関する。移動体は、上述のアクチュエータが設けられた先端部分と、推進部と、を備える。アクチュエータの伸縮バルーンは、湾曲した状態で拘束されてもよい。伸縮バルーンを加圧すると、湾曲した状態で回転する。これにより、移動体の進む方向を選択できる。 Another aspect of the present invention relates to a moving body in a pipeline. The moving body includes a tip portion provided with the above-described actuator and a propulsion unit. The telescopic balloon of the actuator may be restrained in a curved state. When the telescopic balloon is pressurized, it rotates in a curved state. Thereby, the advancing direction of a mobile body can be selected.
 推進部は、後端に外部から制御可能な圧力を受けるインナーチューブと、加圧によって径方向に膨張し、軸方向に収縮可能であり、インナーチューブの外側に軸方向に複数N個(N≧2)のチャンバー室を形成する伸縮部材と、を含んでもよい。インナーチューブは、チャンバー室ごとに少なくともひとつの開口を有し、i番目(1≦i≦N)のチャンバー室の軸方向の長さをL、i番目のチャンバー室に対応する少なくともひとつの開口の総面積をSとしたとき、チャンバー室ごとにS/Lが異なっていてもよい。
 この推進部によると、インナーチューブの他端に供給する1系統の圧力を制御することにより、複数のチャンバー室を、比S/Lの大きさに応じて異なるタイミングで膨張、収縮させることができ、これにより移動体をミミズのように変形させて、推進力を発生させることができる(蠕動運動)。
The propulsion unit has an inner tube that receives a controllable pressure from the outside at the rear end, expands in the radial direction by pressurization, and can shrink in the axial direction, and a plurality of N pieces (N ≧ And a telescopic member forming the chamber chamber of 2). The inner tube has at least one opening for each chamber chamber, the axial length of the i-th (1 ≦ i ≦ N) chamber chamber is L i , and at least one aperture corresponding to the i-th chamber chamber S i / L i may be different for each chamber, where S i is the total area.
According to this propulsion unit, by controlling the pressure of one system supplied to the other end of the inner tube, a plurality of chamber chambers can be expanded and contracted at different timings according to the ratio S / L. Thus, the moving body can be deformed like an earthworm to generate a propulsive force (peristaltic motion).
 伸縮バルーンには、インナーチューブを介して圧力が供給されてもよい。インナーチューブには、伸縮バルーンに圧力を供給するための少なくともひとつの開口が設けられてもよい。伸縮バルーンに対応する少なくともひとつの開口の総面積をSとするとき、S<S(i=1,…N)が成り立ってもよい。
 これにより一本のインナーチューブによって、言い換えればひとつの圧力系統によって、推進と方向の両方を制御できる。
Pressure may be supplied to the expandable balloon via an inner tube. The inner tube may be provided with at least one opening for supplying pressure to the telescopic balloon. When the total area of at least one opening corresponding to the expandable balloon is S 0 , S 0 <S i (i = 1,... N) may be satisfied.
Thus, both propulsion and direction can be controlled by a single inner tube, in other words, by a single pressure system.
 推進部は、隣接するチャンバー室の境界に設けられた複数の拘束部材をさらに含んでもよい。この構造によれば、太い管路内を、蠕動運動ではなく、屈曲動作によって推進することができる。 The propulsion unit may further include a plurality of restraining members provided at the boundary between adjacent chamber chambers. According to this structure, the inside of a thick pipe line can be propelled not by a peristaltic motion but by a bending motion.
 本発明のさらに別の態様もまた、移動体である。この移動体は、後端に外部から制御可能な圧力を受けるインナーチューブと、加圧によって径方向に膨張し、軸方向に収縮する伸縮部材であって、インナーチューブの外側に軸方向に複数N個のチャンバー室を形成する伸縮部材と、隣接するチャンバー室の境界に設けられた複数の拘束部材と、を備える。インナーチューブは、チャンバー室ごとに少なくともひとつの開口を有する。i番目(1≦i≦N)のチャンバー室の軸方向の長さをL、i番目のチャンバー室に対応する少なくともひとつの開口の総面積をSとしたとき、チャンバー室ごとにS/Lが異なっていている。 Yet another embodiment of the present invention is also a mobile object. This moving body is an inner tube that receives a controllable pressure from the outside at the rear end, and a telescopic member that expands in the radial direction by pressurization and contracts in the axial direction. And an elastic member that forms a single chamber chamber, and a plurality of restraining members provided at the boundary between adjacent chamber chambers. The inner tube has at least one opening for each chamber chamber. When the i-th (1 ≦ i ≦ N) chamber chamber axial length of which is L i, a total area of at least one opening corresponding to the i-th chamber chamber and S i, S i for each chamber compartment / Li is different.
 この態様によると、細い管路内では、拘束部材が伸縮部材に作用せず、蠕動運動により推進することができる。管路の内径が太くなると、拘束部材が伸縮部材に作用するため、屈曲動作により推進することができる。 According to this aspect, the restraining member does not act on the expansion / contraction member in the narrow pipe, and can be propelled by a peristaltic motion. When the inner diameter of the pipe line is increased, the restraining member acts on the expansion / contraction member, and therefore can be propelled by a bending operation.
 伸縮部材は管状であり、インナーチューブは伸縮部材に挿入されており、複数のチャンバー室それぞれの境界部分において、伸縮部材の内壁とインナーチューブの外壁が密着していてもよい。 The expansion / contraction member is tubular, the inner tube is inserted into the expansion / contraction member, and the inner wall of the expansion / contraction member and the outer wall of the inner tube may be in close contact with each boundary portion of the plurality of chamber chambers.
 長さLは先端ほど短く、面積Sは先端ほど大きくてもよい。これにより、先端方向への大きな推進力を得ることができる。 The length L may be as short as the tip, and the area S may be as large as the tip. Thereby, a large driving force in the distal direction can be obtained.
 なお、以上の構成要素を任意に組み合わせたものもまた、本発明の態様として有効である。 Note that any combination of the above components is also effective as an aspect of the present invention.
 本発明のある態様によれば、従来と異なる動作が可能なアクチュエータを提供できる。またまた別の態様によれば、狭い管路から広い管路において推進可能な移動体を提供できる。 According to an aspect of the present invention, an actuator that can operate differently from the conventional one can be provided. Moreover, according to another aspect, the moving body which can be propelled in a wide pipe line from a narrow pipe line can be provided.
回転アクチュエータの基本構成を示す図である。It is a figure which shows the basic composition of a rotary actuator. 図2(a)、(b)は、図1の回転アクチュエータの動作を説明する図である。2A and 2B are views for explaining the operation of the rotary actuator of FIG. 回転アクチュエータの構成例を示す図である。It is a figure which shows the structural example of a rotation actuator. 図4(a)、(b)は、第1変形例に係る回転アクチュエータを示す図である。4A and 4B are views showing a rotary actuator according to a first modification. 第1変形例に係る回転アクチュエータの圧力と回転角の関係の測定結果を示す図である。It is a figure which shows the measurement result of the relationship between the pressure of a rotary actuator which concerns on a 1st modification, and a rotation angle. 図6(a)、(b)は、第2変形例に係る回転アクチュエータを示す図である。FIGS. 6A and 6B are views showing a rotary actuator according to a second modification. 図7(a)は、回転アクチュエータを備える移動体を示す図であり、図7(b)は、管路内における移動体の方向操舵を説明する図である。Fig.7 (a) is a figure which shows a mobile body provided with a rotation actuator, and FIG.7 (b) is a figure explaining the direction steering of the mobile body in a pipe line. 図8(a)は、実施の形態に係る推進部の断面図であり、図8(b)はその外観図である。Fig.8 (a) is sectional drawing of the propulsion part which concerns on embodiment, FIG.8 (b) is the external view. 図9(a)~(g)は、図8の推進部の動作を説明する図である。FIGS. 9A to 9G are diagrams for explaining the operation of the propulsion unit in FIG. 図10(a)~(g)は、別の推進部の動作を説明する図である。FIGS. 10A to 10G are diagrams for explaining the operation of another propulsion unit. 図11(a)~(c)は、面積Sと長さLの設計例を示す図である。FIGS. 11A to 11C are diagrams showing design examples of the area S i and the length L i . 図12(a)~(c)は、S>S>Sの場合の面積Sの設計例を示す図である。FIGS. 12A to 12C are diagrams showing design examples of the area S when S 1 > S 2 > S 3 . 図13(a)~(d)は、推進部の製造方法を示す図である。13A to 13D are diagrams showing a method for manufacturing the propulsion unit. 移動体を示す図である。It is a figure which shows a moving body. 回転アクチュエータの伸縮バルーンの内部の圧力(i)と、推進部の伸縮部材の内部の空気室の圧力(ii)の応答性を示す図である。It is a figure which shows the response of the pressure (i) inside the expansion-contraction balloon of a rotation actuator, and the pressure (ii) of the air chamber inside the expansion-contraction member of a propulsion part. 図16(a)~(g)は、図14の移動体の動作を説明する図である。FIGS. 16A to 16G are diagrams for explaining the operation of the moving body of FIG. 図17(a)は、変形例に係る推進部を示す図であり、図17(b)には、拘束部材による拘束の様子が示される。FIG. 17A is a view showing a propulsion unit according to a modification, and FIG. 17B shows a state of restraint by a restraining member. 図18(a)~(g)は、図17(a)の推進部の動作を示す図である。18 (a) to 18 (g) are diagrams showing the operation of the propulsion unit in FIG. 17 (a).
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
1. 回転アクチュエータ
 流体圧を利用したアクチュエータであって、伸縮動作やある特定方向への湾曲動作とは異なる新たな動作を提供可能なアクチュエータ(回転アクチュエータ)について説明する。
1. Rotation Actuator An actuator (rotation actuator) that uses a fluid pressure and can provide a new operation different from an expansion / contraction operation or a bending operation in a specific direction will be described.
1.1 基本構成
 図1は、回転アクチュエータ100の基本構成を示す図である。本明細書において参照する図面に示される各部材の寸法は、理解の容易化、説明の簡潔化のため適宜拡大縮小されている。回転アクチュエータ100は、伸縮バルーン102を備える。伸縮バルーン102は、内部に空気室104を有し、空気圧チューブ106を介して図示しない圧力コントローラ110と接続される。を加圧することにより、径方向および軸方向に膨張する。伸縮バルーン102は、螺旋108に沿う方向に伸びにくく、かつ径方向に膨張しにくく拘束されている。なおこの螺旋108は、数学的に厳密な螺旋である必要はない。
1.1 Basic Configuration FIG. 1 is a diagram illustrating a basic configuration of the rotary actuator 100. The dimensions of each member shown in the drawings referred to in this specification are appropriately scaled up for ease of understanding and simplification of description. The rotary actuator 100 includes a telescopic balloon 102. The expandable balloon 102 has an air chamber 104 therein and is connected to a pressure controller 110 (not shown) via a pneumatic tube 106. Is expanded in the radial direction and the axial direction. The expandable balloon 102 is constrained to hardly extend in the direction along the spiral 108 and to hardly expand in the radial direction. The spiral 108 does not have to be a mathematically exact spiral.
 以上が回転アクチュエータの基本構成である。続いてその動作を説明する。図2(a)、(b)は、図1の回転アクチュエータの動作を説明する図である。図2(a)は、無加圧状態を、図2(b)は加圧状態を示す。図2(a)、(b)には、Z方向から見た断面図が併せて示される。伸縮バルーン102を加圧すると、径方向および軸方向に伸びようとする。拘束により径方向(R方向)には膨張できず、軸方向(Z方向)に伸びる。このとき伸縮バルーン102の螺旋108は、軸方向にさらに傾き、角度φが増大する(φ>φ)。 The above is the basic configuration of the rotary actuator. Next, the operation will be described. 2A and 2B are views for explaining the operation of the rotary actuator of FIG. FIG. 2A shows a non-pressurized state, and FIG. 2B shows a pressurized state. 2A and 2B also show a cross-sectional view viewed from the Z direction. When the expandable balloon 102 is pressurized, it tends to extend in the radial direction and the axial direction. It cannot expand in the radial direction (R direction) due to restraint, but extends in the axial direction (Z direction). At this time, the spiral 108 of the expandable balloon 102 further tilts in the axial direction, and the angle φ increases (φ 1 > φ 0 ).
 螺旋108上の2点PおよびPに着目する。2点の相対的な位置関係を考えて、点Pの位置が固定されているものと仮定する。点PとPの間の螺旋108に沿う長さlは一定に拘束されるから、角度φが大きくなると、点PはZ方向から見たときに、θ方向に回転する。この2点PとPを1つの変形要素として考えると、その関係は、別の2点PとPの間の変形要素、2点PとPの間の変形要素、・・・と、任意の2点間の変形要素においても同様に成立する。回転アクチュエータ100の先端の点Pに着目すると、この点Pの変位は、複数の変形要素の変形の積分とみなすことができ、軸周りにθ回転する。 Focus on two points P 0 and P 1 on the spiral 108. Considering the relative positional relationship between the two points, it is assumed that the position of the point P 0 is fixed. Since the length l along the spiral 108 between the points P 0 and P 1 is constrained to be constant, when the angle φ increases, the point P 2 rotates in the θ direction when viewed from the Z direction. Considering these two points P 0 and P 1 as one deformation element, the relationship is as follows: a deformation element between another two points P 1 and P 2 , a deformation element between two points P 2 and P 3 , The same holds true for deformation elements between any two points. Focusing on a point P z of the tip of the rotary actuator 100, the displacement of the point P Z can be regarded as the integral of the deformation of the plurality of deformation elements and rotates θ around the axis.
 この回転アクチュエータ100によれば、軸方向(Z)方向に伸展しながら回転(捩れる)する運動を提供でき、さらに回転角θを圧力(あるいは空気の供給量)に応じて制御できる。 According to this rotary actuator 100, it is possible to provide a motion that rotates (twists) while extending in the axial direction (Z) direction, and it is possible to control the rotation angle θ according to the pressure (or the amount of air supplied).
1.2 具体的な構成例
 図3は、回転アクチュエータ100の構成例を示す図である。回転アクチュエータ100は、伸縮性を有するチューブ120と、伸縮性を有しない糸状部材122を備える。チューブ120はたとえばシリコンチューブであり、その先端は閉じられており、伸縮バルーン102を形成する。シリコンチューブに代えてゴムチューブを用いてもよい。糸状部材122はたとえば繊維であり、チューブ120の表面に螺旋状に巻き付けられる。以上が回転アクチュエータ100の構成例である。
1.2 Specific Configuration Example FIG. 3 is a diagram illustrating a configuration example of the rotary actuator 100. The rotary actuator 100 includes a tube 120 having elasticity and a thread-like member 122 having no elasticity. The tube 120 is, for example, a silicon tube, the tip of which is closed, and forms the telescopic balloon 102. A rubber tube may be used instead of the silicon tube. The thread-like member 122 is, for example, a fiber, and is wound around the surface of the tube 120 in a spiral shape. The above is an example configuration of the rotary actuator 100.
1.3 第1変形例
 図4(a)、(b)は、第1変形例に係る回転アクチュエータ100Aを示す図である。図4(a)に示すように回転アクチュエータ100Aは、伸縮バルーン102が湾曲した状態で拘束されている。たとえば図3の回転アクチュエータ100を基本構成とする場合、チューブ120の内部に湾曲拘束部材124を設ければよい。図4(b)には、図4(a)の回転アクチュエータ100Aを加圧したときの動作が示される。加圧することにより、チューブ120の湾曲を維持しつつ、その方向を回転することができる。
1.3 First Modification FIGS. 4A and 4B are views showing a rotary actuator 100A according to a first modification. As shown in FIG. 4A, the rotary actuator 100A is restrained with the expandable balloon 102 being curved. For example, when the rotation actuator 100 of FIG. 3 is used as a basic configuration, the bending restraining member 124 may be provided inside the tube 120. FIG. 4B shows an operation when the rotary actuator 100A of FIG. 4A is pressurized. By applying pressure, the direction of the tube 120 can be rotated while the curve of the tube 120 is maintained.
 図5は、圧力と回転角の関係の測定結果を示す図である。測定に用いたサンプルには、内径1.6mm、外径2.6mm、長さ50mmのシリコンチューブ120を用いた。また糸状部材122としては、水糸を用いた。湾曲拘束部材124は、ビニールタイである。図5から明らかなように、回転アクチュエータ100Aによれば、可動範囲として360°以上の回転運動を実現できる。なお可動範囲は、糸状部材122のピッチ、傾きに応じて設計することができる。 FIG. 5 is a diagram showing the measurement result of the relationship between the pressure and the rotation angle. As a sample used for the measurement, a silicon tube 120 having an inner diameter of 1.6 mm, an outer diameter of 2.6 mm, and a length of 50 mm was used. As the thread-like member 122, water thread was used. The bending restraining member 124 is a vinyl tie. As is apparent from FIG. 5, according to the rotary actuator 100A, it is possible to realize a rotational motion of 360 ° or more as a movable range. Note that the movable range can be designed according to the pitch and inclination of the thread-like member 122.
1.4 第2変形例
 図6(a)、(b)は、第2変形例に係る回転アクチュエータ100Bを示す図である。図6(a)には、断面図および斜視図が示される。伸縮バルーン102は、軸方向(Z方向)の伸びやすさが、周方向に関して不均一となるように構成される。たとえば断面図に示すように、伸縮バルーン102の断面の厚みは、周方向に不均一であってもよい。これにより、伸縮バルーンに、軸方向の伸びやすさに周方向の分布を持たせることができる。図3と同様に、回転アクチュエータ100Bは、チューブ120と糸状部材122で形成してもよい。この場合、チューブ120の肉厚に不均一性を持たせればよい。たとえばチューブ120の中空部121を中心軸Zに対して偏心させてもよい。
1.4 Second Modification FIGS. 6A and 6B are views showing a rotary actuator 100B according to a second modification. FIG. 6A shows a cross-sectional view and a perspective view. The expandable balloon 102 is configured such that the easiness of extension in the axial direction (Z direction) is not uniform in the circumferential direction. For example, as shown in the cross-sectional view, the thickness of the cross section of the expandable balloon 102 may be non-uniform in the circumferential direction. Thereby, the distribution of the circumferential direction can be given to the elongating balloon in the easiness of extending in the axial direction. Similar to FIG. 3, the rotary actuator 100 </ b> B may be formed of the tube 120 and the thread-like member 122. In this case, the thickness of the tube 120 may be uneven. For example, the hollow portion 121 of the tube 120 may be eccentric with respect to the central axis Z.
 図6(b)には、加圧状態の回転アクチュエータ100Bが示される。伸縮バルーン102(チューブ120)の内部を加圧すると、肉厚が薄い側が厚い側より軸方向に伸長しやすいため、伸縮バルーン102が伸展しながら湾曲し(図中、矢印A)、それと同時に、上述した捩れの運動(図中、矢印B)が発生する。結果として、伸展・湾曲・回転(捩れ)が混在した動作が生成され、圧力に応じて、湾曲方向を制御することが可能となります。 FIG. 6B shows the rotary actuator 100B in a pressurized state. When the inside of the expandable balloon 102 (tube 120) is pressurized, the thin wall side is easier to extend in the axial direction than the thick side, so the expandable balloon 102 is curved while extending (arrow A in the figure). The aforementioned twisting motion (arrow B in the figure) occurs. As a result, a motion with a mixture of stretching, bending, and rotation (twisting) is generated, and the bending direction can be controlled according to the pressure.
 なお、第2変形例に係る回転アクチュエータ100Bにおいて、伸縮バルーン102に軸方向の伸びやすさの不均一性を導入する手段は限定されない。たとえば均一な伸びやすさを有するチューブ120に、糸状部材122とは別の拘束部材を貼り合わせて、不均一性を導入してもよい。具体的には、伸縮バルーン102の周囲に、軸方向に伸びやすさの異なる2つのシート状あるいはストリップ状の拘束部材を貼り付けてもよい。 In addition, in the rotary actuator 100B according to the second modification, means for introducing the non-uniformity of the easiness of elongation in the axial direction to the expandable balloon 102 is not limited. For example, a non-uniformity may be introduced by sticking a restraining member other than the thread-like member 122 to the tube 120 having uniform easiness of elongation. Specifically, two sheet-like or strip-like restraining members having different easiness of extension in the axial direction may be attached around the telescopic balloon 102.
 あるいは、伸縮バルーン102を周方向に2つの領域に分割し、チューブ120を2つの領域に対応する2つの半チューブの貼り合わせで構成してもよい。そして2つの半チューブの材料や特性を異ならしめてもよい。 Alternatively, the expandable balloon 102 may be divided into two regions in the circumferential direction, and the tube 120 may be configured by bonding two half tubes corresponding to the two regions. The materials and characteristics of the two half tubes may be made different.
2. 移動体
2.1 操舵アクチュエータ
 続いて、回転アクチュエータ100Aあるいは100Bの用途を説明する。回転アクチュエータ100A、100Bの用途は限定されないが、一例として、管路内を推進する移動体の先端部に取り付けて、方向を選択する操舵アクチュエータとして利用できる。図7(a)は、回転アクチュエータ100Aを備える移動体30を示す図である。なお、以降の説明において、回転アクチュエータ100Aを100Bに置き換えてもよい。移動体130は、回転アクチュエータ100Aおよび推進部1を備える。回転アクチュエータ100Aは、移動体130の先端部分134に設けられ、操舵アクチュエータとして機能する。
2. Next, the application of the rotary actuator 100A or 100B will be described. The application of the rotary actuators 100A and 100B is not limited. For example, the rotary actuators 100A and 100B can be used as a steering actuator that is attached to the tip of a moving body that propels in a pipeline and selects a direction. Fig.7 (a) is a figure which shows the mobile body 30 provided with the rotation actuator 100A. In the following description, the rotary actuator 100A may be replaced with 100B. The moving body 130 includes a rotary actuator 100A and the propulsion unit 1. The rotary actuator 100A is provided at the distal end portion 134 of the moving body 130 and functions as a steering actuator.
 図7(b)は、管路140内における移動体130の方向操舵を説明する図である。管路140の内部には分岐142が存在する。分岐142の手前に移動体130が位置した状態で、回転アクチュエータ100Aを加圧し、進行したい枝144Aの方向に回転アクチュエータ100Aを回転させる。その状態で、推進部1を駆動して推進力を発生すると、移動体130を枝144Aの方向に推進させることができる。反対側の枝144B側に推進させたい場合、圧力を調節して、回転アクチュエータ100Aを破線で示すように分岐142Bの方向に回転させればよい。 FIG. 7B is a diagram for explaining the direction steering of the moving body 130 in the pipeline 140. A branch 142 exists inside the pipeline 140. With the moving body 130 positioned in front of the branch 142, the rotary actuator 100A is pressurized, and the rotary actuator 100A is rotated in the direction of the branch 144A desired to travel. In this state, when the propulsion unit 1 is driven to generate a propulsive force, the moving body 130 can be propelled in the direction of the branch 144A. When propelled to the opposite side of the branch 144B, the pressure is adjusted and the rotary actuator 100A is rotated in the direction of the branch 142B as indicated by a broken line.
 このように、回転アクチュエータ100Aによれば、分岐の存在する管路において、所望の枝を選択して移動体130を推進させることができる。 Thus, according to the rotary actuator 100A, it is possible to propel the moving body 130 by selecting a desired branch in a pipe having a branch.
 なお、回転アクチュエータ100Aに代えて回転アクチュエータ100Bを用いた場合、通常の進行動作中は、回転アクチュエータ100Bは直線形状を保つことができる。したがって管路の壁面との抵抗の観点からは回転アクチュエータ100Bの方が有利であり、また湾曲の角度を制御できる点でも回転アクチュエータ100Bの方が有利であると言える。 When the rotary actuator 100B is used instead of the rotary actuator 100A, the rotary actuator 100B can maintain a linear shape during a normal traveling operation. Therefore, it can be said that the rotary actuator 100B is more advantageous from the viewpoint of resistance to the wall surface of the pipe line, and that the rotary actuator 100B is more advantageous in that the angle of curvature can be controlled.
2.2 推進部
 続いて、推進部1の構成例を説明する。操舵アクチュエータとして回転アクチュエータ100Aを利用する場合、推進部1も空気圧で駆動可能であることが望ましい。以下では、推進部1の好適な構成について説明する。
2.2 Propulsion unit Next, a configuration example of the propulsion unit 1 will be described. When the rotary actuator 100A is used as a steering actuator, it is desirable that the propulsion unit 1 can also be driven by air pressure. Below, the suitable structure of the propulsion part 1 is demonstrated.
 図8(a)は、実施の形態に係る推進部1の断面図であり、図8(b)はその外観図である。推進部1は、柔軟な線状のアクチュエータであり、ミミズのように変形しながら推進する(蠕動運動)。推進部1は、伸縮部材10およびインナーチューブ20を備える。 FIG. 8A is a cross-sectional view of the propulsion unit 1 according to the embodiment, and FIG. 8B is an external view thereof. The propulsion unit 1 is a flexible linear actuator and propels it while deforming like an earthworm (peristaltic motion). The propulsion unit 1 includes an elastic member 10 and an inner tube 20.
 伸縮部材10は、内側からの加圧によって径方向に膨張し、軸方向に収縮する。このような性質を有する伸縮部材10としては、マッキベン(McKibben)型の空気圧ゴム人工筋あるいはそれに類似する構造のチューブを用いることができる。またチューブの材料は特に限定されないが、たとえばシリコーンゴム製のものを用いることができる。 The expansion / contraction member 10 expands in the radial direction by pressurization from the inside and contracts in the axial direction. As the elastic member 10 having such properties, a McKibben type pneumatic rubber artificial muscle or a tube having a similar structure can be used. The material of the tube is not particularly limited, but for example, a silicone rubber material can be used.
 インナーチューブ20は、その一端(先端ともいう)22が閉じられている。インナーチューブ20の他端(後端ともいう)24には、圧力コントローラ2が接続され、後端24の圧力(空気の流量および向き)が外部から制御可能となっている。たとえば圧力コントローラ2は、空気圧ポンプやコンプレッサと、圧力制御弁とを備えてもよい。 The inner tube 20 has one end (also referred to as a tip) 22 closed. The other end (also referred to as rear end) 24 of the inner tube 20 is connected to the pressure controller 2 so that the pressure (air flow rate and direction) at the rear end 24 can be controlled from the outside. For example, the pressure controller 2 may include a pneumatic pump, a compressor, and a pressure control valve.
 伸縮部材10は、インナーチューブ20の外側に軸方向に複数のチャンバー室40_1~40_Nを形成する。チャンバー室40_1は最先端に、チャンバー室40_Nは最後端に位置する。図8にはN=3が例示されるが、Nは任意である。 The stretchable member 10 forms a plurality of chamber chambers 40_1 to 40_N in the axial direction outside the inner tube 20. The chamber room 40_1 is located at the forefront, and the chamber room 40_N is located at the end. Although N = 3 is illustrated in FIG. 8, N is arbitrary.
 たとえば伸縮部材10は管状であり、インナーチューブ20は伸縮部材10に挿入される。複数のチャンバー室40_1~40_3それぞれの境界部分において、伸縮部材10の内壁とインナーチューブ20の外壁が密着している。たとえば推進部1は、伸縮部材10を外部から径方向に押さえつける環状の拘束部材50を備えてもよい。拘束部材50は、糸、紐やゴム、金属線などを用いることができ、その材料は特に限定されない。あるいは、伸縮部材10の内壁とインナーチューブ20の外壁は、隣接するチャンバー室40の境界において接着あるいは溶着されてもよい。 For example, the elastic member 10 is tubular, and the inner tube 20 is inserted into the elastic member 10. The inner wall of the elastic member 10 and the outer wall of the inner tube 20 are in close contact with each boundary portion of the plurality of chamber chambers 40_1 to 40_3. For example, the propulsion unit 1 may include an annular restraining member 50 that presses the elastic member 10 from the outside in the radial direction. The restraining member 50 can be a thread, string, rubber, metal wire, or the like, and the material is not particularly limited. Alternatively, the inner wall of the elastic member 10 and the outer wall of the inner tube 20 may be bonded or welded at the boundary between the adjacent chamber chambers 40.
 インナーチューブ20は、チャンバー室40_i(i=1,2,…N)ごとに少なくともひとつの開口26_iを有する。ここでは理解の容易化の説明の簡潔化のため、チャンバー室40ごとに1個の開口26が設けられている。インナーチューブ20の内部の流路21は、開口26_iを介して対応するチャンバー室40_iと連通している。 The inner tube 20 has at least one opening 26_i for each chamber chamber 40_i (i = 1, 2,... N). Here, in order to simplify the explanation for easy understanding, one opening 26 is provided for each chamber 40. The flow path 21 inside the inner tube 20 communicates with the corresponding chamber chamber 40_i through the opening 26_i.
 i番目のチャンバー室40_iの軸方向の長さをL、そのチャンバー室40_iに対応する少なくともひとつの開口26_iの総面積をSしたとき、複数のチャンバー室40_iそれぞれにおける比S/Lが異なっている。好ましくは比S/Lは、軸方向に単調に変化する。 i-th chamber chamber of the axial length L i of 40_i, when the total area of the at least one opening 26_i corresponding to the chamber room 40_i the S i, the ratio in each of a plurality of chambers chambers 40_i S i / L i Is different. Preferably, the ratio S i / L i changes monotonously in the axial direction.
 以上が推進部1の構成である。続いてその動作を説明する。 The above is the configuration of the propulsion unit 1. Next, the operation will be described.
(i) S/L≧S/L  (i<j)
 図9(a)~(g)は、図8の推進部1の動作を説明する図である。2つのチャンバー室40_i,40_j(i<j)に関して、S/L≧S/Lが成り立つものとする。推進部1は、管路140の内部を右方向に推進する。図9(a)は初期状態を示す。圧力コントローラ2によってインナーチューブ20を加圧すると、インナーチューブ20の開口26を介してチャンバー室40内に空気が流れ込む。インナーチューブ20の内部の空気圧が一定であると仮定すると、各チャンバー室40に流れ込む空気の流量は、そのチャンバー室40に対応する開口26の面積Sに比例する。チャンバー室40の膨張速度は、その単位体積当たりの流量に比例する。伸縮部材10の内径が均一であると仮定すれば、各チャンバー室の体積は、軸方向の長さLに比例する。したがってチャンバー室40_iはそれぞれ、比S/Lに応じた膨張速度で膨張する。
(I) S i / L i ≧ S j / L j (i <j)
FIGS. 9A to 9G are diagrams for explaining the operation of the propulsion unit 1 of FIG. It is assumed that S i / L i ≧ S j / L j holds for the two chamber chambers 40 — i and 40 — j (i <j). The propulsion unit 1 propels the inside of the pipe line 140 in the right direction. FIG. 9A shows an initial state. When the inner tube 20 is pressurized by the pressure controller 2, air flows into the chamber chamber 40 through the opening 26 of the inner tube 20. Assuming that the air pressure inside the inner tube 20 is constant, the flow rate of air flowing into each chamber chamber 40 is proportional to the area S of the opening 26 corresponding to the chamber chamber 40. The expansion rate of the chamber 40 is proportional to the flow rate per unit volume. Assuming that the inner diameter of the elastic member 10 is uniform, the volume of each chamber is proportional to the length L in the axial direction. Therefore, each chamber chamber 40 — i expands at an expansion rate corresponding to the ratio S i / L i .
 つまり、図9(b)に示すように比S/Lの大きな先端22側のチャンバー室40_1が先に膨張する。膨張したチャンバー室40_1は管路140の内壁141と接触することにより、推進方向(軸方向)の位置が固定される。チャンバー室40_1が膨張すると、伸縮部材10の性質により、チャンバー室40_1の長さが短くなり、後続のチャンバー室40_2、40_3が前方に引き寄せられる。さらに加圧を続けると、図9(c)に示すように2番目のチャンバー室40_2が膨張し、その長さが短くなり、後続のチャンバー室40_3が前方に引き寄せられる。そして図9(d)に示すようにすべてのチャンバー室40_1~40_3が膨張した状態となる。 That is, as shown in FIG. 9B, the chamber chamber 40_1 on the tip 22 side having a large ratio S i / L i expands first. The expanded chamber chamber 40_1 is brought into contact with the inner wall 141 of the pipe line 140, whereby the position in the propulsion direction (axial direction) is fixed. When the chamber chamber 40_1 is expanded, the length of the chamber chamber 40_1 is shortened due to the nature of the elastic member 10, and the subsequent chamber chambers 40_2 and 40_3 are drawn forward. When the pressurization is further continued, as shown in FIG. 9C, the second chamber chamber 40_2 expands, the length thereof becomes shorter, and the subsequent chamber chamber 40_3 is drawn forward. Then, as shown in FIG. 9D, all the chamber chambers 40_1 to 40_3 are in an expanded state.
 続いて圧力コントローラ2によって、インナーチューブ20を減圧状態に切りかえられる。そうすると、図9(e)に示すように比S/Lの大きな先端22側のチャンバー室40_1が先に収縮する。チャンバー室40_1が収縮すると、伸縮部材10の性質により、チャンバー室40_1の長さが長くなり、チャンバー室40_1が軸方向に繰り出される。さらに減圧を続けると、図9(f)に示すように2番目のチャンバー室40_2が収縮し、その長さが長くなり、チャンバー室40_1、40_2が軸方向に繰り出される。さらに減圧を続けると、図9(g)に示すように3番目のチャンバー室40_3が収縮し、その長さが長くなり、チャンバー室40_1~40_3が軸方向に繰り出される。圧力コントローラ2によって加圧、減圧を繰り返すことで、図9(a)~(g)の動作が繰り返され、推進部1は右方向つまり先端22側に推進する。 Subsequently, the inner tube 20 is switched to a reduced pressure state by the pressure controller 2. Then, as shown in FIG. 9E, the chamber chamber 40_1 on the tip 22 side having a large ratio S i / L i contracts first. When the chamber chamber 40_1 contracts, the length of the chamber chamber 40_1 increases due to the nature of the elastic member 10, and the chamber chamber 40_1 is extended in the axial direction. When the pressure is further reduced, the second chamber chamber 40_2 contracts as shown in FIG. 9 (f), the length thereof becomes longer, and the chamber chambers 40_1 and 40_2 are fed out in the axial direction. When the pressure is further reduced, as shown in FIG. 9G, the third chamber chamber 40_3 contracts, its length increases, and the chamber chambers 40_1 to 40_3 are fed out in the axial direction. By repeating pressurization and depressurization by the pressure controller 2, the operations shown in FIGS. 9A to 9G are repeated, and the propulsion unit 1 propels rightward, that is, toward the tip 22 side.
 なお、ここでは明確化のために、チャンバー室40_1~40_3が順に膨張、収縮する様子を示しているが、実際には、チャンバー室40_1が膨張している間、チャンバー室40_2、40_3も膨張してもよく、反対にチャンバー室40_1が収縮している間、チャンバー室40_2、40_3も収縮してもよい。 Here, for the sake of clarity, the chamber chambers 40_1 to 40_3 are shown to sequentially expand and contract, but in reality, the chamber chambers 40_2 and 40_3 also expand while the chamber chamber 40_1 is expanding. Conversely, while the chamber chamber 40_1 is contracting, the chamber chambers 40_2 and 40_3 may also contract.
(ii) S/L≦S/L  (i<j)
 図10(a)~(g)は、別の推進部1の動作を説明する図である。ここではi<jを満たす2つのチャンバー室40_i、40_jに関して、S/L≦S/Lが成り立っている。この場合、複数のチャンバー室40が膨張、伸縮する順序が、図9(a)~(g)とは逆となる。これにより推進部1は、左方向つまり後端24側に推進する。
(Ii) S i / L i ≦ S j / L j (i <j)
FIGS. 10A to 10G are diagrams for explaining the operation of another propulsion unit 1. Here, S i / L i ≦ S j / L j is established for the two chamber chambers 40 — i and 40 — j that satisfy i <j. In this case, the order in which the plurality of chamber chambers 40 expand and contract is opposite to that shown in FIGS. As a result, the propulsion unit 1 propels leftward, that is, toward the rear end 24.
 以上が推進部1の動作である。この推進部1によれば、比S/Lに勾配を持たせることにより、インナーチューブ20への1系統の圧力を制御するのみで、複数のチャンバー室40_1~40_3を、順に膨張、収縮させることができ、これにより推進部1をミミズのように変形させて、推進力を発生させることができる。 The above is the operation of the propulsion unit 1. According to the propulsion unit 1, by providing a gradient to the ratio S i / L i , the chamber chambers 40_1 to 40_3 are sequentially expanded and contracted only by controlling the pressure of one system to the inner tube 20. Thus, the propulsion unit 1 can be deformed like an earthworm to generate a propulsive force.
 また、図9、図10で説明したように、勾配の方向に応じて、推進力の向きを設計することができる。さらに、開口26の面積S、空間の長さLにもとづいて、推進力や推進速度を設計することができる。さらに、推進部1では、複数のチャンバー室40を1系統の空気圧源によって制御可能であり、従来の移動体に比べてコスト、サイズを大幅に削減できる。 Also, as described in FIGS. 9 and 10, the direction of the propulsive force can be designed according to the direction of the gradient. Further, the propulsive force and the propulsive speed can be designed based on the area S of the opening 26 and the length L of the space. Further, in the propulsion unit 1, the plurality of chamber chambers 40 can be controlled by one system of air pressure source, and the cost and size can be greatly reduced as compared with the conventional moving body.
 図11(a)~(c)は、面積Sと長さLの設計例を示す図である。図11(a)では、長さL~Lは等しく、S>S>Sが成り立っている。 FIGS. 11A to 11C are diagrams showing design examples of the area S i and the length L i . In FIG. 11A, the lengths L 1 to L 3 are equal, and S 1 > S 2 > S 3 holds.
 図11(b)では、面積S~Sが等しく、L<L<Lが成り立っている。図11(c)では、S>S>SかつL<L<Lが成り立っている。進行方向を反対とする場合、不等号の向きを反対とすればよい。 In FIG. 11B, the areas S 1 to S 3 are equal, and L 1 <L 2 <L 3 holds. In FIG. 11C, S 1 > S 2 > S 3 and L 1 <L 2 <L 3 are established. If the direction of travel is reversed, the direction of the inequality sign may be reversed.
 図12(a)~(c)は、S>S>Sの場合の面積Sの設計例を示す図である。図12(a)では、各チャンバー室40に異なる面積の開口がひとつずつ設けられる。図12(b)では、同じサイズの開口が、異なる個数設けられている。図12(c)では、異なるサイズの開口が、異なる個数設けられている。あるいは後出の図13(a)に示すように、異なるサイズの開口を、複数の同数個ずつ設けてもよい。 FIGS. 12A to 12C are diagrams showing design examples of the area S when S 1 > S 2 > S 3 . In FIG. 12A, each chamber chamber 40 is provided with one opening having a different area. In FIG. 12B, different numbers of openings of the same size are provided. In FIG. 12C, different numbers of openings having different sizes are provided. Alternatively, as shown in FIG. 13A described later, the same number of openings having different sizes may be provided.
 続いて、推進部1の具体的な製造方法の一例を説明する。図13(a)~(d)は、推進部1の製造方法を示す図である。図13(a)に示すように、インナーチューブ20に、複数の開口26_1~26_3が形成される。たとえば開口26は、針状の器具を用いて形成してもよい。 Subsequently, an example of a specific manufacturing method of the propulsion unit 1 will be described. FIGS. 13A to 13D are diagrams showing a method for manufacturing the propulsion unit 1. As shown in FIG. 13A, the inner tube 20 has a plurality of openings 26_1 to 26_3. For example, the opening 26 may be formed using a needle-like instrument.
 図13(b)を参照して、伸縮部材10の製造方法の一例を説明する。カーボンチューブ12を回転させながらシリコン(たとえばEcoflex00-50:登録商標)14を表面に塗布し、シリコンチューブを作製する。そしてシリコンチューブの表面に、糸16をマッキベンのような網目構造となるように巻き付ける。そして糸16にシリコン14を染みこませて、減圧状態(負圧)とし、糸16の上からシリコン14をコーティングし、硬化させる。なお伸縮部材10としては市販のマッキベン型人工筋ゴムを利用してもよい。 Referring to FIG. 13B, an example of a method for manufacturing the elastic member 10 will be described. Silicon (for example, Ecoflex 00-50: registered trademark) 14 is applied to the surface while rotating the carbon tube 12 to produce a silicon tube. Then, the thread 16 is wound around the surface of the silicon tube so as to have a network structure like McKibben. Then, the silicon 14 is soaked into the thread 16 to obtain a reduced pressure state (negative pressure), and the silicon 14 is coated on the thread 16 and cured. The stretchable member 10 may be a commercially available Mackiben type artificial muscle rubber.
 図13(c)に示すように、伸縮部材10にインナーチューブ20を挿入する。そして句6(d)に示すように、複数のチャンバー室40それぞれの境界において、伸縮部材10がインナーチューブ20と密着するように拘束部材50を装着する。たとえば拘束部材50は、ナイロン繊維やポリアミド系合成繊維、あるいは針金やピアノ線などの金属線であってもよい。 As shown in FIG. 13 (c), the inner tube 20 is inserted into the elastic member 10. And as shown to phrase 6 (d), the restraint member 50 is mounted | worn so that the expansion-contraction member 10 may closely_contact | adhere with the inner tube 20 in the boundary of each of the some chamber chamber 40. For example, the restraining member 50 may be a nylon fiber, a polyamide-based synthetic fiber, or a metal wire such as a wire or a piano wire.
 以上が推進部1の製造方法である。本発明者がこの製造方法によって製造した推進部1の試作品は、重量2.5g、長さ18.5cm、伸縮部材10の内径2mm、外径4mmであった。この試作品により、内径6mm~8mmの管路での推進を確認しており、移動速度として8mm/sec(50cm/分)が得られており、能動カテーテルをはじめとする医療用途としても実用性が高いことを確認している。 The above is the manufacturing method of the propulsion unit 1. The prototype of the propulsion unit 1 manufactured by the inventor by this manufacturing method was 2.5 g in weight, 18.5 cm in length, 2 mm in inner diameter of the elastic member 10, and 4 mm in outer diameter. This prototype confirms propulsion in a pipeline with an inner diameter of 6 mm to 8 mm, and a moving speed of 8 mm / sec (50 cm / min) has been obtained, making it practical for medical applications including active catheters. Is confirmed to be high.
 なおこの試作品では、内径6mmより狭い管路140では、伸縮部材10が十分に膨張することができず、推進力の低下が見られた。言い換えれば、伸縮部材10の径は、管路140の内径を考慮して最適化すればよい。 In this prototype, the expansion / contraction member 10 could not sufficiently expand in the pipeline 140 narrower than the inner diameter of 6 mm, and the propulsive force was reduced. In other words, the diameter of the expansion / contraction member 10 may be optimized in consideration of the inner diameter of the conduit 140.
 回転アクチュエータ100Aと推進部1を組み合わせることにより、空気圧制御のみで、推進と、方向操舵を制御することができる。 By combining the rotary actuator 100A and the propulsion unit 1, propulsion and direction steering can be controlled only by air pressure control.
2.3 空気圧系統の統合
 回転アクチュエータ100Aと推進部1を単純に組み合わせただけでは、回転アクチュエータ100の圧力制御系統と、推進部1の圧力制御系統の2系統が必要となる。これは、圧力コントローラ110から推進部1の間に、2本の空気圧チューブが設けられることになるため、推進部1の細径化の障害となる。以下では、1本の圧力系統により、回転アクチュエータ100Aと推進部1を制御可能な移動体130Bを説明する。
2.3 Integration of Pneumatic System If the rotary actuator 100A and the propulsion unit 1 are simply combined, two systems, that is, the pressure control system of the rotary actuator 100 and the pressure control system of the propulsion unit 1 are required. This is an obstacle to reducing the diameter of the propulsion unit 1 because two pneumatic tubes are provided between the pressure controller 110 and the propulsion unit 1. Hereinafter, the moving body 130B that can control the rotary actuator 100A and the propulsion unit 1 by one pressure system will be described.
 図14は、移動体130Bを示す図である。この移動体130Bにおいて、回転アクチュエータ100Aの伸縮バルーン102には、推進部1のインナーチューブ20を介して圧力が供給されるようになっている。すなわちインナーチューブ20が、空気圧チューブ106を兼ねている。 FIG. 14 is a diagram showing the moving body 130B. In the moving body 130B, pressure is supplied to the expandable balloon 102 of the rotary actuator 100A via the inner tube 20 of the propulsion unit 1. That is, the inner tube 20 also serves as the pneumatic tube 106.
 インナーチューブ20には、伸縮バルーン102に圧力を供給するための少なくともひとつの開口28が設けられ、当該少なくともひとつの開口28の総面積をSとするとき、S<S,…,Sが成り立っている。N=3の場合、L=L=Lであるとき、S<S<S<Sが成り立っている。 The inner tube 20 is provided with at least one opening 28 for supplying pressure to the telescopic balloon 102. When the total area of the at least one opening 28 is S 0 , S 0 <S 1 ,. N holds. In the case of N = 3, when L 1 = L 2 = L 3 , S 0 <S 3 <S 2 <S 1 holds.
 以上が移動体130Bの構成である。続いてその動作を説明する。図15は、回転アクチュエータ100Aの伸縮バルーン102の内部の圧力(i)と、推進部1の伸縮部材10の内部の空気室の圧力(ii)の応答性を示す図である。図15から分かるように、回転アクチュエータ100Aの流路面積Sは最も小さいため、加圧した際の応答速度は最も遅くなる。具体的には伸縮バルーン102の応答速度は1秒程度、伸縮部材10の応答速度の0.1秒程度であり、前者の方が10倍程度大きい。 The above is the configuration of the moving object 130B. Next, the operation will be described. FIG. 15 is a diagram showing the responsiveness of the pressure (i) inside the telescopic balloon 102 of the rotary actuator 100A and the pressure (ii) of the air chamber inside the telescopic member 10 of the propulsion unit 1. As can be seen from FIG. 15, since the flow passage area S 0 of the rotary actuator 100A is the smallest, the response speed when pressurized becomes slowest. Specifically, the response speed of the expansion / contraction balloon 102 is about 1 second, and the response speed of the expansion / contraction member 10 is about 0.1 second, and the former is about 10 times larger.
 図9(b)~(g)に示したように、インナーチューブ20に供給される圧力はパルス状となる。通常の推進運動における、インナーチューブ20の加圧時間は、伸縮バルーン102の応答時間より短く設定されており、したがって通常の推進運動に際しては、伸縮バルーン102には圧力変化が実質的に発生せず、回転アクチュエータ100Aは回転しない。 As shown in FIGS. 9B to 9G, the pressure supplied to the inner tube 20 is pulsed. The pressurization time of the inner tube 20 in the normal propulsion motion is set to be shorter than the response time of the telescopic balloon 102. Therefore, during the normal propulsion motion, a pressure change does not substantially occur in the telescopic balloon 102. The rotary actuator 100A does not rotate.
 回転アクチュエータ100Aを回転させたい場合、インナーチューブ20の加圧時間を長くする。これにより、伸縮バルーン102が加圧され、回転アクチュエータ100Aを回転させることができる。 When the rotary actuator 100A is to be rotated, the pressurization time of the inner tube 20 is lengthened. Thereby, the telescopic balloon 102 is pressurized, and the rotary actuator 100A can be rotated.
 図16(a)~(g)は、図14の移動体130Bの動作を説明する図である。図16(a)~(c)は、図9(b)~(d)に対応する。これらの状態では、回転アクチュエータ100Aにおいて圧力変化は発生していない。 FIGS. 16A to 16G are diagrams for explaining the operation of the moving body 130B of FIG. FIGS. 16A to 16C correspond to FIGS. 9B to 9D. In these states, no pressure change has occurred in the rotary actuator 100A.
 図16(c)の状態からさらに加圧を持続すると、図16(d)に示すように、回転アクチュエータ100Aの伸縮バルーン102が加圧され、回転アクチュエータ100Aが回転する。回転アクチュエータ100Aが所望の角度まで回転すると、図16(e)に示すように、減圧状態に切り替えられる。図16(e)~(g)は、図9(e)~(g)に対応する。減圧状態では、圧力変化は、チャンバー室40_1,40_2,40_3の順に発生し、回転アクチュエータ100Aの伸縮バルーン102の圧力変化はほとんど発生しない。したがって、回転アクチュエータ100Aの角度を保ったまま、推進部1を推進させることができる。 If the pressurization is further continued from the state of FIG. 16C, the expandable balloon 102 of the rotary actuator 100A is pressurized as shown in FIG. 16D, and the rotary actuator 100A rotates. When the rotary actuator 100A rotates to a desired angle, it is switched to a reduced pressure state as shown in FIG. FIGS. 16E to 16G correspond to FIGS. 9E to 9G. In the reduced pressure state, the pressure change occurs in the order of the chamber chambers 40_1, 40_2, and 40_3, and the pressure change of the expandable balloon 102 of the rotary actuator 100A hardly occurs. Therefore, the propulsion unit 1 can be propelled while maintaining the angle of the rotary actuator 100A.
 回転アクチュエータ100Aの向きを変えずに推進させたい場合、図16(d)の状態を経ずに、すなわち加圧状態の時間を短くして、図16(a)~(c)、(e)~(g)の状態を繰り返せばよい。 When it is desired to propel the rotary actuator 100A without changing the direction, the state shown in FIG. 16D is not passed, that is, the time of the pressurized state is shortened, and FIGS. 16A to 16C and 16E are displayed. It is sufficient to repeat the states (g) to (g).
 以上が移動体130の動作である。この移動体130によれば、回転アクチュエータ100Aと推進部1とを1系統の圧力制御によって制御することができる。 The above is the operation of the moving body 130. According to this moving body 130, the rotary actuator 100A and the propulsion unit 1 can be controlled by one system of pressure control.
2.4 推進部1の変形例
 上述の推進部1は、膨張したチャンバー室40が管路140の内壁141に接触する必要があるため、内径が大きな管路140を推進することができない。以下、内径の大きな管路を推進可能な推進部1Aについて説明する。
2.4 Modification of the Propulsion Unit 1 The above-described propulsion unit 1 cannot propel the pipeline 140 having a large inner diameter because the expanded chamber chamber 40 needs to contact the inner wall 141 of the pipeline 140. Hereinafter, the propulsion unit 1A capable of propelling a pipe having a large inner diameter will be described.
 図17(a)は、変形例に係る推進部1Aを示す図である。推進部1Aは、図8の推進部1に加えて複数の拘束部材52を備える。複数の拘束部材52は、隣接するチャンバー室40の境界に設けられる。具体的には拘束部材52_1と52_2は、周方向に実質的に180°ずれて配置されている。図17(b)には、拘束部材52による拘束の様子が示される。加圧してチャンバー室40_2,40_3が膨張すると、それらの境界(関節)は、拘束部材52と反対側に屈曲する。 FIG. 17 (a) is a diagram showing a propulsion unit 1A according to a modification. The propulsion unit 1A includes a plurality of restraining members 52 in addition to the propulsion unit 1 of FIG. The plurality of restraining members 52 are provided at the boundary between the adjacent chamber chambers 40. Specifically, the restraining members 52_1 and 52_2 are disposed substantially 180 degrees apart in the circumferential direction. FIG. 17B shows the state of restraint by the restraining member 52. When the chambers 40 </ b> _ <b> 2 and 40 </ b> _ <b> 3 are expanded by pressurization, the boundary (joint) thereof is bent to the side opposite to the restraining member 52.
 続いて推進部1Aの動作を説明する。図18(a)~(g)は、図17(a)の推進部1Aの動作を示す図である。太い管路内において推進部1Aを加圧し続けると、図18(b)~(d)に示すように第1関節、第2関節、第3関節が順に屈曲する。続いて減圧すると、図18(e)~(g)に示すように、第1関節、第2関節、第3関節の順に伸張する。この動作を繰り返すことにより、推進部1Aを太い管路内で推進させることができる。 Next, the operation of the propulsion unit 1A will be described. 18 (a) to 18 (g) are diagrams showing the operation of the propulsion unit 1A of FIG. 17 (a). When pressurization of the propulsion unit 1A is continued in the thick duct, the first joint, the second joint, and the third joint are bent in order as shown in FIGS. 18 (b) to 18 (d). When the pressure is subsequently reduced, as shown in FIGS. 18E to 18G, the first joint, the second joint, and the third joint expand in this order. By repeating this operation, the propulsion unit 1A can be propelled in a thick pipe.
 推進部1Aは、細い管路の中では図9(a)~(g)に示したように蠕動運動で推進する。つまり推進部1Aは、管路の径に応じて、蠕動運動と屈曲運動が受動的に切り替わるという利点を有する。 The propulsion unit 1A propels in a narrow pipeline with a peristaltic motion as shown in FIGS. 9 (a) to (g). That is, the propulsion unit 1A has an advantage that the peristaltic motion and the bending motion are passively switched according to the diameter of the pipe line.
 推進部1Aと回転アクチュエータ100Aを組み合わせることにより、内径が一定でなく、かつ分岐が存在する管路内を、自在に推進可能な移動体を提供できる。 By combining the propulsion unit 1A and the rotary actuator 100A, it is possible to provide a moving body that can freely propel the inside of a pipe line in which the inner diameter is not constant and a branch exists.
 以上、本発明について、実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下、こうした変形例について説明する。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to combinations of the respective constituent elements and processing processes, and such modifications are within the scope of the present invention. is there. Hereinafter, such modifications will be described.
 実施の形態では、空気圧を利用する場合を説明したが、用途によっては、水圧や油圧などの流体圧を利用しうる。 In the embodiment, the case of using air pressure has been described, but depending on the application, fluid pressure such as water pressure or hydraulic pressure can be used.
 実施の形態にもとづき、具体的な用語を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 Although the present invention has been described using specific terms based on the embodiments, the embodiments only illustrate the principles and applications of the present invention, and the embodiments are defined in the claims. Many variations and modifications of the arrangement are permitted without departing from the spirit of the present invention.
1…推進部、2…圧力コントローラ、10…伸縮部材、12…カーボンチューブ、14…シリコン、20…インナーチューブ、21…流路、22…先端、24…後端、26…開口、40…チャンバー室、50,52…拘束部材、140…管路、142…分岐、144…枝、100…回転アクチュエータ、102…伸縮バルーン、104…空気室、106…空気圧チューブ、108…螺旋、110…圧力コントローラ、120…チューブ、122…糸状部材、124…湾曲拘束部材、130…移動体。 DESCRIPTION OF SYMBOLS 1 ... Propulsion part, 2 ... Pressure controller, 10 ... Elastic member, 12 ... Carbon tube, 14 ... Silicon, 20 ... Inner tube, 21 ... Flow path, 22 ... Tip, 24 ... Rear end, 26 ... Opening, 40 ... Chamber Chamber 50, 52 ... Restraining member 140 ... Pipe line 142 ... Branch 144 ... Branch 100 ... Rotary actuator 102 ... Telescopic balloon 104 ... Air chamber 106 ... Pneumatic tube 108 ... Spiral 110 ... Pressure controller , 120 ... tube, 122 ... thread-like member, 124 ... bending restraint member, 130 ... moving body.
 本発明は、流体圧を利用したアクチュエータに利用できる。 The present invention can be used for an actuator using fluid pressure.

Claims (13)

  1.  加圧によって径方向および軸方向に膨張する伸縮バルーンを備え、前記伸縮バルーンは、螺旋に沿う方向に伸びにくく、かつ径方向に膨張しにくく拘束されていることを特徴とするアクチュエータ。 An actuator comprising an expandable balloon that expands in a radial direction and an axial direction by pressurization, wherein the expandable balloon is not easily expanded in a direction along a spiral and is not easily expanded in a radial direction and is restrained.
  2.  前記伸縮バルーンはさらに湾曲した状態で拘束されていることを特徴とする請求項1に記載のアクチュエータ。 The actuator according to claim 1, wherein the telescopic balloon is further restrained in a curved state.
  3.  前記伸縮バルーンは、軸方向の伸びやすさが、周方向に関して不均一であることを特徴とする請求項1に記載のアクチュエータ。 2. The actuator according to claim 1, wherein the expandable balloon has a non-uniform stretchability in the axial direction in the circumferential direction.
  4.  先端が閉じられており、加圧によって径方向および軸方向に膨張するチューブと、
     前記チューブの表面に螺旋状に巻き付けられた糸状の部材と、
     を備えることを特徴とするアクチュエータ。
    A tube whose tip is closed and expands in the radial and axial directions by pressurization;
    A thread-like member wound spirally around the surface of the tube;
    An actuator comprising:
  5.  前記チューブの内部に設けられ、前記チューブを湾曲した状態で拘束する湾曲拘束部材をさらに備えることを特徴とする請求項4に記載のアクチュエータ。 The actuator according to claim 4, further comprising a bending restraining member provided inside the tube and restraining the tube in a curved state.
  6.  前記チューブは、軸方向の伸びやすさが、周方向に関して不均一であることを特徴とする請求項5に記載のアクチュエータ。 The actuator according to claim 5, wherein the tube is uneven in the axial direction with respect to the circumferential direction.
  7.  請求項2、3、5、6のいずれかに記載のアクチュエータが設けられた先端部分と、
     推進部と、
     を備えることを特徴とする管路内の移動体。
    A tip portion provided with the actuator according to any one of claims 2, 3, 5, and 6,
    The Promotion Department,
    A moving body in a pipeline, comprising:
  8.  前記推進部は、
     後端に外部から制御可能な圧力を受けるインナーチューブと、
     加圧によって径方向に膨張し、軸方向に収縮可能であり、前記インナーチューブの外側に軸方向に複数N個(N≧2)のチャンバー室を形成する伸縮部材と、
     を含み、
     前記インナーチューブは、前記チャンバー室ごとに少なくともひとつの開口を有し、
     i番目(1≦i≦N)のチャンバー室の軸方向の長さをL、i番目のチャンバー室に対応する少なくともひとつの開口の総面積をSとしたとき、チャンバー室ごとにS/Lが異なっていることを特徴とする請求項7に記載の移動体。
    The propulsion unit
    An inner tube that receives controllable pressure from the outside at the rear end;
    An expandable member that expands in the radial direction by pressurization and contracts in the axial direction, and forms a plurality of N (N ≧ 2) chamber chambers in the axial direction outside the inner tube;
    Including
    The inner tube has at least one opening for each chamber chamber,
    When the i-th (1 ≦ i ≦ N) chamber chamber axial length of which is L i, a total area of at least one opening corresponding to the i-th chamber chamber and S i, S i for each chamber compartment The moving body according to claim 7, wherein / L i is different.
  9.  前記伸縮バルーンには、前記インナーチューブを介して圧力が供給され、
     前記インナーチューブには、前記伸縮バルーンに圧力を供給するための少なくともひとつの開口が設けられ、当該少なくともひとつの開口の総面積をSとするとき、S<S,…,Sが成り立つことを特徴とする請求項8に記載の移動体。
    Pressure is supplied to the telescopic balloon through the inner tube,
    The inner tube is provided with at least one opening for supplying pressure to the telescopic balloon, and when the total area of the at least one opening is S 0 , S 0 <S 1 ,. The moving body according to claim 8, characterized in that:
  10.  前記推進部は、隣接するチャンバー室の境界に設けられた拘束部材をさらに含むことを特徴とする請求項8または9に記載の移動体。 The moving body according to claim 8 or 9, wherein the propulsion unit further includes a restraining member provided at a boundary between adjacent chamber chambers.
  11.  後端に外部から制御可能な圧力を受けるインナーチューブと、
     加圧によって径方向に膨張し、軸方向に収縮する伸縮部材であって、前記インナーチューブの外側に軸方向に複数のチャンバー室を形成する伸縮部材と、
     隣接するチャンバー室の境界に設けられた拘束部材と、
     を備え、
     前記インナーチューブは、前記チャンバー室ごとに少なくともひとつの開口を有し、
     前記チャンバー室の軸方向の長さをL、そのチャンバー室に対応する少なくともひとつの開口の総面積をSとしたとき、前記複数のチャンバー室それぞれの比S/Lが異なっていることを特徴とする移動体。
    An inner tube that receives controllable pressure from the outside at the rear end;
    An elastic member that expands in the radial direction by pressurization and contracts in the axial direction, and forms a plurality of chamber chambers in the axial direction outside the inner tube; and
    A restraining member provided at the boundary between adjacent chamber chambers;
    With
    The inner tube has at least one opening for each chamber chamber,
    The ratio S / L of each of the plurality of chamber chambers is different, where L is the length in the axial direction of the chamber chamber and S is the total area of at least one opening corresponding to the chamber chamber. Moving body.
  12.  前記伸縮部材は管状であり、前記インナーチューブは前記伸縮部材に挿入されており、
     前記複数のチャンバー室それぞれの境界部分において、前記伸縮部材の内壁と前記インナーチューブの外壁が密着していることを特徴とする請求項8から11のいずれかに記載の移動体。
    The elastic member is tubular, and the inner tube is inserted into the elastic member,
    The movable body according to any one of claims 8 to 11, wherein an inner wall of the elastic member and an outer wall of the inner tube are in close contact with each other at a boundary portion between the plurality of chamber chambers.
  13.  長さLは先端ほど短く、面積Sは先端ほど大きいことを特徴とする請求項8から12のいずれかに記載の移動体。 The moving body according to any one of claims 8 to 12, wherein the length L is shorter at the tip and the area S is larger at the tip.
PCT/JP2018/017152 2017-05-08 2018-04-27 Actuator and moving body WO2018207663A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-092605 2017-05-08
JP2017092605A JP6895660B2 (en) 2017-05-08 2017-05-08 Actuators and moving bodies

Publications (1)

Publication Number Publication Date
WO2018207663A1 true WO2018207663A1 (en) 2018-11-15

Family

ID=64105237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017152 WO2018207663A1 (en) 2017-05-08 2018-04-27 Actuator and moving body

Country Status (2)

Country Link
JP (1) JP6895660B2 (en)
WO (1) WO2018207663A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6892073B2 (en) * 2017-05-08 2021-06-18 国立大学法人東京工業大学 Actuator
JP2023090537A (en) * 2021-12-17 2023-06-29 株式会社ブリヂストン Fluid pressure actuator
WO2023187997A1 (en) * 2022-03-29 2023-10-05 リバーフィールド株式会社 Elastic tube and actuator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03113104A (en) * 1989-09-25 1991-05-14 Bridgestone Corp Bendable actuator
JPH05332324A (en) * 1992-05-27 1993-12-14 Ckd Corp Rotary actuator
JP2003230629A (en) * 2002-02-07 2003-08-19 Nikkiso Co Ltd Catheter
JP2008253780A (en) * 2007-04-04 2008-10-23 Olympus Medical Systems Corp Overtube and therapeutic system
JP2012081130A (en) * 2010-10-13 2012-04-26 Fujifilm Corp Endoscope propulsion system, cover for endoscope, and friction material for the endoscope
WO2015066143A1 (en) * 2013-10-29 2015-05-07 President And Fellows Of Harvard College Multi-segment reinforced actuators and applications

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3003702B2 (en) * 1987-11-13 2000-01-31 株式会社東芝 Actuator
JP6493862B2 (en) * 2015-09-04 2019-04-03 パナソニックIpマネジメント株式会社 Actuator device and actuator driving method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03113104A (en) * 1989-09-25 1991-05-14 Bridgestone Corp Bendable actuator
JPH05332324A (en) * 1992-05-27 1993-12-14 Ckd Corp Rotary actuator
JP2003230629A (en) * 2002-02-07 2003-08-19 Nikkiso Co Ltd Catheter
JP2008253780A (en) * 2007-04-04 2008-10-23 Olympus Medical Systems Corp Overtube and therapeutic system
JP2012081130A (en) * 2010-10-13 2012-04-26 Fujifilm Corp Endoscope propulsion system, cover for endoscope, and friction material for the endoscope
WO2015066143A1 (en) * 2013-10-29 2015-05-07 President And Fellows Of Harvard College Multi-segment reinforced actuators and applications

Also Published As

Publication number Publication date
JP2018189169A (en) 2018-11-29
JP6895660B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
WO2018207663A1 (en) Actuator and moving body
US5906591A (en) Endoscopic robot
US8125755B2 (en) Selectively rigidizable and actively steerable articulatable device
US6699179B2 (en) Catheter introducer system for exploration of body cavities
JP6493862B2 (en) Actuator device and actuator driving method
JP2009520507A (en) Tip propulsion device moving through a passage
EP1834661B1 (en) A stylet device and medical tube assembly
EP1747749B1 (en) Electroactive polymer-based lumen traversing device
BR112015023505B1 (en) TUBULAR DEVICE, APPARATUS AND METHOD FOR MANUFACTURING A TUBULAR BODY
Phee et al. Locomotion and steering aspects in automation of colonoscopy. I. A literature review
JP2022527023A (en) A microrobot configured to move through viscous material
AU2019329826A1 (en) Devices and systems for body cavities and methods of use
JPH078447A (en) Automatic inserting device for endoscope
JP6677409B2 (en) Moving body
JP2018189169A5 (en)
JP5391006B2 (en) Endoscope insertion aid
WO2016053187A1 (en) Carrying platform for moving a device within a conduit
JP5875043B2 (en) Endoscopic propulsion device and endoscope provided with the intra-pipe propulsion device
JP2021033092A (en) Self-propelled robot
JP5010403B2 (en) In-pipe travel microrobot
JP7487870B2 (en) Actuator
JP2023140750A (en) In-pipe movement robot
JPH01203704A (en) Actuator
WO2024130138A1 (en) Deployable flexible overtube
JP2015006506A (en) In-tube propulsion device and endoscope comprising in-tube propulsion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18799122

Country of ref document: EP

Kind code of ref document: A1