WO2018205149A1 - 3d打印头、3d打印设备和3d打印头的控制方法 - Google Patents

3d打印头、3d打印设备和3d打印头的控制方法 Download PDF

Info

Publication number
WO2018205149A1
WO2018205149A1 PCT/CN2017/083647 CN2017083647W WO2018205149A1 WO 2018205149 A1 WO2018205149 A1 WO 2018205149A1 CN 2017083647 W CN2017083647 W CN 2017083647W WO 2018205149 A1 WO2018205149 A1 WO 2018205149A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
print head
printing
control
discharge port
Prior art date
Application number
PCT/CN2017/083647
Other languages
English (en)
French (fr)
Inventor
黄卫东
Original Assignee
黄卫东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄卫东 filed Critical 黄卫东
Priority to PCT/CN2017/083647 priority Critical patent/WO2018205149A1/zh
Priority to CN201780010811.1A priority patent/CN109247014B/zh
Priority to EP17895505.0A priority patent/EP3427930B1/en
Priority to US16/107,450 priority patent/US11104070B2/en
Publication of WO2018205149A1 publication Critical patent/WO2018205149A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/80Plants, production lines or modules
    • B22F12/82Combination of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/86Serial processing with multiple devices grouped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/343Metering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present application relates to the field of 3D printing, and more particularly, to a 3D print head, a 3D printing apparatus, and a control method of a 3D print head.
  • FDM technology is a commonly used 3D printing technology. FDM technology usually needs to heat the material to a molten state (or semi-flow state), and extrude the molten material from the discharge port (or extrusion port) of the 3D print head, and the material is deposited layer by layer on the printing platform to form 3D items.
  • FDM technology usually needs to heat the material to a molten state (or semi-flow state), and extrude the molten material from the discharge port (or extrusion port) of the 3D print head, and the material is deposited layer by layer on the printing platform to form 3D items.
  • the discharge port of a conventional 3D printhead is generally a nozzle having a fixed shape.
  • a 3D print head with a small nozzle diameter is usually selected.
  • This type of 3D print head has less material extrusion per unit time and lower printing efficiency; when the printing efficiency of the item is required
  • a 3D print head with a larger nozzle diameter is usually selected.
  • This type of 3D print head prints a rougher shape and has lower printing accuracy. It can be seen that the conventional 3D print head cannot balance the printing efficiency and the printing precision.
  • the present application provides a 3D print head, a 3D printing apparatus, and a control method of a 3D print head, which makes it possible to achieve both printing efficiency and printing accuracy of 3D printing.
  • a 3D printhead comprising: a delivery conduit, the bottom of the delivery conduit is provided with an opening; a shielding member disposed at the opening and slidably coupled to the bottom, the opening comprising An area blocked by the shielding member and an area not blocked by the shielding member, wherein an area not blocked by the shielding member forms a discharge opening of the 3D print head, and the discharge opening includes a first end portion And a second end portion, the first end portion and the second end portion define a length of the discharge opening; a driving device connected to the shielding member, the driving device receiving a control instruction of the control device, Driving the shutter to slide at the opening according to a control command of the control device to adjust a position of the first end and/or the second end in the opening, thereby adjusting the out The length of the spout.
  • a 3D printing apparatus comprising the 3D printhead and control device of the first aspect.
  • a control method of a 3D print head is provided, the 3D print head being the 3D print head described in the first aspect, the control method comprising: generating a control instruction of the control device; and the 3D print head Sending a control command of the control device.
  • a computer readable storage medium having stored therein instructions that, when run on a 3D printing device, cause the 3D printing device to perform the method of the first aspect.
  • a computer program product comprising instructions, when run on a 3D printing device, causes the 3D printing device to perform the method of the first aspect described above.
  • the discharge port of the 3D print head is designed as a continuously adjustable discharge port. This 3D print head makes it possible to achieve both print efficiency and print accuracy. 3D printing.
  • 1 is a schematic view showing the overall structure of a conventional 3D printing apparatus.
  • FIG. 2 is a schematic structural view of a conventional 3D print head.
  • Figure 3a is an exemplary diagram of a layered fill area.
  • Fig. 3b is a diagram showing an example of the arrangement of the passes.
  • FIG. 4 is a schematic diagram of the overall structure of a 3D printing apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a bottom portion of a conveying pipe according to an embodiment of the present invention.
  • Figure 6 is a bottom plan view of the bottom structure of the delivery conduit provided by one embodiment of the present invention.
  • Figure 7 is a bottom plan view showing the bottom structure of a feed pipe according to another embodiment of the present invention.
  • Figure 8 is a bottom plan view showing the bottom structure of a feed pipe according to still another embodiment of the present invention.
  • Figure 9 is a bottom plan view showing the bottom structure of a feed pipe according to still another embodiment of the present invention.
  • Figure 10 is a bottom plan view showing the bottom structure of a feed pipe according to still another embodiment of the present invention.
  • FIG. 11 is a comparison diagram of printing effects of a 3D print head and a conventional 3D print head according to an embodiment of the present invention.
  • Fig. 12 is a diagram showing an example of a way of switching the pass in the conventional 3D printing process.
  • Figure 13 is an exemplary diagram of a layered cross-sectional profile shape.
  • Figure 14 is another exemplary diagram of a layered cross-sectional profile shape.
  • Figure 15 is still another exemplary view of a layered cross-sectional profile shape.
  • Figure 16 is a bottom plan view showing the bottom structure of a feed pipe according to still another embodiment of the present invention.
  • Figure 17 is a diagram showing an example of the structure of a feeding device according to an embodiment of the present invention.
  • FIG. 18 is a schematic flowchart of a method for controlling a 3D print head according to an embodiment of the present invention.
  • FIG. 19 is a schematic flowchart of a method for controlling a 3D print head according to another embodiment of the present invention.
  • the conventional 3D printing apparatus 1 generally includes a feeding device 11, a 3D print head 12, a printing platform 13, and a control device 14.
  • the feeding device 11 can be connected to the wire 15 . During the actual printing process, the feeding device 11 can take the filamentous material from the wire disc 15 and transport the filamentous material to the 3D printing head 12.
  • the material used in the 3D printing process is generally a thermoplastic material such as a polymer. Polymers, low melting point metals and other materials that can be formulated into flowable pastes (eg paste ceramics, high melting point metal powder blends, cement, etc.).
  • the 3D printhead 12 generally includes a delivery conduit 121, a discharge port 122, and a temperature control device 123.
  • the temperature control device 123 is generally disposed outside the delivery pipe 121 for heating the material fed from the feeding device 11 to the delivery pipe 121 to a molten state.
  • the temperature control device 123 can be, for example, a heating device.
  • the discharge port 122 can extrude the molten material onto the printing platform 13, and therefore, the discharge port 122 can also be referred to as an extrusion port.
  • control device 14 is used to control the 3D print head 12 to print the items layer by layer.
  • the control 3D printhead 12 can fill the layered fill area (the area enclosed by the layered profile line) in accordance with a predetermined fill path.
  • the modeling software can be, for example, computer aided design (CAD) software. Then, proceed to the created 3D model
  • the hierarchical processing divides the 3D model into multiple layers to obtain hierarchical data of each layer.
  • the control device 14 can control the 3D print head 12 to move along a certain filling path according to the hierarchical data of each layer, and will melt the state through the discharge port 122 during the moving process.
  • the material is extruded onto the printing platform 13 to fill the filled areas of each layer. After all the layers of the article have been printed, the material solidifies layer by layer to form a 3D article.
  • FIG. 3a and FIG. 3b the filling process of a certain layer (hereinafter referred to as the current layer) in the conventional 3D printing process will be described in detail below by taking FIG. 3a and FIG. 3b as an example.
  • the current layered fill area is area 41 and the cross-sectional outline of area 41 is section outline 42.
  • the region 41 is typically divided into closely spaced passes based on the cross-sectional contour 42, as shown in Figure 3b, pass A 1 - pass A 25 .
  • control device 14 controls the z coordinate of the 3D print head 12 to remain unchanged, and controls the 3D print head 12 to fill all the passes in a certain order, such as sequentially filling the tracks in a parallel reciprocating straight path. Times A 1 -A 25 .
  • the control device 14 may first move the 3D print head 12 above the position point p1 as shown in FIG. 3a, and then control the 3D print head 12 to move from above the position point p1 to the position point. above p2, and through the discharge opening during the movement 122 of the extruded material in a molten state on the secondary lane a 1, a 1 pass thereby filling, filling a similar manner as the other passes, and is not repeated here.
  • the current layered printing process ends, and the 3D print head 12 or the work platform 13 can be controlled to move in the z-axis direction, ready to print the next layer.
  • the discharge port 122 of the 3D printhead 12 is generally designed as a fixed-shaped nozzle, and a common nozzle shape includes a circular hole, a square hole, or a slightly deformed isometric shaped hole.
  • the diameter of the nozzle is usually around 1 mm, and the common diameter is 0.4 mm.
  • a 3D print head with a small nozzle diameter is usually selected.
  • This type of 3D print head has less material extrusion per unit time and lower printing efficiency; when the printing efficiency of the item is required When higher, a 3D print head with a larger nozzle diameter is usually selected.
  • This type of 3D print head prints a rougher shape and has lower printing accuracy. It can be seen that the conventional 3D print head cannot balance the printing efficiency and the printing precision.
  • the formation process of this design of the 3D print head is analyzed below.
  • 3D printing technology is a more advanced manufacturing technology developed on the basis of 2D printing technology. Before 3D printing, it is usually necessary to layer the 3D model of the article to be printed. After layering, it is equivalent to decomposing the printing process of the 3D item into many 2D printing processes, that is, each layered printing process can be regarded as A flat print process. Therefore, conventional 3D printing devices follow many design concepts of 2D printing devices. Most obviously, the discharge port of the 2D print head generally adopts a nozzle with a fixed shape. The design of the discharge port of the 3D print head follows the design of the 2D print head, and the 3D print head is also designed as a fixed nozzle. . As described above, this nozzle design has made 3D printing impossible to achieve both printing efficiency and printing accuracy, and has become a key obstacle to the development of 3D printing technology.
  • the 3D print head provided by the embodiment of the present invention will be described in detail below with reference to FIG.
  • FIG. 4 is a schematic diagram of the overall structure of a 3D printing apparatus 2 according to an embodiment of the present invention.
  • the 3D printing device 2 may include a 3D print head 3. Further, in some embodiments, the 3D printing device 2 may also include Control device 4 (which may for example be a numerical control device) and/or printing platform 8 is included.
  • Control device 4 which may for example be a numerical control device
  • printing platform 8 is included.
  • the 3D printhead 3 may include a delivery conduit 31, a shutter 32, and a drive unit 33.
  • the drive unit 33 can be connected to the control unit 4 (e.g., electrically connected).
  • the driving device 33 can receive the control command of the control device 4 and drive the shutter 32 to move according to the control command of the control device 4.
  • the driving device 33 may be an electric driving device, a hydraulic driving device, a pneumatic driving device or a composite driving device, which is not specifically limited in the embodiment of the present invention. Taking an electric drive as an example, the drive unit 33 may include an electric motor and a transmission connected to the electric motor, such as a gear, a rotating shaft, or the like.
  • the control device 4 can transmit a control command to the drive device 33 to control the rotational speed and steering of the motor, etc., thereby achieving control of the drive device 33.
  • the drive unit 33 can drive the shutter 32 to slide at the bottom 39 of the delivery conduit 31, such as performing a reciprocating linear movement at the bottom 39 of the delivery conduit 31.
  • FIG. 5 is a schematic view showing the structure of the bottom of the delivery pipe 31.
  • Figures 6-10 are bottom views of the bottom structure of the delivery conduit 31, wherein Figures 7-10 retain the shutter 32, and Figure 6 removes the shutter 32 to better illustrate the opening 34 in the bottom 39. s position.
  • the bottom 39 of the delivery conduit 31 is provided with an opening 34.
  • the opening 34 can have a length L and a width h. In other words, the opening 34 can occupy an L x h area of the bottom 39 of the delivery conduit 31.
  • the opening 34 provided by the embodiment of the present invention may have an elongated structure. In other words, the length L of the opening 34 may be much larger than the width h.
  • the value of the length L of the opening 34 can be selected according to actual needs, which is not specifically limited in the embodiment of the present invention. In fact, as long as the bottom 39 of the delivery conduit 31 is sufficiently wide, the length L of the opening 34 can theoretically take any value.
  • the width h of the opening 34 can take a fixed value, such as any value from 0.01 to 5 mm. As can be seen from the description below, in some implementations, the value of the width h can determine the printing accuracy and printing efficiency of the article, so the value of the width h can be determined depending on the requirements of the article for printing accuracy and printing efficiency. .
  • the width h can be set to 0.01 mm or less to perform high-precision printing on the article; and, for example, when the printing efficiency of the article is high, the width h can be taken.
  • the value is set from 1mm to 5mm for efficient printing of items.
  • the shutter 32 may be disposed at the opening 34, for example, at the front end of the opening 34.
  • the opening 34 may include an area that is blocked by the shutter 32 and an area that is not blocked by the shutter 32, wherein the area that is not blocked by the shutter may form the discharge port 35 of the 3D print head 3.
  • the area occupied by the opening 34 is L x h.
  • the discharge port 35 occupies an area of l ⁇ h.
  • the area of the opening 34 that is not obscured by the shutter 32 is 1 x h, which is hereinafter referred to as the open area of the opening 34;
  • the size of the area blocked by the shutter 32 is (L1) ⁇ h, which is hereinafter referred to as the closed area of the opening 34.
  • the area of the closed region of the opening 34 may be zero, indicating that the opening 34 is in a fully open state. At this time, the length of the discharge port 35 is equal to the length of the opening 34.
  • the open area of the opening 34 may have an area of 0, indicating that the opening 34 is in a fully closed state. At this time, the length of the discharge port 35 is equal to zero.
  • the maximum length of the spout 35 may be less than the length of the opening 34.
  • the shutter 32 may be a movable block that can slide along a groove provided at the bottom of the delivery pipe 31, in order to secure the block and The dynamic seal between the grooves, or ensuring that the sliding range of the block does not exceed the preset range, can control the maximum length l of the discharge port 35 to be smaller than the length L of the opening 34.
  • the number of the shielding members 32 is not specifically limited in the embodiment of the present invention. As an example, as shown in FIGS. 5, 7, and 10, a shutter 32 may be disposed at each end of the opening 34; as another example, as shown in FIG. 8 or FIG. 9, only one end of the opening 34 may be provided. A shutter 32 is provided. It should be understood that the number of the shutters 32 is different, and the manner of defining the length of the discharge port 35 may also be different. The manner of defining the length of the discharge port 35 will be described in detail below with reference to FIGS. 6-9.
  • the opening 34 can include ends 341, 342 that define the length of the opening 34.
  • the shape of the opening 34 is not specifically limited in the embodiment of the present invention, and may be an opening of any shape having an elongated structure.
  • the opening 34 can be a generally rectangular opening that can also include ends 343, 344 that can define the width of the opening 34.
  • a shutter member that is, a first shutter member 32a and a second shutter member 32b, may be disposed at both ends of the opening 34.
  • the discharge opening 35 includes ends 351, 352 that define the length of the discharge opening 35.
  • the first shutter 32a includes ends 351,321.
  • the end 321 is located outside the end 341 of the opening 34 and the end 351 is located inside the end 341 of the opening 34.
  • the second shutter 32b includes ends 352, 322.
  • the end 322 is located outside of the end 342 of the opening 34 and the end 352 is located inside the end 342 of the opening 34.
  • the end portion 351 of the discharge opening 35 and the end portion of the first shutter 32a adjacent to the second shutter 32b are the same end portion, and the end portion 352 of the discharge opening 35 and the second shutter 32b The ends near the first shutter 32a are the same end. Therefore, in the embodiment corresponding to Fig. 7, the length of the discharge opening 35 is defined by the gap between the first shutter 32a and the second shutter 32b.
  • one end of the opening 34 is provided with a shutter 32, and the other end is not provided with a shutter.
  • the shutter 32 includes ends 351, 321 wherein the end 321 is located outside of the end 341 of the opening 34 and the end 351 is located inside the end 341 of the opening 34.
  • the end 352 of the discharge opening 35 is at the same end as the end 342 of the opening 34.
  • the length of the spout 35 is defined by the gap between the shutter 32 and the end 342 of the opening 34.
  • one end of the opening 34 is provided with a shutter 32, and the other end is not provided with a shutter.
  • the shutter 32 includes ends 352, 322 that are located outside of the end 342 of the opening 34 and that are located inside the end 342 of the opening 34.
  • the end 351 of the discharge opening 35 is at the same end as the end 341 of the opening 34.
  • the length of the spout 35 is defined by the gap between the shutter 32 and the end 341 of the opening 34.
  • the form of the shielding member 32 and the manner of cooperation between the shielding member 32 and the delivery pipe 31 are not specifically limited.
  • the bottom portion 39 of the delivery conduit 31 may be provided with a recess (not shown), and the shutter 32 may be a movable block located in the recess and slidably coupled to the recess.
  • the opening 34 can be provided at the bottom of the groove.
  • the bottom portion 39 of the delivery conduit 31 may be provided with a slide rail 361 and a slide rail 362, and the shutter member 32 may be a slide plate that is slidable along the slide rails 361, 362.
  • the drive unit 33 can be coupled to the shutter 32.
  • the drive device 33 can receive the control command of the control device 4 and drive the shutter 32 to slide at the opening 34 according to the control command of the control device 4 to adjust the end 351 and/or the end 352 of the discharge port 35 in the opening 34. The position of the discharge port 35 is adjusted.
  • the driving device 33 can respectively drive the first shutter 32a and the second shutter 32b to slide (eg, perform a reciprocating linear motion), thereby changing the position of the ends 351, 352 in the opening 34, thereby adjusting The length of the discharge port 35.
  • the drive unit 33 can drive the shutter 32 to slide (e.g., perform a reciprocating linear motion), thereby changing the position of the end portion 351 in the opening 34, thereby adjusting the length of the discharge opening 35.
  • the drive unit 33 can drive the shutter 32 to slide (e.g., perform a reciprocating linear motion), thereby changing the position of the end 352 in the opening 34, thereby adjusting the length of the spout 35.
  • the drive unit 33 can control the length of the discharge opening 35 to vary within a preset range.
  • the preset range can be less than or equal to the length of the opening 34.
  • the change in the length of the discharge opening 35 can be understood as a continuous change.
  • the so-called continuous change refers to a continuous change in the case where the accuracy of the device (or the minimum adjustment step) is allowed, and does not indicate that the port 35 can reach any value within a preset range.
  • the preset range is 0-10cm as an example. If the precision of the device is 1mm, the length of the discharge port 35 can be continuously changed in units of 1mm. For example, the length of the discharge port 35 can be 0mm, 1mm, 2mm...
  • the length of the discharge port 35 can be continuously changed in units of 5mm, for example, the length of the discharge port 35 can be 0mm, 5mm, 10mm ... 100mm.
  • the device accuracy is related to the mechanical structure and the control mode of the 3D printing device 2, and is not specifically limited in this embodiment of the present invention.
  • the traditional 3D print head follows the design concept of the 2D print head, and the discharge port of the 3D print head is designed as a fixed-shaped nozzle.
  • the 3D print head 3 provided by the embodiment of the present invention designs the discharge port 35 as a discharge port whose length is continuously adjustable within a certain range. This is a design made on the basis of fully considering the characteristics of the 3D printing object.
  • the 3D printing head 3 provided by the embodiment of the present invention makes the combination of printing efficiency and printing precision possible, and is more suitable. 3D printing.
  • the specific discussion is as follows.
  • the size of 2D printed objects is generally small, and the printed objects are mainly text or images. Text or images can be arranged freely on a two-dimensional plane, with no rules to find. Therefore, designing a 2D print head as a fixed-shaped nozzle has certain versatility, and this design is reasonable in the field of 2D printing.
  • 3D printed objects are generally 3D items that need to be actually used.
  • a 3D article has a certain physical profile, and therefore, a section of a 3D article along a section is typically one or more closed and continuously varying curves.
  • the embodiment of the present invention makes full use of this feature of the 3D printing object, and provides an opening 34 at the bottom of the conveying pipe 31, and a shielding member 32 is disposed at the opening 34, and the sliding of the shielding member 32 at the opening 34 makes the discharge port 35
  • the length is continuously adjustable.
  • the continuous adjustment of the length of the discharge opening 35 coincides with the closed and continuously changing characteristics of the cross-sectional contour of the 3D printed object, and the discharge opening 35 is more suitable for 3D printing, making it possible to greatly improve the 3D printing efficiency.
  • printing can be performed in the same way as the conventional 3D print head, but continuous printing can be performed along the cross-sectional contour, and the discharge port 35 can be controlled during the printing process.
  • the profile of the cross-section changes, it is understood that printing along the cross-sectional contour has an extremely high printing efficiency compared to printing in a pass.
  • the width of the opening 34 can be set to a fixed value, so that the printing accuracy of the 3D article remains unchanged, and the printing accuracy remains unchanged during the continuous change of the discharge opening 35, which is the traditional 3D.
  • the print head is difficult to achieve. Therefore, the 3D print head having the continuously adjustable discharge port provided by the embodiment of the present invention makes it possible to achieve both printing efficiency and printing accuracy.
  • the spout 35 may also include ends 353, 354. End 353 and end 354 can define the width of spout 35.
  • the width of the discharge port 35 may be a fixed value, that is, the distance between the ends 353, 354 may be To remain the same.
  • the value of the length of the discharge port 35 is set to be continuously changed, and the value of the width is set to a fixed value, so that the printing efficiency of the discharge port 35 can be ensured, and the printing efficiency can be ensured.
  • the printing accuracy of 3D items is always consistent, which is not possible with traditional 3D print heads.
  • the width of the discharge port 35 can be set to an adjustable width.
  • another shielding member (not shown) can be disposed on the sidewall of the discharge port 35, and the shielding member can be along The width is slid to adjust the width of the discharge port 35. This implementation makes the accuracy of the 3D print head flexible and adjustable.
  • the driving device 33 may drive the shutter 32 to slide at the opening 34 according to the control instruction of the control device 4 to adjust The position of the end 351 and/or the end 352 in the opening 34 matches the length of the discharge opening 35 with the length of the cross-sectional contour of the target filling area along the length of the discharge opening 35, wherein the target fill The area is part or all of the current layered area.
  • the current layering can be any layer of the item to be printed.
  • the layering of the item to be printed can be obtained by layering the 3D model of the item to be printed.
  • the length of the discharge port 35 matches the length of the section line of the target filling area along the length of the length of the discharge port 35 (or corresponds), which may refer to the length of the discharge port 35 and the cross-sectional profile of the target filling area.
  • the lengths of the lines along the length of the discharge opening 35 are substantially equal or exactly equal.
  • the 3D print head 3 can be controlled to move from the position point A 1 to the position point A 25 and print in 3D.
  • the position of the ends 351, 352 of the discharge opening 35 in the opening 34 is controlled such that the length of the ends 351, 352 matches the length of the section line of the cross-sectional contour 42 in the x direction.
  • the driving device 33 can adjust the position of the end portion 351 of the discharge opening 35 and/or the end portion 352 in the opening 34 by the shutter 32.
  • the length of the spout 35 matches the length of the line segments p1-p2. In this way, the pass A 1 can be printed at one time; when the 3D print head 3 moves to the position where the pass A 11 is located, the driving device 33 can adjust the end 351 of the discharge opening 35 and/or through the shutter 32.
  • the position of the end 352 in the opening 34 matches the length of the discharge opening 35 to the length of the line segment p3-p4.
  • the pass A 11 can be printed at one time; when the 3D print head 3 is moved to the position where the pass A 25 is located, the driving device 33 can adjust the end 351 of the discharge port 35 through the shutter 32 and/or The position of the end 352 in the opening 34 matches the length of the discharge opening 35 to the length of the line segments p5-p6. In this way, the pass A 25 can be printed at one time.
  • the length of the discharge opening 35 always matches the cross-sectional contour of the target filling area along the length of the length of the discharge opening 35, so that one section of the cross-sectional contour can be cut at one time.
  • the line area (a line area can correspond to one pass of traditional 3D printing) is printed completely, thereby greatly improving the printing efficiency of 3D printing.
  • the drive device 33 may also have a length to the discharge opening 35 and a cross-sectional profile of the discharge opening 35 and the target filling area during filling of the target filling area in the current layer.
  • the relative positions of the lines are adjusted simultaneously to further improve printing efficiency.
  • the driving device 33 may drive the shutter 32 to slide at the opening 34 according to the control instruction of the control device 4 to adjust the end portion 351 and/or the end portion.
  • the position of the opening 352 in the opening 34 causes the projection of the ends 351, 352 in the vertical direction to be on the cross-sectional contour of the target filling area.
  • the 3D print head 3 can be controlled to move from the position point A 1 to the position point A 25 , and the discharge port is controlled during the movement of the 3D print head 3 .
  • the position of the ends 351, 352 of 35 is such that the projection of the ends 351, 352 in the vertical direction lies on the cross-sectional contour 42.
  • the driving device 33 can adjust the position of the end portion 351 of the discharge opening 35 and/or the end portion 352 in the opening 34 by the shutter 32, so that the end
  • the coordinates (x, y) of the portion 351 are the same as the coordinates (x, y) of the position point p1
  • the coordinates (x, y) of the end portion 352 are the same as the coordinates (x, y) of the position point p2.
  • the driving device 33 can adjust the position of the end portion 351 of the discharge opening 35 and/or the end portion 352 in the opening 34 by the shutter 32 so that the coordinates of the end portion 351 (x, y) is the same as the coordinate (x, y) of the position point p3, and makes the coordinates (x, y) of the end portion 352 the same as the coordinates (x, y) of the position point p4.
  • the projection of the end 351 in the vertical direction will be at the point p3 of the cross-sectional contour 42 and the projection of the end 352 in the vertical direction will be at the p4 point of the cross-sectional contour 42; when 3D
  • the driving device 33 can adjust the position of the end portion 351 of the discharge opening 35 and/or the end portion 352 in the opening 34 by the shutter 32 so that the coordinates of the end portion 351 (x, y) is the same as the coordinate (x, y) of the position point p5, and the coordinates (x, y) of the end portion 352 are the same as the coordinates (x, y) of the position point p6.
  • the projection of the end 351 in the vertical direction will be at the point p5 of the cross-sectional contour 42 and the projection of the end 352 in the vertical direction will be at the point p6 of the cross-sectional contour 42.
  • the improvement in printing efficiency of the 3D print head 3 is approximately the ratio of the average length of each pass in the target filling area to the diameter of the round hole type discharge port.
  • the diameter of the currently commercially available round hole type discharge port is about 0.4 mm, and if the average length of the target filling area is 20 mm, the printing efficiency of the 3D print head 3 is about 50 times that of the conventional 3D print head.
  • the larger the size of the item to be printed the more obvious the printing efficiency improvement of the 3D print head 3 provided by the embodiment of the present invention is compared with the conventional 3D print head.
  • the width of the discharge port 35 of the 3D print head 3 can be set very small to ensure ultra-high precision printing, which is impossible for a conventional 3D print head.
  • the diameter of the currently commercially available round hole type discharge port is about 0.4 mm, and setting the diameter to less than 0.4 mm causes the printing efficiency of the 3D printing apparatus to be too low to be used for actual production.
  • the 3D print head 3 provided by the embodiment of the present invention can print the outline of the target filling area at one time, in which case even if the width of the discharge opening 35 is set very small (for example, less than 0.4 mm). , still can guarantee high printing efficiency.
  • the smaller the width of the discharge opening 35 the closer the cross-sectional contour of the target filling area printed by the 3D print head 3 is to the true cross-sectional contour, and the higher the precision.
  • the width of the spout 35 can be set to 0.01 mm or less, which is much smaller than the single layer print thickness of all current industrial grade 3D printing devices.
  • the width of the discharge port 35 can be set to 1 mm to 5 mm to achieve ultra-high efficiency printing.
  • the 3D print head 3 provided by the embodiment of the present invention makes it possible to achieve both the printing efficiency and the printing precision, and the article printed by the 3D print head 3 has significant mechanical properties and shape uniformity as compared with the conventional 3D print head. Ascension, this is discussed in detail below.
  • conventional 3D printing generally performs channel-by-channel printing in a certain order. Since the size of the discharge port of the conventional 3D print head is small (the diameter is usually in the order of millimeters), it takes a long time to print each pass.
  • the material on the previous pass adjacent to the current pass may already be at or near a solid state, while the material on the current pass is still molten.
  • the material in the molten state on the current pass needs to be fused with the material that has been in or near the solid state on the previous pass to form a whole.
  • the material fusion process between adjacent passes is called a pass. .
  • the cylinder 51 is a cylinder printed by a pass-through method using a conventional 3D printing technique.
  • the cylindrical body 51 not only has a rough outline of the overall shape, but also has a plurality of notches 53 due to poor material fusion during the pass-passing process.
  • the 3D print head 3 provided by the embodiment of the present invention adjusts the length and position of the discharge port 35 so that it always tracks the cross-sectional contour of the target printing area. Therefore, the printing process of the 3D print head 3 does not need to be printed one by one according to the pass, and there is no need to perform the passover, so that the problem of poor fusion is not generated. Therefore, the articles printed by the 3D print head 3 have higher mechanical properties. Still taking the printing cylinder as an example, as shown in FIG. 11, the cylinder 52 is a cylinder printed by the 3D printing head 3. Compared with the cylinder 51, the filling of the cylinder 52 is good, and there is no way The resulting poor fusion problem.
  • the switching between the pass and the pass uses the fold line 52 instead of the real contour curve, that is, using the polyline to approximate the real contour curve, resulting in the printed
  • the contour of the cylinder 51 is rough.
  • the 3D print head 3 provided by the embodiment of the present invention does not need to print according to the pass, but adjusts the length and position of the discharge port 35 to track the outline of the target print area. Therefore, the cylinder printed by the 3D print head 3
  • the contour of 52 is also smoother and more realistic.
  • the embodiment of the present invention does not specifically define the filling path of the 3D print head 3 in the process of printing the target filling area, and may be any form of planar motion.
  • the 3D print head 3 in the process of filling the target filling area, can be linearly moved in a unidirectional direction under the control of the control device 4, that is, the filling path of the 3D print head 3 in the process of printing the target filling area is a one-way straight line. path.
  • the filling path of the 3D print head 3 when printing the target filling area is set to a one-way straight path, which simplifies the control method and further improves the printing efficiency as compared with the parallel linear reciprocating path which is conventionally used in conventional 3D printing.
  • the target filling area can be completely filled by a simple one-way linear motion of the 3D printing head 3, which not only improves the printing efficiency, but also simplifies the control mode of the 3D printing head.
  • the target fill area may be the entire fill area surrounded by the current layered profile line, or may be the partial fill area surrounded by the current layered profile line. The following describes the division of the target fill area.
  • the area surrounded by the current layered cross-sectional outline is a complete connected area 61.
  • T is the maximum width of the region 61 in the x direction.
  • the area 61 can be determined as the target filling area. area.
  • the 3D print head 3 can be controlled to perform a one-way linear movement in the y direction, and during the movement thereof, the position of the end portions 351, 352 of the discharge port 35 is adjusted by the driving device 33 to make the end
  • the projections in the vertical direction of the portions 351, 352 are located on the cross-sectional contour of the region 61. In this way, the 3D print head 3 can print the current layer by one-way linear motion.
  • the region 61 can be divided into a region 61a and a region 61b, wherein the region 61a and the region 61b are separated by a broken line 62.
  • the area 61a may be first set as the target filling area, and the 3D print head 3 is controlled to perform a one-way linear movement along the y-axis forward direction, thereby filling the area 61a in one time; then, The area 61b is set as the target filling area, and the 3D print head 3 is controlled to perform a one-way linear movement in the negative direction of the y-axis, thereby filling the area 61b in one time.
  • the area surrounded by the cross-sectional outline of the current layer is a complete communication area 61, and the length direction of the discharge port 35 is the x direction, and the moving direction of the 3D print head is y.
  • the axis is positive.
  • the sectional line of the region 61 is cut along the line in the x-axis direction into the line segment 64a and the line segment 64b.
  • the discharge port 35 cannot fill the area corresponding to the line segment 64a and the line segment 64b at once.
  • the area 61 can be divided in advance, for example, the area 61 can be divided into the area 61a and the area 61b as shown in FIG. 14, wherein the area 61a and the area 61b
  • the dotted line 62 is used as a dividing line.
  • the area 61a may be first set as the target filling area, and the 3D print head 3 is controlled to perform a one-way linear movement along the y-axis forward direction, thereby filling the area 61a in one time; then, The area 61b is set as the target filling area, and the 3D print head 3 is controlled to perform a one-way linear movement in the negative direction of the y-axis, thereby filling the area 61b in one time.
  • the area surrounded by the cross-sectional outline of the current layer includes a plurality of areas 61a, 61b separated from each other, and when it is necessary to print a layer having a structure similar to that of FIG. 15, it is also possible to separately These areas are determined to be the target fill area for printing.
  • the area 61a may be first set as the target filling area, and the 3D print head 3 is controlled to perform a one-way linear movement along the y-axis forward direction, thereby filling the area 61a all at once; then, the area 61b is set as the target.
  • the filling area controls the 3D print head 3 to perform a one-way linear movement in the negative direction of the y-axis, thereby filling the area 61b in one time.
  • the above description is mainly made by taking the longitudinal direction of the discharge port 35 of the 3D print head 3 as the x direction and the moving direction of the 3D print head 3 as the y direction.
  • the embodiment of the present invention is not limited thereto.
  • the direction of movement of the 3D printhead 3 may be the y-direction, but the length of the spout 35 may not be perpendicular to the y-direction.
  • the length direction of the discharge opening 35 may be the x direction, but the moving direction of the 3D print head 3 may not be perpendicular to the x direction.
  • the cross-sectional lines of the current layered cross-sectional contour are cut into a plurality of line segments.
  • the layer having a similar structure is referred to as having a plurality of layers.
  • the bottom 39 of the delivery conduit 31 may be provided with a plurality of discharge openings 35, which may correspond to different target filling regions of the current layer.
  • a plurality of discharge ports 35 are disposed at the bottom 39 of the delivery pipe 31, and the different discharge openings 35 may correspond to different target filling regions of the current layer. In this way, even if the current layer has multiple separation structures, It is also possible to make the current layered printing complete by one-way linear motion by assigning different target filling areas to different discharge ports 35. Taking FIG. 14 or FIG.
  • the bottom portion 39 of the delivery pipe 31 includes a first discharge port and a second discharge port, and the target discharge area 61a may be allocated to the first discharge port to distribute the second discharge port.
  • the target fills the area 61b.
  • the 3D print head 3 can be controlled to perform a one-way linear movement in the positive direction of the y-axis, and during the movement of the 3D print head 3, the first discharge port is controlled to fill the area 61a at one time.
  • the second discharge port is controlled to fill the area 61b in one time. It can be seen that by providing a plurality of discharge ports 35 at the bottom 39 of the output duct 22, the current layer can be completely filled at one time by the 3D print head 3 even if the current layer has a plurality of separate structures.
  • the number of the discharge ports 35 is not specifically limited. For example, two discharge ports, three discharge ports, and even more discharge ports may be provided.
  • the embodiment of the present invention does not specifically limit the arrangement manner between the plurality of discharge ports and the structural size of each discharge port.
  • the plurality of discharge ports 35 may be disposed in parallel with each other as shown in FIG. 16; for example, the plurality of discharge ports 35 may be arranged at an angle (for example, 10 degrees or 15 degrees) with each other.
  • the maximum length and width of each of the discharge ports 35 may be the same or different, which is not specifically limited in the embodiment of the present invention.
  • the current tier when a plurality of discharge ports are provided at the bottom of the delivery pipe 31, the plurality of discharge ports are not necessarily used at the same time, and can be freely selected according to actual conditions.
  • the current tier can be filled in one time using one spout (other spouts can be fully closed).
  • the current layer may be filled in one time using two or more discharge ports.
  • the current layer in the case where the current layer has multiple separation structures, the current layer can be filled in one time using two or more discharge ports.
  • the current layer in the case where the current layer has a multi-channel separation structure, the current layer can be filled multiple times using one discharge port.
  • the sum of the target fill regions corresponding to the plurality of spouts may be equal to the entire fill region of the current layer.
  • the 3D print head 3 can use a plurality of discharge ports to complete the current layered one-time printing, further improving the printing efficiency.
  • the feed device 36 can be configured for the 3D printhead 3.
  • the feeder 36 can be connected to the delivery conduit 31.
  • the feeding device 36 can receive the control command of the control device 4, and adjust the material extrusion amount of the discharge port 35 according to the control command of the control device 4.
  • the feeding device 36 can adjust the amount of material extrusion of the discharge port 35 such that the material extrusion amount of the discharge port 35 changes with the length of the discharge port 35, or The amount of material extruded from the discharge port 35 varies with the contour of the target filling area.
  • the feeding device 36 can adjust the amount of material to be discharged from the discharge port 35 such that the material extrusion amount of the discharge port 35 matches (or corresponds to) the length of the discharge port 35.
  • the matching relationship between the material extrusion amount of the discharge port 35 and the length of the discharge port 35 can indicate that the material extrusion amount of the material port 35 is substantially proportional to the length of the discharge port 35, so that the length of the discharge port 35 is longer.
  • the larger the flow rate of the material conveyed by the feeding device 36 to the discharge port 35 the more the material extrusion amount of the discharge port 35 is correspondingly increased.
  • the feeding device 36 provided by the embodiment of the invention can accurately control the material extrusion amount of the discharging port 35 according to the length of the discharging port 35 under the control of the control device 4, so as to further improve the printing efficiency and printing precision of the 3D printing. Provides the foundation.
  • the feeding device 36 may be, for example, a stepless variable flow feeding device, but the form of the feeding device 36 is not specifically limited in the embodiment of the present invention. As shown in FIG. 17, the feeding device 36 may be a screw feeding device 36a and a pneumatic feeding device. Device 36b or piston feed device 36c.
  • the material extrusion amount of the discharging port 35 can be controlled by adjusting the rotation speed of the screw; in the case that the feeding device 36 is a pneumatic feeding device, the adjustment can be applied to the transmission.
  • the pressure on the liquid level of the material in the material pipe 31 controls the material extrusion amount of the discharge port 35; in the case that the feeding device 36 is a piston type feeding device, the movement speed of the piston in the cylinder can be controlled to control The amount of material extruded from the port 35.
  • the delivery conduit 31 may include a material volume 37 disposed between the discharge port 35 and the feed device 36, and a temperature disposed at the material cavity 37.
  • Control device 38 can be, for example, a heating device.
  • the temperature control device 38 can be disposed, for example, outside of the material volume 37.
  • the temperature control device 38 can be used to control the temperature of the material volume 37.
  • a material cavity 37 is disposed in the delivery pipe 31. Therefore, sufficient material can be stored in the material cavity 37 before the 3D printing, and the materials are controlled to be melted by the temperature control device 38. status. In actual printing, the material in the material cavity 37 can be directly sent to the discharge port 35 to simplify the material feeding mode of the 3D print head. In addition, the opening 34 is located at the bottom of the material cavity 37.
  • the material volume 37 is usually large in size, and for a larger material volume, It is convenient to carry out precise temperature control, and accurate temperature control is very important for accurately controlling the stability of the printing process and making the material of the edge of the contour that is just printed out in the most reasonable flow state, which can improve the formation of printed articles. Precision and process stability. Since a larger material chamber can store a larger volume of material, a larger volume material has a larger heat capacity, and the larger the heat capacity, the more favorable for accurate temperature control.
  • an embodiment of the present invention further provides a 3D printing device 2.
  • the 3D printing device 2 includes a 3D print head 3. Further, in some embodiments, the 3D printing device 2 may also include a control device 4 and/or a printing platform 8.
  • control device 4 may generate control instructions for the control device 4 based on the hierarchical data of the current hierarchy, wherein the hierarchical data may include cross-sectional profile information of the current hierarchy.
  • the current layered profile information may, for example, indicate the shape and/or position of the current layered profile line, and the like.
  • control commands of the control device 4 may include one or more of the following control commands: control commands for driving the movement of the shutter 33, which may be used, for example, to control the end 351 of the spout 35 and/or a position of the end 352 in the opening 34; a control command for controlling the filling path of the 3D print head 3, the control command being usable, for example, for controlling the linear movement of the 3D print head 3 in one direction; and for controlling the feeding device 36 to be directed A control command for the flow rate of the material delivered by the port 35, which can be used, for example, to control the amount of material being discharged from the discharge port 35.
  • the control device 4 in the present application may be provided collectively or separately.
  • the control device 4 is a distributed control device including a first control device and a second control device that are separately disposed, the first control device is for controlling the drive device 33; the second control device is for controlling the feed device 36;
  • the control device 4 is a centralized control device that can be used to collectively control the drive device 33 and the feed device 36.
  • the control device 4 can pre-calculate the position A 1 (ie, the position of the pass A 1 in FIG. 3a) according to the cross-sectional profile information of the current layer.
  • the y coordinate of each position in the position A 25 (i.e., the position of the pass A 25 in Fig. 3a) and the cross-sectional outline 42 are along the length direction of the discharge port 35 (in Fig.
  • the length of the discharge port is set) The position and length of the cut line in the x direction; during the filling of the target fill area, the control device 4 can control the 3D print head 3 from the position A 1 to the position A 25 and to the drive device 33 during the movement Control commands are sent to adjust the position of the end 351 and/or end 352 in the opening 34 by the drive means 33 such that the projection of the ends 351, 352 in the vertical direction is always on the cross-sectional contour 42.
  • the control device 4 can 33 to adjust and / or position of the end portion 352 in the opening 34 of the end portion 351 by a driving means, such that the end of the discharge port 35 portions 351 and 352 are positioned directly above the points p1 and p2 points, so that one-time-region segment p1 p2 where complete filling;
  • the control device 4 controls the 3D print head 3 is moved to the position a 11, the control unit 4 by drive means 33 Adjusting the position of the end 351 and/or the end 352 in the opening 34 such that the ends 351, 352 of the discharge opening 35 are located directly above the points p3 and p4, respectively, so that the area where the line segment p3-p4 is located is completely filled at one time;
  • the control device 4 controls the 3D print head 3 to move to the position A 25
  • the control device 4 can adjust the position of the end portion 351 and/or the end portion 352 in the opening 34 by
  • the control device 4 can pre-calculate the y coordinate of each of the positions A 1 to A 25 according to the cross-sectional profile information of the current layer.
  • the control means 4 can be adjusted by the feed material 36 discharge opening 35 of the extrusion amount, so that the material feed port 35 is extrusion amount and the line segment p1 -p2 length matches, such that the area of the disposable line p1-p2 where complete filling;
  • the control device 4 controls the 3D position of the print head 3 is moved to the a 11, the control device 4 can be adjusted by the feed means 36 of the discharge port 35
  • the material extrusion amount is such that the material extrusion amount of the discharge port 35 matches the length of the line segment p3-p4, so that the area where the line segment p3-p4 is filled is completed at one time; when the control device 4 controls the 3D print head 3 to move to the position At A 25 , the control device 4 can adjust the material extrusion amount of the discharge port 35 through the feeding device 36, so that the material extrusion amount of the discharge port 35 matches the length of the line segment p5-p6,
  • the embodiment of the invention further provides a control method of the 3D print head 3. As shown in FIG. 18, the control method includes:
  • Step 1810 Generate a control instruction of the control device.
  • Step 1820 Send a control instruction of the control device to the 3D print head.
  • control method specifically includes:
  • Step 1812 Acquire hierarchical data of the current layer, where the layered data includes information of a cross-sectional outline of the current layer;
  • Step 1814 Generate a control instruction of the control device according to the hierarchical data of the current layer
  • Step 1820 Send a control instruction of the control device to the 3D print head.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer Reading in a storage medium or transferring from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be wired from a website site, computer, server or data center (eg, coaxial cable, fiber optic , digital subscriber line (DSL) or wireless (eg infrared, wireless, microwave, etc.) to another website, computer, server or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (such as a digital video disc (DVD)), or a semiconductor medium (such as a solid state disk (SSD)).
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium such as a digital video disc (DVD)
  • a semiconductor medium such as a solid state disk (SSD)
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

一种3D打印头(3)、3D打印设备(2)和3D打印头(3)的控制方法。该3D打印头(3)包括:输料管道(31),输料管道(31)的底部(39)设置有开口(34);遮挡件(32),设置在开口(34)处,且与底部(39)滑动连接,开口(34)包括被遮挡件(32)遮挡的区域以及未被遮挡件(32)遮挡的区域,其中未被遮挡件(32)遮挡的区域形成3D打印头(3)的出料口(35),出料口(35)包括第一端部(351)和第二端部(352),第一端部(351)和第二端部(352)限定了出料口(35)的长度;驱动装置(33),与遮挡件(32)相连,驱动装置(33)接收控制装置(4)的控制指令,根据控制装置(4)的控制指令驱动遮挡件(32)在开口(34)处滑动,以调节第一端部(351)和/或第二端部(352)在开口(34)中的位置,从而调节出料口(35)的长度。该3D打印头(3)使得打印效率和打印精度的兼顾成为可能。

Description

3D打印头、3D打印设备和3D打印头的控制方法 技术领域
本申请涉及3D打印领域,并且更具体地,涉及一种3D打印头、3D打印设备以及3D打印头的控制方法。
背景技术
熔融沉积成型(fused deposition modeling,FDM)技术是一种常用的3D打印技术。FDM技术通常需要将物料加热至熔融状态(或半流动状态),并将熔融状态的物料从3D打印头的出料口(或称挤出口)挤出,物料在打印平台上逐层沉积,形成3D物品。
传统3D打印头的出料口一般为具有固定形状的喷嘴。当物品的打印精度要求较高时,通常会选取喷嘴口径较小的3D打印头,这种类型的3D打印头单位时间内的物料挤出量少,打印效率较低;当物品的打印效率要求较高时,通常会选取喷嘴口径较大的3D打印头,这种类型的3D打印头打印出的物品形状比较粗糙,打印精度较低。由此可见,传统3D打印头无法兼顾打印效率和打印精度。
3D打印技术未来主要面向工业生产,对工业产品而言,效率和精度同等重要。因此,亟需提供一种更加适于3D打印的3D打印头。
发明内容
本申请提供一种3D打印头、3D打印设备和3D打印头的控制方法,使得兼顾3D打印的打印效率和打印精度成为可能。
第一方面,提供一种3D打印头,包括:输料管道,所述输料管道的底部设置有开口;遮挡件,设置在所述开口处,且与所述底部滑动连接,所述开口包括被所述遮挡件遮挡的区域以及未被所述遮挡件遮挡的区域,其中未被所述遮挡件遮挡的区域形成所述3D打印头的出料口,所述出料口包括第一端部和第二端部,所述第一端部和所述第二端部限定了所述出料口的长度;驱动装置,与所述遮挡件相连,所述驱动装置接收控制装置的控制指令,根据所述控制装置的控制指令驱动所述遮挡件在所述开口处滑动,以调节所述第一端部和/或所述第二端部在所述开口中的位置,从而调节所述出料口的长度。
第二方面,提供一种3D打印设备,包括如第一方面所述的3D打印头和控制装置。
第三方面,提供一种3D打印头的控制方法,所述3D打印头为第一方面描述的3D打印头,所述控制方法包括:生成所述控制装置的控制指令;向所述3D打印头发送所述控制装置的控制指令。
第四方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在3D打印设备上运行时,使得3D打印设备执行第一方面所述的方法。
第五方面,提供一种包含指令的计算机程序产品,当其在3D打印设备上运行时,使得3D打印设备执行上述第一方面所述的方法。
在充分考虑了3D打印对象特性的基础上,将3D打印头的出料口设计为长度连续可调的出料口,这种3D打印头使得打印效率和打印精度的兼顾成为可能,更加适于3D打印。
附图说明
图1是传统3D打印设备的总体结构示意图。
图2是传统3D打印头的结构示意图。
图3a是分层的填充区域的示例图。
图3b是道次的排布方式示例图。
图4是本发明实施例提供的3D打印设备的总体结构示意图。
图5是本发明实施例提供的输料管道的底部结构示意图。
图6是本发明一个实施例提供的输料管道的底部结构的仰视图。
图7是本发明另一实施例提供的输料管道的底部结构的仰视图。
图8是本发明又一实施例提供的输料管道的底部结构的仰视图。
图9是本发明又一实施例提供的输料管道的底部结构的仰视图。
图10是本发明又一实施例提供的输料管道的底部结构的仰视图。
图11是本发明实施例提供的3D打印头与传统3D打印头的打印效果对比图。
图12是传统3D打印过程中的道次切换方式的示例图。
图13是分层的截面轮廓形状的一个示例图。
图14是分层的截面轮廓形状的另一示例图。
图15是分层的截面轮廓形状的又一示例图。
图16是本发明又一实施例提供的输料管道的底部结构的仰视图。
图17是本发明实施例提供的送料装置的结构示例图。
图18是本发明一个实施例提供的3D打印头的控制方法的示意性流程图。
图19是本发明另一实施例提供的3D打印头的控制方法的示意性流程图。
具体实施方式
为了便于理解,先对传统3D打印设备进行简单介绍。
如图1所示,传统3D打印设备1通常包括送料装置11、3D打印头12、打印平台13以及控制装置14。
送料装置11可以与丝盘15相连。实际打印过程中,送料装置11可以从丝盘15上取得丝状的物料,并将丝状的物料输送至3D打印头12。3D打印过程所使用的物料一般是具有热塑性的物料,如高分子聚合物、低熔点金属以及其他可配成流动性膏状的物料(如膏状的陶瓷、高熔点金属粉末混合物、水泥等)。
如图2所示,3D打印头12通常包括输料管道121、出料口122和温度控制装置123。温度控制装置123一般设置在输料管道121的外侧,用于将送料装置11送至输料管道121的物料加热至熔融状态。温度控制装置123例如可以是加热装置。出料口122可以将熔融状态的物料挤出至打印平台13上,因此,出料口122也可称为挤出口。
如图1所示,控制装置14用于控制3D打印头12对物品进行逐层打印。在打印物品的任一分层的过程中,控制3D打印头12可以按照预设的填充路径将该分层的填充区域(该分层的截面轮廓线所包围的区域)填充完整。
传统3D打印的总体过程大致如下:
在打印物品之前,可以先利用建模软件建立物品的3D模型。该建模软件例如可以是计算机辅助设计(computer aided design,CAD)软件。然后,对创建出的3D模型进行 分层处理,将3D模型划分成多个分层,得到各分层的分层数据。通过对3D模型进行分层处理,相当于将3D物品的打印过程分解成许多2D打印过程,每个分层的打印过程与平面的2D打印过程类似。在得到各分层的分层数据之后,控制装置14可以根据各分层的分层数据控制3D打印头12沿着一定的填充路径移动,并在移动过程中,通过出料口122将熔融状态的物料挤出至打印平台13上,对各分层的填充区域进行填充。当物品的所有分层打印完毕后,物料逐层凝固,形成3D物品。
为了便于理解,下面以图3a和图3b为例,对传统3D打印过程中的某一分层(下称当前分层)的填充过程进行详细说明。
参见图3a和图3b,当前分层的填充区域为区域41,区域41的截面轮廓线为截面轮廓线42。
为了将填充区域41填充完整,通常会基于截面轮廓线42,将区域41划分成紧密排布的多个道次(pass),如图3b所示的道次A1-道次A25
在打印当前分层的过程中,控制装置14控制3D打印头12的z坐标保持不变,并控制3D打印头12按照一定的顺序将所有道次填充完整,如按照平行往复直线路径依次填充道次A1-A25
以道次A1的填充过程为例,控制装置14可以先将3D打印头12移动至如图3a所示的位置点p1的上方,然后控制3D打印头12从位置点p1上方移动至位置点p2上方,并在移动过程中通过出料口122将熔融状态的物料挤出至道次A1上,从而对道次A1进行填充,其他道次的填充方式类似,此处不再赘述。当所有道次填充完毕之后,当前分层的打印过程结束,可以控制3D打印头12或工作平台13沿z轴方向移动,准备打印下一分层。
3D打印头12的出料口122通常被设计为形状固定的喷嘴,常见的喷嘴形状包括圆孔、方孔或稍加变形的等径异形孔。喷嘴的口径通常在1mm左右,常见的口径为0.4mm。当物品的打印精度要求较高时,通常会选取喷嘴口径较小的3D打印头,这种类型的3D打印头单位时间内的物料挤出量少,打印效率较低;当物品的打印效率要求较高时,通常会选取喷嘴口径较大的3D打印头,这种类型的3D打印头打印出的物品形状比较粗糙,打印精度较低。由此可见,传统3D打印头无法兼顾打印效率和打印精度。下面对3D打印头的这种设计方式的形成过程进行分析。
3D打印技术是在2D打印技术基础上发展起来的一项更为先进的制造技术。在3D打印前,通常需要对待打印物品的3D模型进行分层处理,经过分层处理,相当于将3D物品的打印过程分解成许多2D打印过程,即每个分层的打印过程可以看成是一次平面打印过程。因此,传统3D打印设备沿用了2D打印设备的许多设计理念。最为明显地,2D打印头的出料口一般采用形状固定的喷嘴设计,3D打印头的出料口的设计沿袭了2D打印头的这种设计方式,也将3D打印头设计成为形状固定的喷嘴。如上文所述,这种喷嘴设计导致3D打印无法兼顾打印效率和打印精度,成为阻碍3D打印技术发展的关键障碍。
因此,亟需摆脱2D打印头的出料口的设计理念的束缚,提供一种更加适于3D打印的打印头。
下面结合图4,对本发明实施例提供的3D打印头进行详细描述。
图4是本发明实施例提供的3D打印设备2的总体结构示意图。如图4所示,3D打印设备2可以包括3D打印头3。进一步地,在一些实施例中,3D打印设备2还可以包 括控制装置4(例如可以是数控装置)和/或打印平台8。
3D打印头3可以包括输料管道31、遮挡件32和驱动装置33。
驱动装置33可以与控制装置4相连(如电连接)。驱动装置33可以接收控制装置4的控制指令,并根据控制装置4的控制指令驱动遮挡件32运动。驱动装置33可以是电力驱动装置,液压驱动装置,气力驱动装置或复合型驱动装置,本发明实施例对此不做具体限定。以电力驱动装置为例,驱动装置33可以包括电动机以及与电动机相连的传动装置,如齿轮、转轴等。控制装置4可以向驱动装置33发送控制指令,以控制电动机的转速和转向等,从而实现对驱动装置33的控制。驱动装置33可以驱动遮挡件32在输料管道31的底部39滑动,如在输料管道31的底部39执行往复直线移动。
图5是输料管道31的底部结构示意图。图6-图10均是输料管道31的底部结构的仰视图,其中图7-图10保留了遮挡件32,图6去除了遮挡件32,以更好地示出开口34在底部39中的位置。
参见图6,输料管道31的底部39设置有开口34。该开口34的长度可以为L,宽度可以为h。换句话说,开口34可以占据输料管道31的底部39的L×h的面积区域。本发明实施例提供的开口34可以具有狭长结构,换言之,开口34的长度L可以远大于宽度h。
开口34的长度L的取值可以根据实际需要选择,本发明实施例对此不做具体限定。实际上,只要输料管道31的底部39足够宽,开口34的长度L理论上可以取任意值。开口34的宽度h可以取固定值,如可以取0.01-5mm中的任意值。参见后文的描述可以看出,在某些实现方式中,宽度h的取值可以决定物品的打印精度和打印效率,因此宽度h的取值可以视物品对打印精度和打印效率的需求而定。例如,当物品的打印精度较高时,可以将宽度h设置为0.01mm甚至更小,从而对物品进行高精度打印;又如,当物品的打印效率要求较高时,可以将宽度h的取值设置为1mm-5mm,从而对物品进行高效打印。
参见图5、图7-图10,遮挡件32可以设置在开口34处,例如可以设置在开口34的前端。开口34可以包括被遮挡件32遮挡的区域以及未被遮挡件32遮挡的区域,其中未被遮挡件遮挡的区域即可形成3D打印头3的出料口35。
如图6所示,开口34占的区域大小为L×h。如图7-图9所示,出料口35占的区域大小为l×h。因此,在图6-图9的实施例中,开口34中的未被遮挡件32遮挡的区域的大小为l×h,下文将这部分区域称为开口34的打开区域;开口34中的被遮挡件32遮挡的区域大小为(L-l)×h,下文将这部分区域称为开口34的闭合区域。在打印物品的过程中,熔融状态的物料会通过输料管道31输送至开口34,由于闭合区域的存在,熔融状态的物料无法从该闭合区域流出,仅能从打开区域流出。因此,打开区域形成了物料的出料口35。
可选地,在一些实施例中,开口34的闭合区域的面积可以为0,表示开口34处于完全打开状态。此时,出料口35的长度等于开口34的长度。可选地,在另一些实施例中,开口34的打开区域的面积可以为0,表示开口34处于完全闭合状态。此时,出料口35的长度等于0。
可选地,在一些实施例中,出料口35的最大长度可以小于开口34的长度。参见图5,遮挡件32可以是能够沿着设置在输料管道31底部的凹槽滑动的活块,为了保证活块和 凹槽之间的动密封,或保证活块的滑动范围不要超过预设范围,可以控制出料口35的最大长度l小于开口34的长度L。
需要说明的是,本发明实施例对遮挡件32的个数不做具体限定。作为一个示例,如图5、图7和图10所示,可以在开口34两端各设置一个遮挡件32;作为另一个示例,如图8或图9所示,可以仅在开口34的一端设置遮挡件32。应理解,遮挡件32的数量不同,出料口35的长度的定义方式也可以有所不同,下面结合图6-图9对出料口35的长度的定义方式进行详细描述。
如图6所示,开口34可以包括端部341,342,端部341和端部342限定了开口34的长度。本发明实施例对开口34的形状不做具体限定,可以是具有狭长结构的任意形状的开口。如图6所示,开口34可以是大致矩形的开口,该开口34还可以包括端部343,344,端部343和端部344可以限定开口34的宽度。
在图7对应的实施例中,可以在开口34的两端各设置有一个遮挡件,即第一遮挡件32a和第二遮挡件32b。出料口35包括端部351,352,端部351,352限定了出料口35的长度。第一遮挡件32a包括端部351,321。结合图6可以看出,端部321位于开口34的端部341的外侧,端部351位于开口34的端部341的内侧。第二遮挡件32b包括端部352,322。结合图6可以看出,端部322位于开口34的端部342的外侧,端部352位于开口34的端部342的内侧。从图7可以看出,出料口35的端部351与第一遮挡件32a的靠近第二遮挡件32b的端部为同一端部,出料口35的端部352与第二遮挡件32b的靠近第一遮挡件32a的端部为同一端部。因此,在图7对应的实施例中,出料口35的长度由第一遮挡件32a和第二遮挡件32b之间的间隙限定。
在图8对应的实施例中,开口34的一端设置有遮挡件32,另一端未设置遮挡件。该遮挡件32包括端部351,321,其中端部321位于开口34的端部341的外侧,端部351位于开口34的端部341的内侧。从图8可以看出,出料口35的端部352与开口34的端部342为同一端部。因此,在图8对应的实施例中,出料口35的长度由遮挡件32与开口34的端部342之间的间隙限定。
在图9对应的实施例中,开口34的一端设置有一个遮挡件32,另一端未设置遮挡件。该遮挡件32包括端部352,322,端部322位于开口34的端部342的外侧,端部352位于开口34的端部342的内侧。从图9可以看出,出料口35的端部351与开口34的端部341为同一端部。因此,在图9对应的实施例中,出料口35的长度由遮挡件32与开口34的端部341之间的间隙限定。
需要说明的是,本发明实施例对遮挡件32的形式,以及遮挡件32与输料管道31的配合方式不做具体限定。
作为一个示例,如图5所示,输料管道31底部39可以设置凹槽(图中未示出),遮挡件32可以是位于凹槽中的且与该凹槽滑动连接的活块。开口34可以设置在凹槽的底部。
作为另一个示例,如图10所示,输料管道31的底部39可以设置滑轨361和滑轨362,遮挡件32可以是能够沿滑轨361,362滑动的滑板。
驱动装置33可以与遮挡件32相连。驱动装置33可以接收控制装置4的控制指令,并根据控制装置4的控制指令驱动遮挡件32在开口34处滑动,以调节出料口35的端部351和/或端部352在开口34中的位置,从而调节出料口35的长度。
作为一个示例,如图7所示,驱动装置33可以分别驱动第一遮挡件32a和第二遮挡件32b滑动(如执行往复直线运动),从而更改端部351,352在开口34中的位置,进而调节出料口35的长度。
作为另一个示例,如图8所示,驱动装置33可以驱动遮挡件32滑动(如执行往复直线运动),从而更改端部351在开口34中的位置,进而调节出料口35的长度。
作为另一个示例,如图9所示,驱动装置33可以驱动遮挡件32滑动(如执行往复直线运动),从而更改端部352在开口34中的位置,进而调节出料口35的长度。
应理解,驱动装置33可以控制出料口35的长度在预设范围内变化。该预设范围可以小于或等于开口34的长度。出料口35长度的变化可以理解为一种连续变化。当然,所谓连续变化是指在设备精度(或最小调节步长)允许情况下的连续变化,并非指出料口35可以达到预设范围内的任意值。以预设范围为0-10cm为例进行说明,如果设备精度为1mm,则出料口35的长度可以以1mm为单位进行连续变化,如出料口35的长度可以是0mm,1mm,2mm……100mm;如果设备精度是5mm,则出料口35的长度可以以5mm为单位进行连续变化,如出料口35的长度可以是0mm,5mm,10mm……100mm。设备精度与3D打印设备2的机械结构和控制方式等因素有关,本发明实施例对此不做具体限定。
传统3D打印头沿袭2D打印头的设计理念,将3D打印头的出料口设计成形状固定的喷嘴。本发明实施例提供的3D打印头3将出料口35设计成长度在一定范围内连续可调的出料口。这是在充分考虑了3D打印对象特性的基础上做出的设计,与传统3D打印头相比,本发明实施例提供的3D打印头3使得打印效率和打印精度的兼顾成为可能,更加适于3D打印。具体论述如下。
2D打印对象的尺寸一般较小,且打印对象以文字或图像为主。文字或图像可以在二维平面上自由排布,没有规律可寻。因此,将2D打印头设计成形状固定的喷嘴具有一定的通用性,这种设计在2D打印领域是合理的。与2D打印对象不同,3D打印对象一般为需要实际使用的3D物品。3D物品具有一定的物理轮廓,因此,3D物品沿某一截面的截线通常是一个或多个封闭且连续变化的曲线。本发明实施例充分利用3D打印对象的这一特点,在输料管道31底部设置开口34,并在开口34处设置遮挡件32,通过遮挡件32在开口34处的滑动使得出料口35的长度连续可调。出料口35长度的连续可调与3D打印对象的截面轮廓线封闭且连续变化的特性相吻合,这种出料口35更加适于3D打印,使得3D打印效率的大幅提升成为可能。例如,采用本发明实施例提供的3D打印头,可以不再像传统3D打印头那样按照道次进行打印,而是可以沿着截面轮廓线进行连续打印,并在打印过程中控制出料口35随截面轮廓线的变化而变化,可以理解的是,与按照道次打印的方式相比,沿着截面轮廓线打印具有超高的打印效率。进一步地,在打印过程中,可以将开口34的宽度设置成固定值,使3D物品的打印精度保持不变,在出料口35连续变化的过程中使得打印精度保持不变,这是传统3D打印头所难以达到的。因此,本发明实施例提供的具有长度连续可调的出料口的3D打印头使得兼顾打印效率和打印精度成为可能。
可选地,在一些实施例中,如图7-图9所示,出料口35还可以包括端部353,354。端部353和端部354可以限定出料口35的宽度。
作为一种实现方式,出料口35的宽度可以为固定值,即端部353,354之间的距离可 以保持不变。
对于待打印的3D物品而言,其对打印精度的要求通常是一致的。考虑到这一点,本发明实施例将出料口35的长度的取值设置为连续变化,宽度的取值设置为固定值,这样既可以保证出料口35的打印效率的提升,还可以保证3D物品的打印精度始终保持一致,这是传统3D打印头所无法实现的。
作为另一种实现方式,可以将出料口35的宽度设置为可调宽度,例如,可以在出料口35的侧壁设置另一遮挡件(图中未示出),该遮挡件可以沿宽度方向滑动,从而对出料口35的宽度进行调节。这种实现方式使得3D打印头的精度灵活可调。
可选地,在一些实施例中,在对当前分层中的目标填充区域进行填充的过程中,驱动装置33可以根据控制装置4的控制指令,驱动遮挡件32在开口34处滑动,以调节端部351和/或端部352在开口34中的位置,使出料口35的长度与目标填充区域的截面轮廓线沿出料口35的长度方向的截线的长度相匹配,其中目标填充区域为当前分层的部分或全部填充区域。应理解,当前分层可以是待打印物品的任一分层。待打印物品的分层可以基于对待打印物品的3D模型进行分层处理得到。
出料口35的长度与目标填充区域的截面轮廓线沿出料口35的长度方向的截线的长度相匹配(或相对应)可以指:出料口35的长度与目标填充区域的截面轮廓线沿出料口35的长度方向的截线的长度大致相等或精确相等。
以目标填充区域41为如图3a所示的区域41为例,假设x方向为出料口的长度方向,可以控制3D打印头3从位置点A1移动至位置点A25,并在3D打印头3的移动过程中,控制出料口35的端部351,352在开口34中的位置,使端部351,352的长度与截面轮廓线42沿x方向的截线的长度相匹配。
例如,当3D打印头3移动至道次A1所在的位置时,驱动装置33可以通过遮挡件32调节出料口35的端部351和/或端部352在开口34中的位置,使出料口35的长度与线段p1-p2的长度相匹配。这样一来,可以一次性打印完道次A1;当3D打印头3移动至道次A11所在的位置时,驱动装置33可以通过遮挡件32调节出料口35的端部351和/或端部352在开口34中的位置,使出料口35的长度与线段p3-p4的长度相匹配。这样一来,可以一次性打印完道次A11;当3D打印头3移动至道次A25所在的位置时,驱动装置33可以通过遮挡件32调节出料口35的端部351和/或端部352在开口34中的位置,使出料口35的长度与线段p5-p6的长度相匹配。这样一来,可以一次性打印完道次A25
在3D打印头3的移动过程中,出料口35的长度始终与目标填充区域的截面轮廓线沿出料口35长度方向的截线长度相匹配,从而可以一次性将截面轮廓线的一条截线区域(一条截线区域可对应于传统3D打印的一个道次)打印完整,从而大幅提高3D打印的打印效率。
可选地,在一些实施例中,在对当前分层中的目标填充区域进行填充的过程中,驱动装置33还可以对出料口35的长度和出料口35与目标填充区域的截面轮廓线的相对位置同时进行调整,以进一步提高打印效率。
例如,在对当前分层中的目标填充区域进行填充的过程中,驱动装置33可以根据控制装置4的控制指令,驱动遮挡件32在开口34处滑动,以调节端部351和/或端部352在开口34中的位置,使端部351,352在竖直方向上的投影位于目标填充区域的截面轮廓线上。
以目标填充区域41为如图3a所示的区域41为例,可以控制3D打印头3从位置点A1移动至位置点A25,并在3D打印头3的移动过程中,控制出料口35的端部351,352的位置,使端部351,352在竖直方向上的投影位于截面轮廓线42上。
例如,当3D打印头3移动至道次A1所在的位置时,驱动装置33可以通过遮挡件32调节出料口35的端部351和/或端部352在开口34中的位置,使端部351的坐标(x,y)与位置点p1的坐标(x,y)相同,并使端部352的坐标(x,y)与位置点p2的坐标(x,y)相同。这样一来,端部351在竖直方向上的投影就会位于截面轮廓线42的p1点处,端部352在竖直方向上的投影就会位于截面轮廓线42的p2点处;当3D打印头3移动至道次A11所在的位置时,驱动装置33可以通过遮挡件32调节出料口35的端部351和/或端部352在开口34中的位置,使端部351的坐标(x,y)与位置点p3的坐标(x,y)相同,并使端部352的坐标(x,y)与位置点p4的坐标(x,y)相同。这样一来,端部351在竖直方向上的投影就会位于截面轮廓线42的p3点处,端部352在竖直方向上的投影就会位于截面轮廓线42的p4点处;当3D打印头3移动至道次A25所在的位置时,驱动装置33可以通过遮挡件32调节出料口35的端部351和/或端部352在开口34中的位置,使端部351的坐标(x,y)与位置点p5的坐标(x,y)相同,并使端部352的坐标(x,y)与位置点p6的坐标(x,y)相同。这样一来,端部351在竖直方向上的投影就会位于截面轮廓线42的p5点处,端部352在竖直方向上的投影就会位于截面轮廓线42的p6点处。
从以上描述可以看出,在3D打印头3的移动过程中,出料口35的端部351,352在竖直方向上始终与目标填充区域的截面轮廓线对齐,对目标填充区域的截面轮廓线进行跟踪,这是一种与传统3D打印完全不同的3D打印方式,这种3D打印方式不但能够很大程度地提高3D打印的打印效率,而且能够使得打印效率和打印精度的兼顾成为可能。
下面将本发明实施例提供的3D打印头3与传统3D打印头在打印效率和打印精度方面的性能进行对比说明。
假设传统3D打印头的出料口为圆孔型出料口,且该圆孔型出料口的口径与本发明实施提供的3D打印头3的出料口35的宽度相等,很容易计算出,3D打印头3在打印效率方面的提升约为目标填充区域中的各道次的平均长度与圆孔型出料口的口径的比值。例如,当前商用的圆孔型出料口的口径约为0.4mm,如果目标填充区域的道次平均长度为20mm,则3D打印头3的打印效率约为传统3D打印头的50倍。此外,可以理解的是,待打印物品的尺寸越大,相比传统3D打印头,本发明实施例提供的3D打印头3的打印效率提升就越明显。
此外,在保证打印效率的前提下,3D打印头3的出料口35的宽度可以设置得非常小,以保证超高精度的打印,这是传统3D打印头所无法实现的。例如,当前商用的圆孔型出料口的口径约为0.4mm,将口径设置为小于0.4mm会导致3D打印设备打印效率过低,无法用于实际生产。相比而言,本发明实施例提供的3D打印头3可以一次性打印出目标填充区域的轮廓,在这种情况下,即使将出料口35的宽度设置得非常小(如小于0.4mm),仍然可以保证很高的打印效率。而且,出料口35的宽度越小,3D打印头3打印出的目标填充区域的截面轮廓线与真实的截面轮廓线越接近,精度越高。
例如,对于超高精度打印,可以将出料口35的宽度设置为0.01mm甚至更小,这比当前所有工业级的3D打印设备的单层打印厚度都要小得多。当然,在对精度要求不高的场合下,可以将出料口35的宽度设置1mm~5mm,以实现超高效率的打印。
本发明实施例提供的3D打印头3除了使得打印效率和打印精度的兼顾成为可能,而且与传统3D打印头相比,3D打印头3打印出的物品在力学性能和形状均匀度方面也具有显著提升,下面对此进行详细论述。
从上文中的图3相关的描述可以看出,传统3D打印一般会按照一定的道次顺序进行逐道打印。由于传统3D打印头的出料口的尺寸较小(口径通常为毫米级别),因此,每个道次的打印均需要花费较长时间。当准备打印当前道次时,与当前道次相邻的前一道次上的物料可能已经处于或接近凝固状态,而当前道次上的物料仍处于熔融状态。当前道次上的熔融状态的物料需要与前一道次上的已经处于或接近凝固状态的物料进行融合,以形成一个整体,这里将相邻道次之间的物料融合过程称为道次搭接。在道次搭接过程中,如果当前道次的前一道次已经凝固或接近凝固,而当前道次仍处于熔融状态,则相邻道次之间的物料融合过程就可能出现融合不良的现象,导致打印出的物品的力学性能较差。此外,由于物料状态不同步,相邻道次上的物料相互融合之后得到的物体形状也会比较粗糙。以打印圆柱体为例,如图11所示,圆柱体51是采用传统3D打印技术,利用道次搭接方式打印出的圆柱体。该圆柱体51不但整体形状轮廓比较粗糙,而且还存在由于道次搭接过程中的物料融合不良而产生的多个缺口53。
本发明实施例提供的3D打印头3通过调整出料口35的长度和位置,使其始终跟踪目标打印区域的截面轮廓线。因此,3D打印头3的打印过程无需按照道次进行逐道打印,也就无需进行道次搭接,进而不会产生融合不良的问题。因此,3D打印头3打印出的物品具有较高的力学性能。仍以打印圆柱体为例,如图11所示,圆柱体52是3D打印头3打印出的圆柱体,相比圆柱体51,圆柱体52的填充物料的融合情况良好,不存在道次搭接产生的融合不良的问题。
仍以打印圆柱体为例,参见图12,在传统3D打印过程中,道次与道次之间的切换采用折线52代替真实轮廓曲线,即,使用折线逼近真实的轮廓曲线,导致打印出的圆柱体51轮廓线比较粗糙。本发明实施例提供的3D打印头3无需按照道次进行打印,而是通过调整出料口35的长度和位置,以跟踪目标打印区域的轮廓线,因此,3D打印头3打印出的圆柱体52的轮廓线也更加光滑和真实。
本发明实施例对3D打印头3在打印目标填充区域过程中的填充路径不做具体限定,可以是任意形式的平面运动。例如,在对目标填充区域进行填充的过程中,3D打印头3可以在控制装置4的控制下沿单向直线运动,即3D打印头3在打印目标填充区域过程中的填充路径为单向直线路径。将3D打印头3在打印目标填充区域时的填充路径设置为单向直线路径,这与传统3D打印经常采用的平行直线往复路径相比,简化了控制方式,进一步提高了打印效率。换个角度,本发明实施例通过3D打印头3的一次简单的单向直线运动,就可以将目标填充区域填充完整,不但提高了打印效率,而且简化了3D打印头的控制方式。
上文指出目标填充区域可以是当前分层的截面轮廓线所包围的全部填充区域,也可以是当前分层的截面轮廓线所包围的部分填充区域。下面对目标填充区域的划分方式进行举例说明。
作为一个示例,如图13所示,当前分层的截面轮廓线所包围的区域为一块完整的连通区域61。T为区域61沿x方向的最大宽度。假设3D打印头3的出料口35的长度方向为x方向,且该出料口35的最大长度不小于T,则可以将区域61确定为目标填充区 域。在打印当前分层的过程中,可以控制3D打印头3沿y方向进行单向直线移动,并在其移动的过程中,通过驱动装置33调节出料口35的端部351,352的位置,使端部351,352竖直方向上的投影位于区域61的截面轮廓线上。这样一来,3D打印头3通过一次单向直线运动即可将当前分层打印完毕。
作为另一个示例,如图13所示,假设出料口35的最大长度小于T,无法将区域61一次性填充完整。在这种情况下,可以将区域61划分成区域61a和区域61b,其中区域61a与区域61b以虚线62为分界线。在打印当前分层的过程中,可以先将区域61a设定为目标填充区域,并控制3D打印头3沿y轴正向进行单向直线移动,从而将区域61a一次性填充完整;然后,再将区域61b设定为目标填充区域,控制3D打印头3沿y轴负向进行单向直线移动,从而将区域61b一次性填充完整。
作为另一个示例,如图14所示,当前分层的截面轮廓线所包围的区域为一块完整的连通区域61,且出料口35的长度方向为x方向,3D打印头的移动方向为y轴正向。从图14可以看出,在虚线63所在的位置,区域61的截面轮廓线沿x轴方向的截线被截断为线段64a和线段64b。当3D打印头3沿y轴正向移动至虚线63所在的位置时,出料口35无法一次性将线段64a和线段64b所对应的区域填充完整。因此,当需要打印与图14具有类似结构的分层时,可以预先对区域61进行划分,例如,可以将区域61划分成如图14所示的区域61a和区域61b,其中区域61a和区域61b以虚线62为分界线。在打印当前分层的过程中,可以先将区域61a设定为目标填充区域,并控制3D打印头3沿y轴正向进行单向直线移动,从而将区域61a一次性填充完整;然后,再将区域61b设定为目标填充区域,控制3D打印头3沿y轴负向进行单向直线移动,从而将区域61b一次性填充完整。
作为又一个示例,如图15所示,当前分层的截面轮廓线所包围的区域包括相互分离的多个区域61a,61b,当需要打印与图15具有类似结构的分层时,也可以分别将这些区域确定为目标填充区域进行打印。例如,可以先将区域61a设定为目标填充区域,并控制3D打印头3沿y轴正向进行单向直线移动,从而将区域61a一次性填充完整;然后,再将区域61b设定为目标填充区域,控制3D打印头3沿y轴负向进行单向直线移动,从而将区域61b一次性填充完整。
需要说明的是,上文主要以3D打印头3的出料口35的长度方向为x方向,3D打印头3的移动方向为y方向为例进行说明,但本发明实施例不限于此。例如,在一些实施例中,3D打印头3的移动方向可以是y方向,但出料口35的长度方向可以与y方向不垂直。又如,在一些实施例中,出料口35的长度方向可以是x方向,但3D打印头3的移动方向可以与x方向不垂直。
在图14和图15所示的示例中,当前分层的截面轮廓线沿开口方向的截线均会被截成多条线段,为了便于描述,本文将具有类似结构的分层称为具有多道分离结构的分层。
可选地,在一些实施例中,如图16所示,输料管道31的底部39可以设置多个出料口35,不同出料口35可以对应当前分层的不同目标填充区域。
如果输料管道31底部仅设置有一个出料口35,在当前分层具有多道分离结构的情况下,通常需要该3D打印头3执行多次单向直线移动才能将当前分层填充完整。为了提高打印效率,本发明实施例在输料管道31的底部39设置了多个出料口35,不同出料口35可以对应当前分层的不同目标填充区域。这样一来,即使当前分层具有多道分离结构, 也可以通过为不同出料口35分配不同的目标填充区域的方式,使得3D打印头3通过一次单向直线运动即可将当前分层打印完整。以图14或图15为例,假设输料管道31的底部39包括第一出料口和第二出料口,可以为第一出料口分配目标填充区域61a,为第二出料口分配目标填充区域61b。在打印当前分层的过程中,可以控制3D打印头3沿y轴正方向进行单向直线移动,并在3D打印头3的移动过程中,控制第一出料口将区域61a一次性填充完整,控制第二出料口将区域61b一次性填充完整。由此可见,通过在输出管道22的底部39设置多个出料口35,即使当前分层具有多道分离结构,也可以利用3D打印头3将当前分层一次性填充完整。
需要说明的是,本发明实施例对出料口35的数量不做具体限定,例如可以设置2个出料口,3个出料口,甚至更多的出料口。此外,本发明实施例对多个出料口之间的排布方式以及每个出料口的结构尺寸不做具体限定。例如,多个出料口35可以相互平行设置,如图16所示;又如,多个出料口35可以互成一定的角度(如10度或15度)排布。此外,各出料口35的最大长度和宽度可以相同,也可以不同,本发明实施例对此不做具体限定。
还需要说明的是,当输料管道31底部设置有多个出料口时,该多个出料口并非一定要同时使用,可以根据实际情况自由选择。例如,在当前分层不具有多道分离结构的情况下,可以使用一个出料口将当前分层一次性填充完整(其他出料口可以处于完全闭合状态)。又如,在当前分层不具有多道分离结构的情况下,可以使用两个或者两个以上的出料口将当前分层一次性填充完整。又如,在当前分层具有多道分离结构的情况下,可以使用两个或者两个以上出料口将当前分层一次性填充完整。又如,在当前分层具有多道分离结构的情况下,可以使用一个出料口对当前分层进行多次填充。
可选地,在一些实施例中,多个出料口对应的目标填充区域之和可以等于当前分层的全部填充区域。这样一来,3D打印头3就可以利用多个出料口将当前分层一次性打印完整,进一步提高了打印效率。
可选地,在一些实施例中,如图4所示,可以为3D打印头3配置送料装置36。送料装置36可以与输料管道31相连。送料装置36可以接收控制装置4的控制指令,根据控制装置4的控制指令调节出料口35的物料挤出量。
进一步地,在一些实施例中,送料装置36可以对出料口35的物料挤出量进行调节,使得出料口35的物料挤出量随着出料口35长度的变化而变化,或者使得出料口35的物料挤出量随着目标填充区域的轮廓的变化而变化。
例如,送料装置36可以对出料口35的物料挤出量进行调节,使得出料口35的物料挤出量与出料口35的长度相匹配(或相对应)。出料口35的物料挤出量与出料口35的长度之间的匹配关系可以指出料口35的物料挤出量与出料口35的长度大致成正比,使得出料口35的长度越长,送料装置36向出料口35输送的物料流量越大,出料口35的物料挤出量也就相应越多。
本发明实施例提供的送料装置36在控制装置4的控制下能够根据出料口35的长度对出料口35的物料挤出量进行准确地控制,为兼顾3D打印的打印效率和打印精度进一步提供了基础。
送料装置36例如可以为无级变流量送进装置,但本发明实施例对送料装置36的形式不做具体限定。如图17所示,该送料装置36可以是螺杆式送料装置36a、气压式送料 装置36b或活塞式送料装置36c。
在送料装置36为螺杆式送料装置的情况下,可以通过调整螺杆的转速来控制出料口35的物料挤出量;在送料装置36为气压式送料装置的情况下,可以通过调整作用在输料管道31中的物料液面上的压力来控制出料口35的物料挤出量;在送料装置36为活塞式送进装置的情况下,可以通过调整活塞在活塞筒中的运动速度来控制出料口35的物料挤出量。
可选地,在一些实施例中,如图4所示,输料管道31可以包括设置在出料口35和送料装置36之间的物料容腔37,以及设置在物料容腔37处的温度控制装置38。温度控制装置38例如可以是加热装置。温度控制装置38例如可以设置在物料容腔37的外侧。该温度控制装置38可用于控制物料容腔37的温度。
本发明实施例在输料管道31中设置了物料容腔37,因此,可以在3D打印前,就在物料容腔37中存入充足的物料,并通过温度控制装置38将这些物料控制成熔融状态。实际打印时,可以将物料容腔37中的物料直接送进至出料口35,以简化3D打印头的物料送进方式。此外,开口34位于物料容腔37的底部,为了使得出料口的长度能够在较大范围内调节,该物料容腔37的尺寸通常较大,对一个尺寸较大的物料容腔而言,很方便对其进行精确的温度控制,而精确的温度控制对于精确控制打印过程的稳定性和使刚打印出的轮廓边缘的物料处于最合理的流动状态十分重要,能够提高打印出的物品的成形精度和工艺稳定性。由于较大的物料容腔可以存放体积较大的物料,体积较大的物料具有较大的热容量,热容量越大,越有利于实现精确的温度控制。
如图4所示,本发明实施例还提供一种3D打印设备2。该3D打印设备2包括3D打印头3。进一步地,在一些实施例中,该3D打印设备2还可以包括控制装置4和/或打印平台8。
可选地,在一些实施例中,控制装置4可以根据当前分层的分层数据,生成控制装置4的控制指令,其中分层数据可以包含当前分层的截面轮廓信息。当前分层的截面轮廓信息例如可以指示当前分层的截面轮廓线的形状和/或位置等。应理解,控制装置4的控制指令可以包括以下控制指令的一种或多种:用于驱动遮挡件33运动的控制指令,该控制指令例如可用于控制出料口35的端部351和/或端部352在开口34中的位置;用于控制3D打印头3的填充路径的控制指令,该控制指令例如可用于控制3D打印头3沿单向直线移动;以及用于控制送料装置36向出料口35输送的物料流量的控制指令,该控制指令例如可用于控制出料口35的物料挤出量。
本申请中的控制装置4可以集中设置,也可以分离设置。例如,控制装置4是分布式控制装置,包括分离设置的第一控制装置和第二控制装置,第一控制装置用于控制驱动装置33;第二控制装置用于控制送料装置36;又如,控制装置4为集中式控制装置,可用于对驱动装置33和送料装置36进行统一控制。
以当前分层的目标填充区域为图3a所示的区域41为例,控制装置4可以根据当前分层的截面轮廓信息预先计算位置A1(即图3a中的道次A1所在位置)至位置A25(即图3a中的道次A25所在位置)中的每个位置的y坐标与截面轮廓线42沿出料口35的长度方向(图3中,出料口的长度方向设定为x方向)的截线的位置和长度;在对目标填充区域进行填充的过程中,控制装置4可以控制3D打印头3从位置A1至位置A25,并在移动过程中向驱动装置33发送控制指令,从而通过驱动装置33调节端部351和/或端 部352在开口34中的位置,使端部351,352在竖直方向上的投影始终位于截面轮廓线42上。例如,当控制装置4控制3D打印头3移动至位置A1时,控制装置4可以通过驱动装置33调节端部351和/或端部352在开口34中的位置,使得出料口35的端部351,352分别位于p1点和p2点的正上方,从而一次性将线段p1-p2所在区域填充完整;当控制装置4控制3D打印头3移动至位置A11时,控制装置4可以通过驱动装置33调节端部351和/或端部352在开口34中的位置,使得出料口35的端部351,352分别位于p3点和p4点的正上方,从而一次性将线段p3-p4所在区域填充完整;当控制装置4控制3D打印头3移动至位置A25时,控制装置4可以通过驱动装置33调节端部351和/或端部352在开口34中的位置,使得出料口35的端部351,352分别位于p5点和p6点的正上方,从而一次性将线段p5-p6所在区域填充完整。
仍以当前分层的目标填充区域为图3a所示的区域41为例,控制装置4可以根据当前分层的截面轮廓信息预先计算位置A1至位置A25中的每个位置的y坐标与截面轮廓线42沿x方向的各截线的长度;在对区域41进行填充的过程中,控制装置4可以控制3D打印头3从位置A1至位置A25,并在移动过程中向送料装置36发送控制指令,从而通过送料装置36调节出料口35的物料挤出量,使得出料口35的物料挤出量与计算得到的各截线的长度相匹配(或相对应,例如物料挤出量与计算得到的各截线的长度成正比)。例如,当控制装置4控制3D打印头3移动至位置A1时,控制装置4可以通过送料装置36调节出料口35的物料挤出量,使得出料口35的物料挤出量与线段p1-p2的长度相匹配,从而一次性将线段p1-p2所在区域填充完整;当控制装置4控制3D打印头3移动至位置A11时,控制装置4可以通过送料装置36调节出料口35的物料挤出量,使得出料口35的物料挤出量与线段p3-p4的长度相匹配,从而一次性将线段p3-p4所在区域填充完整;当控制装置4控制3D打印头3移动至位置A25时,控制装置4可以通过送料装置36调节出料口35的物料挤出量,使得出料口35的物料挤出量与线段p5-p6的长度相匹配,从而一次性将线段p5-p6所在区域填充完整。
下面对本发明的方法实施例进行描述,由于方法实施例可以由上文描述的3D打印设备2执行,例如可以由3D打印设备2中的控制装置4执行,因此未详细描述的部分可以参见前面各装置实施例。
本发明实施例还提供一种3D打印头3的控制方法。如图18所示,该控制方法包括:
步骤1810、生成控制装置的控制指令;
步骤1820、向3D打印头发送控制装置的控制指令。
可选地,在一些实施例中,如图19所示,所述控制方法具体包括:
步骤1812、获取当前分层的分层数据,其中分层数据包含当前分层的截面轮廓线的信息;
步骤1814、根据当前分层的分层数据,生成控制装置的控制指令;
步骤1820、向3D打印头发送控制装置的控制指令。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可 读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种3D打印头,其特征在于,包括:
    输料管道,所述输料管道的底部设置有开口;
    遮挡件,设置在所述开口处,且与所述底部滑动连接,所述开口包括被所述遮挡件遮挡的区域以及未被所述遮挡件遮挡的区域,其中未被所述遮挡件遮挡的区域形成所述3D打印头的出料口,所述出料口包括第一端部和第二端部,所述第一端部和所述第二端部限定了所述出料口的长度;
    驱动装置,与所述遮挡件相连,所述驱动装置接收控制装置的控制指令,根据所述控制装置的控制指令驱动所述遮挡件在所述开口处滑动,以调节所述第一端部和/或所述第二端部在所述开口中的位置,从而调节所述出料口的长度。
  2. 如权利要求1所述的3D打印头,其特征在于,在对当前分层中的目标填充区域进行填充的过程中,所述驱动装置根据所述控制装置的控制指令,驱动所述遮挡件在所述开口处滑动,以调节所述第一端部和/或所述第二端部在所述开口中的位置,使所述出料口的长度与所述目标填充区域的截面轮廓线沿所述出料口的长度方向的截线的长度相匹配,其中所述目标填充区域为所述当前分层的部分或全部填充区域。
  3. 如权利要求2所述的3D打印头,其特征在于,在对所述目标填充区域进行填充的过程中,所述驱动装置根据所述控制装置的控制指令,驱动所述遮挡件在所述开口处滑动,以调节所述第一端部和/或所述第二端部在所述开口中的位置,使所述第一端部和所述第二端部在竖直方向上的投影位于所述目标填充区域的截面轮廓线上。
  4. 如权利要求3所述的3D打印头,其特征在于,在对所述目标填充区域进行填充的过程中,所述3D打印头在所述控制装置的控制下沿单向直线运动。
  5. 如权利要求2-4中任一项所述的3D打印头,其特征在于,所述输料管道的底部设置有多个所述出料口,其中不同出料口对应所述当前分层中的不同目标填充区域。
  6. 如权利要求5所述的3D打印头,其特征在于,多个所述出料口对应的目标填充区域之和形成所述当前分层的全部填充区域。
  7. 如权利要求1-6中任一项所述的3D打印头,其特征在于,所述出料口包括第三端部和第四端部,所述第三端部和所述第四端部限定了所述出料口的宽度。
  8. 如权利要求7所述的3D打印头,其特征在于,所述出料口的宽度为固定值。
  9. 如权利要求1-8中任一项所述的3D打印头,其特征在于,所述3D打印头还包括:
    送料装置,所述送料装置与所述输料管道相连,所述送料装置接收所述控制装置的控制指令,根据所述控制装置的控制指令调节所述出料口的物料挤出量,使得所述物料挤出量与所述出料口的长度相匹配。
  10. 如权利要求9所述的3D打印头,其特征在于,所述输料管道包括设置在所述出料口和所述送料装置之间的物料容腔,以及设置在所述物料容腔处的温度控制装置,所述温度控制装置用于控制所述物料容腔的温度。
  11. 如权利要求9或10所述的3D打印头,其特征在于,所述送料装置为螺杆式送料装置、气压式送料装置或活塞式送料装置。
  12. 如权利要求1-10中任一项所述的3D打印头,其特征在于,所述开口包括第五端部和第六端部,所述第五端部和所述第六端部限定了所述开口的长度,所述遮挡件包 括第一遮挡件和第二遮挡件,所述第一遮挡件包括所述第一端部和第七端部,所述第七端部位于所述第五端部的外侧,所述第一端部位于所述第五端部的内侧,所述第二遮挡件包括所述第二端部和第八端部,所述第八端部位于所述第六端部的外侧,所述第二端部位于所述第六端部的内侧。
  13. 如权利要求12所述的3D打印头,其特征在于,所述输料管道的底部设置有凹槽,所述开口设置在所述凹槽的底面,所述第一遮挡件和所述第二遮挡件均为与所述凹槽滑动连接的活块。
  14. 一种3D打印设备,其特征在于,包括如权利要求1-13中任一项所述的3D打印头和所述控制装置。
  15. 如权利要求14所述的3D打印设备,其特征在于,所述控制装置根据当前分层的分层数据,生成所述控制装置的控制指令,其中所述分层数据包含所述当前分层的截面轮廓信息。
  16. 一种3D打印头的控制方法,其特征在于,所述3D打印头为如权利要求1-13中任一项所述的3D打印头,所述控制方法包括:
    生成所述控制装置的控制指令;
    向所述3D打印头发送所述控制装置的控制指令。
  17. 如权利要求16所述的控制方法,其特征在于,所述生成所述控制装置的控制指令,包括:
    获取当前分层的分层数据,其中所述分层数据包含所述当前分层的截面轮廓信息;
    根据所述当前分层的分层数据,生成所述控制装置的控制指令。
PCT/CN2017/083647 2017-05-09 2017-05-09 3d打印头、3d打印设备和3d打印头的控制方法 WO2018205149A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2017/083647 WO2018205149A1 (zh) 2017-05-09 2017-05-09 3d打印头、3d打印设备和3d打印头的控制方法
CN201780010811.1A CN109247014B (zh) 2017-05-09 2017-05-09 3d打印头、3d打印设备和3d打印头的控制方法
EP17895505.0A EP3427930B1 (en) 2017-05-09 2017-05-09 3d print head, 3d printing device, control method for 3d print head
US16/107,450 US11104070B2 (en) 2017-05-09 2018-08-21 3D printing head, 3D printing device and control method of 3D printing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/083647 WO2018205149A1 (zh) 2017-05-09 2017-05-09 3d打印头、3d打印设备和3d打印头的控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/107,450 Continuation US11104070B2 (en) 2017-05-09 2018-08-21 3D printing head, 3D printing device and control method of 3D printing head

Publications (1)

Publication Number Publication Date
WO2018205149A1 true WO2018205149A1 (zh) 2018-11-15

Family

ID=64104072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083647 WO2018205149A1 (zh) 2017-05-09 2017-05-09 3d打印头、3d打印设备和3d打印头的控制方法

Country Status (4)

Country Link
US (1) US11104070B2 (zh)
EP (1) EP3427930B1 (zh)
CN (1) CN109247014B (zh)
WO (1) WO2018205149A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021196850A1 (zh) * 2020-04-02 2021-10-07 苏州美梦机器有限公司 螺杆式送料装置、用于3d打印的物料挤出系统和方法
CN114749681A (zh) * 2022-06-13 2022-07-15 天津大学 适用于多种异质金属粉末的3d打印装置及其工作方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6950335B2 (ja) 2017-07-31 2021-10-13 セイコーエプソン株式会社 三次元造形装置および三次元造形装置の制御方法
GB201919082D0 (en) * 2019-12-20 2020-02-05 Connect4Engineering Ltd 3D printer head
CN113492528B (zh) * 2020-04-03 2023-09-15 苏州美梦机器有限公司 用于3d打印的设备及其控制方法
CN112757623B (zh) * 2020-04-03 2023-01-20 苏州美梦机器有限公司 用于3d打印的设备及其控制方法
US11577320B2 (en) 2020-06-15 2023-02-14 Thermo Electron Scientific Instruments Llc Shutter assembly for x-ray detection
CN114761202B (zh) * 2020-10-12 2024-03-19 苏州美梦机器有限公司 具有可变尺寸的挤出口的3d打印装置及其控制方法
CN112976573B (zh) * 2021-02-10 2023-07-25 宁波职业技术学院 一种3d打印用打印喷头的移动控制机构
CN113199038B (zh) * 2021-05-07 2021-12-14 吉林大学 一种竹荪结构的仿生形变自适应柔性密封3d打印设备
US20230031400A1 (en) * 2021-07-27 2023-02-02 Saudi Arabian Oil Company Fast layered extrusion for additive manufacturing
US20230030198A1 (en) * 2021-07-27 2023-02-02 Saudi Arabian Oil Company Fast layered extrusion for additive manufacturing
US20230031850A1 (en) * 2021-07-27 2023-02-02 Saudi Arabian Oil Company Fast layered extrusion for additive manufacturing
CN113878875B (zh) * 2021-09-30 2024-01-23 浙江正向增材制造有限公司 3d打印设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104044271A (zh) * 2014-06-17 2014-09-17 韩成超 3d打印机用双打印头机构及3d打印机及打印方法
CN104149352A (zh) * 2014-08-27 2014-11-19 三亚思海创新机电工程设计有限公司 3d打印机用打印头
CN104369385A (zh) * 2014-11-28 2015-02-25 珠海天威飞马打印耗材有限公司 一种3d打印机的打印头
WO2016052228A1 (ja) * 2014-09-30 2016-04-07 合同会社Genkei 3dプリンタ用射出ヘッド
WO2016149032A1 (en) * 2015-03-13 2016-09-22 President And Fellows Of Harvard College Printhead and method for 3d printing of multiple materials
KR20160124554A (ko) * 2015-04-20 2016-10-28 전남대학교산학협력단 압출기 일체형 프린트 헤드를 구비하는 다축 3d 프린터

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030199A (en) * 1998-02-09 2000-02-29 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Apparatus for freeform fabrication of a three-dimensional object
EP3117982B1 (en) * 2015-07-16 2019-12-25 Sculpman Bvba 3d printing system and process
US10150239B2 (en) * 2015-12-29 2018-12-11 Western Digital Technologies, Inc. Extruder for three-dimensional additive printer
CN205588644U (zh) * 2016-02-05 2016-09-21 加我科技股份有限公司 三维打印装置的喷头结构
CN206124217U (zh) * 2016-09-14 2017-04-26 深圳新域中科科技股份有限公司 一种可快速调温的3d打印机熔料挤出机构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104044271A (zh) * 2014-06-17 2014-09-17 韩成超 3d打印机用双打印头机构及3d打印机及打印方法
CN104149352A (zh) * 2014-08-27 2014-11-19 三亚思海创新机电工程设计有限公司 3d打印机用打印头
WO2016052228A1 (ja) * 2014-09-30 2016-04-07 合同会社Genkei 3dプリンタ用射出ヘッド
CN104369385A (zh) * 2014-11-28 2015-02-25 珠海天威飞马打印耗材有限公司 一种3d打印机的打印头
WO2016149032A1 (en) * 2015-03-13 2016-09-22 President And Fellows Of Harvard College Printhead and method for 3d printing of multiple materials
KR20160124554A (ko) * 2015-04-20 2016-10-28 전남대학교산학협력단 압출기 일체형 프린트 헤드를 구비하는 다축 3d 프린터

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3427930A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021196850A1 (zh) * 2020-04-02 2021-10-07 苏州美梦机器有限公司 螺杆式送料装置、用于3d打印的物料挤出系统和方法
CN114749681A (zh) * 2022-06-13 2022-07-15 天津大学 适用于多种异质金属粉末的3d打印装置及其工作方法
CN114749681B (zh) * 2022-06-13 2022-09-13 天津大学 适用于多种异质金属粉末的3d打印装置及其工作方法

Also Published As

Publication number Publication date
CN109247014B (zh) 2020-12-04
US11104070B2 (en) 2021-08-31
EP3427930A4 (en) 2019-11-20
US20180354194A1 (en) 2018-12-13
EP3427930B1 (en) 2021-01-13
CN109247014A (zh) 2019-01-18
EP3427930A1 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
WO2018205149A1 (zh) 3d打印头、3d打印设备和3d打印头的控制方法
US11273596B2 (en) Print head nozzle for use with additive manufacturing system
Jin et al. Optimization of tool-path generation for material extrusion-based additive manufacturing technology
US9573323B2 (en) Method for generating and building support structures with deposition-based digital manufacturing systems
US9446558B2 (en) Three-dimensional printing apparatus and printing head module
US20170173884A1 (en) Rotation and nozzle opening control of extruders in printing systems
US20230017560A1 (en) Device for 3d printing and control method thereof
CN111113888B (zh) 用于3d打印的设备及其控制方法
CN111386187B (zh) 用于3d打印的设备及其控制方法
CN111195952A (zh) 用于3d打印的设备及其控制方法
CN206276911U (zh) 一种熔融沉积成型的金属三维打印机
US11654614B2 (en) Method of printing semi-crystalline materials utilizing extrusion based additive manufacturing system
CN112108647B (zh) 一种增材制造方法及其使用粉芯丝的制备方法和装置
CN113492528B (zh) 用于3d打印的设备及其控制方法
CN208099345U (zh) 激光熔化设备的刮刀
CN105643927A (zh) 一种3d打印机打印头
CN208914605U (zh) 带有震荡弦的3d打印机概率铺粉装置
WO2016154850A1 (zh) 一种三维打印方法、装置和打印机
SE540201C2 (en) A process and apparatus for making a three-dimensional object

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017895505

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017895505

Country of ref document: EP

Effective date: 20180815

NENP Non-entry into the national phase

Ref country code: DE