WO2018207555A1 - 日射遮蔽部材 - Google Patents

日射遮蔽部材 Download PDF

Info

Publication number
WO2018207555A1
WO2018207555A1 PCT/JP2018/015648 JP2018015648W WO2018207555A1 WO 2018207555 A1 WO2018207555 A1 WO 2018207555A1 JP 2018015648 W JP2018015648 W JP 2018015648W WO 2018207555 A1 WO2018207555 A1 WO 2018207555A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
dielectric
dielectric layer
metal film
solar radiation
Prior art date
Application number
PCT/JP2018/015648
Other languages
English (en)
French (fr)
Inventor
裕樹 堀江
加藤 和広
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to US16/606,625 priority Critical patent/US20210107258A1/en
Priority to JP2019517523A priority patent/JP7025665B2/ja
Priority to CN201880031024.XA priority patent/CN110650841A/zh
Priority to EP18798725.0A priority patent/EP3623149A4/en
Publication of WO2018207555A1 publication Critical patent/WO2018207555A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10201Dielectric coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/1022Metallic coatings
    • B32B17/10229Metallic layers sandwiched by dielectric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/007Sunglare reduction by coatings, interposed foils in laminar windows, or permanent screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Definitions

  • the present invention relates to a solar radiation shielding member in which a low radiation film having three layers of an Ag film is formed on a transparent substrate, and particularly to a solar radiation shielding member having improved heat resistance.
  • a solar shading member capable of shielding solar radiation incident on the room is widely used for the purpose of reducing the use of air conditioning in the room.
  • the low radiation glass which formed the low radiation film in the glass plate surface is widely known.
  • a laminated film in which an Ag film and a transparent dielectric film sandwiching the Ag film are laminated is widely used.
  • a low-emission film using two layers of Ag film for example, a first transparent dielectric film, an Ag film, a second transparent dielectric film, an Ag film, and a third transparent dielectric film are sequentially formed on a glass plate. Since the low radiation film has a high solar radiation shielding function, various solar radiation shielding members using the low radiation film have been studied.
  • the solar radiation shielding member described above tends to improve the solar radiation shielding function as the total film thickness of the Ag film increases.
  • the low emission film having two Ag films described above was appropriate from the balance between cost and required performance.
  • the demand for further improvement of the solar radiation shielding function has been increased. Have been studied (see, for example, Patent Document 1).
  • the glass plate used for construction and vehicles processed glass processed like laminated glass, bent glass, tempered glass, etc. is used in addition to a single glass plate.
  • the processed glass has a heating step in the production process. For example, in the heating process at the time of producing laminated glass, heating is usually performed at about 90 to 150 ° C. Further, in a physical strengthening process such as a bending process for obtaining bent glass or an air cooling strengthening process for obtaining tempered glass, heating is generally performed at about 550 to 720 ° C. in the atmosphere.
  • Patent Document 2 proposes a laminated glass using a low-emission film having three Ag films described above.
  • Sn-doped ZnO hereinafter sometimes referred to as “ZnSnO”
  • ZnSnO Sn-doped ZnO
  • Patent Document 3 proposes a bent glass using a low radiation film having three Ag films.
  • a bent glass obtained by bending a solar radiation shielding member having a low radiation film laminated in the order of / NiCr / ZnO / Si 3 N 4 at 640 ° C. is disclosed.
  • Patent Document 4 proposes a tempered glass using a low radiation film having three Ag films.
  • Si 3 N 4 / ZnO / Ag / Ti / ZnO / Si 3 N 4 / ZnO / Ag / Ti / ZnO / Si 3 N 4 / ZnO / Ag / Ti / ZnO / Si 3 N 4 / ZnO / Ag / Ti / ZnO / ZnO are formed on a glass substrate.
  • a tempered glass obtained by heat-treating a solar radiation shielding member having a low radiation film laminated in the order of / Si 3 N 4 at 620 ° C.
  • processed glass as described above is used for glass plates used for construction and vehicles.
  • it has been studied to use a solar radiation shielding member having a low radiation film as described above for processed glass.
  • the processed glass undergoes a heating process in the production process. Since the Ag film in the low emission film is likely to be oxidized or aggregated by heat, an increase in haze due to generation of minute defects or a decrease in appearance quality is likely to occur after the heating process.
  • the Ag film is greatly deteriorated by the heating process because the surface resistance is increased and the solar radiation shielding performance is lowered with the deterioration of the Ag film.
  • the present invention aims to obtain a heat-resistant low-emission film that can be used for processed glass that involves a heating process in the production process.
  • SiAlN Al-doped Si 3 N 4
  • the first dielectric film includes a dielectric layer A containing silicon and nitrogen directly on the transparent substrate, titanium on the dielectric layer A, and A dielectric layer B containing oxygen, and the optical thickness of the dielectric layer A is 12 to 86 nm, and the first dielectric film, the second dielectric film, and the third dielectric film are the uppermost layers.
  • the crystalline dielectric layer has an optical film thickness of 5 to 54 nm, and the first metal film, the second metal film, and the third metal film are directly below.
  • the solar radiation shielding member is an Ag film having the crystalline dielectric layer.
  • visible light is light having a wavelength in the range of 380 nm to 780 nm.
  • “sunlight shielding” in this specification refers to suppressing transmission of energy of light in a wavelength range of 300 nm to 2500 nm.
  • haze For haze, a value measured using a haze meter (Suga Test Instruments, HZ-V3) is adopted. The haze is calculated according to the method described in JIS K7136 (2000).
  • the geometric film thickness has the same meaning as the film thickness that is generally used, and simply indicates the thickness of a film or a layer.
  • the geometric film thickness is determined by determining the film formation speed when the single layer is formed from the product of the film thickness of the single layer prepared under the same film formation conditions as the low-emission film and the conveyance speed of the substrate. A value for calculating the film thickness of the corresponding layer or film using the film speed is adopted.
  • the “refractive index” in this specification refers to a value at a wavelength of 550 nm.
  • the refractive index was first prepared as a single layer under the same conditions as the low-emission film, and the obtained visible light transmittance and visible light reflectance (film surface) were recorded on a self-recording spectrophotometer (Hitachi, U-4000). ), And a value calculated from the obtained value by optical simulation (Reflectance-transmittance method) is adopted.
  • optical film thickness is a value represented by the product of the geometric film thickness and the refractive index, and is the product of the refractive index and the film thickness at a wavelength of 550 nm of a single layer created under the same film formation conditions as the low radiation film. The value calculated from is adopted.
  • the “low emission film” in this specification refers to the entire film on the transparent substrate.
  • the “film” is a stack of one or more layers, and the “layer” is the smallest unit delimited by the boundary, and the component constituting the layer may be one type or plural types, and the components in the layer The distribution may be uniform or non-uniform.
  • “on” such as “on the transparent substrate” may be in contact with the transparent substrate or may be interposed with any other film or layer.
  • “directly above” and “directly below” indicate that they are in contact with the target layer or film and that no other arbitrary film or layer is interposed. Further, for example, in the solar radiation shielding member as shown in FIG.
  • the glass plate G side is “lower” and the protective layer 44 side is “upper”, and the crystalline dielectric layer 13 in the first dielectric film 10 of FIG.
  • the uppermost layer in the film such as the protective layer 44 in the fourth dielectric film 40, may be referred to as the “uppermost layer”.
  • the glass plate processed through the heating process is referred to as “processed glass”.
  • the processed glass include laminated glass, bent glass, and tempered glass as described above.
  • the temperature is not particularly limited. For example, heating is performed at about 90 to 150 ° C. for laminated glass and about 550 to 720 ° C. for bent glass or tempered glass.
  • it describes as a "processed glass” also when the solar radiation shielding member is processed through a heating process. At this time, a glass plate is used as the transparent base material of the solar radiation shielding member.
  • Heat resistance indicates the heat resistance of the low radiation film.
  • the solar radiation shielding member on which the low radiation film is formed is heated at 690 to 700 ° C. for 7 minutes, the haze after heating is 1.5% or less, and the visual evaluation of the appearance of the low radiation film Those having no defects were regarded as “having heat resistance”. Further, it may be preferably 1.0% or less, more preferably 0.5% or less.
  • ZnSnO Sn-doped ZnO
  • Zn is a metal atom that is easily crystallized, and ZnO, which is an oxide, becomes a crystalline dielectric layer.
  • ZnSnO in which Sn is doped in the ZnO layer, the proportion of a dense amorphous state increases as the Sn doping amount increases, and the entire layer becomes an amorphous dielectric layer.
  • ZnSnO refers to an amorphous dielectric layer. Further, in order to obtain amorphous ZnSnO, it is necessary to increase the doping amount of Sn.
  • the composition of the obtained dielectric layer is considered to be (ZnO) x (SnO 2 ) 1-x (where 0 ⁇ x ⁇ 1).
  • ZnSnO is simply described as ZnSnO. .
  • ZnAlO Al-doped ZnO
  • the ZnAlO is a crystalline dielectric.
  • SiAlN Al-doped Si 3 N 4
  • Si 3 N 4 is an amorphous dielectric layer
  • SiAlN in which Al is doped in the Si 3 N 4 layer is also an amorphous dielectric layer.
  • SiAlN can be obtained, for example, by performing sputtering film formation using a Si target doped with 1 to 15 wt% of Al and nitrogen gas as a reactive gas.
  • SiAlO Al-doped SiO 2
  • SiO 2 is an amorphous dielectric layer
  • SiAlO in which Al is doped in the SiO 2 layer is also an amorphous dielectric layer.
  • SiON is an amorphous dielectric layer and can be obtained, for example, by performing sputtering film formation using a Si target and a mixed gas of oxygen gas and nitrogen gas as a reactive gas.
  • the Si: O: N ratio of the obtained oxynitride may be appropriately selected according to the desired refractive index.
  • the refractive index of the oxynitride falls within the range of the refractive index of the oxide and the refractive index of the nitride depending on the ratio of the reactive gas.
  • the refractive index of SiO 2 is about 1.46
  • the refractive index of Si 3 N 4 is about 2.03
  • the refractive index of the oxynitride is 1.53 to 2 depending on the mixing ratio of the reactive gas. It is within the range of 03.
  • SiAlON Si oxynitride doped with Al is referred to as “SiAlON”.
  • SiAlON is a non-crystalline dielectric layer and contains 1 to 10 wt% Al with respect to the entire dielectric.
  • SiAlON can be obtained, for example, by performing sputtering film formation using a Si target doped with 1 to 15 wt% of Al and a mixed gas of oxygen gas and nitrogen gas as a reactive gas.
  • the Si: O: N ratio of the obtained oxynitride may be appropriately selected according to the desired refractive index.
  • the refractive index of the oxynitride falls within the range of the refractive index of the oxide and the refractive index of the nitride depending on the ratio of the reactive gas.
  • a SiAlON layer having a refractive index of 1.82 was obtained.
  • the refractive index of oxide (SiAlO) using the same target was 1.53, and the refractive index of nitride (SiAlN) was 2.03.
  • the solar radiation shielding member of the present invention comprises, on a transparent substrate, a first dielectric film, a first metal film, a second dielectric film, a second metal film, a third dielectric film,
  • the first dielectric film includes a dielectric layer A containing silicon and nitrogen immediately above the transparent substrate
  • the dielectric layer A includes a dielectric layer B containing titanium and oxygen
  • the optical thickness of the dielectric layer A is 12 to 86 nm.
  • the first dielectric film, the second dielectric film, and the first dielectric film have a crystalline dielectric layer as an uppermost layer, and the crystalline dielectric layer has an optical film thickness of 5 to 54 nm, and the first metal film, the second metal film, and the The third metal film is an Ag film having the crystalline dielectric layer immediately below.
  • the solar shading member of the present invention will be described below with reference to FIG.
  • the present invention is not limited to FIG.
  • the solar radiation shielding member 55 indicates the low radiation film 50 from the first dielectric film 10 to the fourth dielectric film 40 and a transparent substrate on which the low radiation film 50 is formed.
  • the present invention improves the heat resistance of the low radiation film 50, and can be used as the processed glass described above after heat treatment.
  • the solar radiation shielding member 55 of the present invention can be used as a window material for buildings and vehicles, in addition to being used as the above-described processed glass, and particularly preferably used as a window glass for buildings and vehicles. is there.
  • a window glass for buildings it is possible to incorporate the solar radiation shielding member 55 into a window frame as a single plate, or to use the solar radiation shielding member 55 as a member of a multi-layer glass.
  • the solar radiation shielding member 55 when used as a window glass for a vehicle, it can be used as a door glass, a roof glass, a rear glass, or the like when a bending process, a laminating process, or a strengthening process is unnecessary.
  • the transparent substrate is a plate-like substrate that forms the low radiation film 50.
  • the “transparent substrate” may be a substrate having a visible light transmittance of 80% or more at a thickness of 2 mm.
  • the glass plate G is used as a transparent base material in FIG. 1, it is not limited to this.
  • the glass plate G is not particularly limited, and general-purpose float plate glass, colored glass, chemically tempered glass, air-cooled tempered glass, or the like may be used.
  • the metal film is an Ag film, and is a first metal film 1, a second metal film 2, and a third metal film 3 in this order from the transparent substrate side. It is preferable to set the total geometrical film thickness of the metal film to 30 to 50 nm because good solar shading performance can be obtained. When the total value of the film thickness exceeds 50 nm, the solar shading performance is improved, but the reflected color when viewed obliquely tends to be reddish. Moreover, if it is less than 30 nm, the solar radiation shielding performance tends to be insufficient.
  • the second metal film 2 the thickest and setting the ratio of the thickness to the other metal films within the range of 1.01 to 1.55, the visible light transmittance is improved without impairing the solar radiation shielding performance. It is preferable because it is possible. Further, if it is less than 1.01 and exceeds 1.55, the visible light transmittance may be insufficient.
  • the metal film As the metal film, a metal film containing 90 to 100 wt% of Ag is used. Further, since the Ag film is easily deteriorated by heat, oxygen, etc., in order to improve heat resistance and chemical durability, Pd, Au, Pt, Ti, Al, Cu, Cr, Mo, Nb, Nd are included in the film. Bi, Ni, etc. may be included.
  • the first metal film 1, the second metal film 2, and the third metal film 3 of the present invention are formed immediately above the first dielectric film 10, the second dielectric film 20, and the third dielectric film 30, respectively.
  • each dielectric film 10, 20, and 30 described later has the crystalline dielectric layers 13, 23, and 33 in the uppermost layer, an Ag film is formed immediately above the crystalline dielectric layers 13, 23, and 33.
  • the crystallinity of the Ag film can be improved.
  • Deterioration such as Ag agglomeration that occurs during the heating process may be derived from minute defects of the original Ag film, so that it is possible to improve heat resistance by improving the crystallinity of the Ag film. It is.
  • the sacrificial metal film 4 It is preferable to form the sacrificial metal film 4 immediately above each of the metal films. When forming each dielectric film on the metal film, the sacrificial metal film 4 is deteriorated by oxygen or the like if each dielectric film 20, 30, 40 is formed immediately above the exposed metal film. Therefore, the object is to protect this metal film. As the sacrificial metal film 4, it is preferable to use a material that does not significantly deteriorate in the heating process.
  • the sacrificial metal film 4 preferably includes at least one selected from the group consisting of Ti, NiCr, Nb, and stainless steel.
  • the above “stainless steel” is a mixture of Fe, Cr, and Ni, and may be hereinafter referred to as “SUS”.
  • the content of the above three components may be appropriately selected.
  • the content of Fe may be 50 to 80 wt%
  • Cr may be 10 to 25 wt%
  • Ni may be 0 to 20 wt%.
  • the thickness of the sacrificial metal film 4 is not particularly limited, but it is usually sufficient if the geometric film thickness is about 1 to 5 nm.
  • another film may be interposed between the sacrificial metal film 4 and the dielectric film thereon, but the second dielectric film 20 and the third dielectric film 30 are directly above each sacrificial metal film 4.
  • the fourth dielectric film 40 are preferably provided.
  • the first dielectric film 10 is a dielectric film provided immediately above the transparent substrate, and the first dielectric film 10 includes a dielectric layer A11 containing silicon and nitrogen immediately above the transparent substrate, This film includes a dielectric layer B12 containing titanium and oxygen on the dielectric layer A, and a crystalline dielectric layer 13 as the uppermost layer.
  • the film thickness is not particularly limited, but for example, the optical film thickness is preferably in the range of 57 to 126 nm.
  • an arbitrary layer may be interposed between the dielectric layer A11 and the dielectric layer B12, or between the dielectric layer B12 and the crystalline dielectric layer 13.
  • a dielectric layer containing Si and N similar to the dielectric layer A11 is formed immediately above the dielectric layer B12, the heat resistance is greatly deteriorated. It was. Therefore, it is desirable not to use a dielectric layer containing Si and N immediately above the dielectric layer B12.
  • the dielectric layer A11 is a dielectric layer containing silicon and nitrogen formed on the surface of the transparent substrate.
  • the dielectric layer A11 is used as a passivation layer for the glass plate G. It functions. Under the heating environment, there is a problem that when the alkali metal or the like diffuses from the glass plate G into the dielectric film and the diffusion component reaches the metal film, Ag deteriorates.
  • the dielectric layer A11 is used immediately above the glass plate G, it can be seen that Ag deterioration can be suppressed even when heated at 690 to 700 ° C. as shown in the examples of the present invention. It was.
  • a nitride layer containing silicon or an oxynitride layer containing silicon is preferably used as the material of the dielectric layer A11.
  • a nitride layer containing silicon or an oxynitride layer containing silicon is preferably used as the material of the dielectric layer A11.
  • Si 3 N 4 , SiAlN, SiON, SiAlON, or the like is preferably used as the material of the dielectric layer A11.
  • the optical film thickness of the dielectric layer A11 is 12 to 86 nm.
  • the thickness is less than 12 nm or more than 86 nm, the haze and the surface resistance increase after heating at about 690 to 700 ° C. If it is less than 12 nm, the diffusion of alkali metal or the like from the transparent substrate cannot be sufficiently suppressed, and if it exceeds 86 nm, the internal stress of the layer itself and the thermal stress during firing become large, Cracks are likely to occur. When cracks occur, the function as a passivation layer cannot be achieved, and the Ag film may deteriorate or the dielectric layer A11 itself may haze.
  • it may be 16 to 82 nm, more preferably 18 to 72 nm.
  • the dielectric layer B12 is a dielectric layer containing titanium and oxygen and has a function of improving heat resistance.
  • TiO 2 is preferably used as the dielectric layer B12.
  • a Ti oxide doped with 0.1 to 30 wt% of Ti, Si, Al, Zn, In, Sn, Nb, Zr or Ta with respect to Ti may be used.
  • the dielectric layer B12 preferably has an optical film thickness of 2 to 100 nm. If it is less than 2 nm, the function of improving heat resistance tends to be insufficient, while if it exceeds 100 nm, haze may deteriorate after the heating step. Also preferably, it may be 12 to 62 nm.
  • the crystalline dielectric layer 13 promotes Ag crystal growth when the Ag film of the first metal film 1 is formed. Various optical characteristics can be further improved by crystal growth of Ag. In addition, an Ag film having good crystallinity has few defects that can cause deterioration during firing, and thus heat resistance is easily improved.
  • the crystalline dielectric layer 13 it is possible to use a dielectric containing Zn, for example, an oxide of Zn. Further, it may be an oxide of Zn containing 1 to 5 wt% of Al, In, Sn, and Ga with respect to the entire dielectric.
  • the crystalline dielectric layer 13 has an optical thickness of 5 to 54 nm. If it is less than 5 nm, the effect of promoting Ag crystal growth tends to be insufficient, and if it exceeds 54 nm, there may be a crystal grain boundary in the crystalline dielectric layer 13, and various gases, Since moisture may enter and the first metal film 1 may be deteriorated, it may be a starting point for defects and aggregation after the heating process.
  • the second dielectric film 20 is a dielectric film formed on the first metal film 1 and mainly affects the transmittance, reflectance, reflection color tone, etc. of visible light.
  • the film thickness may be selected according to the desired optical characteristics, and is not particularly limited. For example, the film thickness is preferably in the range of 144 to 190 nm.
  • the third dielectric film 30 is a dielectric film formed on the second metal film 2. Like the second dielectric film 20, the third dielectric film 30 mainly affects the visible light transmittance, reflectance, reflection color tone, and the like. Effect.
  • the film thickness may be selected according to the desired optical characteristics and is not particularly limited. For example, the film thickness is preferably in the range of 136 to 182 nm.
  • the second dielectric film 20 and the third dielectric film 30 have crystalline dielectric layers 23 and 33 in the uppermost layer.
  • the crystalline dielectric layers 23 and 33 may be made of the same type of dielectric as the crystalline dielectric layer 13 of the first dielectric film 10 described above, and the optical film thicknesses are 5 to 54 nm, respectively. .
  • the second dielectric film 20 and the third dielectric film 30 may be made of a dielectric having a refractive index different from the refractive index of each metal film, in addition to the crystalline dielectric layers 22 and 23 described above.
  • the type of the dielectric layer is not particularly limited.
  • In 2 O 3 doped with, and refractive index such as TiO 2 2.0 be used before and after the dielectric Is possible.
  • ZnSnO is known to have a dense film structure, and is excellent in barrier properties against gas and moisture that degrade the metal film, so that it can be suitably used.
  • the fourth dielectric film 40 is a dielectric film formed on the third metal film 3, and is a film mainly affecting heat resistance, transmission color tone, reflection color tone, and the like. Similar to the second dielectric film 20 and the like, the fourth dielectric film 40 may be a dielectric having a refractive index different from the refractive index of each metal film, and is not particularly limited.
  • the film thickness may be selected according to the desired optical characteristics, and is not particularly limited. However, for example, the optical film thickness is preferably in the range of 38 to 123 nm.
  • the fourth dielectric film 40 is preferably a film having two or more layers including a dielectric layer containing titanium and oxygen and an amorphous dielectric layer containing zinc and oxygen.
  • a dielectric layer containing titanium and oxygen is preferable because it can improve the mechanical durability and heat resistance of the low-emission film 50 and can increase the visible light transmittance by an antireflection effect.
  • the amorphous dielectric layer containing zinc and oxygen is a dense film and can prevent oxygen from diffusing into the lower metal film, so that heat resistance can be improved.
  • the dielectric layer containing titanium and oxygen examples include TiO 2 , and the film thickness is not particularly limited.
  • the optical film thickness may be 2 to 100 nm.
  • the amorphous dielectric layer containing zinc and oxygen includes, for example, ZnSnO, and the film thickness is not particularly limited.
  • the optical film thickness may be 20 to 102 nm.
  • the fourth dielectric film 40 is a film including the uppermost layer of the low radiation film 50, and preferably has a protective layer 44 in the uppermost layer.
  • the protective layer 44 is a layer that prevents oxygen and the like from the surface of the low radiation film 50 and suppresses deterioration of the internal metal film.
  • a dielectric layer such as TiO 2 , SiO 2 , or SiAlO can be used.
  • the low radiation film 50 of the solar radiation shielding member 55 of the present invention can be formed by a sputtering method, an electron beam evaporation method, an ion plating method, or the like. Moreover, the sputtering method is suitable because it is easy to ensure productivity and uniformity. A method of forming using a sputtering method is described below. In addition, this invention is not limited to the following manufacturing methods.
  • the formation of the low radiation film 50 by the sputtering method is performed while transporting the transparent substrate through the apparatus in which the sputtering target as the material of each layer is installed.
  • a vacuum chamber for forming a layer is provided in the apparatus, and an atmosphere gas used during sputtering is introduced in a state where the target is installed in the vacuum chamber, and a negative potential is applied to the target. Plasma is generated inside and sputtering is performed.
  • a method for obtaining a desired film thickness varies depending on the type of sputtering apparatus, but is not particularly limited.
  • a desired film thickness can be obtained by changing a layer formation speed by adjusting an input power to the target or an introduction gas condition.
  • a method and a method of adjusting a substrate transport speed to obtain a desired film thickness are widely used.
  • the target to be used may be either a ceramic target or a metal target.
  • the gas conditions of the atmosphere gas to be used are not particularly limited.
  • the gas type and the mixing ratio according to the target layer may be appropriately determined from Ar gas, O 2 gas, N 2 gas, and the like.
  • the gas introduced into the vacuum chamber may include an optional third component other than Ar gas, O 2 gas, and N 2 gas.
  • an Ag target or an Ag alloy target is used as a target to be used.
  • Ar gas is preferably used as the atmospheric gas introduced at this time, but different types of gases may be mixed as long as the optical characteristics of Ag are not impaired.
  • a target to be used may be selected as appropriate, and an inert gas such as Ar may be used as the atmosphere gas to be introduced.
  • a direct current (DC) power supply As the plasma generation source, a direct current (DC) power supply, an alternating current (AC) power supply, a power supply in which alternating current and direct current are superimposed, and the like are used.
  • DC direct current
  • AC alternating current
  • a power supply in which alternating current and direct current are superimposed, and the like are used.
  • discharge abnormalities such as arcing are likely to occur when a dielectric layer is formed.
  • the solar radiation shielding member 55 of the present invention can suppress significant deterioration of the Ag film in the low radiation film 50 even through the heating process, laminated glass, bent glass, tempered glass, etc. It can be suitably used as processed glass. Moreover, since it is possible to make visible light transmittance 70% or more after a heating process, it is thought that the visibility of the processed glass obtained is not impaired significantly.
  • preferred embodiments of the present invention will be described. In the description of the embodiment, the description overlapping with “1: Explanation of terms” to “3: Manufacturing method of solar radiation shielding member” described above is omitted.
  • One of the preferred embodiments of the present invention is a processed glass in which a glass plate is processed through a heating step, and the glass plate is a solar radiation shielding member 55.
  • the processed glass include the above-described tempered glass, bent glass, and laminated glass.
  • the solar radiation shielding member 55 is disposed on the transparent base material in order, the first dielectric film 10, the first metal film 1, the second dielectric film 20, the second metal film 2, and the third dielectric film 30.
  • the third metal film 3 and the fourth dielectric film 40 are laminated, and the first dielectric film 10 is a dielectric layer containing silicon and nitrogen directly on the transparent substrate.
  • A11 includes a dielectric layer B12 containing titanium and oxygen on the dielectric layer A11.
  • the optical thickness of the dielectric layer A11 is 12 to 86 nm.
  • the first dielectric film 10 and the second dielectric The film 20 and the third dielectric film 30 have a crystalline dielectric layer 23 as the uppermost layer, and the crystalline dielectric layer 23 has an optical film thickness of 5 to 54 nm, and the first metal film 1
  • the second metal film 2 and the third metal film 3 are Ag films having the crystalline dielectric layer 23 immediately below.
  • the glass plate G is used as a transparent base material of this solar radiation shielding member 55.
  • the above-described processed glass can be used as a window glass for buildings or vehicles, similarly to the solar radiation shielding member 55 described above.
  • a window glass for construction it is preferable to use laminated glass or tempered glass incorporated in a window frame, or to use these processed glass as a member of a multilayer glass.
  • tempered glass or bent glass it is possible to use tempered glass or bent glass as vehicle door glass, roof glass, rear glass, or the like.
  • the laminated glass can be used as a windshield in addition to the vehicle window glass described above.
  • the heating temperature may be appropriately selected according to the target processed glass.
  • the solar radiation shielding member 55 is heated using a known heating device such as a heating furnace or an autoclave, and various processed glasses are obtained by performing slow cooling or rapid cooling after heating.
  • the processed glass is tempered glass
  • the tempered glass can be obtained, for example, by subjecting the solar radiation shielding member 55 to treatment such as air cooling strengthening or chemical strengthening.
  • the bent glass is bent by a self-weight bending method, a press bending method or the like by heating the solar radiation shielding member 55 to near the softening point of 550 ° C. to 700 ° C. in a heating furnace, for example. Can be obtained.
  • the low radiation film 50 of the solar radiation shielding member 55 of the processed glass has an optical film thickness of the first dielectric film 10 of 88 to 120 nm, an optical film thickness of the second dielectric film 20 of 164 to 190 nm,
  • the optical thickness of the third dielectric film 30 is preferably 145 to 182 nm
  • the optical thickness of the fourth dielectric film 40 is preferably 100 to 123 nm.
  • One of the preferred embodiments of the present invention is a laminated glass in which two or more glass plates are integrated through an intermediate resin film, and the solar radiation shielding member 55 is used as at least one of the glass plates.
  • the solar radiation shielding member 55 is disposed on the transparent base material in order, the first dielectric film 10, the first metal film 1, the second dielectric film 20, the second metal film 2, and the third dielectric film 30.
  • the third metal film 3 and the fourth dielectric film 40 are laminated, and the first dielectric film 10 is a dielectric layer containing silicon and nitrogen directly on the transparent substrate.
  • A11 includes a dielectric layer B12 containing titanium and oxygen on the dielectric layer A11.
  • the optical thickness of the dielectric layer A11 is 12 to 86 nm.
  • the first dielectric film 10 and the second dielectric The film 20 and the third dielectric film 30 have a crystalline dielectric layer 23 as the uppermost layer, and the crystalline dielectric layer 23 has an optical film thickness of 5 to 54 nm, and the first metal film 1
  • the second metal film 2 and the third metal film 3 are Ag films having the crystalline dielectric layer 23 immediately below.
  • the solar shading member 55 may be in the form of the tempered glass or the bent glass, and it is preferable to use PVB or EVA which is generally used as the intermediate resin film.
  • the heating temperature may be 90 to 150 ° C.
  • the pressure may be 1.03 ⁇ 10 6 Pa / m 2 to 1.27 ⁇ 10 6 Pa / m 2 .
  • the low radiation film 50 of the solar radiation shielding member 55 of the laminated glass has an optical film thickness of the first dielectric film 10 of 57 to 115 nm, an optical film thickness of the second dielectric film 20 of 144 to 182 nm,
  • the optical film thickness of the third dielectric film 30 is preferably 136 to 182 nm, and the optical film thickness of the fourth dielectric film 40 is preferably 38 to 123 nm.
  • the optical thickness of the first dielectric film 10 may be 57 to 100 nm
  • the optical thickness of the third dielectric film 30 may be 140 to 170 nm
  • the fourth dielectric film 40 The optical film thickness may be 60 to 123 nm.
  • Table 1 shows the structures of the low-emission films of Examples and Comparative Examples.
  • ZnSnO-30 and “ZnSnO-50” are non-obtained materials obtained by performing sputtering film formation using a Zn target doped with 30 wt% Sn and 50 wt%, respectively, and oxygen gas as a reactive gas. This indicates that it is a crystalline dielectric layer.
  • film formation was performed on soda lime glass having a thickness of 2 mm using a magnetron sputtering apparatus.
  • Examples 1 to 24 and Comparative Examples 1 to 8 have a geometrical film thickness of 2.8 nm of a Ti sacrificial metal film directly on each metal film.
  • a sacrificial metal film of Ti was formed on the metal film in a geometric thickness of 5.5 nm.
  • Each layer had a desired film thickness by adjusting the conveyance speed of the glass plate. Moreover, the said conveyance speed used the speed
  • the glass plate and the film were not particularly heated except when the temperature of the glass plate and the film was increased due to sputtering at the time of film formation.
  • the glass plate G was held on the base material holder, and a desired target was placed in each vacuum chamber.
  • the target has a magnet disposed on the back side.
  • the inside of the vacuum chamber was evacuated by a vacuum pump.
  • a dielectric layer and a metal film were sequentially formed on the glass plate G using the conditions described in Table 2.
  • Power was supplied from a DC power source or a DC pulse power source to the sputtering target using a power cable.
  • argon gas, oxygen gas, and nitrogen gas were introduced into the vacuum chamber, and the pressure in the vacuum chamber was adjusted to the values described in Table 2. The pressure was measured using a diaphragm vacuum gauge.
  • the haze after heating at 700 ° C. was 1.5% or less, and the appearance was not significantly impaired.
  • the transmission color tone and reflection color tone (a * and b * ) after heating are 10 or less in absolute value, and the haze after heating is 0.5% or less, which is good. It was found that it was possible to achieve both excellent heat resistance and suppression of excessive color.
  • the comparative example had a large haze and a poor appearance quality.
  • the film thickness of the dielectric layer A is out of the range
  • Comparative Example 2 is the film without the dielectric layer B
  • Comparative Example 3 the film thickness of the crystalline dielectric film is out of the range.
  • SiAlO is used instead of the dielectric layer A
  • Comparative Example 8 the stacking order of the dielectric layer A and the dielectric layer B is changed.
  • Comparative Example 9 the heat resistance when SiAlN was used for the upper layer was evaluated by producing a simple laminate. From Comparative Example 9, it was found that the required heat resistance could not be achieved only by using SiAlN for the lowermost layer and the uppermost layer.
  • the solar radiation shielding member 55, the PVB film 61, and the soda lime glass plate G were stacked in this order, and the respective layers were deaerated. At this time, lamination was performed so that the low radiation film 50 on the solar radiation shielding member 55 was in contact with the PVB film 61. Next, this was put in an autoclave, the temperature of the autoclave was set to 130 ° C., the pressure was set to 1.2 ⁇ 10 6 Pa / m 2, and heat and pressure treatment were performed to produce a laminated glass.
  • Second metal film 3 Third metal film 4: Sacrificial metal film 10: First dielectric film 11: Dielectric layer A 12: Dielectric layer B 13: Crystalline dielectric layer 20: Second dielectric film 22: Antireflection layer 23: Crystalline dielectric layer 30: Third dielectric film 32: Antireflection layer 33: Crystalline dielectric layer 40: Fourth dielectric Body film 42: Antireflection layer 44: Protective layer 50: Low radiation film 55: Solar radiation shielding member 61: PVB film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明の日射遮蔽部材は、透明基材上に、順に、第1誘電体膜、第1金属膜、第2誘電体膜、第2金属膜、第3誘電体膜、第3金属膜、及び第4誘電体膜が積層された低放射膜を有し、該第1誘電体膜は、該透明基材の直上にケイ素及び窒素を含む誘電体層A、該誘電体層A上にチタン及び酸素を含む誘電体層Bを含み、該誘電体層Aの光学膜厚が12~86nmであり、該第1誘電体膜、該第2誘電体膜、及び第3誘電体膜は、最上層に結晶性誘電体層を有し、該結晶性誘電体層は、光学膜厚が5~54nmであり、該第1金属膜、該第2金属膜、及び該第3金属膜は、直下に該結晶性誘電体層を有するAg膜であることを特徴とする。

Description

日射遮蔽部材
 本発明は、透明基材上に、Ag膜を3層有する低放射膜が形成された日射遮蔽部材に関し、特に耐熱性を向上させた日射遮蔽部材に関する。
 建物や車両の開口部に設けられた窓において、室内での冷暖房の使用を低減させることを目的として、室内へ入射する日射を遮蔽することが可能な日射遮蔽部材が広く利用されている。上記の日射遮蔽部材としては、ガラス板表面に低放射膜を形成した低放射ガラスが広く知られている。
 前述した低放射膜は、Ag膜と該Ag膜を挟む透明誘電体膜とを積層した積層膜が広く用いられている。特にAg膜を2層使用した低放射膜(例えば、ガラス板の上に順に、第1透明誘電体膜、Ag膜、第2透明誘電体膜、Ag膜、及び第3透明誘電体膜を形成した低放射膜)は高い日射遮蔽機能を有することから、該低放射膜を用いた様々な日射遮蔽部材が検討されていた。
 前述した日射遮蔽部材は、Ag膜の総膜厚が増える程、日射遮蔽機能が向上する傾向がある。今まではコストと要求される性能との兼ね合いから前述したAg膜を2つ有する低放射膜が妥当だったが、近年、さらなる日射遮蔽機能の向上への要求が高まっており、Ag膜を3つ有する低放射膜について検討がなされている(例えば、特許文献1参照)。
 ここで、建築用や車両用に用いるガラス板は単板のガラス板の他にも、合わせガラスや曲げガラス、強化ガラス等のように加工された加工ガラスが用いられている。当該加工ガラスは、作製の過程で加熱工程を有する。例えば、合わせガラス作製時の加熱工程では、通常90~150℃程度で加熱を行う。また、曲げガラスを得る為の曲げ加工処理や、強化ガラスを得る為の風冷強化処理等の物理強化処理では、一般的に大気中で550~720℃程度で加熱を行う。
 例えば、特許文献2には、前述したAg膜を3つ有する低放射膜を用いた合わせガラスが提案されている。当該文献の実施例では、ガラス基材上にSnドープZnO(以下「ZnSnO」と記載することもある)/ZnO/Ag/Ti/ZnO/ZnSnO/ZnO/Ag/Ti/ZnO/ZnSnO/ZnO/Ag/Ti/ZnO/ZnSnO、の順に積層した低放射膜を有する日射遮蔽部材と、ガラス板とを用いた合わせガラスが開示されている。
 また、特許文献3には、Ag膜を3つ有する低放射膜を用いた曲げガラスが提案されている。当該文献の実施例では、ガラス基材上にSi34/ZnSnO/ZnO/Ag/NiCr/ZnO/Si34/ZnO/Ag/NiCr/ZnO/Si34/ZnSnO/ZnO/Ag/NiCr/ZnO/Si34、の順に積層した低放射膜有する日射遮蔽部材を、640℃で曲げ加工した曲げガラスが開示されている。
 また、特許文献4には、Ag膜を3つ有する低放射膜を用いた強化ガラスが提案されている。当該文献の実施例では、ガラス基材上にSi34/ZnO/Ag/Ti/ZnO/Si34/ZnO/Ag/Ti/ZnO/Si34/ZnO/Ag/Ti/ZnO/Si34、の順に積層した低放射膜を有する日射遮蔽部材を、620℃で熱処理した強化ガラスが開示されている。
特表2005-516818号公報 特表2010-536707号公報 特表2013-502366号公報 特表2007-512218号公報
 前述したように、建築用や車両用に用いるガラス板は前述したような加工ガラスが用いられている。また、近年、前述したような低放射膜を有する日射遮蔽部材を加工ガラスに用いることが検討されている。しかし、当該加工ガラスは作製過程で加熱工程を経る。低放射膜内のAg膜は熱によって酸化や凝集しやすいため、加熱工程を経ると微小な欠陥の発生によるヘーズの増加や外観品質の低下等が生じ易い。また、Ag膜の劣化に伴い表面抵抗の増加や日射遮蔽性能の低下などが生じるため、加熱工程によってAg膜が大きく劣化してしまうという問題があった。
 以上より、本発明では、作製過程に加熱工程を伴う加工ガラスに使用可能な、耐熱性を有する低放射膜を得ることを目的とした。
 上記課題に対して本発明者らが鋭意検討を行ったところ、ガラス板の直上にAlドープSi34(以下「SiAlN」と記載することもある)層を形成し、該SiAlN層の上にTiO2層を形成した、Ag膜を有する低放射膜であれば、耐熱性を大きく向上させることが可能となることがわかった。
 すなわち本発明は、透明基材上に、順に、第1誘電体膜、第1金属膜、第2誘電体膜、第2金属膜、第3誘電体膜、第3金属膜、及び第4誘電体膜が積層された低放射膜を有する日射遮蔽部材において、該第1誘電体膜は、該透明基材の直上にケイ素及び窒素を含む誘電体層A、該誘電体層A上にチタン及び酸素を含む誘電体層Bを含み、該誘電体層Aの光学膜厚が12~86nmであり、該第1誘電体膜、該第2誘電体膜、及び第3誘電体膜は、最上層に結晶性誘電体層を有し、該結晶性誘電体層は、光学膜厚が5~54nmであり、該第1金属膜、該第2金属膜、及び該第3金属膜は、直下に該結晶性誘電体層を有するAg膜であることを特徴とする日射遮蔽部材である。
 以上より、本発明によって、加熱工程を伴う加工処理が施された加工ガラスに使用可能な耐熱性を有する低放射膜を得ることが可能となった。
本発明の一実施形態に係る日射遮蔽部材を表す断面模式図である。 日射遮蔽部材を用いた合わせガラスを表す簡易図である。
 1:用語の説明
 以下に本明細書の用語について説明する。
 (各種波長光)
 本明細書における「可視光線」は、波長380nm~780nmの範囲の光とする。また、本明細書における「日射遮蔽」とは、波長300nm~2500nmの範囲の光のエネルギーの透過を抑制することを指すものとする。
 (可視光線透過率、及び各種色調)
 可視光線透過率、可視光線の透過色調、及び反射色調について、自記分光光度計(日立製作所製、U-4000)を用いて測定される値を採用する。また、反射色調については、低放射膜が形成されていない透明基材面側(透明基材としてガラス板を使用している際は、「ガラス面側」と記載することもある)と低放射膜が形成された膜面側についてそれぞれ算出するものとする。可視光線透過率は、JIS R3106(1998)に準拠する方法で算出するものとする。また、透過色調及び反射色調はJIS Z8781-4に準拠する方法で、CIE L***色空間のa*及びb*を算出するものとする。
 (ヘーズ)
 ヘーズについては、ヘーズメーター(スガ試験機、HZ-V3)を用いて測定される値を採用する。また、ヘーズは、JIS K7136(2000)に記載された方法に沿って算出するものとする。
 (幾何学膜厚)
 幾何学膜厚は、一般的に用いられる膜厚と同じ意味であり、単なる膜や層の厚みを示す。幾何学膜厚は、低放射膜と同様の成膜条件で作成した単層の膜厚と基材の搬送速度との積から、該単層を作製する際の成膜速度を求め、該成膜速度を用いて該当する層又は膜の膜厚を算出される値を採用する。
 (屈折率)
 本明細書における「屈折率」は、波長550nmにおける値を指すものとする。また屈折率は、まず低放射膜と同様の条件で単層を作成し、得られた可視光線透過率と可視光線反射率(膜面)とを自記分光光度計(日立製作所製、U-4000)で測定し、得られた値から光学シミュレーション(Reflectance-transmittance法)で算出される値を採用する。
 (光学膜厚)
 光学膜厚とは、幾何学膜厚と屈折率の積で表される値であり、低放射膜と同様の成膜条件で作成した単層の、波長550nmにおける屈折率と膜厚との積から算出される値を採用する。
 (低放射膜)
 本明細書における「低放射膜」は、透明基材上の膜全体を指すものとする。また、「膜」は1以上の層が積層されたものとし、「層」は境界によって区切られる最小単位であり、層を構成する成分は1種類でも複数種類でもよく、また層内の成分の分布は均一でも不均一でもよい。また、「透明基材上」等の「上」とは、透明基材と接触しても、他の任意の膜や層が介在しているものでもよい。一方で「直上」及び「直下」は、対象となる層や膜と接触し、他の任意の膜や層が介在しないことを示すものとする。また、例えば図1に示したような日射遮蔽部材において、ガラス板G側を「下」、保護層44側を「上」とし、図1の第1誘電体膜10における結晶性誘電体層13や第4誘電体膜40における保護層44のように、膜の中で最も上側にある層を「最上層」と記載することもある。
 (加工ガラス)
 本明細書では、加熱工程を経て加工されたガラス板を「加工ガラス」と記載する。当該加工ガラスとしては、前述したように合わせガラス、曲げガラス、強化ガラス等が挙げられる。上記の「加熱工程」は、温度を特に限定するものではないが、例えば合わせガラスであれば90~150℃程度、曲げガラスや強化ガラスでは550~720℃程度で加熱を行う。また、日射遮蔽部材が加熱工程を経て加工される場合についても「加工ガラス」と記載する。なお、この時、日射遮蔽部材の透明基材はガラス板を用いるものとする。
 (耐熱性)
 本明細書における「耐熱性」は、低放射膜の耐熱性を示すものとする。本明細書の実施例において、低放射膜が形成された日射遮蔽部材を690~700℃で7分間加熱し、加熱後のヘーズが1.5%以下、及び目視での外観評価で低放射膜に欠陥の見られないものを「耐熱性あり」とした。また、好ましくは1.0%以下、更に好ましくは0.5%以下としてもよい。
 (Zn誘電体)
 本明細書では、SnドープZnOを「ZnSnO」と記載する。Znは結晶配列しやすい金属原子であり、酸化物であるZnOは結晶性の誘電体層となる。一方で、ZnO層にSnがドープされたZnSnOは、Snのドープ量が多くなるほど緻密な非結晶状態をとる割合が増え、層全体として非結晶な誘電体層となる。本明細書の「ZnSnO」は非結晶な誘電体層を指すものとする。また、非結晶のZnSnOを得る為には、Snのドープ量を多くする必要がある。例えば、Zn:Sn(重量比)を40:60~80:20としたZnSnターゲットと、酸素ガスを反応性ガスとして用いたスパッタリング成膜によって得る事が可能である。また、この時、得られる誘電体層の組成は(ZnO)x(SnO21-x(ただし、0<x<1)であると考えられるが、本明細書では簡単にZnSnOと記載する。
 また、本明細書では、AlドープZnOを「ZnAlO」と記載する。当該ZnAlOは結晶性の誘電体である。ZnAlOは誘電体全体に対してAlを1~5wt%含むものであり、誘電体の成分比に影響を与えない程度の含有量であることから、ZnAlOは概ねZn:O=1:1だと考えられる。
 (Si誘電体)
 本明細書では、AlドープSi34を「SiAlN」と記載する。Si34は非結晶性の誘電体層であり、Si34層にAlがドープされたSiAlNも同様に非結晶性の誘電体層である。SiAlNは、例えばAlを1~15wt%ドープされたSiターゲットと、窒素ガスを反応性ガスとして用いて、スパッタリング成膜を行うことで得ることが可能である。SiAlNは誘電体全体に対してAlを1~10wt%含むものであり、誘電体の成分比に影響を与えない程度の含有量であることから、SiAlNは概ねSi:N=3:4だと考えられるが、本明細書では簡単にSiAlNと記載する。
 また、本発明では、AlドープSiO2を「SiAlO」と記載する。SiO2は非結晶性の誘電体層であり、SiO2層にAlがドープされたSiAlOも同様に非結晶性の誘電体層である。SiAlOは、例えばAlを1~15wt%ドープされたSiターゲットと、酸素ガス等を反応性ガスとして用いて、スパッタリング成膜を行うことで得ることが可能である。SiAlOは誘電体全体に対してAlを1~10wt%含むものであり、誘電体の成分比に影響を与えない程度の含有量であることから、SiAlOは概ねSi:O=1:2だと考えられるが、本明細書では簡単にSiAlOと記載する。
 また、本明細書では、Siの酸窒化物を「SiON」と記載する。SiONは非結晶性の誘電体層であり、例えばSiターゲットと、酸素ガスと窒素ガスの混合ガスを反応性ガスとして用いて、スパッタリング成膜を行うことで得ることが可能である。得られる酸窒化物のSi:O:Nの比は、所望の屈折率に合わせて適宜選択すればよい。酸窒化物の屈折率は、反応性ガスの比率に応じて、酸化物の屈折率と窒化物の屈折率との範囲内となる。例えばSiO2の屈折率は1.46程度、Si34の屈折率は2.03程度であり、当該酸窒化物の屈折率は反応性ガスの混合比に応じて1.53~2.03の範囲内となる。
 また、本明細書では、AlをドープしたSiの酸窒化物を「SiAlON」と記載する。SiAlONは非結晶性の誘電体層であり、誘電体全体に対してAlを1~10wt%含む。SiAlONは、例えばAlを1~15wt%ドープされたSiターゲットと、酸素ガスと窒素ガスの混合ガスを反応性ガスとして用いて、スパッタリング成膜を行うことで得ることが可能である。得られる酸窒化物のSi:O:Nの比は、所望の屈折率に合わせて適宜選択すればよい。酸窒化物の屈折率は、反応性ガスの比率に応じて、酸化物の屈折率と窒化物の屈折率の範囲内となる。例えば、本明細書の実施例においては、Alを10wt%含むSiターゲットを用いて、O2ガス:N2ガス(体積比)=1:7で混合した混合ガスを用いて誘電体層を形成したところ、屈折率が1.82のSiAlON層が得られた。なお、同様のターゲットを用いた酸化物(SiAlO)の屈折率は1.53、窒化物(SiAlN)の屈折率は2.03となった。
 2:日射遮蔽部材
 本発明の日射遮蔽部材は、透明基材上に、順に、第1誘電体膜、第1金属膜、第2誘電体膜、第2金属膜、第3誘電体膜、第3金属膜、及び第4誘電体膜が積層された低放射膜を有する日射遮蔽部材において、該第1誘電体膜は、該透明基材の直上にケイ素及び窒素を含む誘電体層A、該誘電体層A上にチタン及び酸素を含む誘電体層Bを含み、該誘電体層Aの光学膜厚が12~86nmであり、該第1誘電体膜、該第2誘電体膜、及び第3誘電体膜は、最上層に結晶性誘電体層を有し、該結晶性誘電体層は、光学膜厚が5~54nmであり、該第1金属膜、該第2金属膜、及び該第3金属膜は、直下に該結晶性誘電体層を有するAg膜であることを特徴とする。
 本発明の日射遮蔽部材について、以下図1を参照しながら説明する。なお、本発明は図1に限定されるものではない。
 (日射遮蔽部材55)
 日射遮蔽部材55は、上記の第1誘電体膜10~第4誘電体膜40までの低放射膜50と、該低放射膜50が形成された透明基材とを指すものである。また、本発明は低放射膜50の耐熱性を向上させたものであり、加熱処理を行って前述した加工ガラスとして用いることが可能である。
 また、本発明の日射遮蔽部材55は、前述した加工ガラスとして用いる他に、建物や車両の窓材として使用することが可能であり、特に建物用や車両用の窓ガラスとして用いるのが好適である。建物用の窓ガラスとして用いる場合は、該日射遮蔽部材55を単板で窓枠に組み込んだり、該日射遮蔽部材55を複層ガラスの部材として用いたりすることが可能である。また、例えば車両用の窓ガラスとして該日射遮蔽部材55を用いる際は、曲げ加工や合わせ加工、強化加工が不要な場合のドアガラスやルーフガラス、リヤガラス等として用いることが可能である。
 (透明基材)
 透明基材は低放射膜50を形成する板状の基材であり、本明細書においては、「透明基材」を厚み2mmにおける可視光線透過率が80%以上となる基材としてもよい。なお、図1では透明基材としてガラス板Gを用いているが、これに限定されるものではない。また、ガラス板Gは特に限定するものではなく、汎用的なフロート板ガラスや着色ガラス、化学強化ガラス、風冷強化ガラス等を用いても良い。
 (金属膜)
 金属膜はAg膜であり、透明基材側から順に、第1金属膜1、第2金属膜2、及び第3金属膜3とする。金属膜の幾何学的膜厚の合計値を30~50nmとすることによって、良好な日射遮蔽性能とすることが可能であるため好ましい。上記膜厚の合計値が50nmを超えると、日射遮蔽性能は良好になるが、斜めから見た時の反射色に赤味を呈しやすくなる。また、30nm未満だと、日射遮蔽性能が不十分になりやすい。
 また、第2金属膜2を最も厚くし、他の金属膜に対する厚みの比を1.01~1.55の範囲内とすることによって、日射遮蔽性能を損なうことなく可視光線透過率を向上させることが可能であることから好ましい。また、1.01未満、及び1.55を超えると可視光線透過率が不十分になる場合がある。
 金属膜は、Agを90~100wt%含む金属膜を用いるものとする。また、Ag膜は熱や酸素等によって劣化しやすいため、耐熱性や化学的耐久性を向上させる目的で、膜中にPd、Au、Pt、Ti、Al、Cu、Cr、Mo、Nb、Nd、Bi及びNi等を含んでもよい。
 本発明の第1金属膜1、第2金属膜2、及び第3金属膜3は、それぞれ第1誘電体膜10、第2誘電体膜20、及び第3誘電体膜30の直上に形成される。後述する各誘電体膜10、20、30は、最も上の層に結晶性誘電体層13、23、33を有するため、当該結晶性誘電体層13、23、33の直上にAg膜を形成することによって、Ag膜の結晶性を向上させることが可能となる。加熱工程の際に生じるAgの凝集等の劣化は、元々のAg膜が有する微小な欠陥に由来する場合があるため、Ag膜の結晶性を向上させることによって、耐熱性を向上させることが可能である。
 (犠牲金属膜4)
 上記の各金属膜は、直上に犠牲金属膜4を形成するのが好ましい。犠牲金属膜4は、金属膜の上に各誘電体膜を形成する際、露出した状態の金属膜の直上に各誘電体膜20、30、40を形成すると、該金属膜が酸素等により劣化してしまうことがあるため、この金属膜を保護する事を目的としたものである。犠牲金属膜4としては、加熱工程で著しい劣化の生じない材料を用いるのが好ましく、例えば、Ti、NiCr、Nb及びステンレス鋼からなる群から選ばれる少なくとも1つを含むものであることが好ましい。また、該犠牲金属膜4は最終的に酸化や窒化によって透明になるものを用いると、可視光線透過率を必要以上に損なわずに済むため好適である。なお、本明細書において、上記の「ステンレス鋼」とは、Fe、Cr、及びNiが混合したものであり、以下「SUS」と記載することもある。上記の3成分の含有量は適宜選択されればよいが、例えばFeを50~80wt%、Crを10~25wt%、Niを0~20wt%含有するとしてもよい。
 犠牲金属膜4の膜厚は特に限定するものではないが、通常幾何学膜厚で1~5nm程度あればよい。また、犠牲金属膜4とその上の誘電体膜との間に別の膜が介在してもよいが、各犠牲金属膜4の直上に、第2誘電体膜20、第3誘電体膜30、及び第4誘電体膜40をそれぞれ設けるのが好適である。
 (第1誘電体膜10)
 第1誘電体膜10は、透明基材の直上に設けられる誘電体の膜であり、該第1誘電体膜10は、該透明基材の直上にケイ素及び窒素を含む誘電体層A11、該誘電体層A上にチタン及び酸素を含む誘電体層B12を含み、最上層に結晶性誘電体層13を有する膜である。膜厚は特に限定するものではないが、例えば光学膜厚で57~126nmの範囲内とするのが好ましい。
 また、第1誘電体膜10は、誘電体層A11と誘電体層B12との間や、誘電体層B12と結晶性誘電体層13との間に、任意の層が介在してもよい。ただし、本発明者らが検討を行った結果、誘電体層B12の直上に誘電体層A11と同様の、SiとNを含有する誘電体層を形成すると、耐熱性が大きく劣化することがわかった。従って、該誘電体層B12の直上に、SiとNを含有する誘電体層は使用しないのが望ましい。
 (誘電体層A11)
 上記の誘電体層A11は、透明基材の表面に形成されるケイ素及び窒素を含む誘電体の層であり、特に透明基材としてガラス板Gを用いた際に、ガラス板Gのパッシベーション層として機能するものである。加熱環境下において、ガラス板Gからアルカリ金属等が誘電体膜内へ拡散し、該拡散成分が金属膜まで到達するとAgが劣化してしまうという問題がある。上記の誘電体層A11をガラス板Gの直上に用いると、本発明の実施例で示したように、690~700℃で加熱した場合であってもAgの劣化を抑制可能であることがわかった。当該誘電体層A11の材料としては、ケイ素を含む窒化物層、又はケイ素を含む酸窒化物層を用いるのが好ましく、例えばSi34、SiAlN、SiON、SiAlON等を用いるのが好ましい。
 誘電体層A11の光学膜厚は12~86nmとする。本発明者らが検討を行ったところ、12nm未満、及び86nmを超えると、690~700℃程度で加熱を行った後、ヘーズや表面抵抗の値が高くなってしまうことがわかった。12nm未満の場合は、透明基材からのアルカリ金属等の拡散を十分に抑制することができず、また86nmを超える場合は、層自体の内部応力や焼成時の熱応力が大きくなってしまい、クラックが発生しやすくなる。クラックが生じるとパッシベーション層として十分な機能を果たすことが出来なくなり、Ag膜の劣化や該誘電体層A11自体のヘーズが生じることがある。好ましくは、16~82nm、より好ましくは18~72nmとしてもよい。
 (誘電体層B12)
 上記の誘電体層B12は、チタン及び酸素を含む誘電体の層であり、耐熱性を向上させる機能を有する。例えば、誘電体層B12としてTiO2を用いるのが好ましい。また、Tiに対してSi、Al、Zn、In、Sn、Nb、Zr又はTaを0.1~30wt%ドープしたTi酸化物を用いてもよい。
 誘電体層B12は、光学膜厚で2~100nmとするのが好ましい。2nm未満だと耐熱性を向上させる機能が不十分となりやすく、一方で100nmを超えると加熱工程の後にヘーズが悪化してしまう場合がある。また、好ましくは12~62nmとしてもよい。
 (結晶性誘電体層13)
 上記の結晶性誘電体層13は、第1金属膜1のAg膜の形成時にAgの結晶成長を促進させるものである。Agが結晶成長することによって、各種光学特性をより向上させることが可能となる。また結晶性のよいAg膜は、焼成時に劣化の起因となりうる欠陥が少ないため、耐熱性が向上しやすい。
 結晶性誘電体層13としては、Znを含む誘電体を用いることが可能であり、例えばZnの酸化物が挙げられる。また、Al、In、Sn及びGaを、誘電体全体に対して1~5wt%含むZnの酸化物であってもよい。また、該結晶性誘電体層13は、光学膜厚で5~54nmとする。5nm未満ではAgの結晶成長を促進させる効果が不十分になりやすく、また、54nmを超えると結晶性誘電体層13中に結晶粒界が存在することがあり、該結晶粒界から各種ガスや水分が浸入して第1金属膜1を劣化させてしまうことがあるため、加熱工程後に欠陥や凝集が発生する起点となることがある。
 (第2誘電体膜20、第3誘電体膜30)
 第2誘電体膜20は、第1金属膜1上に形成される誘電体膜であり、主に可視光線の透過率や反射率、反射色調等に影響を及ぼす。膜厚は所望の光学特性に応じて選択されればよく、特に限定するものではないが、例えば光学膜厚で144~190nmの範囲内とするのが好ましい。
 第3誘電体膜30は、第2金属膜2上に形成される誘電体膜であり、第2誘電体膜20と同様に、主に可視光線の透過率や反射率、反射色調等に影響を及ぼす。膜厚は所望の光学特性に応じて選択されればよく、特に限定するものではないが、例えば光学膜厚で136~182nmの範囲内とするのが好ましい。
 第2誘電体膜20及び第3誘電体膜30は、第1誘電体膜10と同様に、最上層に結晶性誘電体層23、33を有する。また、当該結晶性誘電体層23、33は、前述した第1誘電体膜10の結晶性誘電体層13と同様の種類の誘電体を用いればよく、光学膜厚をそれぞれ5~54nmとする。
 また、第2誘電体膜20及び第3誘電体膜30は、上記の結晶性誘電体層22、23の他にも、各金属膜の屈折率と異なる屈折率を有する誘電体を用いてもよく、誘電体層の種類は特に限定されるものではない。例えば、Al、Sn、又はGa等をドープしたZnO、In23、Sn又はZn等をドープしたIn23、及びTiO2等の屈折率が2.0前後の誘電体を用いることが可能である。また、特にZnSnOは緻密な膜構造を有することが知られており、金属膜を劣化させるガスや水分に対するバリア性に優れていることから、好適に使用することが可能である。
 (第4誘電体膜40)
 前記第4誘電体膜40は、第3金属膜3上に形成される誘電体膜であり、主に耐熱性や透過色調、反射色調等に影響を及ぼす膜である。第4誘電体膜40は、前記第2誘電体膜20等と同様に、各金属膜の屈折率と異なる屈折率を有する誘電体を用いればよく、特に限定されるものではない。膜厚は所望の光学特性に応じて選択されればよく、特に限定するものではないが、例えば光学膜厚で38~123nmの範囲内とするのが好ましい。
 また、該第4誘電体膜40は、チタン及び酸素を含む誘電体層と、亜鉛及び酸素を含む非結晶性誘電体層と、を含む2層以上の膜とするのが好ましい。チタン及び酸素を含む誘電体層は、低放射膜50の機械的耐久性や耐熱性を向上させたり、反射防止効果により可視光透過率を高めたりできるため好ましい。また、亜鉛及び酸素を含む非結晶性誘電体層は緻密な膜であり、下層の金属膜への酸素の拡散を防ぐことができるため、耐熱性を向上させることが可能である。また、該非結晶性誘電体層の上に、上記のチタン及び酸素を含む誘電体層を用いるのが好ましい。
 上記のチタン及び酸素を含む誘電体層としては、例えばTiO2が挙げられ、膜厚は特に限定するものではないが、例えば光学膜厚で2~100nmとしてもよい。また、上記の亜鉛及び酸素を含む非結晶性誘電体層としては、例えばZnSnOが挙げられ、膜厚は特に限定するものではないが、例えば光学膜厚で20~102nmとしてもよい。
 また、第4誘電体膜40は、低放射膜50の最上層を含む膜であり、最上層に保護層44を有するのが好ましい。保護層44は低放射膜50の表面からの酸素等を防いで内部の金属膜が劣化するのを抑制する層である。例えばTiO2やSiO2、SiAlO等の誘電体層を用いる事が可能である。
 3:日射遮蔽部材の製造方法
 本発明の日射遮蔽部材55の低放射膜50は、スパッタリング法、電子ビーム蒸着法やイオンプレーティング法等で形成することが可能である。また、生産性、均一性を確保しやすいという点でスパッタリング法が適している。以下にスパッタリング法を用いて形成する方法を記載する。なお、本発明は以下の製造方法に限定されるものではない。
 スパッタリング法による低放射膜50の形成は、各層の材料となるスパッタリング用のターゲットが設置された装置内を、透明基材を搬送させながら行う。装置内には層形成を行う真空チャンバーが設けられており、真空チャンバー内に上記のターゲットが設置された状態でスパッタリング時に用いる雰囲気ガスが導入され、該ターゲットに負の電位を印加することにより装置内にプラズマを発生させてスパッタリングを行う。
 また、所望の膜厚を得る方法はスパッタリング装置の形式によって異なるため特に限定しないが、ターゲットへの投入電力や導入ガス条件の調整により、層の形成速度を変化させることで所望の膜厚とする方法や、基板の搬送速度を調節することで所望の膜厚とする方法などが広く用いられている。
 前記誘電体膜10、20、30、40を形成する場合、使用するターゲットはセラミックターゲット、金属ターゲット、どちらを用いても構わない。いずれにおいても使用する雰囲気ガスのガス条件は特に限定するものでなく、例えばArガス、O2ガス、及びN2ガス等から目的とする層に応じたガス種、混合比を適宜決めれば良い。また、真空チャンバーに導入するガスとして、Arガス、O2ガス、N2ガス以外の任意の第3成分を含んでも良い。
 金属膜1、2、3を形成する場合、使用するターゲットにはAgターゲット又はAg合金ターゲットを用いる。この時導入する雰囲気ガスにはArガスを用いるのが好ましいが、Agの光学特性を損なわない程度であれば異なる種類のガスを混合してもよい。
 犠牲金属膜4を形成する場合、使用するターゲットは適宜選択すればよく、導入する雰囲気ガスにはAr等の不活性ガスを用いればよい。
 プラズマ発生源には直流(DC)電源、交流(AC)電源、及び交流と直流を重畳した電源等、いずれも用いられるが、誘電体の層を形成する際にアーキングなどの放電異常が生じやすい場合は、直流電源にパルスを印加したDCパルス電源又は交流電源を用いるのが好ましい。
 4:好適な実施形態
 本発明の日射遮蔽部材55は、加熱工程を経ても低放射膜50内のAg膜の著しい劣化を抑制可能であることから、合わせガラス、曲げガラス、及び強化ガラス等の加工ガラスとして好適に用いることができる。また、加熱工程の後も可視光線透過率を70%以上とすることが可能である為、得られる加工ガラスの視認性を大きく損なわないと考えられる。以下に本発明の好適な実施形態について記載する。なお、当該実施形態についての記載のうち、前述した「1:用語の説明」~「3:日射遮蔽部材の製造方法」と重複する内容については、記載を省略した。
 本発明の好適な実施形態のひとつは、ガラス板が加熱工程を経て加工された加工ガラスにおいて、該ガラス板を日射遮蔽部材55とした加工ガラスである。当該加工ガラスとしては、例えば前述した強化ガラス、曲げガラス、及び合わせガラス等が挙げられる。上記の通り、日射遮蔽部材55は、透明基材上に、順に、第1誘電体膜10、第1金属膜1、第2誘電体膜20、第2金属膜2、第3誘電体膜30、第3金属膜3、及び第4誘電体膜40が積層された低放射膜50を有し、該第1誘電体膜10は、該透明基材の直上にケイ素及び窒素を含む誘電体層A11、該誘電体層A11上にチタン及び酸素を含む誘電体層B12を含み、該誘電体層A11の光学膜厚が12~86nmであり、該第1誘電体膜10、該第2誘電体膜20、及び第3誘電体膜30は、最上層に結晶性誘電体層23を有し、該結晶性誘電体層23は、光学膜厚が5~54nmであり、該第1金属膜1、該第2金属膜2、及び該第3金属膜3は、直下に該結晶性誘電体層23を有するAg膜であることを特徴とする。当該形態では、該日射遮蔽部材55の透明基材としてガラス板Gを用いる。
 上記の加工ガラスは、前述した日射遮蔽部材55と同様に建築用や車両用の窓ガラスとして用いることが可能である。建築用の窓ガラスとして用いる場合は、合わせガラスや強化ガラスを窓枠に組み込んで使用したり、これらの加工ガラスを複層ガラスの部材として使用したりするのが好ましい。また、車両用の窓ガラスとして用いる場合は、強化ガラスや曲げガラスを車両のドアガラスやルーフガラス、リヤガラス等として用いることが可能である。また、合わせガラスは上記の車両用の窓ガラスの他に、ウィンドシールドとして用いることが可能である。
 上記の加工ガラスを得る際、加熱温度は目的とする加工ガラスに応じて適宜選択すれば良い。具体的には、日射遮蔽部材55を加熱用の炉やオートクレーブ等の公知の加熱装置を用いて加熱し、加熱後に徐冷又は急冷を行うことによって、各種加工ガラスを得る。
 また、上記の加工ガラスが強化ガラスのとき、該強化ガラスは、例えば日射遮蔽部材55を風冷強化や化学強化等の処理を行うことによって得ることが可能である。
 また、上記の加工ガラスが曲げガラスのとき、該曲げガラスは、例えば加熱炉で550℃~700℃の軟化点近くまで日射遮蔽部材55を加熱し、自重曲げ法やプレス曲げ法等によって曲げ加工を施すことによって得ることが可能である。
 また、上記加工ガラスの前記日射遮蔽部材55の低放射膜50は、第1誘電体膜10の光学的膜厚が88~120nm、第2誘電体膜20の光学的膜厚が164~190nm、第3誘電体膜30の光学的膜厚が145~182nm、及び第4誘電体膜40の光学的膜厚が100~123nmであるのが好ましい。各誘電体膜の膜厚を上記の範囲内とすることによって、日射遮蔽部材55のガラス板Gの厚みが2mmのときの、CIE L***色空間に準拠して得られる透過光及び反射光の、a*及びb*の絶対値を10以下とし、かつ焼成後のヘーズ値を0.5%以下とすることが可能となる。
 また、本発明の好適な実施形態のひとつは、2枚以上のガラス板を中間樹脂膜を介して一体化させた合わせガラスにおいて、該ガラス板のうちの少なくとも1枚として、日射遮蔽部材55を用いた合わせガラスである。上記の通り、日射遮蔽部材55は、透明基材上に、順に、第1誘電体膜10、第1金属膜1、第2誘電体膜20、第2金属膜2、第3誘電体膜30、第3金属膜3、及び第4誘電体膜40が積層された低放射膜50を有し、該第1誘電体膜10は、該透明基材の直上にケイ素及び窒素を含む誘電体層A11、該誘電体層A11上にチタン及び酸素を含む誘電体層B12を含み、該誘電体層A11の光学膜厚が12~86nmであり、該第1誘電体膜10、該第2誘電体膜20、及び第3誘電体膜30は、最上層に結晶性誘電体層23を有し、該結晶性誘電体層23は、光学膜厚が5~54nmであり、該第1金属膜1、該第2金属膜2、及び該第3金属膜3は、直下に該結晶性誘電体層23を有するAg膜であることを特徴とする。該日射遮蔽部材55は前記強化ガラスや前記曲げガラスの形態であってもよく、上記の中間樹脂膜としては、一般的によく用いられているPVBやEVAを用いるのが好ましい。
 本発明の日射遮蔽部材55を用いて合わせガラスを作製する場合、オートクレーブを用いて加熱・加圧処理を行うことが好ましい。この時の作製条件は特に限定するものではないが、例えば加熱温度を90~150℃、圧力を1.03×106Pa/m2~1.27×106Pa/m2としてもよい。
 また、上記合わせガラスの該日射遮蔽部材55の低放射膜50は、第1誘電体膜10の光学的膜厚が57~115nm、第2誘電体膜20の光学的膜厚が144~182nm、第3誘電体膜30の光学的膜厚が136~182nm、及び第4誘電体膜40の光学的膜厚が38~123nmであることが好ましい。各誘電体膜の膜厚を上記の範囲内とすることによって、ガラス板1枚あたりの厚みが2mmのときの、CIE L***色空間に準拠して得られる透過光及び反射光の、a*及びb*の絶対値を10以下とすることが可能となる。また、さらに好ましくは、第1誘電体膜10の光学的膜厚を57~100nmとしてもよく、第3誘電体膜30の光学的膜厚を140~170nmとしてもよく、第4誘電体膜40の光学的膜厚を60~123nmとしてもよい。各誘電体膜の膜厚を上記の範囲内とすることによって、ガラス板1枚あたりの厚みが2mmのときの、CIE L***色空間に準拠して得られる透過光及び反射光の、a*の値を-10以上、1未満、b*の値を-10以上、5以下とすることが可能となる。
 1:低放射膜の形成
 以下に本発明の実施例及び比較例を示す。実施例及び比較例の低放射膜の構成を表1に示した。また、「ZnSnO-30」「ZnSnO-50」とは、それぞれSnを30wt%、50wt%ドープされたZnターゲットと、酸素ガスを反応性ガスとして用いて、スパッタリング成膜を行うことで得た非結晶性の誘電体層であることを示すものである。いずれも厚み2mmのソーダライムガラス上に、マグネトロンスパッタリング装置を用いて成膜を行った。なお、表に記載していないが、実施例1~24、及び比較例1~8は、各金属膜の直上にTiの犠牲金属膜を幾何学的膜厚で2.8nm、比較例9は金属膜上にTiの犠牲金属膜を幾何学的膜厚で5.5nm、それぞれ形成した。
 各層はガラス板の搬送速度を調整する事により所望の膜厚を得た。また、上記の搬送速度は予め単層膜を形成し、膜の種類ごとに算出した速度を使用した。なお、いずれの実施例及び比較例においてもガラス板及び膜は、成膜時にスパッタリングに由来してガラス板及び膜の温度が上昇する場合を除いて、特に加熱は行わなかった。
 まず、ガラス板Gを基材ホルダーに保持させ、各真空チャンバー内に所望のターゲットを設置した。該ターゲットは裏側にマグネットが配置されている。次に、真空チャンバー内を真空ポンプによって排気した。
 次に誘電体層や金属膜を表2に記載した条件を用いてガラス板G上に順に成膜した。スパッタリング用ターゲットに電源ケーブルを用いてDC電源又はDCパルス電源より電力を投入した。この時、真空ポンプを連続的に稼動させながら、真空チャンバー内にアルゴンガス、酸素ガス、窒素ガスを導入し、真空チャンバー内の圧力が表2に記載した値となるよう調節した。尚、圧力は隔膜真空計を用いて測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 2:各種評価
 上記の実施例及び比較例で得られた各日射遮蔽部材を、700℃に保持したマッフル炉中に入れ、7分経過後に取出し、大気中で室温まで徐冷した。徐冷後に取り出し、以下の方法で低放射膜の評価を行い、得られた結果を表3へ示した。
 (耐熱性)
 ヘーズメーター(スガ試験機、HZ-V3)を用いて、JIS K7136(2000)に記載された方法に沿ってヘーズ値を測定した。また、目視による膜面の外観評価を行い、結果を表3に記載した。なお、表3では、粒子状や線状の欠陥が目視確認出来る場合や、膜面に白いモヤ状の欠陥が見える場合は「×」、粒子状や線状の欠陥は見られないが可視光を照射すると薄くモヤ状の欠陥が見られる場合は「○」、前述したいずれの欠陥も確認できない場合は「◎」とした。
 (光学特性)
 各日射遮蔽部材の可視光線透過率をJIS R3106(1998)に準拠する方法で測定した。また、透過光及び反射光(膜面反射、及びガラス面反射)について、JIS Z8781-4に準拠する方法で、CIE L***色空間のa*及びb*を算出した。なお、実施例17については、透過光の可視光線透過率、a*及びb*の測定を行わなかった。
Figure JPOXMLDOC01-appb-T000003
 以上より、実施例はいずれも700℃で加熱後のヘーズが1.5%以下となり、外観も大きく損なわないものであった。また、実施例2、6、8、及び13は、加熱後の透過色調や反射色調(a*及びb*)が絶対値で10以下、及び加熱後のヘーズが0.5%以下となり、良好な耐熱性と過度な色味の抑制を両立可能となることがわかった。
 一方で比較例はヘーズが大きく、外観品質も悪いものだった。なお、比較例1、4は誘電体層Aの膜厚が範囲外であり、比較例2は誘電体層Bがないものであり、比較例3は結晶性誘電体膜の膜厚が範囲外であり、比較例5~7は誘電体層Aの代わりにSiAlOを用いたものであり、比較例8は誘電体層Aと誘電体層Bとの積層順を入れ替えたものである。また、比較例9はSiAlNを上層に用いた際の耐熱性を、単純な積層体を作製して評価したものである。比較例9より、SiAlNを最下層と最上層に用いるだけでは要求する耐熱性に未達となることがわかった。
 3:合わせガラスの作製と評価
 実施例1~20、22~24及び比較例1~9で得られた日射遮蔽部材と、厚み0.76mmのPVB膜と、ソーダライムガラス板2mmとを用いて、図2に示したような合わせガラスを作製した。
 まず、日射遮蔽部材55、PVB膜61、ソーダライムガラス板Gの順に重ね合わせ、各層間を脱気した。この時、日射遮蔽部材55上の低放射膜50がPVB膜61と接触するように積層を行った。次に、これをオートクレーブ内へ入れ、該オートクレーブの温度を130℃、圧力を1.2×106Pa/m2とし、加熱・加圧処理を行って合わせガラスを作製した。
 得られた合わせガラスについて、前述した方法と同様に透過光及び反射光のa*、b*をそれぞれ測定した。なお、比較例2、4、8は合わせガラス作製時に割れた為評価を行わなかった。得られた結果について表4に記載した。また、表4の「車外面反射」とはソーダライムガラス板G側の面の反射、「車内面反射」とは日射遮蔽部材55側の面の反射を、それぞれ示すものとする。
Figure JPOXMLDOC01-appb-T000004
 以上より、特に実施例2、7、11、及び22~24は、加熱後の透過色調や反射色調(a*及びb*)が絶対値で10以下となり、過度な色味が抑制されたものとなることがわかった。
 G:ガラス板
 1:第1金属膜
 2:第2金属膜
 3:第3金属膜
 4:犠牲金属膜
 10:第1誘電体膜
 11:誘電体層A
 12:誘電体層B
 13:結晶性誘電体層
 20:第2誘電体膜
 22:反射防止層
 23:結晶性誘電体層
 30:第3誘電体膜
 32:反射防止層
 33:結晶性誘電体層
 40:第4誘電体膜
 42:反射防止層
 44:保護層
 50:低放射膜
 55:日射遮蔽部材
 61:PVB膜

Claims (10)

  1.  透明基材上に、順に、第1誘電体膜、第1金属膜、第2誘電体膜、第2金属膜、第3誘電体膜、第3金属膜、及び第4誘電体膜が積層された低放射膜を有する日射遮蔽部材において、
     該第1誘電体膜は、該透明基材の直上にケイ素及び窒素を含む誘電体層A、該誘電体層A上にチタン及び酸素を含む誘電体層Bを含み、該誘電体層Aの光学膜厚が12~86nmであり、
     該第1誘電体膜、該第2誘電体膜、及び第3誘電体膜は、最上層に結晶性誘電体層を有し、
     該結晶性誘電体層は、光学膜厚が5~54nmであり、
     該第1金属膜、該第2金属膜、及び該第3金属膜は、直下に該結晶性誘電体層を有するAg膜であることを特徴とする日射遮蔽部材。
  2.  前記誘電体層Aは、ケイ素を含む窒化物層、又はケイ素を含む酸窒化物層であることを特徴とする請求項1に記載の日射遮蔽部材。
  3.  前記誘電体層Bの光学膜厚が2~100nmであることを特徴とする請求項1又は請求項2に記載の日射遮蔽部材。
  4.  前記第4誘電体膜は、チタン及び酸素を含む誘電体層と、亜鉛及び酸素を含む非結晶性誘電体層と、を含む2層以上の膜であることを特徴とする請求項1乃至請求項3のいずれかに記載の日射遮蔽部材。
  5.  前記第1金属膜、前記第2金属膜、及び前記第3金属膜の幾何学的膜厚が合計で30~50nmであり、
     該第2金属膜の幾何学的膜厚は、該第1金属膜及び該第3金属膜のそれぞれの幾何学的膜厚に対して1.01~1.55の範囲内となる請求項1乃至請求項4のいずれかに記載の日射遮蔽部材。
  6.  前記第1金属膜、前記第2金属膜、及び前記第3金属膜の上に犠牲金属膜を有し、
     該犠牲金属膜は、Ti、NiCr、Nb及びステンレス鋼からなる群から選ばれる少なくとも1つを含むものであることを特徴とする請求項1乃至請求項5のいずれかに記載の日射遮蔽部材。
  7.  ガラス板が加熱工程を経て加工された加工ガラスにおいて、該ガラス板が請求項1乃至請求項6のいずれかに記載の日射遮蔽部材であることを特徴とする加工ガラス。
  8.  前記日射遮蔽部材の低放射膜は、第1誘電体膜の光学的膜厚が88~120nm、第2誘電体膜の光学的膜厚が164~190nm、第3誘電体膜の光学的膜厚が145~182nm、及び第4誘電体膜の光学的膜厚が100~123nmであることを特徴とする請求項7記載の加工ガラス。
  9.  2枚以上のガラス板を中間樹脂膜を介して一体化させた合わせガラスにおいて、該ガラス板のうちの少なくとも1枚として請求項1乃至請求項6のいずれかに記載の日射遮蔽部材を用いることを特徴とする合わせガラス。
  10. 前記日射遮蔽部材の低放射膜は、第1誘電体膜の光学的膜厚が57~115nm、第2誘電体膜の光学的膜厚が144~182nm、第3誘電体膜の光学的膜厚が136~182nm、及び第4誘電体膜の光学的膜厚が38~123nmであることを特徴とする請求項9記載の合わせガラス。
PCT/JP2018/015648 2017-05-12 2018-04-16 日射遮蔽部材 WO2018207555A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/606,625 US20210107258A1 (en) 2017-05-12 2018-04-16 Solar Radiation Shielding Member
JP2019517523A JP7025665B2 (ja) 2017-05-12 2018-04-16 日射遮蔽部材
CN201880031024.XA CN110650841A (zh) 2017-05-12 2018-04-16 日照遮蔽构件
EP18798725.0A EP3623149A4 (en) 2017-05-12 2018-04-16 SOLAR RADIATION SHIELDING ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-095342 2017-05-12
JP2017095342 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018207555A1 true WO2018207555A1 (ja) 2018-11-15

Family

ID=64105234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015648 WO2018207555A1 (ja) 2017-05-12 2018-04-16 日射遮蔽部材

Country Status (5)

Country Link
US (1) US20210107258A1 (ja)
EP (1) EP3623149A4 (ja)
JP (1) JP7025665B2 (ja)
CN (1) CN110650841A (ja)
WO (1) WO2018207555A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187314A (ja) * 2019-05-17 2020-11-19 Agc株式会社 ガラス基体および車載表示装置
CN112180648A (zh) * 2019-07-03 2021-01-05 中国科学院苏州纳米技术与纳米仿生研究所 光学薄膜结构、其制备方法以及应用
WO2021014977A1 (ja) * 2019-07-25 2021-01-28 Agc株式会社 積層体および積層体の製造方法
WO2021049179A1 (ja) * 2019-09-09 2021-03-18 Agc株式会社 積層体および複層ガラス
JP6850401B1 (ja) * 2019-07-22 2021-03-31 日本碍子株式会社 接合体および弾性波素子
WO2021187052A1 (ja) * 2020-03-17 2021-09-23 セントラル硝子株式会社 赤外線反射ガラス
US20230130714A1 (en) * 2020-03-10 2023-04-27 Saint-Gobain Glass France Composite pane having solar protection coating and thermal-radiation-reflecting coating

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102369711B1 (ko) * 2017-09-08 2022-03-03 (주)엘엑스하우시스 창호용 기능성 건축 자재
FR3072957B1 (fr) * 2017-10-30 2019-10-18 Saint-Gobain Glass France Substrat muni d'un empilement a proprietes thermiques
FR3082199B1 (fr) * 2018-06-12 2020-06-26 Saint-Gobain Glass France Materiau comprenant un empilement a proprietes thermiques et esthetiques
NL2021109B1 (en) * 2018-06-12 2019-12-17 Physee Group B V Inorganic luminescent materials for solar radiation conversion devices
FR3082198B1 (fr) * 2018-06-12 2020-06-26 Saint-Gobain Glass France Materiau comprenant un empilement a proprietes thermiques et esthetique
GB201820002D0 (en) * 2018-12-07 2019-01-23 Pilkington Group Ltd Coated glass pane
US20220119934A1 (en) * 2020-10-21 2022-04-21 Vitro Flat Glass Llc Heat-Treatable Coating with Blocking Layer Having Reduced Color Shift
CN115373055A (zh) * 2021-05-17 2022-11-22 大永真空设备股份有限公司 光学多层膜及其用途
CN114702252B (zh) * 2022-04-29 2024-06-25 上海耀皮玻璃集团股份有限公司 一种含有晶态银层的低辐射镀膜夹层玻璃及其制备方法和用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005516818A (ja) 2002-02-11 2005-06-09 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド 日射コントロール被覆
JP2007512218A (ja) 2003-11-28 2007-05-17 サン−ゴバン グラス フランス 熱制御、電磁遮蔽、および加熱窓のために、代替使用または累加使用ができる透明基板
JP2010536707A (ja) 2007-08-24 2010-12-02 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド 車両用透明物
JP2013502366A (ja) 2009-08-21 2013-01-24 サン−ゴバン グラス フランス 特に加熱グレージングユニットを製造するための、熱特性を有する多層を備えた基板
JP2014508093A (ja) * 2011-03-03 2014-04-03 ガーディアン・インダストリーズ・コーポレーション Ni及び/又はTiを含むバリア層、バリア層を包含する被覆物品並びにそれらの製造方法
WO2016051066A1 (fr) * 2014-09-30 2016-04-07 Saint-Gobain Glass France Substrat muni d'un empilement a proprietes thermiques et a couche intermediaire sur stoechiometrique
WO2016121752A1 (ja) * 2015-01-28 2016-08-04 旭硝子株式会社 積層膜付きガラス板および複層ガラス

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713633B2 (en) * 2008-05-27 2010-05-11 Guardian Industries Corp. EMI filter for plasma display panel
KR101499288B1 (ko) * 2012-06-19 2015-03-05 (주)엘지하우시스 저방사 코팅막 및 이를 포함하는 건축 자재
US9499438B2 (en) * 2013-02-28 2016-11-22 Guardian Industries Corp. Window for attenuating RF and IR electromagnetic signals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005516818A (ja) 2002-02-11 2005-06-09 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド 日射コントロール被覆
JP2007512218A (ja) 2003-11-28 2007-05-17 サン−ゴバン グラス フランス 熱制御、電磁遮蔽、および加熱窓のために、代替使用または累加使用ができる透明基板
JP2010536707A (ja) 2007-08-24 2010-12-02 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド 車両用透明物
JP2013502366A (ja) 2009-08-21 2013-01-24 サン−ゴバン グラス フランス 特に加熱グレージングユニットを製造するための、熱特性を有する多層を備えた基板
JP2014508093A (ja) * 2011-03-03 2014-04-03 ガーディアン・インダストリーズ・コーポレーション Ni及び/又はTiを含むバリア層、バリア層を包含する被覆物品並びにそれらの製造方法
WO2016051066A1 (fr) * 2014-09-30 2016-04-07 Saint-Gobain Glass France Substrat muni d'un empilement a proprietes thermiques et a couche intermediaire sur stoechiometrique
WO2016121752A1 (ja) * 2015-01-28 2016-08-04 旭硝子株式会社 積層膜付きガラス板および複層ガラス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3623149A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187314A (ja) * 2019-05-17 2020-11-19 Agc株式会社 ガラス基体および車載表示装置
JP7283222B2 (ja) 2019-05-17 2023-05-30 Agc株式会社 ガラス基体および車載表示装置
CN112180648B (zh) * 2019-07-03 2022-04-08 中国科学院苏州纳米技术与纳米仿生研究所 光学薄膜结构、其制备方法以及应用
CN112180648A (zh) * 2019-07-03 2021-01-05 中国科学院苏州纳米技术与纳米仿生研究所 光学薄膜结构、其制备方法以及应用
JP6850401B1 (ja) * 2019-07-22 2021-03-31 日本碍子株式会社 接合体および弾性波素子
WO2021014977A1 (ja) * 2019-07-25 2021-01-28 Agc株式会社 積層体および積層体の製造方法
JP7476898B2 (ja) 2019-07-25 2024-05-01 Agc株式会社 積層体および積層体の製造方法
WO2021049179A1 (ja) * 2019-09-09 2021-03-18 Agc株式会社 積層体および複層ガラス
JP7428188B2 (ja) 2019-09-09 2024-02-06 Agc株式会社 積層体および複層ガラス
JPWO2021049179A1 (ja) * 2019-09-09 2021-03-18
US20230130714A1 (en) * 2020-03-10 2023-04-27 Saint-Gobain Glass France Composite pane having solar protection coating and thermal-radiation-reflecting coating
US12023895B2 (en) * 2020-03-10 2024-07-02 Saint-Gobain Glass France Composite pane having solar protection coating and thermal-radiation-reflecting coating
WO2021187052A1 (ja) * 2020-03-17 2021-09-23 セントラル硝子株式会社 赤外線反射ガラス

Also Published As

Publication number Publication date
JPWO2018207555A1 (ja) 2020-03-12
EP3623149A1 (en) 2020-03-18
US20210107258A1 (en) 2021-04-15
JP7025665B2 (ja) 2022-02-25
CN110650841A (zh) 2020-01-03
EP3623149A4 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
WO2018207555A1 (ja) 日射遮蔽部材
JP5603010B2 (ja) 基板の製造方法
JP5290765B2 (ja) 熱的性質を有する多層コーティングを備えた基板
US20070279750A1 (en) Substrate with antireflection film
EP2716442A1 (en) Low emissivity laminate and multi-layer glass
JP2016041651A (ja) 低放射コーティングを包含する被覆物品、被覆物品を包含する断熱ガラスユニット、及び/又はそれらの製造方法
MX2012013663A (es) Acristalamiento de control solar.
JP6299755B2 (ja) 保護膜、反射性部材、および保護膜の製造方法
WO2018051638A1 (ja) 日射遮蔽部材
KR20110062566A (ko) 굽힘 및 열처리가 가능한 저방사유리 및 그 제조방법
JP2016530202A (ja) 熱処理可能な被覆ガラス板
KR20130051521A (ko) 열처리 가능한 저방사 유리 및 그 제조방법
JP2013535403A (ja) 日射遮蔽特性を有するガラスパネル
US20160297708A1 (en) Glazing comprising a substrate coated with a stack comprising at least one functional layer made from zinc-doped silver
JP6767661B2 (ja) グレー色調低放射ガラス
JP6601419B2 (ja) 積層膜付きガラス板および複層ガラス
JP2017132666A (ja) グレー色調低放射ガラス、及びグレー色調低放射ガラスの製造方法
JP6703267B2 (ja) グレー色調低放射ガラス
US10457590B2 (en) Substrate provided with a stack having thermal properties comprising at least one nickel oxide layer
JP6459374B2 (ja) 窓ガラスおよび積層膜付き透明基板
JP2019182684A (ja) 低放射ガラス
JP2024528025A (ja) コーティングされたガラス板
JP2013133260A (ja) 低放射積層体
KR20180118945A (ko) 저방사 유리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517523

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018798725

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018798725

Country of ref document: EP

Effective date: 20191212