WO2018205119A1 - 基于激光雷达扫描的路沿检测方法和系统 - Google Patents

基于激光雷达扫描的路沿检测方法和系统 Download PDF

Info

Publication number
WO2018205119A1
WO2018205119A1 PCT/CN2017/083537 CN2017083537W WO2018205119A1 WO 2018205119 A1 WO2018205119 A1 WO 2018205119A1 CN 2017083537 W CN2017083537 W CN 2017083537W WO 2018205119 A1 WO2018205119 A1 WO 2018205119A1
Authority
WO
WIPO (PCT)
Prior art keywords
points
point
data
scan
height
Prior art date
Application number
PCT/CN2017/083537
Other languages
English (en)
French (fr)
Inventor
邱纯鑫
刘乐天
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to PCT/CN2017/083537 priority Critical patent/WO2018205119A1/zh
Publication of WO2018205119A1 publication Critical patent/WO2018205119A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Definitions

  • the invention relates to the technical field of road environment detection, in particular to a road edge detection method and system based on laser radar scanning.
  • Roadside is an essential component of urban roads, and roadside detection is an important part of the unmanned vehicle environment sensing system.
  • Conventional technology mainly uses a camera to obtain a road edge by using an image edge detection method, which is susceptible to weather and light, and is limited in use.
  • a roadside detection method based on lidar scanning for acquiring roadsides of roads in a road environment including:
  • the three-dimensional coordinate system is established by using the road surface as the X-Y plane, the projection point of the laser radar on the X-Y plane as the origin, and the direction perpendicular to the road surface as the Z-axis direction;
  • the point cloud data includes a plurality of scan points including three-dimensional coordinate information
  • a quadratic curve fitting is performed on the candidate roadside candidate points to obtain the roadside detection result.
  • a roadside detection system includes:
  • a laser radar for transmitting a laser signal and receiving a reflected laser echo signal
  • a data processing device configured to perform a way edge detection method according to the laser echo signal
  • the data processing apparatus includes a central processing unit, a memory, and a radar signal processing unit; the memory stores processing instructions of the way edge detecting method, and the central processing unit processes the laser echo signal according to the radar signal processing unit The raw data and the processing instruction execute the above-described way edge detection method.
  • the above-mentioned roadside detection method and system adopts laser radar for data acquisition, and obtains roadside candidate points according to gradient filtering by using the obtained point cloud data, and further obtains roadside data by quadratic curve fitting according to the qualified roadside candidate points. .
  • This method is not affected by weather and light, and is more applicable.
  • Figure 1 is a schematic diagram of the use of lidar scanning on the road
  • FIG. 2 is a flow chart of a method for detecting a trailing edge according to an embodiment
  • FIG. 3 is a schematic diagram of projection of a frame of laser data on an X-Y plane
  • FIG. 4 is a block diagram of a roadside detection system of an embodiment.
  • the following embodiments provide a roadside detection method based on lidar scanning, which can be used to detect road edges in a road environment and provide reference data for applications such as assisted driving.
  • the following is an example of automatic driving.
  • the laser radar is arranged on the self-driving vehicle using the above method. As shown in Fig. 1, the laser radar emits laser light to the ground at a certain inclination angle and scans around 360 degrees. The signal reflected by the laser is received and analyzed, and the point cloud of the environment can be obtained. data. For multi-line lidars, Multiple laser beams are simultaneously emitted at different tilt angles, and multiple scan data are obtained at the same time.
  • the roadside detecting method of an embodiment includes the following steps S110 to S140.
  • Step S110 The three-dimensional coordinate system is established by taking the road surface as the X-Y plane, the projection point of the laser radar on the X-Y plane as the origin, and the direction perpendicular to the road surface as the Z-axis direction.
  • the direction substantially parallel to the road edge is the Y direction, which is generally the traveling direction of the vehicle; the X axis points to the road edge.
  • Step S120 The lidar scan acquires multi-frame laser data of the environment.
  • the multi-frame laser data is used to form point cloud data;
  • the point cloud data includes a plurality of points including three-dimensional coordinate information.
  • the laser beam is scanned around a 360 degree to obtain a frame of laser data.
  • the projection of the point cloud data scanned on the road in the XY plane is as shown in Fig. 3.
  • the dense dotted line is the projection of the point cloud data in the XY plane, and the points on the XY plane are It is a scanning point;
  • a sparse dash dashed line is the part of the scanning line that is occluded missing; the square is the adjacent other vehicle.
  • the points on the scan line can be reflections from road surfaces, curbs, or possibly other vehicles passing by.
  • a frame of laser data can simultaneously contain points on multiple scan lines.
  • Step S130 Perform gradient filtering on points on the scan line for each frame of laser data to obtain a trailing edge candidate point.
  • Point cloud data contains three-dimensional coordinate information, so it also contains height information.
  • Gradient filtering is to use the height difference of the scanning points as the filtering condition, and obtain the scanning points which may be the waypoints, which are called the trailing edge candidate points.
  • step S130 may include the following steps S131-S134:
  • Step S131 Acquire a first height value of a previous scan point adjacent to the current point and a second height value of a subsequent scan point adjacent to the current point.
  • the laser beam is swept through 360 degrees, and the laser is emitted at a certain frequency, for example, 30 hz, and a scanning point can be obtained for each transmission and reception.
  • the laser beam is swept over 360 degrees, multiple scan points on the scan line are obtained.
  • each scan point on the scan line is processed to determine whether it can be used as a trailing edge candidate.
  • the laser radar is a multi-line radar, the scanning points on a plurality of scanning lines in one frame of laser data are processed.
  • the currently processed scan point is the current point. Since each scan point has three-dimensional coordinate information, it has height information.
  • Step S132 Calculate a height difference between the first height value and the second height value; and divide the height difference value by 2 as a gradient of the current point.
  • Step S133 setting a gradient threshold according to the distance of the current point to the origin of the coordinate system.
  • the resolution of the data is low, and a small gradient threshold can be set; otherwise, a larger gradient threshold can be set.
  • the specific value of the gradient threshold can be determined experimentally.
  • Step S134 If the gradient of the current point is greater than the set gradient threshold, the current point is a trailing edge candidate point.
  • Step S140 Perform a quadratic curve fitting on the qualified roadside candidate points to obtain a roadside detection result. As shown in FIG. 3, since it is also possible for the scan line to scan to other vehicles at a close distance, it is necessary to select a qualified roadside candidate point to obtain the roadside. In one embodiment, the following conditions are employed to determine if the trailing edge candidate points meet the requirements.
  • the trailing edge candidate points meet the requirements: (1) the number of trailing edge candidate points is greater than the set number threshold, and the number threshold may be 20, that is, a road that can form a trailing edge on one scan line The number of candidate points along the must be greater than 20; (2) the distance between the two points with the largest distance in the traveling direction is greater than the set length threshold, which may be 4 meters, that is, the maximum Y axis of the trailing edge candidate point The difference between the coordinates and the minimum Y-axis coordinate is greater than 4 meters, so that the scanning points of other vehicles can be excluded to a large extent; (3) the average value of the vertical distance between the candidate points and the vehicle is greater than that of the previous frame. average value.
  • the above steps S120 to S140 are processes for processing one frame of laser data, and the number of lasers for one frame According to the processing, a road edge can be obtained, which can be used for assisting driving. It can be understood that when driving automatically, the vehicle is constantly moving and the roadside changes. Therefore, in general, it is necessary to continuously repeat the above steps S120 to S140 to process the latest laser data for each frame.
  • the path obtained by the latest laser data of each frame is the latest roadside data, ensuring the real-time performance of the roadside data.
  • the above-mentioned roadside detection method uses laser radar to perform data acquisition, and uses the obtained point cloud data to obtain the trailing edge candidate points according to the gradient filtering, and further performs the quadratic curve fitting according to the qualified roadside candidate points to obtain the roadside data. This method is not affected by weather and light, and is more applicable.
  • the above method further includes the step of verifying the quadratic curve to ensure the rationality of the calculation result.
  • it is determined whether the difference between the quadratic coefficient of the quadratic curve obtained by the fitting and the quadratic coefficient of the previous frame is within a reasonable interval. That is, whether the quadratic coefficient difference value ⁇ p i (2) satisfies: l th ⁇ ⁇ p i (2) ⁇ h th . If the coefficient difference of the quadratic term is too small, it indicates that there is a certain random disturbance. If the coefficient difference of the quadratic term is too large, the calculation result has an error because the curvature of the road is generally not too large. If the path obtained from one frame of laser data is unreasonable, it is not taken as the latest way edge, and the previous frame of laser data is obtained as a reference.
  • the method further includes the step of removing the scattered points in the point cloud data.
  • the scattered point refers to the scattered point in the point cloud data, which is not enough to constitute the surface point of the object.
  • the presence of the scattered point will increase the amount of data processing and may affect the processing result. Therefore, in a preferred embodiment, the scattered points can be removed first, improving the efficiency and accuracy of subsequent processing.
  • the step of removing scattered points in the point cloud data includes:
  • Step S151 Perform cluster division on all points on the scan line: calculate each scan point and adjacent The spatial distance of the previous scan point; if the spatial distance is less than the set threshold, the currently processed scan point and the previous scan point are taken as the same cluster, otherwise the currently processed scan points are different clusters.
  • the set threshold can be 0.1 meters.
  • cluster markers can be set for each scan point, and scan points belonging to the same cluster use the same cluster marker. Scan points belonging to different clusters use different clustering markers.
  • Step S152 If the number of scanning points in the cluster is less than the set number threshold, the points in the cluster are removed as scattered points. According to the clustering marker, the number of scanning points belonging to the same cluster can be counted. If there are too few scan points in a cluster, they can be considered as scattered points and can be removed.
  • the above number threshold can be set to 30 or other suitable value. That is, when the number of scanning points in one cluster is less than 30, the scanning points in this cluster are discrete points.
  • the method further includes: performing coordinate correction on the point cloud data.
  • the laser radar when installed on the vehicle, installation deviations may occur, resulting in tilting of the entire laser radar. The data thus collected is actually tilted relative to the set coordinate system. Therefore, in some embodiments, it is necessary to correct the coordinates of the point cloud data for this case.
  • Step S161 Rasterizing each frame of laser data.
  • the rasterization process divides one frame of laser data into a plurality of small block regions, each of which includes a number of scan points.
  • the size of the grid can be 20cm x 20cm or other suitable size, which can be considered comprehensively according to the processing precision or computing power.
  • Step S162 Calculate the difference between the height maximum value and the height minimum value of all the data points in each grid and the height average value.
  • Step S163 If the difference between the height maximum value and the height minimum value is less than the set height difference threshold, and the height average value is less than the set height mean threshold value, the data point in the grid is used as the ground point.
  • Step S164 Perform random sampling consistency processing on the obtained ground point, and fit the plane of the ground and the normal vector of the ground.
  • Step S165 Multiplying the point cloud data by the normal vector of the ground to obtain a new z value of the data point.
  • Data The coordinates of the point on the X-Y plane generally do not change.
  • the Z-axis coordinates of all data points can be corrected according to the normal vector of the plane where the ground is located, and the accurate three-dimensional coordinates of the data points are obtained.
  • the above processing can correct the coordinates of the collected point cloud data to further ensure the accuracy of the processing.
  • a roadside detection system which can be used to detect a roadside of a road in a road environment, and provide reference data for applications such as assisted driving.
  • the roadside detection system is configured in an autonomous driving vehicle.
  • the wayside detection system includes a laser radar 100 and a data processing device 200.
  • the laser radar 100 is generally disposed on the top of the vehicle and emits laser light to the ground at a certain inclination angle and scans around 360 degrees.
  • the signal reflected by the laser is received and sent to the data processing device 200 for analysis, and the environment can be obtained. Point cloud data.
  • Data processing apparatus 200 can include central processor 210, memory 220, and radar signal processing unit 230.
  • the radar signal processing unit 230 is configured to perform conversion processing on the laser echo received by the laser radar 100 to obtain raw data that can be processed.
  • Memory 220 may include volatile memory (eg, random access memory, commonly referred to as memory) and non-volatile memory (eg, magnetic disk, flash memory, solid state hard drive, etc.).
  • a non-volatile memory stores a processing program that can implement the above-described method of detecting a trailing edge. When the trailing edge detection system is running, the processing program is loaded from the non-volatile memory into the volatile memory, and is processed by the central processing.
  • the processor 210 executes the instructions therein. Thereby the processing of the above method is implemented.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种基于激光雷达(100)扫描的路沿检测方法和系统,方法用于在道路环境中获取道路的路沿,包括:以路面为X-Y平面、激光雷达(100)在X-Y平面的投影点为原点以及垂直于路面向上的方向为Z轴方向,建立三维坐标系(步骤S110);通过激光雷达(100)扫描获取环境的多帧激光数据(步骤S120),用于形成点云数据;点云数据包括多个包含三维坐标信息的扫描点;对每一帧激光数据,对扫描线上的扫描点进行梯度滤波获取路沿候选点(步骤S130);对符合条件的路沿候选点进行二次曲线拟合,得到路沿检测结果(步骤S140)。

Description

基于激光雷达扫描的路沿检测方法和系统 技术领域
本发明涉及路面环境检测技术领域,特别是涉及一种基于激光雷达扫描的路沿检测方法和系统。
背景技术
近年来,自动驾驶技术由于道路安全与运输效率的需求迅速发展。路沿是城市道路的必要组成元素,路沿检测是无人车环境感知系统的重要部分。传统技术主要采用相机,利用图像的边缘检测法获取路沿,这种方法易受天气和光照影响,使用受到限制。
发明内容
基于此,有必要提供一种不受天气和光照影响的路沿检测方法。
一种基于激光雷达扫描的路沿检测方法,用于在道路环境中获取道路的路沿,包括:
以路面为X-Y平面、激光雷达在X-Y平面的投影点为原点以及垂直于路面向上的方向为Z轴方向,建立三维坐标系;
通过激光雷达扫描获取环境的多帧激光数据,用于形成点云数据;所述点云数据包括多个包含三维坐标信息的扫描点;
对每一帧激光数据,对扫描线上的扫描点进行梯度滤波获取路沿候选点;
对符合条件的路沿候选点进行二次曲线拟合,得到路沿检测结果。
一种路沿检测系统,包括:
激光雷达,用于发射激光信号并接收反射的激光回波信号;
数据处理装置,用于根据激光回波信号执行路沿检测方法;
所述数据处理装置包括中央处理器、存储器和雷达信号处理单元;所述存储器中存储有路沿检测方法的处理指令,所述中央处理器根据雷达信号处理单元提供的根据激光回波信号处理后的原始数据和所述处理指令,执行上述路沿检测方法。
上述路沿检测方法和系统,采用激光雷达进行数据采集,并利用得到的点云数据根据梯度滤波获得路沿候选点,进一步根据符合条件的路沿候选点进行二次曲线拟合得到路沿数据。该方法不受天气和光照的影响,适用面更广。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为道路上采用激光雷达扫描的示意图;
图2为一实施例的路沿检测方法流程图;
图3为一帧激光数据在X-Y平面的投影示意图;
图4为一实施例的路沿检测系统模块图。
具体实施方式
为使本发明的目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
以下实施例提供一种基于激光雷达扫描的路沿检测方法,可以用于在道路环境中检测道路的路沿,为辅助驾驶等应用提供参考数据。下面以自动驾驶为例进行介绍。应用上述方法的自动驾驶车辆上配置激光雷达,如图1所示,激光雷达以一定的倾角向地面发射激光并环绕360度扫描,激光反射回来的信号被接收和分析,可以得到环境的点云数据。对于多线激光雷达,可 以不同的倾斜角度同时发射多束激光,同时得到多个扫描数据。
如图2所示,一实施例的路沿检测方法包括以下步骤S110~S140。
步骤S110:以路面为X-Y平面、激光雷达在X-Y平面的投影点为原点以及垂直于路面向上的方向为Z轴方向,建立三维坐标系。如图1所示,与路沿大致平行的方向为Y方向,一般为车辆的行驶方向;X轴指向路沿。
步骤S120:激光雷达扫描获取环境的多帧激光数据。所述多帧激光数据用于形成点云数据;所述点云数据包括多个包含三维坐标信息的点。激光束环绕360度扫描得到一帧激光数据。以行进中的车辆为例,在道路上扫描得到的点云数据在X-Y平面的投影如图3所示,图中,密集的点虚线为点云数据在X-Y平面的投影,其上的点均为扫描点;稀疏的短划线虚线为扫描线被遮挡缺失的部分;方块为相邻的其他车辆。扫描线上的点可以是来自路面、路沿、或者可能还来自路过的其他车辆的反射。对于多线雷达,多条扫描线以车辆(激光雷达)为中心的同心圆向外扩散,每条扫描线上的点同样都可以是来自路面、路沿、或者可能还来自路过的其他车辆的反射。一帧激光数据可以同时包含多条扫描线上的点。
步骤S130:对每一帧激光数据,对扫描线上的点进行梯度滤波获取路沿候选点。通常地,可以认为道路的路面与路沿之间存在高度差。点云数据包含三维坐标信息,所以也包含高度信息。梯度滤波即是以扫描点的高度差作为过滤条件,得到可能是路沿点的扫描点,称为路沿候选点。
在一个实施例中,步骤S130可以包括以下步骤S131~S134:
步骤S131:获取与当前点相邻的前一扫描点的第一高度值、与当前点相邻的后一扫描点的第二高度值。在进行激光扫描时,激光束要扫过360度,并且以一定的频率,例如30hz发射激光,每一次发射和接收都能获得一个扫描点。当激光束扫过360度之后,就得到扫描线上的多个扫描点。在对每一帧激光数据进行处理时,是对扫描线上的每个扫描点进行处理,确定其是否可以作为路沿候选点。当激光雷达为多线雷达时,是对一帧激光数据中多条扫描线上的扫描点进行处理。
在对每个扫描点进行处理时,当前处理的扫描点即为当前点。由于每个扫描点都具有三维坐标信息,即具有高度信息。
步骤S132:计算所述第一高度值和第二高度值之间的高度差值;并将所述高度差值除以2作为当前点的梯度。
步骤S133:根据当前点到坐标系原点的距离设定梯度阈值。当前点距坐标系原点过远时,数据的分辨率较低,可以设置较小的梯度阈值;反之可以设置较大的梯度阈值。梯度阈值的具体值可以根据实验确定。
步骤S134:若当前点的梯度大于设定的梯度阈值,则当前点为路沿候选点。
可以理解,计算各扫描点梯度还可以采用其他变形方式,例如获取相邻4个点的高度差等等。
步骤S140:对符合条件的路沿候选点进行二次曲线拟合,得到路沿检测结果。如图3所示,由于扫描线也有可能扫描到近距离的其他车辆,所以要挑选符合条件的路沿候选点来获得路沿。在一个实施例中,采用如下条件来判断路沿候选点是否符合要求。当同时满足以下三个条件时,路沿候选点符合要求:(1)路沿候选点的数量大于设定的数量阈值,该数量阈值可以为20,即一条扫描线上能形成路沿的路沿候选点的数量必须大于20;(2)行进方向上的相距最大的两个点之间的距离大于设定的长度阈值,该长度阈值可以为4米,即路沿候选点的最大Y轴坐标和最小Y轴坐标之间的差值大于4米,这样可以在较大程度上排除其他车辆的扫描点;(3)路沿候选点与车辆的垂直距离的平均值大于上一帧的该平均值。
获取到符合条件的路沿候选点后,认为这些路沿候选点是路沿的点云数据,可以将其用于还原路沿。本步骤使用路沿候选点进行二次曲线拟合,以拟合的二次曲线作为路沿。对于点云数据中的第i帧激光数据,获得的二次曲线为:
x=pi(0)+pi(1)*y+pi(2)*y2
上述步骤S120~S140是对一帧激光数据进行处理的过程,对一帧激光数 据进行处理可以得到一条路沿,该路沿可用于辅助驾驶。可以理解,自动驾驶时,车辆是不断移动的,路沿也会发生变化。因此一般地,需要不断地重复上述步骤S120~S140对每一帧最新的激光数据进行处理。每一帧最新激光数据获得的路沿就是最新的路沿数据,保证路沿数据的实时性。
上述路沿检测方法,采用激光雷达进行数据采集,并利用得到的点云数据根据梯度滤波获得路沿候选点,进一步根据符合条件的路沿候选点进行二次曲线拟合得到路沿数据。该方法不受天气和光照的影响,适用面更广。
进一步地,上述方法还包括对得到二次曲线进行验证的步骤,保证计算结果的合理性。在一个实施例中,判断拟合得到的二次曲线的二次项系数与上一帧的二次项系数的差值是否处于合理区间。即二次项系数差值Δpi(2)是否满足:lth<Δpi(2)<hth。如果二次项系数差值过小,说明存在一定的随机扰动,如果二次项系数差值过大,说明计算结果有误差,因为一般来说道路的曲率不会太大。如果根据一帧激光数据获得的路沿不合理,则不将其作为最新路沿,而将前一帧激光数据获得路沿作为参考。
在一个实施例中,还判断两帧拟合参数之间各项系数差的绝对值之和是否小于特定阈值,即:
|pi(0)-pi-1(0)|+|pi(1)-pi-1(1)|+|pi(2)-pi-1(2)|<Δpth
同样的,如果根据一帧激光数据获得的路沿不合理,则不将其作为最新路沿,而将前一帧激光数据获得路沿作为参考。
进一步地,在步骤S130对每一帧激光数据进行处理之前,还包括:将点云数据中的散乱点去除的步骤。散乱点是指点云数据中比较分散的点,其不足以构成物体的表面点,散乱点的存在会加大数据处理量,并且有可能影响处理结果。因此,在优选的实施例中,可以首先将散乱点去除,提高后续处理的效率和准确度。
在一个实施例中,所述将点云数据中的散乱点去除的步骤包括:
步骤S151:对扫描线上的所有点进行聚类划分:计算每个扫描点与相邻 的前一扫描点的空间距离;若所述空间距离小于设定的阈值,则将当前处理的扫描点和前一扫描点作为同一聚类,否则当前处理的扫描点为不同聚类。该设定的阈值可以为0.1米。在处理时,可以为每个扫描点设置聚类标记,属于同一个聚类的扫描点使用相同的聚类标记。属于不同聚类的扫描点使用不同的聚类标记。
步骤S152:若聚类中的扫描点数量少于设定的数量阈值,则将聚类中的点作为散乱点去除。根据聚类标记可以统计出属于同一聚类的扫描点的数量。如果一个聚类中的扫描点太少,则可以认为这些点为散乱点,可以去除。上述的数量阈值可以设定为30或其他合适的值。即当一个聚类中的扫描点的数量少于30时,这个聚类中的扫描点为离散点。
进一步地,在对每一帧激光数据进行处理之前,还包括:将点云数据进行坐标校正的步骤。在一些情况下,激光雷达在安装在车辆上时,会发生安装偏差,导致整个激光雷达会存在倾斜。这样采集出来的数据相对于设定的坐标系实际上也产生了倾斜。因此,在一些实施例中,有必要针对这种情况将点云数据的坐标进行校正。
在一个实施例中,所述将点云数据进行坐标校正的步骤可以包括:
步骤S161:将每一帧激光数据进行栅格化处理。栅格化处理即将一帧激光数据划分为多个小的方块区域,每个方块区域中包括若干数量的扫描点。栅格的大小可以是20cm×20cm或者其他合适的大小,可以根据处理的精度或运算能力综合考虑。
步骤S162:计算每个栅格中的所有数据点的高度最大值与高度最小值之差和高度平均值。
步骤S163:若所述高度最大值与高度最小值之差小于设定的高度差阈值,且高度平均值小于设定的高度均值阈值,则将栅格中的数据点作为地面点。
步骤S164:对得到的地面点进行随机采样一致性处理,拟合得到地面所在平面以及地面的法向量。
步骤S165:将点云数据与地面的法向量相乘得到数据点的新z值。数据 点在X-Y平面上的坐标一般不会改变,根据地面所在平面的法向量即可对所有的数据点的Z轴坐标进行校正,获得数据点准确的三维坐标。
上述处理可以将采集的点云数据的坐标进行校正,进一步保证处理的准确度。
基于同一发明构思,还提供一种路沿检测系统,可以用于在道路环境中检测道路的路沿,为辅助驾驶等应用提供参考数据。以自动驾驶为例,该路沿检测系统配置在自动驾驶车辆中。如图4所示,该路沿检测系统包括激光雷达100和数据处理装置200。结合图1,激光雷达100一般设于车辆顶部、并以一定的倾角向地面发射激光并环绕360度扫描,激光反射回来的信号被接收,并送到数据处理装置200进行分析,可以得到环境的点云数据。对于多线激光雷达,可以不同的倾斜角度同时发射多束激光,同时得到多个扫描数据。数据处理装置200可以包括中央处理器210、存储器220和雷达信号处理单元230。其中雷达信号处理单元230用于将激光雷达100接收的激光回波进行转换处理,得到可供处理的原始数据。存储器220可以包括易失性存储器(例如随机存储器,一般称为内存)和非易失性存储器(例如磁盘、闪存、固态硬盘等)。非易失性存储器中保存有可以实现上述路沿检测方法的处理程序,在该路沿检测系统运行时,将该处理程序从非易失性存储器中加载到易失性存储器中,由中央处理器210执行其中的指令。从而实现上述方法的处理过程。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种基于激光雷达扫描的路沿检测方法,用于在道路环境中获取道路的路沿,包括:
    以路面为X-Y平面、激光雷达在X-Y平面的投影点为原点以及垂直于路面向上的方向为Z轴方向,建立三维坐标系;
    通过激光雷达扫描获取环境的多帧激光数据,用于形成点云数据;所述点云数据包括多个包含三维坐标信息的扫描点;
    对每一帧激光数据,对扫描线上的扫描点进行梯度滤波获取路沿候选点;及
    对符合条件的路沿候选点进行二次曲线拟合,得到路沿检测结果。
  2. 根据权利要求1所述的方法,其中,所述对扫描线上的点进行梯度滤波获取路沿候选点的步骤包括:
    获取与当前点相邻的前一扫描点的第一高度值、与当前点相邻的后一扫描点的第二高度值;
    计算所述第一高度值和第二高度值之间的高度差值;并将所述高度差值除以2作为当前点的梯度;
    根据当前点到坐标系原点的距离设定梯度阈值;
    若当前点的梯度大于设定的梯度阈值,则当前点为路沿候选点。
  3. 根据权利要求1所述的方法,其中,所述激光雷达为多线雷达,所述对扫描线上的扫描点进行梯度滤波获取路沿候选点的步骤中,是对一帧激光数据中的每条扫描线上的点进行梯度滤波。
  4. 根据权利要求1所述的方法,其中,选定道路走向为Y轴方向,指向路沿的方向为X轴方向,获取符合条件的路沿候选点的步骤包括判断是否同时符合以下三个条件:
    路沿候选点的数量大于设定的数量阈值;
    Y轴方向上的相距最大的两个路沿候选点之间的距离大于设定的长度阈 值;
    各路沿候选点与X轴的垂直距离的平均值与上一帧的该平均值的差值小于设定的阈值。
  5. 根据权利要求1所述的方法,其中,在对每一帧激光数据进行处理之前,还包括:将点云数据中的散乱点去除的步骤。
  6. 根据权利要求5所述的方法,其中,所述将点云数据中的散乱点去除的步骤包括:
    对扫描线上的所有点进行聚类划分:计算每个扫描点与相邻的前一扫描点的空间距离;若所述空间距离小于设定的阈值,则将当前处理的扫描点和前一扫描点作为同一聚类,否则当前处理的扫描点为不同聚类;
    若聚类中的扫描点数量少于设定的数量阈值,则将聚类中的点作为散乱点去除。
  7. 根据权利要求6所述的方法,其中,对扫描点设置聚类标记,划分到相同聚类的扫描点具有相同的聚类标记,划分到不同聚类的扫描点具有不同的聚类标记。
  8. 根据权利要求1所述的方法,其中,在对每一帧激光数据进行处理之前,还包括:将点云数据进行坐标校正的步骤。
  9. 根据权利要求8所述的方法,其中,所述将点云数据进行坐标校正的步骤包括:
    将每一帧数据进行栅格化处理;
    计算每个栅格中的所有数据点的高度最大值与高度最小值之差和高度平均值;
    若所述高度最大值与高度最小值之差小于设定的高度差阈值,且高度平均值小于设定的高度均值阈值,则将栅格中的数据点作为地面点;
    对得到的地面点进行随机采样一致性处理,拟合得到地面所在平面以及地面的法向量;
    将点云数据与地面的法向量相乘得到数据点在Z轴方向上的校正值。
  10. 根据权利要求1所述的方法,其中,还包括:判断得到的二次曲线是否符合设定条件,若是,则取设定符合条件的二次曲线得到最新的路沿检测结果,否则沿用上一路沿检测结果;所述设定条件包括:
    当前帧的二次项系数与上一帧的二次项系数的差值在设定的范围内;
    当前帧的各次项系数与上一帧的对应次项系数的差值的绝对值之和小于设定的阈值。
  11. 一种路沿检测系统,包括:
    激光雷达,用于发射激光信号并接收反射的激光回波信号;
    数据处理装置,用于根据激光回波信号执行路沿检测方法;
    所述数据处理装置包括存储器、雷达信号处理单元和中央处理器;所述存储器中存储有处理指令,所述雷达信号处理单元用于根据激光回波信号处理得到原始数据,所述中央处理器用于根据所述原始数据和所述处理指令,执行以下步骤:
    以路面为X-Y平面、激光雷达在X-Y平面的投影点为原点以及垂直于路面向上的方向为Z轴方向,建立三维坐标系;
    通过激光雷达扫描获取环境的多帧激光数据,用于形成点云数据;所述点云数据包括多个包含三维坐标信息的扫描点;
    对每一帧激光数据,对扫描线上的扫描点进行梯度滤波获取路沿候选点;及
    对符合条件的路沿候选点进行二次曲线拟合,得到路沿检测结果。
  12. 根据权利要求11所述的系统,其中,所述中央处理器执行所述对扫描线上的点进行梯度滤波获取路沿候选点的步骤包括:
    获取与当前点相邻的前一扫描点的第一高度值、与当前点相邻的后一扫描点的第二高度值;
    计算所述第一高度值和第二高度值之间的高度差值;并将所述高度差值除以2作为当前点的梯度;
    根据当前点到坐标系原点的距离设定梯度阈值;
    若当前点的梯度大于设定的梯度阈值,则当前点为路沿候选点。
  13. 根据权利要求11所述的系统,其中,所述激光雷达为多线雷达,所述中央处理器在执行所述对扫描线上的扫描点进行梯度滤波获取路沿候选点的步骤包括:对一帧激光数据中的每条扫描线上的点进行梯度滤波。
  14. 根据权利要求11所述的系统,其中,选定道路走向为Y轴方向,指向路沿的方向为X轴方向,所述中央处理器执行获取符合条件的路沿候选点的步骤包括:获取同时符合以下三个条件的路沿候选点:
    路沿候选点的数量大于设定的数量阈值;
    Y轴方向上的相距最大的两个路沿候选点之间的距离大于设定的长度阈值;
    各路沿候选点与X轴的垂直距离的平均值与上一帧的该平均值的差值小于设定的阈值。
  15. 根据权利要求11所述的系统,其中,所述中央处理器在执行对每一帧激光数据进行处理步骤之前,还执行:将点云数据中的散乱点去除的步骤。
  16. 根据权利要求15所述的系统,其中,所述中央处理器执行所述将点云数据中的散乱点去除的步骤包括:
    对扫描线上的所有点进行聚类划分:计算每个扫描点与相邻的前一扫描点的空间距离;若所述空间距离小于设定的阈值,则将当前处理的扫描点和前一扫描点作为同一聚类,否则当前处理的扫描点为不同聚类;
    若聚类中的扫描点数量少于设定的数量阈值,则将聚类中的点作为散乱点去除。
  17. 根据权利要求16所述的系统,其中,所述中央处理器还执行以下步骤:对扫描点设置聚类标记,划分到相同聚类的扫描点具有相同的聚类标记,划分到不同聚类的扫描点具有不同的聚类标记。
  18. 根据权利要求11所述的系统,其中,所述中央处理器在执行对每一帧激光数据进行处理步骤之前,还执行:将点云数据进行坐标校正的步骤。
  19. 根据权利要求18所述的系统,其中,所述中央处理器在执行所述将 点云数据进行坐标校正的步骤包括:
    将每一帧数据进行栅格化处理;
    计算每个栅格中的所有数据点的高度最大值与高度最小值之差和高度平均值;
    若所述高度最大值与高度最小值之差小于设定的高度差阈值,且高度平均值小于设定的高度均值阈值,则将栅格中的数据点作为地面点;
    对得到的地面点进行随机采样一致性处理,拟合得到地面所在平面以及地面的法向量;
    将点云数据与地面的法向量相乘得到数据点在Z轴方向上的校正值。
  20. 根据权利要求11所述的系统,其中,所述中央处理器还执行以下步骤:判断得到的二次曲线是否符合设定条件,若是,则取设定符合条件的二次曲线得到最新的路沿检测结果,否则沿用上一路沿检测结果;所述设定条件包括:
    当前帧的二次项系数与上一帧的二次项系数的差值在设定的范围内;
    当前帧的各次项系数与上一帧的对应次项系数的差值的绝对值之和小于设定的阈值。
PCT/CN2017/083537 2017-05-09 2017-05-09 基于激光雷达扫描的路沿检测方法和系统 WO2018205119A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/083537 WO2018205119A1 (zh) 2017-05-09 2017-05-09 基于激光雷达扫描的路沿检测方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/083537 WO2018205119A1 (zh) 2017-05-09 2017-05-09 基于激光雷达扫描的路沿检测方法和系统

Publications (1)

Publication Number Publication Date
WO2018205119A1 true WO2018205119A1 (zh) 2018-11-15

Family

ID=64104260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083537 WO2018205119A1 (zh) 2017-05-09 2017-05-09 基于激光雷达扫描的路沿检测方法和系统

Country Status (1)

Country Link
WO (1) WO2018205119A1 (zh)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613548A (zh) * 2018-12-28 2019-04-12 芜湖哈特机器人产业技术研究院有限公司 一种基于图优化的激光雷达路标地图构建方法
CN109975773A (zh) * 2018-12-28 2019-07-05 文远知行有限公司 毫米波雷达标定方法、装置、设备和存储介质
CN110057370A (zh) * 2019-06-13 2019-07-26 浙江智玲机器人科技有限公司 机器人的定位方法和装置
CN110379007A (zh) * 2019-07-25 2019-10-25 厦门大学 基于车载移动激光扫描点云的三维公路曲线重建方法
CN110728689A (zh) * 2019-11-29 2020-01-24 中铁第六勘察设计院集团有限公司 一种基于点云数据的既有铁路中线提取方法
CN110780305A (zh) * 2019-10-18 2020-02-11 华南理工大学 一种基于多线激光雷达的赛道锥桶检测及目标点追踪方法
CN110781891A (zh) * 2019-11-28 2020-02-11 吉林大学 一种基于激光雷达传感器的识别车辆可行驶区域的方法
CN110873883A (zh) * 2019-11-29 2020-03-10 上海有个机器人有限公司 融合激光雷达和imu的定位方法、介质、终端和装置
CN110888144A (zh) * 2019-12-04 2020-03-17 吉林大学 一种基于滑动窗口的激光雷达数据合成方法
CN111105495A (zh) * 2019-11-26 2020-05-05 四川阿泰因机器人智能装备有限公司 一种融合视觉语义信息的激光雷达建图方法及系统
CN111325138A (zh) * 2020-02-18 2020-06-23 中国科学院合肥物质科学研究院 一种基于点云局部凹凸特征的道路边界实时检测方法
CN111427032A (zh) * 2020-04-24 2020-07-17 森思泰克河北科技有限公司 基于毫米波雷达的房间墙体轮廓识别方法及终端设备
CN111489386A (zh) * 2019-01-25 2020-08-04 北京京东尚科信息技术有限公司 点云特征点提取方法、装置、存储介质、设备及系统
CN111539473A (zh) * 2020-04-23 2020-08-14 中国农业大学 基于3D Lidar的果园行间导航线提取方法
CN111563450A (zh) * 2020-04-30 2020-08-21 北京百度网讯科技有限公司 数据处理方法、装置、设备及存储介质
CN111724323A (zh) * 2020-06-19 2020-09-29 武汉海达数云技术有限公司 激光雷达点云阳光噪点去除方法及装置
CN111832536A (zh) * 2020-07-27 2020-10-27 北京经纬恒润科技有限公司 一种车道线检测方法及装置
CN112037328A (zh) * 2020-09-02 2020-12-04 北京嘀嘀无限科技发展有限公司 生成地图中的道路边沿的方法、装置、设备和存储介质
CN112147602A (zh) * 2019-06-26 2020-12-29 陕西汽车集团有限责任公司 一种基于激光点云的路沿识别方法及系统
CN112215958A (zh) * 2020-10-10 2021-01-12 北京工商大学 一种基于分布式计算的激光雷达点云数据投影方法
CN112444792A (zh) * 2019-08-29 2021-03-05 深圳市速腾聚创科技有限公司 复合式激光雷达及其控制方法
CN112489094A (zh) * 2020-11-25 2021-03-12 国网福建省电力有限公司 一种多线机载激光雷达点云数据配准方法
CN112558045A (zh) * 2020-12-07 2021-03-26 福建(泉州)哈工大工程技术研究院 自动驾驶设备多线激光雷达功能下线验收方法
CN112650230A (zh) * 2020-12-15 2021-04-13 广东盈峰智能环卫科技有限公司 基于单线激光雷达的自适应贴边作业方法、装置及机器人
CN112782721A (zh) * 2021-01-08 2021-05-11 深圳市镭神智能系统有限公司 一种可通行区域检测方法、装置、电子设备和存储介质
WO2021087701A1 (zh) * 2019-11-04 2021-05-14 深圳市大疆创新科技有限公司 起伏地面的地形预测方法、装置、雷达、无人机和作业控制方法
CN112837333A (zh) * 2021-02-04 2021-05-25 南京抒微智能科技有限公司 一种室外无人清扫车贴边清洁方法及设备
CN112857221A (zh) * 2021-01-15 2021-05-28 海伯森技术(深圳)有限公司 一种快速定位球面极值点的扫描方法及装置
CN112859054A (zh) * 2021-04-21 2021-05-28 合肥工业大学 一种车载多线激光雷达外参数自动检测系统及检测方法
CN112862844A (zh) * 2021-02-20 2021-05-28 苏州工业园区测绘地理信息有限公司 基于车载点云数据的道路边界交互式提取方法
CN112883820A (zh) * 2021-01-26 2021-06-01 上海应用技术大学 基于激光雷达点云的道路目标3d检测方法及系统
CN112904315A (zh) * 2021-01-12 2021-06-04 广州广电研究院有限公司 一种激光雷达点云数据的校正方法、装置和介质
CN112945150A (zh) * 2021-02-02 2021-06-11 上海勘察设计研究院(集团)有限公司 一种基于三维激光扫描技术的大型构筑物平整度检测方法
CN113156451A (zh) * 2021-03-23 2021-07-23 北京易控智驾科技有限公司 非结构化道路边界检测方法、装置、存储介质和电子设备
CN113196092A (zh) * 2019-11-29 2021-07-30 深圳市大疆创新科技有限公司 噪点过滤方法和设备、激光雷达
CN113311408A (zh) * 2021-07-07 2021-08-27 中国地质大学(武汉) 一种高光谱激光雷达的辐射校正方法和装置
CN113359116A (zh) * 2021-05-12 2021-09-07 武汉中仪物联技术股份有限公司 测距雷达的相对标定方法、系统、装置、设备和介质
CN113376638A (zh) * 2021-06-08 2021-09-10 武汉理工大学 一种无人物流小车环境感知方法及系统
CN113468922A (zh) * 2020-03-31 2021-10-01 郑州宇通客车股份有限公司 一种基于雷达点云的道路边界识别方法及装置
CN113496491A (zh) * 2020-03-19 2021-10-12 广州汽车集团股份有限公司 一种基于多线激光雷达的路面分割方法及装置
CN113655498A (zh) * 2021-08-10 2021-11-16 合肥工业大学 一种基于激光雷达的赛道中锥桶信息的提取方法及系统
CN113740874A (zh) * 2020-05-14 2021-12-03 深圳市镭神智能系统有限公司 一种道路边沿检测方法、电子设备及车辆
CN113888713A (zh) * 2021-09-24 2022-01-04 东南大学 一种车载激光点云数据恢复路面缺失点的方法
CN113970734A (zh) * 2021-10-13 2022-01-25 长安大学 路侧多线激光雷达降雪噪点去除方法、装置及设备
CN114155423A (zh) * 2021-11-30 2022-03-08 深圳亿嘉和科技研发有限公司 机器人局部环境可行驶区域感知方法及装置
CN114170579A (zh) * 2020-08-21 2022-03-11 广州汽车集团股份有限公司 一种路沿检测方法、装置及汽车
CN114425774A (zh) * 2022-01-21 2022-05-03 深圳优地科技有限公司 机器人行走道路的识别方法、识别设备以及存储介质
CN114758096A (zh) * 2022-04-15 2022-07-15 长沙行深智能科技有限公司 一种路沿检测方法、装置、终端设备和存储介质
CN114877838A (zh) * 2022-04-14 2022-08-09 东南大学 一种基于车载激光扫描系统的道路几何特征检测方法
CN115546749A (zh) * 2022-09-14 2022-12-30 武汉理工大学 基于摄像机和激光雷达的路面坑洼检测及清扫和避让方法
CN115600132A (zh) * 2022-12-15 2023-01-13 思创数码科技股份有限公司(Cn) 船舶载货种类判别方法及系统
CN116993735A (zh) * 2023-09-27 2023-11-03 中交第二公路勘察设计研究院有限公司 基于雷达遥感的道路病害检测方法、装置及电子设备
CN114494849B (zh) * 2021-12-21 2024-04-09 重庆特斯联智慧科技股份有限公司 用于轮式机器人的路面状态识别方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147250A (zh) * 2010-09-13 2011-08-10 天津市星际空间地理信息工程有限公司 一种数字线划图测图方法
US20120176494A1 (en) * 2009-08-30 2012-07-12 Yishay Kamon System and method for virtual range estimation
CN105825173A (zh) * 2016-03-11 2016-08-03 福州华鹰重工机械有限公司 通用道路和车道检测系统与方法
CN106199558A (zh) * 2016-08-18 2016-12-07 宁波傲视智绘光电科技有限公司 障碍物快速检测方法
CN107272019A (zh) * 2017-05-09 2017-10-20 深圳市速腾聚创科技有限公司 基于激光雷达扫描的路沿检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120176494A1 (en) * 2009-08-30 2012-07-12 Yishay Kamon System and method for virtual range estimation
CN102147250A (zh) * 2010-09-13 2011-08-10 天津市星际空间地理信息工程有限公司 一种数字线划图测图方法
CN105825173A (zh) * 2016-03-11 2016-08-03 福州华鹰重工机械有限公司 通用道路和车道检测系统与方法
CN106199558A (zh) * 2016-08-18 2016-12-07 宁波傲视智绘光电科技有限公司 障碍物快速检测方法
CN107272019A (zh) * 2017-05-09 2017-10-20 深圳市速腾聚创科技有限公司 基于激光雷达扫描的路沿检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, JIAN: "Research on Key Technologies in Unmanned Vehicle Driving Environment Modelling based on 3D Lidar", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE, no. 9, 15 September 2016 (2016-09-15), pages 13, 16, 17, 22 - 27, 44, 45, 70 *

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975773A (zh) * 2018-12-28 2019-07-05 文远知行有限公司 毫米波雷达标定方法、装置、设备和存储介质
CN109975773B (zh) * 2018-12-28 2023-09-29 文远知行有限公司 毫米波雷达标定方法、装置、设备和存储介质
CN109613548A (zh) * 2018-12-28 2019-04-12 芜湖哈特机器人产业技术研究院有限公司 一种基于图优化的激光雷达路标地图构建方法
CN109613548B (zh) * 2018-12-28 2022-12-23 芜湖哈特机器人产业技术研究院有限公司 一种基于图优化的激光雷达路标地图构建方法
CN111489386A (zh) * 2019-01-25 2020-08-04 北京京东尚科信息技术有限公司 点云特征点提取方法、装置、存储介质、设备及系统
CN111489386B (zh) * 2019-01-25 2024-04-16 北京京东乾石科技有限公司 点云特征点提取方法、装置、存储介质、设备及系统
CN110057370A (zh) * 2019-06-13 2019-07-26 浙江智玲机器人科技有限公司 机器人的定位方法和装置
CN112147602B (zh) * 2019-06-26 2024-01-16 陕西汽车集团股份有限公司 一种基于激光点云的路沿识别方法及系统
CN112147602A (zh) * 2019-06-26 2020-12-29 陕西汽车集团有限责任公司 一种基于激光点云的路沿识别方法及系统
CN110379007A (zh) * 2019-07-25 2019-10-25 厦门大学 基于车载移动激光扫描点云的三维公路曲线重建方法
CN112444792B (zh) * 2019-08-29 2024-01-16 深圳市速腾聚创科技有限公司 复合式激光雷达及其控制方法
CN112444792A (zh) * 2019-08-29 2021-03-05 深圳市速腾聚创科技有限公司 复合式激光雷达及其控制方法
CN110780305A (zh) * 2019-10-18 2020-02-11 华南理工大学 一种基于多线激光雷达的赛道锥桶检测及目标点追踪方法
CN110780305B (zh) * 2019-10-18 2023-04-21 华南理工大学 一种基于多线激光雷达的赛道锥桶检测及目标点追踪方法
WO2021087701A1 (zh) * 2019-11-04 2021-05-14 深圳市大疆创新科技有限公司 起伏地面的地形预测方法、装置、雷达、无人机和作业控制方法
CN111105495A (zh) * 2019-11-26 2020-05-05 四川阿泰因机器人智能装备有限公司 一种融合视觉语义信息的激光雷达建图方法及系统
CN110781891B (zh) * 2019-11-28 2023-01-31 吉林大学 一种基于激光雷达传感器的识别车辆可行驶区域的方法
CN110781891A (zh) * 2019-11-28 2020-02-11 吉林大学 一种基于激光雷达传感器的识别车辆可行驶区域的方法
CN110873883B (zh) * 2019-11-29 2023-08-29 上海有个机器人有限公司 融合激光雷达和imu的定位方法、介质、终端和装置
CN110728689B (zh) * 2019-11-29 2023-04-07 中铁第六勘察设计院集团有限公司 一种基于点云数据的既有铁路中线提取方法
CN113196092A (zh) * 2019-11-29 2021-07-30 深圳市大疆创新科技有限公司 噪点过滤方法和设备、激光雷达
CN110873883A (zh) * 2019-11-29 2020-03-10 上海有个机器人有限公司 融合激光雷达和imu的定位方法、介质、终端和装置
CN110728689A (zh) * 2019-11-29 2020-01-24 中铁第六勘察设计院集团有限公司 一种基于点云数据的既有铁路中线提取方法
CN110888144A (zh) * 2019-12-04 2020-03-17 吉林大学 一种基于滑动窗口的激光雷达数据合成方法
CN110888144B (zh) * 2019-12-04 2023-04-07 吉林大学 一种基于滑动窗口的激光雷达数据合成方法
CN111325138B (zh) * 2020-02-18 2023-04-07 中国科学院合肥物质科学研究院 一种基于点云局部凹凸特征的道路边界实时检测方法
CN111325138A (zh) * 2020-02-18 2020-06-23 中国科学院合肥物质科学研究院 一种基于点云局部凹凸特征的道路边界实时检测方法
CN113496491B (zh) * 2020-03-19 2023-12-15 广州汽车集团股份有限公司 一种基于多线激光雷达的路面分割方法及装置
CN113496491A (zh) * 2020-03-19 2021-10-12 广州汽车集团股份有限公司 一种基于多线激光雷达的路面分割方法及装置
CN113468922B (zh) * 2020-03-31 2023-04-18 宇通客车股份有限公司 一种基于雷达点云的道路边界识别方法及装置
CN113468922A (zh) * 2020-03-31 2021-10-01 郑州宇通客车股份有限公司 一种基于雷达点云的道路边界识别方法及装置
CN111539473A (zh) * 2020-04-23 2020-08-14 中国农业大学 基于3D Lidar的果园行间导航线提取方法
CN111539473B (zh) * 2020-04-23 2023-04-28 中国农业大学 基于3D Lidar的果园行间导航线提取方法
CN111427032A (zh) * 2020-04-24 2020-07-17 森思泰克河北科技有限公司 基于毫米波雷达的房间墙体轮廓识别方法及终端设备
CN111563450B (zh) * 2020-04-30 2023-09-26 北京百度网讯科技有限公司 数据处理方法、装置、设备及存储介质
CN111563450A (zh) * 2020-04-30 2020-08-21 北京百度网讯科技有限公司 数据处理方法、装置、设备及存储介质
CN113740874A (zh) * 2020-05-14 2021-12-03 深圳市镭神智能系统有限公司 一种道路边沿检测方法、电子设备及车辆
CN111724323B (zh) * 2020-06-19 2024-01-26 武汉海达数云技术有限公司 激光雷达点云阳光噪点去除方法及装置
CN111724323A (zh) * 2020-06-19 2020-09-29 武汉海达数云技术有限公司 激光雷达点云阳光噪点去除方法及装置
CN111832536B (zh) * 2020-07-27 2024-03-12 北京经纬恒润科技股份有限公司 一种车道线检测方法及装置
CN111832536A (zh) * 2020-07-27 2020-10-27 北京经纬恒润科技有限公司 一种车道线检测方法及装置
CN114170579A (zh) * 2020-08-21 2022-03-11 广州汽车集团股份有限公司 一种路沿检测方法、装置及汽车
CN112037328A (zh) * 2020-09-02 2020-12-04 北京嘀嘀无限科技发展有限公司 生成地图中的道路边沿的方法、装置、设备和存储介质
CN112215958B (zh) * 2020-10-10 2023-05-02 北京工商大学 一种基于分布式计算的激光雷达点云数据投影方法
CN112215958A (zh) * 2020-10-10 2021-01-12 北京工商大学 一种基于分布式计算的激光雷达点云数据投影方法
CN112489094B (zh) * 2020-11-25 2023-08-04 国网福建省电力有限公司 一种多线机载激光雷达点云数据配准方法
CN112489094A (zh) * 2020-11-25 2021-03-12 国网福建省电力有限公司 一种多线机载激光雷达点云数据配准方法
CN112558045A (zh) * 2020-12-07 2021-03-26 福建(泉州)哈工大工程技术研究院 自动驾驶设备多线激光雷达功能下线验收方法
CN112558045B (zh) * 2020-12-07 2024-03-15 福建(泉州)哈工大工程技术研究院 自动驾驶设备多线激光雷达功能下线验收方法
CN112650230B (zh) * 2020-12-15 2024-05-03 广东盈峰智能环卫科技有限公司 基于单线激光雷达的自适应贴边作业方法、装置及机器人
CN112650230A (zh) * 2020-12-15 2021-04-13 广东盈峰智能环卫科技有限公司 基于单线激光雷达的自适应贴边作业方法、装置及机器人
CN112782721A (zh) * 2021-01-08 2021-05-11 深圳市镭神智能系统有限公司 一种可通行区域检测方法、装置、电子设备和存储介质
CN112904315B (zh) * 2021-01-12 2024-04-26 广州广电研究院有限公司 一种激光雷达点云数据的校正方法、装置和介质
CN112904315A (zh) * 2021-01-12 2021-06-04 广州广电研究院有限公司 一种激光雷达点云数据的校正方法、装置和介质
CN112857221A (zh) * 2021-01-15 2021-05-28 海伯森技术(深圳)有限公司 一种快速定位球面极值点的扫描方法及装置
CN112883820B (zh) * 2021-01-26 2024-04-19 上海应用技术大学 基于激光雷达点云的道路目标3d检测方法及系统
CN112883820A (zh) * 2021-01-26 2021-06-01 上海应用技术大学 基于激光雷达点云的道路目标3d检测方法及系统
CN112945150B (zh) * 2021-02-02 2022-11-22 上海勘察设计研究院(集团)有限公司 一种基于三维激光扫描技术的大型构筑物平整度检测方法
CN112945150A (zh) * 2021-02-02 2021-06-11 上海勘察设计研究院(集团)有限公司 一种基于三维激光扫描技术的大型构筑物平整度检测方法
CN112837333A (zh) * 2021-02-04 2021-05-25 南京抒微智能科技有限公司 一种室外无人清扫车贴边清洁方法及设备
CN112862844A (zh) * 2021-02-20 2021-05-28 苏州工业园区测绘地理信息有限公司 基于车载点云数据的道路边界交互式提取方法
CN112862844B (zh) * 2021-02-20 2024-01-05 园测信息科技股份有限公司 基于车载点云数据的道路边界交互式提取方法
CN113156451A (zh) * 2021-03-23 2021-07-23 北京易控智驾科技有限公司 非结构化道路边界检测方法、装置、存储介质和电子设备
CN112859054A (zh) * 2021-04-21 2021-05-28 合肥工业大学 一种车载多线激光雷达外参数自动检测系统及检测方法
CN112859054B (zh) * 2021-04-21 2023-09-29 合肥工业大学 一种车载多线激光雷达外参数自动检测系统及检测方法
CN113359116A (zh) * 2021-05-12 2021-09-07 武汉中仪物联技术股份有限公司 测距雷达的相对标定方法、系统、装置、设备和介质
CN113359116B (zh) * 2021-05-12 2023-09-12 武汉中仪物联技术股份有限公司 测距雷达的相对标定方法、系统、装置、设备和介质
CN113376638A (zh) * 2021-06-08 2021-09-10 武汉理工大学 一种无人物流小车环境感知方法及系统
CN113311408B (zh) * 2021-07-07 2023-05-26 中国地质大学(武汉) 一种高光谱激光雷达的辐射校正方法和装置
CN113311408A (zh) * 2021-07-07 2021-08-27 中国地质大学(武汉) 一种高光谱激光雷达的辐射校正方法和装置
CN113655498B (zh) * 2021-08-10 2023-07-18 合肥工业大学 一种基于激光雷达的赛道中锥桶信息的提取方法及系统
CN113655498A (zh) * 2021-08-10 2021-11-16 合肥工业大学 一种基于激光雷达的赛道中锥桶信息的提取方法及系统
CN113888713A (zh) * 2021-09-24 2022-01-04 东南大学 一种车载激光点云数据恢复路面缺失点的方法
CN113970734B (zh) * 2021-10-13 2024-04-19 长安大学 路侧多线激光雷达降雪噪点去除方法、装置及设备
CN113970734A (zh) * 2021-10-13 2022-01-25 长安大学 路侧多线激光雷达降雪噪点去除方法、装置及设备
CN114155423A (zh) * 2021-11-30 2022-03-08 深圳亿嘉和科技研发有限公司 机器人局部环境可行驶区域感知方法及装置
CN114155423B (zh) * 2021-11-30 2024-03-22 深圳亿嘉和科技研发有限公司 机器人局部环境可行驶区域感知方法及装置
CN114494849B (zh) * 2021-12-21 2024-04-09 重庆特斯联智慧科技股份有限公司 用于轮式机器人的路面状态识别方法和系统
CN114425774A (zh) * 2022-01-21 2022-05-03 深圳优地科技有限公司 机器人行走道路的识别方法、识别设备以及存储介质
CN114425774B (zh) * 2022-01-21 2023-11-03 深圳优地科技有限公司 机器人行走道路的识别方法、识别设备以及存储介质
CN114877838A (zh) * 2022-04-14 2022-08-09 东南大学 一种基于车载激光扫描系统的道路几何特征检测方法
CN114877838B (zh) * 2022-04-14 2024-03-08 东南大学 一种基于车载激光扫描系统的道路几何特征检测方法
CN114758096A (zh) * 2022-04-15 2022-07-15 长沙行深智能科技有限公司 一种路沿检测方法、装置、终端设备和存储介质
CN115546749A (zh) * 2022-09-14 2022-12-30 武汉理工大学 基于摄像机和激光雷达的路面坑洼检测及清扫和避让方法
CN115600132A (zh) * 2022-12-15 2023-01-13 思创数码科技股份有限公司(Cn) 船舶载货种类判别方法及系统
CN116993735B (zh) * 2023-09-27 2024-01-23 中交第二公路勘察设计研究院有限公司 基于雷达遥感的道路病害检测方法、装置及电子设备
CN116993735A (zh) * 2023-09-27 2023-11-03 中交第二公路勘察设计研究院有限公司 基于雷达遥感的道路病害检测方法、装置及电子设备

Similar Documents

Publication Publication Date Title
WO2018205119A1 (zh) 基于激光雷达扫描的路沿检测方法和系统
CN107272019B (zh) 基于激光雷达扫描的路沿检测方法
WO2021223368A1 (zh) 基于视觉、激光雷达和毫米波雷达的目标检测方法
US10677907B2 (en) Method to determine the orientation of a target vehicle
WO2018177026A1 (zh) 确定道路边沿的装置和方法
CN111046776B (zh) 基于深度相机的移动机器人行进路径障碍物检测的方法
JP2021534481A (ja) 障害物又は地面の認識及び飛行制御方法、装置、機器及び記憶媒体
CN109635816B (zh) 车道线生成方法、装置、设备以及存储介质
JP7471481B2 (ja) 情報処理装置、情報処理方法及びプログラム
US10444398B2 (en) Method of processing 3D sensor data to provide terrain segmentation
CN110728753A (zh) 一种基于线性拟合的目标点云3d边界框拟合方法
CN113835102B (zh) 车道线生成方法和装置
WO2023000221A1 (zh) 可行驶区域生成方法、可移动平台及存储介质
CN112711027B (zh) 一种基于激光雷达点云数据的隧道内横向定位方法
US20220126836A1 (en) Travel road recognition device
CN111999744A (zh) 一种无人机多方位探测、多角度智能避障方法
CN115151954A (zh) 可行驶区域检测的方法和装置
CN113494915A (zh) 一种车辆横向定位方法、装置及系统
JP2011181028A (ja) 3次元モデル生成装置およびコンピュータプログラム
US11828841B2 (en) Method and device for estimating the height of a reflector of a vehicle
US20230314169A1 (en) Method and apparatus for generating map data, and non-transitory computer-readable storage medium
CN116958218A (zh) 一种基于标定板角点对齐的点云与图像配准方法及设备
CN115902839A (zh) 港口激光雷达标定方法及装置、存储介质及电子设备
CN116129137A (zh) 隧道点云特征的处理方法、装置、设备及存储介质
CN114228411A (zh) 连接控制方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908982

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17908982

Country of ref document: EP

Kind code of ref document: A1