WO2018205677A1 - 一种基于双头异步视觉定位飞行加工的方法与系统 - Google Patents
一种基于双头异步视觉定位飞行加工的方法与系统 Download PDFInfo
- Publication number
- WO2018205677A1 WO2018205677A1 PCT/CN2018/073514 CN2018073514W WO2018205677A1 WO 2018205677 A1 WO2018205677 A1 WO 2018205677A1 CN 2018073514 W CN2018073514 W CN 2018073514W WO 2018205677 A1 WO2018205677 A1 WO 2018205677A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing
- moving distance
- distance
- feeding platform
- area
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/402—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for positioning, e.g. centring a tool relative to a hole in the workpiece, additional detection means to correct position
Definitions
- the invention relates to the field of flight processing technology, in particular to a method based on double-head asynchronous vision positioning flight processing.
- the invention also relates to a system based on two-head asynchronous visual positioning flight processing.
- the first is to use a double-head asynchronous cutting camera system, that is, a SLR camera is arranged on the device, the material is visually positioned by the SLR camera, and then the double motion system is used for independent cutting.
- a SLR camera is arranged on the device, the material is visually positioned by the SLR camera, and then the double motion system is used for independent cutting.
- the advantage of this method is that the SLR The cost of a camera is lower than the cost of a line camera.
- the disadvantage is that there is a limit to the size of the machine. When the size of the machine is larger, the camera needs to be erected very high, which will result in greatly reduced accuracy of camera positioning and cannot meet the needs of large-format processing for high-precision positioning.
- the second is to use a line camera, which is also a device with one or more line array cameras.
- the working mode of these devices is to start to obtain the image of the material when feeding, when the material is transported to the length of the machine. At this time, the feeding and image acquisition are stopped, and after the image acquisition is completed, the feeding mechanism is fixed.
- the advantage is that there is no limitation of processing width.
- a splicing scheme of multiple linear array cameras can be adopted; the disadvantage is that the working platform must be fixed during processing, and the efficiency of processing the coil material is high. Still not playing to the best.
- the object of the present invention is to provide a method for flying processing based on double-head asynchronous vision positioning, which can realize material processing while being uniformly fed, and realize edge positioning processing, which greatly improves the processing efficiency of the coil material.
- Another object of the present invention is to provide a system based on two-head asynchronous visual positioning flight processing.
- the present invention provides a method for flying processing based on double-head asynchronous vision positioning, comprising:
- the material to be processed After the material to be processed enters the processing area, it is processed according to the machining path and by two independently operating processing devices.
- the steps of processing according to the processing trajectory and using two independently operating processing devices include:
- the processing device moves the distance of S 1 -SU 1 in the acceleration direction; if the movement The distance S 1 ⁇ the moving distance SU 1 , the distance that the processing device moves SU 1 -S 1 in the direction of the feeding platform;
- the processing device moves the distance of S 3 -SU 2 in the acceleration direction; if the movement Distance S 3 ⁇ the moving distance SU 2 , the distance that the processing device moves SU 2 -S 3 in the direction of the feeding platform;
- the processing device moves the distance of the S 2 -SU 3 to the acceleration direction; if the movement The distance S 2 ⁇ the moving distance SU 3 , the distance that the processing device moves SU 3 -S 2 in the direction of the feeding platform;
- the speed of the feeding platform is uVel
- the initial speed of the processing device is V 0
- the corner speed is V 1
- the target speed is V 2
- the machining acceleration is A cc
- the length of the X-axis straight line is Dist1;
- the acceleration time t 1 (V 2 - V 0 ) / A cc
- the moving distance S 1 V 0 ⁇ t 1 + A cc ⁇ t 1 ⁇ t 1 /2
- the moving distance SU 1 uVel ⁇ t 1 ;
- the deceleration time t 2 (V 2 - V 1 ) / A cc
- the moving distance S 3 V 1 ⁇ t 2 + A cc ⁇ t 2 ⁇ t 2 /2
- the moving distance SU 2 uVel ⁇ t 2 ;
- the moving distance S 2 Dist1-S 1 -S 3
- the constant speed time t 3 S 2 /V 2
- the moving distance SU 3 uVel ⁇ t 3 .
- the steps of processing according to the processing trajectory and using two independently operating processing devices include:
- the length of the Y-axis line is Dist2;
- the acceleration time t 1 (V 2 - V 0 ) / A cc
- the moving distance S 1 V 0 ⁇ t 1 + A cc ⁇ t 1 ⁇ t 1 /2
- the deceleration time t 2 (V 2 - V 1 ) / A cc
- the moving distance S 3 V 1 ⁇ t 2 + A cc ⁇ t 2 ⁇ t 2 /2
- the moving distance S 2 Dist1-S 1 -S 3
- the uniform time t 3 S 2 /V 2
- the trajectory of the Y-axis straight line is obtained by using the Pythagorean theorem.
- the step of processing according to the processing trajectory and using two independently operating processing devices comprises: controlling a running speed of the feeding platform by acquiring a pulse frequency of a motor shaft of the feeding platform, or by acquiring An external encoder connected to the feeding platform controls the running speed of the feeding platform.
- the step of processing by the running processing device further includes detecting whether the material to be processed enters the processing region.
- the invention also provides a system based on double-head asynchronous visual positioning flight processing, comprising:
- Dispensing device for placing the material to be processed on a feeding platform that sequentially passes through the image collecting area, the buffer area and the processing area;
- Line array camera used to collect image information of materials to be processed located in the image acquisition area
- a calculation module configured to compare the image information with a preset graphic to obtain a processing track in the processing area
- Two processing devices respectively for independently processing according to the processing trajectory after the material to be processed enters the processing region.
- both of the processing devices comprise an X-axis linear module: for,
- the processing device moves the distance of S 1 -SU 1 in the acceleration direction; if the movement The distance S 1 ⁇ the moving distance SU 1 , the distance that the processing device moves SU 1 -S 1 in the direction of the feeding platform;
- the processing device moves the distance of S 3 -SU 2 in the acceleration direction; if the movement Distance S 3 ⁇ the moving distance SU 2 , the distance that the processing device moves SU 2 -S 3 in the direction of the feeding platform;
- the processing device moves the distance of the S 2 -SU 3 to the acceleration direction; if the movement The distance S 2 ⁇ the moving distance SU 3 , the distance that the processing device moves SU 3 -S 2 in the direction of the feeding platform;
- the speed of the feeding platform is uVel
- the initial speed of the processing device is V 0
- the corner speed is V 1
- the target speed is V 2
- the machining acceleration is A cc
- the length of the X-axis straight line is Dist1;
- the acceleration time t 1 (V 2 - V 0 ) / A cc
- the moving distance S 1 V 0 ⁇ t 1 + A cc ⁇ t 1 ⁇ t 1 /2
- the moving distance SU 1 uVel ⁇ t 1 ;
- the deceleration time t 2 (V 2 - V 1 ) / A cc
- the moving distance S 3 V 1 ⁇ t 2 + A cc ⁇ t 2 ⁇ t 2 /2
- the moving distance SU 2 uVel ⁇ t 2 ;
- the moving distance S 2 Dist1-S 1 -S 3
- the constant speed time t 3 S 2 /V 2
- the moving distance SU 3 uVel ⁇ t 3 .
- both of the processing devices comprise a Y-axis linear module: for,
- the length of the Y-axis line is Dist2;
- the acceleration time t 1 (V 2 - V 0 ) / A cc
- the moving distance S 1 V 0 ⁇ t 1 + A cc ⁇ t 1 ⁇ t 1 /2
- the deceleration time t 2 (V 2 - V 1 ) / A cc
- the moving distance S 3 V 1 ⁇ t 2 + A cc ⁇ t 2 ⁇ t 2 /2
- the moving distance S 2 Dist1-S 1 -S 3
- the uniform time t 3 S 2 /V 2
- the trajectory of the Y-axis straight line is obtained by using the Pythagorean theorem.
- the processing device further comprises:
- a first control module configured to control an operating speed of the feeding platform by acquiring a pulse frequency of the motor shaft of the feeding platform, or
- the second control module is configured to control the running speed of the feeding platform by acquiring an external encoder connected to the feeding platform.
- the calculating module and the processing device further include:
- the detecting module is configured to detect whether the material to be processed enters the processing area.
- the present invention provides a method for flying processing based on double-head asynchronous vision positioning.
- the material to be processed is placed on a feeding platform, and the feeding platform sequentially passes through an image collecting area, a buffer area and a processing area, and the feeding platform continues.
- Feeding no pause; when the material to be processed is in the image acquisition area, the image information of the material to be processed is collected by the line array camera, that is, the position of the material to be processed is determined; and the image information is matched with the preset pattern to obtain
- the processing trajectory in the processing area that is, the movement coordinate of the processing device after the material to be processed enters the processing area by the position of the material to be processed in the image acquisition area; when the material to be processed enters the processing area, two independent
- the running processing device performs processing according to the processing trajectory; in the above process, the feeding platform drives the material to be processed to continue to operate, so that the material is processed at a constant speed, and the edge positioning processing is realized, thereby greatly improving the processing efficiency of the coil material; Processing methods are not limited by the processing format, using single or multiple Line camera large-format visual image stitching to complete the positioning operation.
- FIG. 1 is a flowchart of a method for dual-head asynchronous visual positioning flight processing according to an embodiment of the present invention
- Figure 2 is a schematic view showing the moving direction of the feeding platform of Figure 1;
- Figure 3 is a schematic view of a rectangular pattern processed by the method of Figure 1;
- Figure 4 is a schematic view of the trajectory 2 of the rectangular pattern in Figure 3;
- FIG. 5 is a structural block diagram of a system based on double-head asynchronous vision positioning flight processing according to an embodiment of the present invention.
- FIG. 1 is a flowchart of a method for double-head asynchronous vision positioning flight processing according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of a moving direction of the feeding platform of FIG. 1
- FIG. 4 is a schematic diagram of a trajectory 2 for processing a rectangular pattern in FIG. 3
- FIG. 5 is a structure of a system based on double-head asynchronous vision positioning flight processing according to an embodiment of the present invention; block diagram.
- the invention provides a method based on double-head asynchronous visual positioning flight processing, as described in FIG. 1 of the specification, which mainly comprises:
- processing is performed according to the processing trajectory and using two independently operated processing devices.
- the machine is sequentially from left to left for the image acquisition area, buffer area and processing area.
- the material to be processed is placed on the feeding platform, and the feeding platform drives the material to be processed to pass through the image acquisition area and the buffer area in sequence.
- the processing area that is, the material to be processed passes through the image acquisition area, the buffer area and the processing area in turn under the action of the feeding platform; and the feeding platform and the material to be processed are continuously fed without pause in the middle.
- the line array camera is arranged in the image acquisition area, and the number of the line array camera can be determined by the web of the material to be processed; when the material to be processed enters the image acquisition area by the feeding platform, the line array camera performs the processing material.
- the image information is collected to determine the position coordinates of the material to be processed; that is, the function of step S2 is to determine the position coordinate of the material to be processed in the image acquisition area, and the position coordinate is the position of the material to be processed in the image collection area. coordinate.
- step S3 according to the image information, that is, the position coordinates of the material to be processed in the image capturing area are matched with the preset graphic, wherein the preset graphic refers to a target graphic that needs to be processed by the processed material, after the pairing Obtaining a processing trajectory in the processing region; that is, according to the position coordinates of the material to be processed in the image acquisition region, the processing trajectory required by the processing device after the material to be processed enters the processing region is obtained, and the processing trajectory is processing Processing trajectory within the area.
- the preset graphic may be a working format, or may be a few meters or a tens of meters long graphic.
- step S4 after the material to be processed enters the processing area, the processing is performed according to the above processing trajectory and using two independently operated processing devices; the materials to be processed in the processing area are processed by two independently operating processing devices to realize At the same time as the material is fed at a constant speed, the edge positioning processing is realized, which greatly improves the processing efficiency of the coil material.
- one or more line array cameras and a linear light source are erected in the image acquisition area, and when the material to be processed enters the area, image acquisition of the material is started; for the buffer area between the image acquisition area and the processing area
- the main purpose is to set a certain distance between the image acquisition area and the processing area, so that it is convenient to collect more data of the image, thereby obtaining a graphic of the material to be processed or matching the imported vector graphic with the characteristics of the corresponding image.
- the position is determined; that is, the position in the image acquisition area where the material to be processed is located is accurately obtained.
- two independent processing devices are provided, namely two independent XY motion coordinate systems to process the incoming material to be processed while feeding.
- step S4 controlling the running speed of the feeding platform by acquiring the pulse frequency of the motor shaft of the feeding platform, or controlling the running speed of the feeding platform by acquiring an external encoder connected to the feeding platform; that is, implementing the feeding platform
- the first one is controlled by one of the motor shafts (hereinafter referred to as the U-axis).
- the external encoder is not required to acquire the speed of the pipeline, but the controller can obtain the pulse corresponding to the current U-axis.
- the frequency thus allows the speed value uVel of the current pipeline to be acquired.
- the second is to have an external controller (such as: PLC) to control, in this case to obtain the speed of the pipeline needs to borrow an external encoder to achieve, the encoder feedback signal is connected to the system, then also get The speed value of the pipeline is uVel.
- PLC external controller
- the implementation method of the double-head asynchronous visual positioning flight processing of the invention is:
- the material to be processed is sent to the image acquisition area of the line camera at a constant speed, and the image of the material to be processed can be started by the existing software.
- the line camera feeds the data back to the machine PC, because of the line camera and processing.
- the area also has a certain buffer distance L. This distance is mainly for more data on the collected material, so that the stop time in the cutting area is not too long, so the distance of L needs to be based on the processing time in the processing area. Design.
- the software After the image acquisition is started, when the feeding platform moves to or near the L value, the software starts to perform image matching for the existing captured image, and the matched graphic data is matched with the start of the image, so that the material enters the processing. When the area is in place, flight processing begins.
- the feeding mechanism is also continuously feeding forward.
- the processing area completes the first L (and possibly less than L) graphic data
- the second L data has also been collected.
- the system recognizes the image data of the second L and compares the vector image with the position on the image, and then compares the coordinates of the paired vector graphics with the length L2 of the current feed axis movement, and calculates The coordinate value of the second L value actually entering the processing area. Then it is processed by double-head asynchronous flight processing. Then the above process continues to cycle.
- the U axis is the running direction of the feeding platform.
- the four curves to be processed are 1, 2, 3 and 4 respectively.
- the speed of the feeding platform is uVel, and the initial speed of the processing device is V. 0 , the corner speed is V 1 , the target speed is V 2 , the machining acceleration is A cc , the length of the X-axis line is Dist1; for the processing of curve 1, that is, for the direction along the image acquisition area, the buffer area and the processing area Processing of the straight line of the shaft;
- the processing device moves the distance of S 1 -SU 1 in the acceleration direction; if the movement The distance S 1 ⁇ the moving distance SU 1 , the distance that the processing device moves SU 1 -S 1 in the direction of the feeding platform;
- the processing device moves the distance of S 3 -SU 2 in the acceleration direction; if the movement Distance S 3 ⁇ the moving distance SU 2 , the distance that the processing device moves SU 2 -S 3 in the direction of the feeding platform;
- the processing device moves the distance of the S 2 -SU 3 to the acceleration direction; if the movement 2 ⁇ moving distance of the moving SU 3 -S 2 in the direction of the feed platform from SU 3, the distance S processing apparatus;
- the deceleration time t 2 (V 2 - V 1 ) / A cc
- the moving distance S 3 V 1 ⁇ t 2 + A cc ⁇ t 2 ⁇ t 2 /2
- the moving distance SU 2 uVel ⁇ t 2 ;
- the moving distance S 2 Dist1-S 1 -S 3
- the constant speed time t 3 S 2 /V 2
- the moving distance SU 3 uVel ⁇ t 3 .
- the setting of the corner speed V 1 can refer to the setting method of the laser processing in the prior art.
- the acceleration time t 1 (V 2 - V 0 ) / A cc
- the moving distance S 1 V 0 ⁇ t 1 + A cc ⁇ t 1 ⁇ t 1 /2
- the deceleration time t 2 (V 2 - V 1 ) / A cc
- the moving distance S 3 V 1 ⁇ t 2 + A cc ⁇ t 2 ⁇ t 2 /2
- the moving distance S 2 Dist1-S 1 -S 3
- the uniform time t 3 S 2 /V 2
- the trajectory of the Y-axis straight line is obtained by using the Pythagorean theorem, as shown in FIG. 4 of the specification.
- step S3 and step S4 it is further included between the above step S3 and step S4 to detect whether the material to be processed enters the processing region. That is, when the processing is started, the feeding platform starts to rotate at the same time, and at the same time, the sensing device is added in the processing area to detect whether the material to be processed starts to enter the processing area, and when the material enters the processing area, then two independent processing devices The processing of the machining pattern is started following the speed of the feeding platform.
- the discharging device 100 is configured to place the material to be processed on a feeding platform that sequentially passes through the image collecting area, the buffer area and the processing area;
- Line array camera 200 for collecting image information of a material to be processed located in an image acquisition area
- the calculating module 300 is configured to compare the image information with a preset graphic to obtain a processing track in the processing area;
- Two processing devices 400 are respectively used for independent processing according to the processing trajectory after the material to be processed enters the processing region.
- both of the processing devices comprise an X-axis linear module: for,
- the processing device moves the distance of S 1 -SU 1 in the acceleration direction; if the movement The distance S 1 ⁇ the moving distance SU 1 , the distance that the processing device moves SU 1 -S 1 in the direction of the feeding platform;
- the processing device moves the distance of S 3 -SU 2 in the acceleration direction; if the movement Distance S 3 ⁇ the moving distance SU 2 , the distance that the processing device moves SU 2 -S 3 in the direction of the feeding platform;
- the processing device moves the distance of the S 2 -SU 3 to the acceleration direction; if the movement The distance S 2 ⁇ the moving distance SU 3 , the distance that the processing device moves SU 3 -S 2 in the direction of the feeding platform;
- the speed of the feeding platform is uVel
- the initial speed of the processing device is V 0
- the corner speed is V 1
- the target speed is V 2
- the machining acceleration is A cc
- the length of the X-axis straight line is Dist1;
- the acceleration time t 1 (V 2 - V 0 ) / A cc
- the moving distance S 1 V 0 ⁇ t 1 + A cc ⁇ t 1 ⁇ t 1 /2
- the moving distance SU 1 uVel ⁇ t 1 ;
- the deceleration time t 2 (V 2 - V 1 ) / A cc
- the moving distance S 3 V 1 ⁇ t 2 + A cc ⁇ t 2 ⁇ t 2 /2
- the moving distance SU 2 uVel ⁇ t 2 ;
- the moving distance S 2 Dist1-S 1 -S 3
- the constant speed time t 3 S 2 /V 2
- the moving distance SU 3 uVel ⁇ t 3 .
- both of the processing devices comprise a Y-axis linear module: for,
- the length of the Y-axis line is Dist2;
- the acceleration time t 1 (V 2 - V 0 ) / A cc
- the moving distance S 1 V 0 ⁇ t 1 + A cc ⁇ t 1 ⁇ t 1 /2
- the deceleration time t 2 (V 2 - V 1 ) / A cc
- the moving distance S 3 V 1 ⁇ t 2 + A cc ⁇ t 2 ⁇ t 2 /2
- the moving distance S 2 Dist1-S 1 -S 3
- the uniform time t 3 S 2 /V 2
- the trajectory of the Y-axis straight line is obtained by using the Pythagorean theorem.
- the processing device further comprises:
- a first control module configured to control an operating speed of the feeding platform by acquiring a pulse frequency of the motor shaft of the feeding platform, or
- the second control module is configured to control the running speed of the feeding platform by acquiring an external encoder connected to the feeding platform.
- the calculating module and the processing device further include:
- the detecting module is configured to detect whether the material to be processed enters the processing area.
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Laser Beam Processing (AREA)
- Numerical Control (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
一种基于双头异步视觉定位飞行加工的方法,包括:将待加工材料放置于依次经过图像采集区域、缓存区与加工区域的送料平台上;利用线阵相机(200)采集位于图像采集区域内待加工材料的图像信息;将所述图像信息与预设的图形进行匹对,得到加工区域内的加工轨迹;当待加工材料进入加工区域后,根据所述加工轨迹并利用两个独立运行的加工装置(400)进行加工。以及一种基于双头异步视觉定位飞行加工的系统。上述方法,可以实现材料在匀速送料的同时,实现边定位边加工,极大提高了卷料的加工效率。
Description
本发明涉及飞行加工技术领域,特别涉及一种基于双头异步视觉定位飞行加工的方法。本发明还涉及一种基于双头异步视觉定位飞行加工的系统。
目前,针对飞行加工领域来说,主要采用如下两种技术:
其一是采用双头异步切割摄像系统,也即在设备上架设有单反相机,通过单反相机对材料进行视觉定位,然后再采用双运动系统独立切加工的方式,这种方式的优势是,单反相机的成本比线阵相机的成本要低。劣势是,对机台的幅面会有限制,当机台幅面越大时,相机需要架设很高,这就会造成摄像定位的精度大大降低,无法满足高精度定位的大幅面加工的需求。
其二是采用线阵相机,也即机台架设有一个或多个线阵相机的设备,这些设备的工作方式是启动送料时,开始获取材料的图像,当材料输送到机台的幅面长度时,这时再停止送料和图像获取,当图像获取完成之后,送料机构是固定不动的。优势是,没有加工幅面的限制,当幅面比较大的情况下,可以采用多个线阵相机的拼接方案;劣势是,在加工过程中工作平台必须要是固定不动的,加工卷料的效率上还是没有发挥到最佳。
发明内容
本发明的目的是提供一种基于双头异步视觉定位飞行加工的方法,该方法可以实现材料在匀速送料的同时,实现边定位边加工,极大提高了卷料的加工效率。本发明的另一目的是提供一种基于双头异步视觉定位飞行加工的系统。
为实现上述目的,本发明提供一种基于双头异步视觉定位飞行加 工的方法,包括:
将待加工材料放置于依次经过图像采集区域、缓存区与加工区域的送料平台上;
利用线阵相机采集位于图像采集区域内待加工材料的图像信息;
将所述图像信息与预设的图形进行匹对,得到加工区域内的加工轨迹;
当待加工材料进入加工区域后,根据所述加工轨迹并利用两个独立运行的加工装置进行加工。
优选地,所述当待加工材料进入加工区域后,根据所述加工轨迹并利用两个独立运行的加工装置进行加工的步骤包括:
当加工沿图像采集区域、缓存区与加工区域方向的X轴直线时,
在加速时间段内,如果加工装置在加速过程中的移动距离S
1≥送料平台在加速过程中的移动距离SU
1,则加工装置向加速方向移动S
1-SU
1的距离;如果所述移动距离S
1<所述移动距离SU
1,则加工装置向送料平台的方向移动SU
1-S
1的距离;
在减速时间段内,如果加工装置在减速过程中的移动距离S
3≥送料平台在减速过程中的移动距离SU
2,则加工装置向加速方向移动S
3-SU
2的距离;如果所述移动距离S
3<所述移动距离SU
2,则加工装置向送料平台的方向移动SU
2-S
3的距离;
在匀速时间段内,如果加工装置在匀速过程中的移动距离S
2≥送料平台在匀速过程中的移动距离SU
3,则加工装置向加速方向移动S
2-SU
3的距离;如果所述移动距离S
2<所述移动距离SU
3,则加工装置向送料平台的方向移动SU
3-S
2的距离;
其中,送料平台的速度为uVel,加工装置的初始速度为V
0,拐角速度为V
1,目标速度为V
2,加工加速度为A
cc,X轴直线的长度为Dist1;
则加速时间t
1=(V
2-V
0)/A
cc,所述移动距离S
1=V
0×t
1+A
cc×t
1×t
1/2,所述移动距离SU
1=uVel×t
1;
则减速时间t
2=(V
2-V
1)/A
cc,所述移动距离S
3=V
1×t
2+A
cc×t
2 ×t
2/2,所述移动距离SU
2=uVel×t
2;
则所述移动距离S
2=Dist1-S
1-S
3,匀速时间t
3=S
2/V
2,所述移动距离SU
3=uVel×t
3。
优选地,所述当待加工材料进入加工区域后,根据所述加工轨迹并利用两个独立运行的加工装置进行加工的步骤包括:
当加工垂直于图像采集区域方向的Y轴直线时,Y轴直线的长度为Dist2;
在加速时间段内,加速时间t
1=(V
2-V
0)/A
cc,所述移动距离S
1=V
0×t
1+A
cc×t
1×t
1/2,
在减速时间段内,减速时间t
2=(V
2-V
1)/A
cc,所述移动距离S
3=V
1×t
2+A
cc×t
2×t
2/2,
在匀速时间段内,所述移动距离S
2=Dist1-S
1-S
3,所述匀速时间t
3=S
2/V
2,则加工所述Y轴直线的总时间为t=t
1+t
2+t
3;
根据所述长度Dist2与所述送料平台的总移动距离uVel×t,利用勾股定理得到加工所述Y轴直线的轨迹。
优选地,所述根据所述加工轨迹并利用两个独立运行的加工装置进行加工的步骤包括:通过获取所述送料平台电机轴的脉冲频率控制所述送料平台的运行速度,或通过获取与所述送料平台相连的外部编码器控制所述送料平台的运行速度。
优选地,所述将所述图像信息与预设的图形进行匹对,得到加工区域内的加工轨迹的步骤与所述当待加工材料进入加工区域后,根据所述加工轨迹并利用两个独立运行的加工装置进行加工的步骤之间还包括检测所述待加工材料是否进入所述加工区域。
本发明还提供一种基于双头异步视觉定位飞行加工的系统,包括:
放料装置:用于将待加工材料放置于依次经过图像采集区域、缓存区与加工区域的送料平台上;
线阵相机:用于采集位于图像采集区域内待加工材料的图像信息;
计算模块:用于将所述图像信息与预设的图形进行匹对,得到加工区域内的加工轨迹;
两个加工装置:分别用于当待加工材料进入加工区域后,根据所述加工轨迹进行独立加工。
优选地,两个所述加工装置均包括X轴直线模块:用于,
当加工沿图像采集区域、缓存区与加工区域方向的X轴直线时,
在加速时间段内,如果加工装置在加速过程中的移动距离S
1≥送料平台在加速过程中的移动距离SU
1,则加工装置向加速方向移动S
1-SU
1的距离;如果所述移动距离S
1<所述移动距离SU
1,则加工装置向送料平台的方向移动SU
1-S
1的距离;
在减速时间段内,如果加工装置在减速过程中的移动距离S
3≥送料平台在减速过程中的移动距离SU
2,则加工装置向加速方向移动S
3-SU
2的距离;如果所述移动距离S
3<所述移动距离SU
2,则加工装置向送料平台的方向移动SU
2-S
3的距离;
在匀速时间段内,如果加工装置在匀速过程中的移动距离S
2≥送料平台在匀速过程中的移动距离SU
3,则加工装置向加速方向移动S
2-SU
3的距离;如果所述移动距离S
2<所述移动距离SU
3,则加工装置向送料平台的方向移动SU
3-S
2的距离;
其中,送料平台的速度为uVel,加工装置的初始速度为V
0,拐角速度为V
1,目标速度为V
2,加工加速度为A
cc,X轴直线的长度为Dist1;
则加速时间t
1=(V
2-V
0)/A
cc,所述移动距离S
1=V
0×t
1+A
cc×t
1×t
1/2,所述移动距离SU
1=uVel×t
1;
则减速时间t
2=(V
2-V
1)/A
cc,所述移动距离S
3=V
1×t
2+A
cc×t
2×t
2/2,所述移动距离SU
2=uVel×t
2;
则所述移动距离S
2=Dist1-S
1-S
3,匀速时间t
3=S
2/V
2,所述移动距离SU
3=uVel×t
3。
优选地,两个所述加工装置均包括Y轴直线模块:用于,
当加工垂直于图像采集区域方向的Y轴直线时,Y轴直线的长度 为Dist2;
在加速时间段内,加速时间t
1=(V
2-V
0)/A
cc,所述移动距离S
1=V
0×t
1+A
cc×t
1×t
1/2,
在减速时间段内,减速时间t
2=(V
2-V
1)/A
cc,所述移动距离S
3=V
1×t
2+A
cc×t
2×t
2/2,
在匀速时间段内,所述移动距离S
2=Dist1-S
1-S
3,所述匀速时间t
3=S
2/V
2,则加工所述Y轴直线的总时间为t=t
1+t
2+t
3;
根据所述长度Dist2与所述送料平台的总移动距离uVel×t,利用勾股定理得到加工所述Y轴直线的轨迹。
优选地,所述加工装置还包括:
第一控制模块:用于通过获取所述送料平台电机轴的脉冲频率控制所述送料平台的运行速度,或
第二控制模块:用于通过获取与所述送料平台相连的外部编码器控制所述送料平台的运行速度。
优选地,所述计算模块与所述加工装置之间还包括:
检测模块:用于检测所述待加工材料是否进入所述加工区域。
相对于上述背景技术,本发明提供的一种基于双头异步视觉定位飞行加工的方法,待加工材料放置于送料平台上,送料平台依次经过图像采集区域、缓存区与加工区域,且送料平台持续进给,无停顿;当待加工材料处于图像采集区域内,利用线阵相机采集待加工材料的图像信息,也即确定待加工材料的位置;利用图像信息与预设的图形进行匹对,得到加工区域内的加工轨迹;也即,通过处于图像采集区域内的待加工材料的位置得出当待加工材料进入加工区域后加工装置的运动坐标;当待加工材料进入加工区域后,两个独立运行的加工装置根据加工轨迹进行加工;在上述过程中,送料平台带动待加工材料持续运行,实现材料在匀速送料的同时,实现边定位边加工,极大提高了卷料的加工效率;并且该加工方法不会受到加工幅面的限制,利用单个或多个线阵相机的图像拼接即可完成大幅面视觉定位操作。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例所提供的基于双头异步视觉定位飞行加工的方法的流程图;
图2为图1中送料平台的移动方向的示意图;
图3为利用图1的方法所加工的矩形图形的示意图;
图4为加工图3中的矩形图形的轨迹2的示意图;
图5为本发明实施例所提供的基于双头异步视觉定位飞行加工的系统的结构框图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了使本技术领域的技术人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
请参考图1至图5,图1为本发明实施例所提供的基于双头异步视觉定位飞行加工的方法的流程图;图2为图1中送料平台的移动方向的示意图;图3为利用图1的方法所加工的矩形图形的示意图;图4为加工图3中的矩形图形的轨迹2的示意图;图5为本发明实施例所提供的基于双头异步视觉定位飞行加工的系统的结构框图。
本发明提提供一种基于双头异步视觉定位飞行加工的方法,如说明书附图1所述,主要包括:
S1、将待加工材料放置于依次经过图像采集区域、缓存区与加工区域的送料平台上;
S2、利用线阵相机采集位于图像采集区域内待加工材料的图像信息;
S3、将所述图像信息与预设的图形进行匹对,得到加工区域内的加工轨迹;
S4、当待加工材料进入加工区域后,根据所述加工轨迹并利用两个独立运行的加工装置进行加工。
如说明书附图2所示,机台由右向左依次为图像采集区域、缓存区与加工区域,待加工材料放置于送料平台上,送料平台带动待加工材料依次经过图像采集区域、缓存区与加工区域;也即,待加工材料在送料平台的作用下依次经过图像采集区域、缓存区与加工区域;并且送料平台与待加工材料持续进给,中间无停顿。
线阵相机布置于图像采集区域内,线阵相机的个数可以通过待加工材料的幅面而定;当待加工材料在送料平台的带动下进入图像采集区域内时,线阵相机对待加工材料进行图像信息的采集,确定待加工材料的位置坐标;也即步骤S2的作用为:确定处于图像采集区域内的待加工材料的位置坐标,而该位置坐标为待加工材料在图像采集区域内的位置坐标。
在步骤S3中,根据图像信息也即待加工材料在图像采集区域内的位置坐标与预设的图形进行匹对,其中预设的图形是指需要对待加工材料进行加工的目标图形,匹对后得到加工区域内的加工轨迹;也即,根据待加工材料在图像采集区域内的位置坐标得到当待加工材料进入至加工区域后,加工装置所需进行的加工轨迹,而该加工轨迹即为加工区域内的加工轨迹。其中,预设的图形可以是一个工作幅面,也可以是几米或者是几十米长的图形。
在步骤S4中,待加工材料进入加工区域后,根据上述加工轨迹并利用两个独立运行的加工装置进行加工;通过两个独立运行的加工装置对处于加工区域内的待加工材料进行加工,实现材料在匀速送料 的同时,实现边定位边加工,极大提高了卷料的加工效率。
需要说明的是,在图像采集区域内架设一个或者多个线阵相机以及线性光源,当待加工材料进入到该区域后开始进行材料的图像采集;针对图像采集区域与加工区域之间的缓存区,主要是为了能够在图像采集区域与加工区域之间设定一定的距离,便于将图像的数据采集多些,从而获取待加工材料的图形或者将导入的矢量图形与对应的图像的特征进行匹配确定好位置;也即准确获取待加工材料所处图像采集区域内的位置。在加工区域内,设有两个独立加工装置,即两个独立的XY运动坐标系来对进入的待加工材料进行边送料边加工。
在上述步骤S4中,通过获取送料平台电机轴的脉冲频率控制所述送料平台的运行速度,或通过获取与送料平台相连的外部编码器控制所述送料平台的运行速度;也即,实现送料平台的匀速运动的控制有两种控制方式:
第一种是由控制器中的其中一个电机轴(下面简称为U轴)来控制,这时就不需要外接编码器去获取流水线的速度,而是控制器本来可以获取当前U轴对应的脉冲频率从而可以获取到当前流水线的速度值uVel。
第二种则是有外部控制器(如:PLC等)来控制,这时要获取流水线的速度就需要借用外部编码器来实现,将编码器的反馈信号接入系统中,这时也能够获取流水线的速度值uVel。
本发明的基于双头异步视觉定位飞行加工的实现方式即为:
假设线阵相机采集图像的位置处跟加工区域内的边界位置的偏移量为L,如说明书附图2所示;
将待加工材料匀速送入到线阵相机的图像采集区域内,可以通过现有软件启动待加工材料的图像采集,这时线阵相机将数据反馈到机台PC上,由于线阵相机与加工区域还有一定的缓存距离L,这个距离主要是为了更多的采集材料上的数据,这样可以让切割区域内的停止时间不会过长,所以L的距离需要根据加工区域内的加工时间来进行设计。
启动图像采集后,当送料平台移动到或者接近L值时,这时软件开始针对现有采集到的图像进行摄像匹配,将匹配后的图形数据与图像中的开始匹对,这样材料进入到加工区域时,开始进行飞行加工。
由于加工区域在加工的同时,送料机构也在不断往前输送,当加工区域完成了第一个L(也可能会小于L)的图形数据时,这时说明第二个L的数据也已经采集到,这时系统再针对第二个L的图像数据进行识别并将矢量图与图像上的位置进行匹对,然后匹对后的矢量图形的坐标与当前送料轴移动的长度L2进行比较,计算出第二个L值实际进入到加工区域内的坐标值。然后再采用双头异步飞行加工的方式进行处理加工。而后以上流程持续循环。
针对上述步骤S3中,本发明给出以下实施例:
假设需要加工如说明书附图3所示的矩形,U轴为送料平台的运行方向,四条待加工曲线分别为1、2、3和4;送料平台的速度为uVel,加工装置的初始速度为V
0,拐角速度为V
1,目标速度为V
2,加工加速度为A
cc,X轴直线的长度为Dist1;针对曲线1的加工,也即针对沿图像采集区域、缓存区与加工区域方向的X轴直线的加工;
在加速时间段内,如果加工装置在加速过程中的移动距离S
1≥送料平台在加速过程中的移动距离SU
1,则加工装置向加速方向移动S
1-SU
1的距离;如果所述移动距离S
1<所述移动距离SU
1,则加工装置向送料平台的方向移动SU
1-S
1的距离;
在减速时间段内,如果加工装置在减速过程中的移动距离S
3≥送料平台在减速过程中的移动距离SU
2,则加工装置向加速方向移动S
3-SU
2的距离;如果所述移动距离S
3<所述移动距离SU
2,则加工装置向送料平台的方向移动SU
2-S
3的距离;
在匀速时间段内,如果加工装置在匀速过程中的移动距离S
2≥送料平台在匀速过程中的移动距离SU
3,则加工装置向加速方向移动S
2-SU
3的距离;如果所述移动距离S
2<所述移动距离SU
3,则加工装置向送料平台的方向移动SU
3-S
2的距离;
而上述加速时间t
1=(V
2-V
0)/A
cc,所述移动距离S
1=V
0×t
1+A
cc ×t
1×t
1/2,所述移动距离SU
1=uVel×t
1;
则减速时间t
2=(V
2-V
1)/A
cc,所述移动距离S
3=V
1×t
2+A
cc×t
2×t
2/2,所述移动距离SU
2=uVel×t
2;
则所述移动距离S
2=Dist1-S
1-S
3,匀速时间t
3=S
2/V
2,所述移动距离SU
3=uVel×t
3。
其中,针对近似情况,可以忽略在加速时间段与减速时间段内的情形,仅仅考虑在匀速时间段内的情形;而拐角速度V
1的设置可以参考现有技术中激光加工的设置方式。
针对曲线2的加工,也即加工垂直于图像采集区域方向的Y轴直线时,假设Y轴直线的长度为Dist2,而对于曲线2的加工需要加工装置在X轴与Y轴方向上同时运动,即需要利用XY轴的插补运动;
在加速时间段内,加速时间t
1=(V
2-V
0)/A
cc,所述移动距离S
1=V
0×t
1+A
cc×t
1×t
1/2,
在减速时间段内,减速时间t
2=(V
2-V
1)/A
cc,所述移动距离S
3=V
1×t
2+A
cc×t
2×t
2/2,
在匀速时间段内,所述移动距离S
2=Dist1-S
1-S
3,所述匀速时间t
3=S
2/V
2,则加工所述Y轴直线的总时间为t=t
1+t
2+t
3;
根据所述长度Dist2与所述送料平台的总移动距离uVel×t,利用勾股定理得到加工所述Y轴直线的轨迹,如说明书附图4所示。
曲线3与曲线4的加工方式与上述类似,本发明不再赘述。
在上述步骤S3与步骤S4之间还包括检测待加工材料是否进入所述加工区域。也即,在启动加工时,这时送料平台开始转动,同时在加工区域内增加传感装置检测待加工材料是否开始进入加工区域,当材料进入到加工区域之后,这时两个独立的加工装置开始跟随着送料平台的速度进行加工图形的加工。
下面对本发明实施例提供的基于双头异步视觉定位飞行加工的系统进行介绍,下文描述的装置与上文所述的方法可以相互对照。
本发明提供的基于双头异步视觉定位飞行加工的系统,包括:
放料装置100:用于将待加工材料放置于依次经过图像采集区域、缓存区与加工区域的送料平台上;
线阵相机200:用于采集位于图像采集区域内待加工材料的图像信息;
计算模块300:用于将所述图像信息与预设的图形进行匹对,得到加工区域内的加工轨迹;
两个加工装置400:分别用于当待加工材料进入加工区域后,根据所述加工轨迹进行独立加工。
优选地,两个所述加工装置均包括X轴直线模块:用于,
当加工沿图像采集区域、缓存区与加工区域方向的X轴直线时,
在加速时间段内,如果加工装置在加速过程中的移动距离S
1≥送料平台在加速过程中的移动距离SU
1,则加工装置向加速方向移动S
1-SU
1的距离;如果所述移动距离S
1<所述移动距离SU
1,则加工装置向送料平台的方向移动SU
1-S
1的距离;
在减速时间段内,如果加工装置在减速过程中的移动距离S
3≥送料平台在减速过程中的移动距离SU
2,则加工装置向加速方向移动S
3-SU
2的距离;如果所述移动距离S
3<所述移动距离SU
2,则加工装置向送料平台的方向移动SU
2-S
3的距离;
在匀速时间段内,如果加工装置在匀速过程中的移动距离S
2≥送料平台在匀速过程中的移动距离SU
3,则加工装置向加速方向移动S
2-SU
3的距离;如果所述移动距离S
2<所述移动距离SU
3,则加工装置向送料平台的方向移动SU
3-S
2的距离;
其中,送料平台的速度为uVel,加工装置的初始速度为V
0,拐角速度为V
1,目标速度为V
2,加工加速度为A
cc,X轴直线的长度为Dist1;
则加速时间t
1=(V
2-V
0)/A
cc,所述移动距离S
1=V
0×t
1+A
cc×t
1×t
1/2,所述移动距离SU
1=uVel×t
1;
则减速时间t
2=(V
2-V
1)/A
cc,所述移动距离S
3=V
1×t
2+A
cc×t
2×t
2/2,所述移动距离SU
2=uVel×t
2;
则所述移动距离S
2=Dist1-S
1-S
3,匀速时间t
3=S
2/V
2,所述移动距离SU
3=uVel×t
3。
优选地,两个所述加工装置均包括Y轴直线模块:用于,
当加工垂直于图像采集区域方向的Y轴直线时,Y轴直线的长度为Dist2;
在加速时间段内,加速时间t
1=(V
2-V
0)/A
cc,所述移动距离S
1=V
0×t
1+A
cc×t
1×t
1/2,
在减速时间段内,减速时间t
2=(V
2-V
1)/A
cc,所述移动距离S
3=V
1×t
2+A
cc×t
2×t
2/2,
在匀速时间段内,所述移动距离S
2=Dist1-S
1-S
3,所述匀速时间t
3=S
2/V
2,则加工所述Y轴直线的总时间为t=t
1+t
2+t
3;
根据所述长度Dist2与所述送料平台的总移动距离uVel×t,利用勾股定理得到加工所述Y轴直线的轨迹。
优选地,所述加工装置还包括:
第一控制模块:用于通过获取所述送料平台电机轴的脉冲频率控制所述送料平台的运行速度,或
第二控制模块:用于通过获取与所述送料平台相连的外部编码器控制所述送料平台的运行速度。
优选地,所述计算模块与所述加工装置之间还包括:
检测模块:用于检测所述待加工材料是否进入所述加工区域。
需要说明的是,在本说明书中,诸如第一和第二之类的关系术语仅仅用来将一个实体与另外几个实体区分开来,而不一定要求或者暗示这些实体之间存在任何这种实际的关系或者顺序。
以上对本发明所提供的基于双头异步视觉定位飞行加工的方法与系统进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
Claims (8)
- 一种基于双头异步视觉定位飞行加工的方法,其特征在于,包括:将待加工材料放置于依次经过图像采集区域、缓存区与加工区域的送料平台上;利用线阵相机采集位于图像采集区域内待加工材料的图像信息;将所述图像信息与预设的图形进行匹对,得到加工区域内的加工轨迹;当待加工材料进入加工区域后,根据所述加工轨迹并利用两个独立运行的加工装置进行加工;其中,当待加工材料进入加工区域后,根据所述加工轨迹并利用两个独立运行的加工装置进行加工的步骤包括:当加工沿图像采集区域、缓存区与加工区域方向的X轴直线时,在加速时间段内,如果加工装置在加速过程中的移动距离S 1≥送料平台在加速过程中的移动距离SU 1,则加工装置向加速方向移动S 1-SU 1的距离;如果所述移动距离S 1<所述移动距离SU 1,则加工装置向送料平台的方向移动SU 1-S 1的距离;在减速时间段内,如果加工装置在减速过程中的移动距离S 3≥送料平台在减速过程中的移动距离SU 2,则加工装置向加速方向移动S 3-SU 2的距离;如果所述移动距离S 3<所述移动距离SU 2,则加工装置向送料平台的方向移动SU 2-S 3的距离;在匀速时间段内,如果加工装置在匀速过程中的移动距离S 2≥送料平台在匀速过程中的移动距离SU 3,则加工装置向加速方向移动S 2-SU 3的距离;如果所述移动距离S 2<所述移动距离SU 3,则加工装置向送料平台的方向移动SU 3-S 2的距离;其中,送料平台的速度为uVel,加工装置的初始速度为V 0,拐角速度为V 1,目标速度为V 2,加工加速度为A cc,X轴直线的长度为Dist1;则加速时间t 1=(V 2-V 0)/A cc,所述移动距离S 1=V 0×t 1+A cc×t 1×t 1/2,所述移动距离SU 1=uVel×t 1;则减速时间t 2=(V 2-V 1)/A cc,所述移动距离S 3=V 1×t 2+A cc×t 2×t 2/2,所述移动距离SU 2=uVel×t 2;则所述移动距离S 2=Dist1-S 1-S 3,匀速时间t 3=S 2/V 2,所述移动距离 SU 3=uVel×t 3。
- 根据权利要求1所述的方法,其特征在于,所述当待加工材料进入加工区域后,根据所述加工轨迹并利用两个独立运行的加工装置进行加工的步骤包括:当加工垂直于图像采集区域方向的Y轴直线时,Y轴直线的长度为Dist2;在加速时间段内,加速时间t 1=(V 2-V 0)/A cc,所述移动距离S 1=V 0×t 1+A cc×t 1×t 1/2,在减速时间段内,减速时间t 2=(V 2-V 1)/A cc,所述移动距离S 3=V 1×t 2+A cc×t 2×t 2/2,在匀速时间段内,所述移动距离S 2=Dist1-S 1-S 3,所述匀速时间t 3=S 2/V 2,则加工所述Y轴直线的总时间为t=t 1+t 2+t 3;根据所述长度Dist2与所述送料平台的总移动距离uVel×t,利用勾股定理得到加工所述Y轴直线的轨迹。
- 根据权利要求1~2任意一项所述的方法,其特征在于,所述根据所述加工轨迹并利用两个独立运行的加工装置进行加工的步骤包括:通过获取所述送料平台电机轴的脉冲频率控制所述送料平台的运行速度,或通过获取与所述送料平台相连的外部编码器控制所述送料平台的运行速度。
- 根据权利要求1~3任意一项所述的方法,其特征在于,所述将所述图像信息与预设的图形进行匹对,得到加工区域内的加工轨迹的步骤与所述当待加工材料进入加工区域后,根据所述加工轨迹并利用两个独立运行的加工装置进行加工的步骤之间还包括检测所述待加工材料是否进入所述加工区域。
- 一种基于双头异步视觉定位飞行加工的系统,其特征在于,包括:放料装置:用于将待加工材料放置于依次经过图像采集区域、缓存区与加工区域的送料平台上;线阵相机:用于采集位于图像采集区域内待加工材料的图像信息;计算模块:用于将所述图像信息与预设的图形进行匹对,得到加工区域内的加工轨迹;两个加工装置:分别用于当待加工材料进入加工区域后,根据所述加工轨迹进行独立加工;其中,两个所述加工装置均包括X轴直线模块:用于当加工沿图像采集区域、缓存区与加工区域方向的X轴直线时,在加速时间段内,如果加工装置在加速过程中的移动距离S 1≥送料平台在加速过程中的移动距离SU 1,则加工装置向加速方向移动S 1-SU 1的距离;如果所述移动距离S 1<所述移动距离SU 1,则加工装置向送料平台的方向移动SU 1-S 1的距离;在减速时间段内,如果加工装置在减速过程中的移动距离S 3≥送料平台在减速过程中的移动距离SU 2,则加工装置向加速方向移动S 3-SU 2的距离;如果所述移动距离S 3<所述移动距离SU 2,则加工装置向送料平台的方向移动SU 2-S 3的距离;在匀速时间段内,如果加工装置在匀速过程中的移动距离S 2≥送料平台在匀速过程中的移动距离SU 3,则加工装置向加速方向移动S 2-SU 3的距离;如果所述移动距离S 2<所述移动距离SU 3,则加工装置向送料平台的方向移动SU 3-S 2的距离;其中,送料平台的速度为uVel,加工装置的初始速度为V 0,拐角速度为V 1,目标速度为V 2,加工加速度为A cc,X轴直线的长度为Dist1;则加速时间t 1=(V 2-V 0)/A cc,所述移动距离S 1=V 0×t 1+A cc×t 1×t 1/2,所述移动距离SU 1=uVel×t 1;则减速时间t 2=(V 2-V 1)/A cc,所述移动距离S 3=V 1×t 2+A cc×t 2×t 2/2,所述移动距离SU 2=uVel×t 2;则所述移动距离S 2=Dist1-S 1-S 3,匀速时间t 3=S 2/V 2,所述移动距离SU 3=uVel×t 3。
- 根据权利要求5所述的系统,其特征在于,两个所述加工装置均包括Y轴直线模块:用于,当加工垂直于图像采集区域方向的Y轴直线时,Y轴直线的长度为Dist2;在加速时间段内,加速时间t 1=(V 2-V 0)/A cc,所述移动距离S 1=V 0×t 1+A cc×t 1×t 1/2,在减速时间段内,减速时间t 2=(V 2-V 1)/A cc,所述移动距离S 3=V 1×t 2+A cc×t 2×t 2/2,在匀速时间段内,所述移动距离S 2=Dist1-S 1-S 3,所述匀速时间t 3=S 2/V 2,则加工所述Y轴直线的总时间为t=t 1+t 2+t 3;根据所述长度Dist2与所述送料平台的总移动距离uVel×t,利用勾股定理得到加工所述Y轴直线的轨迹。
- 根据权利要求5~6任意一项所述的系统,其特征在于,所述加工装置还包括:第一控制模块:用于通过获取所述送料平台电机轴的脉冲频率控制所述送料平台的运行速度,或第二控制模块:用于通过获取与所述送料平台相连的外部编码器控制所述送料平台的运行速度。
- 根据权利要求5~7任意一项所述的系统,其特征在于,所述计算模块与所述加工装置之间还包括:检测模块:用于检测所述待加工材料是否进入所述加工区域。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710334813.8 | 2017-05-12 | ||
CN201710334813.8A CN107145127B (zh) | 2017-05-12 | 2017-05-12 | 一种基于双头异步视觉定位飞行加工的方法与系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018205677A1 true WO2018205677A1 (zh) | 2018-11-15 |
Family
ID=59778480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/073514 WO2018205677A1 (zh) | 2017-05-12 | 2018-01-19 | 一种基于双头异步视觉定位飞行加工的方法与系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107145127B (zh) |
WO (1) | WO2018205677A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107145127B (zh) * | 2017-05-12 | 2019-11-12 | 广东大族粤铭智能装备股份有限公司 | 一种基于双头异步视觉定位飞行加工的方法与系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6191382B1 (en) * | 1998-04-02 | 2001-02-20 | Avery Dennison Corporation | Dynamic laser cutting apparatus |
US6520057B1 (en) * | 1997-09-30 | 2003-02-18 | Eastman Machine Company | Continuous system and method for cutting sheet material |
CN104159698A (zh) * | 2012-03-06 | 2014-11-19 | 东丽工程株式会社 | 标记装置及方法 |
CN105102172A (zh) * | 2013-02-28 | 2015-11-25 | 舒勒自动化有限公司 | 用于切割具有预定轮廓的金属片坯料的方法 |
CN205309581U (zh) * | 2016-01-11 | 2016-06-15 | 东莞市博世机电设备有限公司 | 一种同轴双头异步切割装置 |
CN106041296A (zh) * | 2016-07-14 | 2016-10-26 | 武汉大音科技有限责任公司 | 一种在线式动态视觉激光精密加工方法 |
CN107145127A (zh) * | 2017-05-12 | 2017-09-08 | 广东大族粤铭智能装备股份有限公司 | 一种基于双头异步视觉定位飞行加工的方法与系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100802596B1 (ko) * | 2006-05-11 | 2008-02-13 | (주)와이티에스 | 아이디위치 검사기능을 갖는 레이저마킹 시스템 및 그검사방법 |
CN101450423B (zh) * | 2008-12-24 | 2011-08-03 | 深圳市大族激光科技股份有限公司 | 一种激光切割方法 |
TWI516327B (zh) * | 2012-11-30 | 2016-01-11 | Lts有限公司 | 用於控制雷射圖案成形裝置之階段的方法 |
CN104268850B (zh) * | 2014-08-29 | 2017-04-12 | 广东大族粤铭激光集团股份有限公司 | 混合型视觉加工方法 |
CN205202490U (zh) * | 2015-12-01 | 2016-05-04 | 温州职业技术学院 | 一种全自动激光打标机电气控制系统 |
CN105436715A (zh) * | 2016-01-11 | 2016-03-30 | 东莞市博世机电设备有限公司 | 一种同轴双头异步切割装置 |
-
2017
- 2017-05-12 CN CN201710334813.8A patent/CN107145127B/zh active Active
-
2018
- 2018-01-19 WO PCT/CN2018/073514 patent/WO2018205677A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6520057B1 (en) * | 1997-09-30 | 2003-02-18 | Eastman Machine Company | Continuous system and method for cutting sheet material |
US6191382B1 (en) * | 1998-04-02 | 2001-02-20 | Avery Dennison Corporation | Dynamic laser cutting apparatus |
CN104159698A (zh) * | 2012-03-06 | 2014-11-19 | 东丽工程株式会社 | 标记装置及方法 |
CN105102172A (zh) * | 2013-02-28 | 2015-11-25 | 舒勒自动化有限公司 | 用于切割具有预定轮廓的金属片坯料的方法 |
CN205309581U (zh) * | 2016-01-11 | 2016-06-15 | 东莞市博世机电设备有限公司 | 一种同轴双头异步切割装置 |
CN106041296A (zh) * | 2016-07-14 | 2016-10-26 | 武汉大音科技有限责任公司 | 一种在线式动态视觉激光精密加工方法 |
CN107145127A (zh) * | 2017-05-12 | 2017-09-08 | 广东大族粤铭智能装备股份有限公司 | 一种基于双头异步视觉定位飞行加工的方法与系统 |
Also Published As
Publication number | Publication date |
---|---|
CN107145127B (zh) | 2019-11-12 |
CN107145127A (zh) | 2017-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106271044A (zh) | 激光打标机以及ccd同轴光路定位方法 | |
CN106018430B (zh) | 一种六面视觉检测装置及其控制方法 | |
CN111229548A (zh) | 一种基于流水线的自动跟踪点胶系统 | |
CN104384762B (zh) | 一种焊机移动控制系统以及控制方法 | |
JP6637445B2 (ja) | 顕微鏡サンプルの撮像の改良 | |
CN104155310A (zh) | 滚子外观缺陷360度检测装置及方法 | |
JP5881244B2 (ja) | 部品実装装置、基板検出方法及び基板製造方法 | |
CN104786226A (zh) | 抓取在线工件的机器人位姿及运动轨迹定位系统与方法 | |
CN105607651B (zh) | 一种快速的视觉引导对位系统及方法 | |
CN105080787B (zh) | 点胶装置及点胶方法 | |
CN103523292B (zh) | 烟包输送稳定机构、烟包成像检测装置及方法 | |
JP2016147330A (ja) | 物体認識に基づく制御装置 | |
CN106197273B (zh) | 一种随动回转式视觉检测装置 | |
CN105436252A (zh) | 一种基于视觉测量的折弯机加工控制方法及装置 | |
CN111266254A (zh) | 一种基于流水线的自动跟踪点胶设备 | |
WO2018205677A1 (zh) | 一种基于双头异步视觉定位飞行加工的方法与系统 | |
CN109278021A (zh) | 一种用于抓取薄壁壳体类工件的机器人工具系统 | |
CN116593395A (zh) | 一种用于板材表面缺陷图像采集的运动控制系统 | |
CN107896326A (zh) | 双目立体相机自动调平设备、其调平控制系统及控制方法 | |
JP6019892B2 (ja) | スクライブ装置及びスクライブ方法 | |
WO2017161701A1 (zh) | 显示器件的对位检测设备及曝光工艺系统 | |
CN113074638A (zh) | 一种用于工件涂装的三维扫描系统及其扫描成像方法 | |
CN219664459U (zh) | 多角度三维测量设备 | |
CN206563549U (zh) | 一种大视野快速尺寸量测系统 | |
JP2007171018A (ja) | 物体位置認識方法及び物体位置認識装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18799254 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18799254 Country of ref document: EP Kind code of ref document: A1 |