JP3540890B2 - AC generator for vehicles - Google Patents

AC generator for vehicles Download PDF

Info

Publication number
JP3540890B2
JP3540890B2 JP08461696A JP8461696A JP3540890B2 JP 3540890 B2 JP3540890 B2 JP 3540890B2 JP 08461696 A JP08461696 A JP 08461696A JP 8461696 A JP8461696 A JP 8461696A JP 3540890 B2 JP3540890 B2 JP 3540890B2
Authority
JP
Japan
Prior art keywords
pole body
magnetic pole
rotor
groove
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08461696A
Other languages
Japanese (ja)
Other versions
JPH09247915A (en
Inventor
義明 水野
信行 北村
詳郎 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSG Corp
Denso Corp
Original Assignee
OSG Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSG Corp, Denso Corp filed Critical OSG Corp
Priority to JP08461696A priority Critical patent/JP3540890B2/en
Publication of JPH09247915A publication Critical patent/JPH09247915A/en
Application granted granted Critical
Publication of JP3540890B2 publication Critical patent/JP3540890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)

Description

【0001】
【技術分野】
本発明は,車両に用いる交流発電機であって,特に回転子の磁極体表面の構造に関する。
【0002】
【従来技術】
従来,車両に用いる交流発電機1は,図11〜図13に示すごとく,コイルを巻回した励磁巻線と,その表面を包むように設けた磁極体21とよりなる回転子2と,該回転子2の外周に配設した固定子3とよりなる。
上記回転子2は,図11に示すごとく,その幅が先端に向かって縮小する略台形の爪状の磁極体21を有する,いわゆるランデル型の回転子であり,低炭素鋼塊よりなる。そして,図12に示すごとく,その磁極体表面22は,固定子3と対面配置されている。
【0003】
また,上記固定子3は,三相電機子巻線を集中巻きした積層板よりなる。
更に,上記回転子2の磁極体21の磁極体表面22には,該回転子2の回転方向と同じ方向に溝90が多数設けてある。上記溝90は,上記磁極体表面22に形成される渦電流の通路にあって,該渦電流の形成の妨げとなるよう設けてある。また,上記回転子2には磁極体21の後部にファン15が設けてある。
なお,同図において,符号231は回転子2の回転方向の前方にあたる前面,符号232は回転方向の後方にあたる後面である。
【0004】
しかしながら,上記交流発電機1においては,その磁極体21において,回転子2の回転方向の後面232にあたる部分に磁束が集中し,この磁束集中に伴い,上記後面232において磁極漏洩が発生する。そして,上記磁極漏洩により交流発電機の出力が低下する。
そこで,従来,上述の磁束集中による磁束漏洩を防止するために,上記回転子2の磁極体21に,該回転子2の回転方向の前後に位置する前面231及び後面232と磁極体表面22との間において,それぞれ傾斜状の面取り部23を設けることが行なわれている。
【0005】
【解決しようとする課題】
しかしながら,上記面取り部23の面取り角度(磁極体表面22と前面231または後面232との間に形成される角度)が大きすぎる場合には,磁極体21の表面積及び断面積の著しい減少を招き,上記回転子2と上記固定子3との間の通過磁束量が減少するため,交流発電機1の出力低下を招く。
また,交流発電機1における出力低下を招かないように通過磁束量を確保しつつ上記面取り部23を形成した場合には,該面取り部23における磁束集中に伴って,大きな渦電流が発生し,該渦電流が交流発電機1の出力低下を招く。
【0006】
本発明はかかる問題点に鑑み,回転子の磁極体に発生する磁束の著しい低下を招くことなく,磁極体の回転方向の後方にあたる後面での磁束漏洩を減少させ,また,渦電流の発生を防止し,交流発電機の高い出力を確保することができる,車両用交流発電機を提供しようとするものである。
【0007】
【課題の解決手段】
請求項1の発明は,低炭素鋼製の爪状の磁極体を有するランデル型回転子と,該回転子に対面して配設した固定子とよりなり,上記回転子の磁極体における磁極体表面には渦電流の通路にあって,その妨げとなる溝を設けてなる車両用交流発電機において,
上記回転子の磁極体は,回転子の回転方向の前後に位置する前面と後面と上記磁極体表面との間には,それぞれ傾斜状の面取り部を有しており,
また,上記磁極体は,上記両面取り部の間に連通形成されていると共に,上記磁極体表面に開口する上記溝を設けてなり,
かつ,該溝は,上記面取り部における開口端の開口幅が上記磁極体表面における開口部の開口幅より大きい状態に形成されていることを特徴とする車両用交流発電機にある。
【0008】
本発明において最も注目すべきことは,上記溝において,面取り部の開口端の開口幅が磁極体表面における開口部の開口幅より大きい状態に形成されていることである。
上記面取り部は,上記磁極体表面と上記前面と上記後面との角部に傾斜状に形成されたものである。上記面取り部は平面な斜面であっても,爪状斜面であってもよい。
【0009】
次に,本発明の作用につき,以下に説明する。
本発明の車両用交流発電機においては回転子の磁極体表面及び面取り部に連通形成された溝を設け,かつ面取り部における開口端の開口幅と磁極体表面における開口部の開口幅とを上述のごとく形成している。
これにより,上記磁極体のエッジ間隔(ある磁極体の後面と,これと隣接する他の磁極体の前面との間隔,図3参照)が面取り部の特にエッジ部(図3参照)において拡大し,上記後面における磁束漏洩を低下させることができる。よって,交流発電機の出力低下を防止することができる。
【0010】
その上,前述したごとき通過磁束量が低減しないよう面取り部を形成した場合回転子が回転することにより磁極体における回転方向の後方となる後面へ磁束が集中し,これによる大きな渦電流が上記後面において生じるおそれがある。
この場合においても,上記面取り部には,上記開口幅より大きい状態に形成された開口端を有する溝が形成されているため,上記開口端により,上記渦電流が切断される。
よって,通過磁束量を確保しつつ,渦電流の悪影響を防止することができる。
【0011】
なお,上記溝は,両面取り部において特に大きく外部に開口しており,よって,回転子が回転する際には上記面取り部の周囲に乱流が発生する。
ところで,上記回転子は,主に固定子の放熱により高温に晒される。しかし,上記溝の内部の空気が上記乱流によりかき回されるため,回転子を効率良く冷却することができる。
【0012】
以上により,本発明によれば,回転子の磁極体に発生する磁束の著しい低下を招くことなく,磁極体の回転方向の後方にあたる後面での磁束漏洩を減少させ,また,渦電流の発生を防止し,交流発電機の高い出力を確保することができる,車両用交流発電機を得ることができる。
【0013】
次に,上記面取り部における溝の開口端の開口幅は0.3〜1.25mmであり,一方上記磁極体表面における溝の開口部の開口幅は0.5mm以下であることが好ましい。
【0014】
上記面取り部における溝の開口端の開口幅が0.3mm未満である場合には,磁束漏洩が発生し,かつ冷却効果の減少するおそれがある。一方,上記開口幅が1.25mmよりも大きい場合には,隣り合う溝が干渉し,溝間の肉が脱落し,磁極体がその機能を果たせないおそれがある。
【0015】
また,上記磁極体表面における溝の開口部の開口幅が0.5mmよりも大きい場合には,磁極体表面積の減少による出力が低下するおそれがある。
なお,上記開口幅が0mmである場合には,磁極体の表面積が最も大きくなるため,より好ましい。
また、請求項2〜4に記載の発明の車両用交流発電機の回転子の製造方法によれば、多数の溝を効率良く形成することができる。
【0016】
【発明の実施の形態】
実施形態例1
本発明の実施形態例にかかる車両用交流型発電機につき,図1〜図7を用いて説明する。
本例は,低炭素鋼製の爪状の磁極体を有するランデル型回転子2と,該回転子2に対面して配設した固定子3とよりなり,上記回転子2の磁極体21における磁極体表面22には渦電流の通路にあって,その妨げとなる溝24を設けてなる車両用交流発電機1である(図11参照)。
【0017】
図1に示すごとく,上記回転子2の磁極体21は,回転子2の回転方向の前後に位置する前面231と後面232とを有する。上記磁極体表面22と上記前面231及び後面232との間には,それぞれ平坦な傾斜状の面取り部23を有している。
また,図2,図3に示すごとく,上記磁極体21には,上記両面取り部23の間に連通形成され,磁極体表面22に開口する溝24を設けてある。
【0018】
また,図4に示すごとく,上記溝24は,上記面取り部23における開口端246の開口幅W2が,上記磁極体表面22における開口部245の開口幅W1より大きい状態に形成されている。
上記磁極体表面22に設けた溝24の開口幅W1は,0.1mm,上記面取り部23に設けた開口幅W2は,0.5mmである。
なお,上記溝24は,上記回転子2の磁極体表面22において,該回転子2の回転方向と同じ方向に多数設けてある。
【0019】
次に,上記溝24の形成方法について説明する。
まず,図5に示すごとく,回転シャフト200に装着した上記回転子2を作製し,該回転子2を,対面する一対の成形ローラ50の間に配置し,塑性加工を行う。
即ち,上記成形ローラ50は,その外周に溝加工用の多数の成形用凸部501を有する。そして,回転子2を固定した状態で,上記成形ローラ50を磁極体21の磁極体表面22の周囲に接触させて回転させる。
【0020】
これにより,図5,図7に示すごとく,上記磁極体表面22及び面取り部23に開口幅0.5mm,深さ0.5mmの加工溝29が形成される。上記加工溝29の形状は,図7に示すごとく,断面が略U字形であり,該加工溝29の開口部249の両側には,磁極体表面22に盛上った肉部290が形成されている。
なお,この時,面取り部23は磁極体表面22よりも低い位置にあるため,上記肉部290は少ししか形成されない。
【0021】
次いで,上記回転子2を,図6に示すごとく,対面する一対の押圧ローラ51の間に配置し,該押圧ローラ51を上記成形ローラ50と同様に回動して,磁極体表面22を押圧加工する。なお,上記押圧ローラ51の表面510は平坦である。
これにより,上記肉部290は上記加工溝29の内部へと移動する。そのため,この移動した肉部290により上記磁極体表面22における加工溝29の開口部249の開口幅が狭まる。
【0022】
ただし,上記面取り部23は,上記押圧加工の際に,押圧ローラ51と接触しない位置にある。このため,上記面取り部23に形成されている加工溝29の,少量の肉部290は押圧されず,そのままの位置にそのままの形状で残される。
以上により,上記回転子2の磁極体21には,図2〜図4に示すごとき,磁極体表面22における開口部245の開口幅W1は狭く,面取り部23における開口端246の開口幅W2は広い状態となった溝24が形成される。
【0023】
次に,本例における作用効果につき説明する。
本例の車両用交流発電機1においては,回転子2の磁極体表面22及び面取り部23に連通形成された溝24を設け,かつ面取り部23における開口端246の開口幅W2と磁極体表面22における開口部245の開口幅W1とをW1<W2に形成している。
【0024】
これにより,図3に示すごとく,エッジ間隔が,特に面取り部23のエッジ部239において拡大する。よって,後面232における磁束漏洩が低下する。
そして,上記面取り部23には,開口幅W2なる溝24が設けてあり,後面232に生じた渦電流は上記溝24により切断される。
以上により,車両用交流発電機1の出力低下を防止することができる。
【0025】
また,上記溝24は,両面取り部23において特に大きく外部に開口しており,よって,回転子2が回転する際には上記面取り部23の周囲に乱流が発生する。ところで,上記回転子2は,主に固定子3の放熱により高温に晒される。しかし,上記溝24の内部の空気が上記乱流によりかき回されるため,回転子2を効率良く冷却することができる。
【0026】
実施形態例2
本例は,図8〜図10に示すごとく,回転子の磁極体表面における各種形状の溝について説明する。
まず,図8に示す溝241は,その開口部245の開口幅が0である。
次に,図9に示す溝242は,加工溝の形状を,実施形態例1に示す加工溝の形状よりも更に幅広としたものである。このため,溝242は,特にその底部が広くなっている。
【0027】
次に,図10に示す溝243は,加工溝を切削加工により形成したもので,その形状は,加工時においては,略コ字状である。その後,磁極体21の磁極体表面22を実施形態例1と同様に押圧することにより,溝243の上面が少し閉じる。そのため,溝243の断面形状は略三角形状となっている。
なお,切削ではなくしごきによって,上記加工溝を本発明にかかる溝へと加工してもよい。
その他は,実施形態例1と同様である。
また,実施形態例1と同様の作用効果を有する。
【図面の簡単な説明】
【図1】実施形態例1における,回転子の要部斜視図。
【図2】実施形態例1の図1における,A−A矢視断面図。
【図3】実施形態例1の図1における,B−B矢視断面図。
【図4】実施形態例1における,磁極体の平面図。
【図5】実施形態例1における,磁極体表面への溝の形成方法の説明図。
【図6】実施形態例1における,図6に続く回転子の溝の形成方法の説明図。
【図7】実施形態例1における加工溝の説明図。
【図8】実施形態例2における,磁極体表面の斜視断面図。
【図9】実施形態例2における,磁極体表面の斜視断面図。
【図10】実施形態例2における,磁極体表面の斜視断面図。
【図11】従来における,自動車用交流発電機の説明図。
【図12】従来における,回転子と固定子との対向部分の説明図。
【図13】従来における,磁極体と回転子との位置関係を示す平面展開図。
【符号の説明】
1...交流発電機,
2...回転子,
21...磁極体,
22...磁極体表面,
23...面取り部,
231...前面,
232...後面,
24...溝,
245...開口部,
246...開口端,
3...固定子,
[0001]
【Technical field】
The present invention relates to an alternator used for a vehicle, and more particularly to a structure of a magnetic pole body surface of a rotor.
[0002]
[Prior art]
2. Description of the Related Art As shown in FIGS. 11 to 13, an AC generator 1 conventionally used for a vehicle includes a rotor 2 including an excitation winding having a coil wound thereon and a magnetic pole body 21 provided so as to wrap the surface thereof. And a stator 3 disposed on the outer periphery of the stator 2.
As shown in FIG. 11, the rotor 2 is a so-called Landel-type rotor having a substantially trapezoidal claw-shaped magnetic body 21 whose width decreases toward the tip, and is made of a low-carbon steel ingot. Then, as shown in FIG. 12, the pole body surface 22 is arranged to face the stator 3.
[0003]
The stator 3 is formed of a laminated plate in which three-phase armature windings are concentrated.
Further, a large number of grooves 90 are provided in the pole body surface 22 of the pole body 21 of the rotor 2 in the same direction as the rotation direction of the rotor 2. The groove 90 is provided in the path of the eddy current formed on the magnetic pole body surface 22 so as to hinder the formation of the eddy current. Further, the rotor 2 is provided with a fan 15 at the rear of the magnetic pole body 21.
In the figure, reference numeral 231 denotes a front surface in front of the rotor 2 in the rotation direction, and reference numeral 232 denotes a rear surface in rear of the rotation direction.
[0004]
However, in the AC generator 1, the magnetic flux concentrates on the magnetic pole body 21 at the portion corresponding to the rear surface 232 in the rotation direction of the rotor 2, and the magnetic flux leakage causes the magnetic pole leakage on the rear surface 232. Then, the output of the alternator decreases due to the magnetic pole leakage.
Therefore, conventionally, in order to prevent the above-mentioned magnetic flux leakage due to the concentration of magnetic flux, the front surface 231 and the rear surface 232 located before and after the rotor 2 in the rotation direction of the rotor 2 In the meantime, an inclined chamfered portion 23 is provided.
[0005]
[Problem to be solved]
However, if the chamfered angle of the chamfered portion 23 (the angle formed between the magnetic pole body surface 22 and the front surface 231 or the rear surface 232) is too large, the surface area and the cross-sectional area of the magnetic pole body 21 are significantly reduced. Since the amount of magnetic flux passing between the rotor 2 and the stator 3 decreases, the output of the AC generator 1 decreases.
Further, when the chamfered portion 23 is formed while securing the amount of magnetic flux passing therethrough so as not to cause a decrease in output in the AC generator 1, a large eddy current is generated due to the concentration of magnetic flux in the chamfered portion 23, The eddy current causes the output of the alternator 1 to decrease.
[0006]
SUMMARY OF THE INVENTION In view of the above problems, the present invention reduces the magnetic flux leakage at the rear surface in the rotation direction of the magnetic pole body without significantly reducing the magnetic flux generated in the magnetic pole body of the rotor, and reduces the generation of eddy current. It is an object of the present invention to provide a vehicular alternator which can prevent the alternator and secure a high output of the alternator.
[0007]
[Means for solving the problem]
The invention according to claim 1 comprises a Landel type rotor having a claw-shaped magnetic pole body made of low carbon steel, and a stator disposed to face the rotor, wherein the magnetic pole body in the magnetic pole body of the rotor is provided. In a vehicular alternator that has grooves on its surface that are in the path of eddy currents and obstruct it,
The magnetic pole body of the rotor has an inclined chamfer between the front and rear surfaces located before and after the rotor in the rotation direction and the magnetic pole body surface, respectively.
The magnetic pole body is formed so as to be communicated between the double-sided chamfers, and is provided with the groove that opens to the surface of the magnetic pole body.
Further, the groove is formed so that the opening width of the opening end of the chamfered portion is larger than the opening width of the opening portion on the surface of the magnetic pole body.
[0008]
What is most notable in the present invention is that, in the groove, the opening width of the opening end of the chamfer is formed to be larger than the opening width of the opening on the surface of the pole body.
The chamfered portion is formed to be inclined at a corner between the surface of the pole body, the front surface, and the rear surface. The chamfer may be a flat slope or a claw-like slope.
[0009]
Next, the operation of the present invention will be described below.
In the automotive alternator according to the present invention, a groove formed to communicate with the surface of the magnetic pole body and the chamfered portion of the rotor is provided, and the opening width of the opening end in the chamfered portion and the opening width of the opening in the magnetic pole body surface are set as described above. It is formed like
As a result, the edge interval of the magnetic pole body (the interval between the rear surface of a certain magnetic pole body and the front surface of another adjacent magnetic pole body, see FIG. 3) is enlarged particularly at the edge portion of the chamfered portion (see FIG. 3). The magnetic flux leakage at the rear surface can be reduced. Therefore, it is possible to prevent a decrease in the output of the AC generator.
[0010]
In addition, when the chamfered portion is formed so as not to reduce the amount of the passing magnetic flux as described above, the rotor rotates and the magnetic flux concentrates on the rear surface of the magnetic pole body which is located rearward in the rotation direction. May occur in
Also in this case, since the chamfered portion has a groove having an opening end formed to be larger than the opening width, the eddy current is cut off by the opening end.
Therefore, it is possible to prevent the adverse effect of the eddy current while securing the amount of the passing magnetic flux.
[0011]
In addition, the above-mentioned groove is opened to the outside particularly large in the double-sided chamfered portion, so that a turbulent flow is generated around the chamfered portion when the rotor rotates.
Incidentally, the rotor is exposed to a high temperature mainly due to heat radiation of the stator. However, since the air inside the groove is agitated by the turbulent flow, the rotor can be efficiently cooled.
[0012]
As described above, according to the present invention, it is possible to reduce the magnetic flux leakage at the rear surface behind the magnetic pole body in the rotation direction without significantly lowering the magnetic flux generated in the magnetic pole body of the rotor, and to reduce the generation of eddy current. Thus, it is possible to obtain an AC generator for a vehicle that can prevent the AC generator and ensure a high output of the AC generator.
[0013]
Next, it is preferable that the opening width of the opening end of the groove in the chamfered portion is 0.3 to 1.25 mm, while the opening width of the opening portion of the groove on the surface of the magnetic pole body is 0.5 mm or less.
[0014]
If the opening width of the opening end of the groove in the chamfered portion is less than 0.3 mm, magnetic flux leakage may occur and the cooling effect may be reduced. On the other hand, if the opening width is larger than 1.25 mm, adjacent grooves may interfere with each other, the meat between the grooves may fall off, and the magnetic pole body may not be able to perform its function.
[0015]
If the width of the opening of the groove on the pole body surface is larger than 0.5 mm, the output may be reduced due to the decrease in the pole body surface area.
It is more preferable that the opening width is 0 mm because the surface area of the magnetic pole body is the largest.
Further, according to the method for manufacturing a rotor of a vehicle alternator according to the second to fourth aspects of the invention, a large number of grooves can be efficiently formed.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1
A vehicle AC generator according to an embodiment of the present invention will be described with reference to FIGS.
This embodiment comprises a Landel-type rotor 2 having a claw-shaped magnetic pole body made of low carbon steel, and a stator 3 disposed facing the rotor 2. The vehicle alternator 1 is provided with a groove 24 in the eddy current path on the pole body surface 22 and obstructing the passage (see FIG. 11).
[0017]
As shown in FIG. 1, the magnetic pole body 21 of the rotor 2 has a front surface 231 and a rear surface 232 located before and after in the rotation direction of the rotor 2. A flat inclined chamfered portion 23 is provided between the magnetic pole body surface 22 and the front surface 231 and the rear surface 232.
As shown in FIGS. 2 and 3, the magnetic pole body 21 is provided with a groove 24 formed between the double-sided chamfered portions 23 and opened to the magnetic pole body surface 22.
[0018]
As shown in FIG. 4, the groove 24 is formed such that the opening width W2 of the opening end 246 in the chamfered portion 23 is larger than the opening width W1 of the opening 245 in the pole body surface 22.
The opening width W1 of the groove 24 provided on the pole body surface 22 is 0.1 mm, and the opening width W2 provided on the chamfered portion 23 is 0.5 mm.
The grooves 24 are provided in large numbers on the pole body surface 22 of the rotor 2 in the same direction as the rotation direction of the rotor 2.
[0019]
Next, a method of forming the groove 24 will be described.
First, as shown in FIG. 5, the rotor 2 mounted on the rotary shaft 200 is manufactured, and the rotor 2 is disposed between a pair of facing forming rollers 50 to perform plastic working.
That is, the forming roller 50 has a large number of forming protrusions 501 for groove processing on the outer periphery thereof. Then, with the rotor 2 fixed, the forming roller 50 is brought into contact with the periphery of the magnetic pole body surface 22 of the magnetic pole body 21 and rotated.
[0020]
As a result, as shown in FIGS. 5 and 7, a processing groove 29 having an opening width of 0.5 mm and a depth of 0.5 mm is formed in the pole body surface 22 and the chamfered portion 23. As shown in FIG. 7, the shape of the processing groove 29 is substantially U-shaped in cross section, and on both sides of the opening 249 of the processing groove 29, flesh portions 290 swelling on the pole body surface 22 are formed. ing.
At this time, since the chamfered portion 23 is located at a position lower than the magnetic pole body surface 22, only a small amount of the above-mentioned thick portion 290 is formed.
[0021]
Next, as shown in FIG. 6, the rotor 2 is disposed between a pair of opposing pressing rollers 51, and the pressing roller 51 is rotated in the same manner as the forming roller 50 to press the pole body surface 22. Process. The surface 510 of the pressing roller 51 is flat.
As a result, the meat portion 290 moves into the machining groove 29. Therefore, the opening width of the opening 249 of the processing groove 29 on the magnetic pole body surface 22 is reduced by the moved flesh portion 290.
[0022]
However, the chamfered portion 23 is located at a position where it does not come into contact with the pressing roller 51 during the pressing. Therefore, a small amount of the flesh portion 290 of the processing groove 29 formed in the chamfered portion 23 is not pressed and is left in the same position and in the same shape.
As described above, in the magnetic pole body 21 of the rotor 2, as shown in FIGS. 2 to 4, the opening width W1 of the opening 245 in the magnetic pole body surface 22 is small, and the opening width W2 of the opening end 246 in the chamfered part 23 is small. The groove 24 having a wide state is formed.
[0023]
Next, the operation and effect of this embodiment will be described.
In the automotive alternator 1 of the present embodiment, a groove 24 is formed so as to communicate with the pole body surface 22 and the chamfered portion 23 of the rotor 2, and the opening width W2 of the opening end 246 in the chamfered portion 23 and the pole body surface The opening width W1 of the opening portion 245 in 22 is set to W1 <W2.
[0024]
Thereby, as shown in FIG. 3, the edge interval increases particularly at the edge portion 239 of the chamfered portion 23. Therefore, magnetic flux leakage at the rear surface 232 is reduced.
The chamfered portion 23 is provided with a groove 24 having an opening width W2, and the eddy current generated on the rear surface 232 is cut by the groove 24.
As described above, it is possible to prevent the output of the vehicle alternator 1 from decreasing.
[0025]
In addition, the groove 24 is opened to the outside particularly large in the double-sided chamfered portion 23, so that when the rotor 2 rotates, turbulence occurs around the chamfered portion 23. Incidentally, the rotor 2 is exposed to a high temperature mainly due to heat radiation of the stator 3. However, since the air inside the groove 24 is stirred by the turbulent flow, the rotor 2 can be cooled efficiently.
[0026]
Embodiment 2
In this example, as shown in FIGS. 8 to 10, grooves of various shapes on the surface of the magnetic pole body of the rotor will be described.
First, in the groove 241 shown in FIG. 8, the opening width of the opening 245 is zero.
Next, the groove 242 shown in FIG. 9 has a shape of the processing groove wider than that of the processing groove shown in the first embodiment. Therefore, the bottom of the groove 242 is particularly wide.
[0027]
Next, a groove 243 shown in FIG. 10 is formed by cutting a processing groove, and its shape is substantially U-shaped at the time of processing. Thereafter, the upper surface of the groove 243 is slightly closed by pressing the magnetic pole body surface 22 of the magnetic pole body 21 in the same manner as in the first embodiment. Therefore, the cross-sectional shape of the groove 243 is substantially triangular.
In addition, you may process the said processing groove | channel into the groove | channel concerning this invention by ironing rather than cutting.
Others are the same as the first embodiment.
Further, it has the same operation and effect as the first embodiment.
[Brief description of the drawings]
FIG. 1 is a perspective view of a main part of a rotor according to a first embodiment.
FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1 of the first embodiment.
FIG. 3 is a cross-sectional view taken along line BB in FIG. 1 of the first embodiment.
FIG. 4 is a plan view of a magnetic pole body according to the first embodiment.
FIG. 5 is an explanatory diagram of a method for forming a groove on the surface of a magnetic pole body according to the first embodiment.
FIG. 6 is an explanatory view of the method of forming the grooves of the rotor subsequent to FIG. 6 in the first embodiment.
FIG. 7 is an explanatory diagram of a processing groove in the first embodiment.
FIG. 8 is a perspective sectional view of a magnetic pole body surface according to a second embodiment.
FIG. 9 is a perspective sectional view of the surface of a magnetic pole body according to the second embodiment.
FIG. 10 is a perspective cross-sectional view of a magnetic pole body surface according to a second embodiment.
FIG. 11 is an explanatory view of a conventional automotive alternator.
FIG. 12 is an explanatory view of a conventional facing portion of a rotor and a stator.
FIG. 13 is an exploded plan view showing a positional relationship between a magnetic pole body and a rotor in the related art.
[Explanation of symbols]
1. . . Alternator,
2. . . Rotor,
21. . . Magnetic pole body,
22. . . Pole body surface,
23. . . Chamfer,
231. . . Front,
232. . . back face,
24. . . groove,
245. . . Aperture,
246. . . Open end,
3. . . stator,

Claims (4)

低炭素鋼製の爪状の磁極体を有するランデル型回転子と,該回転子に対面して配設した固定子とよりなり,上記回転子の磁極体における磁極体表面には渦電流の通路にあって,その妨げとなる溝を設けてなる車両用交流発電機において,
上記回転子の磁極体は,回転子の回転方向の前後に位置する前面と後面と上記磁極体表面との間に,それぞれ傾斜状の面取り部を有しており,
また,上記磁極体には,上記両面取り部の間に連通形成されていると共に上記磁極体表面に開口する上記溝を設けてなり,
かつ,該溝は,上記面取り部における開口端の開口幅が上記磁極体表面における開口部の開口幅より大きい状態に形成されており、
上記面取り部における溝の開口端の開口幅は0.3〜1.25mmであり,一方上記磁極体表面における溝の開口部の開口幅は0.5mm以下であることを特徴とする車両用交流発電機。
A rundle type rotor having a claw-shaped magnetic pole body made of low carbon steel, and a stator disposed facing the rotor, and an eddy current path is formed on the magnetic pole body surface of the magnetic pole body of the rotor. In the vehicle alternator, which is provided with grooves that obstruct the
The magnetic pole body of the rotor has an inclined chamfer between the front surface and the rear surface positioned before and after in the rotation direction of the rotor and the magnetic body surface, respectively.
Further, the magnetic pole body is provided with the groove which is formed so as to be communicated between the two-sided chamfered portions and which opens to the surface of the magnetic pole body.
The groove is formed such that the opening width of the opening end of the chamfered portion is larger than the opening width of the opening portion on the surface of the pole body .
An AC width for a vehicle, wherein the opening width of the groove at the chamfered portion is 0.3 to 1.25 mm, while the opening width of the groove at the surface of the pole body is 0.5 mm or less. Generator.
低炭素鋼製の爪状の磁極体を有するランデル型回転子であって、上記磁極体は、上記回転子の回転方向の前後に位置する前面と後面と磁極体表面との間に、それぞれ傾斜状の面取り部を有する車両用交流発電機の回転子の製造方法において、
外周に溝加工用の多数の成形用凸部を有する成形ローラを用い、対面する一対の該成形ローラの間に上記回転子を配置し、該回転子の上記磁極体の上記磁極体表面の周囲に上記成形ローラを接触させて回転させることにより、上記磁極体表面および上記面取り部に加工溝を形成し、
その後、表面が平坦である押圧ローラを用い、対面する一対の該押圧ローラの間に上記回転子を配置し、該回転子の上記磁極体の上記磁極体表面の周囲に上記押圧ローラを接触させて回転させることにより、上記磁極体表面における上記加工溝の開口部の開口幅を狭めるように上記磁極体表面を押圧加工し、上記磁極体表面における上記加工溝の開口部の開口幅を狭め、上記磁極体表面における開口部の開口幅は狭く、上記面取り部における開口端の開口幅は広い状態となった溝を形成することを特徴とする車両用交流発電機の回転子の製造方法
A rundle type rotor having a claw-shaped magnetic pole body made of low carbon steel, wherein the magnetic pole body is inclined between front and rear surfaces and a magnetic pole body surface located before and after in the rotation direction of the rotor. In a method for manufacturing a rotor of a vehicle alternator having a chamfered portion,
Using a forming roller having a large number of forming protrusions for groove processing on the outer periphery, disposing the rotor between a pair of facing forming rollers, and surrounding the magnetic pole body surface of the magnetic pole body of the rotor. By contacting and rotating the forming roller to form a processing groove in the magnetic pole body surface and the chamfered portion,
Thereafter, using a pressing roller having a flat surface, the rotor is disposed between a pair of facing pressing rollers, and the pressing roller is brought into contact with the periphery of the magnetic pole body surface of the magnetic pole body of the rotor. By rotating, the magnetic pole body surface is pressed to reduce the opening width of the processing groove opening on the magnetic pole body surface, the opening width of the processing groove opening on the magnetic pole body surface is reduced, A method of manufacturing a rotor for an automotive alternator, comprising forming a groove in which the opening width of the opening on the surface of the magnetic pole body is narrow and the opening width of the opening end of the chamfered portion is wide .
請求項2において、上記押圧ローラを用いて押圧加工する際、上記押圧ローラは、上記面取り部に接触しないことを特徴とする車両用交流発電機の回転子の製造方法。3. The method according to claim 2, wherein the pressing roller does not contact the chamfered portion when the pressing process is performed using the pressing roller. 請求項2において、上記溝は、上記面取り部における開口端の開口幅が、上記磁極体表面における開口部の開口幅より大きい状態に形成されることを特徴とする車両用交流発電機の回転子の製造方法。3. The rotor according to claim 2, wherein the groove is formed such that an opening width of an opening end of the chamfered portion is larger than an opening width of the opening portion on the surface of the magnetic pole body. Manufacturing method.
JP08461696A 1996-03-12 1996-03-12 AC generator for vehicles Expired - Fee Related JP3540890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08461696A JP3540890B2 (en) 1996-03-12 1996-03-12 AC generator for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08461696A JP3540890B2 (en) 1996-03-12 1996-03-12 AC generator for vehicles

Publications (2)

Publication Number Publication Date
JPH09247915A JPH09247915A (en) 1997-09-19
JP3540890B2 true JP3540890B2 (en) 2004-07-07

Family

ID=13835633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08461696A Expired - Fee Related JP3540890B2 (en) 1996-03-12 1996-03-12 AC generator for vehicles

Country Status (1)

Country Link
JP (1) JP3540890B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670661B2 (en) * 2006-01-26 2011-04-13 株式会社デンソー AC generator for vehicles
JP5242925B2 (en) * 2007-03-06 2013-07-24 三菱電機株式会社 AC generator for vehicles
JP2009165273A (en) * 2008-01-07 2009-07-23 Hitachi Ltd Stator core structure for rotary electric machine and its manufacturing method
JP6409607B2 (en) * 2015-02-18 2018-10-24 株式会社デンソー Rotating electric machine
DE102017207940A1 (en) * 2017-05-11 2018-11-15 Robert Bosch Gmbh Rotor and electric machine

Also Published As

Publication number Publication date
JPH09247915A (en) 1997-09-19

Similar Documents

Publication Publication Date Title
KR101102146B1 (en) Rotator for induction electric motor, induction electric motor, compressor, blower, and air-conditioning device
JP4715028B2 (en) Rotating electric machine
JP3752770B2 (en) Landel core type rotary electric machine
US6528920B2 (en) Permanent magnet rotary machine and electric vehicle using the same
JPS6039336A (en) Cooling structure of flat type rotary electric machine
EP0063162B1 (en) Induction motor
JP3540890B2 (en) AC generator for vehicles
JP2001025197A (en) Stator of motor
JP4244111B2 (en) Permanent magnet synchronous motor rotor
JP2000060036A (en) Stator core of dynamoelectric machine
JPH0678479A (en) Rotor of ac generator for vehicle
EP1148618B1 (en) Vehicle ac generator
JP2000069693A (en) Motor
JPH09308145A (en) Stator core of motor and manufacture thereof
US5091667A (en) D.c. machine of type having permanent magnets with auxiliary poles
JPS6241556Y2 (en)
JPH06311683A (en) Rotary electric machine
JPH08331780A (en) Small-sized induction motor
JPH04190655A (en) Alternator for vehicle
CN211859738U (en) Stator structure of induction asynchronous motor
JP2002507109A (en) Ventilation system for exciting winding of large salient pole machine
JPH03203537A (en) Pick profile of rotor core of ac generator for vehicle
JPS63310347A (en) Ac generator for rolling stock
JP3552915B2 (en) Stator and electric blower using the stator
SU1275649A1 (en) Core of electric machine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees