WO2018206312A1 - Rotor and electrical machine - Google Patents

Rotor and electrical machine Download PDF

Info

Publication number
WO2018206312A1
WO2018206312A1 PCT/EP2018/060844 EP2018060844W WO2018206312A1 WO 2018206312 A1 WO2018206312 A1 WO 2018206312A1 EP 2018060844 W EP2018060844 W EP 2018060844W WO 2018206312 A1 WO2018206312 A1 WO 2018206312A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
lateral surface
electrical machine
base body
metallic glass
Prior art date
Application number
PCT/EP2018/060844
Other languages
German (de)
French (fr)
Inventor
Jens BURGHAUS
David Philipp Morisco
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201880030796.1A priority Critical patent/CN110582924A/en
Priority to JP2019561939A priority patent/JP2020520219A/en
Publication of WO2018206312A1 publication Critical patent/WO2018206312A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew

Definitions

  • Rotor and electric machine The present invention relates to a rotor for an electric machine.
  • PRIOR ART Components made of magnetic materials are used as rotors or as stators in an electrical machine. These must have good soft magnetic properties, in particular high saturation polarization, high permeability and low iron loss. When operating an electric machine, eddy currents occur in the rotor. This leads to a heating of the rotor.
  • Body on. It consists of at least one metallic glass (BMG).
  • a lateral surface of the main body has at least one recess.
  • BMG metallic glass
  • Such a rotor may be made in a net-shape process, such as an injection molding process, since a metallic glass can be made by using amorphous starting powders and / or
  • Granules are consolidated by an inductive heating depending on the processing step.
  • temperatures above the glass transition temperature and below the crystallization temperature are necessary. These are in particular in the range of 400 ° C to 600 ° C.
  • generative and additive are necessary.
  • Applicable method in which amorphous powders over temperatures, the above the crystallization temperature, are consolidated.
  • Metallic glasses usually have a shrinkage of less than 0.2% during thermal consolidation because there is no phase transition.
  • the rotor falls close to the final contour.
  • the at least one recess can already be produced in the production step without subsequent processing.
  • Metallic glasses can be prepared both magnetically and non-magnetically depending on their composition. As a result, non-magnetic separations in the rotor can be realized. To be optimal
  • the rotor in its base body preferably has at least one ferritic
  • metallic glass having a maximum magnetic permeability of at least 1,000. This furthermore has a saturation polarization of preferably at least 1 T.
  • a ferritic iron-based alloy can be used as the starting material for the ferritic metallic glass. This magnetic permeability is significantly higher than that of
  • Electric sheets as they are commonly used in such rotors.
  • the main body can be connected, for example, by means of laser welding or gluing to other components of the rotor.
  • the rotor has at least one chamber in its base body.
  • each chamber at least one permanent magnet is arranged.
  • Permanent magnets in particular two permanent magnets may be arranged. These are made of a hard magnetic material
  • the chambers can be produced in the production of the body of the metallic glass and the
  • Permanent magnets are then inserted into the chambers.
  • the lateral surface and the chamber in the range of 1 mm to 10 mm, most preferably in the range of 2 mm to 10 mm. This allows optimum magnetic interaction with the stator.
  • the depth of these grooves is in the range of 1/70 of the diameter of the rotor to 1/35 of the diameter of the rotor.
  • the diameter of the rotor is at least 5 mm, in particular for very small machines. It can be up to several hundred millimeters depending on the application. It is further preferable that the depth is in the range of 0.2 mm to 5.0 mm.
  • the rotor has a plurality of recesses, which pass from the lateral surface into the chamber. These recesses are preferably located in areas of the base body, which consist of a soft magnetic metallic glass. They make it possible to specifically weaken the body in places with high magnetic losses in the magnet by the removal of soft magnetic material. As a result, a local flux density weakening and thus a reduction of the induced eddy currents are realized.
  • the rotor described it is preferred in all embodiments of the rotor described so far that extends at least one recess over at least 80% of the length of the rotor, more preferably over at least 90% of the length, most preferably over the entire length.
  • the recesses are formed as grooves, this will maximize the reduction of eddy currents and the air vane effect. From the lateral surface into the chamber through recesses, not only at individual points of the
  • the rotor has a recess which extends as negative embossing with non-constant contour in the axial direction of the rotor over the entire lateral surface.
  • a linear shape such as a constant constant parallel to the axis of rotation contour corresponding spline-shaped square or linear
  • the use of at least one metallic glass in the body further allows security features to be integrated into the surface. This can be done for example by depositing a QR code as a negative in a press shop, with which the main body is made from its starting powders.
  • the electric machine has the rotor and a stator.
  • the stator has at least one metallic glass.
  • the stator has at least one metallic glass, which is also contained in the main body of the rotor. In this way, the magnetic flux in the stator is matched to the magnetic flux in the rotor.
  • Fig. 1 shows a schematic sectional view of an electric machine according to an embodiment of the invention.
  • Fig. 2a shows an isometric view of a rotor according to a
  • Fig. 2b shows an isometric view of a rotor according to another embodiment of the invention.
  • Fig. 2c shows an isometric view of a rotor according to yet another embodiment of the invention.
  • 3 a shows an isometric view of a cutaway section of a rotor according to one exemplary embodiment of the invention.
  • 3b shows an isometric view of a cutaway section of a rotor according to another embodiment of the invention.
  • FIG. 4a shows an isometric view of a cutaway section of a rotor according to still another embodiment of the invention.
  • Fig. 4b shows an isometric view of a cut-away portion of a rotor according to yet another embodiment of the invention.
  • Fig. 1 shows a section of an electrical machine 1, which is designed as a permanently exciting synchronous machine.
  • This has a circular cylindrical rotor 2 and a stator 3.
  • a main body 4 of the rotor 2 is below its lateral surface 5, a chamber 6.
  • This has a shortest distance A from the lateral surface 5 of 5 mm.
  • two permanent magnets 71, 72 are arranged in the chamber 6.
  • the stator 3 and the main body 4 each consist of a soft magnetic metallic glass based on a ferritic iron-based alloy. This has a saturation polarization of more than 1.6 T and a maximum permeability of more than 10,000.
  • the stator 3 and the base body 4 can each be produced in a generative process or by a
  • Injection molding process by starting powder are introduced by injection molding in a die and then pressed and thermally treated.
  • FIGS. 2a to 2c show three embodiments of the rotor 2, which has in its lateral surface recesses 81 in the form of grooves.
  • the rotors 2 each have a diameter of 100 mm and the recesses 81 each have a depth of 1.5 mm. All recesses extend over the entire length of the rotor. They go in the first
  • Embodiment according to FIG. 2a parallel to the longitudinal axis of the rotor 2.
  • they run continuously bevelled.
  • they run in a V-shape.
  • recesses 83 in the lateral surface 5 have the shape of up to the chamber 6 through
  • FIGS. 4a and 4b show further exemplary embodiments of the rotor 2, in which the lateral surface 5 in each case has a recess, which is shown as
  • Negative embossing with non-constant contour in the axial direction of the rotor 2 extends over the entire lateral surface 5.
  • the recess 84 has the shape of a spline without a node.
  • the recess 85 has the shape of a spline with a plurality of nodes.

Abstract

The invention relates to a rotor for an electrical machine. Said rotor has a circular-cylindrical base body (4) which consists of at least one metallic glass. A lateral surface (5) of the base body (4) has at least one recess (82). The invention further relates to an electrical machine. Said electrical machine comprises a rotor and a stator. The stator comprises at least one metallic glass.

Description

Beschreibung  description
Titel title
Rotor und elektrische Maschine Die vorliegende Erfindung betrifft einen Rotor für eine elektrische Maschine. Rotor and electric machine The present invention relates to a rotor for an electric machine.
Weiterhin betrifft sie eine elektrische Maschine, welche den Rotor enthält. Furthermore, it relates to an electric machine containing the rotor.
Stand der Technik Bauteile aus magnetischen Materialien werden als Rotoren oder als Statoren in einer elektrischen Maschine eingesetzt. Diese müssen gute weichmagnetische Eigenschaften, insbesondere eine hohe Sättigungspolarisation, eine hohe Permeabilität und geringe Eisenverluste aufweisen. Beim Betrieb einer elektrischen Maschine treten Wirbelströme im Rotor auf. Dies führt zu einer Erwärmung des Rotors. PRIOR ART Components made of magnetic materials are used as rotors or as stators in an electrical machine. These must have good soft magnetic properties, in particular high saturation polarization, high permeability and low iron loss. When operating an electric machine, eddy currents occur in the rotor. This leads to a heating of the rotor.
Offenbarung der Erfindung Der Rotor für eine elektrische Maschine weist einen kreiszylinderförmigenDISCLOSURE OF THE INVENTION The rotor for an electric machine has a circular cylindrical shape
Grundkörper auf. Dieser besteht aus mindestens einem metallischen Glas (bulk metallic glass; BMG). Eine Mantelfläche des Grundkörpers weist mindestens eine Ausnehmung auf. Ein solcher Rotor kann in einem net-shape Verfahren, wie beispielsweise einem Spritzgussverfahren, gefertigt werden, da ein metallisches Glas hergestellt werden kann, indem amorphe Ausgangspulver und/oderBody on. It consists of at least one metallic glass (BMG). A lateral surface of the main body has at least one recess. Such a rotor may be made in a net-shape process, such as an injection molding process, since a metallic glass can be made by using amorphous starting powders and / or
Granulate durch eine induktive Heizung abhängig vom Verarbeitungsschritt konsolidiert werden. Hierfür sind Temperaturen oberhalb der Glastemperatur und unterhalb der Kristallisationstemperatur notwendig. Diese liegen insbesondere im Bereich von 400 °C bis 600 °C. Weiterhin sind generative bzw. additive Granules are consolidated by an inductive heating depending on the processing step. For this purpose, temperatures above the glass transition temperature and below the crystallization temperature are necessary. These are in particular in the range of 400 ° C to 600 ° C. Furthermore, generative and additive
Verfahren anwendbar, bei denen amorphe Pulver über Temperaturen, die oberhalb der Kristallisationtemperatur liegen, konsolidiert werden. Metallische Gläser weisen üblicherweise einen Schrumpf von weniger als 0,2 % während der thermischen Konsolidierung auf, da kein Phasenübergang stattfindet. Der Rotor fällt entsprechend endkonturnah an. Die mindestens eine Ausnehmung kann bereits im Herstellungsschritt ohne nachträgliche Bearbeitung erzeugt werden. Applicable method in which amorphous powders over temperatures, the above the crystallization temperature, are consolidated. Metallic glasses usually have a shrinkage of less than 0.2% during thermal consolidation because there is no phase transition. The rotor falls close to the final contour. The at least one recess can already be produced in the production step without subsequent processing.
Metallische Gläser können abhängig von ihrer Zusammensetzung sowohl magnetisch wie auch amagnetisch hergestellt werden. Dadurch können amagnetische Trennungen im Rotor realisiert werden. Um eine optimale Metallic glasses can be prepared both magnetically and non-magnetically depending on their composition. As a result, non-magnetic separations in the rotor can be realized. To be optimal
Anwendung in einer elektrischen Maschine zu ermöglichen, weist der Rotor in seinem Grundkörper allerdings bevorzugt mindestens ein ferritisches However, to enable use in an electrical machine, the rotor in its base body preferably has at least one ferritic
metallisches Glas mit einer magnetischen Maximalpermeabilität von mindestens 1000 auf. Dieses weist weiterhin eine Sättigungspolarisation von vorzugsweise mindestens 1 T auf. Hierzu kann als Ausgangsmaterial für das ferritische metallische Glas insbesondere eine ferritische Eisenbasislegierung genutzt werden. Diese magnetische Permeabilität liegt deutlich über jener von metallic glass having a maximum magnetic permeability of at least 1,000. This furthermore has a saturation polarization of preferably at least 1 T. For this purpose, in particular a ferritic iron-based alloy can be used as the starting material for the ferritic metallic glass. This magnetic permeability is significantly higher than that of
Elektroblechen, wie sie üblicherweise in derartigen Rotoren Verwendung finden. Electric sheets, as they are commonly used in such rotors.
Der Grundkörper kann beispielsweise mittels Laserschweißen oder Kleben an weitere Bestandteile des Rotors angebunden sein. The main body can be connected, for example, by means of laser welding or gluing to other components of the rotor.
Weiterhin ist es bevorzugt, dass der Rotor mindestens eine Kammer in seinem Grundkörper aufweist. In jeder Kammer ist mindestens ein Permanentmagnet angeordnet. Es können allerdings in jeder Kammer auch mehrere Furthermore, it is preferred that the rotor has at least one chamber in its base body. In each chamber at least one permanent magnet is arranged. However, there may be several in each chamber
Permanentmagnete, insbesondere jeweils zwei Permanentmagnete angeordnet sein. Diese aus einem hartmagnetischen Material bestehenden Permanent magnets, in particular two permanent magnets may be arranged. These are made of a hard magnetic material
Permanentmagnete verstärken die Wechselwirkung des Rotors mit dem Stator einer elektrischen Maschine. Die Kammern können bei der Herstellung des Grundkörpers aus dem metallischen Glas erzeugt werden und die Permanent magnets enhance the interaction of the rotor with the stator of an electrical machine. The chambers can be produced in the production of the body of the metallic glass and the
Permanentmagnete werden dann in die Kammern eingesetzt. Permanent magnets are then inserted into the chambers.
Es ist besonders bevorzugt, dass ein kürzester Abstand zwischen der  It is particularly preferred that a shortest distance between the
Mantelfläche und der Kammer im Bereich von 1 mm bis 10 mm, ganz besonders bevorzugt im Bereich von 2 mm bis 10 mm liegt. Hierdurch wird eine optimale magnetische Wechselwirkung mit dem Stator ermöglicht. In einer Ausführungsform weist der Rotor in der Mantelfläche seines The lateral surface and the chamber in the range of 1 mm to 10 mm, most preferably in the range of 2 mm to 10 mm. This allows optimum magnetic interaction with the stator. In one embodiment, the rotor in the lateral surface of his
Grundkörpers mehrere Ausnehmungen auf, die als Rillen ausgeführt sind. Die Tiefe dieser Rillen liegt im Bereich von 1/70 des Durchmessers des Rotors bis 1/35 des Durchmessers des Rotors. Der Durchmesser des Rotors beträgt dabei insbesondere für Kleinstmaschinen mindestens 5 mm. Er kann in Abhängigkeit von der Anwendung bis zu mehrere hundert Millimeter betragen. Es ist weiterhin bevorzugt, dass die Tiefe im Bereich von 0,2 mm bis 5,0 mm liegt. Diese Rillen reduzieren Wirbelströme an der Oberfläche des Rotors signifikant. Außerdem wirken sie als Luftschaufeln und unterstützen so die Kühlung der elektrischen Maschine. Body on several recesses, which are designed as grooves. The depth of these grooves is in the range of 1/70 of the diameter of the rotor to 1/35 of the diameter of the rotor. The diameter of the rotor is at least 5 mm, in particular for very small machines. It can be up to several hundred millimeters depending on the application. It is further preferable that the depth is in the range of 0.2 mm to 5.0 mm. These grooves significantly reduce eddy currents at the surface of the rotor. They also act as air blades and thus support the cooling of the electric machine.
In einer anderen Ausführungsform weist der Rotor mehrere Ausnehmungen auf, die von der Mantelfläche bis in die Kammer durchgehen. Diese Ausnehmungen befinden sich vorzugsweise in Bereichen des Grundkörpers, welche aus einem weichmagnetischen metallischen Glas bestehen. Sie ermöglichen es, den Grundkörper an Stellen mit hohen magnetischen Verlusten im Magneten gezielt durch die Entnahme von weichmagnetischem Material zu schwächen. Hierdurch werden eine lokale Flussdichteschwächung und damit eine Reduktion der induzierten Wirbelströme realisiert. In another embodiment, the rotor has a plurality of recesses, which pass from the lateral surface into the chamber. These recesses are preferably located in areas of the base body, which consist of a soft magnetic metallic glass. They make it possible to specifically weaken the body in places with high magnetic losses in the magnet by the removal of soft magnetic material. As a result, a local flux density weakening and thus a reduction of the induced eddy currents are realized.
Es ist in allen bisher beschriebenen Ausführungsformen des Rotors bevorzugt, dass sich mindestens eine Ausnehmung über mindestens 80 % der Länge des Rotors erstreckt, besonders bevorzugt über mindestens 90 % der Länge, ganz besonders bevorzugt über die gesamte Länge. Wenn die Ausnehmungen als Rillen ausgeführt sind, werden hierdurch die Reduktion von Wirbelströmen und die Luftschaufelwirkung maximiert. Von der Mantelfläche bis in die Kammer durchgehende Ausnehmungen, die nicht nur an einzelnen Stellen der It is preferred in all embodiments of the rotor described so far that extends at least one recess over at least 80% of the length of the rotor, more preferably over at least 90% of the length, most preferably over the entire length. When the recesses are formed as grooves, this will maximize the reduction of eddy currents and the air vane effect. From the lateral surface into the chamber through recesses, not only at individual points of the
Mantelfläche lokalisiert sind, sondern die sich über einen so großen Teil der Rotorlänge erstrecken, fungieren als Negativkonturen in der Polkontur. Dadurch werden Oberfelder innerhalb der Rotorfelder reduziert. Da diese im Wesentlichen für die Induktion von Wirbelströmen im Magnetmaterial verantwortlich sind, können durch diese Maßnahmen Magnetverluste reduziert werden. Zusätzlich lassen sich durch diese Maßnahmen Drehmomentwelligkeiten positiv Lateral surface are located, but extend over such a large part of the rotor length, act as negative contours in the pole contour. As a result, upper fields within the rotor fields are reduced. Since these are essentially responsible for the induction of eddy currents in the magnetic material, magnetic losses can be reduced by these measures. In addition, these measures allow torque ripples to be positive
beeinflussen. In einer weiteren Ausführungsform weist der Rotor eine Ausnehmung auf, die sich als Negativprägung mit nicht-konstanter Kontur in axialer Richtung des Rotors über die gesamte Mantelfläche erstreckt. Hierzu wird insbesondere eine lineare Form, wie beispielsweise eine konstant parallel zur Rotationsachse liegende Kontur entsprechend splineförmiger quadratischer oder linearer influence. In a further embodiment, the rotor has a recess which extends as negative embossing with non-constant contour in the axial direction of the rotor over the entire lateral surface. For this purpose, in particular a linear shape, such as a constant constant parallel to the axis of rotation contour corresponding spline-shaped square or linear
Verläufe modifiziert. Auch auf diese Weise können durch Oberfelder induzierte Wirbelstromverluste im Magnetmaterial reduziert werden. Gradients modified. In this way, eddy current induced losses in the magnetic material can be reduced.
Die Verwendung mindestens eines metallischen Glases in dem Grundkörper ermöglicht es weiterhin Sicherheitsmerkmale in die Oberfläche zu integrieren. Dies kann beispielsweise durch Hinterlegung eines QR-Codes als Negativ in ein Presswerk zu erfolgen, mit dem der Grundkörper aus seinen Ausgangspulvern hergestellt wird. The use of at least one metallic glass in the body further allows security features to be integrated into the surface. This can be done for example by depositing a QR code as a negative in a press shop, with which the main body is made from its starting powders.
Die elektrische Maschine weist den Rotor und einen Stator auf. Der Stator weist mindestens ein metallisches Glas auf. Vorzugsweise weist der Stator mindestens ein metallisches Glas auf, welches auch im Grundkörper des Rotors enthalten ist. Auf diese Weise wird der magnetische Fluss im Stator an den magnetischen Fluss im Rotor angeglichen. The electric machine has the rotor and a stator. The stator has at least one metallic glass. Preferably, the stator has at least one metallic glass, which is also contained in the main body of the rotor. In this way, the magnetic flux in the stator is matched to the magnetic flux in the rotor.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Embodiments of the invention are illustrated in the drawings and are explained in more detail in the following description.
Fig. 1 zeigt eine schematische Schnittdarstellung einer elektrischen Maschine gemäß einem Ausführungsbeispiel der Erfindung. Fig. 1 shows a schematic sectional view of an electric machine according to an embodiment of the invention.
Fig. 2a zeigt eine isometrische Darstellung eines Rotors gemäß einem Fig. 2a shows an isometric view of a rotor according to a
Ausführungsbeispiel der Erfindung.  Embodiment of the invention.
Fig. 2b zeigt eine isometrische Darstellung eines Rotors gemäß einem anderen Ausführungsbeispiel der Erfindung. Fig. 2c zeigt eine isometrische Darstellung eines Rotors gemäß noch einem anderen Ausführungsbeispiel der Erfindung. Fig. 2b shows an isometric view of a rotor according to another embodiment of the invention. Fig. 2c shows an isometric view of a rotor according to yet another embodiment of the invention.
Fig. 3a zeigt eine isometrische Darstellung eines aufgeschnittenen Ausschnitts eines Rotors gemäß einem Ausführungsbeispiel der Erfindung. 3 a shows an isometric view of a cutaway section of a rotor according to one exemplary embodiment of the invention.
Fig. 3b zeigt eine isometrische Darstellung eines aufgeschnittenen Ausschnitts eines Rotors gemäß einem anderen Ausführungsbeispiel der Erfindung. 3b shows an isometric view of a cutaway section of a rotor according to another embodiment of the invention.
Fig. 4a zeigt eine isometrische Darstellung eines aufgeschnittenen Ausschnitts eines Rotors gemäß noch einem anderen Ausführungsbeispiel der Erfindung. FIG. 4a shows an isometric view of a cutaway section of a rotor according to still another embodiment of the invention.
Fig. 4b zeigt eine isometrische Darstellung eines aufgeschnittenen Ausschnitts eines Rotors gemäß noch einem anderen Ausführungsbeispiel der Erfindung. Fig. 4b shows an isometric view of a cut-away portion of a rotor according to yet another embodiment of the invention.
Ausführungsbeispiele der Erfindung Embodiments of the invention
Fig. 1 zeigt einen Ausschnitt einer elektrischen Maschine 1, welche als permanenterregende Synchronmaschine ausgeführt ist. Diese weist einen kreiszylinderförmigen Rotor 2 und einen Stator 3 auf. In einem Grundkörper 4 des Rotors 2 befindet sich unterhalb seiner Mantelfläche 5 eine Kammer 6. Diese weist einen kürzesten Abstand A von der Mantelfläche 5 von 5 mm auf. In der Kammer 6 sind zwei Permanentmagnete 71, 72 angeordnet. Der Stator 3 und der Grundkörper 4 bestehen jeweils aus einem weichmagnetischen metallischen Glas auf der Grundlage einer ferritischen Eisenbasislegierung. Diese weist eine Sättigungspolarisation von mehr als 1,6 T und eine Maximalpermeabilität von mehr als 10.000 auf. Der Stator 3 und der Grundkörper 4 können jeweils in einem generativen Verfahren hergestellt werden oder durch ein Fig. 1 shows a section of an electrical machine 1, which is designed as a permanently exciting synchronous machine. This has a circular cylindrical rotor 2 and a stator 3. In a main body 4 of the rotor 2 is below its lateral surface 5, a chamber 6. This has a shortest distance A from the lateral surface 5 of 5 mm. In the chamber 6, two permanent magnets 71, 72 are arranged. The stator 3 and the main body 4 each consist of a soft magnetic metallic glass based on a ferritic iron-based alloy. This has a saturation polarization of more than 1.6 T and a maximum permeability of more than 10,000. The stator 3 and the base body 4 can each be produced in a generative process or by a
Spritzgussverfahren, indem Ausgangspulver mittels Spritzgießens in eine Matrize eingebracht und anschließend verpresst und thermisch behandelt werden. Injection molding process by starting powder are introduced by injection molding in a die and then pressed and thermally treated.
Die Fig. 2a bis 2c zeigen drei Ausführungsbeispiele des Rotors 2, der in seiner Mantelfläche Ausnehmungen 81 in Form von Rillen aufweist. Die Rotoren 2 haben jeweils einen Durchmesser von 100 mm und die Ausnehmungen 81 haben jeweils eine Tiefe von 1,5 mm. Alle Ausnehmungen erstrecken sich jeweils über die gesamte Länge des Rotors. Dabei verlaufen sie im ersten 2a to 2c show three embodiments of the rotor 2, which has in its lateral surface recesses 81 in the form of grooves. The rotors 2 each have a diameter of 100 mm and the recesses 81 each have a depth of 1.5 mm. All recesses extend over the entire length of the rotor. They go in the first
Ausführungsbeispiel gemäß Fig. 2a parallel zur Längsachse des Rotors 2. Im zweiten Ausführungsbeispiel gemäß Fig. 2b verlaufen sie kontinuierlich geschrägt. Im dritten Ausführungsbeispiel gemäß Fig. 2c verlaufen sie V-förmig. Embodiment according to FIG. 2a parallel to the longitudinal axis of the rotor 2. In the second embodiment according to FIG. 2b they run continuously bevelled. In the third embodiment according to FIG. 2c, they run in a V-shape.
In einem vierten Ausführungsbeispiel, das in Fig. 3a dargestellt ist, befindet sich an Stellen mit hohen magnetischen Verlusten kreisförmige Ausnehmungen 82 in der Mantelfläche 5, die bis in die Kammer 6 durchgehen. In einem fünftenIn a fourth exemplary embodiment, which is shown in FIG. 3 a, there are circular recesses 82 in the lateral surface 5 at points with high magnetic losses, which pass into the chamber 6. In a fifth
Ausführungsbeispiel, das in Fig. 3b dargestellt ist, haben Ausnehmungen 83 in der Mantelfläche 5 die Form von bis in die Kammer 6 durchgehenden Embodiment, which is shown in Fig. 3b, recesses 83 in the lateral surface 5 have the shape of up to the chamber 6 through
Negativkonturen, die mit unregelmäßiger Form über mehr als 80 % der Länge des Rotors 2 verlaufen. Negative contours that run with irregular shape over more than 80% of the length of the rotor 2.
Die Fig. 4a und 4b zeigen weitere Ausführungsbeispiele des Rotors 2, in denen die Mantelfläche 5 jeweils eine Ausnehmung aufweist, die sich als FIGS. 4a and 4b show further exemplary embodiments of the rotor 2, in which the lateral surface 5 in each case has a recess, which is shown as
Negativprägung mit nicht-konstanter Kontur in axialer Richtung des Rotors 2 über die gesamte Mantelfläche 5 erstreckt. In einem sechsten Ausführungsbeispiel gemäß Fig. 4a weist die Ausnehmung 84 die Form eines Splines ohne Knoten auf. In einem siebten Ausführungsbeispiel gemäß Fig. 4b weist die Ausnehmung 85 die Form eines Splines mit mehreren Knoten auf. Negative embossing with non-constant contour in the axial direction of the rotor 2 extends over the entire lateral surface 5. In a sixth exemplary embodiment according to FIG. 4 a, the recess 84 has the shape of a spline without a node. In a seventh embodiment according to FIG. 4b, the recess 85 has the shape of a spline with a plurality of nodes.

Claims

Ansprüche claims
1. Rotor (2) für eine elektrische Maschine (1), aufweisend einen A rotor (2) for an electrical machine (1), comprising a
kreiszylinderförmigen Grundkörper (4), der aus mindestens einem  circular cylindrical base body (4), which consists of at least one
metallischen Glas besteht, wobei eine Mantelfläche (5) des Grundkörpers (4) mindestens eine Ausnehmung (81, 82, 83, 84, 85) aufweist.  metallic glass, wherein a lateral surface (5) of the base body (4) has at least one recess (81, 82, 83, 84, 85).
2. Rotor (2) nach Anspruch 1, dadurch gekennzeichnet, dass sein Grundkörper (4) mindestens ein ferritisches metallisches Glas mit einer magnetischen Maximalpermeabilität von mindestens 1000 aufweist. 2. rotor (2) according to claim 1, characterized in that its base body (4) has at least one ferritic metallic glass having a maximum magnetic permeability of at least 1000th
3. Rotor (2) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass er 3. rotor (2) according to claim 1 or 2, characterized in that it
mindestens eine Kammer (6) in seinem Grundkörper (4) aufweist, wobei in jeder Kammer (6) mindestens ein Permanentmagnet (71, 72) angeordnet ist.  at least one chamber (6) in its base body (4), wherein in each chamber (6) at least one permanent magnet (71, 72) is arranged.
4. Rotor (2) nach Anspruch 3, dadurch gekennzeichnet, dass ein kürzester Abstand (A) zwischen der Mantelfläche (5) und der Kammer (6) im Bereich von 1 mm bis 10 mm liegt. 4. rotor (2) according to claim 3, characterized in that a shortest distance (A) between the lateral surface (5) and the chamber (6) in the range of 1 mm to 10 mm.
5. Rotor (2) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass er mehrere Ausnehmungen (81) aufweist, die als Rillen ausgeführt sind, deren Tiefe im Bereich von 1/70 des Durchmessers des Rotors (2) bis 1/35 des Durchmessers des Rotors (2) liegt. 5. rotor (2) according to one of claims 1 to 4, characterized in that it comprises a plurality of recesses (81) which are designed as grooves whose depth in the range of 1/70 of the diameter of the rotor (2) to 1 / 35 of the diameter of the rotor (2) is located.
6. Rotor (2) nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass er mehrere Ausnehmungen (82, 83) aufweist, die von der Mantelfläche (5) bis in die Kammer (6) durchgehen. 6. rotor (2) according to claim 3 or 4, characterized in that it comprises a plurality of recesses (82, 83) which pass from the lateral surface (5) into the chamber (6).
7. Rotor (2) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sich mindestens eine Ausnehmung (81, 83) über mindestens 80 % der Länge des Rotors (2) erstreckt. 7. rotor (2) according to one of claims 1 to 6, characterized in that extending at least one recess (81, 83) over at least 80% of the length of the rotor (2).
8. Rotor (2) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass er eine Ausnehmung (84, 85) aufweist, die sich als Negativprägung mit nicht- konstanter Kontur in axialer Richtung des Rotors (2) über die gesamte Mantelfläche (5) erstreckt. 8. rotor (2) according to one of claims 1 to 4, characterized in that it has a recess (84, 85), which is a negative embossing with non- constant contour in the axial direction of the rotor (2) over the entire lateral surface (5).
9. Elektrische Maschine (1), aufweisend einen Rotor (2) nach einem der 9. Electrical machine (1), comprising a rotor (2) according to one of
Ansprüche 1 bis 8 und einen Stator (3), welcher mindestens ein metallisches Glas aufweist.  Claims 1 to 8 and a stator (3) comprising at least one metallic glass.
10. Elektrische Maschine nach Anspruch 9, dadurch gekennzeichnet, dass der Stator (3) mindestens ein metallisches Glas aufweist, welches auch im Grundkörper (4) des Rotors (2) enthalten ist. 10. Electrical machine according to claim 9, characterized in that the stator (3) comprises at least one metallic glass, which is also contained in the base body (4) of the rotor (2).
PCT/EP2018/060844 2017-05-11 2018-04-27 Rotor and electrical machine WO2018206312A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880030796.1A CN110582924A (en) 2017-05-11 2018-04-27 Rotor and motor
JP2019561939A JP2020520219A (en) 2017-05-11 2018-04-27 Rotors and electromechanical

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017207940.1A DE102017207940A1 (en) 2017-05-11 2017-05-11 Rotor and electric machine
DE102017207940.1 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018206312A1 true WO2018206312A1 (en) 2018-11-15

Family

ID=62091881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/060844 WO2018206312A1 (en) 2017-05-11 2018-04-27 Rotor and electrical machine

Country Status (4)

Country Link
JP (1) JP2020520219A (en)
CN (1) CN110582924A (en)
DE (1) DE102017207940A1 (en)
WO (1) WO2018206312A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111654131B (en) * 2020-04-30 2022-01-11 北京交通大学 Rotor structure of permanent magnet motor

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187597A (en) * 1997-12-19 1999-07-09 Matsushita Electric Ind Co Ltd Rotor with embedded permanent magnets
WO2004109724A1 (en) * 2003-06-11 2004-12-16 Light Engineering, Inc. Soft-metal electromechanical component and method making same
US20050140218A1 (en) * 2003-12-30 2005-06-30 Lg Electronics Inc. Reciprocating motor
JP2006223033A (en) * 2005-02-09 2006-08-24 Neomax Co Ltd R-fe-b radial anisotropic sintered ring magnet and voice coil motor
KR100809728B1 (en) * 1999-12-23 2008-03-06 메트글라스, 인코포레이티드 Bulk Amorphous Metal Magnetic Components for Electric Motors
JP2008160978A (en) * 2006-12-25 2008-07-10 Nissan Motor Co Ltd Motor iron-core and motor
JP2009038861A (en) * 2007-07-31 2009-02-19 Nissan Motor Co Ltd Core structure of rotary electric machine and manufacturing method thereof
JP2010246185A (en) * 2009-04-01 2010-10-28 Honda Motor Co Ltd Rotor and motor
US20110309706A1 (en) * 2008-12-18 2011-12-22 Kabushiki Kaisha Toshiba Permanent magnet electric motor
CN102545415B (en) * 2012-02-15 2013-11-13 中国科学院电工研究所 Radial magnetic field motor with amorphous alloy
US20140167552A1 (en) * 2012-12-18 2014-06-19 Robert Bosch Gmbh Rotor for an electric machine comprising recesses in magnet pockets
US20160072347A1 (en) * 2013-04-23 2016-03-10 Hitachi Appliances, Inc. Permanent Magnet Electric Motor
DE102014222044A1 (en) * 2014-10-29 2016-05-19 Volkswagen Aktiengesellschaft Rotor of an electric machine, electric machine and method of manufacturing a rotor of an electric machine
DE102015202980A1 (en) * 2015-02-19 2016-08-25 Robert Bosch Gmbh Rotor for an electric machine with a slanted outer contour

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPM644394A0 (en) * 1994-06-24 1994-07-21 Electro Research International Pty Ltd Bulk metallic glass motor and transformer parts and method of manufacture
JPH08163803A (en) * 1994-12-06 1996-06-21 Fuji Electric Co Ltd Permanent magnet synchronous motor
US5650680A (en) * 1995-12-11 1997-07-22 Marathon Electric Mfg. Co. Dynamo electric machine with permanent magnet rotor structure
JP3540890B2 (en) * 1996-03-12 2004-07-07 株式会社デンソー AC generator for vehicles
JPH10271726A (en) * 1997-03-25 1998-10-09 Aichi Emerson Electric Co Ltd Rotor
DE19818774C1 (en) * 1998-04-27 1999-11-18 Michael Zoche Antriebstechnik Short-circuit rotor for rotary electrical machine
JP2000195719A (en) * 1998-12-28 2000-07-14 Fuji Heavy Ind Ltd Armature for electromagnetic actuator and electromagnetic actuator using the same
US6545383B1 (en) * 2000-12-05 2003-04-08 Visteon Global Technologies, Inc. High efficiency rotor for electromechanical machines
JP2006196855A (en) * 2004-12-13 2006-07-27 Nissan Motor Co Ltd Soft magnetic iron core material and manufacturing method thereof
JP2006271057A (en) * 2005-03-23 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp Rotor of permanent magnet synchronous motor
US8847522B2 (en) * 2008-11-14 2014-09-30 Denso Corporation Reluctance motor with improved stator structure
DE102008044276A1 (en) * 2008-12-02 2010-06-10 Robert Bosch Gmbh Hybriderregte electric machine with pole-changing rotor
JP2010226887A (en) * 2009-03-24 2010-10-07 Seiko Epson Corp Generator and clock
US20100244603A1 (en) * 2009-03-31 2010-09-30 General Electric Company Electric machine
JP5439904B2 (en) * 2009-03-31 2014-03-12 日産自動車株式会社 Rotating electric machine
JP5576246B2 (en) * 2010-01-06 2014-08-20 株式会社神戸製鋼所 Axial gap type brushless motor
JP5478461B2 (en) * 2010-11-09 2014-04-23 三菱電機株式会社 Electric motor and compressor
JP5874892B2 (en) * 2011-05-16 2016-03-02 ダイキン工業株式会社 motor
DE102013000417A1 (en) * 2013-01-14 2014-07-17 Dorma Gmbh & Co. Kg Drive unit, in particular for a revolving door, with an electronically commutated Vielpolmotor
CN106340982B (en) * 2016-10-19 2018-12-25 珠海格力电器股份有限公司 The rotor and motor of permanent magnet synchronous motor

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187597A (en) * 1997-12-19 1999-07-09 Matsushita Electric Ind Co Ltd Rotor with embedded permanent magnets
KR100809728B1 (en) * 1999-12-23 2008-03-06 메트글라스, 인코포레이티드 Bulk Amorphous Metal Magnetic Components for Electric Motors
WO2004109724A1 (en) * 2003-06-11 2004-12-16 Light Engineering, Inc. Soft-metal electromechanical component and method making same
US20050140218A1 (en) * 2003-12-30 2005-06-30 Lg Electronics Inc. Reciprocating motor
JP2006223033A (en) * 2005-02-09 2006-08-24 Neomax Co Ltd R-fe-b radial anisotropic sintered ring magnet and voice coil motor
JP2008160978A (en) * 2006-12-25 2008-07-10 Nissan Motor Co Ltd Motor iron-core and motor
JP2009038861A (en) * 2007-07-31 2009-02-19 Nissan Motor Co Ltd Core structure of rotary electric machine and manufacturing method thereof
US20110309706A1 (en) * 2008-12-18 2011-12-22 Kabushiki Kaisha Toshiba Permanent magnet electric motor
JP2010246185A (en) * 2009-04-01 2010-10-28 Honda Motor Co Ltd Rotor and motor
CN102545415B (en) * 2012-02-15 2013-11-13 中国科学院电工研究所 Radial magnetic field motor with amorphous alloy
US20140167552A1 (en) * 2012-12-18 2014-06-19 Robert Bosch Gmbh Rotor for an electric machine comprising recesses in magnet pockets
US20160072347A1 (en) * 2013-04-23 2016-03-10 Hitachi Appliances, Inc. Permanent Magnet Electric Motor
DE102014222044A1 (en) * 2014-10-29 2016-05-19 Volkswagen Aktiengesellschaft Rotor of an electric machine, electric machine and method of manufacturing a rotor of an electric machine
DE102015202980A1 (en) * 2015-02-19 2016-08-25 Robert Bosch Gmbh Rotor for an electric machine with a slanted outer contour

Also Published As

Publication number Publication date
CN110582924A (en) 2019-12-17
DE102017207940A1 (en) 2018-11-15
JP2020520219A (en) 2020-07-02

Similar Documents

Publication Publication Date Title
EP3131189B1 (en) Rotor of an electric machine
DE2527461C2 (en) Process for the production of anisotropic segment magnets for electrical machines
WO2013135377A2 (en) Efficient electric machine
DE69733551T2 (en) METHOD FOR MAGNETIZING A CYLINDRICAL BODY
DE2445207A1 (en) DYNAMOELECTRIC MACHINE WITH A PERMANENT MAGNET ARRANGEMENT AND A DISC-SHAPED ROTOR
DE2756626C2 (en) "Process for the production of a rotor for an electrical machine"
DE69914850T2 (en) Permanent magnet motor and its rotor
DE102016119650A1 (en) Process for producing a soft magnetic core material
DE112011104619T5 (en) Arctic magnet with polar anisotropic orientation and method and form of formation for its manufacture
DE102016119654A1 (en) Process for producing a soft magnetic core material
DE102008005079A1 (en) Method for producing motor core parts with magnetic alignment
DE3215376C2 (en) Self-starting two-pole single-phase synchronous motor
EP0774826B1 (en) Synchronous motor
EP3234967A1 (en) Apparatus and method for magnetizing permanent magnets
DE2657892C2 (en) DC machine
EP2942858A2 (en) Laminated rotor core
WO2018206312A1 (en) Rotor and electrical machine
EP3561999B1 (en) Electric machine with variable magnetic flux
WO2017220545A1 (en) Rotor for an electric machine, electric machine with the rotor and to method for producing the rotor
EP0669699A1 (en) Rotating electrical machine
DE10247228B4 (en) Method and device for magnetizing a permanent magnet ring magnet with an even number of poles
DE10246719A1 (en) Manufacture of multipole ring magnet from rare-earth alloy by pressing powder of magnetically oriented material in ring-shape using press cavity of die, orienting and sintering
DE102013221965A1 (en) Process for producing a molded part and electric machine with such a molded part
DE102016221619A1 (en) Component and electrical machine
DE112020003943T9 (en) MANUFACTURE OF SYNCHRONOUS-RELUCTANCE MACHINES USING ADDITIVE MANUFACTURING

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18721353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561939

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18721353

Country of ref document: EP

Kind code of ref document: A1