WO2018207254A1 - Capsule-type endoscope - Google Patents

Capsule-type endoscope Download PDF

Info

Publication number
WO2018207254A1
WO2018207254A1 PCT/JP2017/017531 JP2017017531W WO2018207254A1 WO 2018207254 A1 WO2018207254 A1 WO 2018207254A1 JP 2017017531 W JP2017017531 W JP 2017017531W WO 2018207254 A1 WO2018207254 A1 WO 2018207254A1
Authority
WO
WIPO (PCT)
Prior art keywords
central axis
imaging
light emitting
capsule endoscope
transparent cover
Prior art date
Application number
PCT/JP2017/017531
Other languages
French (fr)
Japanese (ja)
Inventor
内田佳宏
高田圭輔
市川啓介
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/017531 priority Critical patent/WO2018207254A1/en
Publication of WO2018207254A1 publication Critical patent/WO2018207254A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention relates to a capsule endoscope.
  • capsule endoscope an inspection using an endoscope having a capsule housing
  • the subject swallows the capsule endoscope from the mouth.
  • imaging of the body is performed before the capsule endoscope is discharged from the body.
  • a capsule endoscope has a transparent cover at one end of a housing. Inside the cover, a light source that illuminates the inside of the body and an imaging unit that images the illuminated part are arranged.
  • the light source for example, a light emitting diode (LED) is used.
  • LED light emitting diode
  • Patent Document 1 discloses a capsule endoscope.
  • the capsule endoscope according to the first embodiment includes a hemispherical transparent cover, one imaging unit, and a light emitting unit.
  • the light emitting unit is disposed around the imaging unit.
  • the imaging unit is arranged so that the center of curvature of the transparent cover and the entrance pupil position of the optical system coincide. With this arrangement, the occurrence of flare incident on the imaging unit can be suppressed.
  • the capsule endoscope according to the sixth embodiment includes a hemispherical transparent cover, a plurality of imaging units, and a light emitting unit.
  • the light emitting unit is arranged so that the center position of the radius of curvature of the transparent cover coincides with the exit pupil of the illumination optical system. With this arrangement, the occurrence of flare incident on the imaging unit can be suppressed.
  • a hemispherical transparent cover is used, and the imaging unit is arranged so that the center of curvature of the transparent cover coincides with the entrance pupil position of the optical system. Therefore, a large space is required between the transparent cover and the imaging unit. As a result, the total length of the capsule endoscope becomes long.
  • a hemispherical transparent cover is used, and the light emitting section is arranged so that the center position of the radius of curvature of the transparent cover coincides with the exit pupil of the illumination optical system. Also in this case, a large space is required between the transparent cover and the imaging unit. As a result, the total length of the capsule endoscope becomes long.
  • the transparent cover and the imaging unit may be brought close to each other, or the transparent cover and the light emitting unit may be brought close to each other. However, this makes it easier for flare to occur.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a capsule endoscope that can obtain an image with little flare and has a short overall length.
  • a capsule endoscope includes: A columnar body, A transparent cover, An imaging unit having an imaging optical system; A light emitting unit having a light emitting region, The transparent cover, the imaging unit, and the light emitting unit are provided on one side of the main body unit, The transparent cover has a curved area, The curved area is located so as to intersect the central axis of the main body, One of the intersecting lines formed by the plane including the central axis and the curved region is a curve having two focal points, The light emitting part is arranged so that the predetermined area does not include two focal points, The imaging unit is arranged at a position satisfying the following conditional expression (1).
  • the predetermined region is a region when the light emitting region of the light emitting unit is projected on a plane including two focal points, Lc is the distance between the first axis and the central axis, La1 is the radius in a curve with two focal points, La3 is the distance between the second axis and the central axis,
  • the first axis passes through the center of the pupil of the imaging optical system and is parallel to the central axis.
  • the second axis passes through the focal point and is parallel to the central axis; It is.
  • FIG. 1 is a cross-sectional view of a capsule endoscope according to a first embodiment. It is a figure which shows sectional drawing of the capsule type endoscope of Example 2.
  • FIG. FIG. 6 is a cross-sectional view of a capsule endoscope according to a third embodiment. It is a figure which shows sectional drawing of the capsule type endoscope of Example 4.
  • FIG. It is a figure which shows sectional drawing of the capsule type endoscope of Example 5.
  • FIG. 1 is a cross-sectional view of a capsule endoscope according to a first embodiment. It is a figure which shows sectional drawing of the capsule type endoscope of Example 2.
  • FIG. 6 is a cross-sectional view of a capsule endoscope according to a third embodiment. It is a figure which shows sectional drawing of the capsule type endoscope of Example 4.
  • FIG. It is a figure which shows sectional drawing of the capsule type end
  • the capsule endoscope of the present embodiment includes a columnar main body, a transparent cover, an imaging unit having an imaging optical system, and a light emitting unit having a light emitting region.
  • the transparent cover, the imaging unit, and the light emitting unit are The transparent cover is provided on one side of the main body, has a curved surface area, the curved surface area is located so as to intersect the central axis of the main body, and is formed by a plane including the central axis and the curved surface area.
  • One of the intersecting lines is a curve having two focal points, the light emitting unit is arranged so that the predetermined region does not include the two focal points, and the imaging unit satisfies the following conditional expression (1): It is arranged at a satisfactory position.
  • the predetermined region is a region when the light emitting region of the light emitting unit is projected on a plane including two focal points, Lc is the distance between the first axis and the central axis, La1 is the radius in a curve with two focal points, La3 is the distance between the second axis and the central axis,
  • the first axis passes through the center of the pupil of the imaging optical system and is parallel to the central axis.
  • the second axis passes through the focal point and is parallel to the central axis; It is.
  • FIG. 1 shows a schematic configuration of the capsule endoscope of the present embodiment.
  • the capsule endoscope 1 includes a main body 2, a transparent cover 3, an imaging unit 4, and a light emitting unit 5.
  • the main body 2 is composed of a columnar member.
  • the length of the main body 2 in the direction along the central axis AXc is longer than the length in the direction orthogonal to the central axis AXc.
  • a cavity is formed inside the main body 2. Therefore, it can be said that the main body 2 is formed of a cylindrical member.
  • the imaging unit 4 and the light emitting unit 5 are arranged in the hollow part.
  • a power source, a signal processing unit, a power reception unit, and a transmission unit are arranged in the hollow portion.
  • a transparent cover 3 is disposed on one side of the main body 2.
  • the transparent cover 3 is provided so as to protrude from the end surface of the main body.
  • a substantially bowl-shaped bottom is formed on the other side of the main body 2.
  • the bottom part may be formed integrally with the main body part 2 or may be formed separately from the main body part 2.
  • An imaging unit 4 and a light emitting unit 5 are arranged in the main body unit 2.
  • the imaging unit 4 and the light emitting unit 5 are arranged on one side of the main body unit 2, that is, on the side where the transparent cover 3 is arranged.
  • the tip of the imaging unit 4 and the tip of the light emitting unit 5 are located on the end face on one side of the main body 2.
  • the imaging unit 4 has an imaging optical system. An image of the subject is formed by the imaging optical system. A transparent cover 3 is located between the subject and the imaging unit 4. Therefore, the image of the subject is formed through the transparent cover 3. For example, an image sensor is arranged at the position of the subject image. Thereby, a subject can be imaged.
  • the light emitting unit 5 has a light emitting area. Illumination light is emitted from the light emitting area.
  • a transparent cover 3 is located between the subject and the light emitting unit 5. Therefore, the subject is illuminated through the transparent cover 3.
  • FIG. 2 shows the inside of the capsule endoscope.
  • FIG. 2A shows an internal state in a plane orthogonal to the central axis.
  • FIG. 2B shows an internal state in a plane including the central axis.
  • FIG. 2A shows an internal state in a plane PL1 (hereinafter referred to as “plane PL1”) including two focal points Pf.
  • plane PL1 plane PL1
  • the two focal points Pf will be described later.
  • the transparent cover 3 has a curved surface area.
  • the curved surface area is located so as to intersect the central axis AXc of the main body 2.
  • the entire transparent cover 3 is a curved region.
  • one of the innumerable intersection lines is a curve having two focal points Pf.
  • the shape of the curved surface region in the capsule endoscope 1 is such that a curve having two focal points Pf is included in innumerable intersection lines.
  • FIG. 2B shows an intersection formed by a plane including the central axis AXc and a curved surface area.
  • a curve having two focal points Pf is shown.
  • the entire transparent cover 3 is a curved region. Therefore, in FIG. 2B, the entire curve showing the transparent cover 3 represents a curve having two focal points Pf.
  • the shape of the curved surface area for example, there is a semi-elliptical surface.
  • the semi-elliptical surface is obtained by rotating the entire curve showing the transparent cover 3 by 180 degrees with a straight line passing through the two focal points Pf as the rotation axis.
  • the light emitting unit 5 is disposed in the center of the main body unit 2. However, the light emitting unit 5 is arranged so that the predetermined region does not include two focal points.
  • the predetermined area is an area when the light emitting area of the light emitting unit is projected onto the surface PL1. As described above, the position of the light emitting unit 5 and the size of the light emitting area are set so that the positions of the two focal points Pf are not included in the predetermined area.
  • the position of the light emitting unit 5 and the size of the light emitting area are set so that the positions of the two focal points Pf are not included in the predetermined area. Therefore, there is no illumination light emitted from the position of the focal point Pf or the vicinity of the focal point Pf. As a result, the illumination light emitted from the light emitting unit 5 does not directly enter the imaging unit 4.
  • the imaging unit 4 is disposed in the periphery of the main body 2.
  • the imaging unit 4 is arranged so that the center Pp of the pupil of the imaging optical system is located on the line connecting the two focal points Pf.
  • the imaging unit 4 is arranged so that the pupil center Pp of the imaging optical system does not coincide with the focal point Pf.
  • the imaging unit 4 is arranged so that the center Pp of the pupil of the imaging optical system is located between the focal point Pf and the outer peripheral surface of the main body unit 2.
  • the first axis AXp is located between the second axis AXf and the outer peripheral surface of the main body 2.
  • the first axis AXp is an axis that passes through the center Pp of the pupil of the imaging optical system and is parallel to the center axis AXc.
  • the second axis AXf is an axis that passes through the focal point Pf and is parallel to the central axis AXc.
  • the imaging unit 4 is disposed at a position that satisfies the conditional expression (1).
  • Conditional expression (1) is a conditional expression regarding a preferable position of the imaging unit.
  • a preferable position of the imaging unit can be determined by the distance Lc between the first axis AXp and the central axis AXc, the radius La1 in the curve having two focal points, and the distance La3 between the second axis AXf and the central axis AXc.
  • La1 can be obtained from the intersection formed by the plane including the central axis AXc and the curved surface area, but can also be obtained by another method. For example, an intersection line is formed by the surface PL1 and the curved surface region. This intersection line represents the outer periphery of the curved surface area. La1 is the maximum interval among the intervals between the central axis and the points on the outer periphery of the curved surface area.
  • La2 can be obtained from the outer periphery of the curved surface area.
  • La2 is the smallest interval among the intervals between the central axis and the points on the outer periphery of the curved surface area.
  • La1 corresponds to the major radius of the ellipse
  • La2 corresponds to the minor radius of the ellipse
  • a part of the illumination light emitted from the light emitting unit 5 is reflected by the transparent cover 3.
  • flare occurs.
  • the occurrence of flare can be suppressed by satisfying conditional expression (1).
  • the capsule endoscope according to the present embodiment preferably includes a plurality of imaging units, and each of the plurality of imaging units is preferably arranged so as to satisfy the conditional expression (1).
  • the semi-elliptical surface As described above, there is a semi-elliptical surface as the shape of the curved region.
  • the semi-elliptical surface is obtained by rotating the entire curve showing the transparent cover 3 by 180 degrees with a straight line passing through the two focal points Pf as the rotation axis. Therefore, the semi-elliptical surface is not a rotationally symmetric surface with respect to the central axis AXc.
  • the entire curve showing the transparent cover 3 may be rotated 180 degrees with the central axis AXc as the rotational axis. Even if it does in this way, compared with the case where the shape of a transparent cover is semicircle shape, the protrusion amount of the transparent cover from the surface PL1 can be decreased. As a result, the overall length of the capsule endoscope 1 can be shortened.
  • FIG. 3 shows an internal state in a plane orthogonal to the central axis.
  • FIG. 3 shows a configuration including one light emitting unit and two imaging units.
  • the shape of the curved surface area in the transparent cover 3 ′ is a rotationally symmetric shape with respect to the central axis AXc.
  • the two focal points Pf are located on the circumference of a circle centered on the central axis AXc.
  • the light emitting unit 5 is arranged so that the predetermined area does not include two focal points. Therefore, the illumination light emitted from the light emitting unit 5 does not directly enter the imaging unit 4 or the imaging unit 4 '.
  • FIG. 3 shows an internal state in the plane PL1 including two focal points Pf and two focal points Pf ′.
  • the imaging unit 4 has the center Pp of the imaging optical system, and the imaging unit 4 'has the center Pp' of the imaging optical system.
  • the imaging unit 4 is arranged so that the center Pp of the pupil of the imaging optical system is located on the line connecting the two focal points Pf.
  • the imaging unit 4 ′ is arranged so that the center Pp ′ of the pupil of the imaging optical system is positioned on a line connecting the two focal points Pf ′. Both the imaging unit 4 and the imaging unit 4 ′ are arranged at positions that satisfy the conditional expression (1). Therefore, the occurrence of flare can be suppressed.
  • the capsule endoscope can capture a wide range in the body in detail.
  • the shooting range must be shot with one image pickup unit. Therefore, the imaging magnification in the imaging optical system is reduced.
  • a lesion having the same size is imaged with an optical system having a small imaging magnification and an optical system having a large imaging magnification.
  • an image of a lesion is smaller in an optical system with a small imaging magnification than in an optical system with a large imaging magnification.
  • the capsule endoscope of the present embodiment includes a plurality of imaging units.
  • the imaging magnification of the imaging optical system can be increased in each imaging unit.
  • each imaging unit satisfies the conditional expression (1). Therefore, an image with less flare can be obtained.
  • the imaging unit has an incident surface located closest to the transparent cover, and the light emitting unit has an exit surface located closest to the transparent cover.
  • the imaging unit is preferably arranged such that the first axis and the central axis are parallel to each other, and the incident surface is located closer to the transparent cover than the exit surface in the direction along the central axis.
  • the distance between the transparent cover and the imaging unit can be reduced.
  • the total length of the capsule endoscope can be shortened.
  • production of flare can be suppressed.
  • the imaging unit has an incident surface located closest to the transparent cover, and the light emitting unit has an exit surface located closest to the transparent cover. It is preferable that the following conditional expression (2) is satisfied. 0.01 ⁇ (Zc ⁇ Zb) /La1 ⁇ 1.0 (2) here, Zc is the distance from the predetermined surface to the incident surface, Zb is the distance from the predetermined surface to the exit surface, La1 is the radius in a curve with two focal points,
  • the predetermined plane is a plane orthogonal to the central axis and including the center of the pupil of the imaging optical system; The distance is the distance along the central axis, The sign of the distance is positive in the direction from the predetermined surface to the transparent cover, It is.
  • FIG. 4 shows an internal state in a plane including the central axis.
  • the same components as those in FIG. 2B are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 4 shows a predetermined surface PL2, a distance Zc from the predetermined surface PL2 to the incident surface 6, and a distance Zb from the predetermined surface PL2 to the exit surface 7.
  • the predetermined plane PL2 is a plane that is orthogonal to the central axis AXc and includes the center of the pupil Pp of the imaging optical system.
  • the distance from the predetermined surface PL2 to the exit surface 7 is different at each point on the exit surface 7.
  • the distance Zb is the maximum distance among the distances from the predetermined plane PL2 to each point on the exit surface 7.
  • the conditional expression (2) When the conditional expression (2) is satisfied, the distance between the transparent cover and the imaging unit can be reduced. As a result, the total length of the capsule endoscope can be shortened. Moreover, generation
  • conditional expression (2) is satisfied in a state where the imaging unit is arranged so that the first axis and the central axis are parallel to each other.
  • the imaging unit has an incident surface located closest to the transparent cover and satisfies the following conditional expression (3).
  • Zc is the distance from the predetermined surface to the incident surface
  • La1 is the radius in a curve with two focal points
  • the predetermined plane is a plane orthogonal to the central axis and including the center of the pupil of the imaging optical system;
  • the distance is the distance along the central axis,
  • the sign of the distance is positive in the direction from the predetermined surface to the transparent cover, It is.
  • the distance between the transparent cover and the imaging unit can be reduced.
  • the total length of the capsule endoscope can be shortened.
  • production of flare can be suppressed.
  • the curve having two focal points is a part of an ellipse, the short axis of the ellipse coincides with the central axis, and the following conditional expression (4) is satisfied. . 0 ⁇ 1-rb / ra ⁇ 0.9 (4) here, ra is the ellipse major radius, rb is the short radius of the ellipse, It is.
  • the total length of the capsule endoscope can be shortened by not exceeding the upper limit value of conditional expression (4). By not falling below the lower limit value of conditional expression (4), it is possible to reduce the diameter of the transparent cover while securing a space for arranging the imaging unit.
  • the light emitting unit has an exit surface located closest to the transparent cover, and the curve having two focal points is a part of an ellipse, and the minor axis of the ellipse Coincides with the central axis, and the light emitting portion is preferably located inside the first predetermined circle and satisfies the following conditional expression (5).
  • La3 is the distance between the second axis and the central axis
  • Lb is the maximum interval among the intervals between the central axis and each point on the outer edge of the light emitting region
  • Z′b is the distance from the plane containing the two focal points to the exit plane
  • ⁇ b is an angle formed by the central axis and a predetermined direction
  • ra is the ellipse major radius
  • the first predetermined circle is a circle whose center is located on the central axis and whose radius is the distance La3.
  • the predetermined direction is a direction of 0.1 ⁇ LI
  • LI is the light intensity in the direction along the central axis, It is.
  • FIG. 5 shows the inside of the capsule endoscope.
  • FIG. 5A shows an internal state in a plane orthogonal to the central axis.
  • FIG. 5B shows an internal state in a plane including the central axis.
  • the same components as those in FIGS. 2A and 2B are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 5A shows the maximum distance Lb among the distances between the central axis AXc and each point on the outer edge of the light emitting region.
  • the first predetermined circle is a circle whose center is located on the central axis AXc and whose radius is the distance La3.
  • the first predetermined circle is indicated by a two-dot chain line.
  • the light emitting unit 5 is located inside the first predetermined circle.
  • FIG. 5B shows the distance Z′b from the surface PL1 to the exit surface 7 and the angle ⁇ b formed by the central axis AXc and a predetermined direction.
  • the predetermined direction is a direction that becomes 0.1 ⁇ LI.
  • LI is the light intensity in the direction along the central axis.
  • Z′b is the maximum distance among the distances from the predetermined surface to each point on the exit surface 7.
  • the intensity of the light emitted from the light emitting unit 5 is different between the direction along the central axis AXc and the direction intersecting the central axis AXc. In the direction intersecting with the central axis AXc, the intensity of light decreases as the angle formed with the central axis AXc increases.
  • the predetermined direction is a direction in which the light intensity with respect to the direction along the central axis AXc is 10%.
  • conditional expression (5) it is necessary to ensure a certain illuminance in the shooting range. By not exceeding the upper limit value of conditional expression (5), it is possible to secure a sufficiently wide light emitting region. Therefore, the illuminance necessary for imaging can be obtained.
  • the imaging optical system In order to ensure a wide shooting range, the imaging optical system needs to be a wide-angle optical system. In a wide-angle optical system, the diameter of the optical system tends to be large. Therefore, the diameter of the imaging unit is also increased.
  • the light emitting unit has an exit surface located closest to the transparent cover, and the curve having two focal points is a part of an ellipse, and the minor axis of the ellipse Coincides with the central axis, the light emitting part is located inside the first predetermined circle, satisfies the following conditional expression (6), and part of the light emitted from the light emitting region is blocked: preferable.
  • La3 is the distance between the second axis and the central axis
  • Lb is the maximum interval among the intervals between the central axis and each point on the outer edge of the light emitting region
  • Z′b is the distance from the plane containing the two focal points to the exit plane
  • ⁇ b is an angle formed by the central axis and a predetermined direction
  • ra is the ellipse major radius
  • the first predetermined circle is a circle whose center is located on the central axis and whose radius is the distance La3.
  • the predetermined direction is a direction of 0.1 ⁇ LI
  • LI is the light intensity in the direction along the central axis, It is.
  • conditional expression (6) it is necessary to ensure a certain illuminance in the shooting range. By not exceeding the upper limit value of conditional expression (6), a sufficiently wide light emitting region can be secured. Therefore, the illuminance necessary for imaging can be obtained.
  • the light shielding may be performed by, for example, a light shielding member.
  • the light emitting unit is located inside the second predetermined circle and satisfies the following conditional expression (7).
  • Lb is the maximum interval among the intervals between the central axis and each point on the outer edge of the light emitting region
  • Lc is the distance between the first axis and the central axis
  • the second predetermined circle is a circle whose center is located on the central axis and whose radius is the distance La3. It is.
  • conditional expression (7) the light emitting unit and the imaging unit can be efficiently arranged in a limited space. Therefore, the transparent cover can be reduced, that is, the diameter of the capsule endoscope can be reduced. Furthermore, the occurrence of flare can be suppressed.
  • the light emitting unit is located inside the first predetermined circle and satisfies the following conditional expression (8).
  • La3 is the distance between the second axis and the central axis
  • Lb is the maximum interval among the intervals between the central axis and each point on the outer edge of the light emitting region
  • the first predetermined circle is a circle whose center is located on the central axis and whose radius is the distance La3. It is.
  • conditional expression (8) the light emitting unit and the imaging unit can be efficiently arranged in a limited space. Therefore, the transparent cover can be reduced, that is, the diameter of the capsule endoscope can be reduced. Furthermore, the occurrence of flare can be suppressed.
  • the shape of the curved region is point-symmetric with respect to the central axis.
  • the shape of the intersecting line formed by the curved surface region and the surface including the two focal points is a circle.
  • the thickness of the transparent cover can be reduced while maintaining the strength required to maintain the shape required for the capsule endoscope.
  • the curve having two focal points is a part of an ellipse, the short axis of the ellipse coincides with the central axis, and the following conditional expression (9) is satisfied. . 0.4 ⁇ (ra ⁇ La3) / (2 ⁇ IH) ⁇ 12.5 (9) here, ra is the ellipse major radius, La3 is the distance between the second axis and the central axis, IH is the image height in the imaging optical system, It is.
  • Conditional expression (9) is a condition in the capsule endoscope that can suppress the occurrence of flare while maintaining the space of the imaging unit and the light emitting unit while maintaining a small outer diameter.
  • conditional expression (9) By not exceeding the upper limit value of conditional expression (9), it is possible to secure a space for arranging the light emitting unit while reducing the outer diameter of the capsule endoscope. By not falling below the lower limit value of conditional expression (9), it is possible to secure a space for arranging the imaging unit.
  • the imaging unit has an entrance surface located closest to the transparent cover, and the curve having two focal points is a part of an ellipse, and the minor axis of the ellipse Preferably coincides with the central axis and satisfies the following conditional expression (10).
  • Conditional expression (10) is a condition in the capsule endoscope that can suppress the occurrence of flare while maintaining the space of the imaging unit and the light emitting unit while maintaining a small outer diameter.
  • conditional expression (10) By not exceeding the upper limit value of the conditional expression (10), it is possible to reduce the overall length of the capsule and reduce the outer diameter of the capsule endoscope while securing a space for arranging the light emitting unit. By not falling below the lower limit value of conditional expression (10), it is possible to secure a space for arranging the imaging unit.
  • the capsule endoscope of the present embodiment has a plurality of imaging units, and the plurality of imaging units satisfy a first imaging unit that satisfies the following conditional expression (11) and a conditional expression (12) below. It is preferable that each imaging unit has an imaging range that overlaps with the other imaging units on the object side of the transparent cover. 60 ° ⁇ ⁇ c_1 ⁇ 140 ° (11) 60 ° ⁇ ⁇ c_2 ⁇ 140 ° (12) here, ⁇ c_1 is the angle of view of the imaging optical system of the first imaging unit, ⁇ c_2 is the angle of view of the imaging optical system of the second imaging unit, It is.
  • the imaging range when imaging with one imaging unit can be captured with a plurality of imaging units.
  • the imaging range when imaging with one imaging unit is divided by each imaging unit. Then, in each imaging unit, the imaging magnification of the imaging optical system can be increased. Therefore, more detailed observation can be performed.
  • a convex portion is provided on the other side of the main body, and there are a plurality of imaging units.
  • the plurality of imaging units includes a first imaging unit having a first imaging optical system; A second imaging unit having a second imaging optical system, wherein a part of the imaging range of the first imaging unit overlaps with the imaging range of the second imaging unit, and the first imaging unit is configured by the first imaging optical unit.
  • the second imaging unit is arranged so that the optical axis of the second imaging optical system intersects with the central axis, and the optical axis of the first imaging optical system is centered with the optical axis of the first imaging optical system. It is preferable that the intersection point with the axis and the intersection point between the optical axis and the central axis of the second imaging optical system are both located on the convex side of the surface including the two focal points.
  • FIG. 6 shows an internal state in a plane including the central axis.
  • the same components as those in FIG. 2B are denoted by the same reference numerals and description thereof is omitted.
  • the capsule endoscope 10 is provided with a convex portion 12 on the other side of the main body portion 2.
  • the capsule endoscope 10 includes a plurality of imaging units.
  • FIG. 6 shows the state of the first imaging unit 11.
  • the first imaging unit 11 has a first imaging optical system.
  • the first imaging unit 11 is arranged so that the optical axis AXp1 of the first imaging optical system intersects the central axis AXc.
  • the intersection of the optical axis AXp1 and the central axis AXc of the first imaging optical system is located closer to the convex portion 12 than the surface PL1 including the two focal points Pf.
  • FIG. 7 shows an internal state in a plane orthogonal to the central axis.
  • FIG. 7A shows a case where three imaging units are arranged
  • FIG. 7B shows a case where four imaging units are arranged.
  • the shape of the curved region in the transparent cover is a rotationally symmetric shape with respect to the central axis.
  • the 7A includes a first imaging unit 21, a second imaging unit 22, a third imaging unit 23, and a light emitting unit 24.
  • the light emitting unit 24 is disposed at the center of the main body.
  • the first imaging unit 21, the second imaging unit 22, and the third imaging unit 23 are disposed so as to surround the light emitting unit 24.
  • the first imaging unit 21, the second imaging unit 22, and the third imaging unit 23 are arranged in the same manner as the first imaging unit 11 shown in FIG. That is, each imaging unit is arranged so that the optical axis of the imaging element intersects the central axis.
  • the capsule endoscope 30 shown in FIG. 7B includes a first imaging unit 31, a second imaging unit 32, a third imaging unit 33, a fourth imaging unit 34, and a light emitting unit 35. .
  • the light emitting unit 35 is disposed at the center of the main body.
  • the first imaging unit 31, the second imaging unit 32, the third imaging unit 33, and the fourth imaging unit 34 are arranged so as to surround the light emitting unit 35.
  • the first imaging unit 31, the second imaging unit 32, the third imaging unit 33, and the fourth imaging unit 34 are arranged in the same manner as the first imaging unit 11 shown in FIG. That is, each imaging unit is arranged so that the optical axis of the imaging element intersects the central axis.
  • the imaging range when imaging with one imaging unit can be divided by each imaging unit. Then, in each imaging unit, the imaging magnification of the imaging optical system can be increased. Therefore, more detailed observation can be performed. Moreover, it is possible to achieve both wide-range observation and detailed observation.
  • the first imaging unit has a first incident surface that is located closest to the transparent cover, and the light emitting unit is an emission that is located closest to the transparent cover.
  • the curve having a surface and having two focal points is preferably a part of an ellipse, the minor axis of the ellipse coincides with the central axis, and the following conditional expression (14) is satisfied.
  • FIG. 6 shows a surface PL3 including the first incident surface 13 (hereinafter referred to as “surface PL3”) and a distance zb from the surface PL3 to the exit surface 7.
  • the distance zb is a distance in the direction along the optical axis AXp1 of the first imaging optical system.
  • the emission surface 7 is parallel to the surface PL3.
  • the lens arranged closest to the object side of the imaging optical system is a positive lens.
  • the principal point position can be located on the object side. Therefore, the total length of the imaging unit can be shortened. As a result, the total length of the capsule endoscope can be shortened.
  • the lens arranged closest to the object side of the imaging optical system is a negative lens.
  • the entrance pupil can be positioned on the object side. Therefore, the area of the opening can be reduced. As a result, the degree of freedom of arrangement of the imaging unit is increased, and furthermore, incidence of reflected light from the transparent cover on the imaging unit can be suppressed.
  • the capsule endoscope of the present embodiment it is preferable that the capsule endoscope has a side light emitting portion, the side light emitting portion is disposed on the side surface of the main body portion, and satisfies the following conditional expression (15). 70 ° ⁇ ⁇ ⁇ 110 ° (15) here, ⁇ is the angle formed by the light axis of the light emitting part and the light axis of the side light emitting part, It is.
  • FIG. 8 shows a schematic configuration of the capsule endoscope of the present embodiment.
  • FIG. 8 is a schematic configuration in a plane including the central axis.
  • the capsule endoscope 40 includes a main body portion 41, a bottom portion 42, a transparent cover 43, a first imaging optical system 44, a first imaging element 45, a second imaging optical system 46, and a second imaging element 47. And a light emitting unit 48, a first side light emitting unit 49a, and a second side light emitting unit 49b.
  • a transparent cover 43 is disposed on one side of the main body 41.
  • a bottom portion 42 is formed on the other side of the main body portion 41.
  • the shape of the bottom part 42 is a substantially bowl shape.
  • the bottom part 42 may be formed integrally with the main body part 41 or may be formed separately from the main body part 41.
  • the first imaging optical system 44 and the first imaging element 45 constitute a first imaging unit.
  • the second imaging optical system 46 and the second imaging element 47 constitute a second imaging unit.
  • the light emitting unit 48 is disposed at a position including the central axis AXc. In the light emitting unit 48, the light emitting area faces the direction of the transparent cover 43. When the axis indicating the direction in which the light emitting area is directed is the lamp axis of the light emitting unit 48, the lamp axis of the light emitting unit 48 is a direction substantially parallel to the central axis AXc.
  • 1st side light emission part 49a and 2nd side light emission part 49b are arrange
  • Both the lamp axis AXi1 of the first side light emitting unit 49a and the lamp axis AXi2 of the second side light emitting unit 49b are substantially perpendicular to the central axis AXc. Therefore, in the capsule endoscope 40, the conditional expression (15) is satisfied.
  • Satisfying conditional expression (15) can ensure sufficient brightness for the imaging range.
  • the curve having two focal points is a part of an ellipse, the short axis of the ellipse coincides with the central axis, and the following conditional expression (16) is satisfied. . 0.01 ⁇ Dt / ra ⁇ 0.2 (16) here, Dt is the thickness on the central axis of the transparent cover, ra is the ellipse major radius, It is.
  • the imaging unit is arranged so that the center of the pupil of the imaging optical system is located between the focal point and the outer peripheral surface of the main body unit.
  • the central axis of the transparent cover substantially coincides with the central axis of the main body. For this reason, the central axis of the transparent cover is decentered with respect to the optical axis of the imaging optical system.
  • ⁇ Flare occurs when the transparent cover is deformed. By not falling below the lower limit value of conditional expression (16), it is possible to suppress degradation of resolution performance due to such flare.
  • the capsule endoscope of the present embodiment preferably satisfies the following conditional expression (17).
  • ndc ⁇ 1.7 (17) here, ndc is the refractive index at the d-line of the material of the transparent cover, It is.
  • Satisfying conditional expression (17) makes it possible to suppress reflection of illumination light on the transparent cover. As a result, the occurrence of flare can be suppressed.
  • the thickness of the transparent cover is uniform within the effective diameter.
  • the central axis of the transparent cover is decentered with respect to the optical axis of the imaging optical system. Therefore, the occurrence of decentration aberration can be suppressed by making the thickness of the transparent cover uniform within the effective diameter. Therefore, good resolution performance can be ensured even in detailed observation.
  • the thickness of the transparent cover increases with increasing distance from the central axis within the effective beam diameter.
  • the capsule endoscope of the present embodiment preferably includes a plurality of lenses and performs imaging using all of the plurality of lenses or performs imaging using a part of the plurality of lenses.
  • the capsule endoscope of the present embodiment includes a transparent cover different from the transparent cover, an imaging unit different from the imaging unit, and a light emitting unit different from the light emitting unit on the other side of the main body unit. It is preferable to have.
  • FIG. 9 shows a schematic configuration of the capsule endoscope of the present embodiment.
  • FIG. 9 is a schematic configuration in a plane including the central axis. The same components as those in FIG.
  • the capsule endoscope 50 includes a transparent cover 51, a third imaging optical system 52, a third imaging element 53, a fourth imaging optical system 54, a fourth imaging element 55, and a light emitting unit 56. .
  • the transparent cover 43 is disposed on one side of the main body 41, but also the transparent cover 51 is disposed on the other side of the main body 41.
  • the third imaging optical system 52 and the third imaging element 53 constitute a third imaging unit.
  • the fourth imaging optical system 54 and the fourth imaging element 55 constitute a fourth imaging unit.
  • an imaging unit different from the imaging unit arranged on one side is arranged on the other side.
  • a light emitting unit different from the light emitting unit arranged on one side is arranged on the other side. Therefore, a wider range can be photographed.
  • the capsule endoscope of the present embodiment may have a plurality of light emitting units, and each light emitting unit may have a different wavelength spectrum.
  • the light emitting unit may have an illumination optical system.
  • FIG. 10 shows a cross-sectional view of the capsule endoscope of the first embodiment.
  • FIG. 10A shows an internal state in a plane including the central axis.
  • FIG. 10B shows an internal state in a plane orthogonal to the central axis.
  • the capsule endoscope of Example 1 includes a transparent cover C, an imaging optical system OBJ, and a light emitting unit ILL.
  • Both sides of the transparent cover C are semi-elliptical surfaces.
  • the number of imaging optical systems OBJ and the number of light emitting units ILL are one each.
  • the light emitting unit ILL is disposed at the center of the main body, and the imaging optical system OBJ is disposed at the periphery of the main body.
  • the light emitting part ILL is arranged so that the lamp axis is parallel to the central axis AXc.
  • the imaging optical system OBJ is arranged so that the optical axis AXp is parallel to the central axis AXc.
  • the imaging optical system OBJ includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, a biconvex positive lens L3, and a positive meniscus lens L4 having a convex surface facing the object side.
  • a negative meniscus lens L1 having a convex surface facing the object side
  • a biconvex positive lens L2 having a convex surface facing the object side
  • a biconvex positive lens L3 having a convex surface facing the object side.
  • the aperture stop S is disposed between the biconvex positive lens L2 and the biconvex positive lens L3.
  • the aspheric surfaces are provided on a total of five surfaces including the image side surface of the negative meniscus lens L1, the object side surface of the biconvex positive lens L2, the image side surface of the biconvex positive lens L3, and both surfaces of the positive meniscus lens L4. .
  • FIG. 11 shows a cross-sectional view of the capsule endoscope of the second embodiment.
  • FIG. 11 shows an internal state in a plane including the central axis.
  • the capsule endoscope of the second embodiment includes a transparent cover C, an imaging optical system OBJ1, an imaging optical system OBJ2, and a light emitting unit ILL.
  • Both sides of the transparent cover C are semi-elliptical surfaces.
  • the number of imaging optical systems OBJ is two, and the number of light emitting units ILL is one.
  • the light emitting unit ILL is disposed at the center of the main body, and the imaging optical system OBJ1 and the imaging optical system OBJ2 are both disposed around the main body.
  • the light emitting part ILL is arranged so that the lamp axis is parallel to the central axis AXc.
  • the imaging optical system OBJ1 and the imaging optical system OBJ2 are both arranged so that the optical axis AXp is parallel to the central axis AXc.
  • the imaging optical system OBJ1 and the imaging optical system OBJ2 are the same as the imaging optical system OBJ of the first embodiment.
  • FIG. 12 shows a cross-sectional view of the capsule endoscope of the third embodiment.
  • FIG. 12A shows an internal state in a plane including the central axis.
  • FIG. 12B shows an internal state in a plane orthogonal to the central axis.
  • the capsule endoscope of Example 3 has a transparent cover C, an imaging optical system OBJ, and a light emitting unit ILL.
  • Both sides of the transparent cover C are semi-elliptical surfaces.
  • the number of imaging optical systems OBJ and the number of light emitting units ILL are one each.
  • the light emitting unit ILL is disposed at the center of the main body, and the imaging optical system OBJ is disposed at the periphery of the main body.
  • the light emitting part ILL is arranged so that the lamp axis is parallel to the central axis AXc.
  • the imaging optical system OBJ is arranged so that the optical axis AXp is parallel to the central axis AXc.
  • the imaging optical system OBJ includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, and a negative meniscus lens L3 having a convex surface facing the image side.
  • the aperture stop S is disposed between the negative meniscus lens L1 and the biconvex positive lens L2.
  • the aspheric surfaces are provided on a total of four surfaces including the image side surface of the negative meniscus lens L1, both surfaces of the biconvex positive lens L2, and the image side surface of the negative meniscus lens L3.
  • FIG. 13 shows a cross-sectional view of the capsule endoscope of the fourth embodiment.
  • FIG. 13 shows an internal state in a plane including the central axis.
  • the capsule endoscope of Example 4 includes a transparent cover C, an imaging optical system OBJ, and a light emitting unit ILL.
  • Both sides of the transparent cover C are semi-elliptical surfaces.
  • the number of imaging optical systems OBJ and the number of light emitting units ILL are one each.
  • the light emitting unit ILL is disposed at the center of the main body, and the imaging optical system OBJ is disposed at the periphery of the main body.
  • the light emitting part ILL is arranged so that the lamp axis is parallel to the central axis AXc.
  • the imaging optical system OBJ is arranged so that the optical axis AXp is parallel to the central axis AXc.
  • the imaging optical system OBJ includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, a positive meniscus lens L3 having a convex surface facing the image side, and a convex surface facing the object side.
  • the aperture stop S is disposed between the biconvex positive lens L2 and the positive meniscus lens L3.
  • the aspheric surfaces are provided on a total of four surfaces including the image side surface of the negative meniscus lens L1, the image side surface of the positive meniscus lens L3, and both surfaces of the negative meniscus lens L4.
  • FIG. 14 and FIG. 15 show cross-sectional views of the capsule endoscope of the fifth embodiment.
  • FIG. 14 shows an internal state in a plane including the central axis.
  • FIG. 15 is an enlarged view of the imaging optical system.
  • the capsule endoscope of Example 5 includes a transparent cover C1, an imaging optical system OBJ1, an imaging optical system OBJ2, and a light emitting unit ILL.
  • Both sides of the transparent cover C are semi-elliptical surfaces.
  • the number of imaging optical systems OBJ and the number of light emitting units ILL are both two.
  • the light emitting unit ILL is disposed at the center of the main body, and the imaging optical system OBJ1 and the imaging optical system OBJ2 are both disposed around the main body.
  • the light emitting part ILL is arranged so that the lamp axis intersects the central axis AXc.
  • the imaging optical system OBJ1 and the imaging optical system OBJ2 are both arranged so that the optical axis AXp intersects the central axis AXc.
  • the imaging optical system OBJ includes, in order from the object side, a biconvex positive lens L1, a planoconcave negative lens L2, a positive meniscus lens L3 having a convex surface facing the image side, and a planoconcave negative lens L4.
  • the aperture stop S is disposed on the object side of the biconvex positive lens L1.
  • a cover glass C2 is disposed between the plano-concave negative lens L4 and the image plane I.
  • r is the radius of curvature of each lens surface
  • d is the distance between the lens surfaces
  • nd is the refractive index of the d-line of each lens
  • ⁇ d is the Abbe number of each lens
  • * is an aspherical surface.
  • f is the focal length of the entire system
  • is the half angle of view
  • IH is the image height
  • FNO is the F number.
  • the aspherical shape is expressed by the following equation when the optical axis direction is z, the direction orthogonal to the optical axis is y, the cone coefficient is k, and the aspherical coefficients are A4, A6, A8, A10, A12. expressed.
  • z (y 2 / r) / [1+ ⁇ 1 ⁇ (1 + k) (y / r) 2 ⁇ 1/2 ] + A4y 4 + A6y 6 + A8y 8 + A10y 10 + A12y 12 +
  • “E ⁇ n” (n is an integer) indicates “10 ⁇ n ”.
  • the symbols of these specification values are common to the numerical data of the examples described later.
  • Example 1 Example 2 Example 3 (1) (Lc-La3) / La1 0.03 0.03 0.07 (2) (Zc-Zb) / La1 0.04 0.07 0.12 (3) Zc / La1 0.00 0.00 0.12 (4) 1-rb / ra 0.09 0.09 0.15 (5), (6) (La3-Lb-
  • Example 1 Example 2
  • Example 3 La1 (ra) 6.8 6.8 6.9 La2 (rb) 6.2 6.2 5.8 La3 2.8 2.8 3.7 Lb 1.9 2.0 2.5 Lc 3.0 3.0 4.1
  • Example 4 Example 5
  • the present invention is suitable for a capsule endoscope that can obtain an image with less flare and has a short overall length.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

Provided is a capsule-type endoscope capable of obtaining an image with little flare and having a small total length. This capsule-type endoscope 1 is provided with: a columnar main body part 2; a transparent cover 3; an imaging part 4 having an imaging optical system; and a light emitting part 5 having a light-emitting region. The transparent cover 3, the imaging part 4, and the light-emitting part 5 are provided on one side of the main body part 2, the transparent cover 3 has a curved surface region, the curved surface region is located so as to cross a central axis AXc of the main body part, one of the intersection lines formed by a plane including the central axis line AXc and the curved surface region is a curved line having two focal points, the light-emitting part 5 is disposed so that a predetermined region does not include two focal points, and the imaging part 4 is disposed at a position satisfying the following conditional equation (1). 0≦(Lc-La3)/La1≦0.5 (1)

Description

カプセル型内視鏡Capsule endoscope
 本発明は、カプセル型内視鏡に関する。 The present invention relates to a capsule endoscope.
 近年、内視鏡の分野においては、カプセル型筐体を持つ内視鏡(以下、「カプセル型内視鏡」という)による検査が行われている。この検査では、被検者は、カプセル型内視鏡を口から飲み込む。カプセル型内視鏡では、カプセル型内視鏡が体内から排出されるまでの間に、体内の撮影が行われる。 In recent years, in the field of endoscopes, an inspection using an endoscope having a capsule housing (hereinafter referred to as “capsule endoscope”) has been performed. In this examination, the subject swallows the capsule endoscope from the mouth. In the capsule endoscope, imaging of the body is performed before the capsule endoscope is discharged from the body.
 カプセル型内視鏡は、例えば、筐体の一端に透明なカバーが設けられている。カバーの内側には、体内を照明する光源と、照明された部位を撮像する撮像部と、が配置されている。 For example, a capsule endoscope has a transparent cover at one end of a housing. Inside the cover, a light source that illuminates the inside of the body and an imaging unit that images the illuminated part are arranged.
 光源としては、例えば、発光ダイオード(LED)が用いられる。また、体内の撮影では、広い範囲を、詳細に撮影できることが好ましい。このようなことから、撮像部には、広角で高い分解能を持つ光学系が用いられている。 As the light source, for example, a light emitting diode (LED) is used. Moreover, it is preferable that a wide range can be photographed in detail when photographing inside the body. For this reason, an optical system having a wide angle and high resolution is used for the imaging unit.
 特許文献1には、カプセル型内視鏡が開示されている。実施例1のカプセル型内視鏡は、半球形状の透明カバーと、1つの撮像部と、発光部と、を有する。発光部は、撮像部の周囲に配置されている。撮像部は、透明カバーの曲率中心と光学系の入射瞳位置とが一致するように配置されている。この配置により、撮像部に入射するフレアの発生を抑制することができている。 Patent Document 1 discloses a capsule endoscope. The capsule endoscope according to the first embodiment includes a hemispherical transparent cover, one imaging unit, and a light emitting unit. The light emitting unit is disposed around the imaging unit. The imaging unit is arranged so that the center of curvature of the transparent cover and the entrance pupil position of the optical system coincide. With this arrangement, the occurrence of flare incident on the imaging unit can be suppressed.
 また、実施例6のカプセル型内視鏡は、半球形状の透明カバーと、複数の撮像部と、発光部と、を有する。発光部は、透明カバーの曲率半径の中心位置が照明光学系の射出瞳と一致するように配置されている。この配置により、撮像部に入射するフレアの発生を抑制することができている。 Further, the capsule endoscope according to the sixth embodiment includes a hemispherical transparent cover, a plurality of imaging units, and a light emitting unit. The light emitting unit is arranged so that the center position of the radius of curvature of the transparent cover coincides with the exit pupil of the illumination optical system. With this arrangement, the occurrence of flare incident on the imaging unit can be suppressed.
特許第4363843号公報Japanese Patent No. 4363843
 実施例1のカプセル型内視鏡では、半球形状の透明カバーが用いられ、撮像部は、透明カバーの曲率中心と光学系の入射瞳位置とが一致するように配置されている。そのため、透明カバーと撮像部との間に大きな空間を必要とする。その結果、カプセル型内視鏡の全長が長くなってしまう。 In the capsule endoscope of the first embodiment, a hemispherical transparent cover is used, and the imaging unit is arranged so that the center of curvature of the transparent cover coincides with the entrance pupil position of the optical system. Therefore, a large space is required between the transparent cover and the imaging unit. As a result, the total length of the capsule endoscope becomes long.
 実施例6のカプセル型内視鏡では、半球形状の透明カバーが用いられ、発光部は、透明カバーの曲率半径の中心位置が照明光学系の射出瞳と一致するように配置されている。この場合も、透明カバーと撮像部との間に大きな空間を必要とする。その結果、カプセル型内視鏡の全長が長くなってしまう。 In the capsule endoscope of the sixth embodiment, a hemispherical transparent cover is used, and the light emitting section is arranged so that the center position of the radius of curvature of the transparent cover coincides with the exit pupil of the illumination optical system. Also in this case, a large space is required between the transparent cover and the imaging unit. As a result, the total length of the capsule endoscope becomes long.
 カプセル型内視鏡の全長を短縮するには、透明カバーと撮像部とを近づけるか、又は透明カバーと発光部とを近づければ良い。しかしながら、このようにすると、フレアが発生し易くなる。 In order to shorten the total length of the capsule endoscope, the transparent cover and the imaging unit may be brought close to each other, or the transparent cover and the light emitting unit may be brought close to each other. However, this makes it easier for flare to occur.
 本発明は、このような課題に鑑みてなされたものであって、フレアの少ない画像が得られ、全長が短いカプセル型内視鏡を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a capsule endoscope that can obtain an image with little flare and has a short overall length.
 上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係るカプセル型内視鏡は、
 柱状の本体部と、
 透明カバーと、
 撮像光学系を有する撮像部と、
 発光領域を有する発光部と、を備え、
 透明カバー、撮像部及び発光部は、本体部の一方の側に設けられ、
 透明カバーは、曲面領域を有し、
 曲面領域は、本体部の中心軸と交差するように位置し、
 中心軸を含む平面と曲面領域とで形成される交線のうちの1つは、2つの焦点を有する曲線であり、
 所定の領域が2つの焦点を含まないように、発光部は配置され、
 撮像部は、以下の条件式(1)を満足する位置に配置されていることを特徴とする。
 0≦(Lc-La3)/La1≦0.5   (1)
 ここで、
 所定の領域は、発光部の発光領域が、2つの焦点を含む面に投影されたときの領域、
 Lcは、第1の軸と中心軸との間隔、
 La1は、2つの焦点を有する曲線における半径、
 La3は、第2の軸と中心軸との間隔、
 第1の軸は、撮像光学系の瞳の中心を通り、中心軸と平行な軸、
 第2の軸は、焦点を通り、中心軸と平行な軸、
である。
In order to solve the above-described problems and achieve the object, a capsule endoscope according to at least some embodiments of the present invention includes:
A columnar body,
A transparent cover,
An imaging unit having an imaging optical system;
A light emitting unit having a light emitting region,
The transparent cover, the imaging unit, and the light emitting unit are provided on one side of the main body unit,
The transparent cover has a curved area,
The curved area is located so as to intersect the central axis of the main body,
One of the intersecting lines formed by the plane including the central axis and the curved region is a curve having two focal points,
The light emitting part is arranged so that the predetermined area does not include two focal points,
The imaging unit is arranged at a position satisfying the following conditional expression (1).
0 ≦ (Lc−La3) /La1≦0.5 (1)
here,
The predetermined region is a region when the light emitting region of the light emitting unit is projected on a plane including two focal points,
Lc is the distance between the first axis and the central axis,
La1 is the radius in a curve with two focal points,
La3 is the distance between the second axis and the central axis,
The first axis passes through the center of the pupil of the imaging optical system and is parallel to the central axis.
The second axis passes through the focal point and is parallel to the central axis;
It is.
 本発明によれば、フレアの少ない画像が得られ、全長が短いカプセル型内視鏡を提供することができる。 According to the present invention, it is possible to provide a capsule endoscope having an image with little flare and a short overall length.
本実施形態のカプセル型内視鏡の概略構成を示す図である。It is a figure which shows schematic structure of the capsule endoscope of this embodiment. カプセル型内視鏡の内部の様子を示す図である。It is a figure which shows the mode of the inside of a capsule type | mold endoscope. 中心軸と直交する平面における内部の様子を示す図である。It is a figure which shows the mode of the inside in the plane orthogonal to a central axis. 中心軸を含む平面における内部の様子を示す図である。It is a figure which shows the mode of the inside in the plane containing a central axis. カプセル型内視鏡の内部の様子を示す図である。It is a figure which shows the mode of the inside of a capsule type | mold endoscope. 中心軸を含む平面における内部の様子を示す図である。It is a figure which shows the mode of the inside in the plane containing a central axis. 中心軸と直交する平面における内部の様子を示す図である。It is a figure which shows the mode of the inside in the plane orthogonal to a central axis. 本実施形態のカプセル型内視鏡の概略構成を示す図である。It is a figure which shows schematic structure of the capsule endoscope of this embodiment. 本実施形態のカプセル型内視鏡の概略構成を示す図である。It is a figure which shows schematic structure of the capsule endoscope of this embodiment. 実施例1のカプセル型内視鏡の断面図を示す図である。1 is a cross-sectional view of a capsule endoscope according to a first embodiment. 実施例2のカプセル型内視鏡の断面図を示す図である。It is a figure which shows sectional drawing of the capsule type endoscope of Example 2. FIG. 実施例3のカプセル型内視鏡の断面図を示す図である。FIG. 6 is a cross-sectional view of a capsule endoscope according to a third embodiment. 実施例4のカプセル型内視鏡の断面図を示す図である。It is a figure which shows sectional drawing of the capsule type endoscope of Example 4. FIG. 実施例5のカプセル型内視鏡の断面図を示す図である。It is a figure which shows sectional drawing of the capsule type endoscope of Example 5. FIG. 実施例5のカプセル型内視鏡の断面図を示す図である。It is a figure which shows sectional drawing of the capsule type endoscope of Example 5. FIG.
 実施例の説明に先立ち、本発明のある態様にかかる実施形態の作用効果を説明する。なお、本実施形態の作用効果を具体的に説明するに際しては、具体的な例を示して説明することになる。しかし、後述する実施例の場合と同様に、それらの例示される態様はあくまでも本発明に含まれる態様のうちの一部に過ぎず、その態様には数多くのバリエーションが存在する。したがって、本発明は例示される態様に限定されるものではない。 Prior to the description of the examples, the operational effects of the embodiment according to an aspect of the present invention will be described. It should be noted that, when the operational effects of the present embodiment are specifically described, a specific example will be shown and described. However, as in the case of the embodiments to be described later, those exemplified aspects are only a part of the aspects included in the present invention, and there are many variations in the aspects. Therefore, the present invention is not limited to the illustrated embodiment.
 本実施形態のカプセル型内視鏡は、柱状の本体部と、透明カバーと、撮像光学系を有する撮像部と、発光領域を有する発光部と、を備え、透明カバー、撮像部及び発光部は、本体部の一方の側に設けられ、透明カバーは、曲面領域を有し、曲面領域は、本体部の中心軸と交差するように位置し、中心軸を含む平面と曲面領域とで形成される交線のうちの1つは、2つの焦点を有する曲線であり、所定の領域が2つの焦点を含まないように、発光部は配置され、撮像部は、以下の条件式(1)を満足する位置に配置されていることを特徴とする。
 0≦(Lc-La3)/La1≦0.5   (1)
 ここで、
 所定の領域は、発光部の発光領域が、2つの焦点を含む面に投影されたときの領域、
 Lcは、第1の軸と中心軸との間隔、
 La1は、2つの焦点を有する曲線における半径、
 La3は、第2の軸と中心軸との間隔、
 第1の軸は、撮像光学系の瞳の中心を通り、中心軸と平行な軸、
 第2の軸は、焦点を通り、中心軸と平行な軸、
である。
The capsule endoscope of the present embodiment includes a columnar main body, a transparent cover, an imaging unit having an imaging optical system, and a light emitting unit having a light emitting region. The transparent cover, the imaging unit, and the light emitting unit are The transparent cover is provided on one side of the main body, has a curved surface area, the curved surface area is located so as to intersect the central axis of the main body, and is formed by a plane including the central axis and the curved surface area. One of the intersecting lines is a curve having two focal points, the light emitting unit is arranged so that the predetermined region does not include the two focal points, and the imaging unit satisfies the following conditional expression (1): It is arranged at a satisfactory position.
0 ≦ (Lc−La3) /La1≦0.5 (1)
here,
The predetermined region is a region when the light emitting region of the light emitting unit is projected on a plane including two focal points,
Lc is the distance between the first axis and the central axis,
La1 is the radius in a curve with two focal points,
La3 is the distance between the second axis and the central axis,
The first axis passes through the center of the pupil of the imaging optical system and is parallel to the central axis.
The second axis passes through the focal point and is parallel to the central axis;
It is.
 本実施形態のカプセル型内視鏡の概略構成を図1に示す。カプセル型内視鏡1は、本体部2と、透明カバー3と、撮像部4と、発光部5と、を備える。 FIG. 1 shows a schematic configuration of the capsule endoscope of the present embodiment. The capsule endoscope 1 includes a main body 2, a transparent cover 3, an imaging unit 4, and a light emitting unit 5.
 本体部2は、柱状の部材で構成されている。本体部2の中心軸AXcに沿う方向の長さは、中心軸AXcと直交する方向の長さよりも長い。本体部2の内部には、空洞が形成されている。よって、本体部2は、筒状の部材で構成されているといっても良い。 The main body 2 is composed of a columnar member. The length of the main body 2 in the direction along the central axis AXc is longer than the length in the direction orthogonal to the central axis AXc. A cavity is formed inside the main body 2. Therefore, it can be said that the main body 2 is formed of a cylindrical member.
 空洞の部分に、撮像部4や発光部5が配置されている。また、図示はしていないが、空洞の部分には、電源、信号処理部、受電部及び送信部が配置されている。 The imaging unit 4 and the light emitting unit 5 are arranged in the hollow part. Although not shown, a power source, a signal processing unit, a power reception unit, and a transmission unit are arranged in the hollow portion.
 本体部2の一方の側には、透明カバー3が配置されている。透明カバー3は、本体部の端面から突出するように設けられている。本体部2の他方の側には、略椀形状の底部が形成されている。底部は、本体部2と一体に形成されていても、本体部2と別に形成されていても良い。 A transparent cover 3 is disposed on one side of the main body 2. The transparent cover 3 is provided so as to protrude from the end surface of the main body. A substantially bowl-shaped bottom is formed on the other side of the main body 2. The bottom part may be formed integrally with the main body part 2 or may be formed separately from the main body part 2.
 本体部2には、撮像部4と発光部5が配置されている。撮像部4と発光部5は、本体部2の一方の側、すなわち、透明カバー3が配置されている側に配置されている。本体部2の一方の側の端面には、撮像部4の先端部や発光部5の先端部が位置している。 An imaging unit 4 and a light emitting unit 5 are arranged in the main body unit 2. The imaging unit 4 and the light emitting unit 5 are arranged on one side of the main body unit 2, that is, on the side where the transparent cover 3 is arranged. On the end face on one side of the main body 2, the tip of the imaging unit 4 and the tip of the light emitting unit 5 are located.
 撮像部4は、撮像光学系を有する。撮像光学系によって、被写体の像が形成される。被写体と撮像部4との間には、透明カバー3が位置している。よって、被写体の像の形成は、透明カバー3を介して行われる。被写体の像の位置には、例えば、撮像素子が配置されている。これにより、被写体を撮像することができる。 The imaging unit 4 has an imaging optical system. An image of the subject is formed by the imaging optical system. A transparent cover 3 is located between the subject and the imaging unit 4. Therefore, the image of the subject is formed through the transparent cover 3. For example, an image sensor is arranged at the position of the subject image. Thereby, a subject can be imaged.
 発光部5は、発光領域を有する。発光領域から照明光が射出される。被写体と発光部5との間には、透明カバー3が位置している。よって、被写体の照明は、透明カバー3を介して行われる。 The light emitting unit 5 has a light emitting area. Illumination light is emitted from the light emitting area. A transparent cover 3 is located between the subject and the light emitting unit 5. Therefore, the subject is illuminated through the transparent cover 3.
 カプセル型内視鏡の内部の様子について説明する。カプセル型内視鏡の内部の様子を図2に示す。図2(a)は、中心軸と直交する平面における内部の様子を示している。図2(b)は、中心軸を含む平面における内部の様子を示している。 The state inside the capsule endoscope will be described. FIG. 2 shows the inside of the capsule endoscope. FIG. 2A shows an internal state in a plane orthogonal to the central axis. FIG. 2B shows an internal state in a plane including the central axis.
 中心軸AXcと直交する平面は無数に存在する。図2(a)は、2つの焦点Pfを含む面PL1(以下、「面PL1」という)における内部の様子を示している。2つの焦点Pfについては、後述する。 There are countless planes orthogonal to the central axis AXc. FIG. 2A shows an internal state in a plane PL1 (hereinafter referred to as “plane PL1”) including two focal points Pf. The two focal points Pf will be described later.
 透明カバー3は、曲面領域を有している。曲面領域は、本体部2の中心軸AXcと交差するように位置している。カプセル型内視鏡1では、透明カバー3の全体が、曲面領域になっている。 The transparent cover 3 has a curved surface area. The curved surface area is located so as to intersect the central axis AXc of the main body 2. In the capsule endoscope 1, the entire transparent cover 3 is a curved region.
 中心軸AXcを含む平面は無数に存在する。よって、中心軸AXcを含む平面と曲面領域とで形成される交線も無数に存在する。 There are an infinite number of planes including the central axis AXc. Therefore, there are innumerable intersection lines formed between the plane including the central axis AXc and the curved surface area.
 カプセル型内視鏡1では、無数の交線のうちの1つは、2つの焦点Pfを有する曲線である。カプセル型内視鏡1における曲面領域の形状は、無数の交線の中に2つの焦点Pfを有する曲線が含まれているような形状になっている。 In the capsule endoscope 1, one of the innumerable intersection lines is a curve having two focal points Pf. The shape of the curved surface region in the capsule endoscope 1 is such that a curve having two focal points Pf is included in innumerable intersection lines.
 図2(b)には、中心軸AXcを含む平面と曲面領域とで形成される交線が示されている。ここでは、2つの焦点Pfを有する曲線が示されている。上述のように、透明カバー3の全体が、曲面領域になっている。よって、図2(b)では、透明カバー3を示す曲線全体が、2つの焦点Pfを有する曲線を表している。 FIG. 2B shows an intersection formed by a plane including the central axis AXc and a curved surface area. Here, a curve having two focal points Pf is shown. As described above, the entire transparent cover 3 is a curved region. Therefore, in FIG. 2B, the entire curve showing the transparent cover 3 represents a curve having two focal points Pf.
 曲面領域の形状としては、例えば、半楕円面がある。半楕円面は、2つの焦点Pfを通る直線を回転軸として、透明カバー3を示す曲線全体を180度回転させることで得られる。曲面領域の形状を半楕円面にすることで、透明カバー3の形状が半円形状の場合に比べて、面PL1からの透明カバー3の突出量を少なくすることができる。その結果、カプセル型内視鏡1の全長を短縮することができる。 As the shape of the curved surface area, for example, there is a semi-elliptical surface. The semi-elliptical surface is obtained by rotating the entire curve showing the transparent cover 3 by 180 degrees with a straight line passing through the two focal points Pf as the rotation axis. By making the shape of the curved surface region a semi-elliptical surface, the amount of protrusion of the transparent cover 3 from the surface PL1 can be reduced as compared with the case where the shape of the transparent cover 3 is a semicircular shape. As a result, the overall length of the capsule endoscope 1 can be shortened.
 カプセル型内視鏡1では、発光部5は、本体部2の中央に配置されている。ただし、発光部5は、所定の領域が2つの焦点を含まないように配置されている。所定の領域は、発光部の発光領域が、面PL1に投影されたときの領域である。このように、発光部5の位置と発光領域の大きさは、2つの焦点Pfの位置が所定の領域に含まれないように設定されている。 In the capsule endoscope 1, the light emitting unit 5 is disposed in the center of the main body unit 2. However, the light emitting unit 5 is arranged so that the predetermined region does not include two focal points. The predetermined area is an area when the light emitting area of the light emitting unit is projected onto the surface PL1. As described above, the position of the light emitting unit 5 and the size of the light emitting area are set so that the positions of the two focal points Pf are not included in the predetermined area.
 カプセル型内視鏡1では、一方の焦点Pfの位置から出射した光の一部は、透明カバー3で反射される。透明カバー3で反射された光は、他方の焦点Pfの位置に到達する。 In the capsule endoscope 1, a part of the light emitted from the position of one focal point Pf is reflected by the transparent cover 3. The light reflected by the transparent cover 3 reaches the position of the other focal point Pf.
 上述のように、発光部5の位置と発光領域の大きさは、2つの焦点Pfの位置が所定の領域に含まれないように設定されている。そのため、焦点Pfの位置、又は、焦点Pfの近傍から出射する照明光は存在しない。その結果、発光部5から出射した照明光が、直接、撮像部4に入射することがない。 As described above, the position of the light emitting unit 5 and the size of the light emitting area are set so that the positions of the two focal points Pf are not included in the predetermined area. Therefore, there is no illumination light emitted from the position of the focal point Pf or the vicinity of the focal point Pf. As a result, the illumination light emitted from the light emitting unit 5 does not directly enter the imaging unit 4.
 カプセル型内視鏡1では、撮像部4は、本体部2の周辺部に配置されている。撮像部4は、2つの焦点Pfを結ぶ線上に撮像光学系の瞳の中心Ppが位置するように、配置されている。ただし、図2(b)では、撮像部4は、撮像光学系の瞳の中心Ppが焦点Pfと一致しないように配置されている。更に、撮像部4は、焦点Pfと本体部2の外周面との間に撮像光学系の瞳の中心Ppが位置するように、配置されている。 In the capsule endoscope 1, the imaging unit 4 is disposed in the periphery of the main body 2. The imaging unit 4 is arranged so that the center Pp of the pupil of the imaging optical system is located on the line connecting the two focal points Pf. However, in FIG. 2B, the imaging unit 4 is arranged so that the pupil center Pp of the imaging optical system does not coincide with the focal point Pf. Furthermore, the imaging unit 4 is arranged so that the center Pp of the pupil of the imaging optical system is located between the focal point Pf and the outer peripheral surface of the main body unit 2.
 この場合、図2(b)に示すように、第1の軸AXpは、第2の軸AXfと本体部2の外周面との間に位置する。第1の軸AXpは、撮像光学系の瞳の中心Ppを通り、中心軸AXcと平行な軸である。第2の軸AXfは焦点Pfを通り、中心軸AXcと平行な軸である。 In this case, as shown in FIG. 2B, the first axis AXp is located between the second axis AXf and the outer peripheral surface of the main body 2. The first axis AXp is an axis that passes through the center Pp of the pupil of the imaging optical system and is parallel to the center axis AXc. The second axis AXf is an axis that passes through the focal point Pf and is parallel to the central axis AXc.
 更に、撮像部4は、条件式(1)を満足する位置に配置されている。 Furthermore, the imaging unit 4 is disposed at a position that satisfies the conditional expression (1).
 条件式(1)は、撮像部の好ましい位置に関する条件式である。撮像部の好ましい位置は、第1の軸AXpと中心軸AXcとの間隔Lc、2つの焦点を有する曲線における半径La1及び第2の軸AXfと中心軸AXcとの間隔La3で決めることができる。 Conditional expression (1) is a conditional expression regarding a preferable position of the imaging unit. A preferable position of the imaging unit can be determined by the distance Lc between the first axis AXp and the central axis AXc, the radius La1 in the curve having two focal points, and the distance La3 between the second axis AXf and the central axis AXc.
 La1は、中心軸AXcを含む平面と曲面領域とで形成される交線から求めることができるが、別の方法でも求めることができる。例えば、面PL1と曲面領域とによって、交線が形成される。この交線は、曲面領域の外周を表している。La1は、中心軸と曲面領域の外周上の点との間隔のうちで、最大となる間隔である。 La1 can be obtained from the intersection formed by the plane including the central axis AXc and the curved surface area, but can also be obtained by another method. For example, an intersection line is formed by the surface PL1 and the curved surface region. This intersection line represents the outer periphery of the curved surface area. La1 is the maximum interval among the intervals between the central axis and the points on the outer periphery of the curved surface area.
 また、曲面領域の外周から、La2を求めることができる。La2は、中心軸と曲面領域の外周上の点との間隔のうちで、最小となる間隔である。 Further, La2 can be obtained from the outer periphery of the curved surface area. La2 is the smallest interval among the intervals between the central axis and the points on the outer periphery of the curved surface area.
 曲面領域の形状が半楕円面の場合、La1は楕円の長半径に対応し、La2は楕円の短半径に対応する。 When the shape of the curved surface area is a semi-elliptical surface, La1 corresponds to the major radius of the ellipse, and La2 corresponds to the minor radius of the ellipse.
 発光部5から射出した照明光の一部は、透明カバー3で反射される。透明カバー3で反射された照明光が撮像部4へ入射すると、フレアが発生する。条件式(1)を満足することで、フレアの発生を抑えることができる。 A part of the illumination light emitted from the light emitting unit 5 is reflected by the transparent cover 3. When the illumination light reflected by the transparent cover 3 enters the imaging unit 4, flare occurs. The occurrence of flare can be suppressed by satisfying conditional expression (1).
 本実施形態のカプセル型内視鏡は、撮像部を複数備え、複数の撮像部の各々は、条件式(1)を満足するように配置されていることが好ましい。 The capsule endoscope according to the present embodiment preferably includes a plurality of imaging units, and each of the plurality of imaging units is preferably arranged so as to satisfy the conditional expression (1).
 上述のように、曲面領域の形状としては、半楕円面がある。半楕円面は、2つの焦点Pfを通る直線を回転軸として、透明カバー3を示す曲線全体を180度回転させることで得られる。よって、半楕円面は、中心軸AXcに対して回転対称な面になっていない。 As described above, there is a semi-elliptical surface as the shape of the curved region. The semi-elliptical surface is obtained by rotating the entire curve showing the transparent cover 3 by 180 degrees with a straight line passing through the two focal points Pf as the rotation axis. Therefore, the semi-elliptical surface is not a rotationally symmetric surface with respect to the central axis AXc.
 曲面領域の形状を中心軸AXcに対して回転対称な形状にするには、中心軸AXcを回転軸として、透明カバー3を示す曲線全体を180度回転させれば良い。このようにしても、透明カバーの形状が半円形状の場合に比べて、面PL1からの透明カバーの突出量を少なくすることができる。その結果、カプセル型内視鏡1の全長を短縮することができる。 To make the shape of the curved surface area rotationally symmetric with respect to the central axis AXc, the entire curve showing the transparent cover 3 may be rotated 180 degrees with the central axis AXc as the rotational axis. Even if it does in this way, compared with the case where the shape of a transparent cover is semicircle shape, the protrusion amount of the transparent cover from the surface PL1 can be decreased. As a result, the overall length of the capsule endoscope 1 can be shortened.
 図3は、中心軸と直交する平面における内部の様子を示している。図3では、1つの発光部と2つの撮像部を備えた構成が示されている。透明カバー3’における曲面領域の形状は、中心軸AXcに対して回転対称な形状になっている。この場合、2つの焦点Pfは、中心軸AXcを中心とする円の円周上に位置する。 FIG. 3 shows an internal state in a plane orthogonal to the central axis. FIG. 3 shows a configuration including one light emitting unit and two imaging units. The shape of the curved surface area in the transparent cover 3 ′ is a rotationally symmetric shape with respect to the central axis AXc. In this case, the two focal points Pf are located on the circumference of a circle centered on the central axis AXc.
 発光部5は、所定の領域が2つの焦点を含まないように配置されている。よって、発光部5から出射した照明光が、直接、撮像部4や撮像部4’に入射することがない。 The light emitting unit 5 is arranged so that the predetermined area does not include two focal points. Therefore, the illumination light emitted from the light emitting unit 5 does not directly enter the imaging unit 4 or the imaging unit 4 '.
 透明カバー3’では、中心軸を含む平面と曲面領域とで形成される交線のうち、2つの焦点を有する曲線が少なくとも2つ存在する。図3では、2つの焦点Pfと2つの焦点Pf’を含む面PL1における内部の様子を示している。 In the transparent cover 3 ′, there are at least two curves having two focal points among intersecting lines formed by the plane including the central axis and the curved surface region. FIG. 3 shows an internal state in the plane PL1 including two focal points Pf and two focal points Pf ′.
 撮像部4は撮像光学系の中心Ppを有し、撮像部4’は撮像光学系の中心Pp’を有する。撮像部4は、2つの焦点Pfを結ぶ線上に撮像光学系の瞳の中心Ppが位置するように、配置されている。撮像部4’は、2つの焦点Pf’を結ぶ線上に撮像光学系の瞳の中心Pp’が位置するように、配置されている。撮像部4と撮像部4’は、共に、条件式(1)を満足する位置に配置されている。よって、フレアの発生を抑えることができる。 The imaging unit 4 has the center Pp of the imaging optical system, and the imaging unit 4 'has the center Pp' of the imaging optical system. The imaging unit 4 is arranged so that the center Pp of the pupil of the imaging optical system is located on the line connecting the two focal points Pf. The imaging unit 4 ′ is arranged so that the center Pp ′ of the pupil of the imaging optical system is positioned on a line connecting the two focal points Pf ′. Both the imaging unit 4 and the imaging unit 4 ′ are arranged at positions that satisfy the conditional expression (1). Therefore, the occurrence of flare can be suppressed.
 上述のように、カプセル型内視鏡では、体内の広い範囲を、詳細に撮影できることが好ましい。撮像部が1つの場合、撮影範囲を1つの撮像部で撮影しなければならない。そのため、撮像光学系における撮像倍率が小さくなる。 As described above, it is preferable that the capsule endoscope can capture a wide range in the body in detail. When there is one image pickup unit, the shooting range must be shot with one image pickup unit. Therefore, the imaging magnification in the imaging optical system is reduced.
 例えば、同じ大きさの病変部を、撮像倍率が小さい光学系と撮像倍率が大きい光学系とで撮像したとする。この場合、病変部の像は、撮像倍率が大きい光学系に比べて、撮像倍率が小さい光学系の方が小さくなる。 For example, assume that a lesion having the same size is imaged with an optical system having a small imaging magnification and an optical system having a large imaging magnification. In this case, an image of a lesion is smaller in an optical system with a small imaging magnification than in an optical system with a large imaging magnification.
 病変部の像を詳細に観察する方法としては、例えば、病変部の像を撮像し、得られた画像を電子拡大する方法がある。しかしながら、この方法では、拡大によって画像の解像度が劣化してしまう。そのため、詳細観察が十分にできない。 As a method for observing an image of a lesioned part in detail, for example, there is a method of taking an image of a lesioned part and electronically enlarging the obtained image. However, with this method, the resolution of the image deteriorates due to enlargement. Therefore, detailed observation is not possible.
 本実施形態のカプセル型内視鏡は、撮像部を複数備えている。この場合、各撮像部で、撮像光学系の撮像倍率を大きくすることができる。これにより、広範囲観察と詳細観察とを両立することができる。更に、各撮像部は、条件式(1)を満足する。よって、フレアの少ない画像が得られる。 The capsule endoscope of the present embodiment includes a plurality of imaging units. In this case, the imaging magnification of the imaging optical system can be increased in each imaging unit. Thereby, wide range observation and detailed observation can be made compatible. Further, each imaging unit satisfies the conditional expression (1). Therefore, an image with less flare can be obtained.
 本実施形態のカプセル型内視鏡では、撮像部は、透明カバーに対して最も近くに位置する入射面を有し、発光部は、透明カバーに対して最も近くに位置する射出面を有し、撮像部は、第1の軸と中心軸とが平行になるように配置され、中心軸に沿う方向において、入射面は、射出面よりも透明カバー側に位置していることが好ましい。 In the capsule endoscope of the present embodiment, the imaging unit has an incident surface located closest to the transparent cover, and the light emitting unit has an exit surface located closest to the transparent cover. The imaging unit is preferably arranged such that the first axis and the central axis are parallel to each other, and the incident surface is located closer to the transparent cover than the exit surface in the direction along the central axis.
 このようにすることで、透明カバーと撮像部との間隔を狭くすることができる。その結果、カプセル型内視鏡の全長を短縮することができる。また、フレアの発生を抑えることができる。 In this way, the distance between the transparent cover and the imaging unit can be reduced. As a result, the total length of the capsule endoscope can be shortened. Moreover, generation | occurrence | production of flare can be suppressed.
 本実施形態のカプセル型内視鏡では、撮像部は、透明カバーに対して最も近くに位置する入射面を有し、発光部は、透明カバーに対して最も近くに位置する射出面を有し、以下の条件式(2)を満足することが好ましい。
 0.01≦(Zc-Zb)/La1≦1.0   (2)
 ここで、
 Zcは、所定の面から入射面までの距離、
 Zbは、所定の面から射出面までの距離、
 La1は、2つの焦点を有する曲線における半径、
 所定の面は、中心軸と直交し、且つ、撮像光学系の瞳の中心を含む面、
 距離は中心軸に沿う方向の距離、
 距離の符号は、所定の面から透明カバーに向かう方向がプラス、
である。
In the capsule endoscope of the present embodiment, the imaging unit has an incident surface located closest to the transparent cover, and the light emitting unit has an exit surface located closest to the transparent cover. It is preferable that the following conditional expression (2) is satisfied.
0.01 ≦ (Zc−Zb) /La1≦1.0 (2)
here,
Zc is the distance from the predetermined surface to the incident surface,
Zb is the distance from the predetermined surface to the exit surface,
La1 is the radius in a curve with two focal points,
The predetermined plane is a plane orthogonal to the central axis and including the center of the pupil of the imaging optical system;
The distance is the distance along the central axis,
The sign of the distance is positive in the direction from the predetermined surface to the transparent cover,
It is.
 図4は、中心軸を含む平面における内部の様子を示している。図2(b)と同じ構成については同じ番号を付し、説明は省略する。 FIG. 4 shows an internal state in a plane including the central axis. The same components as those in FIG. 2B are denoted by the same reference numerals and description thereof is omitted.
 図4では、所定の面PL2、所定の面PL2から入射面6までの距離Zc、及び所定の面PL2から射出面7までの距離Zbが示されている。所定の面PL2は、中心軸AXcと直交し、且つ、撮像光学系の瞳Ppの中心を含む面である。 FIG. 4 shows a predetermined surface PL2, a distance Zc from the predetermined surface PL2 to the incident surface 6, and a distance Zb from the predetermined surface PL2 to the exit surface 7. The predetermined plane PL2 is a plane that is orthogonal to the central axis AXc and includes the center of the pupil Pp of the imaging optical system.
 射出面7が平坦でない場合、所定の面PL2から射出面7までの距離は、射出面7上の各点で異なる。この場合、距離Zbは、所定の面PL2から射出面7上の各点までの距離のうちで、最大となる距離である。 When the exit surface 7 is not flat, the distance from the predetermined surface PL2 to the exit surface 7 is different at each point on the exit surface 7. In this case, the distance Zb is the maximum distance among the distances from the predetermined plane PL2 to each point on the exit surface 7.
 条件式(2)を満足することで、透明カバーと撮像部との間隔を狭くすることができる。その結果、カプセル型内視鏡の全長を短縮することができる。また、フレアの発生を抑えることができる。 When the conditional expression (2) is satisfied, the distance between the transparent cover and the imaging unit can be reduced. As a result, the total length of the capsule endoscope can be shortened. Moreover, generation | occurrence | production of flare can be suppressed.
 特に、撮像部が第1の軸と中心軸とが平行になるように配置された状態で、条件式(2)を満足することが好ましい。 In particular, it is preferable that the conditional expression (2) is satisfied in a state where the imaging unit is arranged so that the first axis and the central axis are parallel to each other.
 本実施形態のカプセル型内視鏡では、撮像部は、透明カバーに対して最も近くに位置する入射面を有し、以下の条件式(3)を満足することが好ましい。
 -0.5≦Zc/La1≦0.5   (3)
 ここで、
 Zcは、所定の面から入射面までの距離、
 La1は、2つの焦点を有する曲線における半径、
 所定の面は、中心軸と直交し、且つ、撮像光学系の瞳の中心を含む面、
 距離は中心軸に沿う方向の距離、
 距離の符号は、所定の面から透明カバーに向かう方向がプラス、
である。
In the capsule endoscope of the present embodiment, it is preferable that the imaging unit has an incident surface located closest to the transparent cover and satisfies the following conditional expression (3).
−0.5 ≦ Zc / La1 ≦ 0.5 (3)
here,
Zc is the distance from the predetermined surface to the incident surface,
La1 is the radius in a curve with two focal points,
The predetermined plane is a plane orthogonal to the central axis and including the center of the pupil of the imaging optical system;
The distance is the distance along the central axis,
The sign of the distance is positive in the direction from the predetermined surface to the transparent cover,
It is.
 このようにすることで、透明カバーと撮像部との間隔を狭くすることができる。その結果、カプセル型内視鏡の全長を短縮することができる。また、フレアの発生を抑えることができる。 In this way, the distance between the transparent cover and the imaging unit can be reduced. As a result, the total length of the capsule endoscope can be shortened. Moreover, generation | occurrence | production of flare can be suppressed.
 本実施形態のカプセル型内視鏡では、2つの焦点を有する曲線は、楕円の一部であり、楕円の短軸が中心軸と一致し、以下の条件式(4)を満足することが好ましい。
 0≦1-rb/ra≦0.9   (4)
 ここで、
 raは、楕円の長半径、
 rbは、楕円の短半径、
である。
In the capsule endoscope of the present embodiment, it is preferable that the curve having two focal points is a part of an ellipse, the short axis of the ellipse coincides with the central axis, and the following conditional expression (4) is satisfied. .
0 ≦ 1-rb / ra ≦ 0.9 (4)
here,
ra is the ellipse major radius,
rb is the short radius of the ellipse,
It is.
 条件式(4)の上限値を上回らないことで、カプセル型内視鏡の全長を短縮することができる。条件式(4)の下限値を下回らないことで、撮像部を配置するスペースを確保しながら、透明カバーの径を小さくすることができる。 The total length of the capsule endoscope can be shortened by not exceeding the upper limit value of conditional expression (4). By not falling below the lower limit value of conditional expression (4), it is possible to reduce the diameter of the transparent cover while securing a space for arranging the imaging unit.
 本実施形態のカプセル型内視鏡では、発光部は、透明カバーに対して最も近くに位置する射出面を有し、2つの焦点を有する曲線は、楕円の一部であり、楕円の短軸が中心軸と一致し、発光部は、第1の所定の円の内側に位置すると共に、以下の条件式(5)を満足することが好ましい。
 -0.1≦(La3-Lb-|Z’b|×tanθb)/ra≦0.7   (5)
 ここで、
 La3は、第2の軸と中心軸との間隔、
 Lbは、中心軸と発光領域の外縁上の各点との間隔のうち、最大となる間隔、
 Z’bは、2つの焦点を含む面から射出面までの距離、
 θbは、中心軸と所定の方向とのなす角度、
 raは、楕円の長半径、
 第1の所定の円は、中心が中心軸上に位置し、距離La3を半径とする円、
 所定の方向は、0.1×LIとなる方向、
 LIは、中心軸に沿う方向の光強度、
である。
In the capsule endoscope of the present embodiment, the light emitting unit has an exit surface located closest to the transparent cover, and the curve having two focal points is a part of an ellipse, and the minor axis of the ellipse Coincides with the central axis, and the light emitting portion is preferably located inside the first predetermined circle and satisfies the following conditional expression (5).
−0.1 ≦ (La3−Lb− | Z′b | × tan θb) /ra≦0.7 (5)
here,
La3 is the distance between the second axis and the central axis,
Lb is the maximum interval among the intervals between the central axis and each point on the outer edge of the light emitting region,
Z′b is the distance from the plane containing the two focal points to the exit plane,
θb is an angle formed by the central axis and a predetermined direction,
ra is the ellipse major radius,
The first predetermined circle is a circle whose center is located on the central axis and whose radius is the distance La3.
The predetermined direction is a direction of 0.1 × LI,
LI is the light intensity in the direction along the central axis,
It is.
 図5は、カプセル型内視鏡の内部の様子を示している。図5(a)は、中心軸と直交する平面における内部の様子を示している。図5(b)は、中心軸を含む平面における内部の様子を示している。図2(a)や図2(b)と同じ構成については同じ番号を付し、説明は省略する。 FIG. 5 shows the inside of the capsule endoscope. FIG. 5A shows an internal state in a plane orthogonal to the central axis. FIG. 5B shows an internal state in a plane including the central axis. The same components as those in FIGS. 2A and 2B are denoted by the same reference numerals, and description thereof is omitted.
 図5(a)では、中心軸AXcと発光領域の外縁上の各点との間隔のうち、最大となる間隔Lbが示されている。第1の所定の円は、中心が中心軸AXc上に位置し、距離La3を半径とする円である。第1の所定の円は、2点鎖線で示されている。発光部5は第1の所定の円の内側に位置している。 FIG. 5A shows the maximum distance Lb among the distances between the central axis AXc and each point on the outer edge of the light emitting region. The first predetermined circle is a circle whose center is located on the central axis AXc and whose radius is the distance La3. The first predetermined circle is indicated by a two-dot chain line. The light emitting unit 5 is located inside the first predetermined circle.
 図5(b)では、面PL1から射出面7までの距離Z’bと、中心軸AXcと所定の方向とのなす角度θbと、が示されている。所定の方向は、0.1×LIとなる方向である。LIは、中心軸に沿う方向の光強度である。 FIG. 5B shows the distance Z′b from the surface PL1 to the exit surface 7 and the angle θb formed by the central axis AXc and a predetermined direction. The predetermined direction is a direction that becomes 0.1 × LI. LI is the light intensity in the direction along the central axis.
 射出面7が平坦でない場合、所定の面から射出面7までの距離は、射出面7上の各点で異なる。この場合、Z’bは、所定の面から射出面7上の各点までの距離のうちで、最大となる距離である。 When the exit surface 7 is not flat, the distance from the predetermined surface to the exit surface 7 is different at each point on the exit surface 7. In this case, Z′b is the maximum distance among the distances from the predetermined surface to each point on the exit surface 7.
 発光部5から出射する光の強度は、中心軸AXcに沿う方向と、中心軸AXcと交差する方向と、で異なる。中心軸AXcと交差する方向では、中心軸AXcとのなす角度が大きくなるにしたがって、光の強度が小さくなる。所定の方向は、中心軸AXcに沿う方向に対する光強度が10%になっている方向である。 The intensity of the light emitted from the light emitting unit 5 is different between the direction along the central axis AXc and the direction intersecting the central axis AXc. In the direction intersecting with the central axis AXc, the intensity of light decreases as the angle formed with the central axis AXc increases. The predetermined direction is a direction in which the light intensity with respect to the direction along the central axis AXc is 10%.
 発光部では、撮影範囲において一定の照度を確保する必要がある。条件式(5)の上限値を上回らないことで、十分な広さの発光領域を確保することができる。そのため、撮像に必要な照度を得ることができる。 In the light emitting part, it is necessary to ensure a certain illuminance in the shooting range. By not exceeding the upper limit value of conditional expression (5), it is possible to secure a sufficiently wide light emitting region. Therefore, the illuminance necessary for imaging can be obtained.
 広い撮影範囲を確保するためには、撮像光学系を広角光学系にする必要がある。広角光学系では、光学系の径が大きくなり易い。そのため、撮像部の径も大きくなる。 In order to ensure a wide shooting range, the imaging optical system needs to be a wide-angle optical system. In a wide-angle optical system, the diameter of the optical system tends to be large. Therefore, the diameter of the imaging unit is also increased.
 条件式(5)の下限値を下回らないことで、フレアの発生を抑えながら、撮像部を中心軸に近い位置に配置するために必要なスペースを、本体部の内部に確保することができる。これは、カプセル径の小型化にもつながる。 By not falling below the lower limit value of the conditional expression (5), it is possible to secure a space necessary for disposing the imaging unit at a position close to the central axis inside the main body unit while suppressing the occurrence of flare. This also leads to a reduction in capsule diameter.
 本実施形態のカプセル型内視鏡では、発光部は、透明カバーに対して最も近くに位置する射出面を有し、2つの焦点を有する曲線は、楕円の一部であり、楕円の短軸が中心軸と一致し、発光部は、第1の所定の円の内側に位置すると共に、以下の条件式(6)を満足し、発光領域から出射する光の一部が遮光されることが好ましい。
 (La3-Lb-|Z’b|×tanθb)/ra<0.05   (6)
 ここで、
 La3は、第2の軸と中心軸との間隔、
 Lbは、中心軸と発光領域の外縁上の各点との間隔のうち、最大となる間隔、
 Z’bは、2つの焦点を含む面から射出面までの距離、
 θbは、中心軸と所定の方向とのなす角度、
 raは、楕円の長半径、
 第1の所定の円は、中心が中心軸上に位置し、距離La3を半径とする円、
 所定の方向は、0.1×LIとなる方向、
 LIは、中心軸に沿う方向の光強度、
である。
In the capsule endoscope of the present embodiment, the light emitting unit has an exit surface located closest to the transparent cover, and the curve having two focal points is a part of an ellipse, and the minor axis of the ellipse Coincides with the central axis, the light emitting part is located inside the first predetermined circle, satisfies the following conditional expression (6), and part of the light emitted from the light emitting region is blocked: preferable.
(La3-Lb- | Z'b | × tan θb) / ra <0.05 (6)
here,
La3 is the distance between the second axis and the central axis,
Lb is the maximum interval among the intervals between the central axis and each point on the outer edge of the light emitting region,
Z′b is the distance from the plane containing the two focal points to the exit plane,
θb is an angle formed by the central axis and a predetermined direction,
ra is the ellipse major radius,
The first predetermined circle is a circle whose center is located on the central axis and whose radius is the distance La3.
The predetermined direction is a direction of 0.1 × LI,
LI is the light intensity in the direction along the central axis,
It is.
 上述のように、発光部では、撮影範囲において一定の照度を確保する必要がある。条件式(6)の上限値を上回らないことで、十分な広さの発光領域を確保することができる。そのため、撮像に必要な照度を得ることができる。 As described above, in the light emitting unit, it is necessary to ensure a certain illuminance in the shooting range. By not exceeding the upper limit value of conditional expression (6), a sufficiently wide light emitting region can be secured. Therefore, the illuminance necessary for imaging can be obtained.
 更に、発光領域から出射する光の一部が遮光される。そのため、フレアの発生をより効果的に抑えることができる。遮光は、例えば、遮光部材によって行えば良い。 Furthermore, a part of the light emitted from the light emitting area is shielded. Therefore, the occurrence of flare can be suppressed more effectively. The light shielding may be performed by, for example, a light shielding member.
 本実施形態のカプセル型内視鏡では、発光部は、第2の所定の円の内側に位置すると共に、以下の条件式(7)を満足することが好ましい。
 0≦Lb/Lc≦0.8   (7)
 ここで、
 Lbは、中心軸と発光領域の外縁上の各点との間隔のうち、最大となる間隔、
 Lcは、第1の軸と中心軸との間隔、
 第2の所定の円は、中心が中心軸上に位置し、距離La3を半径とする円、
である。
In the capsule endoscope of the present embodiment, it is preferable that the light emitting unit is located inside the second predetermined circle and satisfies the following conditional expression (7).
0 ≦ Lb / Lc ≦ 0.8 (7)
here,
Lb is the maximum interval among the intervals between the central axis and each point on the outer edge of the light emitting region,
Lc is the distance between the first axis and the central axis,
The second predetermined circle is a circle whose center is located on the central axis and whose radius is the distance La3.
It is.
 条件式(7)を満足することで、発光部と撮像部を、限られたスペースに効率よく配置することができる。そのため、透明カバーを小さくすること、すなわち、カプセル型内視鏡の径を小さくすることができる。更に、フレアの発生を抑えることができる。 By satisfying conditional expression (7), the light emitting unit and the imaging unit can be efficiently arranged in a limited space. Therefore, the transparent cover can be reduced, that is, the diameter of the capsule endoscope can be reduced. Furthermore, the occurrence of flare can be suppressed.
 本実施形態のカプセル型内視鏡では、発光部は、第1の所定の円の内側に位置すると共に、以下の条件式(8)を満足することが好ましい。
 0≦Lb/La3≦0.9   (8)
 ここで、
 La3は、第2の軸と中心軸との間隔、
 Lbは、中心軸と発光領域の外縁上の各点との間隔のうち、最大となる間隔、
 第1の所定の円は、中心が中心軸上に位置し、距離La3を半径とする円、
である。
In the capsule endoscope according to the present embodiment, it is preferable that the light emitting unit is located inside the first predetermined circle and satisfies the following conditional expression (8).
0 ≦ Lb / La3 ≦ 0.9 (8)
here,
La3 is the distance between the second axis and the central axis,
Lb is the maximum interval among the intervals between the central axis and each point on the outer edge of the light emitting region,
The first predetermined circle is a circle whose center is located on the central axis and whose radius is the distance La3.
It is.
 条件式(8)を満足することで、発光部と撮像部を、限られたスペースに効率よく配置することができる。そのため、透明カバーを小さくすること、すなわち、カプセル型内視鏡の径を小さくすることができる。更に、フレアの発生を抑えることができる。 By satisfying conditional expression (8), the light emitting unit and the imaging unit can be efficiently arranged in a limited space. Therefore, the transparent cover can be reduced, that is, the diameter of the capsule endoscope can be reduced. Furthermore, the occurrence of flare can be suppressed.
 本実施形態のカプセル型内視鏡では、曲面領域の形状が、中心軸に対して点対称な形状であることが好ましい。 In the capsule endoscope of the present embodiment, it is preferable that the shape of the curved region is point-symmetric with respect to the central axis.
 このようにすることで、発光部からの射出光が透明カバー内部で多重反射して撮像部に入射することにより生ずるフレアの発生を抑えることができる。 By doing in this way, it is possible to suppress the occurrence of flare caused by the light emitted from the light emitting unit being reflected multiple times inside the transparent cover and entering the imaging unit.
 本実施形態のカプセル型内視鏡では、曲面領域と2つの焦点を含む面とで形成される交線の形状が、円であることが好ましい。 In the capsule endoscope of the present embodiment, it is preferable that the shape of the intersecting line formed by the curved surface region and the surface including the two focal points is a circle.
 このようにすることで、カプセル型内視鏡に必要とされる形状を維持するための強度を保ちながら、透明カバーの厚みを薄くできる。その結果、カプセル型内視鏡の全長を短縮しながら、透明カバーにおける反射光の撮像部への入射をより効果的に抑えることができる。 In this way, the thickness of the transparent cover can be reduced while maintaining the strength required to maintain the shape required for the capsule endoscope. As a result, it is possible to more effectively suppress incidence of reflected light from the transparent cover to the imaging unit while shortening the overall length of the capsule endoscope.
 本実施形態のカプセル型内視鏡では、2つの焦点を有する曲線は、楕円の一部であり、楕円の短軸が中心軸と一致し、以下の条件式(9)を満足することが好ましい。
 0.4≦(ra-La3)/(2×IH)≦12.5   (9)
 ここで、
 raは、楕円の長半径、
 La3は、第2の軸と中心軸との間隔、
 IHは、撮像光学系における像高、
である。
In the capsule endoscope of the present embodiment, it is preferable that the curve having two focal points is a part of an ellipse, the short axis of the ellipse coincides with the central axis, and the following conditional expression (9) is satisfied. .
0.4 ≦ (ra−La3) / (2 × IH) ≦ 12.5 (9)
here,
ra is the ellipse major radius,
La3 is the distance between the second axis and the central axis,
IH is the image height in the imaging optical system,
It is.
 透明カバーの形状を適切に保つことにより、カプセル型内視鏡の外径を小さくすることができる。条件式(9)は、カプセル型内視鏡において、小さい外径を維持しながら、撮像部や発光部の空間を確保しつつ、フレアの発生を抑えることができる条件である。 ¡By maintaining the shape of the transparent cover appropriately, the outer diameter of the capsule endoscope can be reduced. Conditional expression (9) is a condition in the capsule endoscope that can suppress the occurrence of flare while maintaining the space of the imaging unit and the light emitting unit while maintaining a small outer diameter.
 条件式(9)の上限値を上回らないことで、カプセル型内視鏡の外径を小さくしつつ、発光部を配置するスペースを確保することができる。条件式(9)の下限値を下回らないことで、撮像部を配置するスペースを確保することができる。 By not exceeding the upper limit value of conditional expression (9), it is possible to secure a space for arranging the light emitting unit while reducing the outer diameter of the capsule endoscope. By not falling below the lower limit value of conditional expression (9), it is possible to secure a space for arranging the imaging unit.
 本実施形態のカプセル型内視鏡では、撮像部は、透明カバーに対して最も近くに位置する入射面を有し、2つの焦点を有する曲線は、楕円の一部であり、楕円の短軸が中心軸と一致し、以下の条件式(10)を満足することが好ましい。
 1.0≦(ra-La3)/Φc≦6.0   (10)
 ここで、
 raは、楕円の長半径、
 La3は、第2の軸と中心軸との間隔、
 Φcは、入射面における開口径、
である。
In the capsule endoscope of the present embodiment, the imaging unit has an entrance surface located closest to the transparent cover, and the curve having two focal points is a part of an ellipse, and the minor axis of the ellipse Preferably coincides with the central axis and satisfies the following conditional expression (10).
1.0 ≦ (ra−La3) /Φc≦6.0 (10)
here,
ra is the ellipse major radius,
La3 is the distance between the second axis and the central axis,
Φc is the aperture diameter at the entrance surface,
It is.
 透明カバーの形状を適切に保つことにより、カプセル型の全長を短縮し、カプセル型内視鏡の外径を小さくすることができる。条件式(10)は、カプセル型内視鏡において、小さい外径を維持しながら、撮像部や発光部の空間を確保しつつ、フレアの発生を抑えることができる条件である。 ¡By maintaining the shape of the transparent cover appropriately, the overall length of the capsule type can be shortened and the outer diameter of the capsule endoscope can be reduced. Conditional expression (10) is a condition in the capsule endoscope that can suppress the occurrence of flare while maintaining the space of the imaging unit and the light emitting unit while maintaining a small outer diameter.
 条件式(10)の上限値を上回らないことで、カプセルの全長を短縮し、カプセル型内視鏡の外径を小さくしつつ、発光部を配置するスペースを確保することができる。条件式(10)の下限値を下回らないことで、撮像部を配置するスペースを確保することができる。 By not exceeding the upper limit value of the conditional expression (10), it is possible to reduce the overall length of the capsule and reduce the outer diameter of the capsule endoscope while securing a space for arranging the light emitting unit. By not falling below the lower limit value of conditional expression (10), it is possible to secure a space for arranging the imaging unit.
 本実施形態のカプセル型内視鏡では、撮像部を複数有し、複数の撮像部は、以下の条件式(11)を満足する第1撮像部と、以下の条件式(12)を満足する第2撮像部と、を含み、各撮像部が他の撮像部と透明カバーの物体側で重複する撮像範囲を有することが好ましい。
 60°≦θc_1≦140°   (11)
 60°≦θc_2≦140°   (12)
 ここで、
 θc_1は、第1撮像部の撮像光学系の画角、
 θc_2は、第2撮像部の撮像光学系の画角、
である。
The capsule endoscope of the present embodiment has a plurality of imaging units, and the plurality of imaging units satisfy a first imaging unit that satisfies the following conditional expression (11) and a conditional expression (12) below. It is preferable that each imaging unit has an imaging range that overlaps with the other imaging units on the object side of the transparent cover.
60 ° ≦ θc_1 ≦ 140 ° (11)
60 ° ≦ θc_2 ≦ 140 ° (12)
here,
θc_1 is the angle of view of the imaging optical system of the first imaging unit,
θc_2 is the angle of view of the imaging optical system of the second imaging unit,
It is.
 撮像部が複数の場合、1つの撮像部で撮像するときの撮像範囲を、複数の撮像部で撮像することができる。この場合、1つの撮像部で撮像するときの撮像範囲は、各撮像部によって分割されることになる。そうすると、各撮像部では、撮像光学系の結像倍率を大きくすることができる。そのため、より詳細な観察を行うことができる。 When there are a plurality of imaging units, the imaging range when imaging with one imaging unit can be captured with a plurality of imaging units. In this case, the imaging range when imaging with one imaging unit is divided by each imaging unit. Then, in each imaging unit, the imaging magnification of the imaging optical system can be increased. Therefore, more detailed observation can be performed.
 条件式(11)を満足する第1撮像部と、条件式(12)を満足する第2撮像部と、を備えることで、広範囲観察と詳細観察とを両立することができる。 By providing the first imaging unit that satisfies the conditional expression (11) and the second imaging unit that satisfies the conditional expression (12), it is possible to achieve both wide-range observation and detailed observation.
 本実施形態のカプセル型内視鏡では、本体部の他方の側に、凸部が設けられ、撮像部を複数有し、複数の撮像部は、第1撮像光学系を有する第1撮像部と、第2撮像光学系を有する第2撮像部と、を備え、第1撮像部の撮像範囲の一部は、第2撮像部の撮像範囲と重複し、第1撮像部は、第1撮像光学系の光軸が中心軸と交差するように配置され、第2撮像部は、第2撮像光学系の光軸が中心軸と交差するように配置され、第1撮像光学系の光軸と中心軸との交点、及び、第2撮像光学系の光軸と中心軸との交点は、共に2つの焦点を含む面よりも凸部側に位置していることが好ましい。 In the capsule endoscope of the present embodiment, a convex portion is provided on the other side of the main body, and there are a plurality of imaging units. The plurality of imaging units includes a first imaging unit having a first imaging optical system; A second imaging unit having a second imaging optical system, wherein a part of the imaging range of the first imaging unit overlaps with the imaging range of the second imaging unit, and the first imaging unit is configured by the first imaging optical unit. The second imaging unit is arranged so that the optical axis of the second imaging optical system intersects with the central axis, and the optical axis of the first imaging optical system is centered with the optical axis of the first imaging optical system. It is preferable that the intersection point with the axis and the intersection point between the optical axis and the central axis of the second imaging optical system are both located on the convex side of the surface including the two focal points.
 図6は、中心軸を含む平面における内部の様子を示している。図2(b)と同じ構成については同じ番号を付し、説明は省略する。 FIG. 6 shows an internal state in a plane including the central axis. The same components as those in FIG. 2B are denoted by the same reference numerals and description thereof is omitted.
 カプセル型内視鏡10には、本体部2の他方の側に、凸部12が設けられている。また、カプセル型内視鏡10は、撮像部を複数有する。図6では、第1撮像部11の様子が示されている。 The capsule endoscope 10 is provided with a convex portion 12 on the other side of the main body portion 2. The capsule endoscope 10 includes a plurality of imaging units. FIG. 6 shows the state of the first imaging unit 11.
 第1撮像部11は、第1撮像光学系を有する。第1撮像部11は、第1撮像光学系の光軸AXp1が中心軸AXcと交差するように配置されている。第1撮像光学系の光軸AXp1と中心軸AXcとの交点は、2つの焦点Pfを含む面PL1よりも凸部12側に位置している。
 図7は、中心軸と直交する平面における内部の様子を示している。図7(a)は、3つの撮像部が配置されている場合を示し、図7(b)は、4つの撮像部が配置されている場合を示している。透明カバーにおける曲面領域の形状は、中心軸に対して回転対称な形状になっている。
The first imaging unit 11 has a first imaging optical system. The first imaging unit 11 is arranged so that the optical axis AXp1 of the first imaging optical system intersects the central axis AXc. The intersection of the optical axis AXp1 and the central axis AXc of the first imaging optical system is located closer to the convex portion 12 than the surface PL1 including the two focal points Pf.
FIG. 7 shows an internal state in a plane orthogonal to the central axis. FIG. 7A shows a case where three imaging units are arranged, and FIG. 7B shows a case where four imaging units are arranged. The shape of the curved region in the transparent cover is a rotationally symmetric shape with respect to the central axis.
 図7(a)に示すカプセル型内視鏡20は、第1撮像部21と、第2撮像部22と、第3撮像部23と、発光部24と、を備える。発光部24は、本体部の中央に配置されている。第1撮像部21、第2撮像部22及び第3撮像部23は、発光部24を囲むように配置されている。 7A includes a first imaging unit 21, a second imaging unit 22, a third imaging unit 23, and a light emitting unit 24. The capsule endoscope 20 illustrated in FIG. The light emitting unit 24 is disposed at the center of the main body. The first imaging unit 21, the second imaging unit 22, and the third imaging unit 23 are disposed so as to surround the light emitting unit 24.
 第1撮像部21、第2撮像部22及び第3撮像部23は、図6に示す第1撮像部11と同じように配置されている。すなわち、各撮像部は、撮像素子の光軸が中心軸と交差するように配置されている。 The first imaging unit 21, the second imaging unit 22, and the third imaging unit 23 are arranged in the same manner as the first imaging unit 11 shown in FIG. That is, each imaging unit is arranged so that the optical axis of the imaging element intersects the central axis.
 図7(b)に示すカプセル型内視鏡30は、第1撮像部31と、第2撮像部32と、第3撮像部33と、第4撮像部34と、発光部35と、を備える。発光部35は、本体部の中央に配置されている。第1撮像部31、第2撮像部32、第3撮像部33及び第4撮像部34は、発光部35を囲むように配置されている。 The capsule endoscope 30 shown in FIG. 7B includes a first imaging unit 31, a second imaging unit 32, a third imaging unit 33, a fourth imaging unit 34, and a light emitting unit 35. . The light emitting unit 35 is disposed at the center of the main body. The first imaging unit 31, the second imaging unit 32, the third imaging unit 33, and the fourth imaging unit 34 are arranged so as to surround the light emitting unit 35.
 第1撮像部31、第2撮像部32、第3撮像部33及び第4撮像部34は、図6に示す第1撮像部11と同じように配置されている。すなわち、各撮像部は、撮像素子の光軸が中心軸と交差するように配置されている。 The first imaging unit 31, the second imaging unit 32, the third imaging unit 33, and the fourth imaging unit 34 are arranged in the same manner as the first imaging unit 11 shown in FIG. That is, each imaging unit is arranged so that the optical axis of the imaging element intersects the central axis.
 撮像部を複数有することで、1つの撮像部で撮像するときの撮像範囲は、各撮像部によって分割することができる。そうすると、各撮像部では、撮像光学系の結像倍率を大きくすることができる。そのため、より詳細な観察を行うことができる。また、広範囲観察と詳細観察とを両立することができる。 By having a plurality of imaging units, the imaging range when imaging with one imaging unit can be divided by each imaging unit. Then, in each imaging unit, the imaging magnification of the imaging optical system can be increased. Therefore, more detailed observation can be performed. Moreover, it is possible to achieve both wide-range observation and detailed observation.
 本実施形態のカプセル型内視鏡では、第1撮像部は、透明カバーに対して最も近くに位置する第1入射面を有し、発光部は、透明カバーに対して最も近くに位置する射出面を有し、2つの焦点を有する曲線は、楕円の一部であり、楕円の短軸が中心軸と一致し、以下の条件式(14)を満足することが好ましい。
 0.1≦zb/ra≦1.0   (14)
 ここで、
 zbは、第1入射面を含む仮想面から射出面までの距離であって、第1撮像光学系の光軸に沿う方向の距離、
 raは、楕円の長半径、
である。
In the capsule endoscope of the present embodiment, the first imaging unit has a first incident surface that is located closest to the transparent cover, and the light emitting unit is an emission that is located closest to the transparent cover. The curve having a surface and having two focal points is preferably a part of an ellipse, the minor axis of the ellipse coincides with the central axis, and the following conditional expression (14) is satisfied.
0.1 ≦ zb / ra ≦ 1.0 (14)
here,
zb is the distance from the virtual surface including the first incident surface to the exit surface, and the distance in the direction along the optical axis of the first imaging optical system;
ra is the ellipse major radius,
It is.
 図6では、第1入射面13を含む面PL3(以下、「面PL3」という)と、面PL3から射出面7までの距離zbと、が示されている。距離zbは、第1撮像光学系の光軸AXp1に沿う方向の距離である。発光部5では、射出面7は、面PL3と平行になっている。 FIG. 6 shows a surface PL3 including the first incident surface 13 (hereinafter referred to as “surface PL3”) and a distance zb from the surface PL3 to the exit surface 7. The distance zb is a distance in the direction along the optical axis AXp1 of the first imaging optical system. In the light emitting unit 5, the emission surface 7 is parallel to the surface PL3.
 条件式(14)を満足することで、透明カバーと撮像部との距離が短縮される。そのため、カプセル型内視鏡の全長を短縮することができる。また、フレアの発生を、より効果的に抑えることができる。 When the conditional expression (14) is satisfied, the distance between the transparent cover and the imaging unit is shortened. Therefore, the total length of the capsule endoscope can be shortened. Moreover, generation | occurrence | production of flare can be suppressed more effectively.
 本実施形態のカプセル型内視鏡では、撮像光学系の最も物体側に配置されるレンズが、正レンズであることが好ましい。 In the capsule endoscope of the present embodiment, it is preferable that the lens arranged closest to the object side of the imaging optical system is a positive lens.
 このようにすることで、主点位置を物体側に位置させることができる。そのため、撮像部の全長を短縮することができる。その結果、カプセル型内視鏡の全長を短縮することができる。 In this way, the principal point position can be located on the object side. Therefore, the total length of the imaging unit can be shortened. As a result, the total length of the capsule endoscope can be shortened.
 本実施形態のカプセル型内視鏡では、撮像光学系の最も物体側に配置されるレンズが、負レンズであることが好ましい。 In the capsule endoscope of the present embodiment, it is preferable that the lens arranged closest to the object side of the imaging optical system is a negative lens.
 このようにすることで、入射瞳を物体側に位置させることができる。そのため、開口部の面積を小さくすることができる。その結果、撮像部の配置の自由度が増し、更に、透明カバーにおける反射光の撮像部への入射を抑えることができる。 In this way, the entrance pupil can be positioned on the object side. Therefore, the area of the opening can be reduced. As a result, the degree of freedom of arrangement of the imaging unit is increased, and furthermore, incidence of reflected light from the transparent cover on the imaging unit can be suppressed.
 本実施形態のカプセル型内視鏡では、側面発光部を有し、側面発光部は、本体部の側面に配置され、以下の条件式(15)を満足することが好ましい。
 70°≦ε≦110°   (15)
 ここで、
 εは、発光部の灯軸と側面発光部の灯軸とのなす角、
である。
In the capsule endoscope of the present embodiment, it is preferable that the capsule endoscope has a side light emitting portion, the side light emitting portion is disposed on the side surface of the main body portion, and satisfies the following conditional expression (15).
70 ° ≦ ε ≦ 110 ° (15)
here,
ε is the angle formed by the light axis of the light emitting part and the light axis of the side light emitting part,
It is.
 本実施形態のカプセル型内視鏡の概略構成を図8に示す。図8は、中心軸を含む平面における概略構成である。 FIG. 8 shows a schematic configuration of the capsule endoscope of the present embodiment. FIG. 8 is a schematic configuration in a plane including the central axis.
 カプセル型内視鏡40は、本体部41と、底部42と、透明カバー43と、第1撮像光学系44と、第1撮像素子45と、第2撮像光学系46と、第2撮像素子47と、発光部48と、第1側面発光部49aと、第2側面発光部49bと、を有する。 The capsule endoscope 40 includes a main body portion 41, a bottom portion 42, a transparent cover 43, a first imaging optical system 44, a first imaging element 45, a second imaging optical system 46, and a second imaging element 47. And a light emitting unit 48, a first side light emitting unit 49a, and a second side light emitting unit 49b.
 カプセル型内視鏡40では、本体部41の一方の側に、透明カバー43が配置されている。本体部41の他方の側には、底部42が形成されている。底部42の形状は、略椀形状である。底部42は、本体部41と一体に形成されていても、本体部41と別に形成されていても良い。 In the capsule endoscope 40, a transparent cover 43 is disposed on one side of the main body 41. A bottom portion 42 is formed on the other side of the main body portion 41. The shape of the bottom part 42 is a substantially bowl shape. The bottom part 42 may be formed integrally with the main body part 41 or may be formed separately from the main body part 41.
 第1撮像光学系44と第1撮像素子45とで、第1撮像部が構成されている。第2撮像光学系46と第2撮像素子47とで、第2撮像部が構成されている。 The first imaging optical system 44 and the first imaging element 45 constitute a first imaging unit. The second imaging optical system 46 and the second imaging element 47 constitute a second imaging unit.
 発光部48は、中心軸AXcを含む位置に配置されている。発光部48では、発光領域は透明カバー43の方向に向いている。発光領域が向いている方向を示す軸を、発光部48の灯軸とすると、発光部48の灯軸は中心軸AXcと略平行な方向である。 The light emitting unit 48 is disposed at a position including the central axis AXc. In the light emitting unit 48, the light emitting area faces the direction of the transparent cover 43. When the axis indicating the direction in which the light emitting area is directed is the lamp axis of the light emitting unit 48, the lamp axis of the light emitting unit 48 is a direction substantially parallel to the central axis AXc.
 第1側面発光部49aと第2側面発光部49bは、本体部41の外周面に配置されている。第1側面発光部49aの灯軸AXi1と第2側面発光部49bの灯軸AXi2は、共に、中心軸AXcと略垂直な方向である。よって、カプセル型内視鏡40では、条件式(15)が満足されている。 1st side light emission part 49a and 2nd side light emission part 49b are arrange | positioned at the outer peripheral surface of the main-body part 41. As shown in FIG. Both the lamp axis AXi1 of the first side light emitting unit 49a and the lamp axis AXi2 of the second side light emitting unit 49b are substantially perpendicular to the central axis AXc. Therefore, in the capsule endoscope 40, the conditional expression (15) is satisfied.
 条件式(15)を満足することで、撮像範囲に対して十分な明るさを確保することができる。 Satisfying conditional expression (15) can ensure sufficient brightness for the imaging range.
 本実施形態のカプセル型内視鏡では、2つの焦点を有する曲線は、楕円の一部であり、楕円の短軸が中心軸と一致し、以下の条件式(16)を満足することが好ましい。
 0.01≦Dt/ra≦0.2  (16)
 ここで、
 Dtは、透明カバーの中心軸上での厚み、
 raは、楕円の長半径、
である。
In the capsule endoscope of the present embodiment, it is preferable that the curve having two focal points is a part of an ellipse, the short axis of the ellipse coincides with the central axis, and the following conditional expression (16) is satisfied. .
0.01 ≦ Dt / ra ≦ 0.2 (16)
here,
Dt is the thickness on the central axis of the transparent cover,
ra is the ellipse major radius,
It is.
 本実施形態のカプセル型内視鏡では、撮像部は、焦点と本体部の外周面との間に撮像光学系の瞳の中心が位置するように、配置されている。一方、透明カバーの中心軸は、本体部の中心軸と略一致している。そのため、撮像光学系の光軸に対して、透明カバーの中心軸が偏心した状態になっている。 In the capsule endoscope of the present embodiment, the imaging unit is arranged so that the center of the pupil of the imaging optical system is located between the focal point and the outer peripheral surface of the main body unit. On the other hand, the central axis of the transparent cover substantially coincides with the central axis of the main body. For this reason, the central axis of the transparent cover is decentered with respect to the optical axis of the imaging optical system.
 条件式(16)の上限値を上回らないことにより、偏心収差の発生を抑えることができる。そのため、詳細観察においても、良好な解像性能を確保することができる。 The occurrence of decentration aberrations can be suppressed by not exceeding the upper limit value of conditional expression (16). Therefore, good resolution performance can be ensured even in detailed observation.
 透明カバーが変形することで、フレアが発生する。条件式(16)の下限値を下回らないことにより、このようなフレアによる解像性能の劣化を抑えることができる。 ¡Flare occurs when the transparent cover is deformed. By not falling below the lower limit value of conditional expression (16), it is possible to suppress degradation of resolution performance due to such flare.
 本実施形態のカプセル型内視鏡は、以下の条件式(17)を満足することが好ましい。
 ndc≦1.7   (17)
 ここで、
 ndcは、透明カバーの材質のd線における屈折率、
である。
The capsule endoscope of the present embodiment preferably satisfies the following conditional expression (17).
ndc ≦ 1.7 (17)
here,
ndc is the refractive index at the d-line of the material of the transparent cover,
It is.
 条件式(17)を満足することで、透明カバーにおける照明光の反射を抑えることができる。その結果、フレアの発生を抑えることができる。 Satisfying conditional expression (17) makes it possible to suppress reflection of illumination light on the transparent cover. As a result, the occurrence of flare can be suppressed.
 本実施形態のカプセル型内視鏡では、有効径内において、透明カバーの厚みが均一であることが好ましい。 In the capsule endoscope of the present embodiment, it is preferable that the thickness of the transparent cover is uniform within the effective diameter.
 上述のように、本実施形態のカプセル型内視鏡では、撮像光学系の光軸に対して、透明カバーの中心軸が偏心した状態になっている。そのため、有効径内において透明カバーの厚みを均一にすることで、偏心収差の発生を抑えることができる。そのため、詳細観察においても、良好な解像性能を確保することができる。 As described above, in the capsule endoscope of this embodiment, the central axis of the transparent cover is decentered with respect to the optical axis of the imaging optical system. Therefore, the occurrence of decentration aberration can be suppressed by making the thickness of the transparent cover uniform within the effective diameter. Therefore, good resolution performance can be ensured even in detailed observation.
 本実施形態のカプセル型内視鏡では、光線有効径内において、透明カバーの厚みは、中心軸から離れるにつれて厚くなることが好ましい。 In the capsule endoscope of the present embodiment, it is preferable that the thickness of the transparent cover increases with increasing distance from the central axis within the effective beam diameter.
 このようにすることで、撮像光学系の画角を広げたり、発光部の照明領域を広げたりすることができる。 By doing so, it is possible to widen the angle of view of the imaging optical system and widen the illumination area of the light emitting unit.
 本実施形態のカプセル型内視鏡は、複数のレンズを有し、複数のレンズを全て使用して撮像を行うか、又は、複数のレンズの一部を使用して撮像を行うことが好ましい。 The capsule endoscope of the present embodiment preferably includes a plurality of lenses and performs imaging using all of the plurality of lenses or performs imaging using a part of the plurality of lenses.
 このようにすることで、ステレオ撮影を行うことができる。その結果、より詳細な観察が可能になる。 In this way, stereo shooting can be performed. As a result, more detailed observation is possible.
 本実施形態のカプセル型内視鏡は、本体部の他方の側に、透明カバーとは別の透明カバーと、撮像部とは別の撮像部と、発光部とは別の発光部と、を有することが好ましい。 The capsule endoscope of the present embodiment includes a transparent cover different from the transparent cover, an imaging unit different from the imaging unit, and a light emitting unit different from the light emitting unit on the other side of the main body unit. It is preferable to have.
 本実施形態のカプセル型内視鏡の概略構成を図9に示す。図9は、中心軸を含む平面における概略構成である。図8と同じ構成については同じ番号を付し、説明は省略する。 FIG. 9 shows a schematic configuration of the capsule endoscope of the present embodiment. FIG. 9 is a schematic configuration in a plane including the central axis. The same components as those in FIG.
 カプセル型内視鏡50は、透明カバー51と、第3撮像光学系52と、第3撮像素子53と、第4撮像光学系54と、第4撮像素子55と、発光部56と、を有する。 The capsule endoscope 50 includes a transparent cover 51, a third imaging optical system 52, a third imaging element 53, a fourth imaging optical system 54, a fourth imaging element 55, and a light emitting unit 56. .
 カプセル型内視鏡50では、本体部41の一方の側に透明カバー43が配置されているだけでなく、本体部41の他方の側にも透明カバー51が配置されている。 In the capsule endoscope 50, not only the transparent cover 43 is disposed on one side of the main body 41, but also the transparent cover 51 is disposed on the other side of the main body 41.
 第3撮像光学系52と第3撮像素子53とで、第3撮像部が構成されている。第4撮像光学系54と第4撮像素子55とで、第4撮像部が構成されている。 The third imaging optical system 52 and the third imaging element 53 constitute a third imaging unit. The fourth imaging optical system 54 and the fourth imaging element 55 constitute a fourth imaging unit.
 カプセル型内視鏡50は、一方の側に配置された撮像部とは別の撮像部が、他方の側に配置されている。また、一方の側に配置された発光部とは別の発光部が、他方の側に配置されている。そのため、更に広い範囲を撮影することができる。 In the capsule endoscope 50, an imaging unit different from the imaging unit arranged on one side is arranged on the other side. In addition, a light emitting unit different from the light emitting unit arranged on one side is arranged on the other side. Therefore, a wider range can be photographed.
 本実施形態のカプセル型内視鏡は、発光部を複数有し、各々の発光部で、波長スペクトルが異なるようにしても良い。 The capsule endoscope of the present embodiment may have a plurality of light emitting units, and each light emitting unit may have a different wavelength spectrum.
 本実施形態のカプセル型内視鏡では、発光部は照明光学系を有しても良い。 In the capsule endoscope of the present embodiment, the light emitting unit may have an illumination optical system.
 以下に、本実施形態のカプセル型内視鏡の実施例を、図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。 Hereinafter, examples of the capsule endoscope according to the present embodiment will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
 実施例1のカプセル型内視鏡の断面図を図10に示す。図10(a)は、中心軸を含む平面における内部の様子を示している。図10(b)は、中心軸と直交する平面における内部の様子を示している。 FIG. 10 shows a cross-sectional view of the capsule endoscope of the first embodiment. FIG. 10A shows an internal state in a plane including the central axis. FIG. 10B shows an internal state in a plane orthogonal to the central axis.
 実施例1のカプセル型内視鏡は、透明カバーCと、撮像光学系OBJと、発光部ILLと、を有する。 The capsule endoscope of Example 1 includes a transparent cover C, an imaging optical system OBJ, and a light emitting unit ILL.
 透明カバーCの両面は、半楕円面である。撮像光学系OBJの数と発光部ILLの数は、各々1つである。発光部ILLは本体部の中心に配置され、撮像光学系OBJは本体部の周辺に配置されている。 Both sides of the transparent cover C are semi-elliptical surfaces. The number of imaging optical systems OBJ and the number of light emitting units ILL are one each. The light emitting unit ILL is disposed at the center of the main body, and the imaging optical system OBJ is disposed at the periphery of the main body.
 発光部ILLは、灯軸が中心軸AXcと平行になるように配置されている。撮像光学系OBJは、光軸AXpが中心軸AXcと平行になるように配置されている。 The light emitting part ILL is arranged so that the lamp axis is parallel to the central axis AXc. The imaging optical system OBJ is arranged so that the optical axis AXp is parallel to the central axis AXc.
 撮像光学系OBJは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、両凸正レンズL2と、両凸正レンズL3と、物体側に凸面を向けた正メニスカスレンズL4と、を有する。開口絞りSは、両凸正レンズL2と両凸正レンズL3との間に配置されている。 The imaging optical system OBJ includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, a biconvex positive lens L3, and a positive meniscus lens L4 having a convex surface facing the object side. Have. The aperture stop S is disposed between the biconvex positive lens L2 and the biconvex positive lens L3.
 非球面は、負メニスカスレンズL1の像側面と、両凸正レンズL2の物体側面と、両凸正レンズL3の像側面と、正メニスカスレンズL4の両面と、の合計5面に設けられている。 The aspheric surfaces are provided on a total of five surfaces including the image side surface of the negative meniscus lens L1, the object side surface of the biconvex positive lens L2, the image side surface of the biconvex positive lens L3, and both surfaces of the positive meniscus lens L4. .
 実施例2のカプセル型内視鏡の断面図を図11に示す。図11は、中心軸を含む平面における内部の様子を示している。 FIG. 11 shows a cross-sectional view of the capsule endoscope of the second embodiment. FIG. 11 shows an internal state in a plane including the central axis.
 実施例2のカプセル型内視鏡は、透明カバーCと、撮像光学系OBJ1と、撮像光学系OBJ2と、発光部ILLと、を有する。 The capsule endoscope of the second embodiment includes a transparent cover C, an imaging optical system OBJ1, an imaging optical system OBJ2, and a light emitting unit ILL.
 透明カバーCの両面は、半楕円面である。撮像光学系OBJの数は2つで、発光部ILLの数は1つである。発光部ILLは本体部の中心に配置され、撮像光学系OBJ1と撮像光学系OBJ2は、共に、本体部の周辺に配置されている。 Both sides of the transparent cover C are semi-elliptical surfaces. The number of imaging optical systems OBJ is two, and the number of light emitting units ILL is one. The light emitting unit ILL is disposed at the center of the main body, and the imaging optical system OBJ1 and the imaging optical system OBJ2 are both disposed around the main body.
 発光部ILLは、灯軸が中心軸AXcと平行になるように配置されている。撮像光学系OBJ1と撮像光学系OBJ2は、共に、光軸AXpが中心軸AXcと平行になるように配置されている。 The light emitting part ILL is arranged so that the lamp axis is parallel to the central axis AXc. The imaging optical system OBJ1 and the imaging optical system OBJ2 are both arranged so that the optical axis AXp is parallel to the central axis AXc.
 撮像光学系OBJ1と撮像光学系OBJ2は、第1実施例の撮像光学系OBJと同じである。 The imaging optical system OBJ1 and the imaging optical system OBJ2 are the same as the imaging optical system OBJ of the first embodiment.
 実施例3のカプセル型内視鏡の断面図を図12に示す。図12(a)は、中心軸を含む平面における内部の様子を示している。図12(b)は、中心軸と直交する平面における内部の様子を示している。 FIG. 12 shows a cross-sectional view of the capsule endoscope of the third embodiment. FIG. 12A shows an internal state in a plane including the central axis. FIG. 12B shows an internal state in a plane orthogonal to the central axis.
 実施例3のカプセル型内視鏡は、透明カバーCと、撮像光学系OBJと、発光部ILLと、を有する。 The capsule endoscope of Example 3 has a transparent cover C, an imaging optical system OBJ, and a light emitting unit ILL.
 透明カバーCの両面は、半楕円面である。撮像光学系OBJの数と発光部ILLの数は、各々1つである。発光部ILLは本体部の中心に配置され、撮像光学系OBJは本体部の周辺に配置されている。 Both sides of the transparent cover C are semi-elliptical surfaces. The number of imaging optical systems OBJ and the number of light emitting units ILL are one each. The light emitting unit ILL is disposed at the center of the main body, and the imaging optical system OBJ is disposed at the periphery of the main body.
 発光部ILLは、灯軸が中心軸AXcと平行になるように配置されている。撮像光学系OBJは、光軸AXpが中心軸AXcと平行になるように配置されている。 The light emitting part ILL is arranged so that the lamp axis is parallel to the central axis AXc. The imaging optical system OBJ is arranged so that the optical axis AXp is parallel to the central axis AXc.
 撮像光学系OBJは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、両凸正レンズL2と、像側に凸面を向けた負メニスカスレンズL3と、を有する。開口絞りSは、負メニスカスレンズL1と両凸正レンズL2との間に配置されている。 The imaging optical system OBJ includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, and a negative meniscus lens L3 having a convex surface facing the image side. The aperture stop S is disposed between the negative meniscus lens L1 and the biconvex positive lens L2.
 非球面は、負メニスカスレンズL1の像側面と、両凸正レンズL2の両面と、負メニスカスレンズL3の像側面と、の合計4面に設けられている。 The aspheric surfaces are provided on a total of four surfaces including the image side surface of the negative meniscus lens L1, both surfaces of the biconvex positive lens L2, and the image side surface of the negative meniscus lens L3.
 実施例4のカプセル型内視鏡の断面図を図13に示す。図13は、中心軸を含む平面における内部の様子を示している。 FIG. 13 shows a cross-sectional view of the capsule endoscope of the fourth embodiment. FIG. 13 shows an internal state in a plane including the central axis.
 実施例4のカプセル型内視鏡は、透明カバーCと、撮像光学系OBJと、発光部ILLと、を有する。 The capsule endoscope of Example 4 includes a transparent cover C, an imaging optical system OBJ, and a light emitting unit ILL.
 透明カバーCの両面は、半楕円面である。撮像光学系OBJの数と発光部ILLの数は、各々1つである。発光部ILLは本体部の中心に配置され、撮像光学系OBJは本体部の周辺に配置されている。 Both sides of the transparent cover C are semi-elliptical surfaces. The number of imaging optical systems OBJ and the number of light emitting units ILL are one each. The light emitting unit ILL is disposed at the center of the main body, and the imaging optical system OBJ is disposed at the periphery of the main body.
 発光部ILLは、灯軸が中心軸AXcと平行になるように配置されている。撮像光学系OBJは、光軸AXpが中心軸AXcと平行になるように配置されている。 The light emitting part ILL is arranged so that the lamp axis is parallel to the central axis AXc. The imaging optical system OBJ is arranged so that the optical axis AXp is parallel to the central axis AXc.
 撮像光学系OBJは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、両凸正レンズL2と、像側に凸面を向けた正メニスカスレンズL3と、物体側に凸面を向けた負メニスカスレンズL4と、を有する。開口絞りSは、両凸正レンズL2と正メニスカスレンズL3との間に配置されている。 The imaging optical system OBJ includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, a positive meniscus lens L3 having a convex surface facing the image side, and a convex surface facing the object side. Negative meniscus lens L4. The aperture stop S is disposed between the biconvex positive lens L2 and the positive meniscus lens L3.
 非球面は、負メニスカスレンズL1の像側面と、正メニスカスレンズL3の像側面と、負メニスカスレンズL4の両面と、の合計4面に設けられている。 The aspheric surfaces are provided on a total of four surfaces including the image side surface of the negative meniscus lens L1, the image side surface of the positive meniscus lens L3, and both surfaces of the negative meniscus lens L4.
 実施例5のカプセル型内視鏡の断面図を図14と図15に示す。図14は、中心軸を含む平面における内部の様子を示している。図15は、撮像光学系を拡大した図である。 FIG. 14 and FIG. 15 show cross-sectional views of the capsule endoscope of the fifth embodiment. FIG. 14 shows an internal state in a plane including the central axis. FIG. 15 is an enlarged view of the imaging optical system.
 実施例5のカプセル型内視鏡は、透明カバーC1と、撮像光学系OBJ1、撮像光学系OBJ2と、発光部ILLと、を有する。 The capsule endoscope of Example 5 includes a transparent cover C1, an imaging optical system OBJ1, an imaging optical system OBJ2, and a light emitting unit ILL.
 透明カバーCの両面は、半楕円面である。撮像光学系OBJの数と発光部ILLの数は、共に2つである。発光部ILLは本体部の中心に配置され、撮像光学系OBJ1と撮像光学系OBJ2は、共に、本体部の周辺に配置されている。 Both sides of the transparent cover C are semi-elliptical surfaces. The number of imaging optical systems OBJ and the number of light emitting units ILL are both two. The light emitting unit ILL is disposed at the center of the main body, and the imaging optical system OBJ1 and the imaging optical system OBJ2 are both disposed around the main body.
 発光部ILLは、灯軸が中心軸AXcと交差するように配置されている。撮像光学系OBJ1と撮像光学系OBJ2は、共に、光軸AXpが中心軸AXcと交差するように配置されている。 The light emitting part ILL is arranged so that the lamp axis intersects the central axis AXc. The imaging optical system OBJ1 and the imaging optical system OBJ2 are both arranged so that the optical axis AXp intersects the central axis AXc.
 撮像光学系OBJは、物体側から順に、両凸正レンズL1と、平凹負レンズL2と、像側に凸面を向けた正メニスカスレンズL3と、平凹負レンズL4と、を有する。開口絞りSは、両凸正レンズL1の物体側に配置されている。平凹負レンズL4と像面Iとの間に、カバーガラスC2が配置されている。 The imaging optical system OBJ includes, in order from the object side, a biconvex positive lens L1, a planoconcave negative lens L2, a positive meniscus lens L3 having a convex surface facing the image side, and a planoconcave negative lens L4. The aperture stop S is disposed on the object side of the biconvex positive lens L1. A cover glass C2 is disposed between the plano-concave negative lens L4 and the image plane I.
 以下に、上記各実施例の数値データを示す。面データにおいて、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、ndは各レンズのd線の屈折率、νdは各レンズのアッベ数、*印は非球面である。 The numerical data of each of the above examples is shown below. In the surface data, r is the radius of curvature of each lens surface, d is the distance between the lens surfaces, nd is the refractive index of the d-line of each lens, νd is the Abbe number of each lens, and * is an aspherical surface.
 また、各種データにおいて、fは全系の焦点距離、ωは半画角、IHは像高、FNO.はFナンバーである。 In the various data, f is the focal length of the entire system, ω is the half angle of view, IH is the image height, FNO. Is the F number.
 また、非球面形状は、光軸方向をz、光軸に直交する方向をyにとり、円錐係数をk、非球面係数をA4、A6、A8、A10、A12…としたとき、次の式で表される。
 z=(y2/r)/[1+{1-(1+k)(y/r)21/2
    +A4y4+A6y6+A8y8+A10y10+A12y12+…
 また、非球面係数において、「E-n」(nは整数)は、「10-n」を示している。なお、これら諸元値の記号は後述の実施例の数値データにおいても共通である。
The aspherical shape is expressed by the following equation when the optical axis direction is z, the direction orthogonal to the optical axis is y, the cone coefficient is k, and the aspherical coefficients are A4, A6, A8, A10, A12. expressed.
z = (y 2 / r) / [1+ {1− (1 + k) (y / r) 2 } 1/2 ]
+ A4y 4 + A6y 6 + A8y 8 + A10y 10 + A12y 12 +
In the aspheric coefficient, “E−n” (n is an integer) indicates “10 −n ”. The symbols of these specification values are common to the numerical data of the examples described later.
数値実施例1、2
単位  mm
 
面データ
面番号         r          d         nd       νd
物面           ∞         ∞
1*            7.446      0.371     1.585      30
2*            7.001      5.838
3            61.844      0.47      1.5311     56
4*            0.742      0.633
5*            2.117      1.042     1.635      23.9
6            -3.546      0.049
7              ∞(絞り)  0.116
8            15.633      0.63      1.5311     56
9*           -1.049      0.14
10*           2.752      0.618     1.5311     56
11*           3.144      1.051
像面           ∞
 
非球面データ
第1面
k=0.2
第2面
k=0.2
第4面
k=-0.732
第5面
k=0.000,A4=-0.247
第9面
k=0.000,A4=-0.061,A6=0.506
第10面
k=0.000,A4=-0.228,A6=0.033
第11面
k=0.000,A4=-0.169,A6=-0.019,A8=-0.016
 
各種データ
f         1
2ω     130
IH       1.12
FNO.   4.5
Numerical examples 1, 2
Unit mm

Surface data surface number r d nd νd
Object ∞ ∞
1 * 7.446 0.371 1.585 30
2 * 7.001 5.838
3 61.844 0.47 1.5311 56
4 * 0.742 0.633
5 * 2.117 1.042 1.635 23.9
6 -3.546 0.049
7 ∞ (Aperture) 0.116
8 15.633 0.63 1.5311 56
9 * -1.049 0.14
10 * 2.752 0.618 1.5311 56
11 * 3.144 1.051
Image plane ∞

Aspheric data first surface
k = 0.2
Second side
k = 0.2
4th page
k = -0.732
5th page
k = 0.000, A4 = -0.247
9th page
k = 0.000, A4 = -0.061, A6 = 0.506
10th page
k = 0.000, A4 = -0.228, A6 = 0.033
11th page
k = 0.000, A4 = -0.169, A6 = -0.019, A8 = -0.016

Various data f 1
2ω 130
IH 1.12
FNO. 4.5
数値実施例3
単位  mm
 
面データ
面番号         r          d         nd       νd
物面           ∞         ∞
1*            8.131      0.624     1.585      30
2*            7.256      4.371
3            49.957      0.437     1.5311     56
4*            0.826      0.901
5              ∞(絞り)  0.092
6*            2.595      0.59      1.635      23.9
7*           -0.868      0.062
8            -7.323      0.5       1.5311     56
9*           -8.423      1.4
像面           ∞
 
非球面データ
第1面
k=0.4
第2面
k=0.4
第4面
k=0.000,A4=-0.234,A6=0.077
第6面
k=0.000,A4=0.435,A6=-1.875
第7面
k=0.000,A4=0.487
第9面
k=0.000,A4=0.037,A6=0.063
 
各種データ
f         1
2ω     120
IH       1.07
FNO.   4.3
Numerical Example 3
Unit mm

Surface data surface number r d nd νd
Object ∞ ∞
1 * 8.131 0.624 1.585 30
2 * 7.256 4.371
3 49.957 0.437 1.5311 56
4 * 0.826 0.901
5 ∞ (Aperture) 0.092
6 * 2.595 0.59 1.635 23.9
7 * -0.868 0.062
8 -7.323 0.5 1.5311 56
9 * -8.423 1.4
Image plane ∞

Aspheric data first surface
k = 0.4
Second side
k = 0.4
4th page
k = 0.000, A4 = -0.234, A6 = 0.077
6th page
k = 0.000, A4 = 0.435, A6 = -1.875
7th page
k = 0.000, A4 = 0.487
9th page
k = 0.000, A4 = 0.037, A6 = 0.063

Various data f 1
2ω 120
IH 1.07
FNO. 4.3
数値実施例4
単位  mm
 
面データ
面番号         r          d         nd       νd
物面           ∞         ∞
1*            7.452      0.364     1.585      30
2*            6.864      5.5
3            60.637      0.441     1.5311     56
4*            0.728      0.588
5*           15.781      0.882     1.635      23.9
6            -1.896      0.049
7              ∞(絞り)  0.098
8           -29.543      0.618     1.5311     56
9*           -0.824      0.137
10*           1.382      0.608     1.5311     56
11*           0.705      0.985
像面           ∞
 
非球面データ
第1面
k=0.2
第2面
k=0.2
第4面
k=0.987
第5面
k=0.000,A4=0.109
第9面
k=0.000,A4=-0.295,A6=0.11
第10面
k=0.000,A4=-0.505,A6=-0.076
第11面
k=0.000,A4=-0.988,A6=-0.1,A8=2.89E-03
 
各種データ
f         1
2ω     130
IH       0.91
FNO.   4.9
Numerical Example 4
Unit mm

Surface data surface number r d nd νd
Object ∞ ∞
1 * 7.452 0.364 1.585 30
2 * 6.864 5.5
3 60.637 0.441 1.5311 56
4 * 0.728 0.588
5 * 15.781 0.882 1.635 23.9
6 -1.896 0.049
7 ∞ (Aperture) 0.098
8 -29.543 0.618 1.5311 56
9 * -0.824 0.137
10 * 1.382 0.608 1.5311 56
11 * 0.705 0.985
Image plane ∞

Aspheric data first surface
k = 0.2
Second side
k = 0.2
4th page
k = 0.987
5th page
k = 0.000, A4 = 0.109
9th page
k = 0.000, A4 = -0.295, A6 = 0.11
10th page
k = 0.000, A4 = -0.505, A6 = -0.076
11th page
k = 0.000, A4 = -0.988, A6 = -0.1, A8 = 2.89E-03

Various data f 1
2ω 130
IH 0.91
FNO. 4.9
数値実施例5
単位  mm
 
面データ
面番号         r          d         nd       νd
物面           ∞         ∞
1*            7.91       0.2       1.59       30
2*            7.69       4
3              ∞(絞り) -0.809
4*            0.901      0.383     1.5305     55.7
5*           -2.493      0.023
6*             ∞        0.174     1.634      24
7*            1.44       0.249
8*           -1.131      0.342     1.5305     55.7
9*           -0.375      0.031
10*            ∞        0.264     1.5305     55.7
11*           0.488      0.425
12             ∞        0.18      1.51633    64.1
13             ∞        0.343
像面           ∞
 
非球面データ
第1面
k=0.1
第2面
k=0.1
第4面
k=0.114,A4=-0.29151396,A6=2.3581128,A8=-48.569499,
A10=314.37057,A12=-863.95816
第5面
k=-59.568,A4=-0.58501645,A6=-9.5685171,A8=48.402206,
A10=151.47177,A12=-938.08007
第6面
k=0.000,A4=0.094848455,A6=-11.893684,A8=58.185908,
A10=148.00698,A12=-755.63172
第7面
k=-3.194,A4=0.59870838,A6=-3.6506976,A8=11.160053,
A10=-14.830006,A12=141.4102
第8面
k=-4.557,A4=-0.46819278,A6=2.4717458,A8=-2.4978831,
A10=-2.2760385,A12=-72.294739
第9面
k=-3.126,A4=-1.0401939,A6=2.0588846,A8=0.37197606,
A10=21.235709,A12=-44.214973
第10面
k=0.000,A4=-0.67695487,A6=0.53465864,A8=1.0518579,
A10=-1.4108677,A12=0.28622263,A14=0.13521064
第11面
k=-8.223,A4=-0.76835953,A6=1.2955772,A8=-2.0585815,
A10=2.0984017,A12=-1.2869036,A14=0.36112621
 
各種データ
f         1.8
2ω      37
IH       1.4
FNO.   5.5
Numerical Example 5
Unit mm

Surface data surface number r d nd νd
Object ∞ ∞
1 * 7.91 0.2 1.59 30
2 * 7.69 4
3 ∞ (Aperture) -0.809
4 * 0.901 0.383 1.5305 55.7
5 * -2.493 0.023
6 * ∞ 0.174 1.634 24
7 * 1.44 0.249
8 * -1.131 0.342 1.5305 55.7
9 * -0.375 0.031
10 * ∞ 0.264 1.5305 55.7
11 * 0.488 0.425
12 ∞ 0.18 1.51633 64.1
13 ∞ 0.343
Image plane ∞

Aspheric data first surface
k = 0.1
Second side
k = 0.1
4th page
k = 0.114, A4 = -0.29151396, A6 = 2.3581128, A8 = -48.569499,
A10 = 314.37057, A12 = -863.95816
5th page
k = -59.568, A4 = -0.58501645, A6 = -9.5685171, A8 = 48.402206,
A10 = 151.47177, A12 = -938.08007
6th page
k = 0.000, A4 = 0.094848455, A6 = -11.893684, A8 = 58.185908,
A10 = 148.00698, A12 = -755.63172
7th page
k = -3.194, A4 = 0.59870838, A6 = -3.6506976, A8 = 11.160053,
A10 = -14.830006, A12 = 141.4102
8th page
k = -4.557, A4 = -0.46819278, A6 = 2.4717458, A8 = -2.4978831,
A10 = -2.2760385, A12 = -72.294739
9th page
k = -3.126, A4 = -1.0401939, A6 = 2.0588846, A8 = 0.37197606,
A10 = 21.235709, A12 = -44.214973
10th page
k = 0.000, A4 = -0.67695487, A6 = 0.53465864, A8 = 1.0518579,
A10 = -1.4108677, A12 = 0.28622263, A14 = 0.13521064
11th page
k = -8.223, A4 = -0.76835953, A6 = 1.2955772, A8 = -2.0585815,
A10 = 2.0984017, A12 = -1.2869036, A14 = 0.36112621

Various data f 1.8
2ω 37
IH 1.4
FNO. 5.5
 次に、各実施例における条件式の値を以下に掲げる。なお、-(ハイフン)は該当する構成がないことを示す。 Next, the values of conditional expressions in each example are listed below. In addition,-(hyphen) indicates that there is no corresponding configuration.
                      実施例1    実施例2   実施例3
(1)(Lc-La3)/La1        0.03        0.03       0.07
(2)(Zc-Zb)/La1         0.04        0.07       0.12
(3)Zc/La1              0.00        0.00       0.12
(4)1-rb/ra             0.09        0.09       0.15
(5),(6)(La3-Lb-
  |Z'b|×tanθb)/ra    0.72        0.36       1.17
(7)Lb/Lc               0.63        0.67       0.61
(8)Lb/La3              0.68        0.72       0.68
(9)(ra-La3)/(2×IH)    1.81        1.81       1.50
(10)(ra-La3)/Φc       1.26        1.26       2.13
(11)θc_1            130.0       130.0      120.0
(12)θc_2               -        130.0         -
(14)zb/ra               -           -          -
(16)Dt/ra              0.05        0.05       0.09
 
                      実施例4     実施例5
(1)(Lc-La3)/La1        0.10         0.23
(2)(Zc-Zb)/La1          -            -
(3)Zc/La1              0.03          -
(4)1-rb/ra             0.09         0.05
(5),(6)(La3-Lb-
  |Z'b|×tanθb)/ra     -          -0.33
(7)Lb/Lc                -           0.38
(8)Lb/La3               -           0.66
(9)(ra-La3)/(2×IH)    2.20         1.88
(10)(ra-La3)/Φc       2.68         5.27
(11)θc_1            130.0         70.0
(12)θc_2               -          70.0
(14)zb/ra               -           0.20   
(16)Dt/ra              0.05         0.03
 
 次に、各実施例におけるパラメータの値を以下に掲げる。なお、-(ハイフン)は該当する構成がないことを示す。
          実施例1     実施例2     実施例3
La1(ra)    6.8          6.8          6.9
La2(rb)    6.2          6.2          5.8
La3        2.8          2.8          3.7
Lb         1.9          2.0          2.5
Lc         3.0          3.0          4.1
Zb        -0.3         -0.5          0.0
|Z'b|      0.3          0.5          0.0
Zc         0.0          0.0          0.8
tanθb    75.0         80.0         70.0
IH         1.1          1.1          1.1
θc_1    130.0        130.0        120.0
θc_2       -         130.0           -
Dt         0.4          0.4          0.6
ndc        1.585        1.585        1.585
Φc        3.2          3.2          1.5
zb          -            -            -
 
          実施例4     実施例5
La1(ra)    6.8          7.5
La2(rb)    6.2          7.2
La3        2.8          2.3
Lb          -           1.5
Lc         3.4          4.0
Zb          -            -
|Z'b|       -           1.5
Zc         0.2           -
tanθb      -          80.0
IH         0.9          1.4
θc_1    130.0         70.0
θc_2       -          70.0
Dt         0.4          0.2
ndc        1.585        1.585
Φc        1.5          1.0
zb          -           1.5
Example 1 Example 2 Example 3
(1) (Lc-La3) / La1 0.03 0.03 0.07
(2) (Zc-Zb) / La1 0.04 0.07 0.12
(3) Zc / La1 0.00 0.00 0.12
(4) 1-rb / ra 0.09 0.09 0.15
(5), (6) (La3-Lb-
| Z'b | × tanθb) / ra 0.72 0.36 1.17
(7) Lb / Lc 0.63 0.67 0.61
(8) Lb / La3 0.68 0.72 0.68
(9) (ra-La3) / (2 × IH) 1.81 1.81 1.50
(10) (ra-La3) / Φc 1.26 1.26 2.13
(11) θc_1 130.0 130.0 120.0
(12) θc_2-130.0-
(14) zb / ra---
(16) Dt / ra 0.05 0.05 0.09

Example 4 Example 5
(1) (Lc-La3) / La1 0.10 0.23
(2) (Zc-Zb) / La1--
(3) Zc / La1 0.03-
(4) 1-rb / ra 0.09 0.05
(5), (6) (La3-Lb-
| Z'b | × tanθb) / ra--0.33
(7) Lb / Lc-0.38
(8) Lb / La3-0.66
(9) (ra-La3) / (2 × IH) 2.20 1.88
(10) (ra-La3) / Φc 2.68 5.27
(11) θc_1 130.0 70.0
(12) θc_2-70.0
(14) zb / ra-0.20
(16) Dt / ra 0.05 0.03

Next, the parameter values in each example are listed below. In addition,-(hyphen) indicates that there is no corresponding configuration.
Example 1 Example 2 Example 3
La1 (ra) 6.8 6.8 6.9
La2 (rb) 6.2 6.2 5.8
La3 2.8 2.8 3.7
Lb 1.9 2.0 2.5
Lc 3.0 3.0 4.1
Zb -0.3 -0.5 0.0
| Z'b | 0.3 0.5 0.0
Zc 0.0 0.0 0.8
tanθb 75.0 80.0 70.0
IH 1.1 1.1 1.1
θc_1 130.0 130.0 120.0
θc_2-130.0-
Dt 0.4 0.4 0.6
ndc 1.585 1.585 1.585
Φc 3.2 3.2 1.5
zb---

Example 4 Example 5
La1 (ra) 6.8 7.5
La2 (rb) 6.2 7.2
La3 2.8 2.3
Lb-1.5
Lc 3.4 4.0
Zb--
| Z'b |-1.5
Zc 0.2-
tanθb-80.0
IH 0.9 1.4
θc_1 130.0 70.0
θc_2-70.0
Dt 0.4 0.2
ndc 1.585 1.585
Φc 1.5 1.0
zb-1.5
 なお、本発明は、その趣旨を逸脱しない範囲で様々な変形例をとることができる。 It should be noted that the present invention can take various modifications without departing from the spirit of the present invention.
 以上のように、本発明は、フレアの少ない画像が得られ、全長が短いカプセル型内視鏡に適している。 As described above, the present invention is suitable for a capsule endoscope that can obtain an image with less flare and has a short overall length.
 1 カプセル型内視鏡
 2 本体部
 3、3’ 透明カバー
 4、4’撮像部
 5 発光部
 6 入射面
 7 射出面
 10 カプセル型内視鏡
 11 第1撮像部
 12 凸部
 20 カプセル型内視鏡
 21 第1撮像部
 22 第2撮像部
 23 第3撮像部
 24 発光部
 30 カプセル型内視鏡
 31 第1撮像部
 32 第2撮像部
 33 第3撮像部
 34 第4撮像部
 35 発光部
 40 カプセル型内視鏡
 41 本体部
 42 底部
 43 透明カバー
 44 第1撮像光学系
 45 第1撮像素子
 46 第2撮像光学系
 47 第2撮像素子
 48 発光部
 49a 第1側面発光部
 49b 第2側面発光部
 50 カプセル型内視鏡
 51 透明カバー
 52 第3撮像光学系
 53 第3撮像素子
 54 第4撮像光学系
 55 第4撮像素子
 56 発光部
 AXc 中心軸
 AXp 第1の軸、光軸
 AXf 第2の軸
 AXp1 第1撮像光学系の光軸
 AXi1 第1側面発光部の灯軸
 AXi2 第2側面発光部の灯軸
 Pf 焦点
 Pf’ 位置
 Pp 撮像光学系の瞳の中心
 PL1 2つの焦点を含む面
 PL2 所定の面
 PL3 第1入射面を含む面
 La1 2つの焦点を有する曲線における半径
 La2 中心軸と曲面領域の外周上の点との間隔のうちで、最小となる間隔
 La3 第2の軸と中心軸との間隔
 Lb 中心軸と発光領域の外縁上の各点との間隔のうち、最大となる間隔
 Lc 第1の軸と中心軸との間隔
 Zb 所定の面から射出面までの距離
 Z’b 面PL1から射出面までの距離
 Zc 所定の面から入射面までの距離
 zb 面PL3から射出面までの距離
 θb 中心軸と所定の方向とのなす角度
 OBJ、OBJ1、OBJ2 撮像光学系
 L1、L2、L3、L4 レンズ
 ILL 発光部
 I 像面
 S 開口絞り
 C、C1 透明カバー
 C2 カバーガラス
DESCRIPTION OF SYMBOLS 1 Capsule type endoscope 2 Main-body part 3, 3 'Transparent cover 4, 4' imaging part 5 Light emission part 6 Incident surface 7 Outgoing surface 10 Capsule type endoscope 11 1st imaging part 12 Convex part 20 Capsule type endoscope 21 First imaging unit 22 Second imaging unit 23 Third imaging unit 24 Light emitting unit 30 Capsule endoscope 31 First imaging unit 32 Second imaging unit 33 Third imaging unit 34 Fourth imaging unit 35 Light emitting unit 40 Capsule type Endoscope 41 Body 42 Bottom 43 Transparent cover 44 First imaging optical system 45 First imaging element 46 Second imaging optical system 47 Second imaging element 48 Light emitting part 49a First side light emitting part 49b Second side light emitting part 50 Capsule Type Endoscope 51 Transparent Cover 52 Third Imaging Optical System 53 Third Imaging Element 54 Fourth Imaging Optical System 55 Fourth Imaging Element 56 Light Emitting Unit AXc Central Axis AXp First Axis, Optical Axis AXf Second Axis AX p1 Optical axis of the first imaging optical system AXi1 Lamp axis of the first side light emitting unit AXi2 Lamp axis of the second side light emitting unit Pf focal point Pf ′ position Pp Center of the pupil of the imaging optical system PL1 Surface including two focal points PL2 Predetermined Surface PL3 surface including the first incident surface La1 radius La2 in the curve having two focal points La2 the minimum interval among the distances between the central axis and the points on the outer periphery of the curved surface area La3 between the second axis and the central axis Interval Lb The maximum interval among the intervals between the central axis and each point on the outer edge of the light emitting region Lc The interval between the first axis and the central axis Zb The distance from the predetermined plane to the exit plane Z′b From the plane PL1 Distance from the exit surface Zc Distance from the predetermined surface to the entrance surface zb Distance from the surface PL3 to the exit surface θb Angle formed by the central axis and the predetermined direction OBJ, OBJ1, OBJ2 Imaging optical systems L1, L2, L3, L4 Lens I LL Light emitting part I Image surface S Aperture stop C, C1 Transparent cover C2 Cover glass

Claims (26)

  1.  柱状の本体部と、
     透明カバーと、
     撮像光学系を有する撮像部と、
     発光領域を有する発光部と、を備え、
     前記透明カバー、前記撮像部及び前記発光部は、前記本体部の一方の側に設けられ、
     前記透明カバーは、曲面領域を有し、
     前記曲面領域は、前記本体部の中心軸と交差するように位置し、
     前記中心軸を含む平面と前記曲面領域とで形成される交線のうちの1つは、2つの焦点を有する曲線であり、
     所定の領域が前記2つの焦点を含まないように、前記発光部は配置され、
     前記撮像部は、以下の条件式(1)を満足する位置に配置されていることを特徴とするカプセル型内視鏡。
     0≦(Lc-La3)/La1≦0.5   (1)
     ここで、
     前記所定の領域は、前記発光部の発光領域が、前記2つの焦点を含む面に投影されたときの領域、
     Lcは、第1の軸と前記中心軸との間隔、
     La1は、前記2つの焦点を有する曲線における半径、
     La3は、第2の軸と前記中心軸との間隔、
     前記第1の軸は、前記撮像光学系の瞳の中心を通り、前記中心軸と平行な軸、
     前記第2の軸は、前記焦点を通り、前記中心軸と平行な軸、
    である。
    A columnar body,
    A transparent cover,
    An imaging unit having an imaging optical system;
    A light emitting unit having a light emitting region,
    The transparent cover, the imaging unit, and the light emitting unit are provided on one side of the main body unit,
    The transparent cover has a curved region,
    The curved surface region is located so as to intersect the central axis of the main body portion,
    One of the intersection lines formed by the plane including the central axis and the curved region is a curve having two focal points,
    The light emitting unit is arranged so that a predetermined area does not include the two focal points,
    The capsule endoscope is characterized in that the imaging unit is disposed at a position that satisfies the following conditional expression (1).
    0 ≦ (Lc−La3) /La1≦0.5 (1)
    here,
    The predetermined region is a region when a light emitting region of the light emitting unit is projected on a plane including the two focal points,
    Lc is the distance between the first axis and the central axis,
    La1 is the radius in the curve with the two focal points,
    La3 is the distance between the second axis and the central axis,
    The first axis passes through the center of the pupil of the imaging optical system and is parallel to the central axis;
    The second axis passes through the focal point and is parallel to the central axis;
    It is.
  2.  前記撮像部を複数備え、
     前記複数の撮像部の各々は、条件式(1)を満足するように配置されていることを特徴とする請求項1に記載のカプセル型内視鏡。
    A plurality of the imaging unit;
    2. The capsule endoscope according to claim 1, wherein each of the plurality of imaging units is arranged so as to satisfy the conditional expression (1).
  3.  前記撮像部は、前記透明カバーに対して最も近くに位置する入射面を有し、
     前記発光部は、前記透明カバーに対して最も近くに位置する射出面を有し、
     前記撮像部は、前記第1の軸と前記中心軸とが平行になるように配置され、
     前記中心軸に沿う方向において、前記入射面は、前記射出面よりも前記透明カバー側に位置していることを特徴とする請求項1に記載のカプセル型内視鏡。
    The imaging unit has an incident surface located closest to the transparent cover,
    The light emitting unit has an exit surface located closest to the transparent cover;
    The imaging unit is arranged so that the first axis and the central axis are parallel to each other,
    2. The capsule endoscope according to claim 1, wherein the incident surface is located closer to the transparent cover than the exit surface in a direction along the central axis.
  4.  前記撮像部は、前記透明カバーに対して最も近くに位置する入射面を有し、
     前記発光部は、前記透明カバーに対して最も近くに位置する射出面を有し、
     以下の条件式(2)を満足することを特徴とする請求項1に記載のカプセル型内視鏡。
     0.01≦(Zc-Zb)/La1≦1.0   (2)
     ここで、
     Zcは、所定の面から前記入射面までの距離、
     Zbは、所定の面から前記射出面までの距離、
     La1は、前記2つの焦点を有する曲線における半径、
     前記所定の面は、前記中心軸と直交し、且つ、前記撮像光学系の瞳の中心を含む面、
     前記距離は前記中心軸に沿う方向の距離、
     前記距離の符号は、前記所定の面から前記透明カバーに向かう方向がプラス、
    である。
    The imaging unit has an incident surface located closest to the transparent cover,
    The light emitting unit has an exit surface located closest to the transparent cover;
    The capsule endoscope according to claim 1, wherein the following conditional expression (2) is satisfied.
    0.01 ≦ (Zc−Zb) /La1≦1.0 (2)
    here,
    Zc is the distance from the predetermined surface to the incident surface,
    Zb is the distance from the predetermined surface to the exit surface,
    La1 is the radius in the curve with the two focal points,
    The predetermined plane is a plane orthogonal to the central axis and including the center of the pupil of the imaging optical system;
    The distance is a distance along the central axis,
    The sign of the distance is plus in the direction from the predetermined surface toward the transparent cover,
    It is.
  5.  前記撮像部は、前記透明カバーに対して最も近くに位置する入射面を有し、
     以下の条件式(3)を満足することを特徴とする請求項1に記載のカプセル型内視鏡。
     -0.5≦Zc/La1≦0.5   (3)
     ここで、
     Zcは、所定の面から前記入射面までの距離、
     La1は、前記2つの焦点を有する曲線における半径、
     前記所定の面は、前記中心軸と直交し、且つ、前記撮像光学系の瞳の中心を含む面、
     前記距離は前記中心軸に沿う方向の距離、
     前記距離の符号は、前記所定の面から前記透明カバーに向かう方向がプラス、
    である。
    The imaging unit has an incident surface located closest to the transparent cover,
    The capsule endoscope according to claim 1, wherein the following conditional expression (3) is satisfied.
    −0.5 ≦ Zc / La1 ≦ 0.5 (3)
    here,
    Zc is the distance from the predetermined surface to the incident surface,
    La1 is the radius in the curve with the two focal points,
    The predetermined plane is a plane orthogonal to the central axis and including the center of the pupil of the imaging optical system;
    The distance is a distance along the central axis,
    The sign of the distance is plus in the direction from the predetermined surface toward the transparent cover,
    It is.
  6.  前記2つの焦点を有する曲線は、楕円の一部であり、
     前記楕円の短軸が前記中心軸と一致し、
     以下の条件式(4)を満足することを特徴とする請求項1に記載のカプセル型内視鏡。
     0≦1-rb/ra≦0.9   (4)
     ここで、
     raは、前記楕円の長半径、
     rbは、前記楕円の短半径、
    である。
    The curve having the two focal points is part of an ellipse;
    The minor axis of the ellipse coincides with the central axis;
    The capsule endoscope according to claim 1, wherein the following conditional expression (4) is satisfied.
    0 ≦ 1-rb / ra ≦ 0.9 (4)
    here,
    ra is the major radius of the ellipse,
    rb is the short radius of the ellipse,
    It is.
  7.  前記発光部は、前記透明カバーに対して最も近くに位置する射出面を有し、
     前記2つの焦点を有する曲線は、楕円の一部であり、
     前記楕円の短軸が前記中心軸と一致し、
     前記発光部は、第1の所定の円の内側に位置すると共に、以下の条件式(5)を満足することを特徴とする請求項1に記載のカプセル型内視鏡。
     -0.1≦(La3-Lb-|Z’b|×tanθb)/ra≦0.7   (5)
     ここで、
     La3は、前記第2の軸と前記中心軸との間隔、
     Lbは、前記中心軸と前記発光領域の外縁上の各点との間隔のうち、最大となる間隔、
     Z’bは、前記2つの焦点を含む面から前記射出面までの距離、
     θbは、前記中心軸と所定の方向とのなす角度、
     raは、前記楕円の長半径、
     前記第1の所定の円は、中心が前記中心軸上に位置し、前記距離La3を半径とする円、
     前記所定の方向は、0.1×LIとなる方向、
     LIは、前記中心軸に沿う方向の光強度、
    である。
    The light emitting unit has an exit surface located closest to the transparent cover;
    The curve having the two focal points is part of an ellipse;
    The minor axis of the ellipse coincides with the central axis;
    2. The capsule endoscope according to claim 1, wherein the light emitting unit is located inside a first predetermined circle and satisfies the following conditional expression (5):
    −0.1 ≦ (La3−Lb− | Z′b | × tan θb) /ra≦0.7 (5)
    here,
    La3 is the distance between the second axis and the central axis,
    Lb is the maximum interval among the intervals between the central axis and each point on the outer edge of the light emitting region,
    Z′b is the distance from the plane including the two focal points to the exit surface,
    θb is an angle formed by the central axis and a predetermined direction,
    ra is the major radius of the ellipse,
    The first predetermined circle is a circle whose center is located on the central axis and whose radius is the distance La3.
    The predetermined direction is a direction of 0.1 × LI,
    LI is the light intensity in the direction along the central axis,
    It is.
  8.  前記発光部は、前記透明カバーに対して最も近くに位置する射出面を有し、
     前記2つの焦点を有する曲線は、楕円の一部であり、
     前記楕円の短軸が前記中心軸と一致し、
     前記発光部は、第1の所定の円の内側に位置すると共に、以下の条件式(6)を満足し、
     前記発光領域から出射する光の一部が遮光されることを特徴とする請求項1に記載のカプセル型内視鏡。
     (La3-Lb-|Z’b|×tanθb)/ra<0.05   (6)
     ここで、
     La3は、前記第2の軸と前記中心軸との間隔、
     Lbは、前記中心軸と前記発光領域の外縁上の各点との間隔のうち、最大となる間隔、
     Z’bは、前記2つの焦点を含む面から前記射出面までの距離、
     θbは、前記中心軸と所定の方向とのなす角度、
     raは、前記楕円の長半径、
     前記第1の所定の円は、中心が前記中心軸上に位置し、前記距離La3を半径とする円、
     前記所定の方向は、0.1×LIとなる方向、
     LIは、前記中心軸に沿う方向の光強度、
    である。
    The light emitting unit has an exit surface located closest to the transparent cover;
    The curve having the two focal points is part of an ellipse;
    The minor axis of the ellipse coincides with the central axis;
    The light emitting unit is located inside the first predetermined circle and satisfies the following conditional expression (6):
    The capsule endoscope according to claim 1, wherein a part of the light emitted from the light emitting region is shielded.
    (La3-Lb- | Z'b | × tan θb) / ra <0.05 (6)
    here,
    La3 is the distance between the second axis and the central axis,
    Lb is the maximum interval among the intervals between the central axis and each point on the outer edge of the light emitting region,
    Z′b is the distance from the plane including the two focal points to the exit surface,
    θb is an angle formed by the central axis and a predetermined direction,
    ra is the major radius of the ellipse,
    The first predetermined circle is a circle whose center is located on the central axis and whose radius is the distance La3.
    The predetermined direction is a direction of 0.1 × LI,
    LI is the light intensity in the direction along the central axis,
    It is.
  9.  前記発光部は、第2の所定の円の内側に位置すると共に、以下の条件式(7)を満足することを特徴とする請求項1に記載のカプセル型内視鏡。
     0≦Lb/Lc≦0.8   (7)
     ここで、
     Lbは、前記中心軸と前記発光領域の外縁上の各点との間隔のうち、最大となる間隔、
     Lcは、前記第1の軸と前記中心軸との間隔、
     前記第2の所定の円は、中心が前記中心軸上に位置し、前記距離La3を半径とする円、
    である。
    2. The capsule endoscope according to claim 1, wherein the light emitting unit is located inside a second predetermined circle and satisfies the following conditional expression (7).
    0 ≦ Lb / Lc ≦ 0.8 (7)
    here,
    Lb is the maximum interval among the intervals between the central axis and each point on the outer edge of the light emitting region,
    Lc is the distance between the first axis and the central axis,
    The second predetermined circle is a circle whose center is located on the central axis and whose radius is the distance La3.
    It is.
  10.  前記発光部は、第1の所定の円の内側に位置すると共に、以下の条件式(8)を満足することを特徴とする請求項1に記載のカプセル型内視鏡。
     0≦Lb/La3≦0.9   (8)
     ここで、
     La3は、前記第2の軸と前記中心軸との間隔、
     Lbは、前記中心軸と前記発光領域の外縁上の各点との間隔のうち、最大となる間隔、
     前記第1の所定の円は、中心が前記中心軸上に位置し、前記距離La3を半径とする円、
    である。
    2. The capsule endoscope according to claim 1, wherein the light emitting unit is located inside a first predetermined circle and satisfies the following conditional expression (8):
    0 ≦ Lb / La3 ≦ 0.9 (8)
    here,
    La3 is the distance between the second axis and the central axis,
    Lb is the maximum interval among the intervals between the central axis and each point on the outer edge of the light emitting region,
    The first predetermined circle is a circle whose center is located on the central axis and whose radius is the distance La3.
    It is.
  11.  前記曲面領域の形状が、前記中心軸に対して点対称な形状であることを特徴とする請求項1に記載のカプセル型内視鏡。 The capsule endoscope according to claim 1, wherein a shape of the curved region is a point-symmetric shape with respect to the central axis.
  12.  前記曲面領域と前記2つの焦点を含む面とで形成される交線の形状が、円であることを特徴とする請求項1に記載のカプセル型内視鏡。 The capsule endoscope according to claim 1, wherein a shape of an intersecting line formed by the curved surface area and the surface including the two focal points is a circle.
  13.  前記2つの焦点を有する曲線は、楕円の一部であり、
     前記楕円の短軸が前記中心軸と一致し、
     以下の条件式(9)を満足することを特徴とする請求項1に記載のカプセル型内視鏡。
     0.4≦(ra-La3)/(2×IH)≦12.5   (9)
     ここで、
     raは、前記楕円の長半径、
     La3は、前記第2の軸と前記中心軸との間隔、
     IHは、前記撮像光学系における像高、
    である。
    The curve having the two focal points is part of an ellipse;
    The minor axis of the ellipse coincides with the central axis;
    The capsule endoscope according to claim 1, wherein the following conditional expression (9) is satisfied.
    0.4 ≦ (ra−La3) / (2 × IH) ≦ 12.5 (9)
    here,
    ra is the major radius of the ellipse,
    La3 is the distance between the second axis and the central axis,
    IH is the image height in the imaging optical system,
    It is.
  14.  前記撮像部は、前記透明カバーに対して最も近くに位置する入射面を有し、
     前記2つの焦点を有する曲線は、楕円の一部であり、
     前記楕円の短軸が前記中心軸と一致し、
     以下の条件式(10)を満足することを特徴とする請求項1に記載のカプセル型内視鏡。
     1.0≦(ra-La3)/Φc≦6.0   (10)
     ここで、
     raは、前記楕円の長半径、
     La3は、前記第2の軸と前記中心軸との間隔、
     Φcは、前記入射面における開口径、
    である。
    The imaging unit has an incident surface located closest to the transparent cover,
    The curve having the two focal points is part of an ellipse;
    The minor axis of the ellipse coincides with the central axis;
    The capsule endoscope according to claim 1, wherein the following conditional expression (10) is satisfied.
    1.0 ≦ (ra−La3) /Φc≦6.0 (10)
    here,
    ra is the major radius of the ellipse,
    La3 is the distance between the second axis and the central axis,
    Φc is the aperture diameter at the entrance surface,
    It is.
  15.  前記撮像部を複数有し、
     前記複数の撮像部は、以下の条件式(11)を満足する第1撮像部と、以下の条件式(12)を満足する第2撮像部と、を含み、
     前記各撮像部が他の撮像部と透明カバーの物体側で重複する撮像範囲を有することを特徴とする請求項1に記載のカプセル型内視鏡。
     60°≦θc_1≦140°   (11)
     60°≦θc_2≦140°   (12)
     ここで、
     前記θc_1は、前記第1撮像部の撮像光学系の画角、
     前記θc_2は、前記第2撮像部の撮像光学系の画角、
    である。
    A plurality of the imaging units;
    The plurality of imaging units include a first imaging unit that satisfies the following conditional expression (11), and a second imaging unit that satisfies the following conditional expression (12):
    The capsule endoscope according to claim 1, wherein each of the imaging units has an imaging range that overlaps with another imaging unit on the object side of the transparent cover.
    60 ° ≦ θc_1 ≦ 140 ° (11)
    60 ° ≦ θc_2 ≦ 140 ° (12)
    here,
    Θc_1 is the angle of view of the imaging optical system of the first imaging unit,
    Θc_2 is an angle of view of the imaging optical system of the second imaging unit,
    It is.
  16.  前記本体部の他方の側に、凸部が設けられ、
     前記撮像部を複数有し、
     前記複数の撮像部は、第1撮像光学系を有する第1撮像部と、第2撮像光学系を有する第2撮像部と、を備え、
     前記第1撮像部の撮像範囲の一部は、前記第2撮像部の撮像範囲と重複し、
     前記第1撮像部は、前記第1撮像光学系の光軸が前記中心軸と交差するように配置され、
     前記第2撮像部は、前記第2撮像光学系の光軸が前記中心軸と交差するように配置され、
     前記第1撮像光学系の光軸と前記中心軸との交点、及び、前記第2撮像光学系の光軸と前記中心軸との交点は、共に、前記2つの焦点を含む面よりも前記凸部側に位置していることを特徴とする請求項1に記載のカプセル型内視鏡。
    A convex part is provided on the other side of the main body part,
    A plurality of the imaging units;
    The plurality of imaging units include a first imaging unit having a first imaging optical system and a second imaging unit having a second imaging optical system,
    A part of the imaging range of the first imaging unit overlaps with the imaging range of the second imaging unit,
    The first imaging unit is arranged so that an optical axis of the first imaging optical system intersects the central axis,
    The second imaging unit is arranged so that an optical axis of the second imaging optical system intersects the central axis,
    Both the intersection of the optical axis of the first imaging optical system and the central axis, and the intersection of the optical axis of the second imaging optical system and the central axis are both more convex than the plane including the two focal points. The capsule endoscope according to claim 1, wherein the capsule endoscope is located on a side of a portion.
  17.  前記第1撮像部は、前記透明カバーに対して最も近くに位置する第1入射面を有し、
     前記発光部は、前記透明カバーに対して最も近くに位置する射出面を有し、
     前記2つの焦点を有する曲線は、楕円の一部であり、
     前記楕円の短軸が前記中心軸と一致し、
     以下の条件式(14)を満足することを特徴とする請求項16に記載のカプセル型内視鏡。
     0.1≦zb/ra≦1.0   (14)
     ここで、
     zbは、前記第1入射面を含む仮想面から前記射出面までの距離であって、前記第1撮像光学系の光軸に沿う方向の距離、
     raは、前記楕円の長半径、
    である。
    The first imaging unit has a first incident surface located closest to the transparent cover,
    The light emitting unit has an exit surface located closest to the transparent cover;
    The curve having the two focal points is part of an ellipse;
    The minor axis of the ellipse coincides with the central axis;
    The capsule endoscope according to claim 16, wherein the following conditional expression (14) is satisfied.
    0.1 ≦ zb / ra ≦ 1.0 (14)
    here,
    zb is a distance from the virtual surface including the first incident surface to the exit surface, and a distance along the optical axis of the first imaging optical system;
    ra is the major radius of the ellipse,
    It is.
  18.  前記撮像光学系の最も物体側に配置されるレンズが、正レンズであることを特徴とする請求項1に記載のカプセル型内視鏡。 The capsule endoscope according to claim 1, wherein the lens disposed closest to the object side of the imaging optical system is a positive lens.
  19.  前記撮像光学系の最も物体側に配置されるレンズが、負レンズであることを特徴とする請求項1に記載のカプセル型内視鏡。 The capsule endoscope according to claim 1, wherein the lens disposed closest to the object side of the imaging optical system is a negative lens.
  20.  側面発光部を有し、
     前記側面発光部は、前記本体部の側面に配置され、
     以下の条件式(15)を満足することを特徴とする請求項1に記載のカプセル型内視鏡。
     70°≦ε≦110°   (15)
     ここで、
     εは、前記発光部の灯軸と前記側面発光部の灯軸とのなす角、
    である。
    Having a side light emitter,
    The side light emitting part is disposed on a side surface of the main body part,
    The capsule endoscope according to claim 1, wherein the following conditional expression (15) is satisfied.
    70 ° ≦ ε ≦ 110 ° (15)
    here,
    ε is an angle formed by the lamp axis of the light emitting unit and the lamp axis of the side light emitting unit,
    It is.
  21.  前記2つの焦点を有する曲線は、楕円の一部であり、
     前記楕円の短軸が前記中心軸と一致し、
     以下の条件式(16)を満足することを特徴とする請求項1に記載のカプセル型内視鏡。
     0.01≦Dt/ra≦0.2  (16)
     ここで、
     Dtは、前記透明カバーの前記中心軸上での厚み、
     raは、前記楕円の長半径、
    である。
    The curve having the two focal points is part of an ellipse;
    The minor axis of the ellipse coincides with the central axis;
    The capsule endoscope according to claim 1, wherein the following conditional expression (16) is satisfied.
    0.01 ≦ Dt / ra ≦ 0.2 (16)
    here,
    Dt is the thickness of the transparent cover on the central axis,
    ra is the major radius of the ellipse,
    It is.
  22.  以下の条件式(17)を満足することを特徴とする請求項1に記載のカプセル型内視鏡。
     ndc≦1.7   (17)
     ここで、
     ndcは、前記透明カバーの材質のd線における屈折率、
    である。
    The capsule endoscope according to claim 1, wherein the following conditional expression (17) is satisfied.
    ndc ≦ 1.7 (17)
    here,
    ndc is the refractive index at the d-line of the material of the transparent cover,
    It is.
  23.  有効径内において、前記透明カバーの厚みが均一であることを特徴とする請求項1に記載のカプセル型内視鏡。 The capsule endoscope according to claim 1, wherein the thickness of the transparent cover is uniform within an effective diameter.
  24.  光線有効径内において、前記透明カバーの厚みは、前記中心軸から離れるにつれて厚くなることを特徴とする請求項1に記載のカプセル型内視鏡。 2. The capsule endoscope according to claim 1, wherein the thickness of the transparent cover increases with increasing distance from the central axis within the effective light beam diameter.
  25.  複数のレンズを有し、
     前記複数のレンズを全て使用して撮像を行うか、又は、前記複数のレンズの一部を使用して撮像を行うことを特徴とする請求項1に記載のカプセル型内視鏡。
    Having a plurality of lenses,
    2. The capsule endoscope according to claim 1, wherein imaging is performed using all of the plurality of lenses, or imaging is performed using a part of the plurality of lenses.
  26.  前記本体部の他方の側に、前記透明カバーとは別の透明カバーと、前記撮像部とは別の撮像部と、前記発光部とは別の発光部と、を有することを特徴とする請求項1に記載のカプセル型内視鏡。 The second side of the main body has a transparent cover different from the transparent cover, an imaging unit different from the imaging unit, and a light emitting unit different from the light emitting unit. Item 2. The capsule endoscope according to Item 1.
PCT/JP2017/017531 2017-05-09 2017-05-09 Capsule-type endoscope WO2018207254A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017531 WO2018207254A1 (en) 2017-05-09 2017-05-09 Capsule-type endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017531 WO2018207254A1 (en) 2017-05-09 2017-05-09 Capsule-type endoscope

Publications (1)

Publication Number Publication Date
WO2018207254A1 true WO2018207254A1 (en) 2018-11-15

Family

ID=64104532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017531 WO2018207254A1 (en) 2017-05-09 2017-05-09 Capsule-type endoscope

Country Status (1)

Country Link
WO (1) WO2018207254A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501704A (en) * 1999-06-15 2003-01-14 ギブン・イメージング・リミテッド Optical system
JP2003325441A (en) * 2002-03-08 2003-11-18 Olympus Optical Co Ltd Capsule endoscope
JP2005503182A (en) * 2001-01-16 2005-02-03 ギブン・イメージング・リミテツド System and method for wide area imaging of body cavities
JP2006043115A (en) * 2004-08-04 2006-02-16 Olympus Corp Capsule endoscope
US20070002135A1 (en) * 1999-06-15 2007-01-04 Arkady Glukhovsky In-vivo imaging device, optical system and method
JP2007007007A (en) * 2005-06-29 2007-01-18 Olympus Medical Systems Corp Endoscope

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501704A (en) * 1999-06-15 2003-01-14 ギブン・イメージング・リミテッド Optical system
US20070002135A1 (en) * 1999-06-15 2007-01-04 Arkady Glukhovsky In-vivo imaging device, optical system and method
JP2005503182A (en) * 2001-01-16 2005-02-03 ギブン・イメージング・リミテツド System and method for wide area imaging of body cavities
JP2003325441A (en) * 2002-03-08 2003-11-18 Olympus Optical Co Ltd Capsule endoscope
JP2006043115A (en) * 2004-08-04 2006-02-16 Olympus Corp Capsule endoscope
JP2007007007A (en) * 2005-06-29 2007-01-18 Olympus Medical Systems Corp Endoscope

Similar Documents

Publication Publication Date Title
KR101594957B1 (en) Image-capturing optical system for capsule endoscope
US3166623A (en) Spherical lens imaging device
JP5881924B1 (en) Capsule endoscope
JP4674906B2 (en) Optical system
WO2017068726A1 (en) Imaging device and optical device provided with same
WO2017064752A1 (en) Image pickup device and optical device provided therewith
JP5214161B2 (en) Transmission optical element and optical system using the same
JP2018180422A (en) Imaging apparatus
JP5185744B2 (en) Optical system and endoscope using the same
JP6873741B2 (en) Imaging device
JP7215500B2 (en) Imaging device
WO2017217188A1 (en) Endoscope illumination optical system
JP2018055059A (en) Imaging device
WO2018207254A1 (en) Capsule-type endoscope
US10307045B2 (en) Endoscope optical system unit
US11832791B2 (en) Optical imaging lens assembly and endoscopic optical device
WO2019111360A1 (en) Endoscope
JP7185835B2 (en) Imaging device
JP2009080412A (en) Optical system and endoscope using the same
JP7369358B2 (en) Optical system and optical equipment
JPWO2017068637A1 (en) Imaging apparatus and optical apparatus including the same
WO2018211678A1 (en) Optical imaging system, optical unit, and endoscope
JP6572073B2 (en) Imaging optical system and optical apparatus including the same
US11454801B2 (en) Optical arrangement for an endoscope and endoscope having such an optical arrangement
JP7154903B2 (en) LENS DEVICE AND IMAGING DEVICE HAVING THE SAME

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP